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1. Introduction

In this note we adapt recent results of Burq-Gérard-Tzvetkov [2] and Christ-Colliander-Tao [3] on
instability for non-linear Schrödinger equations to the semi-classical setting. Rather than work with Sobolev
spaces we estimate the sizes of solutions and their differences in terms of the small constant, h, coming
from the equation. The ideas remain exactly the same but we gain in the simplicity of the arguments and,
we hope, in physical relevance.

Our motivation comes from the Gross-Pitaevski equations used in the study of Bose-Einstein condensa-
tion [6]:

(1.1) i~
∂

∂t
Φ(r, t) =

(
−~2∇2

2m
+ Vext(r) + g|Φ(r, t)|2

)
Φ(r, t) ,

where the coupling constant g is given in terms of the Planck constant ~ and the scattering length a:

(1.2) g =
4π~2a

m
(N − 1) .

Here N is the number of particles in the condensate, typically a very large number. In this equation we
normalize the wave function so that it gives a probability distribution:

‖Φ(•, t)‖2L2
def=

∫
R3
|Φ(r, t)|2dr = 1 .

The energy functional associated to (1.1) is given by the usual expression which we divide into kinetic,
exterior, and interaction energies:

E[Φ] =
∫

Rn

(
~2

2m
|∇Φ(r, t)|2 + Vext(r)|Φ(r, t)|2 +

g

2
|Φ(r, t)|4

)
dr ,

E[Φ] = Ekin(t) + Epot(t) + Eint(t) .
(1.3)

The total energy E[Φ] is conserved and (1.1) is rewritten from the variational point of view as i~∂t~Φ =
δE/δΦ∗ where •∗ denotes the complex conjugate.

The scattering length a appearing in the constant g is a physical parameter of the system and it is defined
using two body particle interaction: it is positive for repulsive interactions and negative for attractive ones.
Classically it is determined using the far field approximation in scattering theory: it is the radius of an
attractive or repulsive sphere with the leading far field behaviour same as the two molecule subsystem of
the condensate.

In principle, using the method based on the existence of Feshbach resonances [6], the scattering length
can be tuned to any value, including values close to zero, or values of different signs. This can lead to very
interesting instability phenomena as investigated recently in [5],[7].

The mathematical instability results we are using are of considerably weaker nature – see the table
below. The main problem with the results of [3] is the non-physical nature of the initial conditions. The
more geometric and physical results of [2] suffer from the requirement of small a(N−1) – see Fig.1. Clearly
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2 N. BURQ AND M. ZWORSKI

the case of large a(N − 1) is more interesting but then the mechanism must be completely different than
in [2].

As the first mathematical approximation to (1.1) we will consider the non-linear Schrödinger equation
with two parameters, a small pseudo-Planck constant h, and a > 0 a pseudo-scattering length:

(1.4) ih∂tu = −h2∆u+ V (x)u+ h2a|u|2u , u = uh(t, x) , x ∈ R3 , ∆ :=
3∑

j=1

∂2
xj
.

In quantum mechanics instability should be considered with respect to complex projective distance:

(1.5) vj ∈ L2(R3) , dpr(v1, v2)
def= cos−1

(
|〈v1, v2〉|
‖v1‖‖v2‖

)
.

We will consider two different types of instability:
• High energy: uj = uj

h(t), j = 1, 2, bounded in L2, but with unbounded (as h→ 0) energies solve
(1.4), and

dpr(u1
h(th), u2

h(th))
dpr(u1

h(0), u2
h(0))

−→∞ ,
Ekin(th)
Ekin(0)

−→∞ , th −→ 0 , h −→ 0 .(1.6)

• Geometric: uj = uj
h(t), j = 1, 2, with ‖uj

h(t)‖L2 ∼ E(0) � Eint(0), solve (1.4), a = oh→0(1), and
for h-dependent times th,

‖u1
h(th)− u2

h(th)‖L2

‖u1
h(0)− u2

h(0)‖L2
≥ tha −→∞ , h −→ 0 .(1.7)

For some potentials we can also show that we have projective instability along a sequence of values of h:

dpr(u1
h(th), u2

h(th))
dpr(u1

h(0), u2
h(0))

−→∞ , th −→∞ , h = hk −→ 0 , k →∞ .(1.8)

The instability in (1.7) is extremely weak and all we can say at this stage is that we have a phenomenon
which is impossible in linear unitary propagation. In fact, the semiclassical adaptation of the result of [2]
can be considered as a stability result: some eigenstates of the Schrödinger operator −h2∆+ |x|2 (see (3.3)
below) persist in non-linear propagation long enough to develop a global change phase which implies (1.7)
but not (1.6). However for a class of potentials with cylindrical symmetry we can obtain (1.8).

In the two cases the relevant time scales and the localizations of the initial data leading to the instability
are different and correspond to the regimes considered in [3] and [2] respectively. In the first case the
structure of the exterior potential V is irrelevant and in the second case the semi-classical dynamics of
−h2∆ + V (x) replaces the compact manifold geometry. This is represented schematically in the following
table:

Time scale Effect of V Expected instability Initial data

t� h The potential plays no rôle, |a| > c > 0 Type (1.6) instability h−3/2φ0(x/h)

t→∞ global Hamiltonian flow in the energy Type (1.7) instability Special excited modes of
surface of ξ2 + V (x) relevant, a = o(1). −h2∆ + V (x)

Notation. In this paper C denotes a bounded constant the value of which may change from line to line.
We use the notation a ∼ b if a/C ≤ b ≤ Ca, and a� b, if a ≤ Kb for some fixed large constant K.
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2. High energy instability

In this section we will prove a precise version of (1.6). We assume that V ∈ C∞(R3) and that V ≥ −C.

Theorem 1. Suppose that the initial conditions for (1.4) are given by

uj
h(x) = h−3/2φ

(
x− xj

h

)
, j = 1, 2 , φ ∈ C∞c (R3) , ‖φ‖L2(R3) = 1 ,

|x1 − x2| = C0h

(
log

(
1
h

))−α

, α < 1 ,
(2.1)

where C0 is a fixed large constant. Suppose also that φ is real valued and has a nondegenerate maximum.
Then for |a| > hδ, δ < 1, we have

(2.2)
dpr(u1

h(t), u2
h(t))�t=|a|−1h2(log(1/h))α

dpr(u1
h(0), u2

h(0))
∼

(
log

(
1
h

))α/2

,

and for the energy of uh
j ’s we have

(2.3)
Ekin(|a|−1h2(log(1/h))α)

Ekin(0)
∼

(
log

(
1
h

))α

.

If a ' 1 this means that at very short times we have logarithmic divergence for the projective distance
quotient, and an energy transfer from interaction energy to kinetic energy. The generic condition that φ
has a nondegenerate maximum is made for technical convenience only – see Lemma 2.1 below.

2.1. The ansatz. In this section the sign the constant a in front of the non linearity does not matter. For
clarity we fix it to be equal to + (defocusing) Let uj

h be as in the statement of Theorem 1:

uj
h(x) = h−(3/2)φ

(
x− xj

h

)
.

Denote

(2.4) vj
h(t, x) = h−(3/2)φ((x− xj)/h)e−itah−2φ2((x−xj)/h)

solution of
ih∂tv

j
h = ah2|vj

h|
2vj

h

We will now check that with the choices of xj in (2.1) we obtain (2.2) for the two ansätze. We see that

(2.5) dpr(u1
h, u

2
h) = cos−1

(
|〈u1

h, u
2
h〉|

)
= cos−1(1−O(|x1−x2|/h) = O(|(x1−x2)/h|

1
2 ) =

(
log

(
1
h

))−α/2

.

We also compute

(2.6) dpr(v1
h(t), v2

h(t)) = cos−1

(∣∣∣∣∫
R3
φ(x− x1/h)φ(x− x2/h)eith−2a(φ2(x−x1/h)−φ2(x−x2/h))dx

∣∣∣∣) .

We now need
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Lemma 2.1. Suppose that φ ∈ C∞c (R3; R) has a nondegenerate maximum and that ‖φ‖L2 = 1. Then for
σ � |y|−1 � 1, ∣∣∣∣∫

R3
φ(x− y)φ(x)eiσ(φ2(x−y)−φ2(x))dx

∣∣∣∣ ≤ b+O(|y|+ 1/(σ|y|)) ,

where b < 1 depends only on φ.

Proof. We first note that∫
R3
φ(x− y)φ(x)eiσ(φ2(x−y)−φ2(x))dx =

∫
R3
φ2(x)eiσ(φ2(x−y)−φ2(x))dx+O(|y|) .

The phase in the integral can be written as σ〈y, ψy(x)〉 where at the maximum of φ, x0, |Dψy(x0)| > c > 0,
uniformly in y. All derivatives of ψy are also bounded uniformly in y. Hence when we cut-off to a small
neighbourhood of x0 the phase has no stationary points and the integral decays rapidly as σ|y| → ∞. Since
‖φ‖L2 = 1 the contribution away from that neighbourhood is strictly smaller than 1. �

We apply the lemma with σ = tah−2 log(1/h)α and y = (x1 − x2)/h, |y|−1 � σ if C0 (in the condition
on x1 − x2) large enough. Hence (2.6) shows

(2.7) dpr(v1
h(t), v2

h(t)) > c > 0 ,

and consequently we have (2.2) with uj
h(t) replaced by vj

h. The proof of Theorem 1 amounts to showing
that for times of the order |a|−1h2 log(1/h)α, and for |a| bounded away from 0, the ansatz dominates the
solution of the non-linear equation.

In preparation for the analysis of the solution we record the following simple

Lemma 2.2. Let
Ph = −h2∆ + V (x) , V ∈ C∞(R3) , V ≥ −C .

If v = vh is given by (2.4) then

‖(hDx)αv‖L∞ ≤ Cαh
− 3

2 (1 + (th−2|a|)|α|) ,

‖(hDx)αv‖L2 ≤ Cα(1 + (th−2|a|)|α|) , ‖Phv‖L2 ≤ (1 + (th−2|a|)2) .

2.2. Non linear analysis. We start with a remark about the existence of solutions to the non-linear
equation (1.4). The norm involved in the standard fixed point argument is the H2

h semi-classical norm: in
dimension 3, the H2

h norm controls the L∞ norm with a large constant, and consequently the equation (1.4)
is easily shown to be locally well posed in H2

h(R3). Using this local existence result, the well posedness for
the time t ∼ |a|h2(log(1/h))α given in Theorem 1 follows from a priori bounds on the solution which we
prove in this subsection.

We recall that the semi-classical Sobolev norms are defined as follows

‖u‖Hk
h

=
∑
|α|≤k

‖(hD)αu‖L2 .

The following lemma provides a translation of the standard Sobolev embeddings:

Lemma 2.3. For 2 ≤ p ≤ ∞ satisfying

1
2
− m

n
≤ 1
p
, p <∞ ,

1
2
− m

n
< 0 , p = ∞ ,

we have
‖u‖Lp(Rn) ≤ Chn( 1

p−
1
2 )‖u‖Hm

h (Rn) .
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Proof. With h = 1 this is one of the standard Sobolev inequalities. Applying it to vh(x) = u(hx) gives the
lemma: (hDx)αu = Dα

xvh,

‖vh‖Hm(Rn) = h−
n
2 ‖u‖Hm

h (Rn) , ‖vh‖Lp(Rn) = h−
n
p ‖u‖Lp(Rn) .

�

We now consider u the solution of(1.4) with initial data u1
h given in Theorem 1. Write u = v+w where

v is the ansatz above. We obtain the following equations for for w:

(2.8) (ih∂t + Ph)w = h2|a|
(
O(|v|2|w|) +O(|v||w|2) +O(|w|3)

)
− Phv

We are going to show that the above equation can be solved by energy methods and that the solution
satisfies

(2.9) sup
t∈[0,h2|a|−1(− log(h))α]

(‖w‖2L2 + ‖Phu‖2L2) ≤ Chε/|a| .

As a startup and to make the main ideas clear, we consider a simpler problem for which the fixed point
argument can be performed in L2. Consider w̃ solution of the linear equation

(2.10) (ih∂t + Ph)w̃ = |a|h2O(|v|2)w̃ − Phv .

Denote I0(t) = ‖w̃‖2L2 . Then

(2.11)
dI0(t)
dt

= − 2
h

Im〈w̃(t), ih∂tw̃(t)〉 = − 2
h

Im〈w̃(t), h2a|v(t)|2w̃(t)− Phv〉 ,

since the term involving Phw disappears due to the self adjointness of Ph.
Using Lemma 2.2 we see that for for t ∈ [0, h2|a|−1(− log(h))α]

d

dt
I0(t) ≤ C|a|h‖v(t)‖2L∞I0(t) + h−1‖Phv(t)‖I0(t)

1
2

≤ C|a|h−2I0(t) + Ch−1(1 + (th−2|a|)2)I0(t)
1
2

≤ C ′|a|h−2I0(t) + C ′(1 + (− log h)2α)2/|a|

As a consequence, through an application of the Gronwall lemma, we get for t ∈ [0, |a|h2(− log(h))α].

I0(t) ≤ CeCt|a|h−2
∫ t

0

e−Cs|a|h−2
(1 + (− log h)4α)ds

≤ CeCth−2|a|(h2/|a|)(1 + (− log h)4α)

≤ CeC(− log h)α)h2−ε/|a|2 ≤ (h1−ε′/|a|)2 .

Hence the solution of (2.10) is negligible as long as |a| ≥ hδ, δ < 1.
We come back to the estimation of the true nonlinear correction term w. We proceed as in the model

case (2.10) and use the energy method as in (2.11), now with

I(t) def= ‖w(t)‖2L2 + ‖Phw(t)‖2L2 .

We recall (2.8):
(ih∂t + Ph)w = h2|a|

(
O(|v|2|w|) +O(|v||w|2) +O(|w|3)

)
− Phv ,

which using (2.11) gives,

(2.12)
d

dt
‖w(t)‖L2 = O(1/h)

(
h2|a|

(
〈|v||w|2, |w|〉+ 〈|w|, |w||v|2〉+ 〈|w|3, |w|〉

)
+ 〈|Phw|, |v|〉

)
.
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The operator applied to w, Phw, satisfies the equation

(ih∂t + Ph)Phw = h2a(O(vPhv)w +O(v2)Phw +O(Phv)w2 +O(v)wPhw

+O(w2)Phw +O(|h∇v|2)w +O(v|h∇v||h∇w|)
+O(v|h∇w|2) +O(|h∇w|2w))− P 2

hv ,

and the same method as in (2.11) gives

d

dt
‖Phw(t)‖L2 = O(1/h)

(
|a|h2

(
〈|vPhv||w|, |Phw|〉+ 〈|v|2|Phw|, |w|〉+ 〈|Phv||w|2, |Phw|〉

+ 〈|v||w||Phw|, |Phw|〉+ 〈|w|2, |Phw|2〉+ 〈|h∇v|2|w|, |Phw|〉+ 〈|v||h∇v||h∇w|, |Phw|〉
+ 〈|v||h∇w|2, |Phw|〉 +〈|h∇w|2|w|, |Phw|〉

)
+ 〈|P 2

hv|, |Phw|〉
)
,

(2.13)

By putting (2.12) and (2.13) we obtain

dI

dt
≤ C|a|h(‖v‖2L∞I(t) + ‖w‖4L4 + ‖v‖L2‖w‖3L6 + ‖v‖L∞‖Phv‖L∞I(t)

+ ‖Phv‖L∞‖w‖2L4I(t)
1
2 + ‖v‖L∞‖w‖L∞I(t)

+ ‖w‖2L∞I(t) + ‖h∇v‖2L∞I(t) + ‖v‖L∞‖h∇w‖2L4I(t)
1
2

+ ‖w‖L∞‖h∇w‖2L4I(t)
1
2 ) + ‖v‖L2I(t)

1
2 + ‖Phv‖2L2I(t)

1
2 ,

(2.14)

where all the norms are taken in Lp(R3) at time t.
We need the following cases of Lemma 2.3:

‖h∇f‖L4(R3) + ‖f‖L4(R3) ≤ Ch−3/4(‖Phf‖L2 + ‖f‖L2) ,

‖f‖L6(R3) ≤ Ch−1(‖Phf‖L2 + ‖f‖L2) ,

‖f‖L∞(R3) ≤ Ch−3/2(‖Phf‖L2 + ‖f‖L2) .

(2.15)

Using (2.15) to estimate the terms involving w in (2.13) and in (2.8), and using Lemma 2.2 to estimate
the terms involving v, we see that (2.14) implies

dI(t)
dt

≤ C|a|h−2
(
(1 + |ath−2|2)(I(t) + I(t)

3
2 ) + I(t)

5
2

)
+ Ch−1I(t)

1
2 (1 + |ath−2|2) .(2.16)

Since I(0) = 0, we can use a bootstrap argument to show that for 0 < t < h2|a| log(1/h)α,

I(t) ≤ (h1−ε′/|a|)2 ≤ hε ,

if |a| > hδ, δ < 1. For the reader’s convenience we briefly recall the standard argument.
Consider the set

J = {t : I(s) ≤ hβ , 0 ≤ s ≤ t} ∩ [0, |a|h2 log(1/h)α] .
Then J 6= ∅ as I(0) = 0, J is clearly closed as I(t) is continuous, and the same Gronwall inequality applied
to (2.11) shows that J is open. Hence J = [0, |a|h2 log(1/h)α].

To summarize, we conclude that for |a| ≥ hδ for some δ < 1 the ansatz v dominates the solutions for
times of the order |a|−1h2 log(1/h)α.

Remark. It is an interesting question which other initial conditions can produce similar effects, in par-
ticular what level of localization is necessary. A natural localization from the point of view of quantum
mechanics is given by initial data of the form

uj
h(x) = h−

3
4φ

(
x− xj

h
1
2

)
.
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To see the instability in this case let us consider an example discussed in §3: V (x) = |x|2. Then the unitary
transformation ũ(x̃) = h

3
4u(h

1
2 x̃) changes the equation (1.4) to

i∂tũ = −∆ũ+ |x̃|2u+ ah−
1
2 |ũ|2ũ .

An argument similar to that above shows that for a ≥ h
1
2+ε, ε > 0 and |x1 − x2| ∼ h

1
2 (log(1/h))α we have

(1.6).

3. Geometric instability

In this section we will consider a class of cylindrically symmetric potentials with the principal example
given by the harmonic oscillator V (x) = |x|2:

ih∂tu = −h2∆u+ V (x) + ah2|u|2u , u = uh(t, x) , x ∈ R3 ,

V (Rθx) = V (x) , θ ∈ [0, 2π) , ∂αV (x) = O(〈x〉m) , V (x) ≥ 〈x〉m/C − 1 ,
(3.1)

where Rθ is the angle θ-rotation with respect to the x3 axis. The equation (3.1) is “gauge invariant”
and consequently, if the initial data satisfies ut=0(Rθx) = einθut=0(x), then the solution satisfies the same
invariance for any t. Let us write

(3.2) Vn = {u ∈ L2(R3) : R∗θu = einθu} .
The operator Ph�Vn

can be considered as an operator on R× R+:

Ph�Vn= (hDy)2 + (hDr)2 − i
h

r
hDr + V (r, y) +

(nh)2

r2
.

We choose n = n(h) so that
nh = 1 +O(h) .

Suppose that the potential V (r, y) + r−2 has a non-degenerate absolute mininimum at (y0, r0) with the
value V0. The standard analysis (see for instance [4]) shows that

Ph�Vn=
∞∑

j=0

λjej ⊗ e∗j ,

where •∗ denotes complex conjugation and,

e0(x) ∼ einθ ẽ0(r, y) ,
1

C
√
h
e((y−y0)

2+(r−r0)
2)/(Ch) ≤ ẽ0(r, y) ≤

C√
h
eC((y−y0)

2+(r−r0)
2)/h ,

λ0 ∼ V0 , λ1 − λ0 > h/C ,

and from the point of view of counting functions λj ∼ hj1/2. Much more precise estimates for e0 and the
counting function are available but this is sufficient for us.

We can now state the precise version of (1.7):

Theorem 2. Let V be a cylindrically symmetric potential satisfying the assumptions above. Suppose that
e0 is the ground state of Ph�Vn , where Vn is given by (3.2) with nh ∼ 1, and that two initial conditions for
(3.1) are given by

(3.3) uh
j (x) = κje0(x) , j = 1, 2 , κ1 = κ , κ2 = κ+ ε , κ4a� 1 ,

Then for t(aκ4)3/2 � εκat� 1,

(3.4)
‖u1

h(t)− u2
h(t)‖L2

‖u1
h(0)− u2

h(0)‖L2
≥ (tκa+ 1)/C ,

uniformly in h, a� 1, aκ4 � 1, and κ ≥ 1.
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3.1. The instability. We first discuss the consequences of the theorem. Since we can take κ ∼ 1, a ∼ hδ,
t ∼ h−γ , ε ∼ hρ,

δ < γ <
3
2
δ , γ − δ < ρ <

3
2
δ − γ ,

we obtain,
‖u1

h(t)− u2
h(t)‖L2

‖u1
h(0)− u2

h(0)‖L2
≥ hδ−γ/C −→∞ , h −→ 0 ,

and (1.7) follows. That choice of parameters might be interesting since a is the (renormalized) scattering
length: that is the essential “interaction” size of the molecules forming the condensate.

As we will see, for aκ4 � 1, the phase of the solution of (3.1) with the initial data κe0(x) is essentially
tλ0/h+ κ2at. The “non-linear” phase shift produces instability (3.4) but since it is global in x we do not
have instability using the projective norms (1.5).

3.2. Structure of the solution. Denote by u the solution of (3.1) with initial data κe0(x). We recall
the two standard conservation laws:

(3.5) ‖u‖2L2(t) = ‖u‖2L2(0) = κ2 ,

and

(3.6) E(u)(t) =
∫
|h∇u|2 + |x|2|u|2 +

1
2
h2a|u|4 = E(u)(0)

We write E = Elin + Eint, grouping kinetic and exterior energies together in Elin.
We have E(u)(0) = κ2λ0 + κ4Fh where λ0 ∼ 1 is the ground energy of Ph�Vn and

Fh = h2a‖e0‖4L4 ∼ ah .

To obtain estimates in the nonlinear propagation, we slightly modify the argument of [2]. For that we
decompose u on the L2 basis of eigenfunctions of the operator Ph�Vn

:

(3.7)
u(t, x) = κe−

it
h (λ0+κ2Fh)γ(t)e0(x) +

∞∑
j=1

uj(t)ej(x)

= κe−
it
h (λ0+κ2Fh)γ(t)e0(x) + q(t, x) .

To estimate the norm of q(t, •) we write

Eint(0) = E(0)− Elin(0)

= E(0)− λ0‖u(0)‖2L2

= E(t)− λ0‖u(t)‖2L2 ,

with the last equality following from the conservation laws (3.5) and (3.6). Since Eint(0) = κ4Fh ∼ ahκ4

and

E(t) = Elin(t) + Eint(t) = κλ0|γ(t)|2 +
∞∑

j=1

λj |uj(t)|2 +
ah2

2
‖u‖4L4(t) ,

we conclude that

(3.8) Cκ4ah ≥
∞∑

j=1

(λj − λ0)|uj(t)|2 +
ah2

2
‖u‖4L4(t) ≥ h‖q(t)‖2L2 +

ah2

2
‖u‖4L4(t) ,

as λj − λ0 ≥ h for j ≥ 1. Thus

(3.9) ‖q(t)‖2L2 + ah‖u‖4L4(t) ≤ Caκ4 .
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On the other hand
‖q(t)‖2L2 = ‖u‖2L2(t)− κ2|γ(t)|2 = κ2(1− |γ(t)|2)

Combined with (3.9) we obtain κ2(1− |γ(t)|2) ≤ Caκ4, that is,

(3.10) |1− |γ(t)|| ≤ Caκ2 .

and consequently, according to (3.9)

(3.11)
‖q‖4L4(t) ≤ Ch−1

(
κ4 + h‖κγ(t)e0‖4L4

)
≤ Ch−1κ4

(
1 + Caκ2hh−1

)
≤ Ch−1κ4(1 + aκ2) .

Since γ(0) = 1 the estimates (3.9) and (3.10) show that for aκ2 ≤ aκ4 � 1 the term corresponding to first
eigenfunction dominates in the non-linear propagation.

3.3. Non-linear propagation of leading term. From the formula for γ(t):

γ(t) = eit(λ0+κ2Fh)/h〈u, e0〉 ,

we derive the equation satisfied by γ:

(3.12) ihγ̇ − κ2Fh(1− |γ|2)γ = −κ2ah2
(
2ζ|γ|2 + ζγ2 + 2εγ + ηγ + σ

)
where

ζ =
(
q, |e0|2e0

)
L2 =⇒ |ζ| ≤ ‖q‖L2‖e0‖3L6 ≤ Ca1/2κ2h−1

ε =
∫
|e0|2|q|2, η =

∫
q2e0

2 =⇒ |η| ≤ ε ≤ ‖e0‖2L∞‖q‖2L2 ≤ Ch−1aκ4

σ =
∫
|q|2qe0 =⇒ |σ| ≤ ‖e0‖L∞‖q‖3L3 ≤ ‖e0‖L∞‖q‖2L4‖q‖L2 ≤ Ch−1κ4a1/2

If aκ4 � 1, with κ large, we obtain

(3.13) |γ̇| ≤ Caκ2
(
a1/2κ2(1 + Caκ4) + aκ4 + a1/2κ4

)
≤ C ′(aκ4)3/2 .

Thus
γ(t) = 1 +O(t(aκ4)3/2) ,

and for t� (aκ4)−3/2, γ(t) ' 1.

Proof of Theorem 2: Due to our estimates we need to consider the leading term

κγ(t)e−it(λ0+Fhκ2)/h , Fh ∼ ah .

We now note that, in the notation of (3.3),∣∣∣eitκ2
1Fh/h − eitκ2

2Fh/h
∣∣∣ ' 2εκtFh/h ,

for κεtFh/h ∼ εtaκ � 1 . Since that difference gives a lower bound for ‖u1
h(t) − u2

h(t)‖/κ with an error
O(t(aκ4)3/2). Since

‖u1
h(0)− u2

h(0)‖ = ε ,

we obtain (3.4).
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3.4. Projective instability. Following a suggestion of Mike Christ we modify the above construction to
obtain a stronger projective instability (1.8) along a sequence of hk’s. For that we assume that, in the
notation of Theorem 2,

The function (r, y) 7→ V (r, y) + r−2 has two distinct absolute non-degenerate minima
(rj , yj), j = 1, 2,, and its Hessians at (rj , yj) are equal.

In this case, with V0 = V (rj , yj),

Ph�Vn
=

2∑
k,j=1

akje
k
0 ⊗ ej

0 +
∞∑

j=1

λjej ⊗ e∗j ,

ej
0(x) ∼ einθ ẽj

0(r, y) ,
1

C
√
h
e−((y−yj)

2+(r−rj)
2)/(Ch) ≤ ẽj

0(r, y) ≤
C√
h
e−C((y−yj)

2+(r−rj)
2)/h ,(3.14) (

a11 a12

a21 a22

)
=

(
λ1

0 O(h∞)
O(h∞) λ2

0

)
, λ1

0 − λ2
0 = O(|nh− 1|+ h2) ,(3.15)

see [4, Theorem 6.10]. The functions ej
0, j = 1, 2, are very close to linear combinations of the eigenfuctions

corresponding to the lowest eigenvalues of P�Vn
. They are almost orthogonal to ek with k > 0:

〈ek, e
j
0〉 = O(h∞) .

If we choose a sequence of h’s for which |nh− 1| = O(h2) then

λj − λk
0 > h/C, j > 0 .

Suppose now that we solve (3.1) with

uh(0, x) = κ1e
1
0(x) + κ2e

2
0(x) ,

where 0 ≤ κj ∼ κ. Let a, t and κ satisfy the assumptions of Theorem 2:

(3.16) aκ4 � 1 , t� (aκ4)−3/2 , κ� 1 ,

and in addition assume that these parameters are h-tempered, by requiring that

a > hN .

Then
uh(t, x) = κ1e

i(λ1
0+Fhκ2

1)/hγ1(t)e10(x) + κ2γ2(t)ei(λ2
0+Fhκ2

2)/he20(x) + q(t, x) ,
where, using the same argument as before, we can show that γj(t) is bounded and q(t, x) satisfies esti-
mates (3.8), (3.9). On the other hand the modes e10 and e20 do not interact (see (3.14)), and hence the
estimates on q give ∣∣∣∣ ddt |γj |2

∣∣∣∣ ≤ CM

(
hM + (aκ4)3/2

)
As a consequence we obtain

|1− |γj |2| ≤ Ct(aκ4)3/2 ,

and coming back to the equation satisfied by γj ,

γj(t) = 1 +O(t(aκ4)3/2) +O(t2a5/2κ8) = 1 +O(t(aκ4)3/2) .

The last equality came from noticing that (3.16) implies that

t2a
5
2κ8 = (t(aκ4)3/2)2(aκ4)−

1
2κ−2 ≤ t(aκ4)3/2 .

Now suppose that we take another initial condition,

ũh(x, 0) = (κ1 + ε)e10(x) + (κ2 + ε)e20(x) , ε > hN .
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We first check that

(3.17) dpr(uh(0), ũh(0)) ∼ ε|κ1 − κ2|/κ .
In fact, the left hand side is equal to

cos−1

(
κ1(κ1 + ε) + κ2(κ2 + ε)

(κ2
1 + κ2

2)1/2((κ1 + ε)2 + (κ2 + ε)2)1/2
+O(h∞)

)
.

Putting ~κ = (κ1, κ2) and ~a = (1, 1) the main term inside cos−1 is

‖~κ‖2 + ε〈~a,~κ〉
‖~κ‖2(1 + 2ε〈~κ,~a〉/‖~κ‖2 + ε2‖~a‖2/‖~κ‖2) 1

2
= 1− ε2

(
‖~a‖2

2‖~κ‖2
− 〈~a,~κ〉2

2‖~κ‖4

)
+O

(
ε2

‖~κ‖3

)
= 1− ε2

(κ1 − κ2)2

2(κ2
1 + κ2)

+O
(
ε3

κ3

)
.

We now estimate the projective distance between uh(t) and ũh(t). For that we assume that

(3.18) |κ1 − κ2| ∼ κ , aκ4 � ε� 1 , t2a3κ14 � ε , 1 � tκa ,

noting that (3.18) imply previously made assumptions. In particular we have ε � εatκ. Then using the
previous estimates,

〈uh(t), ũh(t)〉 =
2∑

j=1

κj(κj + ε)eit(κ2
j−(κj+ε)2Fh)/h +O(κ14t2a3) +O(aκ4) +O(h∞)

=
2∑

j=1

κ2
je

it(κ2
j−(κj+ε)2Fh)/h +O(ε) .

We then have
|〈uh(t), ũh(t)〉|2

‖uh(t)‖2‖ũh‖2
=
κ4

1 + κ4
2 + 2κ2

1κ
2
2 cos(t(κ1 − κ2)εFh/h)

(κ2
1 + κ2

2)2
+O(ε) ,

and consequently,
dpr(uh(t), ũh(t)) ∼ εκat .

This gives the following

Theorem 3. Suppose that V (x) in (3.1) satisfies the assumption of §3.4 and that the initial conditions
are chosen as above with the parameters satisfying (3.18). Then for a sequence of h satisfying

nh = 1 +O(h2) ,

we have
dpr(uh(t), ũh(t))
dpr(uh(0), ũh(0))

∼ 1 + κat .
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