
BOUNCING BALL MODES AND QUANTUM CHAOS

NICOLAS BURQ AND MACIEJ ZWORSKI

Abstract. Quantum ergodicity of classically chaotic systems has been studied extensively both the-
oretically and experimentally, in mathematics, and in physics. Despite this long tradition we are able
to present a new rigorous result using only elementary calculus. In the case of the famous Bunimovich
billiard table shown in Fig.1 we prove that the wave functions have to spread into any neighbourhood
of the wings.

The quantum/classical correspondence is a puzzling issue that has been with us since the advent of
quantum mechanics hundred years ago. Many aspects of it go back to the Newton/Huyghens debate over
the wave vs. corpuscular theories of light.

On the surface of our existence we live in a world governed by laws of classical physics. That does
not mean that we know precisely how fluids flow or solids move. They are described by highly non-
linear rules which are hard to unravel mathematically. Even the simplest classical motion, that of a ball
bouncing elastically from confining walls poses many unanswered questions – see http://www.dynamical
systems.org/billiard/ for a fun introduction.

If we investigate deeper, or if we simply use any modern technical device, we come in contact with
quantum mechanics. It is governed by a different set of rules which mix wave and matter. The simplest
description of a wave comes from solving the Helmholtz equation:

(−∆− λ2)u = 0 , ∆ = ∂2
x + ∂2

y , (x, y) ∈ Ω , u�∂Ω= 0 .

Here we put our wave inside of a two dimensional region Ω. In classical wave mechanics the limit
λ → ∞ is described using geometrical optics where the waves propagate along straight lines reflecting
in the boundary ∂Ω. Roughly speaking, we expect something similar in the classical/quantum corre-
spondence with the Helmholtz equation replaced by its quantum mechanical version, the Schrödinger
equation. For many fascinating illustrations of this we refer to the web art gallery of Rick Heller:
http://www.ericjhellergallery.com.

Figure 1. An experimental image of bouncing ball modes in a Bunimovich stadium
cavity – see [1] and http://www.bath.ac.uk/∼pyscmd/acoustics. With a certain amount
imagination one can see our theorem in this picture.
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Many researchers on different aspects of semiclassical analysis have been interested in the the corre-
spondence of solutions to the equation above and the classical geometry of balls bouncing from the walls
of Ω: Bäcker, Cvitanović, Eckhardt, Gaspard, Heller, Sridhar, in physics, and Colin de Verdière, Melrose,
Sjöstrand, Zelditch, in mathematics, to mention some (see [2],[3] for references to the physics literature,
and [4],[5],[6] for mathematics).

Billiard tables for which the motion is chaotic are a particularly interesting model to study†. One of
the most famous is the Bunimovich billiard table shown in Fig.1. By adding two circular “wings” to a
rectangular table the motion of a reflecting billiard ball becomes chaotic, or more precisely, hyperbolic,
in the sense that changes in initial conditions lead to exponentially large changes in motion as time goes
on.

As a model for studying quantum phenomena in chaotic systems this billiard table has become popular
in experimental physics. A genuinely quantum example is shown in Fig.2 – it comes from the scanning
tunnelling microscope work of Eigler, Crommie, and others [7].

Figure 2. Quantum corral in the shape of the Bunimovich stadium. Courtesy of IBMR© Research.

One question which is still mysterious to mathematicians and physicists alike is if the states of this
system (that is, solutions of the equation above) can concentrate on the highly ustable closed orbits of
the classical billiard. Quantum unique ergodicity states that there is no such concentration – see [8],[9],[6]
and references given there. In the arithmetic case, that is for billiards given by arithmetic surfaces where
the motion is given by the geodesic flow, spectacular advances have been recently achieved by Bourgain,
Lindenstrauss [10], and Sarnak, while for the popular quantization of the Arnold cat map impressive
results were produced by Bonechi, De Bièvre, Faure, and Nonnenmacher [11], and also by Kurlberg and
Rudnick [12].

Here we describe an elementary but striking result in the billiard case. It follows from adapting the
first author’s earlier work in control theory. Although motivated by the more general aspects of [13] we
give a simple self contained proof.

For a state u(x, y) what counts is its probability density, |u(x, y)|2dxdy – we assume here that |u|2 is
normalized to have integral 1 over Ω. We say that it is bounded from below in a region if its integral
over that region is bounded from below by a positive constant. With this terminology we have, roughly
speaking,

†Of course one would not want to play billiards on a table like that, and a completely integrable rectangular one can pose
enough of a challenge. While discussing billiards and the classical/quantum correspondence we cannot resist mentioning
that Pyotr Kapitsa (Nobel Prize in Physics ’78) was fond of saying that trying to detect the quantum nature of physical
processes at room temperature was like trying to investigate the physical laws governing the collision of billiard balls on a
table aboard a ship going through rough seas.
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Theorem. For any normalized state of the Bunimovich billiard table, the probability density in any
neighbourhood of the wings of the table is bounded from below independently of the energy λ2.

In particular, the result says that single bouncing ball orbits (that is orbits following an interval
perpendicular to the horizontal straight boundaries) cannot produce localized waves. Our result allows
concentration on the full invariant set of all vertical orbits over R – that is consistent with the existing
physical literature – both numerical and experimental – see [2] and [1]. In [13] we show a stronger result,
namely that the neighbourhood of the wings can be replaced by any neighbourhood of the vertical intervals
between the wings and the rectangular part. The proof of that predictable (to experts) improvement is
however no longer elementary and is based on [14].

The proof of theorem depends on the following unpublished result of the first author (see [13] for
detailed references and background material):

Proposition. Let ∆ = ∂2
x + ∂2

y , be the Laplace operator on the rectangle R = [0, 1]x × [0, a]y. Then for
any open ω ⊂ R of the form ω = ωx × [0, a]y , there exists C such that for any solutions of

(−∆− λ2)u = f + ∂xg on R , u�∂R= 0 ,

with an arbitrary λ ≥ 0 we have∫
R

|u(x, y)|2dxdy ≤ C
(∫

R

(|f(x, y)2|+ |g(x, y)|2)dxdy +
∫

ω

|u(x, y)|2dxdy
)
.

Proof. We decompose u, and f + ∂xg in terms of the basis of L2([0, a]) formed by the Dirichlet eigen-
functions ek(y) =

√
2/a sin(2kπy/a),

(1) u(x, y) =
∑

k

ek(y)uk(x), f(x, y) + ∂xg(x, y) =
∑

k

ek(y)(fk(x) + ∂xgk(x))

we get for uk, fk the equation(
∂2

x + z
)
uk = fk + ∂xgk, uk(0) = uk(1) = 0 , z = λ2 − (2kπ/a)2

.

It is now easy to see that

(2)
∫ 1

0

|uk(x)|2dx ≤ C
(∫ 1

0

(|fk(x)|2 + |gk(x)|2)dx+
∫

ωx

|uk(x)|2dx
)
,

where C is independent of λ1. In fact, let us first assume that ωx = (0, δ), δ > 0, and z = λ2
1, with

Imλ1 ≤ C. We then choose χ ∈ C∞c ([0, 1]) identically zero near 0 and identically one on [δ/2, 1]. Then(
∂2

x + λ2
1

)
(χuk) = Fk , Fk = χ(fk + ∂xgk) + 2∂xχ∂xuk + ∂2

xχuk .

We can now use the explicit solution given by

χ(x)uk(x) =
1
λ1

∫ x

0

sin(λ1(x− y))Fk(y)dy .

All the terms with ∂xgk and ∂xuk can be converted to gk and uk by integration by parts (with boundary
terms 0 at both ends). Due to the λ−1

1 factor that produces no loss and the estimate follows. The
argument is symmetric under the x 7→ −x change, so we can place our control interval anywhere.

It remains to discuss the case z ≤ −C < 0. Then the estimate (2) follows from integration by parts
(where now we do not need ωx):∫ 1

0

(
fk(x)uk(x)− gk(x)∂xuk(x)

)
dx =

∫ 1

0

(fk(x) + ∂xgk(x))uk(x)dx =∫ 1

0

(−∂2
x − z)uk(x)uk(x)dx =

∫ 1

0

(
|∂xuk(x)|2 + |z||uk(x)|2

)
dx .
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By the Cauchy-Schwartz inequality, the left hand side is bounded from above by(∫ 1

0

(
|fk(x)|2 + |gk(x)|2

)
dx

) 1
2
(∫ 1

0

(
|uk(x)|2 + |∂xuk(x)|2

)
dx

) 1
2

.

Since |z| > C > 0, (2) follows from elementary inequalities (see [13, Lemma 4.1] for a general microlocal
argument). We can now sum the estimate in k to obtain the proposition. �

We can now present a more precise version of the theorem. For a yet finer version we refer the reader
to [13, Theorem 3′] and [13, Fig.5].

Theorem′. Consider Ω the Bunimovich stadium associated to a rectangle R. With the convention of
Fig.1, let R1 be any rectangle with the horizontal sides contained in the sides of R, strictly contained in
R, and with R \R1 having two components.

There exists a constant C depending only on Ω and R1 such that for any solution of the equation

(−∆− λ2)v = f , u�∂Ω= 0 , λ ≥ 0 ,

we have ∫
Ω

|v(x, y)|2dxdy ≤ C

(∫
Ω

|f(x, y)|2dxdy +
∫

Ω\R1

|v(x, y)|2dxdy

)
.

The “wings” of the billiard table in the original statement are given by x Ω \R1. We apply the second
theorem with f = 0 to obtain the first one.

Proof. Let us take x, y as the coordinates on the stadium, so that x is the horizontal direction, y the
vertical direction, and the internal rectangle is [0, 1]x × [0, a]y. Let us then consider u and f satisfying
(−∆ − λ2)u = f , u = 0 on the boundary of the stadium, and χ(x) ∈ C∞c (0, 1) equal to 1 on [ε, 1 − ε].
Then χ(x)u(x, y) is solution of

(−∆− λ2)χu = χf + [∆, χ]u in R

with Dirichlet boundary conditions on ∂R. Since [∆, χ]u = 2∂x(χ′u)−χ′′u we can apply the proposition
to obtain ∫

R

|χ(x)u(x, y)|2dxdy ≤ C
(∫

R

|χ(x)f(x, y)|2dxdy +
∫

ωε

|u(x, y)|2dxdy
)

where ωε is a neighbourhood of the support of ∂xχ. Since we can choose it to be contained in R \ R1,
the theorem follows. �

We conclude by remarking that the same argument holds in the setting discussed recently in [15] and
[6], since in the argument above the rectangle can be replaced by a torus.
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