LONG TIME DYNAMICS FOR DAMPED KLEIN-GORDON EQUATIONS
DYNAMIQUE EN TEMPS GRAND DES SOLUTIONS DE L’EQUATION DE
KLEIN-GORDON AMORTIE

N. BURQ, G. RAUGEL, W. SCHLAG

AsstrACT. For general nonlinear Klein-Gordon equations with dissipation we show that
any finite energy radial solution either blows up in finite time or asymptotically approaches
a stationary solution in H! x L% In particular, any global in positive times solution is
bounded in positive times. The result applies to standard energy subcritical focusing
nonlinearities [u|P~'u, 1 < p < (d+2)/(d—2) as well as to any energy subcritical nonlinearity
obeying a sign condition of the Ambrosetti-Rabinowitz type. The argument involves both
techniques from nonlinear dispersive PDEs and dynamical systems (invariant manifold
theory in Banach spaces and convergence theorems).

Résumé. Nous démontrons que toute solution radiale d’énergie finie d"une classe générale
d’équations de Klein-Gordon amorties ou bien explose en temps positif fini ou bien converge
en temps positif vers une solution stationnaire dans H' x L%. En particulier, toute solution
globale en temps positif est bornée en temps positif. Ce résultat s’applique aux non-
linéarités focalisantes, sous-critiques pour l'énergie, |ulP~'u, 1 < p < (d+2)/(d —2), comme
a toute non-linéarité, sous-critique pour I'énergie, remplissant une condition de signe de
type Ambrosetti-Rabinowitz. La preuve fait appel, a la fois, a des techniques propres aux
équations non linéaires dispersives et a des arguments de systéemes dynamiques (variétés
invariantes dans des espaces de Banach et théoremes de convergence).

1. INTRODUCTION

Nonlinear dispersive evolution equations such as the wave and Schrodinger equations
have been investigated for decades. For defocusing power-type energy subcritical or
critical nonlinearities the theory is developed, while the energy supercritical powers are
wide open. For semilinear focusing equations the picture is less complete for long-term
dynamics. These equations exhibit finite-time blowup, small data global existence and
scattering, as well as time-independent solutions (solitons). For the energy critical wave
equation

Cu=u’, (tx)eR™*3,

(u(0), du(0)) € H'(R%) x L*(R?),
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in the radial setting, Duyckaerts, Kenig, and Merle [18] achieved a breakthrough by
showing that all global trajectories can be described as a superposition of a finite number
of rescalings of the ground state W(r) = (1 + r2/3)_% plus a radiation term which is
asymptotic to a free wave. This work introduces the novel exterior energy estimates.

The subcritical case appears to require different techniques, however. The focusing
subcritical Klein-Gordon equation in R?, 1 < d < 6 (for the case d > 7, see [7]), takes the
form

O%u — Au+u—[ultu =0,
((0), au(0)) = (o, 1) € H,
where H = H'(R?) x L*(R%), @ > 0 and

(1.1)

d+2
(1.2) 1<6<9*,with6*=%.
We will limit our study to the case of radial functions
Hiad = Hrlad(IRd) x Lfad(]Rd) :

The energy functional EY below plays an important role in the analysis of the behaviour
of the solutions of (1.1). This energy functional is given by

1 1 1 1
0 _ - 2 -2 -2 - 0+1

For the Klein-Gordon equation (1.1), it is known (see [46], [3], [14], [39] and [10] for
example) that (1.1) admits a unique positive radial stationary solution (Qg, 0) (the ground
state solution), which minimizes the energy E?(.,0) in the class of all nonzero stationary
solutions (Q,0) in H, that is,

0 < E%(Qg, 0) = min{E(Q,0) | Q € H'(RY),Q # 0,—AQ + Q — |Q|'Q = 0}

The behaviour of solutions of (1.1) with initial data (¢@o, ¢1) € H with energy E(po, 1) <
E%(Qqg, 0) is rather well understood since these solutions remain in the so-called Payne-
Sattinger sets (see [42]) for all positive times. In these Payne-Sattinger domains, the
solutions either blow-up in finite time or globally exist and scatter to 0 (for a description
of this phenomenon, we refer for example to the book [40]).

Nakanishi and the third author [40] described the asymptotics of solutions provided the
energy E9(po, ¢1) is only slightly larger than the ground state energy. They showed the
following trichotomy in forward time of (i) blowup in finite time (ii) global existence and
scattering to zero (iii) global existence and scattering to the ground state. They formulated
this trichotomy in terms of the center-stable manifold associated with the ground state

(Qg 7 O) :
It is also well-known that this equation has an infinite number of radial equilibrium

points (e,,0) with a prescribed number ¢ > 1 of zeros (these are called nodal solutions, see
for example [4]). Unfortunately, one knows almost nothing about the uniqueness and the
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hyperbolicity of those nodal solutions (In [15] the authors obtain uniqueness results for
nodal solutions but for sub-linear nonlinearities). This lack of information prevents the
description of the behaviour of the solutions i(t) of (1.1) whose initial data (g, ¢1) have
an energy E%(¢o, ¢1) much larger than the one of the ground state (Qy, 0).

In 1985 Cazenave [9] established the following dichotomy: solutions of (1.1) either blow
up in finite time or are global and bounded in H, provided 1 < 6 < +, if d = 1,2 with
0 <5ifd=2and1 <0< ;L ifd>3.

In view of these previous results, a natural conjecture is that any global, radial, finite
energy solution of (1.1) should scatter toward an equilibrium. However, this result seems
to be presently out of reach of the usual approaches. A more accessible model is the
focusing subcritical damped Klein-Gordon equation

éfu — Au+ u + 2a0u — \u\e_lu =0,
(u(0), 21(0)) = (o, p1) € H.

In 1998 Feireisl [23], for the dissipative case a > 0, gave an independent proof of the
boundedness of the global solutions of (1.4), whend > 3 and 1 < 6 < 1 + min(5%;, %)
(for the case d = 1, see his earlier paper [21]). On the other hand, the results of Cazenave
should extend to the damped case. However, the proofs of Cazenave [9] and of Feireisl
[23] do not seem to extend to nonlinearities satisfying ﬁ <0< %, when d > 3,
where one needs to use Strichartz estimates in the various a priori estimates rather than
Gagliardo-Nirenberg-Sobolev inequalities.

Another motivation for studying the damped equation is that, by playing on the damping
term and considering the damping 2a(t, x) ;u or even the nonlinear damping 2a|dsu 1210,
one should be able to exhibit much richer behaviours (from the dynamics point of view).
In this paper, we develop a robust approach to the problem of long-term asymptotics
of the general radial energy subcritical Klein-Gordon equations with (arbitrarily small)
dissipation. Our main result is the following dichotomy.

(1.4)

Theorem 1.1. Let @ > 0and d < 6. Then,

(1) either the solutions of (1.4) in H,,y blow up in finite positive time,
(2) or they are global in positive time and converge to an equilibrium point.

In particular, all global in positive times solutions are bounded for positive times.

We notice that this theorem is a particular case of Theorem 1.2 below. In [7], we will
partly generalise this dichotomy to non-radial solutions.

Actually the above dichotomy holds for some more general nonlinearities and, in this
paper, we consider the damped Klein-Gordon equation in R?, d < 6 (for the case d > 7,

see [7]),
0%u + 200 — Au+u— f(u) =0,

(KG)a (1(0), 0ru(0)) = (®o, 1) € Hiyaa ,
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where f : y € R — f(y) € Ris an odd C'-function, f’(0) = 0, which satisfies the following
Ambrosetti-Rabinowitz type condition: there exists a constant y > 0 such that

MY, | RO Fe) - e@Sp) dr <0, Vpe HURY),

where F(y) = Sg f(s)ds. We also need to impose a growth condition on f, whend > 2. We
assume that,

f'(y)l < Cmax (|ylf, ly1”™) . vy eR,

F(y) = f @l < Clyn = ol (14 11" + 12l 71F) - Vw2 e R,
wherel <0 <0*,0<p<0—-1<1,0% =2* —1and where 2* = w0 ifd = 1,2 and
2% = % if d > 3. We notice that, whend > 3, 6* = %. In other words, the growth of f
is energy subcritical for large y = 0, and we also assume that f’ is f-Holder continuous.

For sake of simplicity in the proofs below, we may assume, without loss of generality, that
0 <p <min(1,6—1,3).

(H2)

We remark that our argument does not depend on the existence or uniqueness of a
ground state solution. Note that Hypothesis (H.1) alone does not imply the existence
and uniqueness of a ground state solution. We further note that Hypothesis (H.1) s may
actually be replaced by the following weaker one:

(H.1bis)¢ fle (2(1 + y)F(p) — p(x)f(p(x)))dx <0, for |¢| large enough.

But, for sake of simplicity, we assume (H.1) f throughout. A classical example of a function
f satisfying hypotheses (H.1) s and (H.2)y is as follows:

Ny S d+2
i—1 . —1 . ' ‘
f(u) :Zdi\u\p u—ZbJ\u\% u,withl<gj <pi < T
(15) & &

and a;,b; = 0,a,, > 0.

Vi, j

In Section 2, we shall prove that the equation (KG), generates a local dynamical system
on H as well as on H,,g, for a = 0. We denote S,(t), a > 0, this local dynamical system.
As in the particular case of the Klein-Gordon equation (1.4), we introduce the energy
functional (also called Lyapunov functional in the case of positive damping a > 0) on H:

1 1 1
(1.6) E(po, 1) = fRd <§|V(PO|2 + E(Pé + E(P% - F((P0)> dx .

The natural first step in the study of the dynamics of the equation (KG), consists in
studying the boundedness or unboundedness of its global (in positive times) solutions.
As already mentioned above, under restrictions on the growth rate of the nonlinearity,
Cazenave [9] and Feireisl [23] established this boundedness. In this paper, taking advan-
tage of the fact that all the functions are radial, we will show the boundedness of the global
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solutions of (KG),, for @ > 0, by using “dynamical systems” arguments. Indeed, we will
show that each global solution i(t) converges to an equilibrium point as t goes to +o0.

If the equation (KG), admits a ground state solution and is Hamiltonian, the functional
Ko : ¢ € H{(RY) > Ko(¢) € R defined as

12 Kalg) = | (V9f + 92— pfip) dx,

has played a decisive role in the description of the dynamics of the solutions with initial
energy smaller or slightly larger than the one of the ground state (see [42], [40] for example).
It will also be important in our situation. First we shall prove in Lemma 2.7, that if

() = Sa(t)(@o, p1)(t) = (u(t), du(t))
satisfies Ko(u(t)) < —06 (where 6 > 0), on the maximal interval of existence, the solution
blows up in finite time. On the other hand, we will see that, if Ko(u(t)) > n for some finite
n on the maximal interval of existence, the solution exists and is bounded for all positive
times.
In order to prove that each global solution i(t) = S,(t)(@o,@1)(t) converges to an
equilibrium point as t goes to 400, we argue by contradiction. We first show that, for any

global solution in forward time, there exists a sequence of times t,, t, —,— 1+« +0, such
that

Ko(u(tn)) =n—o+o0 0
Then, using this sequence of times t,,, we show in Theorem 3.3, that the w-limit set w(¢@o, 1)
of (¢o, 1) is non-empty and contains at least one equilibrium point (Q*, 0) of the equation
(KG)q4. We recall that the w-limit set w(@o, ¢1) of (o, 1) is defined as follows:

(o, 1) = {W € Hyyq | 3 a sequence 1, = 0, so that 7, —p— 400 +0,
and Su(74) (90, P1) —n—sto0 W

Then, in Section 3.2, taking advantage of the fact that the linearized Klein-Gordon equation
around (Q*,0) in the space H,,; has a kernel which is at most one-dimensional, we show,
by using classical convergence arguments based on invariant manifold theory, that the
trajectory converges to this equilibrium point in positive infinite time, and is therefore
bounded.

Theorem 1.2. Let a > 0. Assume that 1 < d < 6 and that f satisfies the conditions (H.1) s and
(H2)s. Let (o, 1) € Hya, then
(1) either So(t)(@o, p1) blows up in finite time,
(2) or Su(t)(@o, @1) exists globally and converges to an equilibrium point (Q*,0) of (KG)q,
ast — +oo.

(1.8)

For the case d > 7, we refer the reader to [7].

To place this result into context, we now briefly recall various related convergence
theorems. Since we are considering the equation (KG),, in the radial setting, the linearized
Klein-Gordon operator around the equilibrium (Q*, 0) has a kernel of dimension less than
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or equal to 1, that is, either 0 does not belong to the spectrum of the elliptic selfadjoint
operator

L=-Aa+1-f(Q)

or 0 is a simple eigenvalue of L (see Section 2, Lemma 2.10). If 0 is a simple eigenvalue
of £, then the dynamical system S, (t) admits a C! local center manifold W¢((Q*,0)) of
dimension 1 at (Q*,0). Since the w-limit set of any element (¢o, ¢1) € H,,q belongs to
the set of equilibria, if the trajectory of Su(t)(¢o, p1) = i(t) were precompact in H,,4, we
could directly conclude by using the convergence results contained in [5] or in [26] for
example that the whole trajectory S, () (@, ¢1) converges to (Q*, 0), when  goes to infinity.
Unfortunately, we do not know that the trajectory S,(t)(¢o, ¢1) is bounded and thus we
do not even know that the w-limit set of (¢, ¢1) is bounded and connected. However,
adapting the proof of [5, Lemma 1] and using the asymptotic phase property of the local
center unstable and local center manifolds around (Q*,0) (see Appendix A for these
concepts), we easily obtain that the entire trajectory S,(t)(¢o,¢1) converges to (Q*,0)
as t goes to infinity. An alternative way for showing the convergence of the trajectory
Sa(t)(@o, p1) towards (Q*,0) would be to prove a Lojasiewicz-Simon’s type inequality
(see Sections 3.2 and 3.3 in the monograph of L. Simon [45] and also [28, Theorem 2.1]) and
combine it with functional arguments as in Jendoubi and Haraux (see [27] or [28]). The
proof of the Lojasiewicz-Simon inequality in [45] uses a Lyapunov-Schmidt decomposition.
In the special case where the kernel of £ is one-dimensional, this proof also shows that the
set of equilibria of (KG), passing through (Q*,0) is a C!-curve. Using this Lojasiewicz-
Simon’s type inequality and introducing an appropriate functional like in [28], we could
show that the w-limit set of every precompact trajectory converges to an equilibrium point.
Unfortunately, the trajectory S.(t)(@o, ¢1) is not a priori bounded and it seems difficult to
adapt the functional part of the proof of [28, Theorem 3.1]. Moreover, there is an additional
difficulty in the construction of such an appropriate functional coming from the fact that
we need to use Strichartz estimates. So we have not been able to follow this route.

The plan of this paper is as follows. Section 2 is devoted to basic properties of the
Klein-Gordon equation (KG),. In particular, we recall the local existence and uniqueness
of mild solutions of the equation (KG),. In Section 2.2, we introduce the functional Kp,
which not only plays an important role in the proof of Theorem 1.2 but also defines the
well-known Nehari manifold N as the locus of the radial zeros of the functional K. In
Lemma 2.7, we give a sufficient condition on Ky for blow-up in finite time of the solutions
of (KG),. We end this section by describing the spectral properties of the linearized
Klein-Gordon equation around a (radial) equilibrium point. Section 3 is the core of this
paper. In Section 3.1 (see Theorem 3.3) we show that if a solution i(t) does not blow
up in finite positive time, then the w-limit set w(i(0)) contains at least one equilibrium
point. In Section 3.2 we show that the whole trajectory i(t) converges to this equilibrium
point and is therefore bounded. In Section 4, we apply the classical invariant manifold
theory, recalled in Appendix A, in order to construct the local unstable, center unstable and
center manifolds about equilibrium points of the Klein-Gordon equation (KG), and the
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unstable, center unstable and center manifolds about equilibrium points of the localized
Klein-Gordon equation (4.7). In Appendix A, we recall the existence theorems for local
center-stable, local center-unstable and local center manifolds together with their foliations
and exponential attraction properties with asymptotic phase in the formulation of Chen,
Hale and Tan (see [11]). Finally, in Appendix B, we recall the classical convergence theorem
(see [1], [25] or [26]) in the generalised form given by Brunovsky and Polé¢ik in [5].

Such a convergence theorem is needed in case the dynamics near the equilibrium
exhibits a nontrivial center manifold. As a result of dissipation and the radial condition,
this center manifold can be at most one-dimensional. For the nonlinearities (1.5), it is
known that the kernel of the linearized operator about the ground state is trivial, see [10].
But, due to the lack of precise description of the bound states, we cannot guarantee that the
local center manifold is absent about a bound state. The local strongly unstable manifold
is finite-dimensional. The local strongly stable manifold is infinite-dimensional in stark
contrast to the Hamiltonian scenario for which the local center manifold is the largest
piece. The convergence theorem in [5] then guarantees that, if the w-limit set is not a
single equilibrium point (Q*,0), and if (Q*,0) is stable for the restriction of S,(t) to the
local center manifold of (Q*,0) (for this definition of stability, see (3.40) and Appendix B),
then this w-limit set must contain a point on the unstable manifold of (Q*, 0), distinct from
(Q*,0). But this contradicts the fact that, due to the properties of the Lyapunov functional
(1.6), the w-limit set is contained in the set of equilibrium points.

2. BASIC PROPERTIES

2.1. Local existence results. Consider the linear equation, with a > 0,

(2.1) OPu+ 200 —Au+u=G, (u étu)‘ = (up, 1) € H(RY) x L*(RY).

Since v(t) = e*u(t) satisfies

(2.2) o — Av + (1 —a®)v =G, (o, vt)‘t_o = (uo, u1 + aug),

we deduce that the solution of (2.1) is given by

sin(tv/—-A+1— az)]u
0
VArl-a?
(2.3) LStV AT e Jf sin((f —s) v/—A + 1 — a?)
V-A+1-a? 0 VoA+l-a?

t
= S1,a(t)uo + Spa(t)ur + f Sou(t —5)G(s)ds .
0

u(t) = e‘“t[cos(t —A+1-0a?) +a

e~ (=G (s) ds

Clearly, the regimes 0 < a < 1, @« = 1, and a > 1 exhibit quite different behaviours.
The dispersion relation for a < 1 is that of Klein-Gordon (the characteristic variety is a
hyperboloid), whereas for a = 1 it is that of the wave equation (the characteristic variety
is a cone).
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If X is a Banach space, then we let Lf b (X) be the space with norm

|Flipe iy = 1 LFBlxli peR
In this section, the f in these weighted estimates has nothing to do with the regularity
Lemma 2.1. Let 0 < a < 1 and assume d > 3 for simplicity. Set p = % and 0 = % - 37,
o' = 1— 0. The solution u of (2.1) satisfies the following Strichartz-type estimates for any
0<p<uq

(24) ”u”Ltz’ﬁB;/ZGL?O/ﬂH}C < C(“)[”(“O/ u1)||H1><L2 + ||G|Lf'ﬁBg:,2+L:'ﬁL§:|

where C(a) is uniform on compact intervals of [0, 1).

Proof. This follows from (2.2) and the Keel-Tao endpoint for the Klein-Gordon equation,
see for example Lemma 2.46 in [40]. O

Lemma 2.1 does not hold for & > 1. Indeed, for @ = 1 we would need to replace the
Strichartz estimates for Klein-Gordon in (2.4) with those for the wave equation. We set
Bla) =aif 0 <a <1and

Bla)=a— Va? -1
if @ > 1. Exploiting the exponential decay in (2.3) we can now state the following space-
time averaged estimates.

Lemma 2.2. Let a« > 0. In all dimensions d > 1 the solution u of (2.1) satisfies the following
energy bounds with decay

Q0
@5)  supe®@|(u, 6)(£) | g2 < C(a)[H(uo,ul)meLz + L esﬁ(“)HG(s)szs]
=0

as well as the exponentially weighted Strichartz estimates, in dimensions d > 2, and with0 < <
pla),

(2.6) H”Hygﬁg < C(a,,B)[H(uo, )| g wr2 + ”GHL‘Z/’ﬁL’,'Z/]

1,d_d 1, d 5 5 1 d-1 1

Whereg+;=z—lf7’4-?—2,2<P,P<00,2<q,q,anda—|—7<T,§+—<T.
The constant C(a, B) is uniform on compact subsets of

{(ap)|ae(0,00), 0<p<pla)}
Proof. Taking the Fourier transform of (2.3) yields

t ~
0(t, &) = ma(t, €)ilo(E) + Mia(t, €)if1 (£) + JO g (t —s,&)e” UG (s, &) ds
The multipliers satisfy the estimates

a(t, €)] + [1ita(t, €)| < Cla)e P!
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which proves (2.5). For (2.6) we introduce the Littlewood-Paley decomposition

1=Pgy+ ) Pj=Pcy+Psq
j
where the P are associated to frequencies 2/ > a and P<, f = f for all Schwartz functions
with supportin {|£| < 1+ 2a}. Let Ki(t) be the propagator defined by, cf. (2.3),

K O7)0) = e | eV ) fle)de

where x is the usual Littlewood-Paley bump function supported on an annulus, and
A > a + 1 (and ignoring multiplicative constants). Then the root is smooth, and we may
apply stationary phase to conclude that
IKE (Bl < ™A%~ F g e T AT

for all t > 0. Proceeding as for the wave equation (see Keel-Tao [33]), and ignoring the
exponential decay for the frequencies % a, yields the Strichartz estimates (2.6) for P~ qu
with g = 0. On the other hand, by the same logic we can also derive Strichartz estimates
for the transformed equation (2.2) which yields (2.6) with § = a for the piece P-,u.
Interpolating between these two cases we obtain Strichartz inequalities forall 0 < f < a
for those frequencies. Smaller frequencies require smaller 5. Indeed, for the remaining
piece P<,u we use the energy bound (2.5) and Bernstein’s inequality. To be precise, the
energy estimate

t
IP<ai()]z < Cl@) e ¥, sz + | e PO PaGls) ]
0

implies via Bernstein’s inequality that

t
&P <ats()] < CLa)[e PO g ) gz + | & IEO PP, G5 |
0
Taking L! norms on both sides, and applying Young's inequality to the Duhamel integral
yields (2.6) for all frequencies. m|

We now turn to the nonlinear equation (KG),. We write il = (u, dsu1).

Theorem 2.3. Let d < 6. Let f : R — R bea C* odd function, satisfying the assumption (H.2).
Then for every data ity in H = H'(R?) x L2(R?) ( resp. in Hyqg) the equation (KG), has a unique
strong solution

ue X =Xr:=C([0,T], H'(RY) ~ C'([0, T], L2(R?))
(resp. in C([O, T],H}ad(IRd)) n CY([0, T],Lfad(IRd))), where T only depends on ||ily|4;. Moreover,
if 3 < d < 6, the solution belongs to
L7((0,T), L*"" (R"))

where 0% = d+2 and the estimate (2.21) below holds. Furthermore, the following properties hold.
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(1) The solution
(t,ilp) € [0, T] x H — ui(t) = (u(t), ou(t)) e H

is continuous.

(2) Forany 0 < © < T, the map ily € H — So(7)ily = il(7) € H is Lipschitz continuous on
the bounded sets of H (see (2.23)).

(3) The map ity € H — u(t) € X n L9 ((0,T), L% (R?)) is a C'-map.

(4) Let T* be the maximal time of existence. If T* < oo, then

lim sup [#7(8)]5¢ = +0
t—T*

(5) Ifity € H*(R?) x H'(IRY), then
ue C([0,T), H*(R?)) n C}([0,T), H (RY))

(6) The energy (1.6) decreases: for any to = t1 = 0, we have,

5]
) E(i(t)) — E((t) = ~2a | o (s) 2, d
5]
and, in particular,

)

2.8) E(#(h) + 20 fo |6u(s) |2, ds < E((0))

(7) If |i£(0)|4¢ < 1, then the solution exists globally, and ||il(t)| 4 converges exponentially to
Oast — o0.

Proof. We first recall the main lines of the proof of the local existence and uniqueness of
the solution in the case d > 3. The cases d = 1,2 are easier and left to the reader. The
local existence is proved by using the classical strict contraction fixed point theorem with
parameters. In the fixed point argument below, we will use the Strichartz inequality (2.6)
given in Lemma 2.2. Let 0* = 2* — 1 = g%%, (7,d) = (2,1) and (p,q) = (20*,0%). We
remark that these pairs satisfy the conditions of Lemma 2.2 and in particular g > 2if d < 6.

Let Ko > 0 be a fixed constant. In what follows, we denote B¢ (0, Kp) the ball of center
0 and radius Ky in H. Using the notation of the previous lemma, we set

(2.9) My = M()(CK) = 4(C(0() + C(a, 0))1(0 =4C, (Q)Ko

and T > 0 will be a positive constant, to be determined later.
We introduce the following space

2.10) Y = Yr = {ite L°((0,T), H) with u € L((0, T), L>** (R?))
' | HuHLOO(Hl)mWLOC(LZ)mLB* (120%) S Mo} .
We consider the mapping

F : (tho, ) € By(0,Ko) x Y v F (thy, ) = (F1,F2)(ilo, ) € Y,
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defined by

t
(2-11) (/cl(ﬁ)O/ I’T))(t) = Sl,a(t)uo + SZ,a(t)ul + JO SZ,a(t - S)f(”(s)) ds,

and F(ily, #) = 0;F1 (i, ), where ily = (up,u1) and & = (u,0u) . Fix some iy € H
with [y < Ko. Consider the map F (ily,.) : i € Y — F(ilp, i) € Y and simply write
F (it ) = Fil.
An application of Lemma 2.2 implies
Mo
4
Applying again Lemma 2.2 and using the hypothesis (H.2), we get

(2.12) |F (10, 0)y < Ca(a)Ko <

T
|F i — F3ly < C1(a)C[T|u — 0|2y + f 14(s)1° u(s) — v(s)] |2 ds
(2.13) 0

T
] ) )~ o(o)] 2]
where C = C(f). Applying the Holder inequality to the term B below, we obtain

(2.14) B —J ()| Hu(s) = v(s)] |2 ds < J ()1 %5 14(s) — (8) 20 s .
We set

d+2—-06(d-2
(2.15) n= * 4( )

and write 20 as 20 = 21 + 2(1 — n)0*. The condition 1 < 6 < 6* implies 0 < nn < 1. Using
the above decomposition of 0 in (2.14) together with a Holder inequality, we get

(=1 9*(9 0% (0-1)(1-1) 0% (1-n)
216) B < |u(s)],. u(s) . J 4 e * u(s) = o)l 7 ds.

Applying again the Holder inequality to the integral term, we obtain,

1—n

0* -1 (1-n) 0% (1—n) -
[ 18 106) o010 s <1 [ ) — o615 )

(9 1)9(1 1)
fuu (5)1%, ds .

The estimates (2.16) and (2.17) together with the Young inequality give

(2.17)

0=1 g% (1—
218) B < CTM, ™ @ [ — o g2y + = 0l gaom]
We next choose Ty > 0 so that

1 (9% (1—n)+ 1
(2.19) C1(a)C[To + 2T, 7 7 0=DFD] _ 2
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The estimates (2.13) to (2.18) imply that, for 0 < T < Ty,
— ) g1 0*(1— — - 1 —
(2.20) |Fit — Foly < Ci(@)C[T +21M, 7 @12 — 3]y < 21—l

From the estimates (2.12) and (2.20), we deduce that ¥ is a strict contraction and thus has
a unique fixed point i = if(ilp) in Y satisfying

(2.21) [i2(id0) |y < Ca(a)|ilo)l«

The fact that i#(t) = (u(t), du(t)) also belongs to C([0,T],H) is standard and left to the
reader. Likewise, we leave it to the reader to verify that the map (t,1) € [0,T] x H —
i(t) € H is jointly continuous.

We now turn to property (2). To show that iy € H — (1) = S,(1)ilp € H is Lipschitz
continuous on the bounded sets of H, we choose iy and ¥ in the ball B4(0, Kp). Let Tp > 0
be given by (2.19) and My be defined in (2.9). Arguing as above (see the inequality (2.20)),
we obtain the following inequality for 0 < T < Ty,

iy - _ > 1 -
(2.22) |7 o, i) = F (@0, 9) vy < Cul@)|ilo — Dol + 7 = Ty,
and thus, the fixed points i(ily) and 7(%) satisfy:
- - = 4 — -
(2.23) (o) = (@) vy < 5C1(a)lliio — Dol -

If the solutions i(ify) and ¥(vp) exist on a time interval [0, T*), where T* > Ty, we repeat
the above proof by considering now the ball in H of center #(ip)(Tp) and radius K; > 0
large enough so that v(d)(Tp) also belongs to this new ball and replacing the non-linearity
f(.) by f(. + u(io)(To)) — f(u(ilo)(To)). Repeating this process a finite number of times
shows that the map is Lipschitz continuous up to any time T < T* and therefore on all of
[0, T*). The above inequality also implies the uniqueness of the solution of (KG),.

We next want to show the property (3), namely that the map
iy € H — u(ily) € X n LY ((0, T), L** (R%))
is a Cl-map. To this end, we will first go back to the mapping
F : (ilp, 1) € B(0,Ko) x Y > F(ilp, ) € Y

which has been defined by (2.11), and then, for ¢t > Ty, proceed like in the proof of the
property (2). Clearly the map F (ify, @) is differentiable with respect to the variable i) since
it is a linear map in ip. The differentiability with respect to the variable i € Y is proved
as follows (we only indicate the main arguments and leave the details to the reader). Let
i = (h,k) € Y be small. Applying Lemma 2.2, one sees that the proof of the differentiability
reduces to proving that

(2.24) |f(u+ ) = f() = £ @)l om,z) = o(lly) -
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As above, using the hypothesis (H.2)s, the fact that 0 < < ﬁ and classical Sobolev
embeddings, we write

(225) [ f(u+h) = f(u) = fWh]pom)2)

T
< Cf [17)IF + 11()I° + [1(s) [P ()| P | 2 ds
0

1 _
< c[rpni 2t fnm 19+ ()P u(s)] O~ 2 )

The last term in the right-hand side of the inequality (2.25) can be estimated by using
Strichartz norms and arguing as in the inequalities (2.16) and (2.17). We thus deduce from
(2.25) that

(2.26) |f(u+h) — f(u) — f @l om),2) = (HhHHO) /

where 6 > 0. Thus, ¥ (if, %) is differentiable with respect to the variable i € Y. The
derivative of F (ily, i) with respect to (ify, %) is given by DF (ily, #) = (DF1, DF2) ik, if),
where DF (il il) = 0;DF (ilp, i) and

t
(227)  (DF(ido, 1)(T0, 0))(t) = S.a(t)vo + Sa.a(t)or + JO Saa(t =) f (u(s))v(s)ds .

We let to the reader to check that this derivative is continuous with respect to (i, if).
Finally, we remark that, with the choice of the time Ty made in (2.19), the mapping
F (ily,.) : i € Y1 — F (ily, ) € Y7 is a uniform contraction on By (0, Ko). We then apply the
uniform contraction principle as stated for example in [12, Theorem 2.2 on Page 25], which
implies that iy € By (0,Ko) — #(ilp) € Y is of class C'.

We next turn to the H?> x H'-regularity question, that is, prove the regularity property
(5). Assuming this regularity for now, taking a derivative of (KG), yields

(2.28) 020 4+ 2000 — Av + v — f'(u)p = 0

where v stands for any of the derivatives iju, 1 < j < d. The data for (2.28) belong to H
by assumption. We now perform the same estimates as in (2.13)-(2.18) to conclude that

19y < Cll(uo, un) g2 + 5 W\y,

see especially (2.18), (2.20). As above, these estimates require T to be sufficiently small.
To be precise, the smallness here is determined by u alone through the constant My, see
(2.18). It follows that

1]y < 2C[[(uo, 1) 12 1
which is the desired regularity estimate. In order to pass from an a priori bound to
a regularity statement we follow a standard procedure involving difference quotients:
letting ¢} be the coordinate vectors in RY we define with i > 0

vgh) (x) == h~ N (u(x + he}) — u(x)) .
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By the argument leading to the a priori estimate we obtain

H Ny < 2C0 (o, 1) [ crr

uniformly in & > 0. Passing to suitable weak limits, we obtain the H! x 12 regularity of
the derivatives of 1, as desired.

We now show the energy properties stated in (6). Using the density of H*(IR?) x H!(IR?)
in H'(RY) x L2(IR%), one shows that

— = d -

(2.29) E(il(t)) € C'((~T,T)), and ﬁE(u(t)) = —2a\|8tu(t)\|%2.
Integrating this implies the properties (2.7) and (2.8) for the energy.

Finally, we turn to the case of small data. We will only provide a sketch of the main
argument. In the hypothesis (H.2)r, we can choose > 0 arbitrarily small. In particular,
we choose 0 < 5 < 1. We recall that, for any y € R,

(230) F) < Cyl + 91Dyl < CAyl™F + [y1™) -
Proceeding as before, applying Lemma 2.2, using the inequality (2.30), one gets, for t > 0,

el Lo (0,10, 20% ) + NPT oo o,y < CLItt0, 1) [z + [ 4P [ L1s o,0,0)

+ [l e o,,02)] -
Applying the Holder inequality, one deduces from the above inequality that, for t > 0,

ey 1+
oy o+ 1 e o < Clm ) + 15 B o
+ HuHLH*ﬁ ((0,8) LZG*)] ’
where we used that § > 0. For small data the method of continuity implies global existence
and smallness of the norms on the left-hand side. In particular, we have exponential

convergence to zero in the energy (see also [35]). m]

In Section 3, we will linearize the equation (KG), around an equilibrium point. More
generally, we can linearize the Klein-Gordon equation (KG), along any solution of the
equation (KG),. This leads us to consider the following affine equation

(2.32) wy + 20w — Aw +w — f(u*(t,x)w =G, (w,w)(0)=d0)=1deH,

where u*(t,x) € X, n L ((0,10),L2%* (R%)), 19 > 0, and G € L'((0,10),L2(R%)). The
existence (and uniqueness) of a solution @ = (w, d;w) € C([0,10),H) is classical if the
dimension d is equal to 1,2. So we will state this existence result and the corresponding
Strichartz estimates only in the case where d > 3.

Proposition 2.4. Letd > 3 and a > 0. Assume that u*(t,x) € X, n L9 ((0, 79), L*** (R%)) and
that G € L'((0,70), L>(R?)). Then the equation (2.32) admits a unique solution @ = (w, dyw) €
C([0, t0), H). Moreover, the solution @ of (2.32) satisfies the following bound, for 0 < t < 7,

(2.33) [@lee ((0.0)90) + [@hiago,027) < Cla D) [|@ollgr + 1G] (0,0,22)] -
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where P

1

- +-==--1, 2<p<ow, g=2

q9 p 2
and % + dz;l < %. The constant C(a, ) = C(a, T,u™) > 1 depends only on a, T and the norm
of u* in the space X, n L9 ((0,7),L29" (R)). If u*, G and the initial data are radial functions,
then 0 is a radial solution.

Proof. This proposition can be proved in the same way as Theorem 2.3, by considering
the term f'(u*(t,x))w + G as a non-linearity. The changes are minor in the fixed point
argument used in the proof of Theorem 2.3. Here Y and ¥ = (1, %2) = (F1, 6:%1) simply
become:

Y = Yr = {@e L?((0,10), H) with w € LY ((0, 79), L2 (RT))} .
and

(F1(Wo, @)) () = S1a()wo + Soa(t)wy + fo St —s)(f'(u*(s))w(s) + G(s)) ds .

We obtain estimates similar to (2.20), where now My is replaced by the norm of u* in
X, n LI ((0,7), L2%" (R?)). If the time T, defined in (2.19) is larger than 7o, then we have
proved the existence (and uniqueness) of the solution @(w@y) € Y7 and the estimates (2.33)
follow from Lemma 2.2. If Ty < 79, we repeat the above proof by taking as initial data
(W(o))(Tp) and by replacing

f(u*(t,x)w(t,x) + G(t,x)
by
' (u*(t + To, x))w(t + To, x) + G(t + To, x)
We repeat this argument a finite number of times till we reach the time 7. m]

2.2. Definition of the functional K; and the Nehari manifold. We introduce the func-
tional Ko : ¢ € H'(RY) — Ko(¢) € R, defined by

Kal) = | (VP + 6% — gfg)dx,

IRd
and introduce the Nehari manifold

(2.34) N = {p € H},(R") | Ko(p) = 0} .

rad

The Nehari manifold arises naturally in the study of elliptic equations. The “Ambrosetti-
Rabinowitz" hypothesis (H.1) allows to prove the following lemmas, which will be used
along this paper. The first one is trivial.

Lemma 2.5. Assume that Hypothesis (H.1) s holds. Then, for any (¢, ) € H'(RY) x L2(RY), we
have

(2.35) YUl +1917.) <21+ »)E((¢,¢)) — Ko(g) -
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Proof. We simply write
(I3 + 1917:) =201+ Y)E((@. ) — Ko(e) =[]

(2.36) + de 21+ 7)F(p) — () f(p(x))) dx
<2(1+7)E((p, ) — Ko(g) ,
where the integral is nonpositive by (H.1)y. O

Corollary 2.6. Suppose ii(t) = (u(t), opu(t)) is a strong solution of (KG), defined on the maximal
interval 0 < t < T*. Assume

inf Ko(u(t)) > —0.

0<t<T*

Then T* = oo, i.e., the solution is global.
Proof. By Lemma 2.5, we have for some finite M and all 0 <t < T*
li#(®) 9 < 2(1 + )E(u(t), dru(t)) + M
< 2(1 + y)E(u(0), 0;(0)) + M

where the second line holds by the decrease of the energy. Since finite time blowup means
that ||iZ(t) |41 goes to infinity in finite time along some subsequence, we obtain the result. O

The proof of the next lemma uses a convexity argument and follows the lines of the
proof of [42] and [40, Corollary 2.13]. We denote the nonlinear evolution by S,(t).

Lemma 2.7. Assume that the hypotheses (H.1)¢ and (H.2) s hold. Assume that (u(t), dru(t)) is
a solution of (KG), defined on [0, T*) where T* € (0, o0] is maximal. If Ko(u(t)) < —06 (where
0>0), fortg <t <T* then T* < w0, i.e., the solution blows up in finite time.

From Lemmas 2.5 and 2.7 we immediately deduce the following result.

Corollary 2.8. Assume that the initial energy E(ily) is negative. Then the solution blows-up in
finite time T* < +co0.

Proof of Lemma 2.7. We assume without loss of generality that {p = 0. We also assume
towards a contradiction that T* = co. In order to show that S, (t)(uo, 1) blows up in finite
time, we use a convexity argument as in [42]. Assume that S,(t)(uo, 11) exists for all t > 0
and let

y(t) = —Hu +af |u(s) |, ds.
We have
y(t) = (u(t), u(t)) + alu(®)]?,

(2.37) ;
= (u(t),u(t)) + alu(0)[2, + 2 L (u(s), u(s))ds
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and
() = [a(®)[7, + (u(t), il(t) + 2aii(t))
(2.38) = ()7, + (u(t), (Au —u + f(u))(1))
= ()7, — Ko(u(#)) -
Thus,

(2.39) () = a2,

We deduce from (2.39) that lim;_, « y(t) = +0, and therefore lim;_, o, y(t) = +0c0.
Next, we note that

j(t) = ()2 — Ko(u(t))
(2.40) = @+ )OI + ylu®lf — 201+ y)E()
~ [ @0+ R — o ) dx
where we have set for simplicity E(t) = E((u(t),u(t))). But, we have
E(t) = —2alu(t)|7,

and ,

E(t) = E(0) +J E(s)ds ZaJ Jii(s) |2, ds.

0
Using (H.1)y, we can also write, for t > 0,

241§ = @+ )b + ylu®)F; — 21 +)EQ) +4a(l +y) J lii(s)[17, ds.

For the sake of illustration, assume first that « = 0. Since y(t) — o0, we infer from (2.41)
that for large ¢

(2.42) () = 2+ y)|ut))?,
Then [y(t)| < [[u(t)|r2]u(t)]| 2 whence
‘2
i(t) > 2+ yya(t)

2yt

This implies that < s (y 1(t)) < 0 where n = y/2. Since y~"(t) — 0 as t — o0 we must have

gt(y*”)( ) < 0 for some t = t; > 0 whence also %(y*”)(t) < %(y*”)(tl) <Oforallt >#

But then y~"(¢2) = 0 for some f; > t; which is a contradiction.
For a > 0, we claim that there exists ¢ > 1 so that for large times

(2.43) J(Hy(t) — cy(t)* > 0
If so, then
—(y ) (t) = —(c - Dy )G y(t) — i) <0
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which leads to a contradiction as before.
It remains to verify (2.43). Using the Cauchy-Schwarz inequality we obtain

eut) i o0 > (Jlulls +a [ )
-(<z+y>ua<t>u%+yuu<t>u21—2<1+y>E< )+ 4a(t 4 [ i)
ittt + 20 [ ) ([t )+ a0
But, for any ¢ > 0, we estimate the term in brackets as follows:
2 2 2 2
efltititi +2a( [ )" ([ Vi) + aluo) 2]
<ot + o) (el +2a( [ ) ([ o2 )
1 2
+e(1+ E)a [u(O)[,
<c(1—|—€ HuH +aJHu H2 ds ZHuH +40cJ|u H2 ds
1 2
+e(1+ <) uO),

Setting b = c(1 + ¢), C = ca?(1 + )Hu( [ [2» We may replace the right-hand side of this
inequality by

< y(6) (2)ilZ; + 4ba j lis)|2 ds) + C

From the last inequality and from (2.44), we deduce that

yii(t) = ci (1) = y(t){(Z +y = 2b)[i(t) |7, +4a(l +y —b) fo lii() 72 ds + y[ut)[2,
—2(1+)E(0)} - C
(2.45) — ()W)~ C

where W(t) is defined by the term in braces.
We now adjust the constantsc > 1and ¢ > 0sothat2+y —-2b>0,1+y —b > 0. We
now pick 1 > 0 so small that

24y —=2b>n, y—ﬂ—an>0
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This allows us to bound W(t) from below:
. b
wm::K2+y—2b—§)waﬂé+4al+y—byﬂwwo@d&+wvwo@

+ (=2 —an) ()2 + nit) — 201 + )EO)|
= ny(t) —2(1 +)E(0) +4q(t)
where ¢(t) = 0. From (2.45), we infer that, for t > 0,

(2.46) y(Oi(t) — cy?(t) = y(O)ny(t) — 2(1 + y)E(0) +4(t)] - C.

Since y(t), y(t) — oo as t — oo, we are done. ]

2.3. Spectral properties. Suppose we have a stationary solution @y € H'(R?) to (KG),,
namely,

—Apo +@o — f(po) =0
By elliptic theory, see for example [3, 4], these solutions are exponentially decaying, and
lie in C3# for some B > 0. Solving (KG), for u = ¢ + v yields

(2.47) oy + 2av; — Ao + v — f(po)v = N(¢po, v)

where N(@o,v) = f(po +v) — f(9o) — f'(¢o)v. Set L = —A + 1 — f'(¢o). Rewrite (2.47) in
the form

(2.48) O (Z ) = <_OL —120c) (zi) " <N(q?o,v)>

Denoting the matrix operator on the right-hand side by A,, and setting ¢ := (;’t ), we may
write (2.48) in the form

aﬂ? = Aa17+ 1\7
The spectral properties of L stated in the following lemma are standard, see for exam-
ple [32] and the references cited here.

Lemma 2.9. The operator L is self-adjoint with domain H*(IRY). The spectrum o(L) consists of
an essential part [1,0), which is absolutely continuous, and finitely many eigenvalues of finite
multiplicity all of which fall into (—oo,1]. The eigenfunctions are C># with f > 0 and the ones
associated with eigenvalues below 1 are exponentially decaying. Over the radial functions, all
eigenvalues are simple.

Proof. The essential spectrum equals [1,00) by the Weyl criterion. The Agmon-Kuroda
theory on asymptotic completeness guarantees that there are no imbedded eigenvalues
and no singular continuous spectrum. Thus, the spectral measure restricted to [1,o0) is
purely absolutely continuous. The Birman-Schwinger criterion shows (due to the rapid
decay of the potential f'(¢o)) that there are only finitely many eigenvalues of £ which are
< 1, counted with multiplicity. The C># property of the eigenfunctions is standard elliptic
regularity (Schauder estimates) since @ is smooth, and so f'(¢y) is Holder regular.
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For the sake of completeness we remark that the threshold 1 may be an eigenvalue
or a resonance. To illustrate what this means, consider R®. Then this distinction refers
to the fact that solutions to Ly = ¢ either decay like |x|~2 (which means i € L? is an
eigenfunction) or like |x| !, the latter implying that 1 ¢ L?>(R®) (this is the resonant case).
We remark that over the radial functions only the resonant case can occur. However, none
of this finer analysis at energy 1 is relevant for our purposes.

The exponential decay of the eigenfunctions with eigenvalues below 1 is known as
Agmon’s estimate. The simplicity of the radial eigenfunctions is immediate from the
reduction to an ODE on (0, o) with a Dirichlet condition at r = 0. Let us elaborate on the
kernel of L, since it is important in our construction. We set Lv = 0, v # 0 radial and in
H'. Then

—Av+v— f'(po)v =0

We already note that v € C*#(R?), and that v(r) decays exponentially. Set u(r) = rT o(r).
Then u(0) = 0, u(r) — 0 as r — oo (exponentially in fact), and it satisfies the equation

(2.49) () +ur) — (LS 3)”9 — f@o)u(r) =0, r>0

This ODE has a fundamental system consisting of a solution growing like ¢” and one
decaying like e™" as ¥ — co. Only the latter can lie in the kernel and it does so if and only
if it satisfies the boundary condition #(0) = 0. In this case the kernel has dimension 1
otherwise it consists only of {0}. m]

We now analyze the spectral properties of the matrix operator A,.

Lemma 2.10. o The operator A, has discrete spectrum if and only if L does. The essential
spectrum of Ay lies strictly to the left of the imaginary axis, i.e., in R(z) < —o6(a) for
some () > 0. The spectrum of A, on the imaginary axis is either empty or {0}. In the
latter case, 0 is an eigenvalue of A, and this occurs if and only if 0 is an eigenvalue of L.
Then dim(Ker (L)) = 1, in which case 0 is a simple eigenvalue. The eigenvalues of A, are

precisely
—a+ y/a?—p

where u € (L) is an eigenvalue.
— Ifa > 1, then the discrete spectrum of A, lies only on the real axis.
- If0 < a < 1, in addition to real eigenvalues, there may also be eigenvalues on the line
R(z) = —a resulting from eigenvalues of L in the gap (0, 1].
o The essential spectrum of L gives rise to essential spectrum Gess(An) of Ay as follows:

- If0 < a <1, 0ess(An) is contained in the line R(z) = —a and consists of —a + ib,
b= +/1-a2
— Ifa > 1, 0ess(Aq) consists of the entire line ‘R (z) = —a and of the interval

[-a— Va?—1,—a+ Va?—1]
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Proof. We need to address the solvability of the system

WEE™

over the domain Hfa d(IRd ) x H' (R?) of A,. This means that

rad
Uy = zilq
—Luy — 201y = zuy

which is the same as
Uy = zuy
(L +2az+2)u; =0
There exists a solution in the domain of A, if and only if
20z + 2> € 0(—L)

Taking A € 6(£), this means that
(2.50) z=—-at+Vat—A, Aeo(L).

This relation establishes all the claims concerning the point spectrum of A,. Let now 7
belong to the resolvent set p(A,) of A,. Then, for any (0,v2) € H,,4, the system

(2.51) (Aq — 7ld) <Zl> B <??2>

has a unique solution (u1, u2) in H,,g, which implies that

—Luy — (T° + 2at)u; = vy

has a unique solution u; and thus 7> + 2at = —A does not belong to the spectrum of —Z,
that is,

T#—-a+Vat—-A, Aeod(L)
and we are done. o

The discrete spectrum of A, (and therefore of £) is important to our analysis. In fact,
the strongly unstable manifold of the linear evolution e/« as t — oo corresponds exactly
to spectrum of A, in the right-half plane which occurs if and only if £ exhibits negative
eigenvalues. In the generality we assume here we cannot determine whether this is the case
or not, and so our arguments need to be flexible enough to account for both possibilities.

However, consider the following additional condition, where y is as in (H.1)s: for any
¢ € HY,

252) | 127 00 = (14 201000 Fl9x) x> 0
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Let @9 # 0 be a stationary solution as before. Then it follows from (2.52) that

Lo = | (9pal + 07~ £ (polpd)ax

(253) =2 [ flpooodr+ [ 10+2) flgo)n — £ (go)gf dx
RR? RR?
< =2y[pol7, <0

where we used that Ko(¢g) = 0. Therefore, L has negative eigenvalues. We leave it to
the reader to check that the class of nonlinearities f given by a sum and difference of
pure powers as in (1.5) satisfy (2.52). Hence, for such nonlinearities all nonzero stationary
solutions are linearly unstable. In other words, under the additional condition (2.52) all
nonzero equilibria give rise to a strongly unstable manifold of ¢*.

—Ot+l(1—085/2:

—Ot.—(Ot2 +)" i_u 0 —:>c+(oc2+1<2)1 &
—0—1( 1—0&2)

Ficure 1. The spectrum of A, for0 <a <1

3. Proor oF THEOREM 1.2

In this section, we are going to prove Theorem 1.2. To this end, given (o, 1) € Hya,
we will first show that, if S, (t)(@o, 1) does not blow up in finite time, then there exists
a sequence of times t, going to +o0 such that S,(,)(¢po, 1) converges to an equilibrium
point (u*,0).

3.1. Convergence to an equilibrium (1*,0) along a subsequence. Denote the evolution
operator of (KG), by S,(t) and for (¢o, p1) € Hyag, let il(t) := Sy (t)(@o, p1). We have the
following trichotomy for the forward evolution of (KG),:

(FTB) i(t) blows up in finite positive time.
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(GEB) ii(t) exists globally and the trajectory {if(t),t > 0} is bounded in H,,4,
(GEU) ii(t) exists globally and the trajectory {i(t),t > 0} is unbounded in H, .

Later in Section 3.2, we shall show that (GEU) cannot occur.

Remark 3.1. Several remarks have to be made at this stage.
(i): From Corollary 2.8, we know that if E(pg, 1) < 0, then S,(t)(9o, 1) blows up

in finite time. Thus, in the study of the cases (GEB) and (GEU), we only need to
consider solutions i(t) = S, (t) (o, ¢1) such that, for any t > 0,

(3.1) E(u(t), ou(t)) = 0.

(ii): Assume now that a solution #(t) = S,(t)(po, 1) of (KG), satisfies the properties
(H1)f, (H.2)f and (3.1). Assume moreover, that the exponent 0 in (H.2) satisfies
the bound

(3.2) e<1+§.

Then, arguing exactly as in [23, Lemma 4.2], one can prove that every global
solution S, (t)(@o, 1) is bounded in H. In this proof, the upper bound (3.2) of 0
plays a crucial role.

(iii): Now, let us turn to the case where 1 + % <0< %. We consider a global
solution (u(t), dru(t)) = Sa(t)(®o,®1). In this case, arguing as in [23, Page 59] by
introducing the auxiliary equation satisfied by d;if(t) := (duu(t), d?u(t)), one shows
that 01(t) converges to (0,0) in L?(IR?) x H~}(R?). From this convergence property,
we deduce that Ko(u(t)) converges to 0 as f goes to infinity.

Proposition 3.2. Assume that the hypotheses (H.1)s and (H.2)¢ hold. In the cases (GEU) and
(GEB), there exist a sequence of times t,, and a sequence of numbers 6, such that t, — +0c0 as
n — 400 and that

(3.3) Ko(u(ty)) = 0y, with lim 6, =0.

n—-+0o0
We remark, that, in the (GEU) case, the sequence t,, can be chosen so that 6, < 0 for every n.

Proof. Let il(t) := (u(t), du(t)) = Sa(t)(po, ¢1). By Remark 3.1, we may assume without
loss of generality that, for any t > 0,

E(u(t), dru(t)) = 0.

To show that there exist two sequences t,, and 6, satisfying the properties of the proposition,
we will argue by contradiction. If such sequences do not exist, there exist a time Ty and a
constant kg > 0 such that,

(1) either Ko(u(t)) < —xp for any t > Ty,

(2) or Ko(u(t)) = xo for any t > Ty.
In the case (1), Lemma 2.7 implies finite time blow—up, which contradicts the hypotheses
(GEU) or (GEB). Thus, the case (1) cannot occur. In the case (2), by Lemma 2.5 the solution
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il(t) is bounded in H,,4. In particular, the function |y(t)| defined in (2.37) is bounded. By
(2.38), we have for any t > Ty,

(3.4) j(t) = Ja(t)]2, — Ko(u(t)) < [i(t)|7, —xo,
which in turn implies that, for any T > Ty,

T T
y(T) — y(To) = L y(Hdt < L 4i(t)|2,dt — xo(T — To)
< E(i(To)) — E((T)) — xo(T — To)

< E(L_l)(To)) — KQ(T — To) ,

which contradicts the boundedness of y(T) as T — +o0. This proves Proposition 3.2. The
above proof also shows that, in the (GEU) case, the sequence t, can be chosen so that
On < 0 for every n. O

(3.5)

Next, by means of these vanishing results for Ky, we deduce the convergence to an
equilibrium along a subsequence.

Theorem 3.3. Let a > 0 and iy := (o, 1) € Hyaq S0 that the solution 1i(t) exists for all times
t > 0. Let t, be a sequence of times such that Ko(u(t,)) = 0, converges to 0, then there exists an
equilibrium point i* = (u*,0) € H,,q such that (after possibly extracting a subsequence), ii(ty)
converges to (u*,0) in H.

Proof. From Lemma 2.5 we conclude that

sup [[(u(tn), Oru(tn)) |l < 0

n=0

We recall that without loss of generality, we may assume that
E(u(t),ou(t)) =0, VYt=0.

Since the left-hand side is non-increasing, there exists £ > 0 such that

(3.6) tginooE(u(t), ou(t)) =€=0.

In fact, from the equality valid for any ¢; < t,
)
E(u(ty), omu(t1)) — E(u(tz), ou(ta)) = 20([ H&tu(s)Hiz ds,
f

we deduce that Sff (| Opua(s) Hiz ds tends to 0, as t1,tp — o0.
We consider the equations

Oty + 2000iuy — Aty + 1y — f(uy) =0
(un(0), Oun(0)) = (u(tn), drue(ty))

By Theorem 2.3, there exists T > 0and C > Osuch that, for any n, the solution (1, (t), dsu (1))
isin CO([~T,T],H) and, for —-T <t < T,

3.7) | (un (2), Orttn(t)) ¢ < C.

(KG),
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In the case d = 1 or d = 2, the inequality (3.7) implies that |ju,||p(_11) 1) < C, for any
2 < p < +0o0. In the case 3 < d < 6, the estimate (2.21) in Theorem 2.3 also implies that

(3-8) HHHHLQ*((O,T),LZH*) < C .
where 6% = ZJ_“—%. By uniqueness, u,(t) = u(t, +t). Foranys,t e [-T,T],
¢ 2
J | (£) — w(s)]? dx =f J Oty (o) do| dx
R4 R4 |Js

t
< |t—s|j J |yt (0)|? dodx
R* Js

t+ty,
<lt=sl [ lou(@)lRdo
s+ty

whence
-ty
(3.9) Jn(t) — un(s)[2, < |t —s] |oru(o)|?, do

S+ty

tu+T
< ZTJ |\atu(a)|\§2 do — 0 asn— +ow.
t’l_

Fors,t € [-T,T], and fixed p € (2,2*), interpolation gives the existence of a € (0,1) such
that

(3.10) o4 (8) = 1t () |y < [ (8) = 20 () ] ot (£) — 11 (5) 17

<lt—s'F (f et do)

with a uniform constant in 7. Fix 2 < py < p; < 2* and set X := LP°(R?) ~ LP'(IRY). The
choice of py, p1 depends on the nonlinearity f(u) through the parameters g, 0 in (H.2);.
With the hypotheses made on  (see Hypothesis (H.2)), we can choose 2 < py < p; < 2*
so that, in addition, p2 = 2Bpo/(po — 2) satisfies the inequality

(3.11) 2<p<p1.

This property will be used later in the inequality (3.21).
We consider the family of functions (u,(t)), in C°([—T, T]; X). By the property (3.7),

U u,(t) < bounded set of H}ad(le).

nelN,
te[—T,T]

Due to the compact embedding of H}u d(]Rd ) into X, we deduce that

U u,(t) € compact set of X

nelN,
te[—T,T]



26 N. BURQ, G. RAUGEL, W. SCHLAG

Moreover, by (3.10), the family (u,(t)), is equicontinuous in C°([—T, T]; X). Thus, by the
theorem of Ascoli, (after possibly extracting a subsequence) the sequence u,(t) converges
in CO([~T, T]; X) to a function u*(t) € C°([-T, T]; X).

Moreover, by (3.9) and (3.10), u*(t) is constant on the time interval [T, T]. We shall
simply write u*(t) = u*. Remark that we deduce from Ky(u,(0)) — 0 and the convergence
of u,(t) towards u* in C°([-T, T]; X) that

n—

(3.12) tim i (O)2, = [ f0u* .

For this implication we need to choose po,p1 close to 2,2*, respectively, depending
on (HZ) f-
To summarize, we know that

o u,y(t) —» u*asn — +o0in CO([—T, T]; X) and u* := u*(t)

e Oiuy(t) = 0asn — +ooin L2((=T, T); L*(R%))

o (uy(t), Osuy(t))n is uniformly bounded in n in L*((—T, T); ‘H) and, in particular in

L*((~T,T); H).
Taking these properties into account, one shows that (u,, d:u,) converges in the sense of
distributions (i.e., 2'((—T,T) x R%)) towards (u*,0) as n — +o0 and that (u*,0) is an
equilibrium point of (KG),. Since (1,(0), 01, (0)) is uniformly bounded in H, with respect
to n, there exists a subsequence (that we still label by 1) such that u,(0) — u* asn — +o
weakly in H'(R%).
Since u* is an equilibrium point of (KG),, the following equality holds:

(3.13) fu)u*dx = J (IVu*)? + (u*)?) dx.
RR? R
The equalities (3.12) and (3.13) imply that

(3.14) lun(0) 7 = ™3

lim
n=+00

and thus, since 1, (0) — u* asn — +co weakly in H!(R¥), the convergence of u,,(0) towards
u* takes place in the strong sense in H'(IR%). Moreover, the strong convergence of u,(0)
towards u* in L?(IR¥) and the property (3.9) imply the strong convergence of u,(s) towards
u* in L?(RY), uniformly in s € [T, T]. In summary,

un(.) — u* in C°((=T, T), L2 (R?)).
To finish the proof of Theorem 3.3 it remains to prove

(3.15) sty (0) — 0in L2(RY).
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As a first step towards the proof of property (3.15), we consider the equation satisfied by
ily := Uy, — u*, namely

(3.16) ,(0) = u,(0) —u* -0 asn — +oo in HY(RY)
é’tﬁn (0) = atl/ln (0)

We write u, — u* = w, + v, where w,, and v,, are solutions of the following equations:
geq

Oy — Awy + wn = f(un) — f(u*) — 205y
(3.17) w,(0) = u,(0) — u*
8twn(0) =0

and

Onvy — Avy, +v, =0
(3.18) v,(0) =0
atvn (0) = 8tun(0).

The classical energy estimates for the Klein-Gordon equation imply that, for -T <t < T,

T 4
0 20Ol = €)= ¥l +20 V2T [ (92 )
(3.19) -t

o[ 1 - e

Taking into account Hypothesis (H.2) ¢, one has

T
[ 1) - falieas
(3.20) -T

T
< CJ [ an(s) — %) (ot - |1 P - [0 | 7+ |17 2 s
-T

We recall that we have chosen 2 < pg < p1 < 2* so that pp = 2Bpo/(po — 2) satisfies
2 < p» < p1. Applying the Holder inequality, we obtain,

T
| ls) = P+ 1Py s

(3.21) < CT iy — " 10y (il g gy + 1% g 12y
< CTltn = u* e gy (stn gy + 100 ) -
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Since u, — u* in C(I, X), we conclude that the right-hand side of (3.21) vanishes in the
limit n — c0. We next estimate the term

T
622 [ 1 — )P Dl ds < 2o — e 15

~T

< CHMn — M*”LOO(LZ) ’
which tends to 0 as n — 0. To bound the remaining term in (3.20), we argue as in the
proof of Theorem 2.3. Indeed, from the estimates (2.13) to (2.17), we deduce that

(0—-1)n

T 1
JT [ (n(s) — u*(5))sn(s)|7 |2 ds <(2T)”C\|MnHL¢(IL2)HMn = U o 12

+ @T) | ]

3.23
( ) L© ILZG*)

[l g

n
<C(1 + T)Hu” - *HLoc (LL?) ’

where, by (2.15), n = d+2—4ﬂ. The right-hand side of the inequality (3.23) tends to 0 as
n goes to infinity.
Finally, in view of (3.19), (3.20), (3.21), (3.22) and (3.23), we conclude that

(3.24) [(wn(t), Orwy(t)|gr — 0 as n — +oo,
uniformly in —-T <t < T.
By construction, v, = (14, — u*) — wy, and, in particular, d;v, = dsut, — dywy. From (3.24)
and the properties of | dsitn2(1;2(rey), we infer that
(325)  [0vulliz(_rryerey < l0talrz 1 myemey + V2T10wnlcoq_rmr20rey) — O

asn — oo.

In the final step of the proof we shall turn this L? averaged vanishing of | d;v,(t)] 12 as
n — o into vanishing in the uniform sense in t. The main tool for this is the following
“observation inequality” for equation (3.18).

Lemma 3.4. For any To > 0, there exists a positive constant c¢(To) > 0, independent of n, such
that

To
(3.26) H&tvn(O)Hiz(W) < C(To)f J |Oyvn|? dxds.
—Ty R4

Proof. For sake of simplicity, we set:
é’tvn(O) = 8tun(0) = Uni.
If 9,, denotes the Fourier transform of v,,, we have

) sin <t ]5\2+1) .

On(t, &) = 01 (&

VIER +1
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an (1yfe 1)

f_ |00 (t, HL2 dt = f TOJ sin ( |E12 + 1>
(3.27) = f]Rd (LTO sin ( AP + 1)

> e [ om(o)P e,

and therefore
2

[0 (£)[ de

ot B, = |

as well as

(&)|* d&dt

2

dt) ’ﬁnl (5)‘2 dé

where ¢(Tp) > 0, since Ty > 0. Indeed

Ty 2 T, [ 1—cos (2t\/]5|2+1>
i t 241 dtzf
JTO sm< A EIP + )

dt
T, 2

sin (2T0 VIR + 1)
2VEF+1

One easily sees that, for any T > 0, there exists &(Tp) > 0 such that, for any ||,

sin (210 VISP +1)

=Ty —

(3.28) > ¢(T,
€2 +1
The estimate (3.26) is then a direct consequence of (3.27), (3.28) and Plancherel’s theorem.
O
From the property (3.26) and the estimate (3.25), one deduces that
(329) [ Grun(0)]r2 < e(T) [HatunHU((—T,T);LZ) + V2T‘|atwnHCO([fT,T];LZ(IRd))] —0
asn — +o
and the theorem is proved. m|

3.2. Convergence property. Let ily = (¢o,91) € H,q be so that the solution i(t) =
Sa(t)ily = (u(t), du(t)) exists globally and may be unbounded. Theorem 3.3 asserts that
there exists a sequence of times t, — +co such that ii(t,) — (Q*,0) strongly in H,,;, where
Q* is an equilibrium of (KG),. We shall now show by contradiction that then necessar-
ily #(t) — (Q*0) strongly in H,,y as t — oo and hence the trajectory is bounded. In
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other words, Theorem 3.3 implies that the w-limit set w(i) is not empty and contains an
equilibrium point (Q*,0) € H,,4. We recall that the w-limit set of i is defined as

w(tly) = {0 € Hyug| 3 asequence s, >0, so that s, — o0 +0,
and S,(8y)ilo —n—too W} .
Below we will show that the w-limit set w (i) reduces to the singleton (Q*,0), and that the

entire trajectory converges to this point in the strong sense. And this concludes the proof
of Theorem 1.2.

Before proving that the entire trajectory i(t) = S,(t)ilp converges to (Q*,0), we will
emphasize that the w-limit set w(ip) is contained in the set &, of radial equilibrium
points of (KG),.

Lemma 3.5. The w-limit set w(ily) satisfies the property
(330) CL)(L_[()) C Smd .

Proof. Let Uy = (vo,v1) € w(ip). Then, there exists a sequence s, —,— 1o +0 such that
Sa(sn)ily = 1(Sn) —n—+o Uo. On the one hand, we know by (3.6) that the energy satisfies

E(ii(sn)) — ¢ = E((Q",0))

asn — +oo, and

E(ii(sn)) — E(d0).
If ¥y is not an equilibrium point, then for some time ¢ > 0,
(3.31) E(Sa(0)00) < E(Gy) —6=¢€—0
where 6 > 0. Since

E(il(sy + 0)) —> ¢
and

E(il(sn + 0)) — E(Sa(0)%) ,

we arrive at a contradiction and (3.30) holds. O

Remark 3.6. Let us fix a positive time © > 0 and introduce the w-limit set w(ily) of the discrete
dynamical system defined by the iterates S, (7)™, m € N, that is,

w<(thy) = {W € Hyaq |3 a sequence ky, = 0, so that ky, —p— 1o +00,
and So (7)o ily — s yo0 W}

Obviously, w(ily) < w(ily). Using the fact that w(ily) is contained in &,y and that the Lipschitz
property of Su(t) : O € H — Sa(t)0o € H, which is uniform with respect to t € [0, t] (see the
arguments in Step 1 of Section 4 and especially the estimates (4.11), (4.12), and (4.13)), one can
show that

(3.32) we (ilo) = w(ilp) -
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To prove that the w-limit w(il) is a singleton and that the entire trajectory converges to
this point, we will apply a generalization of the classical convergence theorem of Aulbach
[1], Hale-Massat [25] and Hale-Raugel [26], due to Brunovsky and P. Poléd¢ik [5], which
uses local invariant manifold theory. For more details on these convergence theorems,
we refer the reader to Appendix B and especially to Lemma B.3 that we shall apply
below. The behaviour of S,(t)iy = #(t) heavily depends on the spectral properties of the
linearized operator £ about Q* and the linearized operator £,(t) = ¢’«! about (Q*,0) (see
the definitions (2.47), (2.48) or (4.3) with ¢ = Q*). Lemma 2.10 describes the spectrum of
the operator A,. Before proving this convergence result, we need to recall some notation
given in Section 4. There we introduce the modified (localized) Klein-Gordon equation
(4.7) and show that this localized equation defines a globally defined flow S, (t) on Huq,
such that,

(3.33) i(t) = Sa(t)((Q*,0) + 7o) = (Q*,0) + Sa(t)vo , aslong as i(t) € By, ,

where B,, = B((Q*0),r1) is the open ball of center (Q* 0) and radius r; > 0, with
r1 < (8C(a, 19)) 7o (see Remark 4.2). In other terms, if we set

Sa(b)itp = (Q*,0) + Sa(t) (110 — (Q*,0)) ,

then S,(t)ilp and S*(t)ilp coincide as long as S, (t)ily € B,,. In Section 4, we define the
(global) stable, unstable, center stable, center unstable, and center manifolds W*((Q*,0))
of S%(t) about (Q*,0), wherei = s, u, cs, cu, c respectively. Since S, (t)ily and S(t)ily coincide
as long as Sa(t)ﬁo € B,,, we may define the local stable, unstable, center stable, center
unstable, and center manifolds Wfoc((Q*, 0)) of S,4(t) about ((Q*,0)) as follows:

(3.34) Wi ((Q*,0)) = W*((Q*,0)) n By, , i=s,u,cs,cuc.

We begin our proof with the particular case where (Q*,0) is the (hyperbolic) trivial
equilibrium (0,0) of (KG),. We remark that in that case £ = —A + I and the entire
spectrum of A, lies in a half-plane of the form Rz < =6 < 0. In the terminology of
Section 4 and of Appendix A, this means that the local stable manifold W/ ((0,0)) is a
whole neighborhood of (0,0) and that then necessarily (0,0) is an isolated equilibrium,
and the perturbative equation (2.47) around (0, 0) exhibits exponential decay of solutions
in H,,; for small data. Actually, this exponential decay to zero had already been proved

in Theorem 2.3. In particular, #(t) — (0,0) in that case as t — .

Let us come back to the general case. If Q* # 0, then Lemma 2.10 states that A,
has either a trivial kernel, or a one-dimensional kernel. The former case means that the
dynamics near (Q*,0) is hyperbolic, whereas in the latter case it is not. In the hyperbolic
scenario, we have no central part, which means that the invariant manifolds constructed in
Section 4 and in Appendix A only involve stable and unstable manifolds W; ((Q*,0)) and
Wi ((Q*,0)). In both cases, the (local) unstable manifold W} (Q*,0) is finite-dimensional
since £ has only finitely many eigenvalues (and thus only finitely many eigenvalues with
positive real part).
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In the non-hyperbolic case, the kernel of A, is one-dimensional, the local center manifold

Wy ((Q*,0)) is a C!-curve containing (Q*,0). We notice that we can also choose r; > 0

small enough so that Wy ((Q*,0)) = W ((Q*,0)) n B,, is a connected curve. Moreover, as
remarked above, the (local) unstable manifold Wi, (Q*,0) is finite-dimensional. In order to
prove the convergence to (Q*, 0), we would like to directly apply the classical convergence
theorem of [5] or [26], which is the case (1) of Theorem B.4. However, we do not know that
the trajectory i(t) is bounded and thus we also cannot ascertain that the w-limit set (i)
is connected. So we will apply the more general convergence Theorem B.2 of Brunovsky
and Polacik, and more precisely their local Lemma B.3, which are recalled in Appendix B.
To this end, we need to show that (Q*,0) is stable for S,(t) restricted to the local center
manifold (see the definition (3.40) below). In order to prove this stability, we shall use
the same arguments as Brunovsky and Pola¢ik in the proof of Lemma B.3. Like them, we
will make use of the attraction of the center unstable manifold with asymptotic phase of
Section 4 (see also Appendix A). Notice that the hyperbolic case can be considered as a
special case, where the local center unstable (respectively, center) manifold reduces to the
local unstable manifold (respectively, to (Q*,0)). In the non-hyperbolic case, the center
manifold is present and the dynamics is more delicate to analyze.

We proceed by contradiction and assume that #(t) + (Q*,0). Since #(t) does not
converge to (Q*,0), there exists o > 0, fo < % with the following property: for any
0 < B < Po, if il(ty) € By ((Q*,0),B), there exists a first time 79 > 0 such that if(ty + 7) € Bg,
for 0 < t© < 79, and ii(ty + 7¢) ¢ Bg. In other words, il(ty + 70) belongs to the sphere
S((Q%,0), B).

We first fix > 0, B < fo. By Theorem 3.3, there exists n(f) such that, for n > n(p),
ii(t,) € Bg. Moreover, there exists a first time 7,(B) > 0 such that

i(ty +1)€Bg  for0 <1 < 14(p)
(3.35) W(ty + 1) ¢ Bg  fort=1,(B) .

Since if(t,) — (Q*,0) asn — +o0, we remark that 7,(8) — +o0asn — +00. We now invoke
the attraction with asymptotic phase property of the center-unstable manifold, see (A.9)
(or also (4.29) in Theorem 4.1). Thus, there exists &, := £(il(t,)) € Wik ((Q*,0)) such that,
fort >0,

(3.36) |Sa(®iE(tn) — S5(B)enllge < coppli(tn) — Enllse,
where 0 < pp < 1. And, by continuity of the map &(-),
&n — (Q%,0) asn — +oo.
In particular, (3.36) implies that
(3:37) ISa(Ta(B)il(ts) — SE(Ta(B)Enly — 0 asn — +cc.

Since W*((Q*,0)) is finite-dimensional and by (3.37), S} (7,(B))&x is bounded, the se-
quence S;(7,(B))én, n € IN, contains a convergent subsequence. We conclude that up to
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passing to a subsequence one has
U(ty + 1a(B)) = Sa(Tu(B))il(ty) — (fio, 1) € Bg as n — +c0.
By the invariance property of W*((Q*,0)) and by (3.37),

(338) (o, 1) & Wiee((Q,0))
We remark that, by (3.30) and (3.35),
(3.39)

(#lp,#11) is an equilibrium point (Q,0) = (Q(B),0) and [(Q(B),0) — (Q*,0)|« = B

If (Q*,0) is an isolated equilibrium point, then (3.39) with B < 3 leads to a contradiction.
We remark that, in the hyperbolic case, (Q*, 0) is necessarily an 1solated equilibrium which
ends the proof in this case.

Let us now focus on the case where (Q*,0) is not isolated. Before completing the proof
in this case, we recall a definition of Brunovsky and Polacik, see Appendix B. We say that
(Q*,0) is stable for S“(t)|wfoc((Q*f0)) if, Ve > 0,360 > 0 such that, for any 7o € W; _((Q*,0)),

150 — (Q%,0)]ler < O
implies that, for t > 0,

(3.40) ISa(b)d0 — (Q, 0|y < e

We now complete our proof. By construction and (3.38), the element (Q(8),0) belongs
to Wi ((Q*,0)). Since (Q(B),0) is an equilibrium point, it necessarily belongs to the
local center manifold Wy ((Q*,0)) (see Section 4 and Appendix A for more explanations),
which, as we saw earlier, is a C! one-dimensional embedded manifold passing through
(Q*,0).

Since (3.39) holds for any small § > 0, we see that this curve segment contains equilibria
in the omega-limit set w(ily) which are arbitrarily close to, but distinct from, (Q*,0). In
fact, we can say even more than that. First, we place an order on the curve W¢ ((Q*,0)) if
r1 > 0 is small enough. We adopt the notation v~ < (Q*,0) < v if v~ (respectively v") is
to the “left” ( resp. “right”) of (Q*,0) on the curve segment W¢ ((Q*,0)). By intersecting
the tangent line to this curve at (Q*, 0) with the spheres of radius f for all small §, we see
that there are two possibilities:

(1) Either there exist two families of equilibria (Q;,,0) and (Q;,,0) with (Q;,,0) <
(Q*,0) < (Q;,0) such that
(3.41) (Qr,0) — (Q*,0) asm — +oo.

A simple dynamical argument based on (3.41) implies that S, () |ch ((0*,0)) isin fact

stable. We can now directly apply Lemma B.3 of Brunovsky and Polécik to the
time 1 map S,(1), which implies that the w-limit set w;(ify) and thus the w-limit
set w(ilp) contain an element of W}/ ((Q*,0))\(Q*,0). This contradicts the fact that

w(ilp) € &¢. Instead of directly applying Lemma B.3 to the map S,(1), we can also
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argue for the flow S,(t) as at the end of the proof of [5, Lemma 1] of Brunovsky
and Polécik and directly show that (Q(f),0) € W%C((Q* 0))\(Q*,0), where Q(B) is
as in (3.39). But this contradicts the fact that (Q(8), 0) is an equilibrium and so we
again obtain the desired convergence.

(2) Or there exists f > 0 such that there is no equilibrium point from the family
(Q(B),0) on the “left" (say) of (Q*,0) in Wi ((Q%,0)) N Bys,. But then, the above
arguments (and in particular the properties (3.39)) imply that, for every 0 < < f2,
there exists an equilibrium (Q*(8),0) in w(ily) satisfying the properties (3.39). This
implies that on the right of (Q*,0), W; ((Q*,0)) consists only of equilibria and that
the w-limit set w(iy) contains a curve C of equilibria with end point (Q*,0) (as for
an interval). We then choose an equilibrium (Q* (8), 0) in the interior of C and close
to (Q*,0). We repeat the above proof with (Q*,0) replaced by (Q*(8),0). And we
again obtain the same contradiction as in Case (1).

Remark 3.7. In the particular case of a wave type or reaction-diffusion equation, the proof
of the Lojasiewicz-Simon inequality (see Sections 3.2 and 3.3 in the monograph of L. Simon
[45] and also [28, Theorem 2.1]) shows that, when the kernel of £ is one-dimensional, the
set of equilibria of (KG), passing through (Q*,0) is a C!-curve. Adapting this approach,
we could have avoided the last arguments and applied Theorem B.2. However, in view
of possible further extensions, we chose not to follow this path.

4. INVARIANT MANIFOLD THEORY FOR THE KLEIN-GORDON EQUATION

In Section 3.2, in order to prove the convergence of any global solution (in positive time)
towards an equilibrium point (¢y, 0) of (KG),, we used the properties of the local unstable,
local center unstable and local center manifolds Wlioc((q)o, 0)), i = u,cu,c about (¢, 0) for
the flow S,(t). There, we defined these local manifolds as the intersections of the global
manifolds W™ ((¢o,0)), i = u,cu,c about (¢g,0) for the global flow SZ(t), with the ball of
center (¢o,0) and radius r; > 0, where r; > 0 is small enough. We recall that the global
flow S} (t) was defined by

Sa(B)ito = (0, 0) + Sa(t) (10 = (0,0)),
where S,(t) is the global flow defined by the localized Klein-Gordon equation (4.7) below.
In this section, we construct the global invariant manifolds W'((0,0)), i = u, cu, c, for the
global flow S,(t) and obtain the attraction property of W ((0,0)) by applying the general
invariant manifold theory recalled in Appendix A.

Let (o, 0) € H,sq be an equilibrium point of (KG),, that is, @y is a radial solution of the
elliptic equation

(4.1) —Apo + o — f(po) =0
Solving the equation (KG), in the neighborhood of (¢, 0) leads one to solve the equation
(4.2) vy + 200 + Lo — go(v) =0, (v,0:)(0) = F(0) € Hyag -
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where
L=-A+1-f(po),
80(0) = f(po +0) — f(po) — f'(po)v .

The equation (4.2) can be written in matrix form as follows

(4.4) O (Z) = (01; 12a> (;) * <g0?v>> =Aud+ (go(zv))

We denote by ,(t) = e« the linear group generated by A, and S,(t) the local flow
defined by the equation (4.2). We notice that

(45) Sa(t)ﬁo = Sa(t)(((Po, 0) + 770) = ((PO/ 0) + ga(t)ﬁ)() , where 27() = LTO - ((po,O) .

(4.3)

When a > 0, according to Lemma 2.10, the radius p(0ess(£4(7))) of the essential spectrum
of £,(7) satisfies:
P(0ess(Xa(1))) < O(a,7) <1

The operator A, can have a finite number of negative eigenvalues by () < 0 (resp. a finite
number of positive eigenvalues y;f(a) > 0), in which case, /\]7(7,04) = exp(yj_ (a)r) <1
(resp. /\;T(T,oc) = exp(y;?(a)T) > 1).

In addition, if 1 is an eigenvalue of Yo (10),T0 > 0, itis a simple eigenvalue (and is a
simple eigenvalue of £,(7) for any 7 > 0). Since this case plays an important role in the
proof of Section 3.2, we assume that 1 is an eigenvalue of ia(’fo),m > (. In this case, we
will construct a local center unstable manifold Wy ((0, 0)) of the equilibrium (0, 0) of Sa(t),
a foliation of a neighborhood of (0,0) in H,,s over Wi ((0,0)) as well as a local center
manifold Wy _((0,0)) by applying Theorems A.2 and A.5 to Sa(t). We choose 7y > 0 small
enough (7o will be made more precise later). And we set

L= ia (’L’o) .
The spectrum ¢(L) can be decomposed as in Hypothesis (HA.5.1) and one can define
constants C; > 1, C; > 1, n > 0 and ¢ > 0 satisfying the estimates (A.20), (A.21), (A.22).
Unfortunately, S,(t) is only a local flow and thus 5,(t;) will not satisfy the hypothesis
(HA.3). Moreover, we need to show that the Lipschitz-constant Lip(R) can be chosen as
small as needed, which is not true for §a(t). Therefore, we need to make a localization in

the following way, for instance. Let 7y > 0 be a small constant, which will be made more
precise later. We introduce a smooth cut-off function x : R — [0, 1] such that

1 iffs| <1,
4.6 =
(16 x(s) {o if[s| > 2.
And, we consider the modified Klein-Gordon equation,
1913,

) =0, 80) = 5 ¢ Hoa,

4.7) oy + 2a0; + Lo — go(v)x (
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where 0 < r < g is fixed. To simplify the notation, we set

1912,

r2

h(@) = go(0)x(

).

We first show that, for any ¢y € H, the equation (4.7) admits a unique solution d(t) =
Sa(t)dy € C°([0,+0), H) (we leave to the reader to show that S, ()0, also belongs to
C%((—o0,0],H)). To this end, it is sufficient to show that, for any vy € H, the solution
d(t) = S4(t)Tp of (4.7) exists on the time interval [0, 7] and remains bounded there. We
will do that in two steps. We will give the proof only in the case where d > 3, the case
d < 2 being easier. We first recall that the solution 7(t) of (4.7) is given by the Duhamel
formula,

15(s)1%,

72

(4.8) 3(t) = Sa(H)T + JO Za(t—5)(0, go(v(s))x( ) ds,

and also remark that, as long as 7(s) ¢ B(0, v/2r), the term h(3(s)) vanishes.

Step 1: Let 0y € H so that |[Gp|lyy < mr with (8C(a, 7)) ™! < m < 2 for example. We set:
My = My(mr) = 4C(a, T9)mr, where C(a, 79) > 1 is the constant given in Proposition 2.4.
To show the local existence of the solution ¥(t) on the time interval [0, 7], we argue as in
the proof of Theorem 2.3 and introduce the space

Y = {7 e L°((0,70), H) with v € LY ((0, 79), L*** (R?))
| Hv||L00(Hl)mwl/oc(L2)mLs* (120%) S My(mr)} .
Like there we introduce the mapping ¥ : Y — Y defined by

t

(FD)(t) = Salt)do + jo St — 5)(0, h(3(s)))ds

The application of Proposition 2.4 implies

My(mr)

(4.9) |7 (O)ly < Cla, o)mr < —

We next show that F is a strict contraction from Y into Y. Using the hypothesis (H.2) f and
the fact that ¢ belongs to L® (RY), we may write, for v1, v in H HR? ),

(4.10)
[(g0(v1) — 80(02)) ()| = |f(@o(x) + v1(x)) — f(@o(x) +v2(x)) — f'(o(x))(01(x) — v2(x))]

1
_ 'L (o + 02 + 0(0n — 02)) — f'(90)) (01 — 2)do]

< Cl(jo1lf + [o2f + |01/ + 02 ) (01 — 02)],
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where 0 < f < min(6 — 1, 7%5) and C = C(f, @) is a constant depending only on f and on
@o. For ; € Y, i = 1,2, Proposition 2.4 and the inequality (4.10) imply,

To
|71 = Fally < Ca, 7o) fo |h(71(s)) — h(Ta(s))l 2ds

15217, 1511 1217,

< Clemo) [ 1gn(e1) = oo () + golon) (1( ) — x(—324) ods

@iy =@ WL [ 1016 + ea(o)on(6) — va(s) s

! foTO [([o1()I7" + [o2(5) " [va(s) — va(s)] | 2dls

12115,
72

o G,
] I G or(s) el O (52 — () ]

=B +B,+Bs.

Arguing as in the proof of Theorem 2.3, by using the Sobolev embeddings, the Holder
inequality and the fact that 0 < 8 < d%z, we obtain the following inequality for Bj:

(4.12)

By < Cla, 10)C jo " (Jorlf + ealfy s — o2l jnds < 2C(a, t0)eoCMo(rm)P oy — ool
The bound of the term B, is obtained as in the proof of Theorem 2.3 (see (2.18)):
(413) By < 2C(a, 70)CtIMo(rm) T @ 00D oy — 05 12y + 1 — 0] o (2o ]
where 17 > 0 is given in the formula (2.15). It remains to bound the term Bz. We first

remark that, since x (H i ) vanishes if |@]4 > v/2r, we may write

(4.14)

|(x(

) = x( , (01 — 02))p|do

r2 r2 r? r2

la117, 1217, LG+ 0@ = D)5 @+ 0(@ — 5)
NI | e ) g
V2
< =01 = B -

The estimate (4.14), together with the estimates (4.12) and (4.13) with v, = 0, imply that
(4.15)

B3 < 8V2mC*C(a, t0)?*[1oMo(rm)f + 2C(a, To)TgMo(rm)%(e*(l’”H”)]HZ71 — Do oo (90

Choosing rg > 0 small enough so that

K(To,’[o) ZC(OC To)ToCMo(zi’o)ﬁ +4C(0¢ To)C2 "MO(Zro)QT( *(1=n)+n)

(4.16) 1

+8v/2C2C(a, 1) [ToMo(2r0)F + 2C(a, 7o) TIMo(2r9) T @ A-m4m] < 2

g;
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we deduce from the inequalities (4.11) to (4.16) that

- - 1 - -
(4.17) |F 01— Foafy < 4_1”01 — 02y,
which implies with (4.9), that, for any 7 € Y,
R Moy(mr
(4.18) oy < 2.

Therefore, ¥ is a strict contraction and admits a unique fixed point @(¢p) in Y. The
uniqueness of the solution 7 of the equation (4.7) on the time interval [0, 7¢] is proved as in
the proof of Theorem 2.3. Let next 0 ;, i = 1,2, be so that |ty | ¢ < mr, and let 7;, i = 1,2,
be the corresponding solutions of the equation (4.7) on the time interval [0, 7¢]; by the
above proof, they belong to Y. Applying Proposition 2.4 and repeating the above proof,
we show that

- - 4 - -
(4.19) |77 — 2[ly < §C(a, 70)||T0,1 — Yo.2[|y -

As in the proof of Theorem 2.3, one also shows that 0y € By (0, mr) — ¥(dh) € Y is a
C'-function. In the remaining part of the proof, we set m = 2.

Step 2 : We begin by showing that for every oy € H, d(t) = S,(t)7p exists on [0, +0).
Let first 0y € H satisfying 0] < 2r, then, by Step 1, 9(t) stays in the ball By, (0, Mo (2r))
for 0 < t < 79. Let next 0y € H be such that |dp|4 = 2r and let 3(t) = S, ()7 be the
mild local solution of (4.7). By continuity of this solution, there exists a time t; > 0 so that
d(t) ¢ By (0, \fo), for0 <t <t;. Wehave, for0 <t <t,

(4.20) U(t) = La(t)do ,
and,
(4.21) [7E) |9 + [0l Lo (0,19, 120%) < Clat, T0) [Tl -

If t1 > 10, then, in particular, ¥(t) exists on the time interval [0, 7¢]. If f; < 70, there exists
a first time #5, 0 < t» < 1, such that ¥(f2) enters into the ball B4(0,2r) and then, according
to Step 1, for to < t < t + 19, U(t) exists, stays in the ball By (0, My(2r)) and satisfies the
estimates given in Step 1. We thus have proved that, for every o) € H, 7(t) exists on the
time interval [0, 79]. Consequently, for every ¥ € H, S,(t)7 exists on [0, +00). Likewise,
one shows that S, (#)7) exists on (—0,0]). Arguing as in the proof of Theorem 2.3, one
shows the continuity properties of S,(t)7) with respect to (t,7%) and the fact that, for any
teR, 0y eH — S5,(t)0 € H is a C'-map.

We are now able to prove that S, (t) satisfies the assumptions (HA.3), (HA.5.2), and
(HA.5.3). We first prove the last part of assumption (HA.3), namely that S,(t) is Lipschitz
continuous, with a Lipschitz constant which is uniform in 0 < t < 79. The idea is that it is
true if 1 and 2 belong to By (0, 2r) by (4.19). If 02 € By(0,2r) and 01 ¢ By(0,2r), we
estimate the difference up to the first time #; < 79 when 7 (t) enters the ball B4(0, 2r), and
afterwards, we apply the estimate proved in the first case up to time 7¢. Finally, if both
initial data are outside By/(0,2r), we apply the linear estimates up to the first time when
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one solution enters By/(0,2r) and afterwards, we apply the estimate of the second case.
As a consequence, to conclude, it remains to show that, if |0 1] < 27 and |Gy 2|l = 27 so
that |02(t)|4 = 2r forany t > 0, then ¢} — 0, satisfies the estimate (4.19). Using Proposition
2.4, the inequalities (4.10), (4.11), and (4.15), we obtain, for 0 < t < 7o,

171 — Dally
70
< C(a, 70)[[o1 — Fozllys + fo k(@ (s))ds]

L 0 13112, 12212,
< C(a, 70)[ 1901 — To2]l# +f0 I go(o1) (x( 3 ) —x( 3 ))ll12ds]

< C(a, 70) |01 — Do2] + B3,

(4.22)

where B3 had already been defined and used in (4.11). As before, the inequality (4.14)
holds. Therefore, we deduce from the estimates (4.22), (4.15) and the condition (4.16) that,
for 0 <t < 1o,

(4.23) |51 — Bally < C(a, 7o) P01 — o2

+ 716 - |
H + 7101 = Vally -
And thus the inequality (4.19) holds. From all the above results, one infers that S,(t) is
Lipschitz continuous and that
i, 16
(4.24) sup Lip (S4()) = D < —C3(a, 10) .
0<t<1g 9

Likewise, one shows that this estimate also holds for —7p, < t < 0. Thus, Hypothesis
(HA.3) is satisfied.

We next show that the hypotheses (HA.5.2) and (HA.5.3) hold. To this end, we set
Sa(t0) = L4(10) + R(10) = L(70) + R(70)
Sa(—70) = Za(—70) + R(10) = L(10) ™ + R(10) .

(4.25)

Let 0g € H and U(t) = S,(t)0p; then, R(1¢) writes

(4.26) R(7p) L U5 — $)(0, h(o(s)))'ds

To prove that the conditions (A.23), (A.24), and (A.29) hold, we will show that Lip(R(7o))
and Lip(R(7¢)) go to zero as ry goes to zero (we will only show it for R(1y), since the proof
is similar for R(1¢)). To show this property, we are going back to the three cases considered
above. If 7y 1 and v belong to B4(0,2r), then the estimates (4.11) to (4.19) imply that

- - 4 - -
(4.27) HR(TO)UOJ — R(TO)UO,ZHY < gK(To, To)C(O(, TO)HUO,l — Uo/z”q.( .

The estimate (4.22) shows that the same property (4.27) holds if ¢ ; belongs to B¢ (0, 2r) and
o2 is so that |[0a ()[4 = 2r for any 0 < < 7¢. Finally, we remark that if 7;(t) ¢ B4(0,2r),
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i=1,2,for 0 <t < 19, then R(10)%1 — R(70)7p2 = 0. Combining all the above cases and
using the estimate (4.24), we finally obtain that, in every case,

- - 16 - -
(4.28) IR(70)701 — R(t0)vo,2]y < ?K(ro, TO)CS((X, 70)||T01 — D02/ #¢ -

Since K(rp, Tg) goes to zero as ry goes to zero, Lip(R(7p)) goes to zero as rg goes to zero
and the condition (A.23) is satisfied provided rg is chosen small enough. Likewise the
conditions (A.24) and (A.29) hold, provided rg is chosen small enough. From now on, we
tix ro > 0 small enough so that these conditions are satisfied and we choose r = rg in (4.7).

We have seen that, for g > 0 small enough, Sa(t) satisfies the hypotheses of Theorems
A.2 and A.5. We can thus state the following result concerning the invariant manifolds
of S,(t). For the notations and definitions of the different invariant manifolds, we refer
the reader to Appendix A below. As in the assumption (HA.5.1), we denote by P; the
spectral (continuous) projection associated to the spectral set o' and let H,, ; be the image
Hyaai = PiH,aq, where i = cu, cs,u, s, c.

Theorem 4.1. Let a > 0 be fixed. 1) There exists a C' globally Lipschitz continuous map
Seu : Hoad e — Hoaa,s so that the Ct center unstable manifold W ((0,0)) of Sa(t) at (0,0)

Wcu((oz 0)) = {5cu + Qeu <5cu) ‘ 5)cu € 7_{md,cu}’

satisfies all the properties given in Theorem A.1.

2) There exists a C* globally Lipschitz continuous map gy : Hiaau — Hiadcs o that the C!
(strongly) unstable manifold W*((0,0)) of S4(t) at (0,0)

Wu((ol 0)) = {5)14 + gu<5)u) ’ Z_fu € 7Q{md,u}
satisfies all the properties described in the statement (2) of Theorem A.5.

3) Moreover, there exists a continuous mapping € : Hyq x Hyags — Hyad cu, Such that, for any
T € Hyag, the manifold My = {T + €(0,Us) | U5 € Hyuas} satisfies all the properties in Theorem

A.2. In particular, {M5| Ee We((0,0))} is a foliation of H,,q over W ((0,0)).

4) In particular, there exist ¢ > 1, 0 < po < 1, and, for any 0y € Hyyg, a unique element
(@) € We((0,0)) such that, for t > 0,
(429) ISa(8)30 — 8a()E (@)l < Eppldd — E(T0) 1 -

Moreover, the map Gy € Hyag — E(T) € W((0,0)) is continuous.

5) There exists a C! globally Lipschitz continuous map gc : Hypge — Hyads © Hygay with
¢c(0) = 0, so that the center manifold W¢(0) of S,(t) at (0,0)

WE((0,0) = {xc + &e(xe) [ xc € Hrag,c} = W((0,0)) n W=((0,0))
satisfies all the properties given in statement (4) of Theorem A.5.
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Let us go back to the “actual” variable i = 7 + (¢, 0)". We set

Sa(t)ilo = (o, 0)" + Sa(t)(ilo — (0, 0)) -
Then the invariant manifolds of S%(t) are defined by

(4.30) W™ ((90,0)) = (o, 0)" + W'((0,0)) ,i = cu,c,u,s.

Remark 4.2. We emphasize that the proof given in Step 1 above shows that if, for example, r = ry,
m = (8C(a, 70)) "}, and |ilo| 4y < mro, then, for 0 <t < 710,

1Sa(®)ilolly <70/2,
which implies that, for 0 < t < 1o, Sa(H)ily = Sa(t)ilp. In other terms, if iy belongs to the ball
By, ((¢o,0),71) of center (goO, 0) and radius r1 < (8C(a, 1))~ ro, then Sk(t)ily = Su(t)o. This
allows one to define the local invariant manifolds loc(((po, 0)) of Sa(t) about (¢o,0) as

(431) Wi ((90,0)) = W ((90,0)) By, ((90,0),1) i = cu,c 5.

Remark 4.3. 1) In the above theorem, My coincides with the (strongly) stable manifold W*((0,0)).
2) If Ker(L) = {0}, then the center unstable manifold W ((0,0)) coincides with the unstable
manifold W*((0,0)) of (0,0), while My coincides with the stable manifold W*((0,0)).

Remark 4.4. In the case where a = 0, we can also apply Theorems A.1 and A.2 below in order
to prove the existence of the strong unstable manifold and the existence of a center stable manifold
around any equilibrium point of (KG), as well as the existence of a foliation of H,,; over the
unstable manifold. This gives an alternative proof to the construction of a center stable manifold,
by the Hadamard method in [40] (for more details, see [7]).

AprPENDIX A. GLOBAL INVARIANT MANIFOLDS AND FOLIATIONS BY THE LYAPUNOV-PERRON
METHOD

In this appendix, we recall the basic properties of invariant manifold theory that we
applied to the equation (KG), in Section 4. We reproduce the theorems of Chen, Hale and
Tan about global invariant manifolds and foliations as given in [11]. For classical results
on invariant manifolds, we also refer the reader to the books [8], [29], [30], and [41] for
example as well as to [2] and to [13].

Let X be a Banach space with norm | - [|x and S(¢) : X — X be a non-linear semigroup,
satisfying the following hypotheses:

(HA.1): S(.). : (t,x) € [0,+0) x X — S(t)x € X is continuous and there exists a
constant 7y > 0 such that,
sup Lip(S(t)) =D < 4.
0<t<19
(HA.2): There exists 7,0 < 7 < 70 such that S(7) can be decomposed as
S(t)=L+R,

where L : X — X is a bounded linear operator and R : X — X is a global Lipschitz
continuous map, satisfying the following properties.
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(HA.2.1): There are subspaces Xj, i = 1,2, of X and continuous projections P; : X — X;
such that P1 + P, =1, X = X1 ® X, L leaves X;, i = 1,2, invariant and L commutes
with P;, i = 1,2. The restrictions L; of L to X; satisfy the following properties.
The map L; has a bounded inverse and there exist constants 0 < > < 1, C; = 1,
i=1,2, such that, fork > 0,

IL7*P1lxx) < Cipy™,
HLI;PZHL(X,X) < Copl.

(HA.2.2): The maps L and R satisfy the condition
(VG + VG

(A1)

A2 R)<1.
(A.2) A p(R)
Chen, Hale and Tan considered the following quantity, for y € (B2, 1),
G C
(A.3) Aly) = + .
) Pr=y Vv—B

A short computation shows that, under the condition (A.2), there exist y;, i = 1,2, with
B2 < Y2 < y1 < 1 such that,
(A4) A(y1)Lip(R) = A(y2)Lip(R) =1, and A(y)Lip(R) <1, Vye (y2,y1).

In the trivial case, where Lip(R) = 0, one sets y1 = 1 and y2 = Ba.
We are now able to state the first theorem, concerning the existence of an invariant
manifold, which is a graph over Xj.

Theorem A.1. Assume that the hypotheses (HA.1), (HA.2) hold and that R(0) = 0. Then there
exists a globally Lipschitz map g : X1 — Xp with g(0) = 0, and
C1GLip(R)y

(A5) PE) <, B, B = A — A0)Lp®)

so that the Lipschitz submanifold
G= {Xl + g(x1) ‘X1 € Xl}

satisfies the following properties:

(i): (Invariance) The restriction to G of the semi-flow S(t), t = 0, can be extended to a
Lipschitz continuous flow on G. In particular, S(t)G = G, for any t > 0, and for any
& € G, there exists a unique negative semi-orbit u(t) € G of S(.), t <0, so that u(0) = &.

(ii): (Lyapunov exponent) If a negative semi-orbit u(t), t <0, of S(.) is contained in G, then,

(A.6) lim sup 1 In|u(t)| < 1 Iny;.
t——o00 ‘t| T
Conversely, if a negative semi-orbit u(t), t <0, of S(.) is contained in X satisfies
1 1
(A7) limsup —In|u(t)| < —=1Iny,.
t——00 ‘t‘ T
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then, it is contained in G.
(iii): (Smoothness) If the map S(t) : X — X is of class C', then g : X1 — X is of class C1,
that is, G is a C'-submanifold of X.

The second theorem states the existence of a foliation of X over the invariant manifold
G.

Theorem A.2. Assume that the hypotheses (HA.1), (HA.2) hold and that R(0) = 0. Then, there
exists an invariant foliation of X over G as follows.

(D): (Invariance) There exists a continuous mapping € : X x X — Xy such that, for any
& € G, (&, Pr) = P1& and the manifold Mz = {x2 + €(&,x2) | x2 € Xo} passing through

& satisfies:
(A.8) S(HM: < MS(t)E , t=0,
and
. 1 1
(A9) M: = {y e X| limsup n In|S(t)y — S(t)&| < p Inys}.
t—00

Moreover, the map € : X x X, — X is uniformly Lipschitz continuous in the X, direction.
(ii): (Completeness) Suppose in addition that

) C1CyLip(R) . C1GLip(R)y
A.10 min - -] min -
@10 [ mio, (B1 =)~ A(V)LIP(R))] Lz, p1(y = B2)(1 = A(y)Lip(R))
Then, for any x € X, My n G consists of a single point. In particular,

(A.11) MsoMy=a, YEneG, X=|JM:.

&eG

] <1

In other terms, { M | & € G} is a foliation of X over G. Moreover, the mapping x € X —
&(x) = My n G is a continuous map from X into G < X.

(iii): (Smoothness) If the map S(t) : X — X is of class C', then € : X x X, — Xj is of class
C! in the X direction. Hence, M is a C'-submanifold of X, for any & € G.

Comments on the proof of Theorems A.1 and A.2:

Theorems A.1 and A.2 are proved in [11] by first showing the corresponding results for the
map S(7) and at the end coming back to the continuous dynamical system. This means
that Theorems A.1 and A.2 still hold for iterates of maps S(7). It suffices to replace f € R
by nt, n € N. Theorems A.1 and A.2 are proved in [11] by using the Lyapunov-Perron
method.

The property that the mapping x € X — &(x) = M, n G is a continuous map from X
into G c X is not stated in the main Theorem 1.1 of [11]. It is merely a consequence of the
proof of [11, Lemma 3.4]. Indeed, given x € X, the intersection points &(x) of M, with G
are the solutions of

(A.12) E(x) =y2 +L(x,y2) = L(x, y2) + (E(x, y2)) ,
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where 1, € Xp. This leads to study the fixed points of the map Fx(y2) = F(x,12) =
2(€(x,y2)), depending on the parameter x € X. One can check that the condition (A.10)
implies that F, : X, — X» is a strict contraction and therefore has a unique fixed point
y2(x). The continuity property of y»(x) with respect to x € X is a direct consequence of the
continuity of F with respect to the variable x € X and of the uniform contraction principle
(see [12, Theorem 2.2 on Page 25]). It follows that £(x) = ya2(x) + €(x, y2(x)) € G is also
continuous with respect to x € X.

Remark A.3. If the equilibrium point 0 of S(.) is hyperbolic, then we may choose p, <1 < B1. In
this case, G is the classical unstable manifold W*(0) and Mg, & € G, defines an invariant foliation of
X over W*(0), with My being the classical stable manifold W*(0). And the solutions on My decay
exponentially to 0, as t goes to +00. If 0 is a non-hyperbolic equilibrium point and pr < p1 < 1
with By close to 1, then Theorems A.1 and A.2 allow for the construction of the center-unstable
manifold G = W(0) of 0 and a foliation over it. If 0 is a non-hyperbolic equilibrium point and
1 < B2 < B1 with By close to 1, then Theorems A.1 and A.2 give the strongly unstable manifold
G = W(0) of 0 and a foliation over it. If y» < 1, the existence of the foliation implies that each
positive semi-orbit of S(t) converges exponentially to an orbit of G and is synchronized with this
orbit in time. This property is often called “attraction” of G with asymptotic phase”. We emphasize
that the construction in Theorems A.1 and A.2 is also interesting in the case where S,(.) depends
on a parameter a and Pa(a) < 1 < B1(a) with By () arbitrarily close to 1 as o converges say to
ag = 0.

Mutatis mutandis, repeating the arguments of the proofs of Theorems A.1 and A.2,
one can also show the existence of a Lipschitz manifold G={x+ 3(x2) | x2 € X2} where
¢ : X — Xj is a globally Lipschitz map with §(0) = 0, such that G is invariant and such
that, if a semi-orbit u(t), t > 0, of S(.) is contained in G, then,

(A.13) lim sup % In|u(t)| < %lnfgl ,

t—00

where ; < 7 1< 123 ! < By is made more precise below, and also the existence of a

foliation Mg (in reverse time) of X over G.

If S(t) is a non-linear group, these properties can be proved by reversing the time in
Theorems A.1and A.2. In Section 3, the existence of a center manifold played an important
role. We can derive this existence by defining the center manifold as the intersection of
the center stable and center unstable manifolds. The center stable manifold is constructed
like the Lipschitz manifold G={x+ 3(x2) | x2 € X3} described above. Since throughout
the paper we are only dealing with groups, we will quickly show the existence of G by
reversing the time in Theorem A.1. The constants appearing in the proof below are maybe
not optimal, but we are not looking here for optimality.

In addition to the hypothesis (HA.2), we assume now that
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(HA.3): S(.). : (t,x) € (—o0,4+0) x X — S(t)x € X is continuous and there exists a
constant 7y > 0 such that,

sup Lip(5(f)) =D < 4.

—To<t<T)
(HA.4): S(—1) can be decomposed as
S(—1) =L ' +R,
where 7 and L : X — X have been introduced in the hypothesis (HA.2) and where
R : X — Xis a global Lipschitz continuous map, satisfying the following property:

(A.14) (VCi+ VC)? B1BaLip(R) < 1.

p1— P2

We remark that the linear map L~ satisfies the hypothesis (HA.2.1) with P; (resp. P2)
replaced by P, (resp. P1), C1 (resp. C2) replaced by C; (resp. C1), and 1 (resp. p2) replaced
by B ! (resp. By 1). Indeed, we have

LY Pa)l ) < C2(B7 D) 7F,

(A.15) B _
[(LEPy %) < C1(B; -

We next set

(A.16) A7) = = G

+ .
Byl =7 T8
As above, a short computation shows that, under the condition (A.14), there exist y;,
i=1,2, with ﬁ;l <Y1 <y2 < ,Bgl such that,
(A17)  A(7)Lip(R) = A(?2)Lip(R) =1, and A(y1)Lip(R) <1, Vye (y1,72) -

We may now apply Theorem A.1 to the nonlinear semigroup S(t) = S(—t) and we obtain
the following result.

Theorem A.4. Assume that the hypotheses (HA.2), (HA.3), and (HA.4) hold and that R(0) =

R(0) = 0. Then there exists a globally Lipschitz map § : Xo — X3 with §(0) = 0 and

(A.18) Lip(3) < mi C1GLip(R)B1B2

n = =,
n<r<rz (B = 1/7)(1 = A(7)Lip(R))
so that the Lipschitz submanifold

G = {Xz + g(xz) ‘XQ € Xz}

satisfies the following properties:
(): (Invariance) G is invariant under S(t), i.e., S(t)G = G, for any t = 0.
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(ii): (Lyapunov exponent) If a positive semi-orbit u(t), t > 0, of S(.) is contained in G, then,
1 1
limsup —In|u(t)| < —In —.
t—00 t T V2
Conversely, if a positive semi-orbit u(t), t > 0, of S(.) in X, satisfies
1 1 1
(A.19) limsup—In|u(t)| < =In—.
t—00 t T 71

then, it is contained in G.
(iii): (Smoothness) If the map S(t) : X — X is of class C', then § : Xo — Xq is of class C1,
that is, G is a C'-submanifold of X.

We next consider the classical case where S(.) is a non-linear group satisfying the
assumption (HA.3) as well as
(HA.5): The point 0 is an equilibrium point of S(.). And there exists 7, 0 < 7 < 79
such that S(7) and S(—7) can be decomposed as follows
S(t)y=L+R, S(—71)=L'+R,

where L : X — X is abounded linear operator, R : X — X and R:X — Xare global
Lipschitz continuous maps, satisfying the following properties.
(HA.5.1): The spectrum o(L) of L can be written as

o(Ly=c"vo“ud,

where ¢°, 0¢ and ¢" are closed subsets of {A € C||A| < 1}, {A € C||A| = 1}, and

{AeC|A] > 1}.
There exists 7 > 0 such that
(A.20) o c{AeC|A|<1—-n}, d"c{AeC||A]>1+n}

We set: 0 = ¢° U 0" and 0®° = ¢ U 0°. Let P; be the spectral (continuous) projector
associated to the spectral set o' and let X; be the image X; = P;X, where i = cu,cs,u,s,c.
We have that P, + Ps = I = Pis + P,,. The linear map L leaves X; invariant and commutes
with P;, i = cu,cs,u,s,c. Now we choose 0 < ¢ < /2. The restrictions L; of L to X; satisfy
the following properties. There exist constants C; > 1 and C; > 1 such that, for k > 0,

HLc_ukPCMHL(X,X) <Ci(1- 8)7]{ /

(A.21)
|‘L§PS|‘L(X,X) <G (1 - U)k ’
and
(A22) (L) ™ Pesllnixx) < Co((L+ €))%,

I PullLxy < Cu((+m)HF.

We further assume that the maps R and R satisfy the conditions.
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(HA.5.2): The following inequalities hold
VCi+ V/C2)?
( :7_ - 2) Lip

(A.23) (R) <1,

and
(v/C1 + \/Cz)z
n—e
(HA.5.3): We define the function A(y) as in (A.3), that is,

G N G
C1l-e—y y—-1+n’

(A.24) (14 ¢)(1+n)Lip(R) <1.

(A.25) A(y)

and the quantities y;, i = 1,2, with 1 — 1 < y2, < y1 < 1 — ¢, satisfying (A.4).
Likewise, we define the function A(J) as in (A.16), that is,

o G Ci

A26 AY) = + .
(420 Do

and the quantities y;, i = 1,2, with (1 + n)~!

(A.17). We next introduce the function A*(y*):

B C1 N @)
Cl4n—yr yr—1-¢’

< 71 < P2 < (1 + &)}, satisfying

(A.27) A* (%)

and the quantities yf, i=12,withl+e<y] < y’f < 1+ n, satisfying

(A28)  A*(7)Lip(R) = A(y3)Lip(R) =1, and A*(y)Lip(R) <1, Vy* € (y5,77)-
We finally require that the following inequality holds:

(A.29)

. CICaLip(R)y . _CGLipR1+ e+ 1)
r<r<n (1=e)(y =1+ n)(1 = A(y)Lip(R)) = n<r<rn (1+n—1/7)(1 - A(7)Lip(R))

Applying Theorems A.1 and A.4 to the above flow S(.), we obtain the following prop-
erties, which are used in Sections 3 and 4.
Theorem A.5. Assume that the hypotheses (HA.3) and (HA.5) are satisfied. Then, the following
properties hold.

(1) There exists a globally Lipschitz map gey : Xey — Xs with g0, (0) = 0, so that the Lipschitz
center unstable manifold W (0)
W(0) = {xc 4+ xu + Goulxe + xu) | xc € Xe, xu € Xy}

satisfies all the properties described in Theorem A.1. In particular, if S(t) is of class C!,
then ey : Xeyw — X is of class CL.
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(2) There exists a globally Lipschitz map g, : Xy — X¢s with g,(0) = 0, so that the Lipschitz
unstable (also called strongly unstable) manifold W*(0)

WH(0) = {xy + gu(xy) | xu € Xy}

satisfies all the properties described in Theorem A.1 with y replaced by y* and y; replaced
by y¥, i =1,2. In particular, if S(t) is of class Cl, then g, : X, — X5 is of class Cl. And,
if a negative semi-orbit u(t), t < 0, of S(.) is contained in W*(0), then,

(A.30) limsuplln|u(t)| < —llny’l" .
t——00 ’t‘ T
(3) There exists a globally Lipschitz map Q¢s : Xes — Xy with §es(0) = 0 so that the Lipschitz
center stable manifold W (0)

W (0) = {xc + x5 + Qes(xc + X5) | xc € X, x5 € Xs}

satisfies all the properties described in Theorem A.4. In particular, if S(1) is of class C!,
then ges : Xes — Xy, is of class C.

(4) There exists a globally Lipschitz map g. : X, — Xs ® X, with g.(0) = 0, so that the
Lipschitz center manifold W¢(0)

WE(0) = {xc + ge(xe) [ xc € X} = WH(0) n W=(0)

satisfies the following properties:
(i) WE(0) is invariant under S(t), i.e., S(t)W°(0) = W¢(0), for any t > 0. (ii) The
properties (ii) of Theorem A.1 and the properties (ii) of Theorem A.4 hold. In particular, if
a trajectory u(t), t € (—o0,0) of S(.) is contained in W€(0), then
(A.31) lim sup 1 Inju(t)| < 1 Iny;, limsup E In|u(t)| < ! In % .
t——00 ‘t‘ T t—00 t T V2

Moreover, W¢(0) contains all the equilibria of S(t). (iii) If the map S(t) : X — X is of
class C1, then g. : X, — Xs @ X, is of class C, that is, W¢(0) is a C'-submanifold of X.

(5) If moreover the condition (A.10) holds with p1 = 1 — ¢ and p, = 1 — 1, then one has a
foliation of X over W(0) as defined in Theorem A.2.

Proof. (1) Statements (1) and (5) are direct consequences of Theorem A.1 and Theorem
A.2 respectively, applied to the case where f1 = 1 — ¢ and f = 1 — 1. (2) Statement
(2) is a direct consequence of Theorem A.1, applied to the case where f1 = 1 4+ n and
B2 = 1+ &. (3) Statement (3) is a direct consequence of Theorem A .4, applied to the case
where ;! = (1+¢)7! and ,8;1 = (1 4+ n)~L. Let us next prove the statement (4). We
are looking for the trajectories u(t), which satisfy both properties of (A.31). These two
properties together are satisfied only by the elements in W (0) n W*(0). Thus, we are
looking for the elements x = x. + x5 + x, so that

(A-32) Xe+Xy +gcu(xc +xu) = Xc+Xs +gcs(xc+xs) = xc"‘gcu(xc +xu) +gcs(xc +gcu(x0+xu)) ’
or also for the elements x, € X, satisfying

(A.33) Xy = Ges(Xe + Geu(Xe + X)) -
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In other terms, given x. € X., we are looking for the fixed point of the map x, € X, —
F(xe,xu) = ges(%c + geu(xc + x4)) € Xy. We notice that the Lipschitz constant of F(x,,.)
satisfies

Lip(F(xc,.)) < Lip(ges) x Lip(geu) -
By Theorems A.1 and A.4 and the assumption (A.29), we have, for any xp € Xg

(A.34)
Lip(F(x,,.) <

min C1C2Lip(R))/ < min C1C2Lip(R)(1 + E) (1 + T])
r<y<n (I—¢)(y —=1+n)(1 - A(y)Lip(R))  n<y<n (1 +1n-1/9)(1 — A(y)Lip(R))

Therefore, x,, € X,, — F(x., x,) € X, is a strict contraction, uniformly in x.. Thus, for any
xc € X,, there exists a unique fixed point h(x.) € X, of F(x,,.). And gc(x) is given by

Qe(xe) = xc + h(xe) + eu(xc + h(xc)) .

The regularity of the map g. is proved by using the regularity of the mappings g., and gcs
and by applying the uniform contraction principle of [12, Theorem 2.2 on Page 25]. m|

Remark A.6. 1. If the equilibrium point is hyperbolic (that is, 0° = (&), then one can choose
¢ = 1 in the hypotheses (HA.5.1) and (HA.5.2). The center unstable manifold W (0) and the
(strongly) unstable manifold W"(0) coincide (that is, gcyy = gu). And the center manifold W€ (0)
reduces to 0.

2. In the above theorem, we have only stated those properties which are used in this paper. We leave
it to the reader to state the existence of the (strongly) stable manifold.

APPENDIX B. CLASSICAL CONVERGENCE RESULTS

In the study of asymptotic behaviour of dynamical systems, one often encounters the
following question: knowing that the w-limit set of a relatively compact trajectory contains
an equilibrium point xy, does this w-limit set reduce to the point xy, i.e., does the trajectory
converge to xo? This question is especially interesting in the case of gradient systems (that
is, systems which admit a strict Lyapunov functional). In fact, consider a gradient system
with a hyperbolic equilibrium xp. Then x is isolated and the whole trajectory converges
to this point xp. If the equilibrium xj is not hyperbolic and the spectrum of the linearized
dynamical system around xj intersects the unit circle, then xp could lie in a continuum
of equilibria, which could be contained in the w-limit set. If xy belongs to a normally
hyperbolic manifold of equilibria, we can still have convergence to xg, under additional
hypotheses.

In the proof of Theorem 1.2, we use the convergence property to an equilibrium point in
order to prove the boundedness of the orbits, which are global in forward time. We recall
here the general convergence property in the form proved by Brunovsky and Polacik in
[5], who extended earlier convergence results, proved for example by Aulbach [1] in the
finite-dimensional frame, or by Hale and Raugel [26], who generalised the convergence
property of Aulbach to the infinite-dimensional setting (see also the paper [25] of 1982,
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and [43] for applications). In the case of the one-dimensional parabolic equation with
separate boundary conditions, convergence proofs had been given before in [38] and [47].

Let X be a Banach space and @ : X — X be a continuous map admitting a fixed point
Yo. Without loss of generality, we may choose yp = 0. Brunovsky and Polac¢ik assumed
the following hypotheses:

e (HB.1) There exists a neighborhood U of 0 in X so that the restriction @[, : U — X
is of class C.

¢ (HB.2) The spectrum ¢(DF(0)) can be written as 6(DF(0)) = 0°uc®ud", where ¢°, 6°
and ¢" are closed subsets of {A € C| |A| < 1},{A e C||A| =1},and {A € C||A]| > 1}.

As in Appendix A, we introduce the spectral projectors P; of B = DF(0) associated with
the spectral sets o', i = s5,c, u and the images X; = P;X. We recall that these spaces are all
B-invariant and X = X, ® X, ® X,,. We also denote X, = X, ® X,,.

Aswehaveseenin Appendix A, the hypotheses (HB.1) and (HB.2) allow one to construct
Lipschitz continuous local center unstable and local center manifolds Wi (0), W; (0) of @
at 0 as graphs over X, and X,, respectively, and also the local unstable manifold WZ”OC(O)

as a graph over X,, by extending the map ® into a global Lipschitz continuous and C!
mapping ®, which coincides with @ on the ball Bx(0,5) of center 0 and radius 6 > 0
(6 being small enough), and by applying Theorems A.1 and A.5. These local invariant
manifolds are defined in the following way

(B.1) W (0) =Wi(0), i=cucu,

loc

where Wg“ 0), Wg (0) and Wg‘ (0) are the global center stable, center and unstable manifolds
of ® around 0.

On the other hand, Theorem A.2 in Appendix A on the invariant foliations implies that
Wi (0) is exponentially attractive in X with asymptotic phase (see Appendix A for more
details). Likewise, one can show that W} (0) is exponentially attractive in backward time
in W (0) with asymptotic phase. These asymptotic phase properties are among the key

loc
arguments in the proof of the main convergence theorem B.2 below.

Remark B.1. Actually, the hypothesis (HB.1) can be replaced by the weaker hypothesis:
(HB.1bis) There exists a neighborhood U of 0 in X so that the restriction ®|, : U — X is Lipschitz
continuous and differentiable at every fixed point contained in U.

Before stating the main convergence result of [5], we introduce the concept of stability
restricted to WZCOC(O). We say that 0 is stable for the map ®|,. (0)” if, for any ¢ > 0, there
loc

exists n > 0 such that, for any y € W¢ (0) with ||y|x < n, we have

loc

(B.2) [P"(y)|x <e, ¥Yn=0,12,....

As pointed out in [5], this stability is independent of the choice of the local center
manifold W} (0). The independence of this stability on the choice of the local center
manifold can be proved by using foliations as in the paper of [6], who actually showed that
the flows on different local center manifolds are conjugated (under some more restrictive
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hypotheses, which can be easily removed). As also remarked in [5], the fact that the
stability is independent of the choice of the local centre manifold, is not needed in the
proof of Theorem B.2 below.

Theorem B.2. Assume that the hypotheses (HB.1) (or (HB.1bis)) and (HB.2) hold. Let xo € X
be such that the fixed point 0 belongs to the w-limit set w(xo) of xo. Assume that either X, is
finite-dimensional or that the trajectory ®"(xo), n = 1,2, - -, of x is relatively compact. Assume,
moreover, that 0 is stable for the map ® We (o) where Wy (0) is a local center manifold of 0. Then

either " (xg) converges to 0 as n — oo, or w(xg) contains a point of the local unstable manifold
Wi (0) of 0, distinct from 0.

Theorem B.2 generalises the above mentioned convergence result of [26] in two ways.
Firstly, the hypotheses do not require that w(xp) consists only of fixed points. Secondly, it
does not require that the trajectory ®"(xg), n = 1,2, - - -, of xg be relatively compact. But,
of course, it requires the additional stability property defined above.

In [5], Brunovsky and Polacik have proved the following lemma (see [5, Lemma 1]) and
have obtained Theorem B.2 as a direct consequence of it. We emphasize that Lemma B.3 is
really a local result anf that Lemma B.3 will hold for any mapping ®* : y € U — ®*y e X
coinciding with @ in U. In particular, ®* need not be well defined outside U, which is
the case in our application in Section 3.

Lemma B.3. Assume that the hypotheses (HB.1) (or (HB.1bis)) and (HB.2) hold, that 6 > 0 is
small enough so that Bx(0,0) < U and that O is stable for the map ® Let x; € X and

pr € IN be sequences satisfying the following properties:

Wiee (0)°

(1) x - 0ask — +oo.
(2) @/ (xx) € Bx(0,B) for j = 0,1,2,...,px and ®P+1(x;) ¢ Bx(0,B), where 0 < f < 6.
(3) In the case, where dim X, = oo, the set {@{k (x¢) |k € N,j = 0,...,px} is relatively
compact.
Then ®Fk(x) contains a subsequence converging to an element of Wy: (0)\{0}.

As an easy consequence of Theorem B.2, Brunovsky and Pola¢ik have obtained the
following more classical theorem.

Theorem B.4. Assume that the hypotheses (HB.1) (or (HB.1bis)) and (HB.2) hold. Let xo be a
point in X such that the fixed point 0 belongs to the w-limit set w(xo) of xo and such that w(xo)
is contained in the set Fix(®) of fixed points of ®. Assume that either X, is finite-dimensional or
that the trajectory @"(xo), n = 1,2,-- -, of xq is relatively compact. Assume moreover that one of
the following two properties holds:

(1) dim X° = 1 and the trajectory ®"(xq), n = 1,2, - -, of xq is relatively compact.

(2) dimX® = m < oo and there is a submanifold M < X with dimM = m such that

0 € M < Fix(®).

Then w(xo) = {0}.

Proof. We give the proof, because it is short.
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First assume that (2) holds. Then, if 6 > 0 is small enough, the sets M and WZL;C(O)
coincide since M = W}/ (0), and they both have the same dimension m. The assumption
M < Fix(®) thus implies that 0 is stable for the map ®|,. (0)- Since Wy (0)\{0} contains

loc

loc
no fixed point if 6 > 0 is small enough and since w(xg) € Fix(®), Theorem B.2 implies that
w(xg) = {0}.

In the case (1), we first remark that, since the trajectory ®"(xp), n = 1,2,---, of xg is
relatively compact and since w(xo) consists only of fixed points, the omega-limit set w(xo)
is connected (see for example [26, Lemma 2.7]). If w(xp) contains more than one fixed
point, then all fixed points near 0 are contained in W; (0) and thus 0 belongs to a curve
of fixed points. If 0 belongs to the relative interior of this curve, one applies the case (2),
which leads to a contradiction. If 0 does not belong to the relative interior of this curve,
we consider a fixed point y* near 0, contained in the relative interior of this curve of fixed
points and in w(xp). Replacing ® by ®(y* + x), we are now back to the case (2). Applying
the case (2), we obtain that w(xp) = y*, which also leads to a contradiction. O

In Section 3.2 we encountered the case of an element uy € ‘H,,; for which we did not
know that the forward trajectory {S,(t)ify |t > 0} is bounded. We used there the property
that W (0) is exponentially attractive in X with asymptotic phase together with the fact
that dim X = 1, to obtain that S,(¢) has the stability property (3.40) (or (B.2)). Then, we
applied Theorem B.2 to the time 7-map ® = S,(7), where T > 0 is small enough, in order to
obtain the convergence result. Since these arguments did not use the particular properties
of S,(t), this allows us to state the following general result.

Corollary B.5. Assume that the map ® = S(t) where S(t) : Rx X — Xis a continuous dynamical
system and that T > 0 is a small enough positive time, so that ® = S(t) satisfies the hypotheses
(HB.1) (or (HB.1bis)) and (HB.2). Let xq be a point in X such that the equilibrium point O belongs
to the w-limit set w(xg) of xo and such that w(xg) is contained in the set of equilibrium points of
S(t). Assume that either X, is finite-dimensional or that the trajectory ®"(xp), n = 1,2,---, of
xg is relatively compact. Assume moreover that dim X = 1. Then w(xg) = {0}.
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