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Abstract. In this article, we prove some universal bounds on the speed of concentration on
small (frequency-dependent) neighbourhoods of sub-manifolds of L2-norms of quasi modes
for Laplace operators on compact manifolds. We deduce new results on the rate of decay of
weakly damped wave equations.

1. Notations and main results

Let (M, g) be a smooth compact Riemanian manifold without boundary of dimension n, ∆g

the Laplace-Beltrami operator on M and d(·, ·) the geodesic distance on M .

The purpose of this work is to investigate the concentration properties of eigenfunctions ϕλ
with eigenvalues λ2 of the Laplace operator ∆g (or more generally quasi-modes), in rela-
tion with some control theory results. There are many ways of measuring such possible
concentrations. The most classical is by describing semi-classical (Wigner) measures (see
the works by Shnirelman [35], Zelditch [50], Colin de Verdière [22], Gérard-Leichtnam [23],
Zelditch-Zworski [51], Helffer-Martinez-Robert [24], Anantharaman [1]. Another approach
was iniciated by Sogge and consists in studying the potential growth of ‖ϕλ‖Lp(M), see the
works by Sogge [37, 38, 40], Sogge-Zelditch [39], Smith-Sogge [36], Blair-Smith-Sogge [7],
Blair [5], Burq-Gérard-Tzvetkov [13, 12, 14], and in the integrable case by Toth [45, 46]
and Toth-Zelditch [47, 49, 48]. Finally in [15, 9, 44] the concentration of restrictions on
sub-manifolds was considered. Our present approach is connected to works by Blair and
Sogge (see also [41, 42]) where the authors studied the concentration (in L2 norms) on small
(frequency dependent) neighbourhoods of geodesics. They recognized that Sogge’s Lp esti-
mates for eigenfunctions implied the impossibility to concentrate on neighbourhoods of width
smaller than λ−1/2, and studied the improvements when the manifold has non positive cur-
vature (by showing that it is actually impossible to concentrate on neighbourhoods of size

λ−1/2. Here, on the same question, we follow a different path and are interested on the speed
of non concentration and on the extension of such results to higher dimensional sub-manifolds
(for which the non concentration property, even with non optimal rates does not follow from
Sogge’s Lp estimates). Our first results are the following robust bounds (i.e. independent of
the geometry) where, in view of applications to eigenfunctions estimates, we set h = λ−1.
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Theorem 1.1. Let k ∈ {1, . . . , n − 1} and Σk be a sub-manifold of dimension k of M . Let
us introduce for β > 0,

(1.1) Nβ = {p ∈M : d(p,Σk) < β}.

There exists C > 0, h0 > 0 such that for every 0 < h ≤ h0, every α ∈ (0, 1) and every solution
ψ ∈ H2(M) of the equation on M

(h2∆g + 1)ψ = g

we have the estimate

(1.2) ‖ψ‖L2(Nαh1/2 ) ≤ Cασ(k,n)
(
‖ψ‖L2(M) +

1

h
‖g‖L2(M)

)
where σ(k, n) = 1 if k ≤ n− 3, σ(n− 2, n) = 1−, σ(n− 1, n) = 1

2 .

Here 1− means that we have a logarithm loss i.e. a bound by Cα| log(α)|.

Remark 1.2.

(1) As pointed to us by M. Zworski, the result above is not invariant by conjugation by
Fourier integral operators. Indeed, it is well known that micro-locally, −h2∆ − 1 is
conjugated by a (micro-locally unitary) FIO to the operator hDx1 . However the result
above is clearly false is one replaces the operator −h2∆− 1 by hDx1 .

(2) In the case of curves, Theorem 1.1, with a non optimal exponent σ = d−1
d+1 < σ(1, n),

follows easily from the Lp spectral projector estimates by Sogge [37] (see [6] for an
improvement on negatively curved manifolds).

Another motivation for our study was the question of stabilization for weakly damped wave
equations.

(1.3) (∂2
t −∆g + b(x)∂t)u = 0, (u, ∂tu) |t=0= (u0, u1) ∈ Hs+1(M)×Hs(M),

where 0 ≤ b ∈ L∞(M). Let

E(u)(t) =

∫
M

{
gp(∇gu(p),∇gu(p)) + |∂tu(p)|2

}
dvg(p)

where ∇g denotes the gradient with respect to the metric g.

It is known that as soon as the damping b ≥ 0 is non trivial, the energy of every solution
converge to 0 as t tends to infinity. On the other hand the rate of decay is uniform (and
hence exponential) in energy space if and only if the geometric control condition [29, 30, 11]
is satisfied. Here we want to explore the question when some trajectories are trapped and
exhibit decay rates (assuming more regularity on the initial data). This latter question was
previously studied in [27, 25], on tori in [16, 28, 2] (see also [17, 18]), on the disc [3], and
on hyperbolic manifolds [19, 20, 33, 34, 31, 32, 21, 10], and more recently by Leautaud-
Lerner [26] (see also [4] for a singular damping in dimension 1). According to the works by
Borichev-Tomilov [8], stabilization results for the wave equation are equivalent to resolvent
estimates. On the other hand, Theorem 1.1 implies easily (see Section 2.2) the following
resolvent estimate
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Corollary 1.3. Consider for h > 0 the following operator

(1.4) Lh = −h2∆g − 1 + ihb, b ∈ L∞(M).

Assume that there exists a global compact sub-manifold Σk ⊂M of dimension k such that

(1.5) b(p) ≥ Cd(p,Σk)2κ, p ∈M
for some κ > 0. Then there exist C > 0, h0 > 0 such that for all 0 < h ≤ h0

‖ϕ‖L2(M) ≤ Ch−(1+κ)‖Lhϕ‖L2(M),

for all ϕ ∈ H2(M).

This result will imply the following one. Notice the loss of one derivative between the energy
in the l.h.s. (H1 × L2-norm) and the r.h.s. (H2 ×H1-norm).

Theorem 1.4. Under the geometric assumptions of Corollary 1.3, there exists C > 0 such
that for any (u0, u1) ∈ H2(M)×H1(M), the solution u of (1.3) satisfies

(1.6) E(u(t))
1
2 ≤ C

t
1
κ

(
‖u0‖H2 + ‖u1‖H1

)
.

Remark 1.5. Notice that in Theorem 1.4 the decay rate is worse than the rates exhibited
by Leautaud-Lerner [26] in the particular case when the sub-manifold Σ is a torus (and the
metric of M is flat near Σ). We shall exhibit below examples showing that the rate (1.6) is
optimal in general.

A main drawback of the result above (and Leautaud-Lerner’s results) is that we were led to
global assumptions on the geometry of the manifold M and the trapped region Σk. However,
the flexibility of Theorem 1.1 is such that we can actually drop all global assumptions and
keep only a local weak controlability assumption.

In the sequel we shall denote by Φ(s) the bicharacteristic flow of the Laplacian ∆g defined on
the sphere cotangent bundle

S∗M = {(x, ξ) ∈ T ∗M ; ‖ξ‖g(x) = 1}.

Theorem 1.6. Let us assume the following weak geometric control property: for any ρ0 =
(p0, ξ0) ∈ S∗M , there exists s ∈ R such that the point (p1, ξ1) = Φ(s)(ρ0) on the bicharacter-
istic issued from ρ0 satisfies

• either p1 ∈ ω = ∪{U open ; essinfU b > 0}
• or there exists κ > 0, C > 0 and a local sub-manifold Σk of dimension k ≥ 1 such that
p1 ∈ Σk and near p1,

b(p) ≥ Cd(p,Σk)2κ.

Notice that since S∗M is compact, we can assume in the assumption above that s ∈ [−T, T ] is
bounded and that a finite number of sub-manifolds (and kappa’s) are sufficient. Let κ0 be the
largest. Then there exists C > 0 such that for any (u0, u1) ∈ H2(M) ×H1(M), the solution
u of (1.3) satisfies

E(u(t))
1
2 ≤ C

t
1
κ0

(
‖u0‖H2 + ‖u1‖H1

)
.
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The results in Theorem 1.1 are in general optimal. On spheres Sn = {ω ∈ Rn+1 : |ω| = 1}, an
explicit family of eigenfunctions ej(ω1, . . . , ωn+1) = (ω1 + iω2)j (eigenvalues λ2

j = j(j+n−1))
is known. We have

(1.7) |ej(ω)|2 = (1− |ω′|2)j = ejlog(1−|ω′|2), ω′ = (ω3, . . . , ωn+1).

Set Aj =
∫
L2(Sn) |ej(ω)|2 dω, Bj =

∫
N
αh

1/2
j

|ej(ω)|2 dω, hj = λ−1
j = j−1(1 + o(1)).

These eigenfunctions concentrate exponentially on j−1/2 neighbourhoods of the geodesic curve

given by {ω ∈ Sn;ω′ = 0} (the equator). As a consequence, limj→+∞ j
d−1
2 Bj = C > 0. Let

Σk = {ω = (ω1, ω2, y, z) ∈ R×R×Rk−1 ×Rn−k : |ω| = 1, z = 0}.

Then, N
αh

1/2
j

= {ω = (ω1, ω2, y, z) ∈ R ×R ×Rk−1 ×Rn−k : |ω| = 1, |z| ≤ αh
1
2
j } which we

parametrize by: |z| ≤ αh
1
2
j , |y| ≤ 1− |z|2, ω2

1 + ω2
2 = 1− |y|2 − |z|2. Then

Bj = |Sn−k−1|
∫ αh

1/2
j

ρ=0
ρn−k−1

∫
|y|≤
√

1−ρ2

∫
ω2
1+ω2

2=1−|y|2−|ρ|2
(1− |y|2 − |ρ|2)j dρ dy dσ.

Setting successively y = rθ, 0 < r <
√

1− ρ2, θ ∈ Sk−2, r =
√

1− ρ2s then ρ = x√
j
, s = t√

j

we see easily that j
n−1
2 Aj ∼ Cαn−k. If k = n − 1 we have n−k

2 = 1
2 and if k = n − 2 we

have n−k
2 = 1. In these two cases the estimate proved in the concentration theorem is optimal

(except for the logarithmic loss appearing in the case of co-dimension 2).

On the other hand again on spheres, other particular families of eigenfunctions, (fj , λj) are
known (the so called zonal spherical harmonics). These are known to have size of order
λ

(n−1)/2
j in a neighbourhood of size λ−1

j of two antipodal points (north and south poles). As a

consequence, a simple calculation shows that if the sub-manifold contains such a point (which

if always achievable by rotation invariance), we have, for α = εh1/2

‖fj‖2L2(N
αh1/2

) ≥ ch ∼ α
2,

which shows that (1.2) is optimal on spheres (at least in the regime α ∼ h1/2). To get
the full optimality might be possible by studying other families of spherical harmonics. For
general manifolds, following the analysis in [38, Section 5] and [15, Section 5]) should give the
optimality of our results for quasi-modes on any manifold.

The paper is organized as follows. We first show how the non concentration result (Theo-
rem 1.1) imply resolvent estimates for the damped Helmholtz equation, which in turn imply
very classically the stabilization results for the damped wave equation. We then focus on
the core of the article and prove Theorem 1.1. We first show that the resolvent estimate
is implied by a similar estimate for the spectral projector Tλ = χ(

√
−∆ − λ), where χ is a

non trivial smooth function. Then a classical TT ∗ argument reduces the analysis to proving
estimates for TλT

∗
λ on L2(Nαh1/2) To prove this latter estimate, we rely on harmonic analy-

sis and the precise description of this spectral projector given in [15], following some earlier
works by Sogge [38]. We show that this operator can be decomposed into a sum of operators
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Sjλ, j = 1, . . . , J ∼ log(λ) the two extremal points j = 0, j = J corresponding to the two
extremal regimes (zonal and highest weight eigenfunctions), and the points in-between to the
intermediate regimes. Taking benefit from the precise description of their kernels, each of
these pieces can in turn be controlled after suitable change of variables by exploiting on one
hand quasi-orthogonality to localize the estimates, and on the other hand oscillations in the
phase (despite degeneracies) via yet another TT ∗ argument. It remains to sum the contribu-

tions of each piece Sjλ (in the case k = n − 2 each piece gives the same contribution, which
leads to the logarithmic loss in (1.2)). We gathered in an appendix several technical results.

Acknowledgments We’d like to thank M. Zworski for fruitful discussions about these results.

2. From concentration estimates to stabilization results

2.1. A priori estimates. Recall that (M, g) is a compact connected Riemanian manifold.
We shall denote by ∇g the gradient operator with respect to the metric g and by dvg the
canonical volume form on M. In all this section we set

(2.1) Lh = −h2∆g − 1 + ihb

We shall first derive some a-priori estimates on Lh.

Lemma 2.1. Let Lh = −h2∆g − 1 + ihb. Assume b ≥ 0 and set f = Lhϕ. Then

(2.2)

(i) h

∫
M
b|ϕ(p)|2 dvg(p) ≤ ‖ϕ‖L2(M)‖f‖L2(M),

(ii) h2

∫
M
gp
(
∇gϕ(p),∇gϕ(p)

)
dvg(p) ≤ ‖ϕ‖2L2(M) + ‖ϕ‖L2(M)‖f‖L2(M).

Proof. We know that ∆g = div∇g and by the definition of these objects we have

A =:

∫
M
gp
(
∇gϕ(p),∇gϕ(p)

)
dvg(p) = −

∫
M

∆gϕ(p)ϕ(p) dvg(p).

Multiplying both sides by h2 and since −h2∆gϕ = f + ϕ− ihbϕ we obtain

h2A =

∫
M
|ϕ(p)|2 dvg(p)− ih

∫
M
b(p)|ϕ(p)|2 dvg(p) +

∫
M
f(p)ϕ(p) dvg(p).

Taking the real and the imaginary parts of this equality we obtain the desired estimates. �

2.2. Proof of Corollary 1.3 assuming Theorem 1.1. According to condition (1.5) we
have on N c

αh1/2

b(p) ≥ Cd(p,Σk)2κ ≥ Cα2κhκ.

Writing
∫
Nc
αh1/2

|ϕ(p)|2 dvg(p) =
∫
Nc
αh1/2

1
b(p)b(p)|ϕ(p)|2 dvg(p), we deduce from Lemma 2.1

that

(2.3)

∫
Nc
αh1/2

|ϕ(p)|2 dvg(p) ≤
1

Cα2κ
h−(1+κ)‖ϕ‖L2(M)‖f‖L2(M).

Therefore we are left with the estimate of the L2(Nαh1/2) norm of ϕ.
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According to (2.1) we see that ϕ is a solution of

(h2∆g + 1)ϕ = −f + ihbϕ =: gh

where gh satisfies
‖gh‖L2(M) ≤ ‖f‖L2(M) + Ch‖ϕ‖L2(M).

It follows from (2.3) and Theorem 1.1 that

‖ϕ‖L2(M) ≤
1

C
1
2ακ

h−
1+κ
2 ‖ϕ‖

1
2

L2(M)
‖f‖

1
2

L2(M)
+ Cασ(‖ϕ‖L2(M) +

1

h
‖f‖L2(M)).

Now we fix α so small that Cασ ≤ 1
2 and we use the inequality a

1
2 b

1
2 ≤ εa + 1

4εb to obtain
eventually

‖ϕ‖L2(M) ≤ C ′h−(1+κ)‖f‖L2(M)

which completes the proof of Corollary 1.3.

2.3. Proof of Theorem 1.4 assuming Corollary 1.3. The proof is an immediate conse-
quence of a work by Borichev-Tomilov [8] and Corollary 1.3. We quote the following propo-
sition from [26, Proposition 1.5].

Proposition 2.2. Let κ > 0. Then the estimate (1.6) holds if and only if there exist positive
constants C, λ0 such that for all u ∈ H2(M), for all λ ≥ λ0 we have

C‖(−∆g − λ2 + iλb)u‖L2(M) ≥ λ1−κ‖u‖L2(M).

2.4. Proof of Theorem 1.6 assuming Theorem 1.1. As before Theorem 1.6 will follow
from the resolvent estimate

(2.4) ∃C > 0, h0 > 0 : ∀h ≤ h0 ‖ϕ‖L2(M) ≤ Ch−(1+κ)‖Lhϕ‖L2(M)

for every ϕ ∈ C∞(M).

We prove (2.4) by contradiction. If it is false one can find sequences (ϕj), (hj), (fj) such that

(2.5) (−h2
j∆g − 1 + ihjb)ϕn = fj and ‖ϕj‖L2(M) >

j

h1+κ
j

‖fj‖L2(M).

Then ‖ϕj‖L2(M) > 0 and we may therefore assume that ‖ϕj‖L2(M) = 1. It follows that

(2.6) ‖fj‖L2(M) = o(h1+κ
j ), j → +∞.

Let µ be a semiclassical measure for (ϕj). By Lemma 2.1 we have∣∣∣∣∫
M

{
|hj∇gϕj(p)|2 − |ϕj(p)|2

}
dvg(p)

∣∣∣∣ ≤ ‖fj‖L2(M).

It follows that (ϕj) is hj-oscillating which implies that µ(S∗(M)) = 1. We therefore shall
reach a contradiction if we can show that suppµ = ∅ and (2.4) will be proved. First of all by
elliptic regularity we have

(2.7) suppµ ⊂ {(p, ξ) ∈ S∗(M) : gp(ξ, ξ) = 1}.
On the other hand using Lemma 2.1 we have

(2.8)

∫
b(p)|ϕj(p)|2 dvg(p) ≤

1

hj
‖fj‖L2(M)
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since ‖ϕj‖L2(M) = 1. We deduce from (2.5), (2.8) and (2.6) that

(2.9) (h2
j∆g + 1)ϕj = Gj , where ‖Gj‖L2(M) = o(h

1+κ
2

j )→ 0, j → +∞.

This shows that the support of µ is invariant by the geodesic flow. Let ρ0 ∈ S∗(M) and
ρ1 = (p1, ξ1) ∈ S∗(M)) belonging to the geodesic issued from ρ0. Then

ρ0 /∈ suppµ⇐⇒ ρ1 /∈ suppµ.

But according to our assumption of weak geometric control, either a neighbourhood of p1

belongs to the set {b(p) ≥ c > 0} or p1 ∈ Σk and b(p) ≥ Cd(p,Σk)2κ near p1. In the first case
in a neighbourhood of ρ1 the essential inf of b is positive and hence by (2.8) ρ1 /∈ suppµ. In
the second case taking a small neighbourhood ω of p1 we write∫

ω
|ϕj(p)|2 dvg(p) =

∫
ω∩Nαh1/2

j

|ϕj(p)|2 dvg(p) +

∫
ω∩Nc

αh
1/2
j

|ϕj(p)|2 dvg(p) = (1) + (2).

By Theorem 1.1 and (2.9) we have

(1) ≤ Cακ(1 +
1

hj
‖gj‖L2(M)) ≤ Cακ(1 + o(h

κ
2
j ))

Using the assumption b(p) ≥ Cd(p,Σk) and (2.8) we get

(2) ≤ C

α2κhσj

∫
M
b(p)|ϕj(p)|2 dvg(p) ≤

C ′‖fj‖L2(M)

α2κh1+κ
j

=
o(1)

α2κ
.

It follows that ∫
ω
|ϕj(p)|2 dvg(p) ≤ Cακ +

o(1)

α2κ
.

Let ε > 0. We first fix α(ε) > 0 such that Cα(ε)σ ≤ 1
2ε then we take j0 large enough such

that for j ≥ j0, o(1) ≤ α(ε)2κ 1
2ε. It follows that for j ≥ j0 we have

∫
ω |ϕj |

2 dvg ≤ ε. This

shows that limj→+∞
∫
ω |ϕj |

2 dvg = 0 which implies that ρ1 /∈ suppµ thus ρ0 /∈ suppµ. Since
ρ0 is arbitrary we deduce that suppµ = ∅ which the desired contradiction.

The rest of the paper will be devoted to the proof of Theorem 1.1.

3. Concentration estimates (Proof of Theorem 1.1)

The Laplace-Beltrami operator −∆g with domain D = {u ∈ L2(M) : ∆gu ∈ L2(M)} has a
discrete spectrum which can be written

0 = λ2
0 < λ2

1 < · · · < λ2
j · · · → +∞.

Moreover we can write L2(M) = ⊕+∞
j=0Hj , where Hj is the subspace of eigenvectors associated

to the eigenvalue λ2
j and Hj ⊥ Hk if j 6= k, and for ϕ ∈ Hj , −∆gϕ = λ2

jϕ.

For λ ≥ 0 we define the spectral projector Πλ : L2(M)→ L2(M) by

(3.1) L2(M) 3 f =
∑
j∈N

ϕj , 7→ Πλf =
∑
j∈Λλ

ϕj , Λλ = {j ∈ N : λj ∈ [λ, λ+ 1)}.

Then Πλ is self adjoint and Π2
λ = Πλ.
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Theorem 1.1 will be a consequence of the following one. Recall Nαh1/2 has been defined in
(1.1).

Proposition 3.1. There exist C > 0, h0 > 0 such that for every h ≤ h0 and every α ∈ (0, 1)

(3.2) ‖Πλu‖L2(Nαh1/2 ) ≤ Cασ‖u‖L2(M), λ =
1

h
,

for every u ∈ L2(M), Here σ = 1 if k ≤ n− 3, σ = 1− if k = n− 2, σ = 1
2 if k = n− 1.

Here, as before, 1− means that we have an estimate by Cα| log(α)|.

3.1. Proof of Theorem 1.1 assuming Proposition 3.1. If ψ =
∑

j≥0 ϕj we have g =

(h2∆g + 1)ψ =
∑

j≥0(h2∆g + 1)ϕj . Therefore by orthogonality

(3.3) ‖g‖2L2(M) =
∑
j≥0

|1− h2λ2
j |2‖ϕj‖2L2(M).

Let ε0 be a fixed number in ]0, 1[. With N = [ε0λ] we write

ψ =
N∑

k=−N
Πλ+kψ +RN .

Recall that Πλ+kψ =
∑

j∈Ek ϕj , where Ek = {j ≥ 0 : λj ∈ [λ+ k, λ+ k + 1[}.

Assume |k| ≥ 2. Since λ + k ≤ λj < λ + k + 1 we have |λj − λ| ≥ 1
2 |k| which implies that

|λ2
j − λ2| ≥ 1

2 |k|λ. By orthogonality we have

‖Πλ+kψ‖2L2(M) =
∑
j∈Ek

‖ϕj‖2L2(M) =
∑
j∈Ek

1

|λ2
j − λ2|2

|λ2
j − λ2|2‖ϕj‖2L2(M)

≤ 4

|k|2λ2

∑
j∈Ek

|λ2
j − λ2|2‖ϕj‖2L2(M) ≤

4λ2

|k|2
∑
j∈Ek

|h2λ2
j − 1|2‖ϕj‖2L2(M).

Since Π2
λ+k = Πλ+k, using Proposition 3.1 and the above estimate we obtain

‖
∑

2≤|k|≤N

Πλ+kψ‖L2(Nαh1/2 ) ≤
∑

2≤|k|≤N

‖Πλ+kψ‖L2(Nαh1/2 ) ≤ Cασ
∑

2≤|k|≤N

‖Πλ+kψ‖L2(M)

≤ 2Cασλ
∑

2≤|k|≤N

1

|k|

( ∑
j∈Ek

|h2λ2
j − 1|2‖ϕj‖2L2(M)

) 1
2
.

Using Cauchy-Schwarz inequality, (3.3) and the fact that the Ek are pairwise disjoints we
obtain eventually

(3.4) ‖
∑

2≤|k|≤N

Πλ+kψ‖L2(Nαh1/2 ) ≤ Cασ
1

h
‖g‖L2(M).

Now a direct application of Proposition 3.1 shows that

(3.5) ‖
∑
|k|≤1

Πλ+kψ‖L2(Nαh1/2 ) ≤ Cασ‖ψ‖L2(M).
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Eventually let us consider the remainder RN . We have

RN =
∑
j∈A

ϕj +
∑
j∈B

ϕj , A = {j : λj ≤ λ−N}, B = {j : λj ≥ λ+N + 1}.

The two sums are estimated by the same way since in both cases we have |λj − λ| ≥ cλ thus
|λ2
j − λ2| ≥ cλ2. Then by orthogonality we write

‖
∑
j∈A

ϕj‖2L2(M) =
∑
j∈A
‖ϕj‖2L2(M) =

∑
j∈A

1

|λ2
j − λ2|2

|λ2
j − λ2|2‖ϕj‖2L2(M)

≤ C

λ4

∑
j∈A
|λ2
j − λ2|2‖ϕj‖2L2(M) ≤

∑
j∈N
|h2λ2

j − 1|2‖ϕj‖2L2(M) = ‖g‖2L2(M).

It follows that ‖RN‖L2(M) ≤ C‖g‖L2(M). Now (h2∆g + 1)RN =
∑

j∈A∪B(1 − h2λ2
j )ϕj =: gN

and ‖gN‖L2(M) ≤ ‖g‖L2(M). So using Lemma A.1 we obtain

(3.6) ‖RN‖L2(Nαh1/2 ) ≤ C
ασ

h
‖g‖L2(M)

where σ = 1
2 if k = n− 1, σ = 1 if 1 ≤ k ≤ n− 2..

Then Theorem 1.1 follows from (3.4), (3.5) and (3.6).

3.2. Proof of Proposition 3.1. This result will be a consequence of the following one.

Proposition 3.2. There exists χ ∈ S(R) such that χ(0) = 1 and there exist C > 0, h0 > 0
such that for every h ≤ h0,every α ∈ (0, 1), and every u ∈ L2(M) we have

(3.7) ‖χ(
√
−∆g − λ)u‖L2(Nαh1/2 ) ≤ Cασ‖u‖L2(M), λ =

1

h

where χ(
√
−∆g − λ)u =

∑
j∈N χ(λj − λ)ϕj if u =

∑
j∈N ϕj .

Proof of Proposition 3.1 assuming Proposition 3.2. There exists δ = 1
N > 0 and c > 0 such

that χ(t) ≥ c for every t ∈ [−δ, δ]. Now let E = {j ∈ N : λj ∈ [λ, λ + δ)} and set Πδ
λu =∑

j∈E ϕj . On E we have χ(λj − λ) ≥ c > 0 therefore we can write

1E(j) = χ(λj − λ)
1E(j)

χ(λj − λ)
.

It follows that
Πδ
λu = χ(

√
−∆g − λ) ◦Ru

where R is continuous from L2(M) to itself with norm bounded by 1
c . Therefore assuming

Proposition 3.2 we can write

(3.8) ‖Πδ
λu‖L2(Nαh1/2 ) ≤ Cασ‖Ru‖L2(M) ≤

C

c
ασ‖u‖L2(M).

where the constants in the right are independent of λ. Now since

{j : λj ∈ [λ, λ+ 1)} = ∪N−1
k=0 {j : λj ∈ [λ+ kδ, λ+ (k + 1)δ)}

where the union is disjoint, one can write Πλu =
∑N−1

k=0 Πδ
λ+kδ. It follows from (3.8) that

‖Πλu‖L2(Nαh1/2 ) ≤ C ′ασ‖u‖L2(M)

9



which proves Proposition 3.1. �

It remains to prove Proposition 3.2. Until the end of this section σ will be a real number such
that

σ = 1 if k ≤ n− 3, σ = 1− if k = n− 2, σ =
1

2
if k = n− 1.

As before for every p ∈ Σk one can find an open neighbourhood Up of p in M , a neighbourhood
B0 of the origin in Rn a diffeomorphism θ from Up to B0 such that

(3.9)
(i) θ(Up ∩ Σk) = {x = (xa, xb) ∈ (Rk ×Rn−k) ∩B0 : xb = 0},

(ii) θ(Up ∩Nαh1/2) ⊂ Bα,h =: {x ∈ B0 : |xb| ≤ αh
1
2 }.

Now Σk and Nαh1/2 for h small, are covered by a finite number of such open neighbourhoods
i.e. N

αh
1
2
⊂ ∪n0

j=1Upj . We take a partition of unity relative to this covering i.e. (ζj) ∈ C∞(M)

with supp ζj ∈ Upj and
∑n0

j=1 ζj = 1 in a fixed neighbourhood O of Σk containing Nαh1/2 . For
p ∈ O we can therefore write

(3.10) χ(
√
−∆g − λ)u(p) =

n0∑
j=1

χ(
√
−∆g − λ)(ζju)(p).

Our aim being to bound each term of the right hand side, we shall skip the index j in what
follows. Moreover we shall set for convenience

χλ =: χ(
√
−∆g − λ).

We shall use some results by Sogge (see also [15, Theorem 4]).

Theorem 3.3 ([38, Lemma 5.1.3]). There exists χ ∈ S(R) such that χ(0) = 1 and for any
p0 ∈ Σk there a diffeomorphism θ as above, open sets W ⊂ V = {x ∈ Rn : |x| ≤ ε0}, a
smooth function a : Wx × Vy ×R+

λ → C supported in the set

{(x, y) ∈W × V : |x| ≤ c0ε ≤ c1ε ≤ |y| ≤ c2ε� 1}
satisfying

∀α ∈ N2n,∃Cα > 0 : ∀λ ≥ 0, |∂αx,ya(x, y, λ)| ≤ Cα,
an operator Rλ : L2(M)→ L∞(M) satisfying

‖Rλu‖L∞(M) ≤ C‖u‖L2(M),

such that for every x ∈ U =: W ∩ {x : |x| ≤ cε}, setting ũ = ζu ◦ θ−1 we have

(3.11) χλ(ζu)(θ−1(x)) = λ
n−1
2

∫
y∈V

eiλψ(x,y)a(x, y, λ)ũ(y) dy + (Rλ(ζu))(θ−1(x))

where ψ(x, y) = −dg((θ−1(x)), (θ−1(y))) is the geodesic distance on M between θ−1(x) and
θ−1(y). Furthermore the symbol a is real non negative, does not vanish for |x| ≤ cε and
dg((θ

−1(x)), (θ−1(y))) ∈ [c3ε, c4ε].

Let us set

(3.12) Tλũ(x) =

∫
y∈V

eiλψ(x,y)a(x, y, λ)ũ(y) dy.

10



It follow from (3.11) that

(3.13) ‖χλ(ζu)‖L2(Nα,h) ≤ λ
n−1
2 ‖Tλũ‖L2(Bα,h) + ‖Rλ(ζu)‖L2(Nα,h)

Let us look to the contribution of Rλ. Since (see (3.9)) the volume of Nαh1/2 is bounded by

C(αh
1
2 )n−k we can write

‖Rλ(ζu)‖L2(Nαh1/2 ) ≤ C(αh
1
2 )

n−k
2 ‖Rλ(ζu)‖L∞(M) ≤ C(αh

1
2 )

n−k
2 ‖u‖L2(M).

If k = n− 1 we have α
n−k
2 = α

1
2 and if 1 ≤ k ≤ n− 2 we have α

n−k
2 ≤ α. Therefore we get

(3.14) ‖Rλ(ζu)‖L2(Nαh1/2 ) ≤ Cασ‖u‖L2(M).

According to (3.13) Proposition 3.2 will be a consequence of the following result.

Proposition 3.4. There exists positive constants C, λ0 such that

(3.15) λ
n−1
2 ‖Tλũ‖L2(Bα,h) ≤ Cασ‖u‖L2(M)

for every λ ≥ λ0 and every u ∈ L2(M).

Proof of Proposition 3.4. Set Sλ = TλT ∗λ and denote by 1B the indicator function of the set
Bα,h. By the usual trick (3.15) will be a consequence of the following estimate.

(3.16) ‖1BSλ1Bv‖L2(Rn) ≤ Chn−1α2σ‖v‖L2(Rn), h =
1

λ
.

Let Kλ(x, x′) be the kernel of Sλ. By (3.12) it is given by

(3.17) Kλ(x, x′) =

∫
eiλ[ψ(x,y)−ψ(x′,y)]a(x, y, λ)a(x′, y, λ) dy.

We shall decompose

(3.18)



Kλ = K1
λ +K2

λ,

K1
λ = 1{|x−x′|≤ 1

λ
}Kλ, K2

λ = 1{ 1
λ
<|x−x′|≤ε}Kλ,

Sλ =

2∑
j=1

Sjλ, Sjλũ(x) =

∫
Kjλ(x, x′)ũ(x′) dx′

and treat separately each piece.

3.3. Estimate of S1
λ. When |x − x′| ≤ 1

λ the kernel Kλ is uniformly bounded. Therefore

|K1
λ| ≤ C1{|x−x′|≤ 1

λ
}, so by Schur lemma we have

‖S1
λv‖L2(Rn) ≤ Chn‖v‖L2(Rn).

Therefore

(3.19) ‖1BS1
λ1Bv‖L2(Rn) ≤ Chhn−1‖v‖L2(Rn).

Now writing x = (xa, xb) ∈ Rk ×Rn−k, x′ = (x′a, x
′
b) ∈ Rk ×Rn−k, we have

‖S1
λv(·, xb)‖L2(Rk) ≤ C

∫
Rn−k

1{|xb−x′b|≤h}

∥∥∥∥∫
Rk

1{|xa−x′a|≤h}v(x′a, x
′
b) dx

′
a

∥∥∥∥
L2(Rk)

dx′b.
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Again by Schur lemma we get

‖S1
λv‖L∞(Rn−k,L2(Rk)) ≤ Chk‖v‖L1(Rn−k,L2(Rk)).

We deduce that

‖1BS1
λ1Bv‖L2(Rn) ≤ C(αh

1
2 )n−khk‖v‖L2(Rn).

This estimate can be rewritten as

(3.20) ‖1BS1
λ1Bv‖L2(Rn) ≤ Cα2σαn−k−2σh

n−k
2

+k‖v‖L2(Rn).

Now if h
1
2 ≤ α we use (3.19) and we obtain

‖1BS1
λ1Bv‖L2(Rn) ≤ Cα2hn−1‖v‖L2(Rn .

If α ≤ h
1
2 we use instead (3.20). Since n− k − 2σ ≥ 0 we can write

‖1BS1
λ1Bv‖L2(Rn) ≤ Cα2σh

1
2

(n−k−2σ)+ 1
2

(n−k)+k‖v‖L2(Rn) = Cα2σhn−σ‖v‖L2(Rn)

≤ Cα2σhn−1‖v‖L2(Rn).

Therefore in all cases we have

(3.21) ‖1BS1
λ1Bv‖L2(Rn) ≤ Cα2σhn−1‖v‖L2(Rn).

3.4. Estimate of S2
λ. To complete the proof of Proposition 3.1, the strategy is the following:

we first decompose the kernel K2
λ (and hence the operator TλT ∗λ ) into pieces corresponding

to |x− x′| ∼ 2j , j = 0, . . . , J = log(λ)/ log(2), and bound separately the contribution of each
piece. We then use quasi-orthogonality and rescalling arguments to reduce the analysis to
estimating operators with kernels of the type

eiµj ψ̃j(X,X
′)χ0(X −X ′)a(2−jX, 2−jX ′, λ),

where µj = λ2−j , χ0 ∈ C∞0 (Rn) is supported in a shell {1
2 ≤ |X| ≤ 2}, and ψ̃j are phases de-

pending nicely on j as a parameter (they are asymptotically close as j → +∞ to the euclidean
distance |X−X ′|). Finally, we can apply to these operators a version of a classical lemma (see
Theorem A.2) allowing to bound the operator norm of such operators with oscillatory kernels,
assuming a lower bound on the rank of the differential of the phase (see Theorem A.4).

Our starting point is the description of the kernel K given in [15].

Lemma 3.5 ([15] Lemma 6.1). There exists ε � 1, (a±p , bp)p∈N ∈ C∞(Rn ×Rn ×R) such

that for |x− x′| & λ−1 and any N ∈ N∗ we have

(3.22) Kλ(x, x′) =
∑
±

N−1∑
p=0

e±iλψ̃(x,x′)

(λ|x− x′|)
n−1
2

+p
a±p (x, x′, λ) + bN (x, x′, λ),

where ψ̃(x, x′) is the geodesic distance between the points θ−1(x) and θ−1(x′). Moreover a±p
are real, have supports of size O(ε) with respect to the two first variables and are uniformly
bounded with respect to λ. Finally

|bN (x, x′, λ)| ≤ CN (λ|x− x′|)−( d−1
2

+N).
12



Recall that Kλ is the kernel of TλT ∗λ , and notice that the description of the kernel of Tλ
given in [38, Lemma 5.1.3] which was of course an important point for the analysis in [15]
would not be sufficient for our purpose, as we shall perform later yet another TT ∗ argument
(one never has enough of a good thing), using the partial non-degeneracy of the phase below
(see Theorem A.2). In particular, in the stationary phase argument leading to (3.22), the

identification of the critical points (and hence the two critical values of the phase, ±ψ̃(x, x′)
is of crucial importance for our analysis below.

We cut the set 1
λ ≤ |x− x

′| ≤ ε into pieces

|x− x′| ∼ 2−j ,
1

λ
≤ 2−j ≤ ε

and we estimate the contribution of each term. According to Lemma 3.5 we are lead to work
with the operator

Ajv(x) =

∫
kj(x, x

′, λ)v(x′) dx′

where

(3.23) kj(x, x
′, λ) = (λ2−j)−

n−1
2 χ0(2j(x− x′))eiλψ̃(x,x′)

N−1∑
p=0

λ−pap(x, x
′, λ).

Now there exists χ ∈ C∞(Rn) such that suppχ ⊂ {x : |x| ≤ 1}, χ(x) = 1 if |x| ≤ 1
2 and∑

p∈Zn
χ(x− p) = 1, ∀x ∈ Rn.

We now write

(3.24)

kj(x, x
′, λ) =

∑
p,q∈Zn

kjpq(x, x
′, λ)

kjpq(x, x
′, λ) = χ(2jx− p)kj(x, x′, λ)χ(2jx′ − q)

and we denote by Ajpq the operator with kernel kjpq.

Notice that the sum appearing in (3.24) is to be taken only for |p− q| ≤ 2.

We claim that by quasi orthogonality in L2 we have

(3.25) ‖1BAj1B‖L2(Rn)→L2(Rn) ≤ C sup
|p−q|≤2

‖1BAjpq1B‖L2(Rn)→L2(Rn).

Indeed let us forget 1B which plays any role. We have

‖Ajv‖L2(Rn) =
∑
|p−q|≤2

∑
|p′−q′|≤2

∫
Ajpq[χ̃(2j · −q)v](x)Ajp′q′ [χ̃(2j · −q′)v](x) dx

where χ̃ ∈ C∞0 (Rn), χ̃ = 1 on the support of χ and
∑

p∈Zn [χ̃(x− p)]2 ≤M,∀x ∈ Rn. Due to

the presence of χ(2jx− p), χ(2jx− p′) and χ0(2j(x− x′) inside the above integral one must
also have |p − p′| ≤ 2 in the sum. Therefore we are summing on the set E = {(p, q, p′, q′) :
|p− q| ≤ 2, |p− p′| ≤ 2, |p′ − q′| ≤ 2}. We have

E ⊂ E1 = {(p, q, p′, q′) : |p− q| ≤ 2, |p′ − q| ≤ 4, |q′ − q| ≤ 6},
E ⊂ E2 = {(p, q, p′, q′) : |p′ − q′| ≤ 2, |p− q′| ≤ 4, |q − q′| ≤ 6}.
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It follows from the Cauchy-Schwarz inequality that ‖Ajv‖L2(Rn) can be bounded by(∑
E1

‖Ajpq‖2L2→L2‖χ̃(2j · −q)v‖2L2(Rn)

) 1
2
(∑
E2

‖Ajp′q′‖2L2→L2‖χ̃(2j · −q′)v‖2L2(Rn)

) 1
2

and therefore by the choice of χ̃ by C sup|p−q|≤2 ‖Ajpq‖2L2(Rn)→L2(Rn)‖v‖
2
L2(Rn) which proves

our claim.

Now let us consider the operator Qjpq defined by

(3.26)
Qjpqv(X) =

∫
Rn

σjpq(X,X
′, λ)v(X ′) dX ′

σjpq(X,X
′, λ) = χ(X − p)kj(2−jX, 2−jX ′, λ)χ(X ′ − q).

Then by the change of variables (x = 2−jX,x′ = 2−jX ′) we can see easily that

‖12jBQjpq12jBv‖L2(Rn) ≤ Kj‖v‖L2(Rn) implies(3.27)

‖1BAjpq1Bv‖L2(Rn) ≤ 2−jnKj‖v‖L2(Rn).(3.28)

Setting

(3.29) µj = λ2−j , ψ̃j(X,X
′) = 2jψ̃(2−jX, 2−jX ′),

we deduce from (3.23) and (3.26) we have

(3.30)

σjpq(X,X
′, λ) = µ

−n−1
2

j eiµj ψ̃j(X,X
′)χ(X − p)χ(X − q)χ0(X −X ′)

·
N−1∑
p=0

λ−pap(2
−jX, 2−jX ′, λ).

We shall derive two estimates of the left hand side of (3.27). On one hand using Theorem
A.4 with p = k − 1 we can write,

‖12jBQjpq12jBv‖L2(Rn) ≤ C(αh
1
2 2j)

n−k
2 ‖Qjpq12jBv‖L∞(Rn−k

xb
×Rxa1 ,L

2(Rk−1

x′a
)),

≤ Cµ−
n−1
2

j (αh
1
2 2j)

n−k
2 µ

− k−1
2

j ‖12jBv‖L1(Rn−k
xb
×Rxa1 ,L

2(Rk−1

x′a
)),

≤ Cµ−
n−1
2

j (αh
1
2 2j)n−kµ

− k−1
2

j ‖v‖L2(Rn).

We deduce from (3.28) and (3.25) that

(3.31) ‖1BAj1Bv‖L2(Rn) ≤ Chn−1αn−k2j(
n−k
2
−1)‖v‖L2(Rn).

On the other hand using Theorem A.2 with p = n− 1 we can write

‖12jBQjpq12jBv‖L2(Rn) ≤ ‖Qjpq12jBv‖L2(Rn) ≤ Cµ
−n−1

2
j µ

−n−1
2

j ‖v‖L2(Rn),

from which we deduce using (3.28) and (3.25) that

(3.32) ‖1BAj1Bv‖L2(Rn) ≤ C2−jn(2jh)n−1 ≤ Chn−12−j .
14



Recall that we have S2
λ =

∑
j∈E Aj where E = {j : 1

ε ≤ 2j ≤ λ}. Then we write

(3.33)

1BS
2
λ1Bv =

∑
j∈E1

1BAj1Bv +
∑
j∈E2

1BAj1Bv = (1) + (2), where

E1 = {j :
1

ε
≤ 2j ≤ α−2}, E2 = {j : α−2 ≤ 2j ≤ λ}.

To estimate the term (1) we use (3.31). We obtain

‖(1)‖L2(Rn) ≤ Chn−1αn−k
∑
j∈E1

2j(
n−k
2
−1)‖v‖L2(Rn).

Then we have three cases.

If n−k
2 − 1 > 0 that is if k ≤ n− 3 then

‖(1)‖L2(Rn) ≤ Chn−1αn−k
( 1

α2

)n−k
2
−1
‖v‖L2(Rn) ≤ Chn−1α2‖v‖L2(Rn).

If n−k
2 − 1 = 0 that is if k = n− 2 then

‖(1)‖L2(Rn) ≤ Chn−1α2 log(α−1)‖v‖L2(Rn).

If k = n− 1 then

‖(1)‖L2(Rn) ≤ Chn−1α
∞∑
j=0

2−j‖v‖L2(Rn) ≤ Chn−1α‖v‖L2(Rn).

To estimate the term (2) we use (3.32). We obtain

‖(2)‖L2(Rn) ≤ Chn−1α2‖v‖L2(Rn).

Using these estimates and (3.33) we deduce

(3.34) ‖1BS2
λ1Bv‖L2(Rn) ≤ Cα2σhn−1‖v‖L2(Rn)

where σ = 1 if k ≤ n− 3, σ = 1− if k = n− 2, σ = 1
2 if k = n− 1. �

Gathering the estimates proved in (3.21) and (3.34) we obtain (3.16) which proves Proposition
3.4 and therefore Proposition 3.1. The proof of Theorem 1.1 is complete.

Appendix A. Some technical results

A.1. A lemma.

Lemma A.1. Let w ∈ C∞(M) be a solution of the equation (h2∆g + 1)w = F Then

‖w‖L2(Nαh1/2 ) ≤ C
αγ

h

(
‖F‖L2(M) + ‖w‖L2(M)

)
where γ = 1

2 if k = n− 1, γ = 1 if 1 ≤ k ≤ n− 2.
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Proof. Setting ‖∇gw‖L2(M) =
( ∫

M gp
(
∇gw(p),∇gw(p)

)
dvg(p)

) 1
2

we deduce from Lemma 2.1

and from the equation that

(A.1)
h‖∇gw‖L2(M) ≤ C

(
‖F‖L2(M) + ‖w‖L2(M)

)
,

h2‖∆gw‖L2(M) ≤ ‖F‖L2(M) + ‖w‖L2(M).

Now setting w̃j = (ζjw) ◦ θ−1 (see (3.10)), we have

(A.2) ‖w‖L2(Nαh1/2 ) ≤
n0∑
j=1

‖ζjw‖L2(Nαh1/2 ) ≤ C
n0∑
j=1

‖w̃j‖L2(Bα,h).

For fixed j ∈ {1, . . . , n0} we deduce from (A.1) that

(A.3) h‖w̃j‖H1(Bα,h) + h2‖w̃j‖H2(Bα,h) ≤ C
(
‖F‖L2(M) + ‖w‖L2(M)

)
,

from which we deduce that for ε > 0 small

(A.4) h1+ε‖w̃j‖H1+ε(Bα,h) ≤ C
(
‖F‖L2(M) + ‖w‖L2(M)

)
.

Using the Sobolev embeddings H1(R) ⊂ L∞(R) and H1+ε(R2) ⊂ L∞(R2), the fact that

Bα,h ⊂ {x = (xa, xb) ∈ Rk ×Rn−k : |xb| ≤ αh
1
2 } and (A.3), (A.4) we obtain

‖w̃j‖L2(Bα,h) ≤ (αh
1
2 )

1
2 ‖w̃j‖H1(Bα,h) ≤ C

α
1
2

h

(
‖F‖L2(M) + ‖w‖L2(M)

)
, if k = n− 1,

‖w̃j‖L2(Bα,h) ≤ αh
1
2 ‖w̃j‖H1+ε(Bα,h) ≤ C

α

h

(
‖F‖L2(M) + ‖w‖L2(M)

)
, if k ≤ n− 2.

Lemma A.1 follows then from (A.2). �

A.2. Stein’s lemma. In this section we prove a version of Stein Lemma [43, Chap 9, Propo-
sition 1.1]. For λ > 0 we consider the operator

(A.5) T λu(Ξ) =

∫
Rn

eiλφ(X,Ξ)a(X,Ξ, λ)u(X) dX

where φ : Rn ×Rn → R is a smooth real valued phase and a a smooth symbol.

We shall make the following assumptions.

(H1) there exists a compact K ⊂ Rn ×Rn such that suppX,Ξ a ⊂ K, ∀λ > 0,

(H2) rank
( ∂2φ

∂Xi∂Ξj
(X,Ξ)

)
1≤i,j≤n

≥ p ∈ {1, . . . , n}, ∀(X,Ξ) ∈ K.

Our purpose is to prove the following result.

Theorem A.2. Under the hypotheses (H1) and (H2) there exists C > 0 such that

‖T λu‖L2(Rn) ≤ Cλ−
p
2 ‖u‖L2(Rn)

for every λ > 0 and all u ∈ L2(Rn).

Remark A.3. We shall actually apply Theorem A.2 for a family of phases φj and symbols
aj converging in C∞ topology to a fixed phase φ and symbol a and use that in such case the
estimates are uniform with respect to the parameter j, which will be a consequence of the
proof given below.
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Below we shall prove a slightly stronger result.

First of all by the hypothesis (H1), using partitions of unity, we may assume without loss of
generality that with a small ε > 0

suppX,Ξ a ⊂ Vρ0 = {(X,Ξ) ∈ Rn ×Rn : |X −X0|+ |Ξ− Ξ0| ≤ ε}, ρ0 = (X0,Ξ0).

Moreover changing if necessary the orders of the variables we may assume that near ρ0

X = (x, y) ∈ Rp ×Rn−p, Ξ = (ξ, η) ∈ Rp ×Rn−p

and for all (X,Ξ) ∈ Vρ0 the p× p-matrix

(A.6) Mp(X,Ξ) =
( ∂2φ

∂xi∂ξj
(X,Ξ)

)
1≤i,j≤p

is invertible with ‖Mp(X,Ξ)−1‖ ≤ c0.

Then we have

Theorem A.4. There exists a positive constant C such that for every λ > 0 we have

‖T λu‖L∞(Rn−p
η ,L2(Rp

ξ)) ≤ Cλ
− p

2 ‖u‖L1(Rn−p
y ,L2(Rp

x))

for all u ∈ L1(Rn−p
y , L2(Rp

x)).

Theorem A.2 follows from Theorem A.4 using (H1) and Hölder inequality.

Proof of Theorem A.4. Let us set for (y, η) ∈ Rn−p ×Rn−p

φ(y,η)(x, ξ) = φ(x, y, ξ, η), a(y,η)(x, ξ) = a(x, y, ξ, η), uy(x) = u(x, y),(A.7)

T λ(y,η)uy(ξ) =

∫
Rp

eiλφ(y,η)(x,ξ)a(y,η)(x, ξ)uy(x) dx.(A.8)

Then we have

(A.9) T λu(Ξ) =

∫
Rn−p

T λ(y,η)uy(ξ) dy.

We claim that there exists C > 0 such that for every (y, η) ∈ V(y0,η0) we have

(A.10) ‖T λ(y,η)uy‖L2(Rp
ξ) ≤ Cλ−

p
2 ‖uy‖L2(Rp

x) ∀λ > 0.

Assuming for a moment that (A.10) is proved we obtain

‖T λu(·, η)‖L2(Rp
ξ) ≤

∫
Rn−p

‖T λ(y,η)uy‖L2(Rn
ξ ) dy ≤ Cλ−

p
2

∫
Rn−p

‖u(·, y)‖L2(Rp
x) dy

which implies immediately the conclusion of Theorem A.2.

The claim (A.10) follows immediately from the proof of the Proposition in [43, Chapter IX,
Section 1.1, p. 377–379]. However, for the convenience of the reader, we shall give it here.

For simplicity we shall skip the subscript (y, η), keeping in mind the uniformity, with respect
to (y, η) ∈ V(y0,η0), of the constants in the estimates. Therefore we set

Sλ = T λ(y,η), φ(y,η) = ψ, b = a(y,η).
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It follows from (A.6) that the matrix

N(x, ξ) =
( ∂2ψ

∂xi∂ξj
(x, ξ)

)
1≤i,j≤p

is invertible and ‖N(x, ξ)−1‖ ≤ c0 where c0 is independent of (y, η). Now by the usual trick
the estimate (A.10) is satisfied if and only if we have

(A.11) ‖SλS∗λf‖L2(Rp) ≤ Cλ−p‖f‖L2(Rp)

with C independent of (y, η). It is easy to see that

(A.12) SλS
∗
λf(ξ) =

∫
Rp

K(ξ, ξ′)f(ξ′) dξ′

with

K(ξ, ξ′) =

∫
Rk

eiλ(ψ(x,ξ)−ψ(x,ξ′))b(x, ξ)b(x, ξ′) dx.

Let us set

c(x, ξ, ξ′) = N(x, ξ)−1 ξ − ξ′

|ξ − ξ′|
.

Then we can write

(A.13) c(x, ξ, ξ′) · ∇xeiλ(ψ(x,ξ)−ψ(x,ξ′)) = eiλ(ψ(x,ξ)−ψ(x,ξ′))iλ∆(x, ξ, ξ′)

where

∆(x, ξ, ξ′) =

k∑
j=1

cj(x, ξ, ξ
′)
( ∂ψ
∂xj

(x, ξ)− ∂ψ

∂xj
(x, ξ′)

)
,

=

k∑
j,l=1

cj(x, ξ, ξ
′)
( ∂2ψ

∂xj∂ξl
(x, ξ)(ξl − ξ′l) +O(|ξ − ξ′|2

)
,

= 〈N(x, ξ)c(x, ξ, ξ′), ξ − ξ′〉+O(|ξ − ξ′|2) = |ξ − ξ′|+O(|ξ − ξ′|2),

where O(|ξ − ξ′|2) is independent of (y, η). Since b has small support in ξ we deduce that

(A.14) ∆(x, ξ, ξ′) ≥ C|ξ − ξ′|.
Moreover since the derivatives with respect to x of N(x, ξ)−1 are products of N(x, ξ)−1 and
derivatives of N(x, ξ), we see that all the derivatives with respect to x of ∆(x, ξ, ξ′) are
uniformly bounded in (y, η) near (y0, η0). Let us set

L =
1

iλ∆(x, ξ, ξ′)
c(x, ξ, ξ′) · ∇x.

It follows from (1.4) and the fact that b has compact support in x that for every N ∈ N we
can write

K(ξ, ξ′) =

∫
Rp

eiλ(ψ(x,ξ)−ψ(x,ξ′))
(t
L)N [b(x, ξ)b(x, ξ′)] dx.

We deduce from (A.14) that for every N ∈ N there exists CN > 0 independent of (y, η) such
that

|K(ξ, ξ′)| ≤ CN
(1 + λ|ξ − ξ′|)N

.

Taking N > p we deduce from (A.12) and Schur lemma that (A.11) holds with a constant C
independent of (y, η). This completes the proof. �
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Lemma A.5. Let d ≥ 1, δ ∈ R and ϕ0(x, x′) =
(∑d

j=1(xj − x′j)
2 + δ2

) 1
2 . Let M =(

∂2ϕ0

∂xj∂x′k
(x, x′)

)
1≤j,k≤d

. Then

(i) if δ 6= 0 M has rank d for all x, x′ ∈ Rd,

(ii) if δ = 0 M has rank d− 1 for x 6= x′.

Proof. (i) A simple computation shows that

M = ϕ0(x, x′)−1(−δjk + ωjωk), ωj =
xj − x′j
ϕ0(x, x′)

where δjk is the Kronecker symbol. For λ ∈ R consider the polynomial in λ

F (λ) = det
(
− δjk + λωjωk

)
1≤j,k≤d

We have obviously F (0) = (−1)d. Now denote by Cj(λ) the jth column of this determinant.
Then

F ′(λ) =
d∑

k=1

det
(
C1(λ), . . . , C ′k(λ), . . . Cd(λ)

)
.

Since det
(
C1(0), . . . , C ′k(0), . . . Cd(0)

)
= (−1)d−1ω2

j we obtain F ′(0) = (−1)d−1
∑d

j=1 ω
2
j . Now

Cj(λ) being linear with respect to λ we have C ′′j (λ) = 0. Therefore

F ′′(λ) =

d∑
j=1

d∑
k=1,k 6=j

det
(
C1(λ), . . . , C ′j(λ), . . . , C ′k(λ), . . . , Cd(λ)

)
.

Since C ′j(λ) = ωj(ω1, . . . , ωd) and C ′k(λ) = ωk(ω1, . . . , ωd) we have F ′′(λ) = 0 for all λ ∈ R.

It follows that F (λ) = (−1)d(1− λ
∑d

j=1 ω
2
j ). Therefore

detM = (−1)d(1−
d∑
j=1

ω2
j ) = (−1)d

δ2

ϕ0(x, x′)2
6= 0.

(ii) Since x− x′ 6= 0 we may assume without loss of generality that ωd 6= 0. Set

A =
(
− δjk + ωjωk

)
1≤j,k≤d−1

.

Introducing G(λ) = det
(
− δjk + λωjωk

)
1≤j,k≤d−1

the same computation as above shows that

det A = (−1)d−1(1−
d−1∑
j=1

ω2
j ) = (−1)d−1ω2

d 6= 0.

�
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Orsay Cedex

E-mail address: claude.zuily@math.u-psud.fr

21


	1. Notations and main results
	2. From concentration estimates to stabilization results
	2.1. A priori estimates
	2.2. Proof of Corollary 1.3 assuming Theorem 1.1
	2.3. Proof of Theorem 1.4 assuming Corollary 1.3
	2.4. Proof of Theorem 1.6 assuming Theorem 1.1

	3. Concentration estimates (Proof of Theorem 1.1)
	3.1. Proof of Theorem 1.1 assuming Proposition 3.1.
	3.2. Proof of Proposition 3.1
	3.3. Estimate of S1
	3.4. Estimate of S2

	Appendix A. Some technical results
	A.1. A lemma
	A.2. Stein's lemma

	References

