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Abstract. — We study nonlinear Schrödinger equations, posed on a three dimen-
sional Riemannian manifold M . We prove global existence of strong H1 solutions on
M = S3 and M = S2×S1 as far as the nonlinearity is defocusing and sub-quintic and
thus we extend the results of Ginibre-Velo [13] and Bourgain [1] who treated the cases
of the Euclidean space R3 and the flat torus T3 respectively. The main ingredient in
our argument is a new set of multilinear estimates for spherical harmonics.

1. Introduction

Let (M, g) be a compact smooth boundaryless Riemannian manifold of dimension
d ≥ 2. Denote by ∆ the Laplace operator associated to the metric g. In the
case d = 2, we discovered in [8] a bilinear generalization of the well-known Sogge
estimates [22, 23, 24] for Lp (p ≥ 2) norms of L2 normalized eigenfunctions of
∆. These bilinear estimates play a central role in the analysis of [8] concerning the
nonlinear Schrödinger equation (NLS) posed on M . The goal of this paper is to
generalize our bilinear estimate of [8] to all higher dimensions and to deduce new
results regarding the global existence of solutions for NLS when d = 3.

We consider thus the Cauchy problem for NLS

(1.1) iut + ∆u = F (u), u|t=0 = u0 .
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In (1.1), u is a complex valued function on M . The nonlinear interaction F satisfies
F (0) = 0 and is supposed of the form F = ∂V

∂z̄ with V ∈ C∞(C ; R) satisfying

(1.2) V (eiθz) = V (z), θ ∈ R, z ∈ C,

and, for some α > 1,

|∂k1
z ∂k2

z̄ V (z)| ≤ Ck1,k2(1 + |z|)1+α−k1−k2 .

The number α involved in the second condition on V corresponds to the “degree” of
the nonlinearity F (u) in (1.1). Under these assumptions on F , NLS can be seen as
a Hamiltonian equation in an infinite dimensional phase space. It follows from that
Hamiltonian structure that smooth solutions of (1.1) enjoy the conservation laws

(1.3) ‖u(t, ·)‖L2 = ‖u0‖L2 , E(u(t)) = E(u0),

where the energy functional E reads as follows,

(1.4) E(u) =
∫

M
|∇gu|2 dx+

∫
M
V (u) dx .

In view of (1.3) and (1.4), the local well-posedness of (1.1) in H1(M) (with time
existence depending upon the H1 norm) is of particular importance. If for example
V ≥ 0 and (d − 2)α ≤ d + 2, (1.3) provides an H1 a priori bound and thus the
local well-posedness of (1.1) in H1 implies the global well-posedness in H1. Let us
notice, on the other hand, that the local well-posedness of (1.1) in Hs, s > d/2 can
be obtained by the classical energy method (see [21]). If M is two dimensional, the
well-posedness of (1.1) in H1(M) is established in [5]. In this case, the issue is to
get an improvement of ε derivatives with respect to the energy method. In [5], this
ε gain is achieved by a Strichartz type inequality (with derivative loss). Therefore,
for d = 2, the H1 well-posedness theory for (1.1) is completed. Moreover, in the
recent paper [8], we establish a sharp Hs theory in the case M = S2, as far as cubic
nonlinearities are concerned.

In three dimensions, the H1 theory for (1.1) becomes much harder. In the case
d = 3, the Strichartz type inequalities established in [5] yield the local well-posedness
of (1.1) in Hs, s > 1, as far as α ≤ 3. Notice that this is already a significant
improvement with respect to the energy approach. Unfortunately, it barely misses
the crucial H1 regularity. However, in [5], we succeeded in using the conservation
laws (1.3) in order to get globalHs, s > 1 strong solutions. By “strongHs solutions”,
we mean the existence, the uniqueness, the propagation of regularity and the uniform
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continuous dependence in bounded subsets of initial data in Hs. Moreover, the
methods of [5] also yield uniqueness of H1 weak solutions.

On the other hand, if M is the torus T3 and α < 5, the global existence of H1

strong solutions of (1.1) was established by Bourgain [1]. The approach in [1] is
based on an ingenious use of multiple Fourier series and thus relies deeply on the
particular structure of the torus. In this paper, we will prove the counterpart of this
result of Bourgain to the cases of the sphere S3 and the product manifold S2

ρ × S1,
where Sd

ρ , d ≥ 1 is the embedded sphere of radius ρ in Rd+1.

Theorem 1. — Let M = S3 or M = S2
ρ × S1 endowed with the standard metrics.

Suppose that α < 5 and V (z) ≥ −C(1 + |z|)β, β < 10/3. Then there exists a space
X continuously embedded in C(R ; H1(M)) such that for every u0 ∈ H1(M) there
exists a unique global solution u ∈ X of the Cauchy problem (1.1). Moreover

1. For every T > 0, the map u0 7→ u ∈ C([−T, T ] ; H1(M)) is Lipschitz continu-
ous on bounded sets of H1(M).

2. If u0 ∈ Hσ(M), σ ≥ 1, then for every t ∈ R, u(t) ∈ Hσ(M).

Let us make some comments about this result. The condition

V (z) ≥ −C(1 + |z|)β, β < 10/3

is classically (see e.g. Cazenave [10]) imposed to ensure that the energy controls the
H1(M) norm (defocusing case).

The space X will be defined in section 3 as a local version of Bourgain space X1,b.
It is used to ensure the uniqueness of solutions. However, observe that if σ > 3/2,
then the uniqueness holds in the class C(R ; Hσ(M)). In particular, our theorem
implies that for any smooth data u0, there exists a unique global smooth solution.

In the appendix of this paper, we show that Theorem 1 can not hold for α > 5.
The proof is based on an adaptation of an argument of a recent paper of Christ-
Colliander-Tao [11] to the setting of compact Riemannian manifolds. The critical
case α = 5 is still open.

Let us recall that the result of Theorem 1 was known if we replace M with
the Euclidean space R3 (see Ginibre-Velo [13] and Kato [17]). To get the H1(R3)
well-posedness of (1.1), for α < 5, it is sufficient to apply the Picard iteration
scheme to the Duhamel formulation of f (1.1) in the space L2

TW
1,6(R3)∩L∞T H1(R3),

where T depends only on ‖u0‖H1 . The approach on R3 breaks down in the case
of a compact manifold since the corresponding Strichartz type estimates have to
encounter some unavoidable derivative losses (see [1, 5, 6]). In order to deal with
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such losses, bilinear improvements of the Strichartz inequalities are very useful (see
e.g. [1, 18, 19, 28, 8]). This is the approach that we will adopt in the proof of
Theorem 1 when M = S3. The proof in the case M = S2

ρ×S1 is more intricate. The
bilinear Strichartz estimates that we are able to prove in the case M = S2

ρ × S1 are
considerably weaker compared to the corresponding estimates forM = S3. However,
they are sufficient to treat the case α ≤ 4. The crucial new point involved in the
analysis on S2

ρ × S1 is that we can prove a trilinear improvement of the Strichartz
estimate which enables one to treat the case α = 5 for data in Hs(S2

ρ × S1), s > 1.
A suitable interpolation (in the framework of a Littlewood-Paley analysis) between
the bilinear and the trilinear approach finally completes the argument in the case
M = S2

ρ × S1.
The results of Ginibre-Velo [13] on R3, of Bourgain [1] on T3 (and more recently

on the irrational three dimensional torus [4]), and Theorem 1 were obtained for
seemingly different reasons in each case. For the torus the eigenfunctions enjoy very
good algebraic properties and Lp bounds whereas the spectrum is “badly” localized.
On the other hand for the sphere S3, the eigenfunctions present “bad” concentration
properties but the spectrum is very well localized, and the manifold S2 × S1 has
an intermediate behavior. The balance between these properties (concentration of
eigenfunctions and repartition of the spectrum) leads to the suggestion that a similar
result might hold for any three dimensional manifold. The proof of this conjecture
would necessitate a general analysis of the Schrödinger group, unifying these different
approaches, which seems to be out of reach at the present moment.

The H1 theory for (1.1) in dimensions d ≥ 4 remains an open problem. The
only known result in this direction is that of Bourgain [2] who gets global Hs(T4)
solutions, if α ≤ 2, s > 1.

It seems that the obstructions to extending our approach to high dimensions are
not only of technical nature since in [6] we have shown that for no α ∈]1, 2] (even
very close to 1), the Cauchy problem (1.1), posed on S6 can have strong H1 solutions
in the sense explained above. Interestingly, the result of [6] is in strong contrast with
the situation on R6 (see [7]).

We now turn to the crucial step in the proof of Theorem 1. To that purpose, we
introduce the following notation : given ν ≥ 1, we set

Λ(d, ν) :=


ν

1
4 if d = 2

ν
1
2 log1/2(ν) if d = 3

ν
d−2
2 if d ≥ 4.
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With this notation, we have the following multilinear eigenfunction estimates.

Theorem 2. — There exists C > 0 such that, if Hp and Hq are two spherical
harmonics of respective degrees p and q,

(1.5) ‖HpHq‖L2(Sd) ≤ CΛ(d,min(p, q) + 1)‖Hp‖L2(Sd)‖Hq‖L2(Sd) .

Moreover for any p ≥ q ≥ r ≥ 0, the following trilinear estimates hold

(1.6) ‖HpHqHr‖L2(S2) ≤ C[(1 + q)(1 + r)]
1
4 ‖Hp‖L2(S2)‖Hq‖L2(S2)‖Hr‖L2(S2) .

Estimates (1.5) and (1.6) are sharp, apart from the logarithmic loss in (1.5) for
d = 3.

Remark 1.1. — As an easy consequence of (1.5), one can prove the corresponding
estimate to (1.6), for d ≥ 3,

(1.7) ‖HpHqHr‖L2(Sd) ≤ CΛ(d, q + 1)(1 + r)
d−1
2 ‖Hp‖L2(Sd)‖Hq‖L2(Sd)‖Hr‖L2(Sd) .

Indeed it suffices to use that the L∞(Sd) norm of Hr is bounded by (1+ r)
d−1
2 (Weyl

bound) and (1.5) for the product HpHq.
In view of further possible developments, we will also prove in section 2 that for

every η ∈]0, 1] there exists Cη such that

(1.8) ‖HpHqHr‖L2(S3) ≤ Cη(1 + q)
1
2
+η(1 + r)1−η‖Hp‖L2(S3)‖Hq‖L2(S3)‖Hr‖L2(S3) .

In fact, we deduce Theorem 2 as a consequence of a more general statement
concerning the approximated spectral projectors χ(

√
−∆ − λ), λ � 1, χ ∈ S(R),

where ∆ is the Laplace operator on an arbitrary compact Riemannian manifold
(M, g) (see Theorem 3 below).

Notice that when p = q = r, apart from the log loss in 3d, we recover some
particular case of the Lp−L2 linear estimates of Sogge [22, 23, 24]. In the proof of
Theorem 1, we typically apply Theorem 2 for p� q and thus estimates (1.5), (1.6)
are used in their full strength.

In the case d = 2, estimate (1.5) has already appeared in our previous paper
[8]. In [8], the proof is inspired by Hörmander’s work [16] on Carleson-Sjölin type
operators. The proof we present here is different even for d = 2 and relies on a
“bilinearization” of the arguments in [22, 23, 24]. After several preliminaries, we
reduce the matters to two micro-local linear estimates of quite a different nature.
The first one is applied to the higher frequency eigenfunction and is in the spirit
of the L2 boundedness of spectral projectors. The second one is applied to the
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smaller frequency eigenfunctions and relies on a dispersive (curvature) effect. As
far as the optimality of (1.5), (1.6) is concerned, we notice that it is achieved either
by testing the estimates against eigenfunctions concentrating on an equator or by
testing against zonal eigenfunctions concentrating on a point.

Let us mention that estimates (1.5), (1.6) and a sketch of the proof of (1.5)
appeared in [9].

The rest of this paper is organized as follows. In section 2 we prove Theorem 2. In
section 3 we set up the framework of Bourgain’s spaces and reduce the proof of The-
orem 1 to the obtention of nonlinear estimates in this framework. Section 4 consists
in two parts. First we prove bilinear Strichartz estimates for the linear Schrödinger
group on S3. Then we show that Theorem 1 holds for any three dimensional mani-
fold on which these estimates are true. Section 5 also consists in two parts. First we
prove trilinear Strichartz estimates for the linear Schrödinger group on the product
manifold S2

ρ ×S1 and then we show that Theorem 1 holds for any three dimensional
manifold on which these estimates are true. An appendix is devoted to the proof of
the optimality of the quintic threshold.

Acknowledgements. We are grateful to J. Bourgain for sending us his manu-
script [4] and H. Koch and D. Tataru for interesting discussions about spectral
projectors.

2. Multilinear eigenfunction estimates

In this section we prove Theorem 2, and more generally the corresponding result
for spectral projectors on arbitrary compact manifolds.

2.1. On the optimality of the estimates. — We first consider the optimality
of (1.5) in the case d = 2, 3. Let us see Sd as a hypersurface in Rd+1, i.e.

Sd = {(x1, . . . , xd+1) ∈ Rd+1 : x2
1 + · · ·+ x2

d+1 = 1} .

Let us define the highest weight spherical harmonics Rp = (x1 + ix2)p which con-
centrate, for p � 1, on the closed geodesic (a big circle) x2

1 + x2
2 = 1. An easy

computation shows that

‖Rp‖L2(Sd) ≈ p−
d−1
4 , p� 1.
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Clearly RpRq = Rp+q and therefore there exist constants C, C̃ such that for every
(p, q),

‖RpRq‖L2(Sd) ≥ C(p+ q)−
d−1
4 ≥ C̃(min(p, q))

d−1
4 ‖Rp‖L2(Sd)‖Rq‖L2(Sd) .

Therefore, for d = 2, 3, estimate (1.5) turns out to be optimal, modulo the logarith-
mic loss in 3d. In the same way, since RpRqRr = Rp+q+r, estimate (1.6) is optimal
by testing it on Rp, Rq and Rr.

Let us now consider the case d ≥ 4. In this case the optimality of (1.5) is given
by the zonal spherical harmonics. Let us a fix a pole on Sd. If we consider functions
on Sd depending only on the geodesic distance to the fixed pole, we obtain the
zonal functions on Sd. The zonal functions can be expressed in terms of zonal
spherical harmonics which in their turn can be expressed in terms of the classical
Jacobi polynomials (see e.g. [22]). Using asymptotics for the Jacobi polynomials
(see [26],[22, Lemma 2.1]) we can obtain the following representation for the zonal
spherical harmonics Zp of degree p, in the coordinate θ,

(2.1) Zp(θ) = C(sin θ)−
d−1
2

{
cos[(p+ α)θ + β] +

O(1)
p sin θ

}
,

c

p
≤ θ ≤ π − c

p
,

where α and β are some fixed constants depending only on d. Moreover, we have a
pointwise concentration

(2.2) |Zp(θ)| ≈ p
d−1
2 , θ /∈ [c/p, π − c/p]

and ‖Zp‖L2(Sd) ≈ 1. Let q � p. Then

‖ZpZq‖2
L2(Sd) =

∫ π

0
Z2

p(θ)Z2
q (θ)(sin θ)d−1dθ ≥

∫ c/p

c/q
Z2

p(θ)Z2
q (θ)(sin θ)d−1dθ .

Using (2.2), we get

‖ZpZq‖2
L2(Sd) ≥ Cpd−1

∫ c/p

c/q
Z2

q (θ)(sin θ)d−1dθ.

In view of (2.1),

‖ZpZq‖2
L2(Sd) ≥ Cpd−1[I1 − I2],

where

I1 =
∫ c/p

c/q
cos2[(p+ α)θ + β]dθ ≥ C

p
and I2 =

1
q2

∫ c/p

c/q

1
(sin θ)2

dθ ≤ C

q
� C

p
.
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Therefore

(2.3) ‖ZpZq‖2
L2(Sd) ≥ Cpd−2‖Zp‖2

L2(Sd)‖Zq‖2
L2(Sd),

if p� q. Let finally p ≈ q. Using (2.2), we get

(2.4) ‖ZpZq‖2
L2 ≥ C p2(d−1)

∫ c/p

0
(sin θ)d−1dθ ≥ C̃ p2(d−1) p−d = C̃ pd−2 .

Therefore, collecting (2.3) and (2.4), we obtain

‖ZpZq‖L2(Sd) ≥ C(min(p, q))
d−2
2 ‖Zp‖L2(Sd)‖Zq‖L2(Sd)

which proves the optimality of (1.5), for d ≥ 3, modulo the logarithmic loss in 3d.
Let us finally notice that similarly we can prove that for p ≥ q ≥ r

‖ZpZqZr‖L2(Sd) ≥ Cq
d−2
2 r

d−1
2 ‖Zp‖L2(Sd)‖Zq‖L2(Sd)‖Zr‖L2(Sd)

which proves the optimality of (1.7), for d ≥ 3, apart from the logarithmic loss in
3d, and the optimality of (1.8) apart from the η shift.

2.2. A first reduction. — Let (M, g) be a compact smooth Riemannian manifold
without boundary of dimension d and ∆ be the Laplace operator on functions on M .
It turns out that estimates (1.5), (1.6) and (1.8) can be deduced from the following
more general result.

Theorem 3. — Let χ ∈ S(R). For λ ∈ R, denote by χλ = χ(
√
−∆ − λ) the

approximated spectral projector around λ. There exists C such that for any λ, µ ≥ 1,
f, g ∈ L2(M),

(2.5) ‖χλf χµg‖L2(M) ≤ CΛ(d,min(λ, µ))‖f‖L2(M)‖g‖L2(M) .

Moreover, in the case d = 2, for any 1 ≤ λ ≤ µ ≤ ν, f, g, h ∈ L2(M), the following
trilinear estimate holds

(2.6) ‖χλf χµg χνh‖L2(M) ≤ C(λµ)
1
4 ‖f‖L2(M)‖g‖L2(M)‖h‖L2(M).

Finally, in the case d = 3, for any 1 ≤ λ ≤ µ ≤ ν, f, g, h ∈ L2(M), η ∈]0, 1], the
following trilinear estimate holds

(2.7) ‖χλf χµg χνh‖L2(M) ≤ Cηλ
1−ηµ

1
2
+η‖f‖L2(M)‖g‖L2(M)‖h‖L2(M).

Remark 2.1. — If one is only interested in estimates for single eigenfunctions, the
bounds provided by Theorem 3 seem to be relevant for “sphere like manifolds” but
they are far from the optimal ones in the case of the torus. For example, the classical
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result of Zygmund [27] says that there exists a constant C such that for every couple
(f, g) of eigenfunctions of the Laplace operator on the torus T2, one has

‖f g‖L2(T2) ≤ C‖f‖L2(T2)‖g‖L2(T2) .

We refer to Bourgain [3] for further extensions of Zygmund’s result.

A first reduction in the proof of Theorem 3 is that it suffices to prove it for one
fixed non trivial function χ.

Lemma 2.2. — Suppose that the assertion of Theorem 3 holds for a bump function
χ ∈ S(R) which is not identically zero. Then it holds for any other choice of the
bump function.

Proof. — Suppose that (2.5) holds for a nontrivial χ ∈ S(R). Then, there exists
x0 ∈ R such that χ(x0) 6= 0 and moreover there exists δ > 0 such that χ(x) 6= 0 for
x ∈ R satisfying |x − x0| < 2δ. Using a partition of unity argument, we can find
ψ ∈ C∞0 (R) supported in {x ∈ R : |x| < 3δ

4 } such that

(2.8)
∑
n∈Z

ψ(x− nδ) = 1 .

Thanks to the support properties of ψ and χ, we can write

(2.9) ψ(x− nδ − λ) = χ(x+ x0 − nδ − λ)
ψ(x− nδ − λ)

χ(x+ x0 − nδ − λ)
.

Notice that the second factor in the right hand-side of (2.9) is uniformly bounded.
Therefore, using that (2.5) holds for χ, we obtain the estimate

(2.10) ‖ψ(
√
−∆− nδ − λ)(f)ψ(

√
−∆−mδ − µ)(g)‖L2 ≤
≤ CΛ(d,min(|n|+ λ, |m|+ µ))‖f‖L2‖g‖L2 .

Let us now take an arbitrary function χ1 ∈ S(R). Using (2.8), we can write

(2.11) χ1(
√
−∆− λ)f =

∑
n∈Z

ψ(
√
−∆− nδ − λ)χ1(

√
−∆− λ)f .

Let ψ̃ ∈ C∞0 (R) be equal to one on the support of ψ. Then clearly

(2.12) |χ1(x−λ)ψ̃(x−λ−nδ)| ≤ CN

(1 + |x− λ|)N (1 + |x− λ− nδ|)N
≤ C̃N

(1 + |n|)N
.
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Using the expansion (2.11) together with (2.10) and (2.12) yields

‖χ1(
√
−∆− λ)(f)χ1(

√
−∆− µ)(g)‖L2

≤
∑

(n,m)∈Z2

CNΛ(d,min(|n|+ λ, |m|+ µ))
(1 + |n|)N (1 + |m|)N

‖f‖L2‖g‖L2

≤ CΛ(d,min(λ, µ))‖f‖L2‖g‖L2 .

Hence (2.5) holds for χ1. The proof of the independence of (2.6) and (2.7) with
respect to the bump function χ is very similar and thus we will omit it.

2.3. Reduction to oscillatory integral estimates and main properties of
the phase function. — Following [24, Chap. 4], thanks to Lemma 2.2, it is
sufficient to prove Theorem 3 with χ such that χ̂(τ) is supported in the set

{τ ∈ R : ε ≤ τ ≤ 2ε},

where ε > 0 is a small number to be determined later. We can write

χλf =
1
2π

∫ 2ε

ε
e−iλτ χ̂(τ)(eiτ

√
−∆f)dτ .

For ε� 1 and |τ | ≤ 2ε, using a partition of the unity on M , we can represent eiτ
√
−∆

as a Fourier integral operator (see e.g. [15]). Therefore χλ can also be represented
as such. After a stationary phase argument (see [24, Chap. 5]) we can represent
χλf as follows.

Lemma 2.3. — There exists ε0 > 0 such that for every ε ∈]0, ε0[, every N ≥ 1, we
have the splitting

(2.13) χλf = λ
d−1
2 Tλf +Rλf,

with
‖Rλf‖Hk(M) ≤ CN,kλ

k−N‖f‖L2(M), k = 0, . . . , N .

Moreover there exist δ > 0 and, for every x0 ∈M , a system of coordinates V ⊂ Rd,
containing 0 ∈ Rd such for x ∈ V , |x| ≤ δ,

Tλf(x) =
∫

Rd

eiλϕ(x,y)a(x, y, λ)f(y)dy

where a(x, y, λ) is a polynomial in λ−1 with smooth coefficients supported in the set

{(x, y) ∈ V × V : |x| ≤ δ � ε

C
≤ |y| ≤ Cε}

and −ϕ(x, y) = dg(x, y) is the geodesic distance between x and y.
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Remark 2.4. — Let us notice that one can use χ(−λ−1∆ − λ) as approximated
spectral projector instead of χ(

√
−∆−λ). In that case one should use semi-classical

calculus for the approximation of exp(itλ−1∆), λ� 1, as we did in [5].

In view of Lemma 2.3, to prove (2.5), it is enough to show

(2.14) ‖Tλf Tµg‖L2 ≤ CΛ(d, λ)(λµ)−
d−1
2 ‖f‖L2‖g‖L2 ,

uniformly for 1 ≤ λ ≤ µ. Indeed, using (2.13), one has to evaluate in L2 the products

Tλf Rµg, Rλf Tµg Rλf Rµg.

The products involving Rµ are straightforward to estimate while for Rλf Tµg, using
the L2 boundedness of χµ, we write

‖Rλf Tµg‖L2 ≤ C‖Rλf‖L∞‖Tµg‖L2 ≤ CNλ
−Nµ−

d−1
2 ‖f‖L2‖g‖L2 .

To prove (2.6), it is enough to show that for d = 2,

‖Tλf Tµg Tνh‖L2 ≤ C(λµ)−
1
4 ν−

1
2 ‖f‖L2‖g‖L2‖h‖L2 ,

uniformly for 1 ≤ λ ≤ µ ≤ ν. In this case there are more remainder terms to
estimate. The most difficult one is Rλf Tµg Tνh. This term can be evaluated, by
using (2.14) for d = 2, as follows

‖Rλf Tµg Tνh‖L2 ≤ ‖Rλf‖L∞‖Tµg Tνh‖L2 ≤ CNλ
−Nµ−

1
4 ν−

1
2 ‖f‖L2‖g‖L2‖h‖L2 .

Similarly, to prove (2.7), it is enough to show that for d = 3,

‖Tλf Tµ gTν h‖L2 ≤ Cλ−ηµ−
1
2
+ην−1‖f‖L2‖g‖L2‖h‖L2 ,

uniformly for 1 ≤ λ ≤ µ ≤ ν. In this case, we estimate Rλf Tµg Tνh, by another use
of (2.14), as follows

‖Rλf Tµg Tνh‖L2 ≤ ‖Rλf‖L∞‖Tµg Tνh‖L2 ≤

≤ CNλ
−N log1/2(µ)µ−

1
2 ν−1‖f‖L2‖g‖L2‖h‖L2 ≤

≤ CN,ηλ
−Nµ−

1
2
+ην−1‖f‖L2‖g‖L2‖h‖L2 ,

where η > 0.

Next, we represent y in geodesic (polar) coordinates as y = exp0(rω), r > 0,
ω ∈ Sd−1. For |x| ≤ δ and ω ∈ Sd−1, we define the frozen phase ϕr,

ϕr(x, ω) = ϕ(x, exp0(rω)) .
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We now state the main property of the phase ϕr.

Lemma 2.5. — There exists ε > 0 such that for every r ∈ [ε/C,Cε], every

ω = (ω1, . . . , ωd) ∈ Sd−1 ⊂ Rd,

we have the identity,
∇xϕr(0, ω) = ω .

Proof. — The proof for d = 2 is given in [8]. The extension to an arbitrary d is
straightforward as we explain below. For ε� 1, let y = exp0(rω), r = −ϕ(0, y) and
u = u(x, y) ∈ TyM be the unique unit vector in the tangent space to M at y such
that

expy(−ϕ(x, y)u(x, y)) = x.

Differentiating with respect to x this identity, we get for x = 0, and any h ∈ T0M ,

(2.15) h = −g0
(
∇xϕ(0, y) , h

)
Tru(0,y)(expy) · u(0, y)

+ Tru(0,y)(expy)
(
r Txu(0, y) · h

)
,

where T denotes the tangential map.
On the other hand, we have

(2.16) Tru(0,y)(expy) · u(0, y) = −ω or u(0, y) = −Trω(exp0)(ω).

Consequently, using Gauss’ Lemma (see [12, 3.70]), we get

(2.17) g0

(
Tru(0,y)(expy)

(
r Txu(0, y) · h

)
, ω

)
= 0 .

Let us now take the scalar product of (2.15) with ω. Collecting (2.15), (2.17)
and (2.16) yield

g0
(
ω , h

)
= g0

(
∇xϕ(0, y) , h

)
, ∀h ∈ T0M

which completes the proof of Lemma 2.5.

Let us notice that there exists a smooth positive function κ(r, ω) such that dy =
κ(r, ω)drdω. For r ∈ [ ε

C , Cε] and λ ≥ 1, we define the operator T r
λ , acting on

functions on Sd−1 via the identity

(T r
λf)(x) =

∫
Sd−1

eiλϕr(x,ω)ar(x, ω, λ)f(ω)dω,

where ar(x, ω, λ) = κ(r, ω)a(x, r, ω, λ). Then clearly

(Tλf)(x) =
∫ ∞

0
(T r

λfr)(x)dr,
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where fr(ω) = f(r, ω). Similarly, with gq(ω) = g(q, ω),

(Tλf Tµg)(x) =
∫ Cε

ε/C

∫ Cε

ε/C
(T r

λfr)(x) (T q
µgq)(x)drdq,

and the Minkowski inequality shows that (2.5) will be a consequence of

(2.18) ‖T r
λf T

q
µg‖L2 ≤ CΛ(d, λ)(λµ)−

d−1
2 ‖f‖L2(Sd−1)‖g‖L2(Sd−1),

uniformly for 1 ≤ λ ≤ µ and r, q ∈ [ ε
C , Cε].

Similarly, to prove (2.6), it is enough to show

(2.19) ‖T r
λf T

q
µg T

s
νh‖L2 ≤ C(λµ)−

1
4 ν−

1
2 ‖f‖L2(S1)‖g‖L2(S1)‖h‖L2(S1),

uniformly for 1 ≤ λ ≤ µ ≤ ν and r, q, s ∈ [ ε
C , Cε].

Finally, to prove (2.7), it is enough to show

(2.20) ‖T r
λf T

q
µg T

s
νh‖L2 ≤ Cλ−ηµ−

1
2
+ην−1‖f‖L2(S2)‖g‖L2(S2)‖h‖L2(S2),

uniformly for 1 ≤ λ ≤ µ ≤ ν and r, q, s ∈ [ ε
C , Cε].

Fix a point ω ∈ Sd−1. The set

Sx = {∇xϕr(x, ω), ω ∈ Sd−1, ω ∼ ω}

is a smooth hypersurface in Rd. Indeed assuming for instance ω = (1, 0, . . . , 0), then
(w1 = ω2, . . . , , wd−1 = ωd) is a system of coordinates on Sd−1 and according to
Lemma 2.5, ∇w∇xϕr has rank d− 1.

Following Stein [25] and Sogge [24], we now state the crucial curvature property.

Lemma 2.6. — The hypersurface Sx has non-vanishing principal curvatures. More
precisely, for w ∈ Rd−1 a local coordinate system near ω ∈ Sd−1, if we denote by
±n(x,w) the normal unit vectors to the surface Sx at the point ∇xϕr(x,w) then, for
x close to 0,

(2.21)
∣∣∣∣det

i,j

〈 ∂2

∂wj∂wi
∇xϕr(x,w), n(x,w)

〉∣∣∣∣ ≥ c > 0.

Proof. — The relation (2.21) is equivalent to the fact that

w 7→ n(x,w) ∈ Sd−1

is a local diffeomorphism. Consequently it is independent of the choice of coordinates
w and it suffices to prove it for a particular choice of a coordinate system near ω.
We can suppose that ω = (1, 0, . . . , 0) and we choose as coordinates

w = (w1, . . . , wd−1) := (ω2, . . . , ωd)
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We can also assume that at the point (x = 0), the metric is diagonal, gi,j = δi,j .
Using Lemma 2.5, we get

(2.22)
〈 ∂2

∂wj∂wi
∇xϕr(0, w), n(0, 0)

〉
|w=0= Id

and consequently (2.21) follows by continuity.

Denote by (T ν
r )∗ the formal adjoint of T ν

r . The kernel of the operator T ν
r (T ν

r )∗,
K(x, x′), is given by the relation

K(x, x′) =
∫
eiν(ϕr(x,w)−ϕr(x′,w))ar(x,w, ν)ar(x′, w, ν)dw .

The curvature property of the phase ϕr in Lemma 2.6 implies a dispersion inequality
for the kernel K.

Lemma 2.7. — There exist C > 0 such that for any ν ≥ 1,

(2.23) |K(x, x′)| ≤ C

(1 + ν|x− x′|)
d−1
2

.

Proof. — Let us write a Taylor expansion

ϕr(x,w)− ϕr(x′, w) = 〈x− x′ , ψ(x, x′, w)〉

where

ψ(x, x′, w) =
∫ 1

0
∇xϕr(x′ + θ(x− x′), w)dθ.

With σ = x−x′

|x−x′| , we can write

ϕr(x,w)− ϕr(x′, w) = |x− x′|Φ(x, x′, σ, w)

where
Φ(x, x′, σ, w) = 〈σ , ψ(x, x′, w)〉

Now we want to prove, with λ = ν|x− x′|,

|K̃(x, x′, σ)| ≤ C

(1 + λ)
d−1
2

where

(2.24) K̃(x, x′, σ) =
∫
eiλΦ(x,x′,σ,w)ar(x,w, ν)ar(x′, w, ν)dw .

From the definition of the normal n(x,w), we have ∇wΦ = 0 for x = x′ = 0, w = 0,
σ = ±n(0, 0). According to the curvature property (2.21), we have det(∇2

wΦ) 6= 0
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for x = x′ = 0, w = 0, σ = ±n(0, 0). From the implicit function theorem, there
exist κ > 0, such that if

(2.25) |σ − n(0, 0)| ≤ κ or |σ + n(0, 0)| ≤ κ

then the phase Φ(x, x′, σ, w) has a unique nondegenerate critical point w(x, x′, σ)
and, by stationary phase, under the assumption (2.25), the kernel (2.24) is bounded
by C (1 + λ)−

d−1
2 . Let us next assume that

(2.26) |σ − n(0, 0)| > κ and |σ + n(0, 0)| > κ .

Then for w close to 0 and |x| small enough, we obtain by continuity

(2.27) |σ − n(x,w)| > κ/2 and |σ + n(x,w)| > κ/2 .

The kernel of ∇x∇wϕr(x,w) is one dimensional and spanned by n(x,w). Coming
back to the definition of Φ, we deduce that (2.27) implies (for |x′| small enough)

|∇wΦ(x, x′, σ, w)| ≥ c > 0 .

Consequently, integrating by parts in (2.24), we obtain that under the assumption
(2.26) the kernel (2.24) is bounded by CN (1+λ)−N which is even better than needed.
This completes the proof of Lemma 2.7.

The second property of the phase we need is the following:

Lemma 2.8. — Let x = (t, z) ∈ R×Rd−1 where t = x1 and z = (x2, . . . , xd). Then
for every

ω = (ω1, . . . , ωd) ∈ Sd−1

with ω1 6= 0 there exist a neighborhood U ⊂ Sd−1 of ω, ε > 0 and δ > 0 such that,
for ε/C ≤ r ≤ Cε and |x| < δ, the phase ϕr(t, z, w), where w ∈ Rd−1 is a local
coordinate in U , is uniformly non degenerate with respect to (z, w). More precisely

(2.28)
∣∣∣∣det

i,j

(
∂2ϕr(t, z, w)
∂zj∂wi

)∣∣∣∣ ≥ c > 0.

Proof. — Since (2.28) is independent of the choice of coordinates w, it suffices to
prove it for a particular choice of a coordinate system near ω.

For ω = (ω1, ω2, . . . , ωd) ∈ Sd−1 in a small neighborhood of ω, we choose w as

w = (w1, . . . , wd−1) := (ω2, . . . , ωd)
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which is a coordinate system thanks to the assumption ω1 6= 0. We can also assume
that at the point (t = 0, z = 0), the metric is diagonal gi,j = δi,j . Using Lemma 2.5,
we get

(2.29) det
i,j

(
∂2ϕr(t, z, w)
∂zj∂wi

)∣∣∣∣
(t,z,w)=(0,0,w)

= 1.

We now obtain (2.28) from (2.29) by continuity.

We next state a corollary of Lemma 2.8.

Lemma 2.9. — Let ω(1), . . . , ω(N) be N points on Sd−1. Then there exists a split-
ting of the variable x = (t, z) ∈ R×Rd−1 and neighborhoods Uj ⊂ Sd−1, j = 1, . . . , N
of ω(j) such that ϕr(t, z, w) satisfies (2.28), where w is a coordinate in ∪N

j=1Uj.

Proof. — Obviously, there exists a unit vector e such that

e · ω(j) 6= 0, j = 1, . . . , N.

By performing a rotation, we can assume that e = (1, 0, . . . , 0) and consequently it
suffices to apply Lemma 2.8.

2.4. Linear estimates. — The dispersion inequality of Lemma 2.7 leads to the
following estimate.

Lemma 2.10. — Let (t, z) ∈ R×Rd−1 be any local system of coordinate near (0, 0).
Then the operator

g ∈ L2
w 7−→ (T r

ν )g(t, z) ∈ L2(Rt;L∞(Rd−1
z ))

is continuous with norm bounded by CΛ(d, ν)ν−(d−1)/2.

Proof. — Recall that

(T r
ν f)(t, z) =

∫
eiνϕr(t,z,w)ar(t, z, w, ν)f(w)dw .

Let consider the formal adjoint of T r
ν defined as

(T r
ν )∗(g)(w) :=

∫
e−iνϕr(t′,z′,w)ar(t′, z′, w, ν)g(t′, z′)dt′dz′

According to the classical duality argument which reduces the study of T r
ν to the

study of T r
ν (T r

ν )∗, it is sufficient to show that the norm of the operator

T r
ν (T r

ν )∗ : L2
tL

1
z 7−→ L2

tL
∞
z
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is bounded by C[Λ(d, ν)ν−(d−1)/2]2. But according to Lemma 2.7, the kernel of this
operator satisfies (2.23) and as a consequence, there exists C > 0 such that for every
ν ≥ 1,

(2.30) |K(t, z, t′, z′)| ≤ C

(1 + ν|t− t′|)
d−1
2

.

Using (2.30) and the Young inequality, we get

‖T r
ν (T r

ν )∗ g‖L2
t L∞z

≤ C

∫
|s|≤c

ds

(1 + ν|s|)
d−1
2

‖g‖L2
t L1

z

But clearly ∫
|s|≤c

ds

(1 + ν|s|)
d−1
2

≤


Cν−1/2 if d = 2

Cν−1 log(ν) if d = 3

Cν−1 if d ≥ 4.

It remains to observe that the right hand-side of the above inequality is equal to
C[Λ(d, ν)ν−(d−1)/2]2 which completes the proof of Lemma 2.10.

In two space dimensions, we shall need the following extension of Lemma 2.10.

Lemma 2.11. — Let d = 2 and (t, z) ∈ R×Rd−1 be any local system of coordinate
near (0, 0). The operator

g ∈ L2
w 7−→ (T r

ν )g(t, z) ∈ L4(Rt;L∞(Rz))

is continuous with norm bounded by Cν−1/4.

Proof. — Similarly to the proof of Lemma 2.10, it is sufficient to show that the
norm of the operator

T r
ν (T r

ν )∗ : L4/3
t L1

z 7−→ L4
tL

∞
z

is bounded by Cν−1/2. The kernel K(t, z, t′, z′) of T r
ν (T r

ν )∗ satisfies the bound (2.30)
with d = 2. From the Hardy-Littlewood inequality,

(2.31)

∥∥∥∥∥
∫ ∞

−∞

f(t′)dt′

(1 + ν|t− t′|)
1
2

∥∥∥∥∥
L4(Rt)

≤ Cν−1/2‖f‖L4/3(R) .

Therefore
‖T r

ν (T r
ν )∗ g‖L4

t L∞z
≤ Cν−1/2‖g‖

L
4/3
t L1

z

which completes the proof of Lemma 2.11.

In the proof of (2.20), we need the following extension of Lemma 2.10 for d ≥ 3.
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Lemma 2.12. — Let d ≥ 3, p > 2 and (t, z) ∈ R × Rd−1 be any local system of
coordinate near (0, 0). The operator

g ∈ L2
w 7−→ (T r

ν )g(t, z) ∈ Lp(Rt;L∞(Rd−1
z ))

is continuous with norm bounded by Cν−1/p.

Proof. — Let p′ be such that 1
p + 1

p′ = 1. It is sufficient to show that the norm of
the operator

T r
ν (T r

ν )∗ : Lp′

t L
1
z 7−→ Lp

tL
∞
z

is bounded by Cν−2/p. Since for p > 2,∥∥∥∥∥ 1

(1 + ν|t|)
d−1
2

∥∥∥∥∥
L

p
2 (Rt)

≤ Cν−2/p,

using the Young inequality, we get the bound∥∥∥∥∥
∫ ∞

−∞

f(t′)dt′

(1 + ν|t− t′|)
d−1
2

∥∥∥∥∥
Lp(Rt)

≤ Cν−2/p‖f‖Lp′ (R)

which completes the proof of Lemma 2.12 thanks to the bound (2.30) on the kernel
of T r

ν (T r
ν )∗.

Remark 2.13. — Notice that for p = 2, the proof above still works in dimensions
d ≥ 4. In the case p = 2, d = 3, we have the same difficulty as in the case of the
end point Strichartz estimates on R2 (see Remark 2.15 below).

A consequence of Lemma 2.8 is the following statement.

Lemma 2.14. — Under the assumptions of Lemma 2.8, the operator

g ∈ L2
w 7−→ (T r

ν g)(t, z) ∈ L∞(Rt;L2(Rd−1
z ))

is continuous with norm bounded by Cν−(d−1)/2.

Proof. — In view of (2.28), the statement of Lemma 2.14, which can be understood
as a refinement of the L2 boundedness of the spectral projector, is an immediate
consequence of the following generalization of Plancherel’s identity, which we borrow
from [16].
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Lemma (non degenerate phase lemma). — Let us consider ϕ ∈ C∞(Rn
z ×Rn

w)
and a ∈ C∞0 (Rn

z × Rn
w) such that

(z, w) ∈ supp(a) =⇒ det
[
∂2ϕ

∂z∂w
(z, w)

]
6= 0.(2.32)

There exists C > 0 such that for every λ ≥ 1, the operator Tλ

(2.33) Tλf(z) =
∫

Rn

eiλϕ(z,w)a(z, w)f(w)dw

satisfies,

‖Tλf‖L2(Rn
z ) ≤ Cλ−

n
2 ‖f‖L2(Rn

w) .

2.5. Multilinear estimates. — Let us first prove (2.18). We can write

(T r
λf T

q
µg)(x)

=
∫

Sd−1

∫
Sd−1

eiλϕr(x,ω)+iµϕq(x,ω′)ar(x, ω, λ)aq(x, ω′, µ)f(ω)g(ω′)dωdω′.

We need to evaluate the above expression in L2
x. After a partition of unity, we can

suppose that on the support of

ar(x, ω, λ)aq(x, ω′, µ),

(ω, ω′) is close to a fixed point (ω(1), ω(2)). We can therefore use the splitting x =
(t, z) of Lemma 2.9 with N = 2. Using Hölder’s inequality, Lemma 2.14 and Lemma
2.10, we infer

‖T r
λf T

q
µg‖L2

t L2
z
≤ ‖T r

λf‖L2
t L∞z

‖T q
µg‖L∞t L2

z
≤ CΛ(d, λ)(λµ)−

d−1
2 ‖f‖L2

w
‖g‖L2

w
.

This completes the proof of (2.18).
We next prove (2.19). Let us write

(T r
λf T

q
µg T

s
νh)(x) =

∫
S1

∫
S1

∫
S1

eiλϕr(x,ω)+iµϕq(x,ω′)+iνϕs(x,ω′′)

ar(x, ω, λ)aq(x, ω′, µ)as(x, ω′′, ν)f(ω)g(ω′)h(ω′′)dωdω′dω′′ .

After a partition of unity we can assume that (ω′′, ω′, ω) is close to a fixed point
(ω(1), ω(2), ω(3)). With the splitting x = (t, z) of Lemma 2.9 with N = 3, using
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Lemma 2.14, Lemma 2.11 and the Hölder inequality, we get

‖T r
λf T

q
µg T

s
νh‖L2

t L2
z
≤ ‖T r

λf‖L4
t L∞z

‖T q
µg‖L4

t L∞z
‖T s

νh‖L∞t L2
z

≤ Cλ−
1
4µ−

1
4 ν−

1
2 ‖f‖L2‖g‖L2‖h‖L2 .

This completes the proof of (2.19).
We finally prove (2.20). We can again use the splitting x = (t, z) of Lemma 2.9

with N = 3. For p � 2 and q > 2 such that 1
p + 1

q = 1
2 , a use of Lemma 2.12 gives

the bound

‖T r
λf T

q
µg T

s
νh‖L2

t L2
z
≤ ‖T r

λf‖Lp
t L∞z

‖T q
µg‖Lq

t L∞z
‖T s

νh‖L∞t L2
z

≤ Cλ−ηµ−
1
2
+ην−1‖f‖L2‖g‖L2‖h‖L2 ,

where η = 1
p . This ends the proof (2.20) and completes the proof of Theorem 2.

Remark 2.15. — As pointed to us by Koch and Tataru [20], another approach to
these multilinear estimates would be, after a suitable microlocalization, to particu-
larize one variable (t in the exposition above) and see the equation satisfied by the
approximated spectral projector

(∆ + λ2)χλ(u) = OL2(λ)

as a semi-classical evolution equation of the type

(ih∂t +Q(t, z, hDz))χλ(u) = OL2(h), h = λ−1 .

Then Lemmas 2.10, 2.11 are simply the (semi-classical) Strichartz estimates which
can be proved by using the approach in [5].

3. Preliminaries to the proof of Theorem 1

In this section (M, g) is an arbitrary Riemannian manifold of dimension d. Our
first purpose is to introduce the basic localization operators ∆N and ∆NL which are
naturally related to the Sobolev spaces and the Bourgain spaces on M respectively.
We establish some basic bounds related to ∆N and ∆NL. The main purpose of
this section is to show that the well-posedness of the Cauchy problem (1.1) in the
Sobolev space Hs(M) is a consequence of nonlinear estimates in the Bourgain spaces
associated to the Laplace operator ∆. This reduction is now classical (see e.g. [14]).
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3.1. Bourgain spaces and basic localization operators. — Since M is com-
pact, ∆ has a compact resolvent and thus the spectrum of ∆ is discrete. Let
ek ∈ L2(M), k ∈ N be an orthonormal basis of eigenfunctions of ∆ associated
to eigenvalues λk. Denote by Pk the orthogonal projector on ek. The Sobolev space
Hs(M) is therefore equipped with the norm (with 〈x〉 = (1 + |x|2)1/2),

‖u‖2
Hs(M) =

∑
k

〈λk〉s‖Pku‖2
L2(M).

The Bourgain space (or conormal Sobolev space) Xs,b(R×M) is equipped with the
norm

‖u‖2
Xs,b(R×M) =

∑
k

〈λk〉s‖〈τ + λk〉bP̂ku(τ)‖2
L2(Rτ×M) = ‖eit∆u(t, ·)‖2

Hb(Rt ; Hs(M)),

where P̂ku(τ) denotes the Fourier transform of Pku with respect to the time variable.
Let us first recall that for b > 1/2 the spaceXs,b(R×M) is continuously embedded

in C(R ; Hs(M)). For u ∈ C∞0 (R×M), we write

Pku(t) =
1
2π

∫ ∞

−∞

〈τ + λk〉b

〈τ + λk〉b
P̂ku(τ)eitτdτ.

For b > 1
2 , we get by the Cauchy-Schwarz inequality, applied in τ ,

(3.1) 〈λk〉s/2|Pku(t)| ≤ C

{∫ ∞

−∞
〈λk〉s〈τ + λk〉2b|P̂ku(τ)|2dτ

} 1
2

.

Squaring (3.1), integrating over M and summing over k yields,

(3.2) ‖u‖L∞(R ; Hs(M)) ≤ C‖u‖Xs,b(R×M), b >
1
2
.

For u ∈ C∞(M) and N ≥ 1, we define the projector ∆N as

∆N (u) :=
∑

k : N≤〈λk〉
1
2 <2N

Pku .

We now state a basic bound for ∆N .

Lemma 3.1. — There exists a constant C such that for every q ∈ [2,∞], every
u ∈ L2(M),

‖∆N (u)‖Lq(M) ≤ C N
d
2
− d

q ‖∆N (u)‖L2(M) .
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Proof. — The assertion clearly holds for q = 2. We next prove it for q = ∞. Let us
write ∆N =

∑N−1
j=0 ∆N,j , where

(3.3) ∆N,j :=
∑

k : N+j≤〈λk〉
1
2 <N+j+1

Pk .

Due to the Weyl estimate (see Lemma 2.3)

‖∆N,j(u)‖L∞(M) ≤ CN
d−1
2 ‖∆N,j(u)‖L2(M)

and due to the triangle and Cauchy-Schwarz inequalities

‖∆N (u)‖L∞(M)

≤ CN
d−1
2

( N−1∑
j=0

‖∆N,j(u)‖2
L2(M)

) 1
2
( N−1∑

j=0

12
) 1

2 = CN
d
2 ‖∆N (u)‖L2(M) .

By Hölder’s inequality, this completes the proof of Lemma 3.1.

For N ≥ 1 a dyadic integer, i.e. N = 2n, n ∈ N, we define the operator SN as

SN :=
∑

N1≤N

∆N1 ,

where the sum is taken over all dyadic integers N1 smaller or equal to N . We also
define S 1

2
by S 1

2
(u) := 0.

Next, for u ∈ C∞0 (R ×M) and N,L positive integers, we define the localization
operators ∆NL as

∆NL(u) :=
1
2π

∑
k : N≤〈λk〉

1
2 <2N

∫
L≤〈τ+λk〉≤2L

P̂ku(τ)eitτdτ .

It is easy to check that ∆NL is a projector. It follows from this definition that for
every s, b there exists C > 0 such that

(3.4)
1
C
‖∆NL(u)‖Xs,b(R×M) ≤ LbN s‖∆NL(u)‖L2(R×M) ≤ C‖∆NL(u)‖Xs,b(R×M) ,

and

(3.5)
1
C

∑
N,L

L2bN2s‖∆NL(u)‖2
L2 ≤ ‖u‖2

Xs,b ≤ C
∑
N,L

L2bN2s‖∆NL(u)‖2
L2 ,

where the sums is taken over all dyadic values of N and L, i.e. N = 2n, L = 2l,
n, l ∈ N. We now state a basic bound for ∆NL.
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Lemma 3.2. — There exists a constant C such that for every p, q ∈ [2,∞], every
u ∈ L2(R×M),

‖∆NL(u)‖Lp(R ; Lq(M)) ≤ C L
1
2
− 1

pN
d
2
− d

q ‖∆NL(u)‖L2(R×M) .

Proof. — Since ∆N∆NL = ∆NL, a use of Lemma 3.1 yields

‖∆NL(u)‖Lp(R ; Lq(M)) ≤ CN
d
2
− d

q ‖∆NL(u)‖Lp(R ; L2(M)).

Therefore, we only need to consider the case q = 2. Using that P̂ku(τ) = Pkû(τ),
we can write

‖∆NL(u)(t)‖2
L2(M) ≤ C

∑
k : N≤〈λk〉

1
2 <2N

∫
M

∣∣∣∣∣
∫

L≤〈τ+λk〉≤2L
P̂ku(τ)eitτdτ

∣∣∣∣∣
2

.

Since the integration over τ is on a region of size L, using the Cauchy-Schwarz
inequality in τ and the Plancherel identity yields

‖∆NL(u)(t)‖2
L2(M) ≤ CL

∑
k : N≤〈λk〉

1
2 <2N

∫
M

∫ ∞

−∞
|P̂ku(τ)|2dτ ≤ CL‖u‖2

L2(R×M) .

Applying the last inequality to ∆NL(u) instead of u and using that ∆NL is a pro-
jector gives

‖∆NL(u)‖L∞(R ; L2(M)) ≤ C L
1
2 ‖∆NL(u)‖L2(R×M) .

The assertion of the lemma trivially holds for p = q = 2 and therefore the proof of
Lemma 3.2 is completed by Hölder’s inequality.

3.2. Reduction to nonlinear estimates in Bourgain spaces. — The starting
point is to consider the integral equation (Duhamel form)

(3.6) u(t) = eit∆u0 − i

∫ t

0
ei(t−τ)∆F (u(τ))dτ .

At least for classical (smooth) solutions u the integral equation (3.6) is equivalent to
(1.1). For that reason we solve (3.6) by the Picard iteration in a suitable functional
setting and thus we get solutions of (3.6). In the case of low regularity solutions of
(3.6) the information we have for u and F (u) should be strong enough to conclude
that the we get solutions of (1.1) too.

For T > 0, we define the restriction space Xs,b
T := Xs,b([−T, T ] ×M), equipped

with the norm

‖u‖
Xs,b

T
= inf{‖w‖Xs,b , w ∈ Xs,b with w|[−T,T ] = u}.
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For b > 1/2, the space Xs,b
T is continuously embedded in C([−T, T ] ; Hs(M)) (see

(3.2)) and Xs,b
T will be the space for the solutions of (3.6) on [−T, T ]. The next

proposition contains the basic reduction to nonlinear estimates in Xs,b.

Proposition 3.3. — Assume that there exists (b, b′) ∈ R2 satisfying

(3.7) 0 < b′ <
1
2
< b, b+ b′ < 1

such that for every s ≥ 1 there exists a constant C such that for every u ∈ Xs,b,

(3.8) ‖F (u)‖Xs,−b′ (R×M) ≤ C
(
1 + ‖u‖α−1

X1,b(R×M)

)
‖u‖Xs,b(R×M) ,

and for every u, v ∈ Xs,b,

(3.9) ‖F (u)− F (v)‖Xs,−b′ (R×M) ≤

C
(
1 + ‖u‖α−1

Xs,b(R×M)
+ ‖v‖α−1

Xs,b(R×M)

)
‖u− v‖Xs,b(R×M) .

Then

1. For every bounded subset B of H1(M) there exists T > 0 such that if u0 ∈ B
then there exists a unique solution u of (3.6) on [−T, T ] in the class X1,b

T .
Moreover the map u0 7→ u ∈ C([−T, T ] ; H1(M)) is Lipschitz continuous on
B.

2. If in addition u0 ∈ Hs(M) then u ∈ C([−T, T ] ; Hs(M)).
3. The function u is a solution of (1.1) in the distributional sense.
4. If in addition we suppose that V (z) ≥ −C(1 + |z|)β, β < 2 + 4/d then the

results above hold for any arbitrarily large T .
5. For u0 ∈ Hs(M), s > d/2 the solution is unique in C([−T, T ] ; Hs(M)).

Proof. — Let ψ ∈ C∞0 (R) be equal to 1 on [−1, 1]. The identity

‖ψ(t)eit∆ u0‖Xs,b(R×M) = ‖ψ‖Hb(R)‖u0‖Hs(M)

follows from the definition of Xs,b(R×M) and therefore for T ≤ 1

(3.10) ‖eit∆ u0‖Xs,b
T
≤ C‖u0‖Hs(M) .

The bound

(3.11)
∥∥∥ψ(t/T )

∫ t

0
ei(t−τ)∆F (τ)dτ

∥∥∥
Xs,b(Rt×M)

≤ CT 1−b−b′‖F‖Xs,−b′ (R×M),
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holds for T ≤ 1 and (b, b′) satisfying (3.7). Indeed (see [8, Proposition 2.11]) estimate
(3.11) follows from the one dimensional inequality

‖ψ(t/T )
∫ t

0
g(τ)dτ‖Hb(R) ≤ CT 1−b−b′‖g‖H−b′ (R).(3.12)

A proof of (3.12) can be found in [14].
Using (3.11) and the assumptions of the proposition we obtain the estimates

(3.13)
∥∥∥∫ t

0
ei(t−τ)∆F (u(τ))dτ

∥∥∥
Xs,b

T

≤ CT 1−b−b′
(
1 + ‖u‖α−1

X1,b
T

)
‖u‖

Xs,b
T

and

(3.14)
∥∥∥∫ t

0
ei(t−τ)∆(F (u(τ))− F (v(τ)))dτ

∥∥∥
Xs,b

T

≤

CT 1−b−b′
(
1 + ‖u‖α−1

Xs,b
T

+ ‖v‖α−1

Xs,b
T

)
‖u− v‖

Xs,b
T
,

provided T ≤ 1 and (b, b′) satisfying (3.7). Let B be a bounded subset of H1(M). It
results from (3.10), (3.13) and (3.14) with s = 1 that there exists T � 1 such that
for every u0 ∈ B the right hand-side of (3.6) is a contraction in a suitable ball of
X1,b

T with a unique fixed point which is the solution of (3.6). The uniqueness in the
class X1,b

T and the Lipschitz continuity of the flow map follow from (3.14). Suppose
now that u0 ∈ Hs(M). Then as before it follows from (3.10), (3.13) and (3.14) that
we can find T̃ ≤ T such that we can identify u|

[−eT , eT ]
as the unique solution of (3.6)

on [−T̃ , T̃ ] in the class Xs,beT ⊂ X1,beT . In particular u(t, ·) ∈ Hs(M) for t ∈ [−T̃ , T̃ ].
Then by a bootstrap and the tame estimate (3.13) we conclude that u(t, ·) ∈ Hs(M)
for t ∈ [−T, T ]. Thanks to (3.8), we obtain that F (u(t)) ∈ X1,−b′

T and since b′ < 1/2,
we infer that

∂t

[ ∫ t

0
e−iτ∆F (u(τ))dτ

]
= e−it∆F (u(t))

in the distributional sense which implies that u is a solution of the original PDE (1.1)
in the distributional sense. If u0 ∈ H2(M) then, thanks to the propagation of the
Hs regularity assertion, one can take the scalar product of (1.1) with u and ut and it
results that the conservations laws (1.3) hold. If u0 ∈ H1(M), we can approximate
in H1(M) the function u0 with a sequence (u0,n) such that u0,n ∈ H2(M). If we
denote by un(t) the corresponding solutions of (1.1), thanks to the propagation of
the regularity we obtain then un(t) enjoy the conservation laws (1.3) for t on the
time of existence of u(t). Finally we can passe to the limit n → ∞ and thanks to
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the H1 continuity of the conservation laws functionals, we deduce that u(t) satisfies
the conservation laws (1.3). If we suppose that V (z) satisfies V (z) ≥ −C(1 + |z|)β,
β < 2 + 4/d, using the Gagliardo-Nirenberg inequalities, we obtain that there exists
θ ∈]0, 2[ such that ∫

M
V (u(t)) ≥ −C‖u(t)‖β−θ

L2 ‖u(t)‖θ
H1 − C .

Therefore, the conservation laws (1.3) yield a bound independent with respect to t
for ‖u(t)‖H1(M) which allows to reiterate the local existence argument and thus to
achieve the existence of u(t) on an arbitrary time interval. Finally, thanks to the
Sobolev embedding Hs(M) ⊂ L∞(M), s > d/2 and the propagation of regularity,
we easily obtain that if u0 ∈ Hs(M), s > d/2 then the uniqueness holds in the class
C([−T, T ] ; Hs(M)). This completes the proof of Proposition 3.3.

With Proposition 3.3 in hand the assertion of Theorem 1 follows from the following
statement.

Theorem 4. — Let M = S3 or M = S2
ρ × S1 endowed with the standard metrics.

For every 1 < α < 5 and s ≥ 1 there exists (b, b′) ∈ R2 satisfying (3.7) such that
(3.8) and (3.9) hold.

The next two sections are devoted to the proof of Theorem 4.

4. Bilinear Strichartz estimates and applications

In this section we prove Theorem 4 for M = S3 with the standard metric.

4.1. Bilinear Strichartz estimates on S3. — In the case M = S3 the eigenval-
ues of −∆ are λk = k2 − 1, k ≥ 1 and this fact plays a key role in the analysis. The
starting point is the following bilinear improvement of the L4 Strichartz inequality
on S3 established in [5].

Proposition 4.1. — For every interval I ⊂ R, every ε > 0 there exists a constant
C such that for every N1, N2 ≥ 1, every f1, f2 ∈ L2(M),

∥∥ 2∏
j=1

eit∆(∆Njfj)
∥∥

L2(I×M)
≤ C(min(N1, N2))

1
2
+ε

2∏
j=1

‖∆Njfj‖L2(M) .
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Proof. — By a time translation we can suppose that I = [0, T ]. Moreover, for
f ∈ L2(M) the function eit∆f is periodic with respect to t and therefore it suffices
to give the proof with T = 2π. Let us write

2∏
j=1

eit∆(∆Njfj) =
∑

Nj≤〈λkj
〉
1
2 <2Nj

e−it(λk1
+λk2

)Pk1(f1)Pk2(f2) .

Using the Parseval identity with respect to t we get∥∥ 2∏
j=1

eit∆(∆Njfj)
∥∥2

L2([0,2π]×M)
=

∑
τ∈Z

∥∥∥ ∑
τ=λk1

+λk2

Pk1(f1)Pk2(f2)
∥∥∥2

L2(M)
,

where the summation over (k1, k2) is restricted to Nj ≤ 〈λkj
〉

1
2 < 2Nj , j = 1, 2.

Applying the triangle inequality for the L2(M) norm, the Cauchy-Schwarz inequality
in the summation over (k1, k2), and the bilinear estimate of Theorem 2 for d = 3
yields that for every ε > 0,

∥∥ 2∏
j=1

eit∆(∆Njfj)
∥∥2

L2([0,2π]×M)

≤ Cε (min(N1, N2))1+ε sup
τ∈Z

αN1,N2(τ)
2∏

j=1

‖∆Njfj‖2
L2(M) ,

where

αN1,N2(τ) = #
{

(k1, k2) ∈ N2 : τ + 2 = k2
1 + k2

2, Nj ≤ 〈λkj
〉

1
2 < 2Nj , j = 1, 2

}
.

We claim that αN1,N2(τ) ≤ CεN
ε. Indeed this follows from the next lemma.

Lemma 4.2. — For every ε > 0 there exists C > 0 such that for every positive
integers τ and N ,

(4.1) #{(k1, k2) ∈ N2 : N ≤ k1 < 2N, k2
1 + k2

2 = τ} ≤ CN ε .

Proof. — This lemma already appeared in [8] (see [8, Lemma 3.2]). We recall the
proof. For τ ≤ 10N4 it follows from the divisor bound in the ring of Gaussian
integers which is a Euclidean division domain. For τ ≥ 10N4 there is at most one
value of (k1, k2) satisfying the imposed restriction since in this case k2 should range
in an interval of size smaller than one. Hence for τ ≥ 10N4 the left hand-side of
(4.1) is bounded by 1. This completes the proof of Lemma 4.2.
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Proposition 4.1 now readily follows from Lemma 4.2.

4.2. Using bilinear Strichartz estimates. — From now on we simply assume
that M is a three dimensional compact manifold satisfying Proposition 4.1. Pro-
ceeding as in [8, Section 3.2] one can show, for instance, that three dimensional Zoll
manifolds have this property. As a consequence it can be remarked that in fact
Theorem 1 holds for any such manifold.

First we deduce from Proposition 4.1 the following bilinear estimate in the Xs,b

context.

Proposition 4.3. — For every ε > 0 there exist β < 1
2 and C > 0 such that for

every N1, N2, L1, L2 ≥ 1, every u1, u2 ∈ L2(R×M),

∥∥ 2∏
j=1

∆NjLj (uj)
∥∥

L2(R×M)
≤ C(L1L2)β(min(N1, N2))

1
2
+ε

2∏
j=1

‖∆NjLj (uj)‖L2(R×M) .

Proof. — Let us suppose that N1 ≤ N2. Using Lemma 3.2 and the Hölder inequality
we can write

(4.2)
∥∥ 2∏

j=1

∆NjLj (uj)
∥∥

L2(R×M)
≤

≤ ‖∆N1L1(u1)‖L4(R ; L∞(M))‖∆N2L2(u2)‖L4(R ; L2(M)) ≤

≤ C N
3
2
1 (L1L2)

1
4

2∏
j=1

‖∆NjLj (uj)‖L2(R×M) .

Estimate (4.2) is better than the needed one with respect to the Lj localization but
is far from the needed one with respect to the Nj localization.

We now estimate
∥∥∏2

j=1 ∆NjLj (uj)
∥∥

L2 by means of Proposition 4.1. It is indeed
possible thanks to the following lemma.

Lemma 4.4. — For every b ∈]12 , 1], every δ > 0, there exists Cb,δ such that for
every u1, u2 ∈ X0,b(R×M), every 1 ≤ N1 ≤ N2,∥∥ 2∏

j=1

∆Nj (uj)
∥∥

L2(R×M)
≤ Cb,δ N

1
2
+δ

1

2∏
j=1

‖∆Nj (uj)‖X0,b(R×M) .
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Proof. — Let us set vj(t) := eit∆∆Nj (uj)(t), j = 1, 2. Then we can write

∆Nj (uj)(t) =
1
2π

∫ ∞

−∞
eitτ e−it∆v̂j(τ) dτ .

Therefore
2∏

j=1

∆Nj (uj)(t) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
eit(τ1+τ2)

( 2∏
j=1

e−it∆v̂j(τj)
)
dτ1dτ2 .

Using the triangle inequality and Proposition 4.1 gives that for every unit interval
I ⊂ R, every δ > 0 there exists Cδ such that∥∥ 2∏

j=1

∆Nj (uj)
∥∥

L2(I×M)
≤ CδN

1
2
+δ

1

∫ ∞

−∞

∫ ∞

−∞

2∏
j=1

‖v̂j(τj)‖L2(M) dτ1dτ2 .

Hence using the Cauchy-Schwarz inequality in (τ1, τ2) gives for b > 1/2,

(4.3)
∥∥ 2∏

j=1

∆Nj (uj)
∥∥

L2(I×M)
≤ Cb,δN

1
2
+δ

1

2∏
j=1

‖〈τ〉bv̂j(τ)‖L2(Rτ×M) =

= Cb,δ N
1
2
+δ

1

2∏
j=1

‖∆Nj (uj)‖X0,b(R×M) .

Using a partition of unity, we can find a ψ ∈ C∞0 (R), supported in [0, 1] such that

(4.4) ∆Nj (uj)(t) =
∑
n∈Z

ψ
(
t− n

2
)
∆Nj (uj(t)) =

∑
n∈Z

∆Nj

(
ψ

(
t− n

2
)
uj(t)

)
.

Notice that if for u ∈ X0,b(R×M), b ∈ [0, 1], we set un(t) = ψ
(
t− n

2

)
u(t) then

(4.5)
∑
n∈Z

‖un‖2
X0,b(R×M) ≤ C‖u‖2

X0,b(R×M) .

Indeed (4.5) is straightforward for b = 0 and b = 1 and it follows by complex
interpolation for b ∈]0, 1[. Using the almost disjointness of the supports of ψ

(
t− n

2

)
,

n ∈ Z, the triangle inequality, estimates (4.3), (4.4) and (4.5) complete the proof of
Lemma 4.4.

Next we apply Lemma 4.4 with ∆NjLj (uj), j = 1, 2 in the place of uj and it follows
from the definition of Xs,b that, for any b > 1/2 and any δ > 0,

(4.6)
∥∥ 2∏

j=1

∆NjLj (uj)
∥∥

L2(R×M)
≤ Cb,δN

1
2
+δ

1 (L1L2)b
2∏

j=1

‖∆NjLj (uj)‖L2(R×M) .
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It is now clear that the proof of Proposition 4.3 can be completed from (4.2) and (4.6)
by a suitable Hölder inequality

Let us now turn to the proof of (3.8). Set ∂ = ∂
∂z and ∂ = ∂

∂z . Thanks to (1.2) and
using that F (0) = 0, we obtain that the function

F (u)− (∂F )(0)u− (∂F )(0)u

is vanishing at least of order 3 at the origin. Therefore, in order to prove (3.8) , it
suffices to prove

(4.7) ‖F (u)‖Xs,−b′ (R×M) ≤ C
(
‖u‖2

X1,b(R×M) + ‖u‖α−1
X1,b(R×M)

)
‖u‖Xs,b(R×M)

assuming that F (u) is vanishing to order 3 in zero. We can write

F (u) =
∑
N1

[
F (SN1(u))− F (SN1/2(u))

]
,

where the sum is taken over all dyadic values of N1 (recall that S1/2(u) = 0). We
have for z, w ∈ C,

F (z)− F (w) = (z − w)
∫ 1

0
∂F (tz + (1− t)w)dt+ (z − w)

∫ 1

0
∂F (tz + (1− t)w)dt .

Therefore

F (SN1(u))− F (SN1/2(u))

= ∆N1(u)G1(∆N1(u), SN1/2(u)) + ∆N1(u)G2(∆N1(u), SN1/2(u)),

with

G1(z1, z2) =
∫ 1

0
∂F (tz1 + z2)dt, G2(z1, z2) =

∫ 1

0
∂F (tz1 + z2)dt.

We have thus the splitting F (u) = F1(u) + F2(u), where

F1(u) =
∑
N1

∆N1(u)G1(∆N1(u), SN1/2(u)) .

Thanks to the growth assumption on V (z), we have the bound

|Gj(z1, z2)| ≤ C(1 + |z1|+ |z2|)α−1, j = 1, 2.

We will provide a bound only for F1(u). The analysis for F2(u) is exactly the same.
We have for dyadic integers N1, N2

∆N1 ∆N2 =

{
∆N1 if N1 = N2,

0 otherwise.
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and hence we can write that for dyadic integers N1, N2,

G1(∆N1SN2(u), SN1/2SN2(u))−G1(∆N1SN2/2(u), SN1/2SN2/2(u))

is equal to
G1(0, SN2(u))−G1(0, SN2/2(u)) if 2N2 ≤ N1,

G1(∆N1(u), SN1/2(u))−G1(0, SN1/2(u)) if N2 = N1,

G1(∆N1(u), SN1/2(u))−G1(∆N1(u), SN1/2(u)) = 0 if N2 ≥ 2N1.

Using the vanishing property of F at the origin allows us to write

G1(∆N1(u), SN1/2(u)) =
∑

N2 : N2≤N1

∆N2(u)H
N2
1 (∆N2(u), SN2/2(u))+

+
∑

N2 : N2≤N1

∆N2(u)H
N2
2 (∆N2(u), SN2/2(u)),

with

HN2
1 (a, b) =

{∫ 1
0 ∂2G1(0, ta+ b)dt if 2N2 ≤ N1,∫ 1
0 ∂1G1(ta, b)dt if N2 = N1,

where (∂1, ∂2) are the derivatives of G1 with respect to the first and the second
arguments respectively. Moreover

HN2
2 (a, b) =

{∫ 1
0 ∂2G1(0, ta+ b)dt if 2N2 ≤ N1,∫ 1
0 ∂1G1(ta, b)dt if N2 = N1.

Notice that

|HN2
j (a, b)| ≤ C(1 + |a|+ |b|)max(α−2,0), j = 1, 2.

We can write

F1(u) =
∑

N2≤N1

∆N1(u)∆N2(u)H
N2
1 (∆N2(u), SN2/2(u))+

+
∑

N2≤N1

∆N1(u)∆N2(u)H
N2
2 (∆N2(u), SN2/2(u)) := F11(u) + F12(u) .

We will provide a bound only for F11(u). The analysis for F12(u) is exactly the
same.
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Similarly to the analysis for G1(∆N1(u), SN1/2(u)), using once again the vanishing
property of F at the origin, allows us to expand HN2

1 as follows

HN2
1 (∆N2(u), SN2/2(u)) =

∑
N3 : N3≤N2

∆N3(u)H
N2,N3
11 (∆N3(u), SN3/2(u))+

+
∑

N3 : N3≤N2

∆N3(u)H
N2,N3
12 (∆N3(u), SN3/2(u)),

where, due to the growth assumptions on V , HN2,N3
1j (a, b) satisfies

(4.8) |HN2,N3
1j (a, b)| ≤ C(1 + |a|+ |b|)max(α−3,0), j = 1, 2.

Of course we can write explicit formulas for HN2,N3
1j (a, b) as we did for HN2

1 (a, b) but
it will not be needed in the sequel. The only information for HN2,N3

1j (a, b) that we
will use is the bound (4.8). Now, we can write

F11(u) =
∑

N3≤N2≤N1

∆N1(u)∆N2(u)∆N3(u)H
N2,N3
11 (∆N3(u), SN3/2(u))+

+
∑

N3≤N2≤N1

∆N1(u)∆N2(u)∆N3(u)H
N2,N3
12 (∆N3(u), SN3/2(u)) := F111(u)+F112(u) .

We will provide a bound only for F111(u). The analysis for F112(u) is exactly the
same. Notice that

(4.9) ∆N =
∑
L

∆NL,

where the sum is taken over all dyadic values of L. For w ∈ X−s,b′(R×M), we set

I :=
∑

L0,L1,L2,L3,N0
N3≤N2≤N1

∫
R×M

∆N0L0(w)
3∏

j=1

∆NjLj (u)H
N2,N3
11 (∆N3(u), SN3/2(u)),

where the sum is taken over dyadic values of Nj , Lj , j = 0, 1, 2, 3. By duality, to
prove (4.7) it suffices to establish the bound

|I| ≤ C‖w‖X−s,b′ (R×M)

(
‖u‖2

X1,b(R×M) + ‖u‖α−1
X1,b(R×M)

)
‖u‖Xs,b(R×M) .

Set

IN0,N1,N2,N3

L0,L1,L2,L3
:=

∣∣∣∫
R×M

∆N0L0(w)
3∏

j=1

∆NjLj (u)H
N2,N3
11 (∆N3(u), SN3/2(u))

∣∣∣ .
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We split I as
|I| ≤ I1 + I2,

where we define I1 and I2 to be the sums of the terms IN0,N1,N2,N3

L0,L1,L2,L3
associated to

indexes such that N0 ≤ ΛN1 and N0 > ΛN1 respectively, and Λ > 1 is a large
constant to be determined later.

We first evaluate I1. Using Proposition 4.3, and the Hölder inequality, we get,
that for every ε > 0 there exists β < 1

2 such that,

IN0,N1,N2,N3

L0,L1,L2,L3
≤ Cε(N2N3)

1
2
+ε(L0L1L2L3)β‖HN2,N3

11 (∆N3(u), SN3/2(u))‖L∞(R×M)

‖∆N0L0(w)‖L2(R×M)

3∏
j=1

‖∆NjLj (u)‖L2(R×M)

Thanks to (4.8) we can write

‖HN2,N3
11 (∆N3(u), SN3/2(u))‖L∞ ≤ C

(
1 + ‖∆N3(u)‖L∞ + ‖SN3/2(u)‖L∞

)max(α−3,0)

Using Lemma 3.2, (3.5) and the Cauchy-Schwarz inequality yield, for b > 1/2,

‖∆N3(u)‖L∞(R×M) ≤
∑
L

‖∆N3L(u)‖L∞(R×M) ≤

≤
∑
L

CN
3
2
3 L

1
2 ‖∆N3L(u)‖L2(R×M) ≤ CN

1
2
3

∑
L

L
1
2
−bLbN3‖∆N3L(u)‖L2(R×M)

≤ CN
1
2
3

( ∑
L

L1−2b
) 1

2
( ∑

L

L2bN2
3 ‖∆N3L(u)‖2

L2(R×M)

) 1
2 ≤ CN

1
2
3 ‖u‖X1,b

We next estimate ‖SN3/2(u)‖L∞ .

‖SN3/2(u)‖L∞(R×M) ≤

≤
∑

N4 : N4≤N3/2

‖∆N4(u)‖L∞(R×M) ≤ C
∑

N4 : N4≤N3/2

∑
L

N
3
2
4 L

1
2 ‖∆N4L(u)‖L2(R×M) ≤

≤ C
( ∑

N4 : N4≤N3/2

∑
L

(N
1
2
4 )2L1−2b

) 1
2
( ∑

N4 : N4≤N3/2

∑
L

L2bN2
4 ‖∆N4L(u)‖2

L2

) 1
2 ≤

≤ CN
1
2
3 ‖u‖X1,b ,

provided b > 1/2. Using the last two estimates, we obtain the bound

(4.10) ‖HN2,N3
11 (∆N3(u), SN3/2(u))‖L∞(R×M) ≤ 1 + C(N

1
2
3 ‖u‖X1,b)max(α−3,0) .
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With (4.10) in hand, we estimate I1. Let us recall a discrete Schur lemma.

Lemma 4.5. — For every Λ > 0, every s > 0 there exists C > 0 such that if (cN0)
and (dN1) are two sequences of nonnegative numbers indexed by the dyadic integers,
then, ∑

N0≤ΛN1

N s
0

N s
1

cN0 dN1 ≤ C
( ∑

N0

c2N0

) 1
2
( ∑

N1

d2
N1

) 1
2
.

Proof. — Let us set

K(N0, N1) := 1lN0≤ΛN1

N s
0

N s
1

.

Summing geometric series imply that there exists C > 0 such that

sup
N0

∑
N1

K(N0, N1) + sup
N1

∑
N0

K(N0, N1) ≤ C .

Therefore the Schur lemma implies the boundedness on l2N0
× l2N1

of the bilinear form
with kernel K(N0, N1). This completes the proof of Lemma 4.5.

In estimation I1, we first sum with respect to L0, L1, N0, N1. Writing

1 =
N s

0

N s
1

N−s
0 N s

1 , (L0L1)β = Lb′
0 L

b
1L

β−b′

0 Lβ−b
1 ,

using Lemma 4.5 and (4.10), after summing geometric series in L0, L1, we can write
for b > 1/2 and 1/2 > b′ > β,

I1 ≤ Cε‖u‖Xs,b(R×M)‖w‖X−s,b′ (R×M)

(
1 + ‖u‖max(α−3,0)

X1,b(R×M)

)
∑

L2,L3

∑
N3≤N2

(N2N3)
1
2
+ε(L2L3)βN

max(α−3,0)
2

3

3∏
j=2

‖∆NjLj (u)‖L2(R×M) .

Since α < 5 and N3 ≤ N2,we have, choosing ε > 0 small enough,

(N2N3)
1
2
+εN

max(α−3,0)
2

3 ≤ N2N3(N2N3)−ε .

Therefore, by summing geometric series in N2, N3, L2, L3, we get the bound

I1 ≤ C‖w‖X−s,b′ (R×M)

(
‖u‖2

X1,b(R×M) + ‖u‖α−1
X1,b(R×M)

)
‖u‖Xs,b(R×M) .

It remains to estimate I2. We start with a rough bound for HN2,N3
11 . By a repetitive

use of Leibniz rule and the Sobolev embeddings, we obtain the following statement.
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Lemma 4.6. — There exists A > 0 such that for every coordinate patch

κ : U ⊂ R3 7−→M,

every γ ∈ N3, there exists Cγ > 0 such that for every u ∈ L2(M),

‖∂γ
xH

N2,N3
11 (∆N3(u(κ(x))), SN3/2(u(κ(x)))‖L∞(U) ≤ CγN

|γ|+A
3

(
1 + ‖u‖max(α−3,0)

L2(M)

)
.

We next state a bound for products of eigenfunctions.

Lemma 4.7. — Let 1 > δ > 0. There exists Λ > 0 such that if

(4.11) N0 ≥ ΛN1, N3 ≤ N2 ≤ N1, N3 ≤ N1−δ
0 ,

then for every γ > 0 there exists Cγ such that for every u,w ∈ L2(M),∣∣∣∣∣∣
∫

M
HN2,N3

11 (∆N3(u), SN3/2(u))Pk0w
3∏

j=1

Pkj
u

∣∣∣∣∣∣ ≤ Cγ

Nγ
0

‖u‖3
L2‖w‖L2

(
1+‖u‖max(α−3,0)

L2(M)

)
,

provided 〈λkj
〉

1
2 ∈ [Nj , 2Nj ], j = 0, 1, 2, 3.

Proof. — A similar argument already appeared in Lemma 2.6 of our previous paper
[8]. The new point here is the presence of HN2,N3

11 . Working in local coordinates,
due to Lemma 2.3, we can substitute Pk0w with the oscillatory integral

(4.12)
∫
e
iλ

1
2
k0

ϕ(x,y0)
a0(x, y0, λ

1
2
k0

)w(y0)dy0 .

Indeed the remainder term can be estimated thanks to the Sobolev embeddings and
Lemma 4.6. We consider three cases.

– Case 1. Suppose first that N1 ≤ N1−δ
0 . Using Lemma 2.5, we integrate by

parts in the variable x by means of the oscillating factor

e
iλ

1
2
k0

ϕ(x,y0)
,

and after q integrations, we gain a factor N−q
0 . On the other hand, due to

Lemma 4.6, the assumption N1 ≤ N1−δ
0 and the Sobolev inequality, we obtain

that the derivation of the amplitude is causing at most a factor N q(1−δ)+A
0 . By

taking q � 1, this completes the proof in the case N1 ≤ N1−δ
0 .

– Case 2. Suppose next that N1 ≥ N1−δ
0 but N2 ≤ N1−δ

0 . In this case we can
substitute Pk0w with (4.12) and Pk1u with∫

e
iλ

1
2
k1

ϕ(x,y1)
a1(x, y1, λ

1
2
k1

)u(y1)dy1 .
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Indeed in the considered case the remainders in the approximation for Pk0w

and Pk1u given by Lemma 2.3 are both O(N−∞
0 ) as operators from L2 to the

Sobolev spaces. Thanks to Lemma 2.5, if we take Λ � 1, we can again integrate
by parts in x with the slightly modified oscillatory factor

e
iλ

1
2
k0

Φ(x,y0,y1)
,

where
Φ(x, y0, y1) = ϕ(x, y0) + λ

− 1
2

k0
λ

1
2
k1
ϕ(x, y1) .

– Case 3. Suppose finally that N1 ≥ N1−δ
0 and N2 ≥ N1−δ

0 . Then we can
substitute Pk0w, Pk1u and Pk2u with the corresponding oscillatory integrals
and we can then argue as in case 2.

This completes the proof of Lemma 4.7.

Lemma 4.7 is now used to get a bound for space time functions.

Lemma 4.8. — Let s ≥ 1, b, b′ ≥ 0 and 1 > δ > 0. Then there exists Λ > 0 such
that if N0, N1, N2, N3 satisfy (4.11) then for every γ > 0 there exists Cγ such that
for every w ∈ X−s,b′(R×M), u ∈ X1,b(R×M),

IN0,N1,N2,N3

L0,L1,L2,L3
≤ CγN

−γ
0 (L2L3)

1
2

Lb′
0 (L1L2L3)b

‖w‖X−s,b′

(
‖u‖2

X1,b + ‖u‖α−1
X1,b

)
‖u‖Xs,b .

Proof. — Define Πk,L as follows

Πk,L(u) :=
1
2π

∫
L≤〈τ+λk〉≤2L

P̂ku(τ)eitτdτ .

Further we set

Λ(N0, N1, N2, N3) := {(k0, k1, k2, k3) : Nj ≤ 〈λkj
〉

1
2 ≤ 2Nj , j = 0, 1, 2, 3} .

Since
∆NL =

∑
k : N≤〈λk〉

1
2 <2N

Πk,L

we get the bound

IN0,N1,N2,N3

L0,L1,L2,L3

≤
∑

Λ(N0,N1,N2,N3)

∣∣∣∣∣∣
∫

R×M
HN2,N3

11 (∆N3(u), SN3/2(u)) Πk0,L0(w)
3∏

j=1

Πkj ,Lj
(u)

∣∣∣∣∣∣ .
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Since PkΠk,L = Πk,L, under the assumption (4.11) a use of Lemma 4.7 yields,

IN0,N1,N2,N3

L0,L1,L2,L3
≤ CγN

−γ
0 sup

t∈R

(
1 + ‖u(t)‖max(α−3,0)

L2(M)

)
∑

Λ(N0,N1,N2,N3)

∫ ∞

−∞
‖Πk0,L0w(t)‖L2(M)

3∏
j=1

‖Πkj ,Lj
u(t)‖L2(M)dt .

For b > 1/2, a use of (3.2) and the Hölder inequality implies that under the assump-
tion (4.11),

IN0,N1,N2,N3

L0,L1,L2,L3
≤ CγN

−γ
0

(
1 + ‖u‖max(α−3,0)

X0,b(R×M)

)
∑

Λ(N0,N1,N2,N3)

‖Πk0,L0w‖L2(R×M)‖Πk1,L1u‖L2(R×M)

3∏
j=2

‖Πkj ,Lj
u‖L∞(R ; L2(M)) .

Since ∆NjLjΠkj ,Lj
= Πkj ,Lj

, for kj such that Nj ≤ 〈λkj
〉

1
2 < 2Nj , using (3.4), we

get

(4.13) ‖Πk0,L0w‖L2(R×M) ≤ CN s
0L

−b′

0 ‖w‖X−s,b′ (R×M) ,

(4.14) ‖Πk1,L1u‖L2(R×M) ≤ CN−s
1 L−b

1 ‖u‖Xs,b(R×M) ≤ CL−b
1 ‖u‖Xs,b(R×M) ,

and using Lemma 3.2, for j = 2, 3,

(4.15) ‖Πkj ,Lj
u‖L∞(R ; L2(M)) ≤ L

1
2
j ‖Πkj ,Lj

u‖L2(R×M)

≤ CL
1
2
−b

j ‖u‖X0,b(R×M) ≤ CL
1
2
−b

j ‖u‖X1,b(R×M) .

Using a crude form of Weyl asymptotics, we get a bound

(4.16) |Λ(N0, N1, N2, N3)| ≤ C
( 3∏

j=0

Nj

)c
.

Lemma 4.8 follows in view of (4.13), (4.14), (4.15) and (4.16).

We fix the constant Λ in the definition of I1 as the one involved in Lemma 4.8. We
split I2 as

I2 := I21 + I22,

with
I21 =

∑
L0,L1,L2,L3

∑
N3≤N2≤N1

∑
N0 : N0≥ΛN1,N3≤N1−δ

0

IN0,N1,N2,N3

L0,L1,L2,L3
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where δ ∈]0, 1[ is to be specified later. Using Lemma 4.8, if b′ > 0 and b > 1/2 a
summation of geometric series provides the bound

I21 ≤ C‖w‖X−s,b′ (R×M)

(
‖u‖2

X1,b(R×M) + ‖u‖α−1
X1,b(R×M)

)
‖u‖Xs,b(R×M) .

It remains to evaluate I22.

Lemma 4.9. — Let s ≥ 1. There exists δ > 0, δ1 > 0, δ2 > 0 such that if
N0 ≥ ΛN1 and N1 ≥ N2 ≥ N3 ≥ N1−δ

0 , then there exists (b, b′) ∈ R2 satisfying (3.7)
such that

IN0,N1,N2,N3

L0,L1,L2,L3
≤
C‖w‖X−s,b′

(
‖u‖2

X1,b + ‖u‖α−1
X1,b

)
‖u‖Xs,b

(N0N1N2N3)δ1(L0L1L2L3)δ2
.

Proof. — We use Proposition 4.3, the Hölder inequality and (4.10). For every ε > 0,
there exists β < 1

2 such that,

IN0,N1,N2,N3

L0,L1,L2,L3
≤ Cε(N2N3)

1
2
+ε(L0L1L2L3)βN

max(α−3,0)
2

3 ‖∆N0L0(w)‖L2(R×M)

3∏
j=1

‖∆NjLj (u)‖L2(R×M)

(
1 + ‖u‖max(α−3,0)

X1,b(R×M)

)
.

Therefore

IN0,N1,N2,N3

L0,L1,L2,L3
≤ Cε

(L0L1L2L3)β

Lb′
0 (L1L2L3)b

N s
0

N s
1 (N2N3)

(N2N3)
1
2
+ε

N
max(α−3,0)

2
3 ‖w‖X−s,b′ (R×M)

(
‖u‖2

X1,b(R×M) + ‖u‖α−1
X1,b(R×M)

)
‖u‖Xs,b(R×M) .

Since α < 5, we observe that there exist ε > 0, δ > 0 and δ1 > 0 such that under
the assumption of the lemma,

N s
0

N s
1 (N2N3)

(N2N3)
1
2
+εN

max(α−3,0)
2

3 ≤ (N0N1N2N3)−δ1 .

The parameter ε > 0 being fixed, we choose β as imposed by Proposition 4.3. Finally
we chose (b, b′) ∈ R2 satisfying (3.7) such that b′ > β. This completes the proof of
Lemma 4.9.

Using Lemma 4.9, a summation of geometric series yields

I22 ≤ C‖w‖X−s,b′ (R×M)

(
‖u‖2

X1,b(R×M) + ‖u‖α−1
X1,b(R×M)

)
‖u‖Xs,b(R×M) .

This completes the proof of (4.7) (and thus of (3.8)) in the case of a three dimensional
compact manifold satisfying Proposition 4.1.
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Remark 4.10. — Let us notice that the estimate (3.8) holds for any sub-quintic
nonlinearity, not necessarily satisfying the gauge condition (1.2). We used (1.2)
in the reduction to F vanishing of order three at zero performed above because it
simplifies a bit the analysis. More precisely for an arbitrary F in the expansions of
G1(∆N1(u), SN1/2(u)) and HN2

1 (∆N2(u), SN2/2(u)) above one should add a constant.
This would force one to analyze quadratic nonlinearities separately which can be done
with our methods.

Thanks to the multilinear nature of our arguments, the proof of (3.9) is essentially
the same as for (3.8). Indeed for suitable F1, F2 one writes

F (u)− F (v) = (u− v)F1(u, v) + (u− v)F2(u, v).

Then we expand
u− v =

∑
N1

∆N1(u− v)

and for j = 1, 2,

Fj(u, v) =
∑
N2

[
Fj(SN2(u), SN2(v))− Fj(SN2/2(u), SN2/2(v))

]
.

One then further expand the difference and after a duality argument the proof of
(3.9) is reduced to a bound for a 4-linear expression multiplied with a factor similar
to HN2,N3

11 (∆N3(u), SN3/2(u)) appeared in the proof of (3.8). We omit the details.

5. Trilinear Strichartz estimates and applications

In this section we prove Theorem 4 for M = S2
ρ × S1 with the standard metric.

5.1. Trilinear Strichartz estimates on M = S2
ρ × S1. — We do not know

whether Proposition 4.1 holds in this case. Instead, we shall prove a trilinear
Strichartz-type estimate. Let us first introduce some notation. As usual we identify
S1 with R/(2πZ). The eigenfunctions of ∆ in the considered case are

λm,n = m2 + κ(n2 + n), m ≥ 0, n ≥ 0, κ =
1
ρ2
.

Let us denote by Πn the spectral projector on spherical harmonics of degree n ≥ 0
on S2

ρ . For f(ω, θ) ∈ L2(S2
ρ × S1), we set

Θmf(ω) :=
1
2π

∫ 2π

0
f(ω, θ) e−imθdθ .
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The crucial estimate is the following.

Proposition 5.1. — For every interval I ⊂ R, every ε > 0 there exists a constant
C such that for every N1 ≥ N2 ≥ N3 ≥ 1, every f1, f2, f3 ∈ L2(M),∥∥ 3∏

j=1

eit∆(∆Njfj)
∥∥

L2(I×M)
≤ CN

5
4
3 N

3
4
+ε

2

3∏
j=1

‖∆Njfj‖L2(M) .

Proof. — By a time translation we can suppose that I = [0, T ]. Since κ is not
necessarily integer, we can not employ the argument of Proposition 4.1 which reduces
the analysis to the case I = [0, 2π]. We shall instead use the following lemma, already
used in a similar context in [4].

Lemma 5.2. — Let Λ be a countable set of real numbers. Then for every T > 0
there exists CT such that for every sequence (aλ) indexed by Λ one has∥∥ ∑

λ∈Λ

aλ e
iλt

∥∥
L2(0,T )

≤ CT

( ∑
l∈Z

( ∑
λ : |λ−l|≤1/2

|aλ|
)2) 1

2
.

Proof. — Let ψT ∈ C∞0 (R) be such that ψT = 1 on the interval [0, T ]. Set

f(t) :=
∑
λ∈Λ

ψT (t) aλ e
iλt .

Then
f̂(τ) =

∑
λ∈Λ

ψ̂T (τ − λ)aλ

and the problem is to show that

‖f̂‖L2(R) ≤ CT

( ∑
l∈Z

( ∑
λ : |λ−l|≤1/2

|aλ|
)2) 1

2
.

Next, we write

|f̂(τ)| ≤
∑
l∈Z

∑
λ : |λ−l|≤1/2

|ψ̂T (τ − λ)| |aλ| ≤
∑
l∈Z

K(l, τ)h(l),

where
h(l) =

∑
λ : |λ−l|≤1/2

|aλ| , K(l, τ) = sup
λ : |λ−l|≤1/2

|ψ̂T (τ − λ)| .

It is clear that |λ− l| ≤ 1/2 implies
1

1 + |τ − λ|
≤ C

1 + |τ − l|



NLS ON THREE DIMENSIONAL MANIFOLDS 41

and therefore, using that ψT ∈ C∞0 (R), we deduce that for every N ∈ N there exists
CT,N such that

|K(l, τ)| ≤
CT,N

(1 + |τ − l|)N
.

A use of the Schur lemma completes the proof of Lemma 5.2.

We expand

( 3∏
j=1

eit∆(∆Njfj)
)
(ω, θ) =

=
∑

e−i(λm1,n1+λm2,n2+λm3,n3 )tei(m1+m2+m3)θ
3∏

j=1

(ΠnjΘmjfj)(ω) ,

where the sum is taken over (mj , nj), j = 1, 2, 3 such that Nj ≤ 〈λmj ,nj 〉
1
2 < 2Nj .

Using the Parseval identity with respect to θ and Lemma 5.2, we obtain

∥∥ 3∏
j=1

eit∆(∆Njfj)
∥∥2

L2([0,T ]×M)

≤ CT

∑
(l,ξ)∈Z2

∥∥∥ ∑
|l−λm1,n1−λm2,n2−λm3,n3 |≤1/2

ξ=m1+m2+m3

3∏
j=1

∣∣∣ΠnjΘmjfj

∣∣∣∥∥∥2

L2(S2
ρ)
,

where the summation over (m1,m2,m3, n1, n2, n3) is restricted to (mj , nj) such that
Nj ≤ 〈λmj ,nj 〉

1
2 < 2Nj , j = 1, 2, 3. Applying the triangle inequality for the L2(S2

ρ)
norm, the Cauchy-Schwarz inequality in the summation over (m1,m2,m3, n1, n2, n3),
and the trilinear estimate (1.6) of Theorem 2 yields

∥∥ 3∏
j=1

eit∆(∆Njfj)
∥∥2

L2([0,T ]×M)

≤
∑

(l,ξ)∈Z2

∑
|l−λm1,n1−λm2,n2−λm3,n3 |≤1/2

ξ=m1+m2+m3

|Λ(l, ξ)|(N2N3)
1
2

3∏
j=1

‖ΠnjΘmjfj‖2
L2(S2

ρ)

≤ (N2N3)
1
2 sup

(l,ξ)∈Z2

|Λ(l, ξ)|
3∏

j=1

‖fj‖2
L2(M) ,
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where

Λ(l, ξ) := {(m1,m2,m3, n1, n2, n3) ∈ N6 :
∣∣l − 3∑

j=1

(m2
j + κ(n2

j + nj))
∣∣ ≤ 1/2,

ξ = m1 +m2 +m3, Nj ≤ 〈λmj ,nj 〉
1
2 < 2Nj , j = 1, 2, 3} .

It remains to bound the size of Λ(l, ξ). The number of possible (m3, n3) is bounded
by CN2

3 . The number of possible m2 is bounded by CN2. Thus the number of
possible (m2,m3, n3) is bounded by CN2N

2
3 . Let us now fix a possible triple

(m2,m3, n3). Our goal is evaluate the number of possible (m1, n1, n2) such that
(m1,m2,m3, n1, n2, n3) ∈ Λ(l, ξ). In view of the imposed restrictions, we can elimi-
nate m1 by concluding that (n1, n2) should satisfy∣∣l − (ξ −m2 −m3)2 −m2

2 −m2
3 − κ

[
n2

1 + n2
2 + n2

3 + n1 + n2 + n3

]∣∣ ≤ 1
2

or equivalently

(5.1)
∣∣(2n1 + 1)2 + (2n2 + 1)2 −R

∣∣ ≤ 2
κ
,

where

R = −4(n2
3 + n3) + 2 +

4
κ

[
l − (ξ −m2 −m3)2 −m2

2 −m2
3

]
.

Using Lemma 4.2, uniformly with respect to R, the number of integer solutions
(n1, n2) ∈ [0, CN1] × [0, CN2] of the inequality (5.1) is bounded by CεN

ε
2 which

implies the estimate

|Λ(l, ξ)| ≤ CεN
2
3N

1+ε
2 .

The proof of Proposition 5.1 is now completed.

5.2. Using trilinear Strichartz estimates. — From now on we simply assume
that M is a three dimensional compact manifold satisfying Proposition 5.1. Pro-
ceeding as in [8, Section 3.2] one can show, for instance, that the product of any
Zoll surface with S1 has this property. As a consequence it can be remarked that in
fact Theorem 1 holds for any such manifold.

For our purpose in this section, we will first use the following weaker form of
Proposition 4.1 which is a consequence of Proposition 5.1.



NLS ON THREE DIMENSIONAL MANIFOLDS 43

Proposition 5.3. — For every interval I ⊂ R, every ε > 0 there exists a constant
C such that for every N1, N2 ≥ 1, every f1, f2 ∈ L2(M),

∥∥ 2∏
j=1

eit∆(∆Njfj)
∥∥

L2(I×M)
≤ C(min(N1, N2))

3
4
+ε

2∏
j=1

‖∆Njfj‖L2(M) .

Proof. — It suffices to apply Proposition 5.1 with f3 = 1.

Proposition 5.1 and Proposition 5.3 now imply the following statement.

Proposition 5.4. — For every ε > 0 there exist β < 1
2 and C > 0 such that for

every N1 ≥ N2 ≥ N3 ≥ 1, L1, L2, L3 ≥ 1, every u1, u2, u3 ∈ L2(R×M),

(5.2)
∥∥ 2∏

j=1

∆NjLj (uj)
∥∥

L2 ≤ C(L1L2)βN
3
4
+ε

2

2∏
j=1

‖∆NjLj (uj)‖L2

and

(5.3)
∥∥ 3∏

j=1

∆NjLj (uj)
∥∥

L2 ≤ C(L1L2L3)βN
5
4
+ε

3 N
3
4
+ε

2

3∏
j=1

‖∆NjLj (uj)‖L2 .

Proof. — One can show that Proposition 5.3 implies (5.2) exactly as we did in the
proof of Proposition 4.3. The proof of (5.3) follows similar lines. First, using Lemma
3.2 and the Hölder inequality we get

(5.4)
∥∥ 3∏

j=1

∆NjLj (uj)
∥∥

L2 ≤

≤ ‖∆N1L1(u1)‖L6(R ; L2(M))

3∏
j=2

‖∆NjLj (uj)‖L6(R ; L∞(M)) ≤

≤ C (N2N3)
3
2 (L1L2L3)

1
3

3∏
j=1

‖∆NjLj (uj)‖L2 .

Next, exactly as in the proof of Proposition 4.3, we obtain that for every unit
interval I ⊂ R, every b > 1/2, every δ > 0 there exists Cb,δ such that for every
N1 ≥ N2 ≥ N3 ≥ 1, every u1, u2, u3 ∈ X0,b(R×M),

(5.5)
∥∥ 3∏

j=1

∆Nj (uj)
∥∥

L2(I×M)
≤ Cb,δ N

3
4
+δ

2 N
5
4
3

3∏
j=1

‖∆Nj (uj)‖X0,b .
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Using the partition of unity (4.4), we get the bound

(5.6)
∥∥ 3∏

j=1

∆NjLj (uj)
∥∥

L2(R×M)
≤

≤ Cb,δN
3
4
+δ

2 N
5
4
3 (L1L2L3)b

3∏
j=1

‖∆NjLj (uj)‖L2(R×M) .

Finally, a suitable interpolation between (5.4) and (5.6) completes the proof of
Proposition 5.4.

Let us now turn to the proof of Theorem 4 in the case M = S2
ρ × S1 (or more

generally any manifold satisfying Proposition 5.1). We can again suppose that F (u)
is vanishing at least at order three at zero. We expand F (u) as we did in section 4.
We even make one more expansion of the terms HN2,N3

1j and it results that estimate
(3.8) is a consequence of the bounds

(5.7) J ≤ C‖w‖X−s,b′ (R×M)‖u‖
3
Xs,b(R×M)

and

(5.8) I ≤ C‖w‖X−s,b′ (R×M)

(
‖u‖3

X1,b(R×M) + ‖u‖α−1
X1,b(R×M)

)
‖u‖Xs,b(R×M) ,

where

J =
∑

L0,L1,L2,L3

∑
N0

∑
N3≤N2≤N1

∣∣∣∫
R×M

∆N0L0(w)
3∏

j=1

∆NjLj (u)
∣∣∣

and

I =
∑

L0,L1,L2,L3,L4

∑
N0

∑
N4≤N3≤N2≤N1∣∣∣∫

R×M
∆N0L0(w)

( 4∏
j=1

∆NjLj (u)
)
HN2,N3,N4(∆N4(u), SN4/2(u))

∣∣∣ ,
with sums taken over the dyadic values of Nj and Lj , j = 0, 1, 2, 3, 4. Moreover
HN2,N3,N4(a, b) enjoys the bound

|HN2,N3,N4(a, b)| ≤ C(1 + |a|+ |b|)max(α−4,0) .
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In addition for 4 < α < 5, we can further expand HN2,N3,N4 and we can get the
bound

(5.9)
∣∣HN2,N3,N4(∆N4(u), SN4/2(u))

∣∣ 1
α−4 ≤ C

∑
N5 : N5≤N4

|∆N5(u)| .

The proof of (5.7) is a consequence of the bilinear estimate (5.2). More precisely,
using (5.2) and the Hölder inequality, we obtain that for every ε > 0 there exists
β < 1/2 such that∣∣∣∣∣∣

∫
∆N0L0(w)

3∏
j=1

∆NjLj (u)

∣∣∣∣∣∣ ≤ C(N2N3)
3
4
+εLβ

0‖∆N0L0(w)‖L2

3∏
j=1

Lβ
j ‖∆NjLj (u)‖L2 .

Since for ε < 1/4 we have 3
4 + ε < 1, we can complete the proof of (5.7) as we did

in section 4. A similar argument (using both (5.2) and (5.3)) is valid for (5.8), if
α ≤ 4.

To prove (5.8) if 4 < α < 5, we use Proposition 5.4 in its full strength. Set

IN0N1N2N3N4
L0L1L2L3L4

:=
∣∣∣∫

R×M
∆N0L0(w)

( 4∏
j=1

∆NjLj (u)
)
HN2,N3,N4(∆N4(u), SN4/2(u))

∣∣∣ .
In order to estimate IN0N1N2N3N4

L0L1L2L3L4
, we use the following form of Hölder’s inequality.

(5.10) ∀γ ∈]0, 1],
∣∣∣∣∫

R×M
fg

∣∣∣∣ ≤ ( ∫
R×M

|f |
)1−γ( ∫

R×M
|f ||g|

1
γ

)γ
.

Since 4 < α < 5, γ = α− 4 ∈]0, 1[. Using (5.10), we can write,

(5.11) IN0N1N2N3N4
L0L1L2L3L4

≤ [JN0N1N2N3N4
L0L1L2L3L4

]1−γ [KN0N1N2N3N4
L0L1L2L3L4

]γ ,

where

JN0N1N2N3N4
L0L1L2L3L4

=
∫

R×M

∣∣∣∆N0L0(w)
( 4∏

j=1

∆NjLj (u)
)∣∣∣.

Thanks to (5.9), the second factor KN0N1N2N3N4
L0L1L2L3L4

in (5.11) enjoys the bound

KN0N1N2N3N4
L0L1L2L3L4

≤ C
∑

N5 : N5≤N4

∫
R×M

∣∣∣∆N0L0(w)
( 4∏

j=1

∆NjLj (u)
)∣∣∣ |∆N5(u)| .
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Let us now bound JN0N1N2N3N4
L0L1L2L3L4

. Using Hölder inequality and Proposition 5.4 (both
(5.2) and (5.3)), we obtain that for every ε > 0 there exists β < 1/2 such that

JN0N1N2N3N4
L0L1L2L3L4

≤ C(N2N3)
3
4
+εN

5
4
+ε

4 Lβ
0‖∆N0L0(w)‖L2

4∏
j=1

Lβ
j ‖∆NjLj (u)‖L2 .

Next we estimate KN0N1N2N3N4
L0L1L2L3L4

. By writing ∆N5 =
∑

L5
∆N5L5 , using Hölder’s

inequality and Proposition 5.4 (twice (5.3)), we obtain that for every ε > 0 there
exists β < 1/2 such that KN0N1N2N3N4

L0L1L2L3L4
is bounded by

C
∑

N5 : N5≤N4

∑
L5

(N2N3)
3
4
+ε(N4N5)

5
4
+εLβ

0‖∆N0L0(w)‖L2

5∏
j=1

Lβ
j ‖∆NjLj (u)‖L2 .

Writing N
5
4
+ε

5 = N5N
1
4
+ε

5 , using the Cauchy-Schwarz inequality, we get for b > β,∑
N5 : N5≤N4

∑
L5

N
5
4
+ε

5 Lβ
5‖∆N5L5(u)‖L2 ≤

≤
( ∑

N5 : N5≤N4

∑
L5

[
Lβ−b

5 N
1
4
+ε

5

]2) 1
2 ‖u‖X1,b ≤ CN

1
4
+ε

4 ‖u‖X1,b .

Therefore, we have the estimate,

KN0N1N2N3N4
L0L1L2L3L4

≤ C(N2N3)
3
4
+εN

5
4
+ε

4 Lβ
0‖∆N0L0(w)‖L2( 4∏

j=1

Lβ
j ‖∆NjLj (u)‖L2

)
N

1
4
+ε

4 ‖u‖X1,b .

Coming back to (5.11), we obtain the following estimate

(5.12) IN0N1N2N3N4
L0L1L2L3L4

≤ C
N s

0

N s
1

(N2N3)
3
4
+εN

5
4
+ε

4 N
γ( 1

4
+ε)

4

N2N3N4
Lβ−b′

0 (L1L2L3L4)β−b

(
N−s

0 Lb′
0 ‖∆N0L0(w)‖L2

)(
N s

1L
b
1‖∆N1L1(u)‖L2

)( 4∏
j=2

NjL
b
j‖∆NjLj (u)‖L2

)
‖u‖γ

X1,b .

Let us take ε > 0 such that (3
2 + 2ε) + (5

4 + ε) + γ(1
4 + ε) < 3 or equivalently,

0 < ε <
1− γ

4(3 + γ)
=

5− α

4(α− 1)
.
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Note that a proper choice of ε is possible thanks to the subcritical assumption α < 5.
Therefore there exists θ > 0 such that for N4 ≤ N3 ≤ N2,

(5.13)
(N2N3)

3
4
+εN

5
4
+ε

4 N
γ( 1

4
+ε)

4

N2N3N4
≤ C

(N2N3N4)θ
.

As in section 4, we split I ≤ |I1| + |I2|, where I1 is the contribution to I of the
sum over (N0, N1) such that N0 ≤ ΛN1 and Λ � 1 is a large constant and I2 the
contribution corresponding to N0 > ΛN1. Thanks to (5.13) and (5.12), we get the
needed bound for I1 by summing geometric series in L0, L1, L2, L3, L4, N2, N3, N4

while the sum over (N0, N1) is performed by invoking Lemma 4.5. The bound for
I2 and (3.9) in the case under consideration can be established exactly as we did in
the previous section. This completes the proof of Theorem 4.

Remark 5.5. — A careful examination of the proof above shows that Theorem 4
still holds for a three dimensional manifold M satisfying the more general trilinear
Strichartz estimate,

∃ a > 0 : ∀T > 0, ∀ ε > 0, ∃C > 0 : ∀N3 ≤ N2 ≤ N1, ∀ f1, f2, f3 ∈ L2(M) ,∥∥ 3∏
j=1

eit∆(∆Njfj)
∥∥

L2([0,T ]×M)
≤ CN1+a

3 N1−a+ε
2

3∏
j=1

‖∆Njfj‖L2(M) .

Appendix A

This appendix is devoted to the optimality of the assumption α < 5 in Theorem 1.
Let us again consider a 3d-manifold M endowed with a Riemannian metric g and ∆
the Laplace-Beltrami operator acting on functions of M . We consider the following
non-linear Schrödinger equation on M

(A.1) (i∂t + ∆)u = F (u), u|t=0 = u0 ∈ H1(M)

where F (z) = (1 + |z|2)
α−1

2 z and α > 5.
Let us fix s > 3/2. Equation (A.1) is well-posed for data in Hs(M) by the energy

method. In particular, for every bounded set B ⊂ Hs(M) there exists Ts such
that for every u0 ∈ Hs(M) the Cauchy problem (A.1) has a unique solution on the
interval [−Ts, Ts] in the class C([−Ts, Ts] ; Hs(M)). Moreover the flow map

Φ : u0 −→ u
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is continuous (and even Lipschitz continuous) from B, endowed with the Hs(M)
metric, to C([−Ts, Ts] ; Hs(M)). The next statement shows that Φ can not be
extended as a continuous map on bounded sets of H1(M).

Theorem 5. — Let B be a bounded set of H1(M). There is no T > 0 such that
the map Φ can be extended as a continuous map from B to C([−T, T ] ; H1(M)).

The result of Theorem 5 readily follows from the following statement.

Theorem 6. — There exist a sequence (tn)n∈N of positive numbers tending to zero
and a sequence (un(t))n�1 of C∞(M) functions defined for t ∈ [0, tn], such that

(i∂t + ∆)un = (1 + |un|2)
α−1

2 un

with
lim

n→∞
‖un(0)‖H1(M) = 0 ,

and
lim

n→∞
‖un(tn)‖H1(M) = ∞ .

Remark A.1. — The result of Theorem 6, in the particular case M = R3, endowed
with the standard metric, can be found in [11]. We also refer to [11] for more ill-
posedness results for NLS on Rd, d ≥ 1, with power-like nonlinearities and data in
Hs, s > 0.

Remark A.2. — The proof of Theorem 6 is strongly inspired by [11]. The only
observation we make here is that the dilation arguments involved in the proof in [11]
are not essential. It is clear from the proof we present that the discussed phenomenon
is completely local, i.e. the whole analysis is close to a point of M for very small
times.

Proof. — We work in a local coordinate patch around 0 and consider as initial data
the sequence

un(0) = κnn
1/2ϕ(nx), n� 1,

where ϕ is a fixed non negative smooth compactly supported function and

κn = log−δ(n)

with δ > 0 to be fixed later. Remark that

‖un(0)‖H1(M) ∼ κn.
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Let us set f(z) := (1 + |z|2)
α−1

2 . Then

vn(t) = κnn
1/2ϕ(nx)e−itf(κnn1/2ϕ(nx))

is the solution of the equation

(A.2) i∂tvn = F (vn), vn|t=0 = un(0) .

Let us give a basic bound for vn(t).

Lemma A.3. — There exist c > 0 and C > 0 such that for any t ≥ 0,

‖∇xvn(t)‖L2 ≥ κn

(
c t κα−1

n n(α−1)/2 − C
)
.

Proof. — The change of variable y = nx gives

(A.3)

‖∇xvn(t)‖L2 =
∥∥∥∇y

[
κnϕ(y)e−itf(κnn1/2ϕ(y))

]∥∥∥
L2

≥ κn

(
2t ‖ϕ(y)∂zf(κnn

1/2ϕ(y)) · ∇yϕ(y)‖L2 − ‖∇yϕ‖L2

)
≥ c t κα

nn
(α−1)/2 − Cκn

which implies the lemma.

For functions u on M , we define the quantity,

En(u) :=
[
n2‖u‖2

L2 + n−2‖∆u‖2
L2

] 1
2
.

The key point in the proof of Theorem 6 is the next statement.

Lemma A.4. — The solution un of (A.1) with initial data

u0 = κnn
1/2ϕ(nx) ∈ C∞(M)

exists for 0 ≤ t ≤ tn, where

tn = log1/8(n)n−(α−1)/2.

Moreover, there exist ε > 0 such that for t ∈ [0, tn],

En(un(t)− vn(t)) ≤ Cn−ε .

Proof. — Since the initial data are in Hs, s > 3/2, we know that un(t) exist on a
(non empty) maximal time interval [0, t̃n[. Consequently, to prove Lemma A.4, we
simply prove the a priori estimates which ensure, by a classical bootstrap argument,
both the existence and the control on En(un(t)−vn(t)) for t ∈ [0, tn]∩ [0, t̃n[. Let us
set wn := un−vn. For the sake of conciseness, in the rest of the proof of Lemma A.4,
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we drop the subscript n of un, vn and wn. The a priori estimates involved in the
proof are simply energy inequalities in the equations

(i∂t + ∆)w = F (u)− F (v)−∆v = O(1 + |v|α−1 + |w|α−1)w −∆v

and
(i∂t + ∆)∆w = ∆ (F (u)− F (v))−∆2v = −∆2v + Λ,

where

Λ := O(1 + |w|α−1 + |v|α−1)∆w+

+O((1 + |w|α−2 + |v|α−2)(1 + |w|+ |v|+ |∇w|+ |∇v|))∇w+

+O
(
(1 + |w|α−3 + |v|α−3)(1 + |∇v|2 + (|v|+ |w|)|∇2v|)

)
w .

From the explicit formula for v, we have for 0 ≤ t ≤ tn, k = 0, 1, 2, . . . ,

‖∇kv‖L∞ ≤ Cn1/2+k logk/8(n) .

According to the Gagliardo-Nirenberg inequalities,

(A.4) ‖f‖L∞ ≤ C‖f‖3/4
H2 ‖f‖

1/4
L2 ≤ Cn1/2En(f)

we deduce

(A.5) n ‖O(1 + |v|α−1 + |w|α−1)w‖L2 ≤ C
(
1 + ‖v‖α−1

L∞ + ‖w‖α−1
L∞

)
n‖w‖L2 ≤

≤ C n(α−1)/2(En(w) + Eα
n (w)) .

To estimate Λ, we proceed similarly. More precisely, thanks to (A.4), we estimate
systematically the terms involving v or w below the O sign in L∞. The only term
which cannot be estimated by invoking (A.4) is

(A.6) O((1 + |w|α−2 + |v|α−2)(|∇w|))∇w.

In order to evaluate (A.6), we use the bound

‖∇w‖L4 ≤ C‖∇w‖H3/4 ≤ Cn3/4En(w)

and we obtain

(A.7) ‖(A.6)‖L2 ≤ C n(α+1)/2(En(w) + Eα
n (w)) .

We are therefore conducted to the following estimate for Λ

(A.8) n−1 ‖Λ‖L2 ≤ C n(α−1)/2 log1/4(n)(En(w) + Eα
n (w)) .

Next, thanks to the formula for v, for 0 ≤ t ≤ tn, we estimate the source terms,

(A.9) n‖∆v‖L2 + n−1‖∆2v‖L2 ≤ Cn2 log1/2(n)
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According to (A.5), (A.7) and (A.9), we obtain

d

dt
E2

n(w) ≤ C n(α−1)/2 log1/4(n)(E2
n(w) + Eα+1

n (w)) + Cn2 log1/2(n)En(w) .

Suppose first that En(w) ≤ 1 which is clearly the case at least for t � 1 since
w|t=0 = 0. Notice that

2n2 log1/2(n)En(w) ≤ n(α−1)/2 log1/4(n)E2
n(w) +

n4 log(n)
n(α−1)/2 log1/4(n)

.

Therefore
d

dt

[
e−C t n(α−1)/2 log1/4(n)E2

n(w)
]
≤ C n4−α−1

2 log3/4(n) e−C t n(α−1)/2 log1/4(n) .

Integrating the last inequality between 0 and t gives the estimate

En(w) ≤ C n2−α−1
2 log1/4(n) eC t n(α−1)/2 log1/4(n) .

For every γ > 0 there exists Cγ such that for t ∈ [0, tn],

C tn(α−1)/2 log1/4(n) ≤ C log3/8(n) ≤ γ log n+ Cγ

Since α > 5, by taking γ > 0 small enough, we obtain that there exists ε > 0 such
that for t ∈ [0, tn], we have

(A.10) En(w) ≤ C n−ε .

Finally the usual bootstrap argument allows to drop the assumption En(w) ≤ 1.
This completes the proof of Lemma A.4.

It is clear that by interpolation, the quantity En(u) controls uniformly with respect
to n the H1 norm of u. Consequently, it follows from Lemma A.3 and Lemma A.4
that for δ < 1

8α and n� 1,

‖un(tn)‖H1 ≥ C log
1
8
−αδ(n) .

This completes the proof of Theorem 6.
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[16] L. Hörmander. Oscillatory integrals and multipliers on FLp. Ark. Math., 11:1–11, 1973.
[17] T. Kato. On nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré, Physique
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