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Deterministic results

Consider the one-dimensional defocusing NLS{
i∂su + ∆u = |u|r−1u, (s, y) ∈ R× R,
u(0, y) = f (y),

(NLSr )

Deterministic theory:
–Global WP: equation is well posed in L2(R) as soon as p ≤ 5 and
the assumption p ≤ 5 is known to be optimal in some sense (no
continuous flow, Christ-Colliander-Tao and Burq-Gérard-Tzvetkov)
– p ≥ 5 Scattering in L2 (Dodson for p = 5)
– 3 < p0 < p for initial data in H1 = H1 ∩ L2/〈x〉 Scattering in H1

(Ginibre-Velo Tsutsumi).
– 3 < p for initial data in H1 = H1 ∩ L2/〈x〉 Scattering in L2

(Kato?)



Invariant measures
– Measures on the space of initial data (L2) such that almost surely
global existence: flow Φ(s)
– Image of the measure by the flow Φ∗(s)µ ???
– For dispersive equations on Rd no (non trivial) invariant
measures. Indeed, if µ invariant, and supported on Hs(Rd), so that
‖u‖Hs(Rd ) is µ-integrable. Then

E(‖χ(x)u0‖Hs(Rd )) = E(‖χ(x)e is∆yu0‖Hs(Rd )),

But for all u0 ∈ Hs(Rd), because of dispersion

lim
s→+∞

‖χ(y)e is∆yu0‖Hs(Rd ) = 0

Hence, by dominated convergence

E(‖χ(y)u0‖Hs(Rd )) = lim
s→+∞

E(‖χ(y)e is∆yu0‖Hs(Rd )) = 0⇒ µ = δu0=0.



Objectives

Work on NLSp

• Exhibit for the one dimensional Schrödinger equation examples
of measures µ for which it is possible to describe the evolution
by the linear flow S(t)∗µ

• Show that the evolution by the non linear flow of the measure,
Φ(s)∗µ is absolutely continuous with respect to S(s)∗µ

• Show that almost surely there exists a unique global solution
to NLSp, ∀p > 1

• Use this absolute continuity to deduce good estimates for the
time evolution ∀p > 1 and new almost sure scattering results
for NLSp, p > 3



The measures
The one-dimensional harmonic oscillator and Hermite functions

H = −∂2
x + x2, Hen = λ2

nen, λn =
√
2n + 1.

form a Hilbert basis of L2(R). The harmonic Sobolev spaces
Hs ∈ R, by

Hs(R) =
{
u ∈ L2(R), Hs/2u ∈ L2(R)

}
,

Let {gn}n≥0 independent complex standard Gaussian variables.
For α > 0 the probability measure µα on H−s , s > 0 is defined by

Ω→ H−s(R)

ω 7→ uω = α

+∞∑
n=0

1
λn

gn(ω)en,

µα(Hs) = 0, s ≥ 0, µα(Hs) = 1, s < 0

µα(Lp(R)) = 1,∀p > 2.

µα is supported on the harmonic oscillator Besov space B0
2,∞(R)



The linear evolution

S(t) = e it∂
2
x , (i∂t + ∂2

x )S(t)u0 = 0, S(0) = Id

The measure S(t)∗µ is also a Gaussian measure

uωt =
+∞∑
n=0

1
λn

gn(ω)etn,

where etn is a Hilbert basis of L2 composed of eigenfunctions of a
twisted harmonic oscillator

Hte
t
n = λ2

ne
t
n, Ht = −(1 + 4t2)∂2

x + 2i(tx∂x + ∂xx) + x2.

Proposition
All the measures µtα, α ∈ R∗,+, t ∈ R are pairwise singular
(supported on disjoint sets)



A.s. global existence
Theorem
Let p > 1, and µ = µ0

1e
−‖u‖p+1

Lp+1/(p+1). Then there exists σ > 0
such that for µ-a.e. initial data u0, there exists a unique global
solution u = Ψ(t)u0,

u ∈ S(t)u0 + C 0(Rt ;Hσ(R)),

For p ≥ 2, one can take σ = 1/2−. Furthermore the measure
Ψ(t)∗(µ) is absolutely continuous with respect to S(t)∗µ.
∀A ∈ H−ε,

S(t)∗µ(A) ≤


(
Ψ(t)∗µ(A)

)t p−5
2

if p < 5
Ψ(t)∗µ(A) if p ≥ 5

(1)

Ψ(t)∗µ(A) ≤


(
S(t)∗µ(A)

)t 5−p
2

if p > 5
S(t)∗µ(A) if p ≤ 5

(2)



A.s. scattering

Theorem
Let p > 1, Then a.s. we have

‖Ψ(t)u0‖Lp+1 ≤ C
log(t)1/(p+1)

t( 1
2−

1
p+1 )

As a consequence, for p > 3 a.s. the solution scatters: there exists
σ > 0 such that for a.e. initial data u0, there exists v0 ∈ Hσ such
that

lim
t→+∞

‖Ψ(t)u0 − S(t)(u0 + v0)‖Hσ = 0.

(for p > 2 +
√
5 we can take σ = 1/2−).



Lens transform: compactification of space-time

For |t| < π
4 , x ∈ R. define

u(t, x) = (LU)(t, x) =
1

cos
1
2 (2t)

U
( tan(2t)

2
,

x

cos(2t)

)
e−

ix2tan(2t)
2 ,

(3)

L
(
e is∂

2
yU
)

= e−it(s)HU, t(s) =
arctan(2s)

2
(4)

Moreover, suppose that U(s, y) is a solution NLSp. Then the
function u(t, x) satisfiesi∂tu − Hu = cos

p−5
2 (2t)|u|p−1u, |t| < π

4
, x ∈ R,

u(0, ·) = u0 = U0.
(5)



A.s. global existence, harmonic version
Theorem
Let p > 1, and µ = µ0

1e
−‖u‖p+1

Lp+1/(p+1). Then there exists σ > 0
such that for µ-a.e. initial data u0, there exists a unique solution
u = Ψ(t, 0)u0 on (−π/4, π/4),

u ∈ S(t)u0 + C 0(Rt ;Hσ(R)),

For p ≥ 2, one can take σ = 1/2−. Furthermore the measure
Ψ(t, 0)∗(µ) is absolutely continuous with respect to µ. ∀A ∈ H−ε,

µ(A) ≤


(
Ψ(t)∗µ(A)

)cos(2t)
p−5
2

if p < 5
Ψ(t)∗µ(A) if p ≥ 5

(6)

Ψ(t)∗µ(A) ≤


(
µ(A)

)cos(2t)
5−p
2

if p > 5
µ(A) if p ≤ 5

(7)



A.s. scattering, harmonic version

Theorem
Let p > 1, Then a.s. we have

‖Ψ(t, 0)u0‖Lp+1 ≤ C log(t)1/(p+1)

As a consequence, for p > 3 a.s. the solution exists on [−π
4 ,

π
4 ]:

there exists σ > 0 such that for a.e. initial data u0, there exists
v0 ∈ Hσ such that

lim
t→±π/4

‖Ψ(t, 0)u0 − S(t)(u0 + v0)‖Hσ = 0.

(for p > 2 +
√
5 we can take σ = 1/2−).



Properties of the measures

Linear properties q < +∞

P(‖S(t)u‖Lqt ;W 1/4−,4 > λ) ≤ Ce−cλ
2
,

P(‖S(t)u‖LqtW 1/6,∞ > λ) ≤ Ce−cλ
2
,

P(‖〈x〉−1/2S(t)u‖L2
t ;H1/2− > λ) ≤ Ce−cλ

2
,

Bilinear properties

P(‖(S(t)u)2‖Lqt ;H1/2− > λ) ≤ Ce−cλ
2
,

P(‖|S(t)u|2‖Lqt ;H1/2− > λ) ≤ Ce−cλ
2
,



a.s. local Cauchy theory
Theorem
Let p > 1, as long as we stay away from ±π/4, then a.s. there
exists T and a unique solution toi∂tu − Hu = cos

p−5
2 (2t)|u|p−1u, |t| < π

4
, x ∈ R,

u(0, ·) = u0 = U0.
(8)

in the space
S(t)u0 + C 0

t ;Hσ.

Furthermore, the time existence is bounded from below by a
negative power of the norms appearing in previous slide, hence

P(T < τ) ≤ Ce−cτ
−δ

and on such time interval, the solution remains essentially bounded
by initial data



An argument by Bourgain (case of invariant measures)
• A nice local Cauchy theory: initial data of size smaller than R
the solution exists (+ nice estimates for t ∈ [0,T ],T ∼ CR−γ .

• A measure, ρ, which is (at least formally) invariant by the flow
of the equation, Ψ(t), for any time t ∈ R.

• Set of initial data larger than λ measure smaller than e−cλ
2

Target time N, λ a size. E1, the first set of bad initial data (no
solution on [0, λ−κ],

ρ(E1) ≤ Ce−cλ
2
.

E2 second bad initial data: solutions on [0, λ−κ] but not on
[λ−κ, 2λ−κ] Then

E2 = {u0; Ψ(λ−κ)u0 ∈ E1}.

Invariance of measure implies ρ(E2) = ρ(E1) Iterating gives that the
set of initial data for which cannot solve up to time N, E = ∪Nλκn=1En

ρ(E ) ≤ e−cλ
2
Nλκ



The quasi-invariant measures
In the Hermite L2 basis

u =
∑
n

unen(x), µ = ⊗nN (0, 1/
√
2n + 1) = ⊗ne

−(2n+1) |un|
2

2 (2n+1)dun

where dun is Lebesgue measure on C. Formally

µ = e−
‖u‖2
H1
2 ⊗n (2n + 1)dun

Let

νt = µe
− cos(2t)(p−5)/2

p+1 ‖u‖p+1
Lp+1 = e−Et(u) ⊗n (2n + 1)dun

where

Et(u) = ‖u‖2H1 +
cos(2t)(p−5)/2

p + 1
‖u‖p+1

Lp+1

is not invariant along the flow but satisfies

dEt(u)

dt
= −(p − 5) tan(2t) cos(2t)(p−5)/2 ‖u‖

p+1
Lp+1

p + 1
.



Quasi-invariance
Compare ν0(A) and νt(Ψ(t, 0)A).

d

dt
νt(Ψ(t, 0)(A))

=
d

dt

∫
v∈Ψ(t,0)(A)

e
− 1

2‖
√
H v‖2

L2(R)
− cos

p−5
2 (2t)
p+1 ‖v‖p+1

Lp+1(R)dv

=
d

dt

∫
u0∈A

e
− 1

2‖
√
H u(t)‖2

L2(R)
− cos

p−5
2 (2t)
p+1 ‖u(t)‖p+1

Lp+1(R)du0

=

∫
A

(p − 5) sin(2t) cos
p−7
2 (2t)

p + 1
‖u(t)‖p+1

Lp+1(R)
e−Et(u(t))du0

= (p − 5) tan(2t)

∫
A
α(t, u)e−Et(u(t))du0,

where α(t, u) = cos
p−5
2 (2t)

p+1 ‖u(t)‖p+1
Lp+1(R)

.



Quasi-invariance continued
Assume that t ≥ 0. Then by Hölder, for any k ≥ 1,

d

dt
νt(Ψ(t, 0)(A))

≤ |p − 5| tan(2t)
( ∫

A
αk(t, u)e−Et(u(t))du0

) 1
k
( ∫

A
e−Et(u(t))du0

)1− 1
k

= |p − 5| tan(2t)
( ∫

A
αk(t, u)e

−α(t,u)− 1
2‖
√
H u(t)‖2

L2(R)du0
) 1

k

×
(
νt(Ψ(t, 0)(A))

)1− 1
k .

We use that αk(t, u)e−α(t,u) ≤ kke−k , then

d

dt
νt(Ψ(t, 0)(A)) ≤ |p − 5| tan(2t)

k

e

(
νt(Ψ(t, 0)(A))

)1− 1
k

Optimize with k = − ln(νt(Ψ(t, 0)A)), gives

d

dt
νt(Ψ(t, 0)(A)) ≤ −|p−5| tan(2t) ln(νt(Ψ(t, 0)A))νt(Ψ(t, 0)(A)).



Quasi-invariance continued

Theorem

νt(Ψ(t, 0)(A)) ≤
(
ν0(A)

)(cos(2t))
|p−5|

2 ≤
(
µ0(A)

)(cos(2t))
|p−5|

2
.

Reverse inequality obtained by backward integration of the estimate
and reads similarly

ν0(A) ≤
(
νt(Ψ(t, 0)A)

)(cos(2t))
|p−5|

2 ≤
(
µ0(Ψ(t, 0)A)

)(cos(2t))
|p−5|

2
.



Back to global existence

As long as we stay away from ±π/4 in

ν0(A) ≤
(
µ0(Ψ(t, 0)A)

)(cos(2t))
|p−5|

2
.

(cos(2t))
|p−5|

2 remains bounded from below by α. Hence Bourgain’s
globalization argument applies, with subgaussian estimates
ν0(Ek) ≤ e−cλ

2α
Hence global existence on (−π/4, π/4) with

bounds on norms growing like

(cos(2t))−
|p−5|

4

hence back to the original problem on Rs bounds

s
|p−5|

4 .



Back to Lp+1 estimates for NLSp, 3 < p < 5

Fix t and Let

A = {u0; ‖Ψ(t, 0)A)‖Lp+1 > λ}.

Then

ν0(A) ≤
(
νt(Ψ(t, 0)A)

)(cos(2t))
5−p
2

≤
(
e− cos(2t)

p−5
2 λp+1

p+1 µ0(Ψ(t, 0)A)
)(cos(2t))

5−p
2

≤ e−
λp+1
p+1 (9)

The log loss comes from passing from estimates for a fixed time to
estimates for all times.



Back to scattering for NLSp, 3 < p < 5

i∂tu − Hu = cos
p−5
2 (2t)|u|p−1u,

from Lp+1 estimates, good estimates on |u|p−1u in L
p+1
p → H−σ,

and (p > 3)
cos

p−5
2 (2t) ∈ L1(−π

4
,
π

4
),

hence convergence in H−σ. To improve to positive regularity
(mandatory to be able to come back via the lens transform), write

u = e itHu0 + v

and estimate (using Lp+1 estimate)

d

dt
‖v‖2Hs ,

and show that for s > 0 sufficiently small this norm remains
bounded (use again integrability of cos

p−5
2 (2t)).


