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Deterministic results
Consider the one-dimensional defocusing NLS

u(0.y) = F(). (NLS:)

Deterministic theory:

~Global WP: equation is well posed in L2(R) as soon as p < 5 and
the assumption p < 5 is known to be optimal in some sense (no
continuous flow, Christ-Colliander-Tao and Burg-Gérard-Tzvetkov)
— p > 5 Scattering in L2 (Dodson for p = 5)

-3 < po < p for initial data in H* = H' N L2/(x) Scattering in H?!
(Ginibre-Velo Tsutsumi).

— 3 < p for initial data in H! = H' N L2/(x) Scattering in L2
(Kato?)

{i85u+Au =|ul"tu, (s,y) ER xR,



Invariant measures

— Measures on the space of initial data (L?) such that almost surely
global existence: flow ®(s)

— Image of the measure by the flow ®*(s)u 777

— For dispersive equations on R? no (non trivial) invariant
measures. Indeed, if u invariant, and supported on H*(R?), so that
|ullys(may is p-integrable. Then

E([[x(x)tto|l s rey) = E(lIx(x)e™2 tioll s gy
But for all up € H*(R?), because of dispersion

lim _[Ix(v)e™® ol sy = 0

s——+00

Hence, by dominated convergence

E(llx(y)uoll s (rey) |iTOOE(\\X(Y)eiSAyUoHHs(Rd)) =0= p = dyp=0-

S—



Objectives

Work on NLS,

e Exhibit for the one dimensional Schrédinger equation examples
of measures p for which it is possible to describe the evolution
by the linear flow S(t)*u

e Show that the evolution by the non linear flow of the measure,
®(s)*u is absolutely continuous with respect to S(s)*u

e Show that almost surely there exists a unique global solution
to NLS,, Vp>'1

e Use this absolute continuity to deduce good estimates for the
time evolution Vp > 1 and new almost sure scattering results
for NLS,, p >3



The measures
The one-dimensional harmonic oscillator and Hermite functions

H=—-02+x% He, = \2e,,  A\p=+2n+ 1.

form a Hilbert basis of L?(R). The harmonic Sobolev spaces
H® R, by

H5(R) = {u € L3(R), H?u € L*(R)},

Let {gn}n>0 independent complex standard Gaussian variables.
For o > 0 the probability measure i, on H™°,s > 0 is defined by

QHH*()

w > u” —ag gn(w)en,

/’LQ(HS) = 075 2 Oa Ma(%s) = 1a5 < 0
pa(LP(R)) = 1,Vp > 2.

[1a is supported on the harmonic oscillator Besov space B9  (R)



The linear evolution

S(t) = €% (i9, + 02)S(t)up =0, S(0) = Id

The measure S(t)*u is also a Gaussian measure
400 1
w E = t
ut - s Angn(w)elﬂ

where e is a Hilbert basis of L? composed of eigenfunctions of a
twisted harmonic oscillator

Hiet = X2ef, Hy = —(1 4 4t2)9? + 2i(txdy + Oyx) + Xx°.

Proposition

All the measures pf,, o € R*" t € R are pairwise singular
(supported on disjoint sets)



A.s. global existence

Theorem

Let p>1, and u = pfe . Then there exists o > 0
such that for ji-a.e. initial data ug, there exists a unique global
solution u = W(t)up,

—llull?3t, /(p+1)

u € S(t)ug + CO(Ry; H(R)),

For p > 2, one can take o = 1/2—. Furthermore the measure
V(t)*(p) is absolutely continuous with respect to S(t)*pu.
VA € H™E,

ifp<5
W(e) u(A) p>5

W(t) u(A) < {(S(f)*u(A))”p if p>5
S(t)* u(A) ifp<5

(1)

(2)



A.s. scattering

Theorem
Let p> 1, Then a.s. we have

|0g(t)1/(P+1)

t(%fﬁ)

W(t)uol[p+r < C

As a consequence, for p > 3 a.s. the solution scatters: there exists
o > 0 such that for a.e. initial data ug, there exists vy € H° such
that

lim [[W(t)up — S(t)(uo + w)||xe = 0.

t—+o00

(for p > 2+ /5 we can take 0 = 1/2—).



Lens transform: compactification of space-time

For |t| < %,x € R. define

1 tan(2t) X _ »Ptan(2r)
u(t,x) = (LU)(t,x) = V) ) e 2z,
cos2 (2t) ( 2 C°5(2t))
(3)
; _ tan(2s)
E IS@ZU — It(S)HU t — arc 4
(#50) = e My, (s = D)
Moreover, suppose that U(s, y) is a solution NLS,. Then the
function u(t, x) satisfies
ideu — Hu = cos"z (2t)|ulP~tu, |t < =, x € R,
4 (5)
U(O, ) = Up = Uo.



A's. global existence, harmonic version

Theorem "
Let p>1, and u = pfe ~llul P“/(pH) Then there exists o > 0

such that for yi-a.e. initial data ug, there exists a unique solution
u=\V(t,0)up on (—m/4,7/4),

u € S(t)ug + CO(Ry; H(R)),

For p > 2, one can take o = 1/2—. Furthermore the measure
V(t,0)*(u) is absolutely continuous with respect to . VA € H™°,

u(A) < { (Y@ u(A))°°s(2t)p% ifp<5 ©)
V() u(A) ifp>5

V() p(A) < {(M(A))°°S(2” : ifp>5 0
1(A) ifp<5



A's. scattering, harmonic version

Theorem
Let p > 1, Then a.s. we have

IW(t,0)uo|| o1 < Clog(e)V/(PF)

As a consequence, for p > 3 a.s. the solution exists on [—7, 7]:
there exists o > 0 such that for a.e. initial data ug, there exists
vo € H such that

I' \U — o = U.
HEMII (t,0)uo — S(t)(uo + vo)|lme =0

(for p > 2+ /5 we can take 0 = 1/2—).



Properties of the measures

Linear properties g < 400
P(|S(t)ull g, /s > A) < Ce™N,
P(|S(8)ull awasone > A) < Ce™X,

()28 (8)ull g2 > A) < Cem,

Bilinear properties
P(|(S(t)u)?[l g, p1/2- > A) < Ce X,

P(|IS(8)ulPl gy > A) < Ce™N



a.s. local Cauchy theory

Theorem
Let p > 1, as long as we stay away from +m /4, then a.s. there
exists T and a unique solution to

. p=5 _ ™

i0ru — Hu = cos’z (2t)|ulP~tu, |t < 7 X€ R,

u(0,-) = up = Up.

(8)

in the space
S(t)up + C2; HC.

Furthermore, the time existence is bounded from below by a
negative power of the norms appearing in previous slide, hence

é

P(T<7)<Ce

and on such time interval, the solution remains essentially bounded
by initial data



An argument by Bourgain (case of invariant measures)

e A nice local Cauchy theory: initial data of size smaller than R

the solution exists (+ nice estimates for t € [0, T], T ~ CR™".

e A measure, p, which is (at least formally) invariant by the flow

of the equation, W(t), for any time t € R.

e Set of initial data larger than A measure smaller than e~V
Target time N, A a size. Ej, the first set of bad initial data (no
solution on [0, A™"],

p(E1) < Ce= .
E; second bad initial data: solutions on [0, A\™"] but not on
[A7%,2A7"] Then
Ey = {up; V(AN ")up € E1}.

Invariance of measure implies p(Ey) = p(Ey) lterating gives that the
set of initial data for which cannot solve up to time N, E = UNATE,

p(E) < e NA"



The quasi-invariant measures
In the Hermite L2 basis

un2
u= Z Unen(x), it = @,N(0,1/vV2n+1) = pe— (@t (2n+1)du,

where du, is Lebesgue measure on C. Formally
||uu2

p=e" ®n (2n+ 1)dup,

Let

cos(2t p+1
Spc AP

vy = ue it = =& W) @ (2n 4 1)du,

where

5 cos(2t)(P— 11
Er(u) = Htul ?H Hip-%—l

is not invariant along the flow but satisfies

dgt(U) .
dt

—(p —5)tan(2t) COs(2t)(P—5)/2%
p+1°



Quasi-invariance

Compare v9(A) and v¢(V(t,0)A).

d
En(W(t,0)(A))

—5

P
2 (21)
L A
dt Jyew(t,0)(A)

p+1
” HLp+1(R

p—5

_d / = 3IVA Ol = =S O sy g
dt uoEA

:/ (p— 5)sm(2t)cos 3 (2t)H ()”p+1 *gf(”(t))duo
A

p+ 1 LP+1
— (p— 5)tan(2¢) / aft, 1)e—EwO) gy
A

"z (2 1
where a(t, u) = Cospiﬂt)ﬂ (t )H'Z:rH(R



Quasi-invariance continued
Assume that t > 0. Then by Holder, for any kK > 1,

d

th(w(t»O)(A))

<|p-— 5|tan(2t)(/ ok (t, u)egt(”(t))duo)i(/ efgt(”(t))duo)l_%
A

A
—o(t,u)—1 u(t)||? L)
_ ‘p—5\t3n(2t)(/ak(t, u)e (B 2IVHUONzg) g0 %
A
1
x (ve(W(t,0)(A)))* *.
We use that a*(t, u)e~(t4) < kke=k then
d k _1
Eyt(\ll(t, 0)(A) < |p— 5\tan(2t)g(1/t(\|l(t, 0)(A)))1 x
Optimize with k = — In(v:(V(t,0)A)), gives

%ut(W(t,O)(A)) < —|p—5|tan(2t) In(ve(W(t, 0)A))re(W(t, 0)(A)).



Quasi-invariance continued

Theorem

lp=5] lp—5|

ve(V(t,0)(A)) < (VO(A))(COS(zt))T < (,UO(A))(COS(%))T.

Reverse inequality obtained by backward integration of the estimate
and reads similarly

' lp—5|

vo(A) < (Vt(w(t,O)A))(cos(2t))|p%5 < (Mo(w(t,O)A))(coth))T.



Back to global existence

As long as we stay away from +7/4 in

|p—5]
v0(A) < (no(W(t,0)4)) D T
[p—5] . .
(cos(2t)) *2* remains bounded from below by . Hence Bourgain's
globalization argument applies, with subgaussian estimates
vo(Ex) < e Hence global existence on (—7 /4, 7/4) with
bounds on norms growing like

|p—5|

(cos(2t)) =

hence back to the original problem on R, bounds

|p—5]
s 2




Back to LP*! estimates for NLS,, 3 < p <5

Fix t and Let
A = {uo; ||W(t,0)A)||1p+1 > A}

Then

5—p
vo(A) < (ve(W(t,0)A)) (D =
_5 1 5—p 1
< (efcos(Zt)pﬁT %Mo(W(t,O)A)>(COS(2t» 2 < e,/\;’% (9)

The log loss comes from passing from estimates for a fixed time to
estimates for all times.



Back to scattering for NLS,, 3 < p <5

i0ru — Hu = cos%s(2t)|u|p_1u,

. . 1 . Bt _
from LP*1 estimates, good estimates on |u[P~tuin L P — H O,

and (p > 3)
l —_—— J—
cos'z (2t) e L( 2’ 4),

hence convergence in H~?. To improve to positive regularity
(mandatory to be able to come back via the lens transform), write

u=euyy+v
and estimate (using LP*! estimate)

d
VB

and show that for s > 0 sufficiently smaII this norm remains
bounded (use again integrability of cos'z (2t))



