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Purpose

Study the dynamics of solutions of non linear Schrödinger
equations in a planar domain, M ⊂ R2, with Dirichlet or
Neumann boundary conditions,

(i∂t+∆)u−|u|2u = 0, u |t=0= u0, u |∂M= 0, (resp. ∂νu |∂M= 0),

from a statistical point of view, i.e. u0 is a random variable or
(equivalently, endow the space of initial data with a probability
measure, µ0.

I Well posedness on the support of the measure (almost
sure WP): definition of a flow Φ(t).

I Statistical properties of the measure propagated by the
flow , µ(t) = Φ(t)∗(µ0): continuity, recurence, growth of
Sobolev norms, ....
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The Gaussian free field

Consider a sequence of (complex) independent Gaussian
random variables gk ∼ N (0, 1) (of law 1

π
e−|z|

2|dz |)and for
ek , (−∆ + 1)ek = λ2

kek , ek |∂M= 0, n ∈ N∗, the random
variable

u0 =
∑
n∈N∗

gk

λk
ek(x).

equivalently, consider the map

ω ∈ (Ω,p) 7→ u =
∑
n∈N∗

gk(ω)

λk
ek(x),

and endow the space of distributions D′(M), with the image
of p by this map.
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The GFF continued
equivalently, write

u =
∑
n∈N∗

ukek(x),

identify D′(M) with the space of sequences U = (uk) ∈ CN∗

(satisfying some temperance growth conditions), and endow
CN∗ with the probability measure

⊗+∞
k=1

λ2
k

π
e−λ

2
k |uk |2|duk |.

Lemma
The GFF is for any ε > 0 supported by H−ε(M):

µ0(H−ε(M) = 1,

but
µ0(L2(M)) = 0.
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Wick re-ordering, Bourgain’s result
If u is a solution to NLS, then v = e−it(‖u‖2

L2−1)u is a solution
to

(i∂t + ∆− 1)v − (|v |2 − 2‖v‖2
L2)v = 0, v |t=0= u0. (RNLS)

Theorem (Bourgain 1996)
There exists δ > 0 such that for µ0-almost every u0, there
exists a unique (global in time) solution of (RNLS) on the
torus T2, u = Φ(t)u0 in

e−it∆u0 + X δ,1/2+.

Furthermore there exists a function G ∈ L1(dµ0), positive on
the support of µ0 such that the measure dν = G (u)dµ is
invariant by the flow Φ(t). ν is a Gibbs measure.

Recall ‖u‖X s,b = ‖〈Dt〉be−it∆u‖L2
t ;Hs

x
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Our result
Let M ⊂ R2 smooth bounded domain, and

: ‖u‖4
L4 := ‖|u|2 − 2‖u‖2

L2‖2
L2 − 4‖u‖4

L2 .

Theorem (N.B. L. Thomann, N. Tzvetkov)
e−:‖u‖4

L4 is µ0 a.s. finite, and in L1(dµ0). Furthermore, there
exists for µ0 a.e. initial data u0 a global in time solution to
(RNLS), with Dirichlet (resp. Neumann) bdry conditions, and
the flow Φ(t) satisfies

Φ(t)∗(e−:‖u‖4
L4 dµ0) = e−:‖u‖4

L4 dµ0.

Rk 1: No uniqueness in our result: weak solutions. But
contrarily to usual (deterministic) weak solutions some kind of
uniqueness remains: for any such flow get same invariant
measure
Rk 2 Work in progress: hope to get strong solutions.
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Wick re-ordering on the torus

For u = e it(∆)u0 =
∑

n∈Z2
gn

〈n〉e
in·x−|n|2t , 〈n〉 =

√
|n|2 + 1,

|u|2u =
∑

n1,n2,n3

gn1gn2gn3

〈n1〉〈n2〉〈n3〉
e i(n1−n2+n3)·x−(|n1|2−|n2|2+|n3|2)t

=
∑

n1 6=n2,n3 6=n2

· · ·+2
∑
n,m

|gn|2gm

〈n〉2〈m〉
e im·x−(|m|2)t−

∑
n

|gn|2gn

〈n〉3
e in·x−(|n|2)t

(|u|2 − 2‖u‖2
L2)u

=
∑

n1 6=n2,n3 6=n2

gn1gn2gn3

〈n1〉〈n2〉〈n3〉
e i(n1−n2+n3)·x −

∑
n

|gn|2gn

〈n〉3
e in·x
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Wick re-ordering on T2: analysis
Last term is a.s in H2−:

E(‖
∑

n

|gn|2gn

〈n〉3
e in·x‖2

Hδ) =
∑
n∈Z2

E(|gn|6)

〈n〉6−2δ
< +∞ if 6− 2δ > 2

First term is a.s. in X 1/2−,−1/2+. Indeed,

E(‖
∑

n1 6=n2,n3 6=n2

· · · ‖2
X s,−b)

= E
(∑

k

∣∣∣ ∑
n1 6=n2,n3 6=n2,n1−n2+n3=k

1

(1 + ||n1|2 − |n2|2 + |n3|2 − |k |2|)b

gn1gn2gn3

〈n1〉〈n2〉〈n3〉
〈k〉s

∣∣∣2)
=
∑

k

E
( ∑

n1 6=n2,n3 6=n2

∑
m1 6=m2,m3 6=m2

gn1gn2gn3gm1gm2gm3 · · · )
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Since Gaussian are independent, complex and have mean equal
to 0, and since n1 6= n2, n3 6= n2, expectancy vanishes unless

(n1, n2, n3) = (m1,m2,m3) or (n1, n2, n3) = (m3,m2,m1)

E(‖
∑

n1 6=n2,n3 6=n2

· · · ‖2
X s,−b) ∼

∑
n1 6=n2,n3 6=n2
k=n1−n2+n3

〈k〉2s

〈n1〉2〈n2〉2〈n3〉2

× 1

(1 + ||n1|2 − |n2|2 + |n3|2 − |k |2|)2b∑
n∈Z2

1
〈n〉2 diverges logarithmically. Factor

1

(1 + ||n1|2 − |n2|2 + |n3|2 − |k |2|)2b

gives additional convergence which can be exchanged to
compensate the 〈k〉2s term, hence end up in X s,b, for some
s > 0 a level at which Cauchy theory well posed! This (plus
quite some work) proves Bourgain’s Theorem.
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The problem on a manifold

I Wick Reordering is in the folklore of quantum field theory.
Best (most efficient) approach seems to be via Fock
representation

I Fock representation seems to be not so well suited to
X s,b analysis (possible development?)

I Take boundary into account (should not be a serious
problem in the context of Fock representation though)

I Keep the elementary approach and understand at that
level the compensations which allow for Wick re-ordering
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Back to Wick re-ordering: The case of S2

Take en Hilbert base of spherical harmonics, eigenvalues λ2
n.

|u|2u =
∑

n1,n2,n3

gn1gn2gn3

〈n1〉〈n2〉〈n3〉
e−i(λ2

n1
−λ2

n2
+λ2

n3
)ten1(x)en2(x)en3(x)

=
∑

n1 6=n2,n3 6=n2

· · ·+ 2
∑
n,m

|gn|2gm

〈n〉2〈m〉
e−iλ2

mt |en|2(x)em(x)

−
∑

n

|gn|2gn

〈n〉3
e−iλ2

nt |en|2(x)en(x)

As in the previous analysis, last term OK.
Main issues:

I |en|2(x) 6= 1

I en1en2en3 is not an eigenfunction
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The Weyl formula on S2

Let Ek = Vect {en;λ2
n = k(k + 1)} an eigenspace, and

en1 , · · · en2k+1
any orthonormal basis of Ek .

Proposition
Let e(x , y , k) =

∑2k+1
p=1 enp (x)enp (y).

∀x ∈ S2, e(x , x , k) =
2k + 1

Vol (S2)
.

In a mean value sense, the eigenfunctions are constant on S2

Proof: e(x , y , k) is the kernel of the orthogonal projector on
Ek . Hence for any isometry T , e(x ,Ty) = e(T−1x , y).

Theorem (Van der Kam, Zelditch, N.B-G. Lebeau)
There exists orthonormal basis (en,k) having for any p < +∞
uniformly bounded Lp norms (actually most ONB are such)
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Back to Wick re-ordering, analysis of 2nd term∑
n,m

|gn|2gm

〈n〉2〈m〉
e−iλ2

mt |en|2(x)em(x)

=
∑
n,m

(|gn|2 − 1)gm

〈n〉2〈m〉
e−iλ2

mt |en|2(x)em(x)

+
∑

k

∑
n,en∈Ek ,m

gm

〈n〉2〈m〉
e−iλ2

mt |en|2(x)em(x)

= I +
∑

k

∑
n,en∈Ek ,m

gm

〈n〉2〈m〉
e−iλ2

mtem(x)

= I +
∑
n,m

|gn|2gm

〈n〉2〈m〉
e−iλ2

mtem(x)

+
∑
n,m

(1− |gn|2)gm

〈n〉2〈m〉
e−iλ2

mtem(x) = I + II + III
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II = ‖e it∆u‖2
L2e it∆u

I + III =
∑

n

(|gn|2 − 1)

〈n〉2
(|en|2(x)− 1)e it∆u

and
∑

n
(|gn|2−1)
〈n〉2 (|en|2(x)− 1) is a.s finite (renormalizable).

Indeed, since

n 6= m⇒ E
(
(|gn|2−1)(|gm|2−1)

)
= E(|gn|2−1)E(|gm|2−1) = 0,

E
(∣∣∣∑

n

(|gn|2 − 1)

〈n〉2
(|en|2(x)− 1)

∣∣∣2)
=
∑

n

E
(∑

n

(|gn|2 − 1)2

〈n〉4
(|en|2(x)− 1)2

)
∼
∑

n

1

〈n〉4
< +∞
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Back to Wick reordering: analysis of the first term
With γ(n1, n2, n3, p)) =

∫
S2 en1en2en3epdx ,

E
(
‖
∑
n1 6=n2
n3 6=n2

gn1gn2gn3

〈n1〉〈n2〉〈n3〉
e−i(λ2

n1
−λ2

n2
+λ2

n3
)ten1(x)en2(x)en3(x)‖2

X s,b

)

= E(
∑
k,p

〈p〉2s

〈k〉2b

∣∣∣ ∑
n1 6=n2,n3 6=n2

|k−λ2
n1

+λ2
n2
−λ2

n3
|∈[0,1)

gn1gn2gn3

〈n1〉〈n2〉〈n3〉
γ(n1, n2, n3, p)

∣∣∣2)

∼
∑

p

∑
n1 6=n2
n3 6=n2

〈p〉2s

〈λ2
n1

+ λ2
n2
− λ2

n3
〉2b〈n1〉2〈n2〉2〈n3〉2

|γ(n1, n2, n3, p))|2

Difference with T2: additional sum (in p), but presence of γ2,
which is invariant wrt permutations and in l1: choice of bases,∑

p

|γ(n1, n2, n3, p))2 = ‖en1en2en3‖2
L2(M) ≤ C < +∞
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General manifolds
Use Weyl formula (Volume of manifold normalized to 1)

e(x , λ, µ) =
∑

µ≤λn<λ

|en|2(x)

Theorem (Hormander Th 17.5.10)
Let d(x) be the distance of the point x ∈ M to the boundary
∂M. There exists C > 0 such that for any λ > 1 and x ∈ M
satisfying d(x , ∂M) ≥ λ−1/2, any d ∈ [0, 1], we have

|e(x , λ + dλ1/2, λ)− d

2π
λ3/2| ≤ Cλ, (1)

Theorem (Sogge)
There exists C > 0 such that for any λ > 1 and x ∈ M

|e(x , λ + 1, λ) ≤ Cλ, (2)
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The strategy of proof

I Regularize the system by cutting in the non linearity the
frequencies higher than N (λn > N) and get global in
time solutions. Get a flow ΦN(t).

I Define a family νN = e−
1
2

:‖uN‖4
L4 :dµ0 of probability

measures invariant by the flows ΦN .

I Show that these measures converge (in a sense to be

precised) to a limit measure ν0 = e−
1
2

:‖u‖4
L4 :dµ0

I Pass to the limit (in a sense to be precised) in the family
of solutions ΦN(t)u0 → Φ(t)u0

I Show that the flow Φ(t) solves (RNLS) and leaves the
measure ν0 invariant

I Strategy quite standard in parabolic settings (see e.g. Da
Prato-Debussche),
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The approximating systems

Let ΠN be the orthogonal projector on the space

Vect (en;λn ≤ N).

Let ΦN(t)u0 be the solution of

(i∂t + ∆)u − ΠN

(
(|ΠN(u)|2 − 2‖ΠN(u)‖2

L2)ΠN(u)
)

= 0,

u |t=0= u0, u |∂M= 0, (resp. ∂νu |∂M= 0)

Hamiltonian system with Hamiltonian

H =

∫
M

1

2
|∇xu|2dx +

1

4
‖ΠN(u)‖4

L4 −
1

2
‖ΠN(u)‖4

L2
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Formally, the GFF µ0 is, in the coordinate system given by the
identification u =

∑
n unen(x) given by

dµ0 = ⊗+∞
k=1

λ2
k

π
e−λ

2
k |uk |2|duk | ” = ”

+∞∏
k=1

e−λ
2
k |uk |2 ⊗+∞

k=1

λ2
k

π
|duk |

” = ” e−
P

k λ
2
k |uk |2 ⊗+∞

k=1

λ2
k

π
|duk |” = ” e−‖∇x‖2

L2 ⊗+∞
k=1

λ2
k

π
|duk |,

and

νN = e−
1
2

:‖uN‖4
L4 :dµ0 ” = ” e−2H(u) ⊗+∞

k=1

λ2
k

π
|duk |

is (at least formally) invariant (because the Hamiltonian itself
is invariant and a Hamiltonian system can be seen as an ODE
with a divergence free vector field hence the (infinite product
of) Lebesgue measures is also invariant
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Passing to the limit νN ⇀ ν

Definition
S separable complete metric space, (ρN)N≥1 probability
measures on Borel σ−algebra B(S). (ρN) on (S ,B(S)) is
tight if ∀ε > 0,∃Kε ⊂ S compact such that ρN(Kε) ≥ 1− ε
for all N ≥ 1.

Theorem (Prokhorov)
(ρN)N≥1 is tight iff it is weakly compact, i.e. there is a
subsequence (Nk)k≥1 and a limit measure ρ∞ such that for
every bounded continuous function f : S → R,

lim
k→∞

∫
S

f (x)dρNk
(x) =

∫
S

f (x)dρ∞(x).

Rk. Weak convergence implies convergence in law
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A tight sequence of probability measures

Let T > 0 and define a probability measure on the space of
(space time) functions f (t, x) pN by the image measure of νN

by the map
u0 7→ ΦN(t)u0.

Proposition
The sequence pN is for any ε > 0 tight on C 0([0,T ]; H−ε(M)).

Proof: Fix 0 < ε′ < ε. the measure ν0 is supported by H−ε
′

which embeds compactly in H−ε. This gains compactness in
space. Then use equation to gain compactness in time.
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Passing to the limit ΦN(t) ”→ ” Φ(t)

Setting: we have a family of r.v. XNk
= ΦNk

(t)u0 such that
the laws of XNk

, pNk
are weakly convergent to a probability

measure p. We’d like to deduce that the r.v. XNk
are a.s.

convergent. This is False (take XNk
= (−1)Nk X). However

Theorem (Skorohod)
Assume that S is a separable metric space. Let (ρN)N≥1 and
ρ∞ be probability measures on S. Assume that ρN −→ ρ∞
weakly. Then there exists a probability space on which there
are S−valued random variables (YN)N≥1, Y∞ such that
L(YN) = ρN for all N ≥ 1, L(Y∞) = ρ∞ and YN −→ Y∞ a.s.
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Passing to the limit in the equation I
Need first to check that the r.v. YN satisfy the same equation
as XN = ΦN(t): Consider the r.v.

ZN = ((i∂t+∆)YN−ΠN

(
(|ΠN(YN)|2−2‖ΠN(YN)‖2

L2)ΠN(YN)
)

All the functions appearing in the r.h.s. are continuous from
C 0((0,T ); H−ε) to S = H−1((0,T ); H−2−ε). Hence

L(ZN)

= L
(

(i∂t+∆)YN−ΠN

(
(|ΠN(YN)|2−2‖ΠN(YN)‖2

L2)ΠN(YN)
))

= L
(

(i∂t+∆)XN−ΠN

(
(|ΠN(XN)|2−2‖ΠN(XN)‖2

L2)ΠN(XN)
))

= L(0) = δ0

Hence ZN = 0 a.s.
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Passing to the limit in the equation II

Need to pass to the limit in

ΠN

(
(|ΠN(XN)|2 − 2‖ΠN(XN)‖2

L2)ΠN(XN)
)
.

Idea is: almost sure convergence in H−ε, and estimate in
probability of a ”stronger term” namely : ‖u‖4

L4 :. Gives
convergence in probability of the non linear term. Hence
convergence a.s. for a subsequence.
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Toward a generalization of Bourgain’s result on

any smooth bounded domain?

I Need a ”nice” local Cauchy theory at the level of
regularity where the measure is supported (rest = more or
less automatic)

I Standard (X s,b) WP thresholds for cubic NLS:
I T2 rational s > 0 (Bourgain)
I S2 s > 1

4 (N. B, Gérard, Tzvetkov)
I T2 irrational s > 1

3 (Catoire Wang)
I Compact surfaces (without bdry) s > 1

2 (N.
B-Gérard-Tzvetkov)

I Compact surfaces (with bdry) s > 2
3 (Anton,

Blair-Smith-Sogge)

I Control 1st iteration in X s,1/2+0, s > sc

I Perform X s,b analysis in the Fock representation
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