
On the Cauchy problem for gravity water waves

T. Alazard, N. Burq, C. Zuily

Abstract. We are interested in the system of gravity water waves equations
without surface tension. Our purpose is to study the optimal regularity thresholds
for the initial conditions. In terms of Sobolev embeddings, the initial surfaces we
consider turn out to be only of C3/2 class and consequently have unbounded
curvature, while the initial velocities are only Lipschitz. We reduce the system
using a paradifferential approach.

1. Introduction

We are interested in this work in the study of the Cauchy problem for the water
waves system in arbitrary dimension, without surface tension.

An important question in the theory is the possible emergence of singularities
(see [15, 16, 24, 55, 19]) and as emphasized by Craig and Wayne [29], it is impor-
tant to decide whether some physical or geometric quantities control the equation. In
terms of the velocity field, a natural criterium (in view of Cauchy-Lipschitz theorem)
is given by the Lipschitz regularity threshold. Indeed, this is necessary for the “fluid
particles” motion (i.e. the integral curves of the velocity field) to be well-defined.

In terms of the free boundary, there is no such natural criterium. In fact, the sys-
tematic use of the Lagrangian formulation in most previous works [8, 51, 52], and
the intensive use of Riemannian geometry tools (parallel transport, vector fields,...)
by Shatah-Zeng [46, 47, 48], Christodoulou–Lindblad [20] or Lindblad [39] seem
to at least require bounded curvature assumptions (see also [23] where a logarithmic
divergence is allowed). In this direction, the beautiful work by Christodoulou–
Lindblad [20], gives a priori bounds as long as the second fundamental form of the
free surface is bounded, and the first-order derivatives of the velocity are bounded.
This could lead to the natural conjecture that the regularity threshold for the water
waves system is indeed given by Christodoulou–Lindblad’s result and that the do-
main has to be assumed to be essentially C2. Our main contribution in this work is
that this is not the case and that the relevant threshold is actually only the Lipschitz
regularity of the velocity field. Indeed (see Theorem 1.2), our local existence result
involves assumptions which, in view of Sobolev embeddings, require only (in terms
of Hölder regularity) the initial free domain to be C3/2.

As an illustration of the relevance of the analysis of low regularity solutions in a
domain with a rough boundary, let us mention that in a forthcoming paper, we shall
give an application of our analysis to the local Cauchy theory of three-dimensional
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gravity water waves in a canal. This question goes back to the work by Boussinesq
at the beginning of the 20th century (see [14]).

Our analysis require the introduction of new techniques and new tools. In [1, 2] we
started a para-differential study of the water waves system in the presence of surface
tension and were able to prove that the equations can be reduced to a simple form

(1.1) ∂tu+ TV · ∇u+ iTγu = f,

where TV is a para-product and Tγ is a para-differential operator of order 3/2. Here
the main step in the proof is to perform the same task without surface tension,
with Tγ of order 1/2. It has to be noticed however that performing our reduction is
considerably more difficult here than in our previous papers ([1, 2]). Indeed, in the
case with non vanishing surface tension, the natural regularity threshold forces the
velocity field to be Lipschitz while the domain is actually much smoother (C5/2).
In the present work, the velocity field is also Lipschitz, but the domain is merely
C3/2. To overcome these difficulties, we had to give a micro-local description (and
contraction estimates) of the Dirichlet-Neumann operator which is non trivial in
the whole range of Cs domains, s > 1 (see the work by Dahlberg-Kenig [30] and
Craig-Schanz-Sulem [27] for results on the Dirichlet-Neumann operator in Lipschitz
domains). We think that this analysis is of independent interest.

Finally, let us mention that, as we proceed by energy estimates, our results are proved
in L2-based Sobolev spaces and our initial data (η, V ) which describe respectively the
initial domain as the graph of the function η and the trace of the initial velocity on
the free surface, are assumed to be in Hs+ 1

2 (Rd)×Hs(Rd), s > 1 + d
2 . The gravity

water waves system enjoys a scaling invariance for which the critical threshold is
sc = 1

2 + d
2 (in other terms our well-posedness result is 1/2 above the scaling critical

index).

1.1. Assumptions on the domain. Hereafter, d ≥ 1, t denotes the time
variable and x ∈ Rd and y ∈ R denote the horizontal and vertical spatial variables.
We work in a time-dependent fluid domain Ω located underneath a free surface Σ
and moving in a fixed container denoted by O. This fluid domain

Ω = { (t, x, y) ∈ [0, T ]×Rd ×R : (x, y) ∈ Ω(t) },
is such that, for each time t, one has

Ω(t) = {(x, y) ∈ O : y < η(t, x)} ,
where η is an unknown function and O is a given open domain which contains a
fixed strip around the free surface

Σ = {(t, x, y) ∈ [0, T ]×Rd ×R : y = η(t, x)}.
This implies that there exists h > 0 such that, for all t ∈ [0, T ],

(1.2) Ωh(t) :=
{

(x, y) ∈ Rd ×R : η(t, x)− h < y < η(t, x)
}
⊂ Ω(t).

We also assume that the domain O (and hence the domain Ω(t)) is connected.

Remark 1.1. (i) Two classical examples are given by O = Rd×R (infinite depth
case) or O = Rd × [−1,+∞) (flat bottom). Notice that, in the following, no
regularity assumption is made on the bottom Γ := ∂O.

(ii) Notice that Γ does not depend on time. However, our method applies in the
case where the bottom is time dependent (with the additional assumption in
this case that the bottom is Lipschitz).
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1.2. The equations. Below we use the following notations

∇ = (∂xi)1≤i≤d, ∇x,y = (∇, ∂y), ∆ =
∑

1≤i≤d
∂2
xi , ∆x,y = ∆ + ∂2

y .

We consider an incompressible inviscid liquid, having unit density. The equations by
which the motion is to be determined are well known. Firstly, the eulerian velocity
field v : Ω→ Rd+1 solves the incompressible Euler equation

(1.3) ∂tv + v · ∇x,yv +∇x,yP = −gey, divx,y v = 0 in Ω,

where −gey is the acceleration of gravity (g > 0) and where the pressure term P
can be recovered from the velocity by solving an elliptic equation. The problem is
then given by three boundary conditions. They are

(1.4)


v · n = 0 on Γ,

∂tη =
√

1 + |∇η|2 v · ν on Σ,
P = 0 on Σ,

where n and ν are the exterior unit normals to the bottom Γ and the free surface Σ(t).
The first condition in (1.4) expresses the fact that the particles in contact with the
rigid bottom remain in contact with it. Notice that to fully make sense, this condition
requires some smoothness on Γ, but in general, it has a weak variational meaning
(see Section 3). The second condition in (1.4) states that the free surface moves
with the fluid and the last condition is a balance of forces across the free surface.
Notice that the pressure at the upper surface of the fluid may be indeed supposed
to be zero, provided we afterwards add the atmospheric pressure to the pressure so
determined. The fluid motion is supposed to be irrotational. The velocity field is
therefore given by v = ∇x,yφ for some potential φ : Ω→ R satisfying

∆x,yφ = 0 in Ω, ∂nφ = 0 on Γ.

Using the Bernoulli integral of the dynamical equations to express the pressure, the
condition P = 0 on the free surface implies that

(1.5)


∂tη = ∂yφ−∇η · ∇φ on Σ,

∂tφ+
1
2
|∇x,yφ|2 + gy = 0 on Σ,

∂nφ = 0 on Γ,

where recall that ∇ = ∇x. Many results have been obtained on the Cauchy theory
for System (1.5), starting from the pioneering works of Nalimov [43], Shinbrot [49],
Yoshihara [56], Craig [25]. In the framework of Sobolev spaces and without small-
ness assumptions on the data, the well-posedness of the Cauchy problem was first
proved by Wu for the case without surface tension (see [51, 52]) and by Beyer-
Günther in [12] in the case with surface tension. Several extensions of their results
have been obtained by different methods (see [22, 31, 32, 33, 35, 40, 53, 54, 58]
for recent results and the surveys [11, 29, 36] for more references). Here we shall
use the Eulerian formulation. Following Zakharov [57] and Craig–Sulem [28], we
reduce the analysis to a system on the free surface Σ(t) = {y = η(t, x)}. If ψ is
defined by

ψ(t, x) = φ(t, x, η(t, x)),

then φ is the unique variational solution of

∆x,yφ = 0 in Ω, φ|y=η = ψ, ∂nφ = 0 on Γ.
3



Define the Dirichlet-Neumann operator by

(G(η)ψ)(t, x) =
√

1 + |∇η|2 ∂nφ|y=η(t,x)

= (∂yφ)(t, x, η(t, x))−∇η(t, x) · (∇φ)(t, x, η(t, x)).

For the case with a rough bottom, we recall the precise construction later on
(see §3.1). Now (η, ψ) solves (see [28] or [36, chapter 1] for instance)

(1.6)


∂tη −G(η)ψ = 0,

∂tψ + gη +
1
2
|∇ψ|2 − 1

2

(
∇η · ∇ψ +G(η)ψ

)2
1 + |∇η|2

= 0.

1.3. The Taylor condition. Introduce the so-called Taylor coefficient

(1.7) a(t, x) = −(∂yP )(t, x, η(t, x)).

The stability of the waves is dictated by the Taylor sign condition, which is the
assumption that there exists a positive constant c such that

(1.8) a(t, x) ≥ c > 0.

This assumption is now classical and we refer to [11, 20, 21, 37, 51, 52] for
various comments. Here we only recall some basic facts. First of all, as proved by
Wu ([51, 52]), this assumption is automatically satisfied in the infinite depth case
(that is when Γ = ∅) or for flat bottoms (when Γ = {y = −k}). Notice that the
proof remains valid for any C1,α-domain, 0 < α < 1 (by using the fact that the Hopf
Lemma is true for such domains, see [44] and the references therein). There are two
other cases where this assumption is known to be satisfied. For instance under a
smallness assumption. Indeed, if ∂tφ = O(ε2) and ∇x,yφ = O(ε) then directly from
the definition of the pressure we have P + gy = O(ε2). Secondly, it was proved by
Lannes ([37]) that the Taylor’s assumption is satisfied under a smallness assumption
on the curvature of the bottom (provided that the bottom is at least C2). However,
for general bottom we will assume that (1.8) is satisfied at time t = 0.

1.4. Main result. We work below with the vertical and horizontal traces of
the velocity on the free boundary, namely

B := (∂yφ)|y=η, V := (∇xφ)|y=η.

These can be defined only in terms of η and ψ by means of the formulas

(1.9) B =
∇η · ∇ψ +G(η)ψ

1 + |∇η|2
, V = ∇ψ −B∇η.

Also, recall that the Taylor coefficient a defined in (1.7) can be defined in terms
of η, V,B, ψ only (see Section 1.5 below).

Theorem 1.2. Let d ≥ 1, s > 1 + d/2 and consider (η0, ψ0) such that

(1) η0 ∈ Hs+ 1
2 (Rd), ψ0 ∈ Hs+ 1

2 (Rd), V0 ∈ Hs(Rd), B0 ∈ Hs(Rd),
(2) there exists h > 0 such that condition (1.2) holds initially for t = 0,
(3) there exists a positive constant c such that, for all x ∈ Rd, a0(x) ≥ c.

Then there exists T > 0 such that the Cauchy problem for (1.6) with initial data
(η0, ψ0) has a unique solution (η, ψ) ∈ C0

(
[0, T ];Hs+ 1

2 (Rd)×Hs+ 1
2 (Rd)

)
, such that

(1) we have (V,B) ∈ C0
(
[0, T ];Hs(Rd)×Hs(Rd)

)
,

(2) the condition (1.2) holds for 0 ≤ t ≤ T , with h replaced by h/2,
(3) for all 0 ≤ t ≤ T and for all x ∈ Rd, a(t, x) ≥ c/2.
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Remark 1.3. The main novelty is that, in view of Sobolev embeddings, the ini-
tial surfaces we consider turn out to be only of C3/2 class and consequently have
unbounded curvature.

Remark 1.4. Assumption 1 in the above theorem is automatically satisfied if

η0 ∈ Hs+ 1
2 (Rd), ψ0 ∈ H

1
2 (Rd), V0 ∈ Hs(Rd), B0 ∈ H

1
2 (Rd).

The only point where the estimates depend on ψ (and not only on η, V,B) come
from the fact that we consider a general domain without assumption on the bottom.
Otherwise, we shall prove a priori estimates for the fluid velocity and not for the
fluid potential (notice that the fluid potential is defined up to a constant).

1.5. The pressure. The purpose of this paragraph is to clarify, for low regu-
larity solutions of the water waves system in rough domains, the definition of the
pressure which is required if one wants to come back from solutions to the Zakharov
system to solutions to the free boundary Euler equation. This definition will also
provide the basic a priori estimates which will be later the starting point when estab-
lishing higher order elliptic regularity estimates required when studying the Taylor
coefficient a = −∂yP |Σ. On a physics point of view, the pressure is the Lagrange
multiplier which is required by the incompressibility of the fluid (preservation of the
null divergence condition). As a consequence, taking the divergence in (1.3), it is
natural to define the pressure as a solution of

(1.10) ∆x,yP = −divx,y(v · ∇x,yv), P |y=η= 0.

Notice however that the solution of such problem may not be unique as can be seen
in the simple case when Ω = (−∞, 0)×Rd. Indeed, if P is a solution, then P + cy
is another. Notice also that if P satisfies (1.10), then

∆x,y

(
P + gy +

1
2
|v|2
)

= 0.

Definition 1.5. Let (η, ψ) ∈ (W 1,∞ ∩ H1/2(Rd)) × H1/2(Rd). Assume that the
variational solution (as defined in §3.1) of the equation

(1.11) ∆x,yφ = 0, φ |y=η= ψ,

satisfies
|∇x,yφ|2(x, η(x)) ∈ H1/2(Rd).

Let R be the variational solution of

∆x,yR = 0 in Ω, R |y=η= gη +
1
2
|∇x,yφ|2 |y=η .

We define the pressure P in the domain Ω by

P (x, y) := R(x, y)− gy − 1
2
|∇x,yφ(x, y)|2.

Remark 1.6. The main advantage of defining the pressure as the solution of a
variational problem is that it will satisfy automatically an a priori estimate (the
estimate given by the variational theory).

It remains to link the solutions to the Zakharov system to solutions of the free
boundary Euler system (1.3) with boundary conditions (1.4). To do so, we proved
in [3] that if (η, ψ) is a solution of the Zakharov system, if we consider the variational
solution to (1.11), then the velocity field v = ∇φ satisfies (1.3), which is of course
equivalent to

(1.12) P = −∂tφ− gy −
1
2
|∇x,yφ|2.
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Theorem 1.7 (from [3]). Assume that (η, ψ) ∈ C([0, T ];Hs+ 1
2 (Rd) ×Hs+ 1

2 (Rd)),
with s > 1 + d/2, is a solution of the Zakharov/Craig-Sulem system (1.6). Then the
assumptions required to define the pressure are satisfied, and (1.12) is satisfied, and
the distribution ∂tφ is well defined for fixed t and belongs to the space H1,0(Ω(t))
(see Definition 3.3).

1.6. Plan of the paper. At first glance, Theorem 1.2 looks very similar to our
previous result in presence of surface tension [1, Theorem 1.1]. Indeed, the regularity
threshold exhibited by the velocity field (namely V,B ∈ Hs(Rd), s > 1 + d/2) is the
same in both results and (as explained above) appears to be the natural one. How-
ever, an important difference between both cases is that the algebraic nature of (1.6)
(and its counter-part in presence of surface tension) requires that the free domain
is 3/2 smoother than the velocity field in presence of surface tension and only 1/2
smoother without surface tension. This algebraic rigidity of the system implies that
in order to lower the regularity threshold to the natural one (Lipschitz velocities),
we are forced to work with C3/2 domains (compared to the much smoother C5/2

regularity in [1]). This in turn poses new challenging questions in the study of the
Dirichlet–Neumann operator. Indeed, at this level of regularity the regularity of the
remainder term in the paradifferential description of the Dirichlet-Neumann opera-
tor G(η)ψ is not given by the regularity of the function ψ itself, but rather by the
regularity of the domain. This is this phenomenon which forces us to work with the
new unknowns V,B rather than with ψ.

In Section 2, we wrote a review of paradifferential calculus and proved various tech-
nical results useful in the article. In Section 3 we study the Dirichlet-Neumann
operator. In Section 4, we symmetrize the system and prove a priori estimates. In
Section 5 we prove the contraction estimates required to show uniqueness and sta-
bility of solutions. In particular we prove a contraction estimate for the difference of
two Dirichlet Neumann operators, involving only the C

1
2 norm of the difference of

the functions defining the domains (see Theorem 5.2), while in Section 6 we prove
the existence of solutions by a regularization process.

2. Paradifferential calculus

Let us review notations and results about Bony’s paradifferential calculus. We refer
to [13, 34, 41, 42] for the general theory. Here we follow the presentation by
Métivier in [41].

2.1. Paradifferential operators. For k ∈ N, we denote by W k,∞(Rd) the
usual Sobolev spaces. For ρ = k + σ, k ∈ N, σ ∈ (0, 1) denote by W ρ,∞(Rd) the
space of functions whose derivatives up to order k are bounded and uniformly Hölder
continuous with exponent σ.

Definition 2.1. Given ρ ∈ [0, 1] and m ∈ R, Γmρ (Rd) denotes the space of locally
bounded functions a(x, ξ) on Rd× (Rd \0), which are C∞ with respect to ξ for ξ 6= 0
and such that, for all α ∈ Nd and all ξ 6= 0, the function x 7→ ∂αξ a(x, ξ) belongs
to W ρ,∞(Rd) and there exists a constant Cα such that,

∀ |ξ| ≥ 1
2
,
∥∥∂αξ a(·, ξ)

∥∥
W ρ,∞(Rd)

≤ Cα(1 + |ξ|)m−|α|.
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Given a symbol a, we define the paradifferential operator Ta by

(2.1) T̂au(ξ) = (2π)−d
∫
χ(ξ − η, η)â(ξ − η, η)ψ(η)û(η) dη,

where â(θ, ξ) =
∫
e−ix·θa(x, ξ) dx is the Fourier transform of a with respect to the

first variable; χ and ψ are two fixed C∞ functions such that:

(2.2) ψ(η) = 0 for |η| ≤ 1, ψ(η) = 1 for |η| ≥ 2,

and χ(θ, η) satisfies, for 0 < ε1 < ε2 small enough,

χ(θ, η) = 1 if |θ| ≤ ε1 |η| , χ(θ, η) = 0 if |θ| ≥ ε2 |η| ,
and such that

∀(θ, η) :
∣∣∣∂αθ ∂βηχ(θ, η)

∣∣∣ ≤ Cα,β(1 + |η|)−|α|−|β|.

The function χ can be constructed as follows. Let κ ∈ C∞0 (Rd) be such that

κ(θ) = 1 for |θ| ≤ 1.1, κ(θ) = 0 for |θ| ≥ 1.9.

Then we define χ(θ, η) =
∑+∞

k=0 κk−3(θ)ϕk(η), where

κk(θ) = κ(2−kθ) for k ∈ Z, ϕ0 = κ0, and ϕk = κk − κk−1 for k ≥ 1.

2.2. Symbolic calculus. We shall use quantitative results from [41] about
operator norms estimates in symbolic calculus. Introduce the following semi-norms.

Definition 2.2. For m ∈ R, ρ ∈ [0, 1] and a ∈ Γmρ (Rd), we set

(2.3) Mm
ρ (a) = sup

|α|≤ 3d
2

+1+ρ

sup
|ξ|≥1/2

∥∥∥(1 + |ξ|)|α|−m∂αξ a(·, ξ)
∥∥∥
W ρ,∞(Rd)

.

Definition 2.3 (Zygmund spaces). Consider a dyadic decomposition of the identity:
I = ∆−1 +

∑∞
q=0 ∆q. If s is any real number, we define the Zygmund class Cs

∗(R
d)

as the space of tempered distributions u such that

‖u‖Cs
∗

:= sup
q

2qs ‖∆qu‖L∞ < +∞.

Remark 2.4. Recall that Cs
∗(R

d) is the Hölder space W s,∞(Rd) if s ∈ (0,+∞)\N.

Definition 2.5. Let m ∈ R. An operator T is said to be of order m if, for all µ ∈ R,
it is bounded from Hµ to Hµ−m.

The main features of symbolic calculus for paradifferential operators are given by
the following theorem.

Theorem 2.6. Let m ∈ R and ρ ∈ [0, 1].

(i) If a ∈ Γm0 (Rd), then Ta is of order m. Moreover, for all µ ∈ R there exists a
constant K such that

(2.4) ‖Ta‖Hµ→Hµ−m ≤ KMm
0 (a).

(ii) If a ∈ Γmρ (Rd), b ∈ Γm
′

ρ (Rd) then TaTb − Tab is of order m+m′ − ρ. Moreover,
for all µ ∈ R there exists a constant K such that

(2.5) ‖TaTb − Tab‖Hµ→Hµ−m−m′+ρ ≤ KMm
ρ (a)Mm′

0 (b) +KMm
0 (a)Mm′

ρ (b).

(iii) Let a ∈ Γmρ (Rd). Denote by (Ta)∗ the adjoint operator of Ta and by a the
complex conjugate of a. Then (Ta)∗−Ta is of order m−ρ. Moreover, for all µ there
exists a constant K such that

(2.6) ‖(Ta)∗ − Ta‖Hµ→Hµ−m+ρ ≤ KMm
ρ (a).
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We shall need in this article to consider paradifferential operators with negative
regularity. As a consequence, we need to extend our previous definition.

Definition 2.7. For m ∈ R and ρ ∈ (−∞, 0), Γmρ (Rd) denotes the space of distri-
butions a(x, ξ) on Rd × (Rd \ 0), which are C∞ with respect to ξ and such that, for
all α ∈ Nd and all ξ 6= 0, the function x 7→ ∂αξ a(x, ξ) belongs to Cρ∗ (Rd) and there
exists a constant Cα such that,

(2.7) ∀ |ξ| ≥ 1
2
,
∥∥∂αξ a(·, ξ)

∥∥
Cρ∗
≤ Cα(1 + |ξ|)m−|α|.

For a ∈ Γmρ , we define

(2.8) Mm
ρ (a) = sup

|α|≤ 3d
2

+ρ+1

sup
|ξ|≥1/2

∥∥∥(1 + |ξ|)|α|−m∂αξ a(·, ξ)
∥∥∥
Cρ∗ (Rd)

.

2.3. Paraproducts and product rules. If a = a(x) is a function of x only, the
paradifferential operator Ta is called a paraproduct. A key feature of paraproducts
is that one can replace nonlinear expressions by paradifferential expressions up to
smoothing operators. Also, one can define paraproducts Ta for rough functions a
which do not belong to L∞(Rd) but merely to C−m∗ (Rd) with m > 0.

Definition 2.8. Given two functions a, b defined on Rd we define the remainder

R(a, u) = au− Tau− Tua.

We record here various estimates about paraproducts (see chapter 2 in [10] or [18]).

Theorem 2.9. i) Let α, β ∈ R. If α+ β > 0 then

‖R(a, u)‖
Hα+β− d2 (Rd)

≤ K ‖a‖Hα(Rd) ‖u‖Hβ(Rd) ,(2.9)

‖R(a, u)‖Hα+β(Rd) ≤ K ‖a‖Cα∗ (Rd) ‖u‖Hβ(Rd) .(2.10)

ii) Let m > 0 and s ∈ R. Then

(2.11) ‖Tau‖Hs−m ≤ K ‖a‖C−m∗ ‖u‖Hs .

iii) Let s0, s1, s2 be such that s0 ≤ s2 and s0 < s1 + s2 − d
2 , then

(2.12) ‖Tau‖Hs0 ≤ K ‖a‖Hs1 ‖u‖Hs2 .

By combining the two previous points with the embedding Hµ(Rd) ⊂ C
µ−d/2
∗ (Rd)

(for any µ ∈ R) we immediately obtain the following results.

Proposition 2.10. Let r, µ ∈ R be such that r + µ > 0. If γ ∈ R satisfies

γ ≤ r and γ < r + µ− d

2
,

then there exists a constant K such that, for all a ∈ Hr(Rd) and all u ∈ Hµ(Rd),

‖au− Tau‖Hγ ≤ K ‖a‖Hr ‖u‖Hµ .

Corollary 2.11. i) If uj ∈ Hsj (Rd) (j = 1, 2) with s1 + s2 > 0 then

(2.13) ‖u1u2‖Hs0 ≤ K ‖u1‖Hs1 ‖u2‖Hs2 ,

if s0 ≤ sj, j = 1, 2, and s0 < s1 + s2 − d/2.
ii) (Tame estimate in Sobolev spaces) If s ≥ 0 then

(2.14) ‖u1u2‖Hs ≤ K
(
‖u1‖Hs ‖u2‖L∞ + ‖u1‖L∞ ‖u2‖Hs

)
.
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iii) Let µ,m ∈ R be such that µ,m > 0 and m 6∈ N. Then

(2.15) ‖u1u2‖Hµ ≤ K
(
‖u1‖L∞ ‖u2‖Hµ + ‖u2‖C−m∗ ‖u1‖Hµ+m

)
.

iv) Let s > d/2 and consider F ∈ C∞(CN ) such that F (0) = 0. Then there exists
a non-decreasing function F : R+ → R+ such that, for any U ∈ Hs(Rd)N ,

(2.16) ‖F (U)‖Hs ≤ F
(
‖U‖L∞

)
‖U‖Hs .

Proof. The first two estimates are well-known, see Hörmander [34] or Chemin
[18]. To prove iii) we write u1u2 = Tu1u2 + Tu2u1 +R(u1, u2) and use that

‖Tu1u2‖Hµ . ‖u1‖L∞ ‖u2‖Hµ (see (2.4)),

‖Tu2u1‖Hµ . ‖u2‖C−m∗ ‖u1‖Hµ+m (see (2.11)),

‖R(u1, u2)‖Hµ . ‖u2‖C−m∗ ‖u1‖Hµ+m (see (2.10)).

Finally, iv) is due to Meyer [42, Théorème 2.5 and remarque]. �

Finally, let us finish this section with a generalization of (2.11)

Proposition 2.12. Let ρ < 0, m ∈ R and a ∈ Γ̇mρ . Then the operator Ta is of
order m− ρ:

(2.17) ‖Ta‖Hs→Hs−(m−ρ) ≤ CMm
ρ (a), ‖Ta‖Cs

∗→C
s−(m−ρ)
∗

≤ CMm
ρ (a).

Proof. Let us prove the first estimate. The proof of the second is similar.
Notice that if m = 0 and a(x, ξ) = a(x), then (2.17) is simply (2.11). Furthermore,
if a(x, ξ) = b(x)p(ξ), then Ta = Tb(θp)(|Dx|), where θ is a cutoff function vanishing
near 0 and equal to 1 for |ξ| ≥ 1. As a consequence, in this particular case, we get

‖Ta‖Hs→Hs−(m−ρ) ≤ C‖b‖Cρ∗‖p |Sd−1 ‖L∞ .
In the general case, we can expand, for fixed x, a(x, ξ) in terms of spherical har-
monics. Let (h̃ν)ν∈N∗ be an orthonormal basis of L2(Sd−1) consisting of eigenfunc-
tions of the (self-adjoint) Laplace–Beltrami operator, ∆ω = ∆Sd−1 on L2(Sd−1), i.e.
∆ωh̃ν = λ2

ν h̃ν . By the Weyl formula, we know that λν ∼ cν
1
d . Setting

hν(ξ) = |ξ|m h̃ν(ω), ω =
ξ

|ξ|
, ξ 6= 0,

we can write

a(x, ξ) =
∑
ν∈N∗

aν(x)hν(ξ) where aν(x) =
∫
Sd−1

a(x, ω)h̃ν(ω) dω.

Since
λ2k
ν aν(t, x) =

∫
Sd−1

∆k
wa(x, ω)h̃ν(ω) dω,

we have, for all ν ≥ 1,

(2.18) ‖aν(·)‖Cρ∗ ≤ Cλ
− 3d

2
+1

ν ≤ ν−
3
2
− 1
dMm

ρ (p).

Moreover,

(2.19)
∥∥h̃ν∥∥L∞ ≤ Cλ (d−1)

2
ν ≤ Cν

1
2
− 1

2d .

and the result follows because

‖Ta‖Hs→Hs−(m−ρ) ≤ C
∑
ν

ν−1− 1
2dMm

ρ (p).

This completes the proof. �
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We shall also need the following technical result.

Proposition 2.13. Set 〈Dx〉 = (I −∆)1/2.

i) Let s > 1
2 + d

2 and σ ∈ R be such that σ ≤ s. Then there exists K > 0 such that
for all V ∈W 1,∞(Rd) ∩Hs(Rd) and u ∈ Hσ− 1

2 (Rd) one has

‖[〈Dx〉σ , V ]u‖L2(Rd) ≤ K
{
‖V ‖W 1,∞(Rd) + ‖V ‖Hs(Rd)

}
‖u‖

Hσ− 1
2 (Rd)

.

ii) Let s > 1 + d
2 and σ ∈ R be such that σ ≤ s. Then there exists K > 0 such that

for all V ∈ Hs(Rd) and u ∈ Hσ−1(Rd) one has

‖[〈Dx〉σ , V ]u‖L2(Rd) ≤ K‖V ‖Hs(Rd)‖u‖Hσ−1(Rd).

Proof. To prove i) we write

‖[〈Dx〉σ , V ]u‖L2 ≤ A+B, A = ‖[〈Dx〉σ , TV ]u‖L2 , B = ‖[〈Dx〉σ , V −TV ]u‖L2 .

By (2.5) we have A ≤ K‖V ‖W 1,∞‖u‖Hσ−1 . On the other hand one can write

B ≤ ‖〈Dx〉σ (V − TV )u‖L2 + ‖(V − TV )〈Dx〉σ u‖L2 = B1 +B2.

We use Proposition 2.10 two times. To estimate B1 we take γ = σ, r = s, µ = σ− 1
2 .

To estimate B2 we take γ = 0, r = s, µ = −1
2 and we obtain,

B ≤ K‖V ‖Hs‖u‖
Hσ− 1

2
.

To prove ii), to estimate B1 (resp. B2) we use again Proposition 2.10 with γ = σ, r =
s, µ = σ − 1 (resp. γ = 0, r = s, µ = −1). �

We shall need well-known estimates on the solutions of transport equations.

Proposition 2.14. Let I = [0, T ], s > 1 + d
2 and consider the Cauchy problem

(2.20)
{
∂tu+ V · ∇u = f, t ∈ I,
u|t=0 = u0.

There exists a non decreasing function F : R+ → R+ such that

(2.21) ‖u(t)‖L2(Rd) ≤ F
(
‖V ‖L1(I;W 1,∞(Rd))

)(
‖u0‖L2(Rd) +

∫ t

0
‖f(t′, ·)‖L2(Rd) dt

′).
and for any σ ∈ [0, s] there exists a non decreasing function F : R+ → R+ such that

(2.22) ‖u(t)‖Hσ(Rd) ≤ F
(
‖V ‖L1(I;Hs(Rd))

)(
‖u0‖Hσ(Rd) +

∫ t

0
‖f(t′, ·)‖Hσ(Rd) dt

′).
2.4. Commutation with a vector field. We prove in this paragraph a com-

mutator estimate between a paradifferential operator Tp and the convective deriv-
ative ∂t + V · ∇. Inspired by Chemin [17] and Alinhac [6], we prove an estimate
which depends on estimates on ∂tp+ V · ∇p and not on ∇t,xp.
When a and u are symbols and functions depending on t ∈ I, we still denote
by Tau the spatial paradifferential operator (or paraproduct) such that for all t ∈ I,
(Tau)(t) = Ta(t)u(t). Given a symbol a = a(t;x, ξ) depending on time, we use the
notation

Mm
0 (a) := sup

t∈[0,T ]
sup

|α|≤ 3d
2

+1+ρ

sup
|ξ|≥1/2

∥∥∥(1 + |ξ|)|α|−m∂αξ a(t; ·, ξ)
∥∥∥
L∞(Rd)

.

10



Given a scalar symbol p = p(t, x, ξ) of order m, it follows directly from the symbolic
calculus rules for paradifferential operators (see (2.4) and (2.5)) that,∥∥[Tp, ∂t + TV · ∇

]
u
∥∥
Hµ ≤ K {Mm

0 (∂tp) +Mm
0 (∇p) ‖V ‖W 1,∞} ‖u‖Hµ+m .

A technical key point in our analysis is that one can replace this estimate by a
tame estimate which does not involve the first order derivatives of p, but instead
∂tp+ V · ∇p.

Lemma 2.15. Let V ∈ C0([0, T ];C1+ε
∗ (Rd)) for some ε > 0 and consider a sym-

bol p = p(t, x, ξ) which is homogeneous in ξ of order m. Then there exists K > 0
(independent of p, V ) such that for any t ∈ [0, T ] and any u ∈ C0([0, T ];Hm(Rd)).

(2.23)
∥∥[Tp, ∂t + TV · ∇

]
u(t)

∥∥
L2(Rd)

≤ K
{
Mm

0 (p) ‖V (t)‖C1+ε
∗

+Mm
0 (∂tp+ V · ∇p)

}
‖u(t)‖Hm(Rd) .

Proof. Set I = [0, T ] and denote by R the set of continuous operators R(t)
from Hm(Rd) to L2(Rd) with norm satisfying

‖R(t)‖L(Hm(Rd),L2(Rd)) ≤ K
{
Mm

0 (p) ‖V (t)‖C1+ε
∗

+Mm
0 (∂tp+ V · ∇p)

}
.

We begin by noticing that it is sufficient to prove that

(2.24)
(
∂t + V · ∇

)
Tp = Tp

(
∂t + TV · ∇

)
+R, R ∈ R.

Indeed, by Theorem 5.2.9 in [41], we have (for fixed t)

‖(V − TV ) · ∇Tpu‖L2 . ‖V ‖W 1,∞ ‖Tpu‖L2 . ‖V ‖W 1,∞Mm
0 (p) ‖u‖Hm

by using the operator norm estimate (2.4). This implies that
(
V − TV

)
· ∇Tp ∈ R.

We split the proof of (2.24) into three steps. By decomposing p into a sum of
spherical harmonic, we shall reduce the analysis to establishing (2.24) for the special
case when Tp is a paraproduct. In the first step we prove (2.24) for m = 0 and p =
p(t, x). In the second step we prove (2.24) for p = a(t, x)h(ξ) where h is homogeneous
in ξ of order m. Then we consider the general case.

Step 1: Paraproduct, m = 0, p = p(t, x). In this case M0
0(p) = ‖p‖L∞ . We have

(2.25)

{
∂tTpu = T∂tpu+ Tp∂tu,

V · ∇Tpu = V · T∇pu+ V Tp · ∇u =: A+B.

Decompose V = Sj−3(V ) + Sj−3(V ), with

Sj−3(V ) =
∑
k≤j−2

∆kV, Sj−3(V ) =
∑
k≥j−3

∆kV,

to obtain

(2.26)


A = A1 +A2,

A1 :=
∑
j

Sj−3(V )Sj−3(∇p)∆ju, A2 :=
∑
j

Sj−3(V )Sj−3(∇p)∆ju.

Let us consider the term A2. Since∥∥Sj−3(V )
∥∥
L∞
≤
∑
k≥j−3

‖∆kV ‖L∞ .
∑
k≥j−3

2−k(1+ε) ‖V ‖C1+ε
∗
. 2−j(1+ε) ‖V ‖C1+ε

∗

and ‖Sj−3(∇p)‖L∞ . 2j ‖p‖L∞ , we obtain

(2.27) ‖A2‖L2 .
∑
j

2−jε ‖V ‖C1+ε
∗
‖p‖L∞ ‖u‖L2 .M0

0(p) ‖V ‖C1+ε
∗
‖u‖L2 .
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We now estimate A1 = A11 +A12, with

(2.28)


A11 :=

∑
j

Sj−3

{
Sj−3(V ) · ∇p

}
∆ju,

A12 :=
∑
j

{[
Sj−3(V ), Sj−3

]
∇p
}

∆ju.

Write Sj−3(V ) = V − Sj−3(V ), to obtain

A11 =
∑
j

Sj−3

(
V · ∇p

)
∆ju−

∑
j

Sj−3

{
Sj−3(V ) · ∇p

}
∆ju = TV ·∇pu+ I + II

where

I = −
∑
j

(
∇ · Sj−3

{
Sj−3(V )p

})
∆ju, II =

∑
j

Sj−3

{
Sj−3(∇ · V )p

}
∆ju.

Then

‖I‖L2 .
∑
j

2j
∥∥Sj−3(V )p

∥∥
L∞
‖∆ju‖L2

.
∑
j

2j2−j(1+ε) ‖V ‖C1+ε
∗
‖p‖L∞ ‖u‖L2 . ‖V ‖C1+ε

∗
‖p‖L∞ ‖u‖L2 .

Moreover,

‖II‖L2 .
∑
j

∥∥Sj−3(∇V )
∥∥
L∞
‖p‖L∞ ‖∆ju‖L2 . ‖V ‖C1+ε

∗
‖p‖L∞ ‖u‖L2 .

Therefore

(2.29) A11 = TV ·∇pu+Ru, R ∈ R.

In order to estimate A12, note that one can replace ∇p by S̃j−3(∇p) where S̃j−3 =
ψ̃(2−(j−3)D) for some function ψ̃ ∈ C∞0 (Rd) such that ψ̃(ξ) = 1 for |ξ| ≤ 2. Next,
observe that

A12 =
∑
j

{[
Sj−3(V ), Sj−3

]
∇S̃j−3(p)

}
∆ju =

∑
j

wj ,

where wj is spectrally supported in an annulus {c12j ≤ |ξ| ≤ c22j}, cj > 0. These
annuli have only finite overlap, thus by Plancherel we have

‖A12‖2L2 .
∑
j

∥∥∥{[Sj−3(V ), Sj−3

]
∇S̃j−3(p)

}
∆ju

∥∥∥2

L2

.
∑
j

2−2j ‖V ‖2
C1+ε
∗

22j ‖p‖2L∞ ‖∆ju‖2L2 . ‖V ‖C1+ε
∗
‖p‖L∞ ‖u‖L2 ,

where we used the fact that the commutator
[
Sj−3(V ), Sj−3

]
is of order −1 (uni-

formly in j), since V ∈ C0([0, T ];W 1,∞). It follows that A12 = Ru with R ∈ R.
Consequently, we deduce from (2.28) and (2.29) that A1 = TV ·∇pu+Ru for some R
in R. It thus follows from (2.26) and (2.27) that A = TV ·∇pu+Ru with R ∈ R.

We estimate now the term B introduced in (2.25). We split this term as follows:

B = V · (Tp∇u) = V ·
∑
j

Sj−3(p)∇∆ju

=
∑
j

Sj−3(V )Sj−3(p)∆j∇u+
∑
j

Sj−3(V )Sj−3(∇p)∆j∇u =: B1 +B2.

12



We have

‖B2‖L2 ≤
∑
j

∥∥Sj−3(V )
∥∥
L∞
‖Sj−3(p)‖L∞ ‖∆j∇u‖L2

.
∑
j

2−j(1+ε) ‖V ‖C1+ε
∗

2j ‖p‖L∞ ‖u‖L2 .

and hence B2 = Ru with R ∈ R. To deal with the term B1, let us introduce

(2.30) C := TpTV · ∇u =
∑
j

Sj−3(p)∆j

∑
k

Sk−3(V ) · ∇∆ku.

Since the spectrum of Sk−3(V ) ·∇∆ku is contained in {(3/8)2k ≤ |ξ| ≤ (2+1/8)2k},
the term ∆j(Sk−3(V ) · ∇∆ku) vanishes unless |k − j| ≤ 3. On the other hand,
for |k − j| ≤ 3, Sk−3(V )− Sj−3(V ) = ±

∑N0
`=−N0

∆`+jV , and hence we can write C
under the form

C = C1 + C2 = C1 +
∑
j

Sj−3(p)∆j

{
Sj−3(V ) ·

∑
|k−j|≤3

∇∆ku
}

where C1 is given by

C1 =
∑
j

Sj−3(p)∆j

3∑
i=1

i−2∑
`=−1

{
∆`+j(V )∇∆i+j(u)−∆`+j−i(V )∇∆j−i(u)

}
,

so that
‖C1‖L2 .

∑
j

‖p‖L∞ 2−j(1+ε) ‖V ‖C1+ε
∗

2j ‖u‖L2 ,

which implies that C1 = Ru with R ∈ R. To estimate C2, as before we write
C2 = C21 + C22 where

C21 :=
∑
j

Sj−3(p)
[
∆j , Sj−3(V )

]
·
∑
|k−j|≤3

∇∆ku,

C22 :=
∑
j

Sj−3(p)Sj−3(V ) ·∆j

∑
|k−j|≤3

∇∆ku,

where (using frequency localization in dyadic annuli and Plancherel formula)

‖C21‖2L2 .
∑
j

‖p‖2L∞ 2−2j ‖V ‖2W 1,∞ 22j
∑
|k−j|≤3

‖∆ku‖2L2 . ‖p‖L∞ ‖V ‖C1+ε
∗
‖u‖L2 .

On the other hand, since ∆j
∑
|k−j|≤3 ∆k = ∆j , we have

C22 =
∑
j

Sj−3(V )Sj−3(p)∇∆ju = B1.

We thus end up with

(2.31) II = TpTV · ∇u+Ru, R ∈ R.

It follows from (2.25) and (2.31) that

(2.32) (∂t + V · ∇)Tpu = Tp(∂t + TV · ∇)u+ T∂tp+V ·∇pu+Ru, R ∈ R.

The symbolic calculus shows that T∂tp+V ·∇p ∈ R, which proves (2.24) and concludes
the proof of the first step.
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Step 2 : Higher order paraproducts. We now assume that p(t, x, ξ) = a(t, x)h(ξ)
where h(ξ) = |ξ|m h̃(ξ/ |ξ|) with h̃ ∈ C∞(Sd−1). Then, directly from the defini-
tion (2.1), we have Tp = Taψ(Dx)h(Dx) where ψ satisfies (2.2). We have[
Tp, ∂t + TV · ∇

]
=
[
Ta, ∂t + TV · ∇

]
ψ(Dx)h(Dx) + Ta

[
ψ(Dx)h(Dx), ∂t + TV · ∇

]
.

The norm from Hm to L2 of the first term in the right-hand side is estimated by
means of the previous step by

K‖a‖L∞ ‖V ‖C1+ε
∗

+ ‖∂ta+ V · ∇a‖L∞ ‖V ‖L∞ ,

while the norm of the second term simplifies to Ta
[
ψ(Dx)h(Dx), TV ·∇

]
and is easily

estimated using (2.4) and (2.5) by

‖a‖L∞ ‖V ‖C1+ε
∗

(‖h̃‖L∞ + ‖∇ξh |Sd−1 ‖L∞).

Step 3 : Paradifferential operators. Consider an orthonormal basis (h̃ν)ν∈N∗
of L2(Sd−1) consisting of eigenfunctions of the (self-adjoint) Laplace–Beltrami op-
erator, ∆ω = ∆Sd−1 on L2(Sd−1), i.e. ∆ωh̃ν = λ2

ν h̃ν . By the Weyl formula, we know
that λν ∼ cν

1
d . Setting hν(ξ) = |ξ|m h̃ν(ω), ω = ξ/ |ξ|, ξ 6= 0, we can write

p(t, x, ξ) =
∑
ν∈N∗

aν(t, x)hν(ξ) where aν(t, x) =
∫
Sd−1

p(t, x, ω)h̃ν(ω) dω.

Since

λ2k
ν aν(t, x) =

∫
Sd−1

∆k
wp(t, x, ω)h̃ν(ω) dω,

we deduce

(2.33) sup
t∈I
‖aν(t)‖L∞ ≤ Cλ

− 3d
2
−1

ν Mm
0 (p).

Moreover, there exists a positive constant K such that, for all ν ≥ 1,

(2.34)
∥∥h̃ν∥∥L∞ ≤ Cλ d−1

2
ν .

Now we can write

‖[∂t + V · ∇, Tp]u‖L2 ≤
∑
ν∈N∗

‖[∂t + V · ∇, Taνhν ]u‖L2 .

So using the estimates obtained in the previous steps for every ν ≥ 1 and the
estimates (2.33)–(2.34), we obtain (2.24), since the sum∑

ν

λ
(d−1)

2
+1

ν λ
−( 3d

2
+1)

ν ∼
∑
ν

ν−1− 1
2d

is finite. This completes the proof of the lemma. �

We have also a Sobolev analogue of Lemma 2.15 which can be proved similarly.

Lemma 2.16. Let s > 1 + d/2 and V ∈ C0([0, T ];Hs(Rd)). There exists a positive
constant K such that for any symbol p = p(t, x, ξ) which is homogeneous in ξ of
order m ∈ R and all u ∈ C0([0, T ];Hs+m(Rd)),∥∥[Tp, ∂t + TV · ∇

]
u(t)

∥∥
Hs(Rd)

≤ K {Mm
0 (p) ‖V (t)‖Hs +Mm

0 (∂tp+ V · ∇p) ‖V (t)‖L∞} ‖u(t)‖Hs+m(Rd) .
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2.5. Parabolic evolution equation. Consider the evolution equation

∂zw + |Dx|w = 0,

where z ∈ R and x ∈ Rd. By using the Fourier transform, one easily checks that

(2.35) sup
z∈[0,1]

‖w(z)‖Hr +
(∫ 1

0
‖w(z)‖2

Hr+1
2
dz
) 1

2 ≤ K ‖w(0)‖Hr .

The purpose of this section is to prove similar results when the constant coefficient
operator |Dx| is replaced by an elliptic paradifferential operator.

Given I ⊂ R, z0 ∈ I and a function ϕ = ϕ(x, z) defined on Rd×I, we denote by ϕ(z0)
the function x 7→ ϕ(x, z0). For I ⊂ R and a normed space E, ϕ ∈ C0

z (I;E) means
that z 7→ ϕ(z) is a continuous function from I to E. Similarly, for 1 ≤ p ≤ +∞,
ϕ ∈ Lpz(I;E) means that z 7→ ‖ϕ(z)‖E belongs to the Lebesgue space Lp(I).

In this section, when a and u are symbols and functions depending on z, we still
denote by Tau the function defined by (Tau)(z) = Ta(z)u(z) where z ∈ I is seen as a
parameter. We denote by Γmρ (Rd × I) the space of symbols a = a(z;x, ξ) such that
z 7→ a(z; ·) is bounded from I into Γmρ (Rd) (see Definition 2.2), with the semi-norm

(2.36) Mm
ρ (a) = sup

z∈I
sup

|α|≤ 3d
2

+ρ+1

sup
|ξ|≥1/2

∥∥∥(1 + |ξ|)|α|−m∂αξ a(z; ·, ξ)
∥∥∥
W ρ,∞(Rd)

.

Given µ ∈ R we define the spaces

(2.37)
Xµ(I) = C0

z (I;Hµ(Rd)) ∩ L2
z(I;Hµ+ 1

2 (Rd)),

Y µ(I) = L1
z(I;Hµ(Rd)) + L2

z(I;Hµ− 1
2 (Rd)).

Proposition 2.17. Let r ∈ R, ρ ∈ (0, 1), J = [z0, z1] ⊂ R and let p ∈ Γ1
ρ(R

d × J)
satisfying

Re p(z;x, ξ) ≥ c |ξ| ,
for some positive constant c. Then for any f ∈ Y r(J) and w0 ∈ Hr(Rd), there
exists w ∈ Xr(J) solution of the parabolic evolution equation

(2.38) ∂zw + Tpw = f, w|z=z0 = w0,

satisfying
‖w‖Xr(J) ≤ K

{
‖w0‖Hr + ‖f‖Y r(J)

}
,

for some positive constant K depending only on r, ρ, c and M1
ρ(p). Furthermore,

this solution is unique in Xs(J) for any s ∈ R.

Proof. Let r ∈ R. Denote by 〈·, ·〉Hr the scalar product inHr(Rd) and chose F1

and F2 such that f = F1 + F2 with

‖F1‖L1
z(J ;Hr) + ‖F2‖

L2(J ;Hr− 1
2 )
≤ ‖f‖Y r(J) + δ, δ > 0.

Let us consider for ε > 0 the equation

(2.39) ∂zwε + ε(−∆ + Id)wε + Tpwε = f, wε|z=z0 = w0.

Then standard methods in parabolic equations show that for any z1 > z0, this
equation have a unique solution in

C0([z0, z1];Hr(Rd)) ∩ L2((z0, z1);Hr+2(Rd))

(here we only used that Tp is a Sobolev first order operator). To pass to the limit ε→
0, we need to establish uniform estimates with respect to ε.
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Taking the scalar product in Hr, directly from (2.39), we obtain

1
2
d

dz
‖wε(z)‖2Hr + ε〈(−∆ + Id)wε(z), wε(z)〉Hr + Re〈Tp(z)wε(z), wε(z)〉Hr

≤ ‖F1(z)‖Hr ‖wε(z)‖Hr + ‖F2(z)‖
Hr− 1

2
‖wε(z)‖

Hr+1
2
.

It follows from G̊arding’s inequality (see [41, Section 6.3.2]) that there exist two
constants C1, C2 > 0 depending only on M1

ρ(p) such that for any u ∈ Hr,

Re〈Tp(z)u(z), u(z)〉Hr ≥ C1 ‖u(z)‖2
Hr+1

2
− C2 ‖u(z)‖2

Hr+
1−ρ
2
,

for each fixed z ∈ J . Therefore, we obtain

1
2
d

dz
‖wε(z)‖2Hr + ε〈(−∆ + Id)wε(z), wε(z)〉Hr + C1 ‖wε(z)‖2

Hr+1
2

≤ ‖F1(z)‖Hr ‖wε(z)‖Hr + ‖F2(z)‖
Hr− 1

2
‖wε(z)‖

Hr+1
2

+ C2 ‖wε(z)‖2
Hr+

1−ρ
2
.

Integrating in z we obtain that, for all z ∈ [z0, z1],

A(z) :=
1
2

{
‖wε(z)‖2Hr − ‖wε(z0)‖2Hr

}
+ ε

∫ z

z0

‖wε(z′)‖2Hr+1dz
′

+ C1

∫ z

z0

∥∥wε(z′)∥∥2

Hr+1
2
dz′

is bounded by

B := ‖F1‖L1(J ;Hr) ‖wε‖L∞(J ;Hr) + ‖F2‖
L2(J ;Hr− 1

2 )
‖wε‖

L2(J ;Hr+1
2 )

+ C2 ‖wε‖2
L2(J ;Hr+

1−ρ
2 )

.

By standard arguments, it follows that

(2.40) ‖wε‖2L∞(J ;Hr) + C1 ‖wε‖2
L2(J ;Hr+1

2 )
≤ ‖w0‖2Hr

+ C
(
‖F1‖2L1(J ;Hr) + ‖F2‖2

L2(J ;Hr− 1
2 )

+ ‖wε‖2
L2(J ;Hr+

1−ρ
2 )

)
.

Finally, to eliminate the last term in the right hand side of (2.40), one notices that
the left hand side controls by interpolation c ‖wε‖2

Lp(J ;Hr+
1−ρ
2 )

, for some p > 2,

hence by Hölder in the z variable, there exists κ > 0 (depending only on p) such
that if |z0 − z1| ≤ κ, we have

C ‖wε‖2
L2(J ;Hr+

1−ρ
2 )
≤ 1

2
(
‖wε‖2L∞(J ;Hr) + C1 ‖wε‖2

L2(J ;Hr+1
2 )

)
.

We consequently obtain

‖wε‖2L∞(J ;Hr) +C1 ‖wε‖2
L2(J ;Hr+1

2 )
≤ 2 ‖w0‖2Hr +C

(
‖F1‖2L1(J ;Hr) + ‖F2‖2

L2(J ;Hr− 1
2 )

)
.

We can now iterate the estimate between z0 + κ and z0 + 2κ, ... to get rid of the
assumption |z1 − z0| ≤ κ (and of course the constants will depend on z1). By
using the equation, we obtain now that (wε) is bounded in Xr(J) ∩ C1(J ;Hr−2).
It follows from the Banach–Alaoglu theorem that, up to a subsequence, (wε) con-
verges in the sense of distributions to w ∈ Xr(J), which satisfies the equation
∂zw + Tpw = f . Then ∂zw belongs to Y r(J) which implies that w belongs to
C0([z0, z1];Hr(Rd)). Moreover, by the Ascoli theorem, up to a subsequence, (wε)
converges in C0([z0, z1];Hr−µ

loc ) for some µ > 0. Since wε|z=0 = w0 we obtain that
w|z=0 = w0, which completes the existence part in Proposition 2.17. The proof of
uniqueness follows the same steps and we omit it. �
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3. The Dirichlet-Neumann operator

We shall prove some results about elliptic regularity which complement previous
works. To do this we shall use a paradifferential approach.

3.1. Definition and continuity. We begin by recalling from [1] the definition
of the Dirichlet–Neumann operator under general assumptions on the bottom. One
of the novelty with respect to our previous work is that we clarify the regularity
assumptions: assuming only that η ∈W 1,∞(Rd) and f ∈ H

1
2 (Rd), we show how to

define G(η)ψ and prove that the map

ψ ∈ H
1
2 (Rd) 7→ G(η)ψ ∈ H−

1
2 (Rd)

is continuous. Our second contribution is to prove that the map η 7→ G(η) is
Lipschitz (in a proper topology). Finally, we prove also that in some weak sense,
the Dirichlet-Neumann operator thus defined is a local operator (see Theorem 3.9).

The goal is to study the boundary value problem

(3.1) ∆x,yφ = 0 in Ω, φ|Σ = f, ∂nφ|Γ = 0.

See §1.1 for the definitions of Ω,Σ,Γ. Since we make no assumption on Γ, the
definition of φ requires some care. We recall here the definition of φ as given in [1].

Notation 3.1. Denote by D the space of functions u ∈ C∞(Ω) such that ∇x,yu ∈
L2(Ω). We then define D0 as the subspace of functions u ∈ D such that u is equal
to 0 in a neighborhood of the top boundary Σ.

Proposition 3.2 ([1, Proposition 2.2]). There exists a positive weight g ∈ L∞loc(Ω),
equal to 1 near the top boundary of Ω and a constant C > 0 such that for all u ∈ D0,

(3.2)
∫

Ω
g(x, y)|u(x, y)|2 dxdy ≤ C

∫
Ω
|∇x,yu(x, y)|2 dxdy.

Definition 3.3. Denote by H1,0(Ω) the space of functions u on Ω such that there
exists a sequence (un) ∈ D0 such that,

∇x,yun → ∇x,yu in L2(Ω, dxdy), un → u in L2(Ω, g(x, y)dxdy).

We endow the space H1,0 with the norm ‖u‖ = ‖∇x,yu‖L2(Ω).

Let us recall that the space H1,0(Ω) is a Hilbert space (see [1]). For later purpose,
we need to ensure that the functions having compact support in the x variable (at
least near the surface Σ) are dense in H1,0(Ω). By regularizing the function η (see
Remark 3.7) it is easy to see that there is η∗ ∈ C∞b (Rd) such that η − h

20 > η∗ and

{(x, y) ∈ Rd ×R ; η∗(x) < y < η(x)} ⊂ Ω.

Lemma 3.4. The set

D̃0 =
{
u ∈ D0 ; supp(u) ∩ {(x, y);−η∗ +

h

30
< y < η} is compact

}
is dense in H1,0(Ωn).

Proof. Let u ∈ D0, and ζ ∈ C∞(R) equal to 0 for z < 0 and to 1 for z > h/30.
Then according to Proposition 3.2, we have ζ(y − η∗)u ∈ D0 and (1− ζ(y − η∗))u ∈
D0 ∩ H1

0 (Ω) (where H1
0 (Ω) is the usual Sobolev space). Let vn ∈ C∞0 (Ω) which

converges to (1− ζ(y − η∗))u in H1
0 (Ω) (and hence in H1,0(Ω)). We get that ζ(y −

η∗)u+ un ∈ D̃0 and converges to u in H1,0(Ω). �
17



We are able now to define the Dirichlet-Neumann operator. Let f ∈ H
1
2 (Rd). We

first define an H1 lifting of f in Ω. To do so let χ0 ∈ C∞(R) be such that χ0(z) = 1
if z ≥ −1

2 and χ0(z) = 0 if z ≤ −1. We set

ψ1(x, z) = χ0(z)ez〈Dx〉f(x), x ∈ Rd, z ≤ 0.

By the usual property of the Poisson kernel we have

‖∇x,zψ1‖L2([−1,0]×Rd) ≤ C ‖f‖H 1
2 (Rd)

.

Then we set

ψ(x, y) = ψ1

(
x,
y − η(x)

h

)
, (x, y) ∈ Ω.

This is well defined since Ω ⊂ {(x, y) : y < η(x)}. Moreover since the bottom Γ is
contained in {(x, y) : y < η(x)− h}, we see that ψ vanishes identically near Γ.

Now we have obviously ψ|Σ = f and since ∇η ∈ L∞(Rd), an easy computation
shows that ψ ∈ H1(Ω) and

(3.3) ‖ψ‖H1(Ω) ≤ K(1 + ‖η‖W 1,∞)‖f‖
H

1
2 (Rd)

.

Then the map

v 7→ −
∫

Ω
∇x,yψ · ∇x,yv dxdy

is a bounded linear form on H1,0(Ω). It follows from the Riesz theorem that there
exists a unique u ∈ H1,0(Ω) such that

(3.4) ∀v ∈ H1,0(Ω),
∫

Ω
∇x,yu · ∇x,yv dxdy = −

∫
Ω
∇x,yψ · ∇x,yv dxdy.

Then u is the variational solution to the problem

−∆x,yu = ∆x,yψ in D′(Ω), u |Σ= 0, ∂nu |Γ= 0,

the latter condition being justified as soon as the bottom Γ is regular enough.

Lemma 3.5. The function φ = u+ ψ constructed by this procedure is independent
on the choice of the lifting function ψ as long as it remains bounded in H1(Ω) and
vanishes near the bottom.

Proof. Consider two functions constructed by this procedure, φk = uk+ψk, k =
1, 2. Then, by standard density arguments, since ψ1−ψ2 vanishes at the top bound-
ary Σ and in a neighborhood of the bottom Γ, there exists a sequence of func-
tions ψn ∈ C∞0 (Ω) supported in a fixed Lipschitz domain Ω̃ ⊂ Ω tending to ψ1 − ψ2

in H1
0 (Ω̃) and hence also in H1,0(Ω). As a consequence, ψ1 − ψ2 ∈ H1,0(Ω) and

the function φ = φ1 − φ2 is the unique (trivial) solution in H1,0(Ω) of the equation
∆x,yφ = 0 given by the Riesz Theorem. �

Definition 3.6. We shall say that the function φ = u+ ψ constructed by the above
procedure is the variational solution of (3.1). It satisfies

(3.5)
∫

Ω
|∇x,yφ|2 dxdy ≤ K ‖f‖2

H
1
2 (Rd)

,

for some constant K depending only on the Lipschitz norm of η.

Formally the Dirichlet-Neumann operator is defined by

(3.6) G(η)ψ =
√

1 + |∇η|2 ∂nφ

y=η(x)

=
[
∂yφ−∇η · ∇φ

] 
y=η(x)

.
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3.1.1. Straightenning the free boundary. We begin by straightening the bound-
ary. In this paragraph, we fix s > 1

2 + d
2 .

We shall assume here that one can find a function η∗ such that

(3.7)


(i) η∗ +

h

4
∈ H∞(Rd),

(ii) η(x)− η∗(x) =
h

4
+ g, ‖g‖

Hs− 1
2 (Rd)

≤ h

5
,

(iii) Γ ⊂ {(x, y) ∈ O : y < η∗(x)}.

Remark 3.7. Assume that we have a function depending smoothly on the time,
η ∈ C0([0, T ], Hs+ 1

2 (Rd)), such that η|t=0 = η0 and satisfying condition (1.2) with
h
2 (such as a solution in Theorem 1.2). Then one can construct η∗ = η∗(x) satisfying
(i), (iii) in (3.7) and for some T ′ ≤ T

(ii)′ η(t, x)− η∗(x) =
h

4
+ g(t, x), ‖g‖

L∞([0,T ′],Hs− 1
2 (Rd))

≤ h

5
.

Indeed set
η∗(x) = −h

4
+ e−ν〈Dx〉η0(x)

where ν > 0 is chosen such that ν‖η0‖
Hs+1

2 (Rd)
≤ h

10 . Then chose T ′ such that

‖η(t, ·)− η0‖
Hs− 1

2 (Rd)
≤ h

10
, ∀t ∈ [0, T ′],

and write

η(t, x)− η∗(x) = η(t, x)− η0(x) + η0(x)− e−ν〈Dx〉η0 +
h

4
.

Then (ii)′ follows from the estimate

‖η0(x)− e−ν〈Dx〉η0‖
Hs− 1

2 (Rd)
≤ ν‖η0‖

Hs+1
2 (Rd)

≤ h

10
,

and (iii) is a consequence of (ii)′. Indeed for t ∈ [0, T ′] we have

η(t, x)− η∗(x) ≤ h

4
+ ‖g‖L∞([0,T ′]×Rd) ≤

h

4
+ ‖g‖

L∞([0,T ′],Hs− 1
2 Rd))

≤ h

2
,

therefore
Γ ⊂ {(x, y) : y < η(t, x)− h

2
} ⊂ {(x, y) : y < η∗(x)}.

In what follows we shall set

(3.8)


Ω1 = {(x, y) : x ∈ Rd, η∗(x) < y < η(x)},
Ω2 = {(x, y) ∈ O : y ≤ η∗(x)},
Ω = Ω1 ∪ Ω2.

and

(3.9)


Ω̃1 = {(x, z) : x ∈ Rd, z ∈ I}, I = (−1, 0),

Ω̃2 = {(x, z) ∈ Rd × (−∞,−1] : (x, z + 1 + η∗(x)) ∈ Ω2},

Ω̃ = Ω̃1 ∪ Ω̃2.

Following Lannes ([37]), consider the map (x, z) 7→ ρ(x, z) from Ω̃ to R defined by

(3.10)

{
ρ(x, z) = (1 + z)eδz〈Dx〉η(x)− zη∗(x) if (x, z) ∈ Ω̃1,

ρ(x, z) = z + 1 + η∗(x) if (x, z) ∈ Ω̃2,
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where δ is chosen such that

δ‖η‖
Hs+1

2 (Rd)
:= δ0 is small enough.

Notice that ρ is Lipschitz on Ω̃. Moreover since s > 1
2 + d

2 , there exists a constant
C > 0 such that (recall that the spaces Xs(I) are defined in (2.37))

(3.11)

∥∥∥∂zρ− h

4

∥∥∥
Xs− 1

2 (I)
≤ Cδ

(
‖η‖

Hs+1
2 (Rd)

+ ‖η∗‖
Hs+1

2 (Rd)

)
‖∇xρ‖

Xs− 1
2 (I)
≤ C

(
‖η‖

Hs+1
2 (Rd)

+ ‖η∗‖
Hs+1

2 (Rd)

)
from which, taking δ0 small enough, we deduce

(3.12)

 (i) ∂zρ(x, z) ≥ min
(
1,
h

5
)
, ∀(x, z) ∈ Ω̃,

(ii) ‖∇x,zρ‖L∞(eΩ)
≤ F(‖η‖

Hs+1
2 (Rd)

).

It follows from (3.12) (i) that the map (x, z) 7→ (x, ρ(x, z)) is a C1-diffeomorphism
from Ω̃ to Ω. We denote by κ the inverse map of ρ:

(x, z) ∈ Ω̃, (x, ρ(x, z)) = (x, y)⇔ (x, z) = (x, κ(x, y)), (x, y) ∈ Ω.

Let φ̃(x, z) = φ(x, ρ(x, z)). Then we have

(3.13)


(∂yφ)(x, ρ(x, z)) = (Λ1φ̃)(x, z), (∇xφ)(x, ρ(x, z)) = (Λ2φ̃)(x, z),

Λ1 =
1
∂zρ

∂z Λ2 = ∇x −
∇xρ
∂zρ

∂z.

If φ is a solution of ∆x,yφ = 0 in Ω then φ̃ satifies

(Λ2
1 + Λ2

2)φ̃ = 0 in Ω̃

This yields

(3.14) (a∂2
z + ∆x + b · ∇x∂z − c∂z)φ̃ = 0,

where

(3.15) a :=
1 + |∇xρ|2

(∂zρ)2
, b := −2

∇xρ
∂zρ

, c :=
1
∂zρ

(
a∂2

zρ+ ∆xρ+ b · ∇x∂zρ
)
.

It will be convenient to have a constant coefficient in front of ∂2
z φ̃. Dividing (3.14)

by a we obtain

(3.16) (∂2
z + α∆x + β · ∇x∂z − γ∂z)φ̃ = 0,

where

(3.17) α :=
(∂zρ)2

1 + |∇ρ|2
, β := −2

∂zρ∇xρ
1 + |∇xρ|2

, γ :=
1
∂zρ

(
∂2
zρ+α∆xρ+β ·∇x∂zρ

)
.

In the coordinates (x, z), according to (3.6) we have

(3.18) G(η)ψ = U |z=0, U = Λ1φ̃−∇xρ · Λ2φ̃.

The following remark will be useful in the sequel. We have

(3.19) ∂zU = −∇x((∂zρ)Λ2φ̃).
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Indeed we can write

∂zU = ∂zΛ1φ̃−∇x∂zρ · Λ2φ̃−∇xρ · ∂zΛ2φ̃

= (∂zρ)Λ2
1φ̃−∇x∂zρ · Λ2φ̃+ (∂zρ)(Λ2 −∇x)Λ2φ̃

= (∂zρ)(Λ2
1 + Λ2

2)φ̃−∇x
(
(∂zρ)Λ2φ̃

)
.

Since (Λ2
1 + Λ2

2)φ̃ = 0 we obtain (3.19).

3.1.2. Continuity of the Dirichlet-Neumann operator.

Theorem 3.8. Let η ∈W 1,∞(Rd), f ∈ H
1
2 (Rd). In the system of coordinates (x, z)

defined above, the variational solution of (3.1), φ̃, satisfies

(3.20) φ̃ ∈ C0
z ([−1, 0];H

1
2 (Rd)) ∩ C1

z ([−1, 0];H−
1
2 (Rd)).

As a consequence, the map
(3.21)

ψ ∈ H
1
2 (Rd) 7→ G(η)ψ =

√
1 + |∇η|2 ∂nφ


y=η(x)

=
[
∂yφ−∇η · ∇φ

] 
y=η(x)

=
(
(1 + |∇η|2)∂zφ̃−∇η · ∇φ̃

)
|z=0

is well defined. It furthermore satisfies

‖G(η)f‖
H−

1
2 (Rd)

≤ F(‖η‖W 1,∞)‖f‖
H

1
2 (Rd)

.

The Dirichlet–Neumann operator is also weakly continuous. This fact will be used in
Section 6 to prove existence of solutions when passing to the weak limits on weakly
convergent sequences of suitably regularized systems.

Theorem 3.9. Assume that (ηn)n∈N and (ψn)n∈N are two sequences such that

i) the sequence (ηn, ψn)n∈N is bounded in W 1,∞(Rd)×H
1
2 (Rd),

ii) there exists η ∈W 1,∞(Rd) such that ηn converges strongly to η in W 1,∞
loc (Rd),

iii) there exists ψ ∈ H
1
2 (Rd) such that (ψn)n∈N converges weakly to ψ in H

1
2 (Rd),

iv) there exists η∗ ∈W 1,∞(Rd), h > 0 such that

η(x)− h

2
> η∗(x) > η(x)− h, ηn(x)− h

2
> η∗(x) > ηn(x)− h ∀x ∈ Rd.

Then the sequence (G(ηn)ψn) is bounded in H−
1
2 (Rd) and converge weakly to G(η)ψ.

Let us also state the second basic strong continuity of the Dirichlet Neumann op-
erator. Notice that the map η 7→ G(η) is non linear and hence continuity do not
imply weak continuity.

Theorem 3.10. There exists a non decreasing function F : R+ → R+ such that,
for all ηj ∈W 1,∞(Rd), j = 1, 2 and all f ∈ H

1
2 (Rd),∥∥(G(η1)−G(η2)

)
f
∥∥
H−

1
2
≤ F

(
‖(η1, η2)‖W 1,∞×W 1,∞

)
‖η1 − η2‖W 1,∞‖f‖

H
1
2
.

Remark 3.11. We shall only prove Theorems 3.9 and 3.10 as the choice ηn =
η, ψn = ψ in Theorem 3.9 implies Theorem 3.8. On the other hand, the fact that we
can pass to the limit in G(ηn)ψn under convergence assumptions on (ηn, ψn) which
are only local in space, shows that, in a very weak sense, the Dirichlet–Neumann
operator is a local operator.
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Proof of Theorem 3.9. Let M0 > 0 be such that for all n ∈ N,
(3.22)
‖ψn‖

H
1
2 (Rd)

+ ‖ψ‖
H

1
2 (Rd)

+ ‖ηn‖W 1,∞(Rd) + ‖η‖W 1,∞(Rd) + ‖η∗‖W 1,∞(Rd) ≤M0.

Our purpose is to prove that G(ηn)ψn is well defined and bounded in H−
1
2 (Rd) by

F(‖ηn‖W 1,∞)‖ψn‖
H

1
2 (Rd)

(hence uniformly bounded) and converges weakly to G(η)ψ in H−
1
2 (Rd). We shall

proceed in several steps.

Step 1: preliminaries. We start by straightening the boundaries of the domains
Ωn and Ω using the previous section. We recall that

Ωn = {(x, y) ∈ O : y < ηn(x)}, Ω = {(x, y) ∈ O : y < η(x)}.

For this purpose we use the diffeomorphisms given by ρn (constructed with ηn) and
ρ given by (3.10) and we shall use the vector fields Λnj ,Λj , j = 1, 2 described in
(3.13) and we set

Λn = (Λn1 ,Λ
n
2 ) Λ = (Λ1,Λ2).

We construct now a H1- extension of ψn. Let χ ∈ C∞(R), χ(z) = 1 if z ≥ −1
2

and χ(z) = 0 if z ≤ −1 and set

(3.23) ψ̃n(x, z) = χ(z)ez〈Dx〉ψn(x), ψ̃(x, z) = χ(z)ez〈Dx〉ψ(x).

Then ψ̃n(x, z) ∈ H1(Rd × I) and ‖ψ̃n‖H1(Rd×I) ≤ C‖ψn‖H 1
2 (Rd)

≤ CM0

We make the same construction for ψ. Then it is easy to see that the sequence (ψ̃n)
converges in H1(Ω̃) to ψ̃, Then we set

(3.24) φ̃n = ũn + ψ̃n, φ̃ = ũ+ ψ̃.

According to (3.5) and the assumptions on ηn and η we see easily that this implies

(3.25) ‖∇x,zũn‖L2(eΩ)
≤M2, ∀n ∈ N.

Then (ũn) is a bounded sequence inH1,0(Ω̃)) and therefore that, up to a subsequence,
it converges weakly in this space to ũ.

Step 2: passing to the limit for the variational solutions. Setting X = (x, z) ∈ Ω̃
the variational formulation for ũn reads

(3.26)
∫

eΩ Λnũn(X) · Λnζ(X)Jn(X)dX =
∫

eΩ Λnψ̃n(X) · Λnζ(X)Jn(X)dX

for all ζ ∈ C∞0 (Ω̃), where Jn(X) = |∂zρn(X)|. We now want to identify the limit.
We have the following Lemma.

Lemma 3.12. For all ζ ∈ D0(Ω) we have

lim
n→+∞

∫
eΩ Λnũn(X) · Λnζ(X)Jn(X)dX =

∫
eΩ Λũ(X) · Λζ(X)J(X)dX,

lim
n→+∞

∫
eΩ Λnψ̃n(X) · Λnζ(X)Jn(X)dX =

∫
eΩ Λψ̃(X) · Λζ(X)J(X)dX.

Corollary 3.13. The function u(x, y) = ũ(x, κ(x, y)) is the variational solution
in H1,0(Ω) of the problem −∆x,yu = ∆x,yψ and un converges weakly in this space
to u.
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Proof of Lemma 3.12. Notice that

(3.27)

{
Λn − Λ = βn∂z, suppβn ⊂ {(x, z) : x ∈ Rd, z ∈ (−1, 0)} and

‖βn‖L∞(K) ≤ F(‖η‖W 1,∞(Rd))‖ηn − η‖W 1,∞(K)

Then we can write
Λnũn · Λnζ · Jn − Λũ · Λζ · J = A1 +A2 +A3 +A4,

A1 = (Λn − Λ)ũn · Λnζ · Jn, A2 = Λũn · Λnζ · (Jn − J),

A3 = Λũn · (Λn − Λ)ζ · J, A4 = Λ(ũn − ũ) · Λζ · J.

It follows from (3.27) that we have

(3.28)
∣∣∣∣∫eΩA1(X)dX

∣∣∣∣ ≤ C(M0)‖ηn − η‖W 1,∞(K)‖∂zũn‖L2(eΩ)
‖∇Xζ‖L2(eΩ))

.

The same estimate holds for the term coming from A3. Moreover since ‖Jn −
J‖L∞(K) ≤ F(M0)‖ηn − η‖W 1,∞(K) we have for A2 the same estimate as (3.28).

Eventually since (ũn) converges to ũ in the weak topology of H1,0(Ω̃) we obtain

lim
n→+∞

∫
Ω
A4(x, y)dxdy = 0.

�

Step 3: taking traces. Notice that we have

(3.29) ((Λn1 )2 + (Λn2 )2)ũn = 0, ((Λ1)2 + (Λ2)2)ũ = 0,

and

(3.30)

{
G(ηn)ψn =

(
Λn1 −∇xρn · Λn2

)
ũn|z=0 =: Un|z=0,

G(η)ψ =
(
Λ1 −∇xρ · Λ2

)
ũ|z=0 =: U |z=0.

Since ρn converges to ρ in W 1,∞
loc (Ω̃) the sequence (Un) converges weakly to U in

L2(Ω̃). Now using (3.19) we obtain

∂zUn = −∇x
(
(∂zρn)Λn2 ũn

)
.

By the same way we have

∂zU = −∇x
(
(∂zρ)Λ2v

)
.

Since ∇x,zρn → ∇x,zρ in L∞(Rd × I) and ũn → ũ weakly in H1(Rd × I), the
sequence (∂zUn) converges to ∂zU weakly in L2(I,H−1(Rd)).

Now we use the following well known interpolation lemma.

Lemma 3.14. Let I = (−1, 0) and consider u ∈ L2(I, L2(Rd)) such that ∂zu ∈
L2(I,H−1(Rd)). Then u ∈ C0([−1, 0], H−

1
2 (Rd)) and there exists an absolute con-

stant K > 0 such that

‖u‖
C0([−1,0];H−

1
2 (Rd))

≤ K
(
‖u‖L2(I;L2(Rd)) + ‖∂zu‖L2(I;H−1(Rd))

)
.

It follows from this lemma that the sequence (Un|z=0) is bounded in H−
1
2 (Rd)

by F(‖ηn‖W 1,∞)‖ψn‖
H

1
2 (Rd)

and converges weakly in H−
1
2 (Rd) to U |z=0, which

completes the proof of Theorem 3.9. �
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Proof of Theorem 3.10. We use the notations introduced in §3.1.1. Namely,
for j = 1, 2, we introduce ρj(x, z) and vj(x, z) defined by (3.10),

ρj(x, z) = (1 + z)(eδz〈Dx〉ηj)(x)− zη∗, if x ∈ Rd, z ∈ I := (−1, 0)

ρj(x, z) = z + 1 + η∗, if (x, z) ∈ Ω̃2

Notice that we have the following estimates

(3.31)


(i) ∂zρj ≥ min(1,

h

5
), (x, z) ∈ Ω̃,

(ii) ‖∇x,zρj‖L∞(eΩ)
≤ C(1 + ‖ηi‖

Hs+1
2 (Rd)

)

(iii) ‖∇x,z(ρ1 − ρ2)‖L∞(I,L∞(Rd)) ≤ C‖η1 − η2‖W 1,∞(Rd).

Recall also that we have set

Λi1 =
1
∂zρi

∂z, Λi2 = ∇x −
∇xρi
∂zρi

∂z.(3.32)

It follows from (3.31) that for k = 1, 2 we have with W 1,∞ = W 1,∞(Rd),

(3.33)

{
(i) Λ1

k − Λ2
k = βj∂z, with suppβk ⊂ Rd × I,where I = (−1, 0),

(ii) ‖βk‖L∞(I×Rd) ≤ F(‖(η1, η2)‖W 1,∞×W 1,∞)‖η1 − η2‖W 1,∞

Then we set φ̃j(x, z) = φj(x, ρj(x, z)) (where ∆x,yφj = 0 in Ωj , φj |Σj = f) and we
recall (see (3.18)) that

(3.34) G(ηj)f = Uj |z=0, Uj = Λj1φ̃j −∇xρj · Λ
j
2φ̃j .

Lemma 3.15. Set I = (−1, 0), v = φ̃1− φ̃2, and Λj = (Λj1,Λ
j
2). There exists a non

decreasing function F : R+ → R+ such that

(3.35) ‖Λjv‖L2(I;L2(Rd)) ≤ F(‖(η1, η2)‖W 1,∞×W 1,∞)‖η1 − η2‖W 1,∞‖f‖
H

1
2
.

Let us show how this Lemma implies Theorem 3.10. According to (3.34) we have

(3.36)

U1 − U2 = (1) + (2) + (3) + (4) + (5) where

(1) = Λ1
1v, (2) = (Λ1

1 − Λ2
1)φ̃2, (3) = −∇x(ρ1 − ρ2)Λ1

2φ̃1

(4) = −(∇xρ2)Λ1
2v, (5) = −(∇xρ2)(Λ1

2 − Λ2
2)φ̃2.

The L2(I, L2(Rd)) norms of (1) and (4) are estimated using (3.35). Also, the
L2(I, L2(Rd)) norms of (2) and (5) are estimated by the right hand side of (3.35)
using (3.33) and (3.5). Eventually the L2(I, L2(Rd)) norm of (3) is also estimated
by the right hand side of (3.35) using (3.31) (iii) and (3.5). It follows that

(3.37) ‖U1 − U2‖L2(I,L2) ≤ F(‖(η1, η2)‖W 1,∞×W 1,∞)‖η1 − η2‖W 1,∞‖f‖
H

1
2
.

Now according to (3.19) we have

(3.38) ∂z(U1 − U2) = −∇x
(
∂z(ρ1 − ρ2)Λ1

2φ̃1 + (∂zρ2)(Λ1
2 − Λ2

2)φ̃1 + (∂zρ2)Λ2
2v
)
.

Therefore using the same estimates as above we see easily that

(3.39) ‖∂z(U1 − U2)‖L2(I,H−1) ≤ F(‖(η1, η2)‖W 1,∞×W 1,∞)‖η1 − η2‖W 1,∞‖f‖
H

1
2
.

Then Theorem 3.10 follows from (3.37), (3.39) and Lemma 3.14. �
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Proof of Lemma 3.15. We use the variational characterization of the solu-
tions ui. First of all we notice that φ̃1 − φ̃2 = ũ1 − ũ2 =: v. Now setting X = (x, z)
we have

(3.40)
∫

eΩ Λiũi · Λiθ Ji dX = −
∫

eΩ Λif̃ · Λiθ Ji dX

for all θ ∈ H1,0(Ω̃), where Ji = |∂zρi|.
Taking the difference between the two equations (3.40), using (3.31) and setting
θ = v = ũ1 − ũ2 one can find a positive constant C such that∫

eΩ |Λ1v|2 dX ≤ C
6∑

k=1

Ak,

where

A1 =
∫

eΩ |(Λ1 − Λ2)ũ2||Λ1v| J1 dX, A2 =
∫

eΩ |(Λ1 − Λ2)v||Λ2ũ2| J1dX,

A3 =
∫

eΩ |Λ2ũ2||Λ2v| |J1 − J2| dX, A4 =
∫

eΩ |(Λ1 − Λ2)f̃ ||Λ1v| J1 dX,

A5 =
∫

eΩ |(Λ1 − Λ2)v||Λ2f̃ | J1 dX, A6 =
∫

eΩ |Λ2f̃ ||Λ2v| |J1 − J2| dX.

Using (3.33), (3.5), (3.31) we can write

(3.41)
|A1| ≤ ‖β‖L∞(I×Rd)‖J1‖L∞(I×Rd)‖∂zũ2‖L2(I×Rd)‖Λ1v‖

L2(eΩ)

≤ F(‖(η1, η2)‖W 1,∞×W 1,∞)‖η1 − η2‖W 1,∞‖f‖
H

1
2
‖Λ1v‖

L2(eΩ)
.

Since Λ1
j−Λ2

j = βj
∂zρ1

Λ1
1 the term A2 can be bounded by the right hand side of (3.41).

Now we have ‖J1 − J2‖L∞(I×Rd) ≤ C‖η1 − η2‖W 1,∞(Rd) and

‖Λ2v‖
L2(eΩ)

≤ F(‖(η1, η2)‖W 1,∞×W 1,∞)‖Λ1v‖
L2(eΩ)

.

So using (3.5) we see that the term A3 can be also estimated by the right hand side
of (3.41). To estimate the terms A4 to A6 we use the same arguments and also (3.3).
This completes the proof. �

Let us finish this definition section by recalling also the following result which is a
consequence of [1, Lemma 2.9].

Lemma 3.16. Assume that −1
2 ≤ a < b ≤ −1

5 then the strip Sa,b = {(x, y) ∈
Rd+1 : ah < y − η(x) < bh} is included in Ω and for any k ≥ 1, there exists C > 0
such that

‖φ‖Hk(Sa,b)
≤ C‖ψ‖

H
1
2 (Rd)

.

3.2. Paralinearization of the Dirichlet-Neumann operator. In the case
of smooth domains, it is known that, modulo a smoothing operator, G(η) is a pseudo-
differential operator with principal symbol given by

(3.42) λ(x, ξ) :=
√

(1 + |∇η(x)|2) |ξ|2 − (∇η(x) · ξ)2.

Notice that λ is well-defined for any C1 function η. The main result of this sec-
tion allow to compare G(η) to the paradifferential operator Tλ when η has limited
regularity. Namely we want to estimate the operator

R(η) = G(η)− Tλ.
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Such an analysis was at the heart of our previous work [4] [1, Proposition 3.14] for
“smooth domains” (η ∈ Hs+ 1

2 , s > 2 + d
2). Here we are able to lower the regularity

thresholdsup to s > 1 + d
2 . The following results, which we think are of independent

interest, complement previous estimates about the Dirichlet-Neumann operator by
Craig-Schanz-Sulem [27], Beyer–Günther [12], Wu [51, 52], Lannes [37].

Theorem 3.17. Let d ≥ 1, s > 1
2 + d

2 and 1
2 ≤ σ ≤ s + 1

2 . Then there exists
a non-decreasing function F : R+ → R+ such that, for all η ∈ Hs+ 1

2 (Rd) and
all f ∈ Hσ(Rd), we have G(η)f ∈ Hσ−1(Rd), together with the estimate

(3.43) ‖G(η)f‖Hσ−1(Rd) ≤ F
(
‖η‖

Hs+1
2 (Rd)

)
‖f‖Hσ(Rd) .

We also prove error estimates.

Proposition 3.18. Let d ≥ 1 and s > 1
2 + d

2 . For any 1
2 ≤ σ ≤ s and any

0 < ε ≤ 1
2
, ε < s − 1

2
− d

2
,

there exists a non-decreasing function F : R+ → R+ such that R(η)f := G(η)f−Tλf
satisfies

‖R(η)f‖Hσ−1+ε(Rd) ≤ F
(
‖η‖

Hs+1
2 (Rd)

)
‖f‖Hσ(Rd) .

To prove Theorem 3.17 and Proposition 3.18, we shall use the diffeomorphism ρ
defined by (3.10) which satisfies the estimates (3.12). Then recall from (3.16) that
the function φ̃(x, z) = φ(x, ρ(x, z)) satisfies

(3.44) (∂2
z + α∆x + β · ∇x∂z − γ∂z)φ̃ = 0, φ̃|z=0 = φ|y=η(x) = f,

and

G(η)f = (Λ1φ̃−∇ρ · Λ2φ̃)|z=0 =
(1 + |∇ρ|2

∂zρ
∂zφ̃−∇ρ · ∇φ̃

)
z=0

.

We conclude this paragraph by stating elliptic estimates for the solutions of (3.44).
For later purpose, we will consider the non-homogeneous case. This yields no new
difficulty and will be useful later to estimate the pressure (see Section 4.2). We thus
consider the problem

(3.45) ∂2
zv + α∆v + β · ∇∂zv − γ∂zv = F0, v|z=0 = f,

where f = f(x) and F0 = F0(x, z) are given functions. Recall that for µ ∈ R, the
spaces Xµ(I), Y µ(I) are defined by (see (2.37)):

(3.46)
Xµ(I) = C0

z (I;Hµ(Rd)) ∩ L2
z(I;Hµ+ 1

2 (Rd)),

Y µ(I) = L1
z(I;Hµ(Rd)) + L2

z(I;Hµ− 1
2 (Rd)).

Recall that Hσ(Rd) is an algebra for σ > d/2 and so is C0(I;Hσ(Rd)). Also, using
the tame estimate (2.14), we obtain the following

Lemma 3.19. Assume that σ > d
2 . Then the space Xσ(I) is an algebra. Moreover

if F : CN → C is a C∞-bounded function such that F (0) = 0 one can find non
decreasing functions F ,F1 from R+ to R+ such that

‖F (U)‖Xσ(I) ≤ F(‖U‖L∞(I×Rd))‖U‖Xσ(I) ≤ F1(‖U‖Xσ(I)).
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With these notations, we want to estimate the Xσ-norm of ∇x,zv in terms of
the Hσ+1-norm of the data and the Y σ-norm of the source term. An important
point is that we need to consider the case of rough coefficients. In this section we
only assume that η ∈ Hs+ 1

2 (Rd) for some s > 1/2 + d/2. An interesting point is
that we shall prove elliptic estimates as well as elliptic regularity (in other words,
we do not prove only a priori estimates). Our only assumption is that v is given by
a variational problem, so that

(3.47) ‖∇x,zv‖
X−

1
2 ([−1,0])

< +∞.

Remark 3.20. In the case where v(x, z) = φ̃(x, z) = φ(x, ρ(x, z)) with φ the varia-
tional solution of

∆x,yφ = 0, φ|y=η = f, ∂nφ = 0 on Γ,

then (3.20) shows that v satisfies this assumption (3.47).

Proposition 3.21. Let d ≥ 1 and

s >
1
2

+
d

2
, −1

2
≤ σ ≤ s − 1

2
.

Consider f ∈ Hσ+1(Rd), F0 ∈ Y σ([−1, 0]) and v satisfying the assumption (3.47)
solution to (3.45). Then for any z0 ∈ (−1, 0), ∇x,zv ∈ Xσ([z0, 0]), and

‖∇x,zv‖Xσ([z0,0]) ≤ F(‖η‖
Hs+1

2
)
{
‖f‖Hσ+1 + ‖F0‖Y σ([−1,0]) + ‖∇x,zv‖

X−
1
2 ([−1,0])

}
,

for some non-decreasing function F : R+ → R+ depending only on σ.

To prove Proposition 3.21 we shall proceed by induction on the regularity σ.

Definition 3.22. Given σ such that −1/2 ≤ σ ≤ s−1/2, we say that the property Hσ
is satisfied if for any interval I b (−1, 0],
(3.48)
‖∇x,zv‖Xσ(I) ≤ F(‖η‖

Hs+1
2
)
{
‖f‖Hσ+1 + ‖F0‖Y σ([−1,0]) + ‖∇x,zv‖

X−
1
2 ([−1,0])

}
,

for some non-decreasing function F : R+ → R+ depending only on I and σ.

With this definition, note that Assumption (3.47) means that property H−1/2 is sat-
isfied. Consequently, Proposition 3.21 is an immediate consequence of the following
proposition which will be proved in Sections 3.3 and 3.3.1.

Proposition 3.23. Let s > 1
2 + d

2 . For any ε such that

(3.49) 0 < ε ≤ 1
2
, ε < s − 1

2
− d

2
,

if Hσ is satisfied for some −1/2 ≤ σ ≤ s − 1/2− ε, then Hσ+ε is satisfied.

3.3. Nonlinear estimates. Let us fix ε satisfying (3.49), σ such that

−1
2
≤ σ ≤ s − 1

2
− ε

and assume that Hσ is satisfied. We begin by estimating the coefficients α, β, γ
in (3.17) in terms of ‖η‖

Hs+1
2
,

Lemma 3.24. Let J = [−1, 0] and s > 1
2 + d

2 . We have

(3.50)
∥∥∥∥α− h2

16

∥∥∥∥
Xs− 1

2 (J)

+ ‖β‖
Xs− 1

2 (J)
+ ‖γ‖

Xs− 3
2 (J)
≤ F(‖η‖

Hs+1
2
).
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Proof. According to (3.11), we can write

(∂zρ)2 =
h2

16
+G with ‖G‖

Xs− 1
2 (I)
≤ F(‖η‖

Hs+1
2 (Rd)

).

Noticing that 1
1+|∇ρ|2 = 1− |∇ρ|2

1+|∇ρ|2 we obtain

α− h2

16
= −

(h2

16
) |∇ρ|2

1 + |∇ρ|2
+G−G |∇ρ|2

1 + |∇ρ|2

and we use Lemma 3.19 with σ = s − 1
2 together with (3.11). The estimates for β

and γ are proved along the same lines. �

Lemma 3.25. There exists a constant K such that for all I ⊂ [−1, 0],

(3.51) ‖F1‖Y σ+ε(I) ≤ K ‖γ‖Xs− 3
2 (I)
‖∂zv‖Xσ(I) ,

where F1 = γ∂zv.

Proof. We shall prove that, on the one hand, if −1/2 ≤ σ ≤ s − 1− ε then

(3.52) ‖γ∂zv‖L1(I;Hσ+ε) . ‖γ‖L2(I;Hs−1) ‖∂zv‖L2(I;Hσ+1
2 )
,

and on the other hand, if −ε ≤ σ ≤ s − 1
2 − ε then

(3.53) ‖γ∂zv‖
L2(I;Hσ− 1

2+ε)
. ‖γ‖L2(I;Hs−1) ‖∂zv‖L∞(I;Hσ) .

Since s > ε+ 1
2 + d/2, if −1/2 ≤ σ ≤ s − 1− ε then

s − 1 + σ +
1
2
> 0, σ + ε ≤ σ +

1
2
, σ + ε ≤ s − 1, σ + ε < s − 1 + σ +

1
2
− d

2
.

and hence the product rule in Sobolev spaces (2.13) implies that

‖γ(z)∂zv(z)‖Hσ+ε . ‖γ(z)‖Hs−1 ‖∂zv(z)‖
Hσ+1

2
.

Integrating in z and using the Cauchy-Schwarz inequality, we obtain (3.52). On the
other hand, if −ε ≤ σ ≤ s − 1

2 − ε then one easily checks that

s − 1 + σ > 0, σ − 1
2

+ ε ≤ σ, σ − 1
2

+ ε ≤ s − 1, σ − 1
2

+ ε < s − 1 + σ − d

2
,

and hence the product rule (2.13) implies that

‖γ(z)∂zv(z)‖
Hσ− 1

2+ε . ‖γ(z)‖Hs−1 ‖∂zv(z)‖Hσ .

Taking the L2-norm in z, we obtain (3.53). �

Our next step is to replace the multiplication by α (resp. β) by the paramultiplication
by Tα (resp. Tβ).

Lemma 3.26. There exists a constant K such that for all I ⊂ [−1, 0], v satisfies
the paradifferential equation

(3.54) ∂2
zv + Tα∆v + Tβ · ∇∂zv = F0 + F1 + F2,

for some remainder

(3.55) F2 = (Tα − α)∆v + (Tβ − β) · ∇∂zv
satisfying
(3.56)

‖F2‖Y σ+ε(I) ≤ K

{
1 +

∥∥∥∥α− h2

16

∥∥∥∥
Xs− 1

2 ([−1,0])

+ ‖β‖
Xs− 1

2 ([−1,0])

}
‖∇x,zv‖Xσ(I) .
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Proof. According to Proposition 2.10, we have

‖au− Tau‖Hγ . ‖a‖Hr ‖u‖Hµ ,

provided that r, µ, γ ∈ R satisfy

(3.57) r + µ > 0, γ ≤ r and γ < r + µ− d

2
.

Since s > ε+ 1/2 + d/2, if −1/2 ≤ σ ≤ s − 1
2 − ε then

s + σ − 1
2
> 0, σ + ε ≤ s, σ + ε < s + σ − 1

2
− d

2
,

and hence (3.57) applies with

γ = σ + ε, r = s, µ = σ − 1
2
.

This implies that if −1/2 ≤ σ ≤ s − 1
2 − ε then

(3.58)
‖(Tα − α)∆v‖L1(I;Hσ+ε) .

(
1 +

∥∥∥∥α− h2

16

∥∥∥∥
L2(I;Hs)

)
‖∆v‖

L2(I;Hσ− 1
2 )
,

‖(Tβ − β)∇∂zv‖L1(I;Hσ+ε) . ‖β‖L2(I;Hs) ‖∇∂zv‖L2(I;Hσ− 1
2 )
,

which yields

‖F2‖Y σ+ε(I) ≤ ‖F2‖L1(I;Hσ+ε) .
{

1 +
∥∥∥∥α− h2

16

∥∥∥∥
Xs− 1

2 (I)

+ ‖β‖
Xs− 1

2 (I)

}
‖∇x,zv‖Xσ(I) .

This concludes the proof. �

Our next task is to perform a decoupling into a forward and a backward parabolic
evolution equations. Recall that by assumption η ∈ Hs+ 1

2 (Rd) with s > ε+1/2+d/2.
In particular, η ∈ C1+ε

∗ (Rd).

Lemma 3.27. There exist two symbols a,A in Γ1
ε(R

d× [−1, 0]) and a remainder F3

such that,

(3.59) (∂z − Ta)(∂z − TA)v = F0 + F1 + F2 + F3,

with

(3.60) M1
ε(a) +M1

ε(A) ≤ F
(
‖η‖

Hs+1
2

)
,

and
‖F3‖

L2(I;Hσ− 1
2+ε)
≤ F

(
‖η‖

Hs+1
2

)
‖∇x,zv‖

L2(I;Hσ+1
2 )
,

for some non-decreasing function F : R+ → R+.

Proof. We seek a,A satisfying

a(z;x, ξ)A(z;x, ξ) = −α(x, z) |ξ|2 , a(z;x, ξ) +A(z;x, ξ) = −iβ(x, z) · ξ.

We thus set

(3.61) a =
1
2
(
−iβ·ξ−

√
4α |ξ|2 − (β · ξ)2

)
, A =

1
2
(
−iβ·ξ+

√
4α |ξ|2 − (β · ξ)2

)
.

Directly from the definition of α, β (3.17), note that

∃c > 0;
√

4α |ξ|2 − (β · ξ)2 ≥ c |ξ| .
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According to (3.50) the symbols a,A belong to Γ1
ε(R

d× [−1, 0]) and they satisfy the
bound (3.60). Therefore, we have

(3.62) (∂z − Ta)(∂z − TA)v = ∂2
zv − Tβ∇∂zv + Tα∆v + F3, F3 = R0v +R1v,

where
R0(z) := Ta(z)TA(z) − Tα∆, R1(z) := −T∂zA(z).

According to Theorem 2.6, applied with ρ = ε, R0(z) is of order 2− ε, uniformly in
z ∈ [−1, 0]. On the other hand, since

∂zρ ∈ L∞((−1, 0);Hs− 1
2 ), ∂2

zρ ∈ L∞((−1, 0);Hs− 3
2 ),

according to (2.13) we have

∂zα, ∂zβ ∈ L∞((−1, 0);Hs− 3
2 ) ⊂ L∞((−1, 0);Cε−1

∗ ).

Therefore ∂zA ∈ Γ1
ε−1(Rd × [−1, 0]). As a consequence, using Proposition 2.12, we

get that R1(z) is also of order 2− ε. We end up with

sup
z∈[−1,0]

‖R0(z)‖Hµ+2−ε→Hµ + ‖R1(z)‖Hµ+2−ε→Hµ ≤ F
(
‖η‖

Hs+1
2

)
.

Now we notice that, given any symbol p and any function u, by definition of parad-
ifferential operators we have Tpu = Tp(1−Ψ(Dx))u for any Fourier multiplier (I −
Ψ(Dx)) such that Ψ(ξ) = 0 for |ξ| ≥ 1/2. This means that we can replace ‖v(z)‖

Hσ+3
2

by ‖∇v(z)‖
Hσ+1

2
. We thus obtain the desired result from Lemma 3.26. �

3.3.1. Proof of Proposition 3.23. We shall apply Proposition 2.17 twice. At first
we apply it to the forward parabolic evolution equation ∂zu − Tau = F (by def-
inition Re(−a) ≥ c |ξ|). This requires an initial data on z = −1 that might be
chosen to be 0 by using a cut-off function, up to shrinking the interval I. Next we
apply it to the backward parabolic evolution equation ∂zu − TAu = F (by defini-
tion ReA ≥ c |ξ|). This requires an initial data on z = 0 (which is given by our
assumption on f) and this requires also an estimate for the remainder term F which
is given by means of the first step.

Suppose that Hσ is satisfied and let I0 = [ζ0, 0] with ζ0 ∈ (−1, 0). Then

‖∇x,zv‖Xσ(I0) ≤ F(‖η‖
Hs+1

2
)
{
‖f‖Hσ+1 + ‖F0‖Y σ([−1,0]) + ‖∇x,zv‖

X−
1
2 ([−1,0])

}
.

We shall prove that, for any 0 > ζ1 > ζ0,
(3.63)
‖∇x,zv‖Xσ+ε([ζ1,0]) ≤ F(‖η‖

Hs+1
2
)
{
‖f‖Hσ+1+ε+‖F0‖Y σ+ε([−1,0])+‖∇x,zv‖X− 1

2 ([−1,0])

}
.

Introduce a cutoff function χ such that χ |ζ<ζ0= 0, χ |ζ>ζ1= 1 . Set w := χ(z)(∂z −
TA)v. It follows from (3.59) for v that ∂zw − Taw = F ′,

where
F ′ = χ(z)(F0 + F1 + F2 + F3) + χ′(z)(∂z − TA)v.

We have already estimated F1, F2, F3 and F0 is given. We now turn to an estimate
for (∂z − TA)v. According to (2.4) and (3.60), we have

‖TAv‖
L2(I0;Hσ+1

2 )
≤ F(‖η‖

Hs+1
2
) ‖∇v‖

L2(I0;Hσ+1
2 )
≤ F(‖η‖

Hs+1
2
) ‖∇x,zv‖Xσ(I0) ,

and similarly

‖TAv‖L∞(I0;Hσ) ≤ F(‖η‖
Hs+1

2
) ‖∇v‖L∞(I0;Hσ) ≤ F(‖η‖

Hs+1
2
) ‖∇x,zv‖Xσ(I0) ,
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Consequently

‖(∂z − TA)v‖Xσ(I0) ≤ F(‖η‖
Hs+1

2
) ‖∇x,zv‖Xσ(I0) .

This implies that

‖w‖Xσ(I0) ≤ F(‖η‖
Hs+1

2
) ‖∇x,zv‖Xσ(I0) ,(3.64) ∥∥F ′∥∥

Y σ+ε(I0)
≤ F(‖η‖

Hs+1
2
) ‖∇x,zv‖Xσ(I0) + ‖F0‖Y σ+ε(I0) .(3.65)

Since w(x, z0) = 0 and since a ∈ Γ1
ε satisfies Re(−a(x, ξ)) ≥ c |ξ|, by using Proposi-

tion 2.17 applied with J = I0, ρ = ε and r = σ + ε, we have

‖w‖Xσ+ε(I0) ≤ F(‖η‖
Hs+1

2
)
∥∥F ′∥∥

Y σ+ε(I0)
,

and hence, using (3.64) and (3.65)

(3.66) ‖w‖Xσ+ε(I0) ≤ F(‖η‖
Hs+1

2
)
{
‖∇x,zv‖Xσ(I0) + ‖F0‖Y σ+ε(I0)

}
.

Now notice that on I1 := [ζ1, 0] we have χ = 1 so that

∂zv − TAv = w for z ∈ I1.

Therefore the function ṽ defined by ṽ(x, z) = v(x,−z) satisfies

∂z ṽ + T eAṽ = −w̃ for z ∈ Ĩ1 = [0,−ζ1],

with obvious notations for w̃ and Ã. By using Proposition 2.17 with J = Ĩ1, noticing
that ṽ|z=0 = v|z=0 = f , we obtain that

‖ṽ‖
Xσ+1+ε(eI1)

≤ F(‖η‖
Hs+1

2
)
(
‖f‖Hσ+1+ε + ‖w̃‖

Y σ+1+ε(eI1)

)
.

Using the obvious estimate

‖w̃‖
Y σ+1+ε(eI1)

= ‖w‖Y σ+1+ε(I1) ≤ ‖w‖L2
z(I1;Hσ+1

2+ε)
≤ ‖w‖Xσ+ε(I1) ,

it follows from (3.66) that

‖v‖Xσ+1+ε(I1) ≤ F(‖η‖
Hs+1

2
)
(
‖f‖Hσ+1+ε + ‖∇x,zv‖Xσ(I0) + ‖F0‖Y σ+ε(I0)

)
.

We easily estimate ∂zv directly from ∂zv = TAv + w (by using (3.66) and the
fact that TA is an operator of order 1). This completes the proof of (3.63). This
proves that if Hσ is satisfied then Hσ+ε is satisfied and hence concludes the proof
of Proposition 3.23 (and hence the proof of Proposition 3.21).

3.3.2. Proof of Theorem 3.17. Let v be the solution of (3.16) with data v|z=0 =
f . By definition of the Dirichlet–Neumann operator we have

(3.67) G(η)f =
1 + |∇ρ|2

∂zρ
∂zv −∇ρ · ∇v


z=0

.

Now, by applying Proposition 3.21 with F0 = 0 and Remark 3.20, we find that if v
solves (3.16), then for any I b (−1, 0],

(3.68) ‖∇x,zv‖Xσ−1(I) ≤ F(‖η‖
Hs+1

2
) ‖f‖Hσ .

According to (3.11) and (2.14), we obtain that∥∥∥∥1 + |∇ρ|2

∂zρ
∂zv −∇ρ · ∇v

∥∥∥∥
C0([z0,0];Hσ−1)

≤ F(‖η‖
Hs+1

2
) ‖f‖Hσ .

As a result, taking the trace on z = 0 immediately implies the desired result (3.43).
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3.3.3. Proof of Proposition 3.18. Let 1/2 ≤ σ0 ≤ s. It follows from (3.66) applied
with σ = σ0 − 1 and F0 = 0 that

‖χ(z)(∂zv − TAv)‖Xσ0−1+ε(I0) ≤ F(‖η‖
Hs+1

2
)
{
‖∇x,zv‖Xσ0−1(I0)

}
,

for some cut-off function χ such that χ(0) = 1. By using Proposition 3.21, we thus
obtain

(3.69) ‖∂zv − TAv|z=0‖Hσ0−1+ε ≤ F
(
‖η‖

Hs+1
2

)
‖f‖Hσ0 .

The previous estimate allows us to express the “normal” derivative ∂zv in terms of
the tangential derivatives. Which is the main step to paralinearize the Dirichlet-
Neumann operator.

Now, as mentioned above, by definition of v,

G(η)f =
1 + |∇ρ|2

∂zρ
∂zv −∇ρ · ∇v


z=0

.

Set

ζ1 :=
1 + |∇ρ|2

∂zρ
, ζ2 := ∇ρ.

According to (3.11),

(3.70)
∥∥∥∥ζ1 −

4
h

∥∥∥∥
C0
z ([−1,0];H

s− 1
2

x )

+ ‖ζ2‖
C0
z ([−1,0];H

s− 1
2

x )
≤ F(‖η‖

Hs+1
2
).

Let
R′ = ζ1∂zv − ζ2 · ∇v − (Tζ1∂zv − Tζ2∇v).

Since ε ≤ 1
2 and ε < s − 1

2 −
d
2 , we verify that Proposition 2.10 applies with

γ = σ0 − 1 + ε, r = s − 1
2
, µ = σ0 − 1,

which, according to (3.70) and (3.68), implies∥∥R′∥∥
C0(I;Hσ0−1+ε)

≤ F
(
‖η‖

Hs+1
2

)
‖f‖Hσ0 .

Furthermore, according to (3.69) and (3.70), we obtain

Tζ1∂zv − Tζ2∇v

z=0
− (Tζ1TAv − Tiζ2·ξv


z=0

) = R′′,

with ∥∥R′′∥∥
Hσ0−1+ε ≤ F

(
‖η‖

Hs+1
2

)
‖f‖Hσ0 .

Finally, thanks to (2.5), (3.70) and (3.60), we have∥∥Tζ1(z)TA(z) − Tζ1(z)A(z)

∥∥
Hσ0→Hσ0−

1
2
. ‖ζ1(z)‖W ε,∞M1

ε(A) ≤ F(‖η‖
Hs+1

2
),

and hence
G(η)f = Tζ1Av − Tiζ2·ξv


z=0

+R(η)f
where

‖R(η)f‖Hσ0−1+ε ≤ F(‖η‖
Hs+1

2
) ‖f‖Hσ0 .

Let

λ =
1 + |∇ρ|2

∂zρ
A− i∇ρ · ξ


z=0

=
√

(1 + |∇η(x)|2)|ξ|2 −
(
∇η(x) · ξ

)2
.

Then
G(η)f = Tλf +R(η)f,

which concludes the proof of Proposition 3.18.
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4. A priori estimates in Sobolev spaces

In this section, we shall prove a priori estimates on smooth solutions on a fixed time
interval [0, T ]. Recall that the system reads

(4.1)


∂tη −G(η)ψ = 0,

∂tψ + gη +
1
2
|∇ψ|2 − 1

2

(
∇η · ∇ψ +G(η)ψ

)2
1 + |∇η|2

= 0.

As already mentioned, we work with the unknowns B = B(η, ψ) and V = V (η, ψ)
defined by

B :=
∇η · ∇ψ +G(η)ψ

1 + |∇η|2
, V := ∇ψ −B∇η.

It follows from Theorem 3.17 that, for all s > 1 + d/2 and all (η, ψ) ∈ Hs+ 1
2 , B

and V are well defined and belong to Hs− 1
2 . Moreover, we shall prove that if they

belong initially to Hs then this regularity is propagated by the equation. We shall
prove estimates in terms of

(4.2)
Ms(T ) := sup

τ∈[0,T ]
‖(ψ(τ), B(τ), V (τ), η(τ))‖

Hs+1
2×Hs×Hs×Hs+1

2
,

Ms,0 := ‖(ψ(0), B(0), V (0), η(0))‖
Hs+1

2×Hs×Hs×Hs+1
2
.

The main result of this section is the following proposition.

Proposition 4.1. Let d ≥ 1 and consider s > 1 + d
2 . Consider a fluid domain such

that, there exists h > 0 such that for all t ∈ [0, T ],

(4.3)
{

(x, y) ∈ Rd ×R : η(t, x)− h < y < η(t, x)
}
⊂ Ω(t).

Assume that for any t ∈ [0, T ],
a(t, x) ≥ c0,

for some given positive constant c0. Then, there exists a non-decreasing func-
tion F : R+ → R+ such that, for all T ∈ (0, 1] and all smooth solution (η, ψ) of
(4.1) defined on the time interval [0, T ], there holds

(4.4) Ms(T ) ≤ F
(
F(Ms,0) + TF

(
Ms(T )

))
.

Remark 4.2. The assumption (4.3) holds provided that it holds initially at time 0
and ‖η − η |t=0 ‖

Hs+1
2
≤ ε, for some small enough positive constant ε.

4.1. A new formulation. Since we consider low regularity solutions, various
cancellations have to be used. We found that these cancellations are most easily seen
by working with the incompressible Euler equation directly, and hence we do not
use the Zakharov formulation. This means that we begin with a new formulation of
the water waves system which involves the following unknowns

(4.5) ζ = ∇η, B = ∂yφ|y=η, V = ∇xφ|y=η, a = −∂yP |y=η,

where recall that φ is the velocity potential and the pressure P = P (t, x, y) is given
by

(4.6) − P = ∂tφ+
1
2
|∇x,yφ|2 + gy.
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Proposition 4.3. Let s > 1
2 + d

2 . We have

(∂t + V · ∇)B = a− g,(4.7)

(∂t + V · ∇)V + aζ = 0,(4.8)

(∂t + V · ∇)ζ = G(η)V + ζG(η)B + γ,(4.9)

where the remainder term γ = γ(η, ψ, V ) satisfies the following estimate :

(4.10) ‖γ‖
Hs− 1

2
≤ F(‖(η, ψ, V )‖

Hs+1
2×Hs×Hs

).

Remark 4.4. In the case Γ = ∅, one can see that at least formally γ = 0.

Proof. For any function f = f(t, x, y), by using the chain rule, we check that,
with ∇ = ∇x,

(∂t + V · ∇)(f |y=η(t,x)) = (∂t + V · ∇)f(t, x, η(t, x))

=
[
∂tf +∇φ · ∇f + ∂yf(∂tη + V · ∇η)

]
y=η(t,x)

=
[
(∂t +∇x,yφ · ∇x,y)f

]
y=η(t,x)

,

since ∂tη+ V · ∇η = B (see (3.21)). Applying ∂y to (4.6), this identity yields (4.7).
On the other hand, applying ∂xk to (4.6), the previous identity gives

(∂t + V · ∇)V + (∇P )|y=η = 0.

Since P |y=η = 0, we have

0 = ∇(P |y=η) = (∇P )|y=η + (∂yP )|y=η∇η,
which yields (4.8).

To derive equation (4.9) on ζ := ∇η we start from

∂tη = B − V · ∇η
Differentiating with respect to xi (for i = 1, . . . , d) we find that ∂iη = ∂xiη satisfies

(4.11) (∂t + V · ∇)∂iη = ∂iB −
d∑
j=1

∂iVj∂jη,

Starting from the definitions of B and V (B = ∂yφ|y=η, V = ∇φ|y=η), and using
the chain rule, we compute that

∂iB −
d∑
j=1

∂iVj∂jη =
[
∂i∂yφ+ ∂iη∂

2
yφ
]

y=η
−

d∑
j=1

∂jη
[
∂i∂jφ+ ∂iη∂j∂yφ

]
y=η

=
[
∂y∂iφ−

d∑
j=1

∂jη∂i∂jφ
]

y=η
+ ∂iη

[
∂2
yφ−

d∑
j=1

∂jη∂j∂yφ
]

y=η
.

Therefore

(4.12) (∂t +V ·∇)∂iη =
[
∂y∂iφ−∇η ·∇∂iφ

]
y=η

+∂iη
[
∂y(∂yφ)−∇η ·∇∂yφ

]
y=η

.

Let now θi be the variational solution of the problem

∆x,yθi = 0 in Ω, θi|y=η = Vi, ∂nθi = 0 on Γ.

Then
G(η)Vi =

√
1 + |∇η|2∂θi

∂n
|y=η = (∂yθi −∇η · ∇θi)|y=η.

Then we write

(4.13) (∂y−∇η·∇)∂iφ|y=η = G(η)Vi+Ri, where Ri = (∂y−∇η·∇)(∂iφ−θi)|y=η.
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Due to the presence of the bottom we have to localize the problem near Σ.

Let χ0 ∈ C∞(R), η1 ∈ H∞(Rd) be such that χ0(z) = 1 if z ≥ 0, χ0(z) = 0 if z ≤ −1
4

and

η(x)− h

4
≤ η1(x) ≤ η(x)− h

5
.

Set

Ui(x, y) = χ0

(y − η1(x)
h

)
(∂iφ− θi)(x, y).

We see easily that Ri = (∂y −∇η · ∇)Ui|y=η. Moreover Ui satisfies the equation

(4.14) ∆x,yUi =
[
∆x,y, χ0

(y − η1(x)
h

)]
(∂iφ− θi) := Fi

and, with a slight change of notation, we have

(4.15) suppFi ⊂ S 1
2
, 1
5

:=
{

(x, y) : x ∈ Rd, η(x)− h

2
≤ y ≤ η(x)− h

5
}
.

Moreover by ellipticity (see Lemma 3.16) we have for all α ∈ Nd+1,

(4.16) ‖Dα
x,yFi‖L∞(S 1

2 ,
1
5

)∩L2(S 1
2 ,

1
5

) ≤ Cα‖(V,B)‖
H

1
2×H

1
2
.

Now we change variables. We set x = x, y = ρ(x, z) = (1 + z)eδz〈Dx〉η(x) − zη∗(x)
and g̃i(x, z) = gi(x, ρ(x, z)). Since we have taken δ‖η‖

Hs+1
2
≤ 1

2 it is easy to see that

on the image of S 1
2
, 1
5

one has −h ≤ z ≤ − h
10 . Now, according to section 3.1.1, Ũi is

a solution of the problem

(∂2
z + α∆ + β · ∇∂z − γ∂z)Ũi =

(∂zρ)2

1 + |∇ρ|2
F̃i.

Due to the exponential smoothing and to (4.16), on the support of F̃i the right hand
side of the above equation belongs in fact to C0

z ((−h, 0);H∞(Rd)). In particular we
can apply Proposition 3.21 with f = 0. It follows that

‖∇x,zŨi‖
C0([z0,0];Hs− 1

2 (Rd))
≤ F(‖η‖

Hs+1
2
)
(
‖F̃i‖Y σ([−1,0]) + ‖∇x,zŨi‖

X−
1
2 ([−1,0])

)
.

Notice that according to the constructions of variational solutions and (3.20), the
norm of Ũi in X−

1
2 ([−1, 0]) is bounded by

F(‖η‖
Hs+1

2
)
(
‖ψ‖

H
1
2

+ ‖Vi‖
H

1
2

)
.

Since

Ri =
[( 1 + |∇η|2

1 + δ〈Dx〉η
∂z −∇η · ∇

)
Ũi

]
z=0

,

we deduce that

‖Ri‖
Hs− 1

2
≤ F(‖η‖

Hs+1
2
)
(
‖ψ‖

H
1
2

+ ‖Vi‖
H

1
2

)
≤ F

(
‖η‖

Hs+1
2
, ‖ψ‖Hs , ‖V ‖Hs

)
,

since s > 1
2 + d

2 . We use exactly the same argument to show that

(4.17) (∂y −∇η · ∇)∂yφ|y=η = G(η)B +R0,

where R0 satisfies the same estimate as Ri. This completes the proof. �

Following the same lines, we have the following relation between V and B.

Proposition 4.5. Let s > 1
2 + d

2 . Then we have G(η)B = −div V + γ where

‖γ‖
Hs− 1

2
≤ F(‖(η, V,B)‖

Hs+1
2×H

1
2×H

1
2
).
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Proof. Recall that, by definition, B = ∂yφ|y=η and V = ∇φ|y=η. Let θ be the
variational solution to the problem

∆x,yθ = 0, θ|y=η = B, ∂nθ|Γ = 0.

Then G(η)B = (∂yθ −∇η · ∇θ)

y=η

. Now let θ̃ = ∂yφ. We claim that

(∂y θ̃ −∇η · ∇θ̃)

y=η

= −div V.

Indeed, on the one hand we have

(∂y θ̃ −∇η · ∇θ̃) = ∂2
yφ−∇η · ∇∂yφ,

and on the other hand

div V =
∑

1≤i≤d
∂xiV =

( ∑
1≤i≤d

∂2
i φ+∇η · ∂yφ

)
y=η

.

Then our claim follows from the fact that ∆x,yφ = 0. Now we have

∆x,y(θ − θ̃) = 0, (θ − θ̃)|y=η = 0,

so, as in the proof of Proposition 4.3, we deduce from Proposition 3.21 that∥∥∥(∂y −∇η · ∇)(θ − θ̃)
∥∥∥
Hs− 1

2
≤ F(‖(η, V,B)‖

Hs+1
2×H

1
2×H

1
2
),

which is the desired result. �

4.2. Estimates for the Taylor coefficient. In this paragraph, we prove sev-
eral estimates for the Taylor coefficient.

Proposition 4.6. Let d ≥ 1 and s > 1 + d
2 . There exists a non-decreasing func-

tion F : R+ → R+ such that, for all t ∈ [0, T ],

(4.18) ‖a(t)− g‖
Hs− 1

2
≤ F

(
‖(η, ψ, V,B)(t)‖

Hs+1
2×Hs+1

2×Hs×Hs

)
,

For 0 < ε < s − 1− d/2, there exists a non-decreasing function F such that,

(4.19) ‖(∂ta+ V · ∇a)(t)‖Cε ≤ F
(
‖(η, ψ, V,B)(t)‖

Hs+1
2×Hs+1

2×Hs×Hs

)
.

Recall that a = −∂yP |y=η where

P = P (t, x, y) = −
(
∂tφ+

1
2
|∇xφ|2 +

1
2

(∂yφ)2 + gy
)
.

The basic idea is that one should be able to easily estimate P since it satisfies an
elliptic equation. Indeed, since ∆x,yφ = 0, we have

∆x,yP = −
∣∣∇2

x,yφ
∣∣2 .

Moreover, by assumption we have P = 0 on the free surface {y = η(t, x)}. Yet, this
requires some preparation because, as we shall see, the regularity of P is not given
by the right-hand side in the elliptic equation above. Instead the regularity of P is
limited by the regularity of the domain (i.e. the regularity of the function η).

Hereafter, since the time variable is fixed, we shall skip it. We use the change of
variables (x, z) 7→ (x, ρ(x, z)) introduced in §3.1.1. Introduce ϕ and ℘ given by

ϕ(x, z) = φ(x, ρ(x, z)), ℘(x, z) = P (x, ρ(x, z)) + gρ(x, z),

and notice that
a− g = − 1

∂zρ
∂z℘ |z=0 .
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The first elementary step is to compute the equation satisfied by the new unknown v
in {z < 0} as well as the boundary conditions on {z = 0}. Set (see (3.13))

Λ = (Λ1,Λ2), Λ1 =
1
∂zρ

∂z, Λ2 = ∇− ∇ρ
∂zρ

∂z.

We find that

(Λ2
1 + Λ2

2)ϕ = 0 in − 1 < z < 0,

(Λ2
1 + Λ2

2)℘ = −
∣∣Λ2ϕ

∣∣2 in − 1 < z < 0,

(Λ2
1 + Λ2

2)ρ = 0 in z < 0,

together with the boundary conditions

℘ = gη, Λ1℘ = g − a on z = 0,
Λ2ϕ = V, Λ1ϕ = B, on z = 0.

According to (3.5) and Remark 3.20, we have the a priori estimate

‖∇x,zϕ‖
X−

1
2 (−h

2
,0)
≤ F(‖η‖

Hs+1
2
)‖ψ‖

H
1
2
,

while according to Proposition 3.21
(4.20)
‖∇x,z℘‖

X−
1
2 (−1,0)

≤ F
(
‖R‖

X
1
2 (−1,0)

+ ‖|∇ϕ|2‖
X

1
2 (−1,0)

)
≤ F

(
‖(η, ψ)‖

Hs+1
2

)
.

where R(x, z) = R(x, ρ(x, z)) and R is defined in Definition 1.5.

Expanding Λ2
1 + Λ2

2, we thus find that ℘ solves

(4.21)
∂2
z℘+ α∆℘+ β · ∇∂z℘− γ∂z℘ = F0(x, z) for z < 0,
℘ = gη on z = 0,

where α, β, γ are as above (see (3.15)) and where

(4.22) F0 = −α
∣∣Λ2ϕ

∣∣2 .
Our first task is to estimate the source term F0.

Lemma 4.7. Let d ≥ 1 and s > 1 + d/2. Then there exists z0 < 0 such that

‖F0‖
L1([z0,0];Hs− 1

2 )
≤ F

(
‖(η, ψ, V,B)‖

Hs+1
2×Hs+1

2×Hs×Hs

)
.

Proof. Since [Λ1,Λ2] = 0 we have

(Λ2
1 + Λ2

2)Λ2ϕ = 0, (Λ2
1 + Λ2

2)Λ1ϕ = 0.

Since Λ2ϕ|z=0 = V and Λ1ϕ|z=0 = B, it follows from Proposition 3.21 (and Theo-
rem 3.8 which guarantees that ∇x,zϕ ∈ X−

1
2 (z0, 0)) that

‖∇x,zΛjϕ‖Xs−1([z0,0]) ≤ F
(
‖(η, ψ, V,B)‖

Hs+1
2×Hs+1

2×Hs×Hs

)
.

By using the easy estimate (3.11)

‖∇xρ‖
C0([z0,0];Hs− 1

2 )
+
∥∥∥∥∂zρ− h

4

∥∥∥∥
C0([z0,0];Hs− 1

2 )

. ‖η‖
Hs+1

2
,

and the product rule in Sobolev spaces, we obtain

(4.23) ‖ΛjΛkϕ‖
L2([z0,0];Hs− 1

2 )
≤ F

(
‖(η, ψ, V,B)‖

Hs+1
2×Hs+1

2×Hs×Hs

)
.
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Since Hs− 1
2 is an algebra, according to Lemma 3.24, we obtain

(4.24) ‖F0‖
L1([z0,0];Hs− 1

2 )
.

(
1 +

∥∥∥∥α− h2

16

∥∥∥∥
C0([z0,0];Hs− 1

2 )

)
‖ΛjΛkϕ‖2

L2([z0,0];Hs− 1
2 )

≤ F
(
‖(η, ψ, V,B)‖

Hs+1
2×Hs+1

2×Hs×Hs

)
.

This completes the proof. �

It follows from Lemma 4.7 and Proposition 3.21 applied with σ = s− 1/2 that there
exists z0 such that

(4.25) ‖∇x,z℘‖
Xs− 1

2 ([z0,0])
≤ F

(
‖(η, ψ)‖

Hs+1
2
, ‖F0‖

L1([z0,0];Hs− 1
2 )

)
.

where we used the estimate (4.20) According to (4.24), this implies that

(4.26) ‖∇x,z℘‖
Xs− 1

2 ([z0,0])
≤ F

(
‖(η, ψ, V,B)‖

Hs+1
2×Hs+1

2×Hs×Hs

)
.

which in turn implies that ‖a− g‖
Hs− 1

2
is bounded by a constant depending only on

‖(η, ψ)‖
Hs+1

2
and ‖(V,B)‖Hs .

4.3. Paralinearization of the system. Introduce

(4.27) U = V + TζB.

To clarify notations, let us mention that the ith component (i = 1, . . . , d) of this
vector valued unknown satisfies Ui = Vi + T∂iηB. The new unknown U is related to
what is called the good-unknown of Alinhac in [4, 1, 5, 7].

To estimate (U, ζ) in Sobolev spaces, we want to estimate (〈Dx〉s U, 〈Dx〉s−
1
2 ζ)

in L∞([0, T ];L2 × L2) where 〈Dx〉 := (I − ∆)1/2. However, for technical reasons,
instead of working with (〈Dx〉s U, 〈Dx〉s−

1
2 ζ), it is more convenient to work with

(4.28)
Us := 〈Dx〉s V + Tζ〈Dx〉s B,

ζs := 〈Dx〉s ζ.

Proposition 4.8. Under the assumptions of Proposition 4.1, there exists a non
decreasing function F such that

(∂t + TV · ∇)Us + Taζs = f1,(4.29)

(∂t + TV · ∇)ζs = TλUs + f2,(4.30)

where recall that λ is the symbol

λ(t;x, ξ) :=
√

(1 + |∇η(t, x)|2) |ξ|2 − (∇η(t, x) · ξ)2,

and where, for each time t ∈ [0, T ],

(4.31) ‖(f1(t), f2(t))‖
L2×H−

1
2
≤ F

(
‖η(t)‖

Hs+1
2
, ‖(V,B)(t)‖Hs

)
.

Proof. The proof is based on the paralinearization of the Dirichlet-Neumann
operator (see Proposition 3.18), the Bony’s paralinearization formula for a product,
some simple computations and the commutator estimate proved in Section 2.4.

Step 1: Paralinearization of the equation

(∂t + V · ∇)V + aζ = 0.

We begin by proving
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Lemma 4.9. We have

(4.32)
(∂t + TV · ∇)V + Taζ + Tζ(∂t + TV · ∇)B = h1 with

‖h1‖Hs ≤ F
(
‖η‖

Hs+1
2
, ‖(V,B)‖Hs

)
.

Proof. Using (2.10) and (2.4) we have V · ∇V = TV · ∇V + A1 where A1 =∑
j T∂jV Vj +R(∂jV, Vj) satisfies

‖A1‖Hs . ‖∇V ‖L∞ ‖V ‖Hs .

Similarly, (a− g)ζ = Ta−gζ + Tζ(a− g) +R(ζ, a− g) where

(4.33) ‖R(ζ, a− g)‖Hs . ‖ζ‖Hs−1/2 ‖a− g‖Hs−1/2 .

and where ‖a− g‖Hs−1/2 is estimated by means of (4.18).

Since Tζg = 0, by replacing a by g + (∂tB + V · ∇B) we obtain

Tζa = Tζ(∂tB + V · ∇B)

= Tζ(∂tB + TV · ∇B) + Tζ(V − TV ) · ∇B.

As in the analysis of A1 above, we have

‖(V − TV ) · ∇B‖Hs . ‖∇B‖L∞ ‖V ‖Hs .

Now we use ‖Tζ‖Hs→Hs . ‖ζ‖L∞ . ‖η‖Hs+1/2 (since s + 1/2 > 1 + d/2) to obtain

‖Tζ(V − TV ) · ∇B‖Hs . ‖η‖
Hs+1

2
‖∇B‖L∞ ‖V ‖Hs .

By Sobolev injection, this proves (4.32). �

Step 2. We now commute (4.32) with 〈Dx〉s = (I − ∆)s/2. The paradifferential
rule (2.5) implies that

‖[Ta, 〈Dx〉s ]‖Hs−1/2→L2 . ‖a‖W 1/2,∞ . 1 + ‖a− g‖Hs−1/2 ,

‖[Tζ , 〈Dx〉s ]‖Hs−1/2→L2 . ‖ζ‖W 1/2,∞ . ‖ζ‖Hs−1/2 ,

‖[TV · ∇, 〈Dx〉s ]‖Hs→L2 . ‖V ‖W 1,∞ . ‖V ‖Hs .

Consequently, it easily follows from (4.19) and (4.32) that

(∂t + TV · ∇)〈Dx〉s V + Ta〈Dx〉s ζ + Tζ(∂t + TV · ∇)〈Dx〉s B = h2

for some remainder h2 satisfying ‖h2‖L2 ≤ F
(
‖η‖

Hs+1
2
, ‖(V,B)‖Hs

)
.

On the other hand, Lemma 2.15 implies that

‖[Tζ , ∂t + TV · ∇]〈Dx〉s B(t)‖L2 ≤ F
(
‖η(t)‖

Hs+1
2
, ‖(V,B)(t)‖Hs

)
.

Here we have used the fact that the L∞ norm of ∂tζ + V · ∇ζ is, since s > 1
2 + d

2 ,
estimated by means of the identity (4.11):

‖∂tζ + V · ∇ζ‖L∞ . ‖∇B‖L∞ + ‖ζ‖L∞ ‖∇V ‖L∞
. ‖∇B‖L∞ + ‖η‖

Hs+1
2
‖∇V ‖L∞ .

By combining the previous results we obtain

(∂t + TV · ∇)
(
〈Dx〉s V + Tζ〈Dx〉s B

)
+ Ta〈Dx〉s ζ = f1

where f1 satisfies the desired estimate (4.31).

Step 3. Paralinearization of the equation

(∂t + V · ∇)ζ = G(η)V + ζG(η)B + γ.
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Writing (V − TV ) · ∇ζ = T∇ζ · V +
∑d

j=1R(∂jζ, Vj) and using (2.10) and (2.11), we
obtain

(4.34) ‖(V − TV ) · ∇ζ‖
Hs− 1

2
. ‖∇ζ‖

C
− 1

2
∗
‖V ‖Hs . ‖η‖

C
3
2
∗
‖V ‖Hs .

The key step is to paralinearize G(η)V + ζG(η)B. This is where we use the analysis
performed in the previous Section. By definition of R(η) = G(η)− Tλ we have

G(η)V + ζG(η)B = TλU + F2(η, V,B),

where

(4.35) F2 = [Tζ , Tλ]B +R(η)V + ζR(η)B + (ζ − Tζ)TλB.

The commutator [Tζ , Tλ]B is estimated by means of (2.5) which implies that

‖[Tζ , Tλ]B‖
Hs− 1

2
.
{
M0

0 (ζ)M1
1/2(λ) +M0

1/2(ζ)M1
0 (λ)

}
‖B‖Hs .

Since M0
1/2(ζ) +M1

1/2(λ) ≤ K
(
‖η‖

Hs+1
2

)
we conclude that

‖[Tζ , Tλ]B‖
Hs− 1

2
≤ K

(
‖η‖

Hs+1
2
, ‖B‖Hs

)
.

Moving to the estimate of the second and third terms in the right-hand side of (4.35),
we use Proposition 3.18 to obtain that the Hs− 1

2 -norm of R(η)V and R(η)B satisfy

‖R(η(t))V (t)‖
Hs− 1

2
+ ‖R(η(t))B(t)‖

Hs− 1
2
≤ F

(
‖η(t)‖

Hs+1
2
, ‖(V,B)(t)‖Hs

)
.

Since Hs− 1
2 is an algebra, the term ζR(η)B satisfies the same estimate as R(η)B

does. It remains only to estimate (ζ − Tζ)TλB. To do so we write

(ζ − Tζ)TλB = TTλBζ +R(ζ, TλB).

Thus (2.10) (applied with α = 0 and β = s − 1/2) implies that

‖(ζ − Tζ)TλB‖
Hs− 1

2
. ‖TλB‖C0

∗
‖ζ‖

Hs− 1
2
.

Using (2.4) this yields

‖(ζ − Tζ)TλB‖
Hs− 1

2
.M1

0 (λ) ‖B‖C1
∗
‖ζ‖

Hs− 1
2
.

We thus end up with ‖F2‖
Hs− 1

2
≤ F

(
‖η‖

Hs+1
2
, ‖(V,B)‖Hs

)
.

By combining the previous results, we obtain

(4.36) (∂t + TV · ∇)ζ = TλU + h3,

where ‖h3‖
Hs− 1

2
≤ F

(
‖η‖

Hs+1
2
, ‖(V,B)‖Hs

)
. As in the second step, by commuting

the equation (4.36) with 〈Dx〉s we obtain the desired result (4.30), which concludes
the proof. �

4.4. Symmetrization of the equations. We shall use Proposition 4.8. To
prove an L2 estimate for System (4.29)–(4.30), we begin by performing a sym-
metrization of the non-diagonal part. Here we use in an essential way the fact that
the Taylor coefficient a is a positive function. Again, let us mention that this as-
sumption is automatically satisfied for infinitely deep fluid domain: this result was
first proved by Wu (see [51, 52]) and one can check that the proof remains valid for
any C1,α-domain, with 0 < α < 1.
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Proposition 4.10. Introduce the symbols

γ =
√
aλ, q =

√
a

λ
,

and set θs = Tqζs. Then

∂tUs + TV · ∇Us + Tγθs = F1,(4.37)

∂tθs + TV · ∇θs − TγUs = F2,(4.38)

for some source terms F1, F2 satisfying

‖(F1(t), F2(t))‖L2×L2 ≤ F
(
‖η(t)‖

Hs+1
2
, ‖(V,B)(t)‖Hs

)
.

Proof. Directly from (4.29)–(4.30), we obtain (4.37)–(4.38) with

F1 := f1 +
(
TγTq − Ta

)
ζs,

F2 := Tqf2 +
(
TqTλ − Tγ

)
Us − [Tq, ∂t + TV · ∇] ζs.

The commutator between Tq and ∂t + TV · ∇ is estimated by means of Lemma 2.15:

(4.39)
∥∥[Tq, ∂t + TV · ∇

]
ζs
∥∥
L2(Rd)

≤ K
{
M−

1
2

0 (q) ‖V ‖C1+ε
∗

+M−
1
2

0 (∂tq + V · ∇q)
}
× ‖ζs‖

H−
1
2 (Rd)

.

Tqf2 is estimated by means of (2.4). The key point is to estimate (TγTq −Ta)ζs and
(TqTλ − Tγ)Us. Since γq = a, the operator TγTq − Ta if of order −1/2 since γ is
a symbol of order 1/2, q is of order −1/2, and since these symbols are C1/2 in x.
Similarly, since qλ = γ, the operator TqTλ − Tγ is of order 0. More precisely, by
using the tame estimate for symbolic calculus (see (2.5)), we obtain

‖TγTq − Ta‖
H−

1
2→L2

.M1/2
1/2 (γ)M−1/2

0 (q) +M
1/2
0 (γ)M−1/2

1/2 (q),

‖TqTλ − Tγ‖L2→L2 .M
−1/2
1/2 (q)M1

0 (λ) +M
−1/2
0 (q)M1

1/2(λ).

The above semi-norms are easily estimated by means of the C1/2 norms of ζ = ∇η
and a (given by the Sobolev injection and Proposition 4.6). �

We are now in position to prove an L2 estimate for (Us, θs).

Lemma 4.11. There exists a non-decreasing function F such that

(4.40) ‖Us‖L∞([0,T ];L2) + ‖θs‖L∞([0,T ];L2) ≤ F(Ms,0) + TF(Ms(T )).

Remark 4.12. The fact that this implies corresponding estimates for the Sobolev
norms of η, ψ, V,B is explained below in §4.5.

Proof. Multiply (4.37) by Us and (4.38) by θs and integrate in space to obtain

d

dt

{
‖Us(t)‖2L2 + ‖θs(t)‖2L2

}
+ (I) + (II) = (III),

where

(I) := 〈TV (t) · ∇Us(t), Us(t)〉+ 〈TV (t) · ∇θs(t), θs(t)〉,
(II) := 〈Tγ(t)θs(t), Us(t)〉 − 〈Tγ(t)Us(t), θs(t)〉,

(III) := 〈F1, Us〉+ 〈F2, θs〉.
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Then the key points are that (see point (iii) in Theorem 2.6)∥∥(TV (t) · ∇)∗ + TV (t) · ∇
∥∥
L2→L2 . ‖V (t)‖W 1,∞ ,

and ∥∥Tγ(t) − (Tγ(t))
∗∥∥
L2→L2 .M

1/2
1/2 (γ(t)).

We then easily obtain (4.40). �

4.5. Back to estimates for the original unknowns. Up to now, we only
estimated (Us, θs) in L∞([0, T ];L2 × L2). In this section, we shall show how we can
recover estimates for the original unknowns (η, ψ, V,B) in L∞([0, T ];Hs+ 1

2 ×Hs+ 1
2 ×

Hs ×Hs). Recall that the functions Us and θs are obtained from (η, V,B) through:

Us := 〈Dx〉s V + Tζ〈Dx〉s B,

θs := T√
a/λ
〈Dx〉s∇η.

The analysis is in four steps:

(i) We first prove some estimates for (B, V, η) and the Taylor coefficient a in some
low order norms.

(ii) Then, by using the previous estimate of θs, we show how to recover an estimate
of the L∞([0, T ], Hs+ 1

2 )-norm of η.
(iii) Once η is estimated in L∞([0, T ], Hs+ 1

2 ), by using the estimate for Us, we
estimate (B, V ) in L∞([0, T ];Hs). Here we make an essential use of our
first result on the paralinearization of the Dirichlet-Neumann operator (see
Proposition 3.18). Namely, we use the fact that one can paralinearize the
Dirichlet-Neumann operator for any domain whose boundary is in Hµ for
some µ > 1 + d/2.

(iv) The desired estimate for ψ follows directly from the previous estimates for
η, V,B, the identity ∇ψ = V + B∇η and the fact that one easily obtain
an L∞([0, T ];L2)-estimate for ψ.

We begin with the following lemma.

Lemma 4.13. There exists a non-decreasing function F such that,

(4.41) ‖η‖L∞([0,T ];Hs) + ‖(B, V )‖
L∞([0,T ];Hs− 1

2 )
≤ F(Ms,0) + TF(Ms(T )).

and, for any 0 < ε < s − 1− d/2,

(4.42) ‖a‖L∞([0,T ];Cε∗)
≤ F(Ms,0) +

√
TF .

Proof. The proof is based on the fact that it is easy to estimate the solution w
of a transport equation of the form ∂tw + V · ∇w = F . Indeed, by using the
estimates (4.18)–(4.19) for a, tame product rules in Sobolev or Hölder spaces and
the identity ∂tη + V · ∇η = B, we readily obtain that there exists a non-decreasing
function C (depending only on parameters that are considered fixed) such that

‖a− g‖
Hs− 1

2
= ‖∂tB + V · ∇B‖

Hs− 1
2
≤ C(t),

‖aζ‖
Hs− 1

2
= ‖∂tV + V · ∇V ‖

Hs− 1
2
≤ C(t),

‖∂tη + V · ∇η‖Hs ≤ C(t),
‖∂ta+ V · ∇a‖Cε∗ ≤ C(t),

where C(t) = C
(
‖η(t)‖

Hs+1
2
, ‖(V,B)(t)‖Hs

)
.
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Let us come back to the proof of Lemma 4.13. To fix matters, we prove the esti-
mate for V only (the proofs of the estimates for B, η and a are similar) and we
begin by proving the Sobolev estimate. Using the obvious estimate ‖h‖L1([0,T ]) ≤
T ‖h‖L∞([0,T ]), note that FV := ∂tV + V · ∇V satisfies

‖FV ‖
L1([0,T ];C

1
2
∗ ∩Hs− 1

2 )
≤ TF(Ms(T )).

Using Proposition 2.14 with σ = s − 1
2 , we estimate V in L∞([0, T ];Hs− 1

2 ). �

Lemma 4.14. There exists a non-decreasing function F such that

(4.43) ‖η‖
L∞([0,T ];Hs+1

2 )
≤ F

(
F(Ms,0) + TF

(
Ms(T )

))
.

Proof. Chose ε and an integer N such that

0 < ε < s − 1− d

2
, (N + 1)ε >

1
2
.

Set R = I − T1/qTq to obtain

ζs = T1/qTqζs +Rζs,

where recall that ζs = 〈Dx〉s ζ. Consequently,

ζs = (I +R+ · · ·+RN )T1/qTqζs +RN+1ζs.

By definition of q =
√
a/λ, Theorem 2.6 implies that, for all µ ∈ R, there exists a

non-decreasing function F depending only on ε and inf(t,x)∈[0,T ]×Rd a(t, x) > 0 such
that,

‖R(t)‖Hµ→Hµ+ε ≤ F
(
‖a(t)‖Cε∗ , ‖η(t)‖C1+ε

∗

)
,

and ∥∥T1/q(t)

∥∥
Hµ+1/2→Hµ ≤ F

(
‖η(t)‖W 1,∞

)
.

Therefore

‖∇η‖
Hs− 1

2
= ‖ζs‖

H−
1
2
≤ F

(
‖a‖Cε∗ , ‖η‖C1+ε

∗

) {
‖Tqζs‖L2 + ‖ζs‖H−1

}
.

Now it follows from Lemma 4.13 that

‖a‖L∞([0,T ];Cε∗)
+ ‖η‖L∞([0,T ];C1+ε

∗ ) + ‖ζs‖L∞([0,T ];H−1) ≤ F(Ms,0) + TF(Ms(T )).

On the other hand, it follows from Lemma 4.11 that

‖Tqζs‖L∞([0,T ];L2) ≤ F(Ms,0) + TF(Ms(T )).

This implies the desired result. �

It remains only to estimate (V,B).

Lemma 4.15. There exists a non-decreasing function F such that

(4.44) ‖(V,B)‖L∞([0,T ];Hs) ≤ F
(
F(Ms,0) + TF

(
Ms(T )

))
.

Proof. The proof is based on the relation between V and B given by Proposi-
tion 4.5.

Step 1. Recall that U = V + TζB. We begin by proving that there exists a non-
decreasing function F such that

(4.45) ‖U‖L∞([0,T ];Hs) ≤ F
(
F(Ms,0) + TF

(
Ms(T )

))
.

To see this, write
〈Dx〉s U = Us +

[
〈Dx〉s , Tζ

]
B
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and use Theorem 2.6 to obtain∥∥[〈Dx〉s , Tζ
]
B
∥∥
L2 . ‖ζ‖

C
1
2
∗
‖B‖

Hs− 1
2
.

Since, by assumption, s > 1 + d/2 we have ‖ζ‖
C

1
2
∗
. ‖ζ‖

Hs− 1
2
≤ ‖η‖

Hs+1
2

and hence

‖U‖Hs . ‖Us‖L2 + ‖η‖
Hs+1

2
‖B‖

Hs− 1
2
.

The three terms in the right-hand side of the above inequalities have been already
estimated (see Lemma 4.11 for Us, Lemma 4.13 for B and Lemma 4.14 for η). This
proves (4.45).

Step 2. Taking the divergence in U = V +TζB, we get according to Proposition 4.5,
Lemma 4.13 and Lemma 4.14:

divU = div V + div TζB = div V + Tdiv ζB + Tζ · ∇B
= −G(η)B + Tiζ·ξ+div ζB + γ

= −TλB +R(η)B + Tiζ·ξ+div ζB + γ

= TqB +R(η)B + Tdiv ζB + γ

where, by notation,
q := −λ+ iζ · ξ,

and
‖γ‖

Hs− 1
2
≤ F(‖(η, V,B)‖

Hs+1
2×H

1
2×H

1
2
).

According to Proposition 3.18 (with µ = s − 1
2) and Lemma 4.13, we deduce

(4.46) TqB = divU − Tdiv ζB −R(η)B − γ.
Now write

B = T 1
q
TqB +

(
I − T 1

q
Tq

)
B

to obtain from (4.46)
B = T 1

q
divU − T 1

q
γ +R−εB

where

(4.47) R−ε := T 1
q

(
−Tdiv ζ −R(η)

)
+
(
I − T 1

q
Tq

)
.

Notice now that according to Lemma 4.14, we control div ζ = ∆η in Hs− 3
2 , and

since s > 1 + d
2 , Tdiv ζ is an operator of order (both Sobolev and Hölder) 1− 1

2 = 1
2 .

Finally, q = −λ + iζ · ξ ∈ Γ1
1/2 with M1

1/2(q) ≤ C(‖η‖
Hs+1

2
). Moreover, q−1 is of

order −1 and we have
M1

1/2

(
q−1
)
≤ C(‖η‖

Hs+1
2
).

Consequently, according to (2.4) and (2.5), the operator R−ε given by (4.47) is of
order −1

2 . applying T(−λ+iζ·ξ)−1 to (4.46), we get

B = W +R−εB

where W := T 1
q

divU − T 1
q
γ satisfies

‖W‖Hs ≤ F
(
F(Ms,0) + TF

(
Ms(T )

))
.

Since R−ε is an operator of order −1
2 and since we have estimated the Hs− 1

2 -norm
of B (see Lemma 4.13), we conclude that

‖B‖Hs ≤ F
(
F(Ms,0) + TF

(
Ms(T )

))
,

and coming back to the relation U = V + TζB we get that V satisfies the same
estimate. �
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Lemma 4.16. There exists a non-decreasing function F such that

‖ψ‖
L∞([0,T ];Hs+1

2 )
≤ F

(
F(Ms,0) + TF

(
Ms(T )

))
.

Proof. Since∇ψ = V+B∇η and since the L∞([0, T ];Hs− 1
2 )-norm of (∇η, V,B)

has been previously estimated, it remains only to estimate ‖ψ‖L∞([0,T ];L2).

Since

B :=
∇η · ∇ψ +G(η)ψ

1 + |∇η|2
,

the equation for ψ can be written under the form

∂tψ + gη +
1
2
|∇ψ|2 − 1

2
(1 + |∇η|2)B2 = 0.

Therefore, since V = ∇ψ −B∇η,

(4.48)

∂tψ + V · ∇ψ = ∂tψ + |∇ψ|2 −B∇η · ∇ψ

= −gη +
1
2
|∇ψ|2 +

1
2

(1 + |∇η|2)B2 −B∇η · ∇ψ

= −gη +
1
2
|∇ψ −B∇η|2 − 1

2
B2 |∇η|2 +

1
2

(1 + |∇η|2)B2

= −gη +
1
2
V 2 +

1
2
B2.

The desired L2 estimate then follows from classical results (see Proposition 2.14). �

5. Contraction

In this section we prove a contraction estimate for the difference of two solutions
which implies the uniqueness of solutions and a Lipschitz property in a lower norm
(Hs−1, compared to the Hs norm where the a priori estimates are established). This
phenomenon is standard for quasi-linear PDE’s. This choice of norm to establish the
contraction property is the result of a compromise as on the one hand, the highest
the norm is chosen the easiest the non linear analysis will be (as the norm controls
more quantities), while some loss of derivatives are necessary (in particular as far as
the Dirichlet–Neumann operator is concerned), see Remark 5.3.

Theorem 5.1. Let (ηj , ψj), j = 1, 2, be two solutions of (1.6) such that

(ηj , ψj , Vj , Bj) ∈ C0([0, T0];Hs+ 1
2 ×Hs+ 1

2 ×Hs ×Hs),

for some fixed T0 > 0, d ≥ 1 and s > 1 + d/2. We also assume that the condition
(1.2) holds for 0 ≤ t ≤ T0 and that there exists a positive constant c such that for
all 0 ≤ t ≤ T0 and for all x ∈ Rd, we have aj(t, x) ≥ c for j = 1, 2, t ∈ [0, T ]. Set

Mj := sup
t∈[0,T ]

‖(ηj , ψj , Vj , Bj)(t)‖
Hs+1

2×Hs+1
2×Hs×Hs

,

η := η1 − η2, ψ = ψ1 − ψ2, V := V1 − V2, B = B1 −B2.

Then we have

(5.1) ‖(η, ψ, V,B)‖
L∞((0,T );Hs− 1

2×Hs− 1
2×Hs−1×Hs−1)

≤ K(M1,M2)‖(η, ψ, V,B) |t=0 ‖
Hs− 1

2×Hs− 1
2×Hs−1×Hs−1

.

45



Let us recall that

(5.2)


(∂t + Vj · ∇)Bj = aj − g,
(∂t + Vj · ∇)Vj + ajζj = 0,

(∂t + Vj · ∇)ζj = G(ηj)Vj + ζjG(ηj)Bj + γj , ζj = ∇ηj ,

where γj is the remainder term given by (4.9). Let

N(T ) := sup
t∈[0,T ]

‖(η, ψ, V,B)(t)‖
Hs− 1

2×Hs− 1
2×Hs−1×Hs−1

.

Our goal is to prove an estimate of the form

(5.3) N(T ) ≤ K(M1,M2)N(0) + T K(M1,M2)N(T ),

for some non-decreasing function K depending only on s and d. Then, by choosing T
small enough, this implies N(T ) ≤ 2K(M1,M2)N(0) for T1 smaller than the mini-
mum of T0 and 1/2K(M1,M2), and iterating the estimate between [T1, 2T1],. . . , [T−
T1, T1] implies Theorem 5.1.

5.1. Contraction for the Dirichlet-Neumann. The first step in the proof
of Theorem 5.1 is to prove a Lipschitz property for the Dirichlet-Neumann operator.
This was already achieved in a very weak norm in Theorem 3.10, and here we used
elliptic theory to improve the result.

Theorem 5.2. Assume that s > 1 + d
2 . There exists a non-decreasing function F

such that, for all η1, η2 ∈ Hs+ 1
2 and all f ∈ Hs, we have

(5.4) ‖[G(η1)−G(η2)] f‖
Hs− 3

2
≤ F

(
‖(η1, η2)‖

Hs+1
2

)
‖η1 − η2‖

Hs− 1
2
‖f‖Hs .

Remark 5.3. We were unable to prove a similar estimate in a higher norm. On
the other hand, this estimate is in some sense stronger than Theorem 3.10. Indeed,
in view of Sobolev injections, the r.h.s. here does not control the Lipschitz norm of
(η1 − η2) which appears in Theorem 3.10.

Proof. The proof follows closely that of Theorem 3.10 and we keep the nota-
tions ρj , φ̃j , v = φ̃1 − φ̃2,Λj introduced there.

Notice that, using the smoothing property of the Poisson kernel, we have

(5.5)

{
(i) Λ1

k − Λ2
k = βk∂z, with suppβk ⊂ Rd × J,where J = [−1, 0],

(ii) ‖βk‖L2(J,Hs−1(Rd)) ≤ F(‖(η1, η2)|
Hs+1

2×Hs+1
2
)‖η1 − η2‖

Hs− 1
2 (Rd)

.

Recall that

(5.6) G(ηj)f = Uj |z=0, Uj = Λj1φ̃j −∇xρj · Λ
j
2φ̃j .

Let us set U = U1 − U2. According to Lemma 3.14, Theorem 5.2 will follow from
the following estimate
(5.7)
‖U‖L2(J,Hs−1) + ‖∂zU‖L2(J,Hs−2) ≤ F

(
‖(η1, η2)‖

Hs+1
2×Hs+1

2

)
‖f‖Hs ‖η1 − η2‖

Hs− 1
2
.
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According to (3.36) and (3.38) the estimate (5.7) will be a consequence of the fol-
lowing one
(5.8)

5∑
k=1

‖Bk‖L2(J,Hs−1) ≤ F
(
‖(η1, η2)‖

Hs+1
2×Hs+1

2

)
‖f‖Hs ‖η1 − η2‖

Hs− 1
2

where

B1 = Λ1
1v, B2 = (∇x,zρ2)Λ2

2v, B3 = (Λ1
1 − Λ2

1)φ̃2, B4 = ∇x,z(ρ1 − ρ2)Λ1
2φ̃1,

B5 = (∇x,zρ2)(Λ1
1 − Λ2

1)φ̃1.

Since φ̃j is a variational solution, Proposition 3.21 with σ = s − 1 show that

‖∇x,zφ̃j‖L∞(J,Hs−1) + ‖Λjkφ̃j‖L∞(I,Hs−1) ≤ F(‖ηj‖
Hs+1

2
)‖f‖Hs .

Since s > 1 + d
2 , it follows the from (3.33) that

(5.9)
5∑
l=3

‖Bl‖L2(J,Hs−1) ≤ F(‖(η1, η2)‖
Hs+1

2×Hs+1
2
)‖η1 − η2‖

Hs− 1
2
‖f‖Hs .

Since

‖B1‖L2(J,Hs−1) + ‖B2‖L2(J,Hs−1) ≤ F(‖(η1, η2)|
Hs+1

2×Hs+1
2
)‖∇x,zv‖L2(I,Hs−1)

using the estimate (5.9), we see that (5.8) will be a consequence of the following
Lemma. Therefore Theorem 5.2 will be proved if we prove the following result.

Lemma 5.4. We have

‖∇x,zv‖L2(J,Hs−1) ≤ F(‖(η1, η2)‖
Hs+1

2×Hs+1
2
)‖η1 − η2‖

Hs− 1
2
‖f‖Hs .

Proof. Notice that v = φ̃1 − φ̃2 is a solution of the problem

(5.10) ∂2
zv + α1∆v + β1 · ∇∂zv − γ1∂zv = F, v|z=0 = 0

where
F = (α2 − α1)∆φ̃2 + (β2 − β1) · ∇∂zφ̃2 − (γ2 − γ1)∂zφ̃2

and αj are given by (3.17). We would like to apply Proposition 3.21 with σ = s− 3
2 .

To this end, according to (2.37), we shall estimate the L2(J,Hs−2(Rd)) norm of F
and the X−

1
2 (J) norm of ∇x,zv.

Estimate on F : Since s > 1 + d
2 (thus 2s − 3 > 0) we may apply (2.13) with s1 =

s − 2, s2 = s − 1, s0 = s − 2. We get∥∥∥(α1 − α2)∆φ̃2

∥∥∥
L2(J,Hs−2)

≤ K ‖α1 − α2‖L2(J,Hs−1)

∥∥∥∆φ̃2

∥∥∥
L∞(J,Hs−2)

,∥∥∥(β1 − β2) · ∇∂zφ̃2

∥∥∥
L2(J,Hs−2)

≤ K ‖β1 − β2‖L2(J,Hs−1)

∥∥∥∇∂zφ̃2

∥∥∥
L∞(J,Hs−2)

,∥∥∥(γ1 − γ2)∂zφ̃2

∥∥∥
L2(J,Hs−2)

≤ K ‖γ1 − γ2‖L2(J,Hs−2)

∥∥∥∂zφ̃2

∥∥∥
L∞(J,Hs−1)

.

Then, using the product rule in Sobolev space (2.13), and (3.11), we obtain

(5.11) ‖α1 − α2‖L2(J,Hs−1) + ‖β1 − β2‖L2(J,Hs−1) + ‖γ1 − γ2‖L2(J,Hs−2)

≤ F
(
‖(η1, η2)‖

Hs+1
2×Hs+1

2

)
‖η1 − η2‖

Hs− 1
2
.

Moreover from from Proposition 3.21 with σ = s − 1 we have∥∥∥∇x,zφ̃j∥∥∥
L∞(J,Hs−1)

≤ C(‖ηj‖
Hs+1

2
) ‖f‖Hs .
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It follows that

(5.12) ‖F‖L2
z(J,Hs−2

x ) ≤ F
(
‖(η1, η2)‖

Hs+1
2

)
‖η1 − η2‖

Hs− 1
2
‖f‖Hs

Estimate of ‖∇x,zv‖
X−

1
2 (J)

, J = (−1, 0).

We claim that

(5.13) ‖∇x,zv‖
X−

1
2 (J)
≤ F

(
‖(η1, η2)‖

Hs+1
2×Hs+1

2

)
‖η1 − η2‖

Hs− 1
2
‖f‖Hs .

Since φ̃j = ũj + f̃ we have v = ũ1− ũ2. We begin by proving the following estimate.

There exists a non decreasing function F : R+ → R+ such that

(5.14) ‖∇x,zv‖L2(J,L2) ≤ F
(
‖(η1, η2)‖

Hs+1
2×Hs+1

2

)
‖η1 − η2‖

Hs− 1
2
‖f‖Hs

For this purpose we use the variational characterization of the solutions ui. Setting
X = (x, z) we have

(5.15)
∫

eΩ Λiũi · Λiθ Ji dX = −
∫

eΩ Λif̃ · Λiθ Ji dX

for all θ ∈ H1,0(Ω̃), where Ji = |∂zρi|.
Making the difference between the two equations (5.15), using (3.31) and taking
θ = v = ũ1 − ũ2 one can find a positive constant C such that∫

eΩ |Λ1v|2 dX ≤ C(A1 +A2 +A3 +A4)

where

A1 =
∫

eΩ |(Λ1 − Λ2)ũ2||Λ1v| J1 dX, A2 =
∫

eΩ |(Λ1 − Λ2)v||Λ2ũ2| J1dX,

A3 =
∫

eΩ |Λ2ũ2||Λ2v| |J1 − J2| dX, A4 =
∫

eΩ |(Λ1 − Λ2)f̃ ||Λ1ũ| J1 dX,

A5 =
∫

eΩ |(Λ1 − Λ2)v||Λ2f̃ | J1 dX, A6 =
∫

eΩ |Λ2f̃ ||Λ2v| |J1 − J2| dX

It follows from the elliptic regularity theorem that

A1 ≤ ‖Λ1v‖
L2(eΩ)

‖β‖
L2(eΩ)

‖∂zũ2‖L∞(J,L∞(Rd))

≤ ‖Λ1v‖
L2(eΩ)

F(‖η1‖
Hs+1

2 (Rd)
‖η2‖

Hs+1
2 (Rd)

, ‖ψ‖Hs(Rd))‖η1 − η2‖
H

1
2 (Rd)

.

Noticing that Λ1−Λ2 = β(∂zρ1)Λ1
1 where β satisfies the estimate in (3.33) we obtain

A2 ≤ ‖∂zρ1‖L∞(eΩ)
‖β‖

L2(eΩ)
‖Λ2ũ2‖L∞(eΩ)

‖Λ1v‖
L2(eΩ)

.

Using (3.31), (3.33) and the elliptic regularity we obtain

A2 ≤ ‖Λ1v‖
L2(eΩ)

F
(
‖(η1, η2)‖

Hs+1
2×Hs+1

2

)
‖η1 − η2‖

Hs− 1
2
‖f‖Hs .

Now we estimate A3 as follows. We have

A3 ≤ ‖Λ2ũ2‖L∞(eΩ)
‖Λ2v‖

L2(eΩ)
‖J1 − J2‖L2(eΩ)

.

Then we observe that

‖J1 − J2‖L2(eΩ)
≤ C‖η1 − η2‖

H
1
2 (Rd)

‖Λ2v‖
L2(eΩ)

≤ C‖Λ1v‖
L2(eΩ)
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and we use the elliptic regularity. To estimate A4 and A5 we recall that f̃ = ez〈Dx〉f.
Then we have

‖β∂z f̃‖L2(J×Rd) ≤ ‖β‖L2(I×Rd)‖∂z f̃‖L∞(J×Rd).

Since ‖∂z f̃‖L∞(J×Rd) ≤ ‖∂z f̃‖L∞(J,Hs−1(Rd)) ≤ ‖f‖Hs(Rd), using (3.33) we obtain

A4 +A5 ≤ ‖Λ1v‖
L2(eΩ)

F
(
‖(η1, η2)‖

Hs+1
2

)
‖η1 − η2‖

Hs− 1
2
‖f‖Hs .

The term A6 is estimated like A3. Since 1
2 < s − 1

2 this proves (5.14) .

To complete the proof of (5.13) we have to estimate ‖∇x,zv‖
L∞(I,H−

1
2 )
. The esti-

mate of ‖∇xv‖
L∞(J,H−

1
2 )

follows from (5.14)and from Lemma 3.14. To estimate

‖∂zv‖
L∞(J,H−

1
2 )

we have to use (5.14) and the equation satisfied by v. If we prove

that

(5.16) ‖∂2
zv‖L2(J,H−1) ≤ F

(
‖(η1, η2)‖

Hs+1
2×Hs+1

2

)
‖η1 − η2‖

Hs− 1
2
‖f‖Hs .

the result will follow again from Lemma 3.14. Recall that v satifies the equation
(5.10).

It follows that we have

(5.17)
‖∂2

zv‖L2(J,H−1) ≤ ‖α1∆v‖L2(J,H−1) + ‖β1 · ∇∂zv‖L2(J,H−1)

+ ‖γ1∂zv‖L2(J,H−1) + ‖F‖L2(J,H−1).

Since −1 < s − 2 (5.12) yields

‖F‖L2(J,H−1) ≤ ‖F‖L2(J,Hs−2) ≤ F
(
‖(η1, η2)‖

Hs+1
2×Hs+1

2

)
‖η1 − η2‖

Hs− 1
2
‖f‖Hs .

On the other hand, since s − 1
2 − 1 > 0 and −1 < s − 1

2 − 1− d
2 (2.13) show that we

have

‖α1∆v‖L2(J,H−1) ≤ ‖α1‖
L∞(J,Hs− 1

2 )
‖∇xv‖L2(J,L2)

‖β1 · ∇∂zv‖L2(J,H−1) ≤ ‖β1‖
L∞(J,Hs− 1

2 )
‖∂zv‖L2(J,L2)

‖γ1∂zv‖L2(J,H−1) ≤ ‖γ1‖
L∞(J,Hs− 3

2 )
‖∂zv‖L2(J,L2).

Using Lemma 3.24 and (5.14) we obtain eventually (5.16).

Now Lemma 5.4 follows from (5.12), (5.13) and Proposition 3.21 with σ = s− 3
2 . �

Lemma 5.4 together with (5.8) prove (5.7) which in turn proves Proposition5.2. �

5.2. Paralinearization of the equations. We begin by noticing that, as in
the proof of Lemma 4.16, it is enough to estimate η,B, V . Indeed, the estimate
of the L∞([0, T ];Hs−1/2

x )-norm of ψ is in two elementary steps. Firstly, since Vj =
∇ψj−Bj∇ηj , one can estimate the L∞([0, T ];Hs−3/2)-norm of ∇ψ from the identity

∇ψ = V +B∇η1 +B2∇η.

On the other hand, the estimate of the L∞([0, T ];L2
x)-norm of ψ follows from the

equation (4.48).

An elementary calculation shows that the functions

ζ = ζ1 − ζ2, V = V1 − V2, B = B1 −B2
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satisfy the system of equations

(5.18)


∂tB + V1 · ∇B + V · ∇B2 = a,

∂tV + V1 · ∇V + V · ∇V2 + a2ζ + aζ1 = 0,

∂tζ + V2 · ∇ζ + V · ∇ζ1 = G(η1)V + ζ1G(η1)B + ζG(η2)B2 +R+ γ,

where

(5.19) R = [G(η1)−G(η2)]V2 + ζ1 [G(η1)−G(η2)]B2,

and γ = γ1 − γ2, γj are given by (4.9)

Lemma 5.5. The differences ζ,B, V satisfy a system of the form

(5.20)

{
(∂t + V1 · ∇)(V + ζ1B) + a2ζ = f1,

(∂t + V2 · ∇)ζ −G(η1)V − ζ1G(η1)B = f2,

for some remainders such that

‖(f1, f2)‖
L∞([0,T ];Hs−1×Hs− 3

2 )
≤ K(M1,M2)N(T ).

Proof. We begin by rewriting System (5.18) under the form
∂tB + V1 · ∇B = a+R1,

∂tV + V1 · ∇V + a2ζ + aζ1 = R2,

∂tζ + V2 · ∇ζ = G(η1)V + ζ1G(η1)B +R+ γ +R3,

where R is given by (5.19), γ = γ1 − γ2 and

R1 = −V · ∇B2, R2 = −V · ∇V2, R3 = V · ∇ζ1 + ζG(η2)B2.

¿From Theorem 5.2 one has

‖R‖
L∞(0,T ;Hs− 3

2 )
≤ K(M1,M2)N(T ).

Similarly, proceeding as in the end of the proof of Proposition 4.3, we have

‖γ‖
L∞(0,T ;Hs− 3

2 )
≤ K(M1,M2)N(T ).

On the other hand, since s − 1 > d/2, Hs−1 is an algebra and

‖V · ∇B2‖Hs−1 ≤ K ‖V ‖Hs−1 ‖∇B2‖Hs−1 ≤ K ‖V ‖Hs−1 ‖B2‖Hs

and similarly
‖V · ∇V2‖Hs−1 ≤ K ‖V ‖Hs−1 ‖V2‖Hs .

On the other hand, according to Theorem 3.17 we have

‖G(η2)B2‖Hs−1 ≤ C(‖η2‖Hs+1/2) ‖B2‖Hs ,

and hence
‖ζG(η2)B2‖

Hs− 3
2
≤ C(‖η2‖Hs+1/2) ‖B2‖Hs ‖ζ‖

Hs− 3
2
.

To estimate V · ∇ζ1 we use the product rule (2.13) to deduce

‖V · ∇ζ1‖
Hs− 3

2
≤ K ‖V ‖Hs−1 ‖∇ζ1‖

Hs− 3
2
≤ K ‖V ‖Hs−1 ‖η1‖

Hs+1
2
.

Therefore we have,

‖R1‖Hs−1 + ‖R2‖Hs−1 + ‖R3‖
Hs− 3

2
≤ C

{
‖η‖

Hs− 1
2

+ ‖B‖Hs−1 + ‖V ‖Hs−1

}
,

for some constant C depending only on ‖ηj‖
Hs+1

2
, ‖Bj‖Hs , ‖Vj‖Hs . The next step

consists in transforming again the equation. We want to replace aζ1 in the second
equation by

(∂tB + V1 · ∇B −R1)ζ1.
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The idea is that this allows to factor out the convective derivative ∂t + V1 · ∇ .
Writing

(∂tB + V1 · ∇B)ζ1 = (∂t + V1 · ∇)(Bζ1)−B(∂t + V1 · ∇)ζ1

we thus end up with

(5.21) (∂t + V1 · ∇)(V + ζ1B) + a2ζ = R1ζ1 +B(∂t + V1 · ∇)ζ1 +R2.

Since
(∂t + V1 · ∇)ζ1 = G(η1)V1 + ζ1G(η1)B1 + γ1,

we have
‖(∂t + V1 · ∇)ζ1‖Hs−1 ≤ F

(
‖(η1, B1, V1)‖

Hs+1
2×Hs×Hs

)
.

By using this estimate and our previous bounds for R1, R2, we find

‖R1ζ1 +B(∂t + V1 · ∇)ζ1 +R2‖Hs−1 ≤ C
{
‖η‖

Hs− 1
2

+ ‖B‖Hs−1 + ‖V ‖Hs−1

}
,

for some constant C depending only on ‖ηj‖
Hs+1

2
, ‖Bj‖Hs , ‖Vj‖Hs . Notice that here,

as we used the equation satisfied by ζ1, it was important to have (∂t +V1 · ∇) in the
l.h.s. of (5.21) and not (∂t+V2 ·∇), and this algebraic reduction required some care
in the previous step. �

5.3. Estimates for the good unknown. We now symmetrize System (5.20).
We set I = [0, T ].

Lemma 5.6. Set

` :=
√
λ1a2, ϕ := T√λ1

(V + ζ1B), ϑ := T√a2
ζ.

Then

(∂t + TV1 · ∇)ϕ+ T`ϑ = g1,(5.22)

(∂t + TV2 · ∇)ϑ− T`ϕ = g2,(5.23)

where
‖(g1, g2)‖

L∞(I;Hs− 3
2×Hs− 3

2 )
≤ K(M1,M2)N(T ).

Proof. We start from Lemma 5.5. By using Proposition 2.10, one can re-
place V1 · ∇ by TV1 · ∇ and a2ζ by Ta2ζ, modulo admissible remainders. It is found
that

(5.24) (∂t + TV1 · ∇)(V + ζ1B) + Ta2ζ = f ′1,

for some remainder f ′1 such that∥∥f ′1∥∥L∞(I;Hs−1)
≤ K(M1,M2)N(T ).

Similarly, one can replace V2·∇ by TV2 ·∇. According to Proposition 3.18, with ε = 1
2 ,

we have

‖G(η1)V − Tλ1V ‖L∞(I;Hs− 3
2 )

+ ‖G(η1)B − Tλ1B‖L∞(I;Hs− 3
2 )
≤ K(M1)N(T ),

and according to Proposition 2.10, with γ = r = s − 3
2 , µ = s − 1

2 ,

‖ζ1G(η1)B − Tζ1Tλ1B‖L∞(I;Hs− 3
2 )
≤ K(M1)N(T ).

We deduce

(5.25) (∂t + TV2 · ∇)ζ − Tλ1V − Tζ1Tλ1B = f ′2,

where
λ1 :=

√
(1 + |∇η1|2)|ξ|2 − (∇η1 · ξ)2,
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and ∥∥f ′2∥∥L∞(I;Hs− 3
2 )
≤ K(M1,M2)N(T ).

Now, according to Lemma 2.16, (3.42) and (4.9) and we find that

(5.26) ‖[T√λ1
, (∂t + TV1 · ∇)]‖

Hs−1→Hs− 3
2

≤ K(M1)
(
M

1
2
0 (
√
λ1) +M

1
2
0 ((∂t + V1 · ∇)

√
λ1)
)
≤ K′(M1)

and similarly, according to Lemma 2.16 and (4.19),

(5.27) ‖[T√a2
, (∂t + TV2 · ∇)]‖

Hs−1→Hs− 3
2

≤ K(M2)
(
M0

0(
√
a2) +M0

0((∂t + V2 · ∇)
√
a2)
)
≤ K′(M2),

which implies

(∂t + TV1 · ∇)T√λ1
(V + ζ1B) + T√λ1

Ta2ζ = f ′′1 ,(5.28)

(∂t + TV2 · ∇)T√a2
ζ − T√a2

(
Tλ1V − Tζ1Tλ1B

)
= f ′′2 ,(5.29)

where ∥∥(f ′′1 , f
′′
2 )
∥∥
L∞(I;Hs− 3

2 )
≤ K(M1,M2)N(T ).

According to (2.5), (3.42) and (4.18), since s > 1 + d
2 ,

T√λ1
Ta2 − T√λ1a2

T√a2
is of order 0,

which implies (5.22). On the other hand, according to (2.5) and (3.42) the op-
erators Tζ1Tλ1 − Tλ1ζ1 and Tλ1Tζ1 − Tλ1ζ1 are of order 1/2 (with norm controlled
by K(M1), which allows to commute T√λ1

and Ta2 in (5.29)). Now, according
to Proposition 2.10 (with γ = r = s − 1

2 , µ = s − 1)

‖Tζ1B − ζ1B‖
Hs− 1

2
≤ K(M1)‖B‖Hs−1 .

Which implies (5.23) (using again (2.5)). �

Recall that we have set

(5.30) N(T ) := sup
t∈I
‖(η, ψ, V,B)(t)‖

Hs− 1
2×Hs− 1

2×Hs−1×Hs−1
.

Lemma 5.7. Set

N ′(T ) := sup
t∈I

{
‖ϑ(t)‖

Hs− 3
2

+ ‖ϕ(t)‖
Hs− 3

2

}
.

We have

(5.31) N ′(T ) ≤ K(M1,M2)
(
N(0) + TN(T )

)
.

Proof. We first prove that

(5.32) N ′(T ) ≤ K(M1,M2)
(
N ′(0) + TN(T ) + TN ′(T )

)
.

The desired estimate (5.31) then follows from the fact that

(5.33) N ′(0) ≤ K(M1,M2)N(0), N ′(T ) ≤ K(M1,M2)N(T ).

which follows from the continuity of paradifferential operators in the Sobolev spaces
(see Theorem (2.6)) and the fact that Hs−1(Rd) is an algebra since s > 1 + d

2 .
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The proof of (5.32) is based on a classical argument : we commute 〈Dx〉s−3/2

to (5.22)–(5.23) and perform an L2 estimate. Then the key points are that (see
point (iii) in Theorem 2.6)

(5.34)

∥∥(TVj · ∇)∗ + TVj · ∇
∥∥
L2→L2 . ‖Vj‖W 1,∞ ,

‖T` − (T`)∗‖L2→L2 ≤ F
(
‖(η1, η2)‖W 3/2,∞

)
and that the commutators [TVj ·∇, 〈Dx〉s−3/2 ] are, according to (2.5), of order s− 3

2 .

Notice that since (ϕ, ϑ) ∈ C1([0, T0];Hs− 3
2 ), we do not need to regularize the equa-

tions. �

Finally, let us notice that an elementary argument allows to control lower norms
of (V,B) (and hence also of V + ζ1B):

(5.35) ‖(V,B)‖
L∞(I;Hs− 3

2 )
≤ K(M1,M2)

(
N(0) + TN(T )

)
.

Indeed, (the proof of) Theorem 5.2 implies that (with a = a1 − a2)

(5.36) ‖a‖
L∞(I;Hs− 3

2 )
≤ K(M1,M2)N(T ).

Since ∂tB + V1 · ∇B = a− V · ∇B2, we have

(5.37)

‖B‖L∞(I;Hs−2) ≤ ‖B(0)‖Hs−2 +
∫ T

0

(
‖V1 ·∇B‖Hs−2 +‖a‖Hs−2 +‖V ·∇B2‖Hs−2

)
dt′

≤ ‖B(0)‖Hs−2 + TK(M1,M2)N(T ).

Similarly, we have

(5.38) ‖V ‖L∞(I;Hs−2) ≤ ‖V (0)‖Hs−2 + TK(M1,M2)N(T ).

Now we have

V + ζ1B = T√
λ1
−1ϕ+ (Id− T√

λ1
−1T√λ1

)(V + ζ1B),

where according to (2.5), the operator Id− T√
λ1
−1T√λ1

is of order−1/2. Hence, we
deduce from (5.33), (5.31), (5.35), (5.38) and a bootstrap argument

(5.39) ‖V + ζ1B‖L∞(I;Hs−1) ≤ K(M1,M2){N(0) + TN(T )}.

5.4. Back to the original unknowns. Recall that I = [0, T ] (resp. J =
(−1, 0)) is an interval in the t variable (resp. in the z variable).

Lemma 5.8. There holds

(5.40) ‖η‖
L∞(I;Hs− 1

2 )
≤ K(M1,M2){N(0) + TN(T )}.

Proof. From the equation ∂tηj = G(ηj)ψj we have,

η(t) = η(0) +
∫ t

0
G(η1)ψ(t′)dt′ +

∫ t

0

(
G(η1)−G(η2)

)
ψ2(t′)dt′,

from which we deduce according to Theorem 5.2,

(5.41) ‖η‖L∞(I;Hs−2) ≤ ‖η(0)‖Hs−2 + TK(M1,M2)‖η‖
L∞(I;Hs− 1

2 )
.

Let R = Id − T 1√
a2

T√a2
, which, according to (2.5) and (4.18) is an operator of

order −1
2 (with norm estimated by K(M2)). We have

∇η = R∇η + T 1√
a2

ϑ.
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Therefore we deduce from (5.41), (5.31) and a bootstrap argument,

‖∇η‖
L∞(I;Hs− 3

2 )
≤ K(M1,M2)

(
N(0) + TN(T )

)
.

Combining with (5.41) gives Lemma 5.8. �

We are now ready to estimate (V,B).

Proposition 5.9. There holds

(5.42) ‖(V,B)‖L∞(I;Hs−1) ≤ K(M1,M2)
{
N(0) + TN(T )

}
.

The proof will require several preliminary Lemmas. We begin by noticing that it is
enough to estimate B. Indeed, if

‖B‖L∞(I;Hs−1) ≤ K(M1,M2)
{
N(0) + TN(T )

}
.

then, by using the triangle inequality, the estimate (5.39) for V + ζ1B implies that
V satisfies the desired estimate.

Let v = φ̃1− φ̃2, where φ̃j is the harmonic extension in Ω̃ of the function ψj and set

b2 :=
∂zφ̃2

∂zρ2
, w = v − Tb2ρ.

We notice that

(5.43) w|z=0 = ψ − TB2η.

We first state the following result.

Lemma 5.10. We have

(5.44) ‖ψ − TB2η‖L∞(I;Hs) ≤ K(M1,M2)
{
N(0) + TN(T )

}
.

Proof. Indeed, the low frequencies are estimated by (5.35), while for the high
frequencies, we write

∇(ψ − TB2η) = ∇ψ − TB2∇η − T∇B2η

= ∇ψ1 −∇ψ2 − TB2∇η − T∇B2η

= V1 +B1∇η1 − V2 −B2∇η2 − TB2∇η − T∇B2η

= V + (B1 −B2)∇η1 +B2(∇η1 −∇η2)− TB2∇η − T∇B2η

= V + ζ1B + (B2 − TB2)∇η − T∇B2η,

where we used that, by definition, ∇ψj = Vj +Bj∇ηj and ζ1 = ∇η1.

The main term V + ζ1B is estimated using (5.39), while the two other terms are
estimated using (5.40), the a priori estimate on B2 and the product rules (2.9)
and (2.11). �

We next relate w, ρ and B.

Lemma 5.11. We have

B =
[ 1
∂zρ1

(
∂zw − (b2 − Tb2)∂zρ+ T∂zb2ρ

)]
z=0

.
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Proof. Write

B1 −B2 =
∂zφ̃1

∂zρ1
− ∂zφ̃2

∂zρ2


z=0

=
1

∂zρ1

(
∂zφ̃1 − ∂zφ̃2

)
+
( 1
∂zρ1

− 1
∂zρ2

)
∂zφ̃2


z=0

=
1

∂zρ1
∂zv −

1
∂zρ1

∂zφ̃2

∂zρ2
∂zρ

z=0

and replace v by w + Tb2ρ in the last expression. �

Lemma 5.12. Recall that b2 := ∂z eφ2

∂zρ2
. For k = 0, 1, 2, we have∥∥∥∂kz b2∥∥∥

C0([−1,0],L∞(I,Hs− 1
2−k))

≤ C ‖ψ2‖
Hs+1

2
,

for some constant C depending only on ‖η2‖
Hs+1

2
.

Proof. We estimate ∇x,zφ̃2 in C0([−1, 0], L∞(I,Hs− 1
2 )) by using the elliptic

regularity (see Proposition 3.21 and Remark 3.20). Now, using the equation satisfied
by φ̃2 and the product rule in Sobolev spaces, we successively estimate ∂2

z φ̃2 and
∂3
z φ̃2. This proves the lemma since the derivatives of ρ2 are estimated directly from

the definition of ρ2. �

Notice that η and hence ρ are estimated in L∞(I;Hs− 1
2 ) (see (5.40)). Now, use

Lemma 5.12 and Proposition 2.10 (applied with s > 1 + d/2, γ = s− 1, r = s− 1/2,
µ = s − 3/2) to obtain

‖(b2 − Tb2)∂zρ‖Hs−1 . ‖b2‖
Hs− 1

2
‖η‖Hs−1 .

Now, (2.12) implies that

‖T∂zb2ρ‖Hs−1 . ‖b2‖Hs−1/2 ‖η‖Hs−1 ,

and hence, to complete the proof of the Proposition 5.9, it remains only to estimate
∂zw|z=0 in L∞(I,Hs−1). This is the purpose of the following result.

Lemma 5.13. For t ∈ [0, T ] we have

(5.45) ‖∇x,zw‖C0([−1,0],Hs−1) ≤ K(M1,M2)
{
N(0) + TN(T )

}
.

Proof. To prove this estimate, we are going to show that w satisfies an elliptic
equation in the variables (x, z) to which we may apply the results of Proposition 3.21.
We have

∂2
zv + α1∆v + β1 · ∇∂zv − γ1∂zv = (γ1 − γ2)∂zφ̃2 + F1,

where (see (5.10))

F1 = (α2 − α1)∆φ̃2 + (β2 − β1) · ∇∂zφ̃2.

We claim that for t ∈ [0, T ]

(5.46) ‖F1(t, ·)‖
L2(J,Hs− 3

2 )
≤ K(M1,M2){N(0) + TN(T )}.

The two terms in F1 are estimated by the same way. We will only consider the first
one. Using the product rule (2.13) with s0 = s − 3

2 , s1 = s − 1, s2 = s − 3
2 we can

write for fixed t

‖(α2 − α1)∆φ̃2‖
L2(J,Hs− 3

2 )
≤ C‖α2 − α1‖L2(J,Hs−1)‖∆φ̃2‖

L∞(J,Hs− 3
2 )
.
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Then we use (5.11), Proposition 3.21 with σ = s − 1
2 and Lemma 5.8 to conclude

that the term above is estimated by the right hand side of (5.46).

Now we introduce the operators

Pj := ∂2
z + αj∆ + βj · ∇∂z, Lj = Pj − γj∂z, (j = 1, 2).

With these notations we have γj = 1
∂zρj

Pjρj and

(5.47) L1v = (γ1 − γ2)∂zφ̃2 + F1.

Moreover

γ1 − γ2 =
1

∂zρ1
P1ρ1 −

1
∂zρ2

P2ρ2 =
1

∂zρ2
P1ρ1 +

( 1
∂zρ1

− 1
∂zρ2

)
P1ρ1 −

1
∂zρ2

P2ρ2

=
1

∂zρ2
P1ρ+

1
∂zρ2

(P1 − P2)ρ2 +
( 1
∂zρ1

− 1
∂zρ2

)
P1ρ1

=
1

∂zρ2
P1ρ+

( 1
∂zρ1

− 1
∂zρ2

)
P1ρ1 + F2,

where

(5.48) F2 =
1

∂zρ2

(
(α1 − α2)∆ρ2 + (β1 − β2) · ∇∂zρ2

)
.

Now we observe that( 1
∂zρ1

− 1
∂zρ2

)
P1ρ1 = − ∂zρ

∂zρ2

P1ρ1

∂zρ1
= − ∂zρ

∂zρ2
γ1,

which implies

γ1 − γ2 =
1

∂zρ2
P1ρ−

∂zρ

∂zρ2
γ1 + F2 =

1
∂zρ2

L1ρ+ F2.

Plugging this into (5.47) yields

(5.49) L1v − b2(L1ρ) = F1 + (∂zφ̃2)F2.

We claim that for fixed t we have

(5.50)
∥∥∥(∂zφ̃2)F2(t, ·)

∥∥∥
L2(J,Hs− 3

2 )
≤ K(M1,M2){N(0) + TN(T )}.

Indeed we first use the product rule (2.13) to write∥∥∥(∂zφ̃2)F2(t, ·)
∥∥∥
L2(J,Hs− 3

2 )
≤ ‖(∂zφ̃2)(t, ·)‖

L2(J,Hs− 1
2 )
‖F2(t, ·)‖

L2(J,Hs− 3
2 )
.

By the elliptic regularity the first term in the right hand side is bounded by K(M2).
It is therefore sufficient to bound the second one. We have, for fixed t∥∥∥∥ 1

∂zρ2
(α1 − α2)∆ρ2

∥∥∥∥
L2(J,Hs− 3

2 )

≤ K(M2)‖α1 − α2‖L2(J,Hs−1)‖∆ρ2‖
L∞(J,Hs− 3

2 )
.

Using (5.11) and (3.11) we see that the right hand side is bounded by the right hand
side of (5.50). The second term in F2 is estimated by the same way.

To estimate v − Tb2ρ we paralinearize in writing

(5.51) b2(L1ρ) = Tb2L1ρ+ TL1ρb2 + F3.

We claim that for t ∈ [0, T ]

(5.52) ‖F3(t, ·)‖
L2(J,Hs− 3

2 )
≤ K(M1,M2){N(0) + TN(T )}.
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To prove it we shall use (2.9) with α = s − 1
2 , β = s − 2. Then α+ β − d

2 > s − 3
2 . It

follows that, for fixed z and t we have

‖F3(t, ·, z)‖
Hs− 3

2
≤ C‖b2‖

Hs− 1
2
‖L1ρ‖Hs−2 .

Therefore
‖F3(t, ·)‖

L2(J,Hs− 3
2 )
≤ C‖b2‖

L∞(J,Hs− 1
2 )
‖L1ρ‖L2(J,Hs−2).

Now as we have seen before we have ‖b2(t·)‖
L∞(J,Hs− 1

2 )
≤ K(M2) and due to the

smoothing of the Poisson kernel ‖L1ρ‖L2(J,Hs−2) ≤ K(M1)‖η‖
Hs− 1

2
. The estimate

(5.52) thus follows from (5.40).

Setting F4 = TL1ρb2 we claim that for fixed t we have

(5.53) ‖F4(t, ·)‖
L2(J,Hs− 3

2 )
≤ K(M1,M2){N(0) + TN(T )}.

To see this we use (2.12) with s0 = s − 3
2 , s1 = s − 2, s2 = s − 1

2 . We get

‖F4(t, ·)‖
L2(J,Hs− 3

2 )
≤ ‖L1ρ(t, ·)‖L2(J,Hs−2)‖b2(t, ·)‖

L∞(J,Hs− 1
2 )

and (5.53) follows from estimates used above.

Now according to (5.49), (5.51) we have

L1v − Tb2L1ρ = F1 + (∂zφ̃2)F2 + F3 + F4.

We claim that we have
L1Tb2ρ = Tb2L1ρ− F5

with
‖F5(t, ·)‖

L2(J,Hs− 3
2 )
≤ K(M1,M2){N(0) + TN(T )}.

To see this we use (5.12) and (2.12). It follows then that we have

L1w = L1(v − Tb2ρ) = F1 + (∂zφ̃2)F2 + F3 + F4 + F5 := F

where ‖F (t, ·)‖
L2(J,Hs− 3

2 )
is bounded by the right hand side of (5.53).

Using (5.43) and Lemma 5.10 we may then apply to w Proposition 3.21 with σ = s−1
to conclude the proof of Lemma 5.13 and thus that of Proposition 5.9. �

6. Well-posedness of the Cauchy problem

Here we conclude the proof of Theorem 1.2 about the Cauchy theory for the system

(6.1)


∂tη +G(η)ψ = 0,

∂tψ + gη +
1
2
|∇ψ|2 − 1

2

(
∇η · ∇ψ +G(η)ψ

)2
1 + |∇η|2

= 0.

We previously proved the uniqueness of solutions (see Theorem 5.1). To complete
the proof of Theorem 1.2, it remains to prove the existence. We obtain solutions to
the water waves system as limits of smooth solutions to approximate systems. This
approach has been detailed in [1], where we considered the problem with surface
tension. The analysis is actually easier without surface tension. One reason is that
with surface tension, we needed in [1] to use some mollifiers with various properties
(since we need good estimates for commutators with the principal part of the oper-
ator). Here it is possible to use a simpler regularization of the equations since the
reduced paradifferential system involves only operator of order less than or equal
to 1.
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To explain the scheme of the proof, we first consider the case without bottom (Γ = ∅).
Then we know, from previous results (see Wu [51, 52], Lannes [37], Lindblad [39]),
that the Cauchy problem is well-posed for smooth initial data. Then, one can
obtain the existence of smooth approximate solutions in a straightforward way : by
smoothing the initial data. Namely, denote by Jε the usual Friedrichs mollifiers,
defined by Jε = (εDx) where  ∈ C∞0 (Rd), 0 ≤  ≤ 1, is such that

(ξ) = 1 for |ξ| ≤ 1, (ξ) = 0 for |ξ| ≥ 2.

Set ψε0 = Jεψ0 and ηε0 = Jεη0. Then (ψε0, η
ε
0) ∈ H∞(Rd)2 and the Cauchy problem

for (6.1) has a unique smooth solution (ψε, ηε) defined on some time interval [0, T ∗ε ).
It follows from Proposition 4.1 that there exists a function F such that, for all
ε ∈ (0, 1] and all T < Tε, we have

(6.2) M ε
s (T ) ≤ F

(
F(Ms,0) + TF

(
M ε

s (T )
))
,

with obvious notations. Then by standard arguments, we infer that the lifespan
of (ηε, ψε) is bounded from below by a positive time T0 independent of ε and that
we have uniform estimates on [0, T0]. The fact that one can pass to the limit in the
equations follows from the previous contraction estimates (see (5.1)), which allows us
to prove that (ηε, ψε, Bε, Vε) is a Cauchy sequence (this argument has been explained
in [1]). Notice that these estimates were proved under the assumption a(t) > a0/2.
This actually follows from the a priori bound (6.2), (4.18), (4.19) and a bootstrap
method. Then, it remains to prove that the limit solution has the desired regularity
properties. Again, this follows from the analysis in [1].

In the case with a general bottom, to apply the strategy explained above, the only
remaining point is to prove that, for smooth enough initial data, the Cauchy problem
has a smooth solution. This can be proved using a parabolic regularization of the
equations. For the sake of conciseness, we omit the details.
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de Strichartz. Amer. J. Math., 121(6):1337–1377, 1999.

[10] Hajer Bahouri, Jean-Yves Chemin, and Raphaël Danchin. Fourier analysis and non-
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[38] Gilles Lebeau. Régularité du problème de Kelvin-Helmholtz pour l’équation d’Euler

2d. ESAIM Control Optim. Calc. Var., 8:801–825 (electronic), 2002. A tribute to J. L.
Lions.

[39] Hans Lindblad. Well-posedness for the motion of an incompressible liquid with free
surface boundary. Ann. of Math. (2), 162(1):109–194, 2005.

[40] Nader Masmoudi and Frédéric Rousset. Uniform regularity and vanishing viscosity limit
for the free surface Navier-Stokes equations. arXiv:1202.0657.

[41] Guy Métivier. Para-differential calculus and applications to the Cauchy problem for
nonlinear systems, volume 5 of Centro di Ricerca Matematica Ennio De Giorgi (CRM)
Series. Edizioni della Normale, Pisa, 2008.
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