On the Cauchy problem for gravity water waves

T. Alazard, N. Burq, C. Zuily

ABSTRACT. We are interested in the system of gravity water waves equations
without surface tension. Our purpose is to study the optimal regularity thresholds
for the initial conditions. In terms of Sobolev embeddings, the initial surfaces we
consider turn out to be only of C%/? class and consequently have unbounded
curvature, while the initial velocities are only Lipschitz. We reduce the system
using a paradifferential approach.

1. Introduction

We are interested in this work in the study of the Cauchy problem for the water
waves system in arbitrary dimension, without surface tension.

An important question in the theory is the possible emergence of singularities
(see [15, 16, 24, 55, 19]) and as emphasized by Craig and Wayne [29], it is impor-
tant to decide whether some physical or geometric quantities control the equation. In
terms of the velocity field, a natural criterium (in view of Cauchy-Lipschitz theorem)
is given by the Lipschitz regularity threshold. Indeed, this is necessary for the “fluid
particles” motion (i.e. the integral curves of the velocity field) to be well-defined.

In terms of the free boundary, there is no such natural criterium. In fact, the sys-
tematic use of the Lagrangian formulation in most previous works [8, 51, 52], and
the intensive use of Riemannian geometry tools (parallel transport, vector fields,...)
by Shatah-Zeng [46, 47, 48], Christodoulou-Lindblad [20] or Lindblad [39] seem
to at least require bounded curvature assumptions (see also [23] where a logarithmic
divergence is allowed). In this direction, the beautiful work by Christodoulou—
Lindblad [20], gives a priori bounds as long as the second fundamental form of the
free surface is bounded, and the first-order derivatives of the velocity are bounded.
This could lead to the natural conjecture that the regularity threshold for the water
waves system is indeed given by Christodoulou—Lindblad’s result and that the do-
main has to be assumed to be essentially C2. Our main contribution in this work is
that this is not the case and that the relevant threshold is actually only the Lipschitz
regularity of the velocity field. Indeed (see Theorem 1.2), our local existence result
involves assumptions which, in view of Sobolev embeddings, require only (in terms
of Holder regularity) the initial free domain to be C3/2.

As an illustration of the relevance of the analysis of low regularity solutions in a
domain with a rough boundary, let us mention that in a forthcoming paper, we shall
give an application of our analysis to the local Cauchy theory of three-dimensional
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gravity water waves in a canal. This question goes back to the work by Boussinesq
at the beginning of the 20" century (see [14]).

Our analysis require the introduction of new techniques and new tools. In [1, 2] we
started a para-differential study of the water waves system in the presence of surface
tension and were able to prove that the equations can be reduced to a simple form

(1.1) Ou+Ty - Vu+ilyu = f,

where Ty is a para-product and 7T, is a para-differential operator of order 3/2. Here
the main step in the proof is to perform the same task without surface tension,
with T’y of order 1/2. It has to be noticed however that performing our reduction is
considerably more difficult here than in our previous papers ([1, 2]). Indeed, in the
case with non vanishing surface tension, the natural regularity threshold forces the
velocity field to be Lipschitz while the domain is actually much smoother (C°/2).
In the present work, the velocity field is also Lipschitz, but the domain is merely
C3/2. To overcome these difficulties, we had to give a micro-local description (and
contraction estimates) of the Dirichlet-Neumann operator which is non trivial in
the whole range of C* domains, s > 1 (see the work by Dahlberg-Kenig [30] and
Craig-Schanz-Sulem [27] for results on the Dirichlet-Neumann operator in Lipschitz
domains). We think that this analysis is of independent interest.

Finally, let us mention that, as we proceed by energy estimates, our results are proved
in L2-based Sobolev spaces and our initial data (n, V') which describe respectively the
initial domain as the graph of the function n and the trace of the initial velocity on
the free surface, are assumed to be in Hs+%(Rd) x H*(RY),s > 1+ ¢. The gravity
water waves system enjoys a scaling invariance for which the critical threshold is
Sc = % + % (in other terms our well-posedness result is 1/2 above the scaling critical
index).

1.1. Assumptions on the domain. Hereafter, d > 1, ¢ denotes the time
variable and € R? and y € R denote the horizontal and vertical spatial variables.
We work in a time-dependent fluid domain 2 located underneath a free surface X
and moving in a fixed container denoted by O. This fluid domain

Q={(ta,y) €[0,T] x RI xR : (2,) € Q1) },
is such that, for each time t, one has

Q) ={(z,y) € O : y <n(t,2)},

where 7 is an unknown function and O is a given open domain which contains a
fixed strip around the free surface

Y ={(t,z,y) €[0,T] x RTx R : y =1n(t,z)}.
This implies that there exists h > 0 such that, for all ¢ € [0, 7],
(1.2) Qp(t) := {(x,y) eRYXR : y(t,x) —h <y <t x)} C Q(t).
We also assume that the domain O (and hence the domain €2(¢)) is connected.

Remark 1.1. (i) Two classical examples are given by O = R?x R (infinite depth
case) or O = R? x [~1,+0o0) (flat bottom). Notice that, in the following, no
regularity assumption is made on the bottom I' := 90.

(ii) Notice that I' does not depend on time. However, our method applies in the
case where the bottom is time dependent (with the additional assumption in
this case that the bottom is Lipschitz).
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1.2. The equations. Below we use the following notations
V = (On)i<i<as Vay=(V,0y), A= Zlggd 02, Ngy=A+02

We consider an incompressible inviscid liquid, having unit density. The equations by
which the motion is to be determined are well known. Firstly, the eulerian velocity
field v: Q — R solves the incompressible Euler equation

(1.3) 0w +v-Veyv+VyyP=—gey, divyyv=0 in{),

where —ge, is the acceleration of gravity (¢ > 0) and where the pressure term P
can be recovered from the velocity by solving an elliptic equation. The problem is
then given by three boundary conditions. They are

v-n=>0 on I,
(1.4) on=+14+|VnPv-v onkx,
P=0 on X,

where n and v are the exterior unit normals to the bottom I" and the free surface X(¢).
The first condition in (1.4) expresses the fact that the particles in contact with the
rigid bottom remain in contact with it. Notice that to fully make sense, this condition
requires some smoothness on I', but in general, it has a weak variational meaning
(see Section 3). The second condition in (1.4) states that the free surface moves
with the fluid and the last condition is a balance of forces across the free surface.
Notice that the pressure at the upper surface of the fluid may be indeed supposed
to be zero, provided we afterwards add the atmospheric pressure to the pressure so
determined. The fluid motion is supposed to be irrotational. The velocity field is
therefore given by v = V, ,¢ for some potential ¢: {2 — R satisfying

Agy¢p =0 in €, Onp=0 onl.

Using the Bernoulli integral of the dynamical equations to express the pressure, the
condition P = 0 on the free surface implies that

On=0y¢p—Vn-Vo on X,

1
(15) Ohp+ 5 [Vaydl +gy=0 on3,
8n¢ =0 on F,

where recall that V = V,. Many results have been obtained on the Cauchy theory
for System (1.5), starting from the pioneering works of Nalimov [43], Shinbrot [49],
Yoshihara [56], Craig [25]. In the framework of Sobolev spaces and without small-
ness assumptions on the data, the well-posedness of the Cauchy problem was first
proved by Wu for the case without surface tension (see [51, 52]) and by Beyer-
Giinther in [12] in the case with surface tension. Several extensions of their results
have been obtained by different methods (see [22, 31, 32, 33, 35, 40, 53, 54, 58]
for recent results and the surveys [11, 29, 36] for more references). Here we shall
use the Eulerian formulation. Following Zakharov [57] and Craig-Sulem [28], we
reduce the analysis to a system on the free surface X(t) = {y = n(t,z)}. If ¢ is
defined by

¢(t> $> = ¢(ta €L, n(tv .CL‘)),

then ¢ is the unique variational solution of

AI,ZJ¢ =01in Q’ Qb‘y:r] = Q,Z)7 8n¢ =0onl.
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Define the Dirichlet-Neumann operator by

(G(UW)(EUC) =V 1+ ’Vn\Q 8n¢‘y=n(t,a:)
For the case with a rough bottom, we recall the precise construction later on
(see §3.1). Now (n,) solves (see [28] or [36, chapter 1] for instance)
(1.6) 1(Vn- Vo + Gnw)”
2 1+ |Vn)?

1
O +gn+ 5 [V - =0.

1.3. The Taylor condition. Introduce the so-called Taylor coefficient
(1.7) a(t, z) = = (9, P)(t, z, n(t, z)).

The stability of the waves is dictated by the Taylor sign condition, which is the
assumption that there exists a positive constant ¢ such that

(1.8) a(t,z) > c¢> 0.

This assumption is now classical and we refer to [11, 20, 21, 37, 51, 52] for
various comments. Here we only recall some basic facts. First of all, as proved by
Wu ([51, 52]), this assumption is automatically satisfied in the infinite depth case
(that is when I" = () or for flat bottoms (when I' = {y = —k}). Notice that the
proof remains valid for any C'1®*-domain, 0 < o < 1 (by using the fact that the Hopf
Lemma is true for such domains, see [44] and the references therein). There are two
other cases where this assumption is known to be satisfied. For instance under a
smallness assumption. Indeed, if 8;¢ = O(e?) and V¢ = O(e) then directly from
the definition of the pressure we have P + gy = O(e?). Secondly, it was proved by
Lannes ([37]) that the Taylor’s assumption is satisfied under a smallness assumption
on the curvature of the bottom (provided that the bottom is at least C?). However,
for general bottom we will assume that (1.8) is satisfied at time ¢ = 0.

1.4. Main result. We work below with the vertical and horizontal traces of
the velocity on the free boundary, namely

B = (0y9)ly=n; V= (Vad)ly=n-
These can be defined only in terms of n and 1 by means of the formulas
_ V-V + Gy
L4 [vp2 7

Also, recall that the Taylor coefficient a defined in (1.7) can be defined in terms
of n,V, B, only (see Section 1.5 below).

(1.9) B V = V¢ — BV,

Theorem 1.2. Let d > 1, s > 1+ d/2 and consider (no, o) such that

(1) m € H*2(RY), o € BV 2(RY), Vo e HY(RY), By e HY(RY),

(2) there exists h > 0 such that condition (1.2) holds initially for t =0,

(3) there exists a positive constant ¢ such that, for all x € R, ag(z) > c.
Then there exists T > 0 such that the Cauchy problem for (1.6) with initial data
(N0, %0) has a unique solution (n,v) € CO([O,T]; HS“'%(Rd) X HS+%(Rd)), such that

(1) we have (V,B) € C°([0,T]; H*(R%) x H*(R%)),

(2) the condition (1.2) holds for 0 <t < T, with h replaced by h/2,

(3) for all0 <t < T and for all x € RY, a(t,z) > c/2.
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Remark 1.3. The main novelty is that, in view of Sobolev embeddings, the ini-
tial surfaces we consider turn out to be only of C%/2 class and consequently have
unbounded curvature.

Remark 1.4. Assumption 1 in the above theorem is automatically satisfied if
m € HY3(RY), o€ HZ(RY), Vo€ H'(RY, Bye H3(RY).

The only point where the estimates depend on ¢ (and not only on 7, V, B) come
from the fact that we consider a general domain without assumption on the bottom.
Otherwise, we shall prove a priori estimates for the fluid velocity and not for the
fluid potential (notice that the fluid potential is defined up to a constant).

1.5. The pressure. The purpose of this paragraph is to clarify, for low regu-
larity solutions of the water waves system in rough domains, the definition of the
pressure which is required if one wants to come back from solutions to the Zakharov
system to solutions to the free boundary Euler equation. This definition will also
provide the basic a priori estimates which will be later the starting point when estab-
lishing higher order elliptic regularity estimates required when studying the Taylor
coefficient « = —0, P |x. On a physics point of view, the pressure is the Lagrange
multiplier which is required by the incompressibility of the fluid (preservation of the
null divergence condition). As a consequence, taking the divergence in (1.3), it is
natural to define the pressure as a solution of

(1.10) Ay yP = —divyy(v- Vg yv), P |y—y=0.

Notice however that the solution of such problem may not be unique as can be seen
in the simple case when = (—o0,0) x R%. Indeed, if P is a solution, then P + cy
is another. Notice also that if P satisfies (1.10), then

1
Apy (P +gy+ §!vl2> =0.

Definition 1.5. Let (n,7) € (W n H'/2(RY)) x HY2(R%). Assume that the
variational solution (as defined in §3.1) of the equation
(111) Aw,be = Oa ¢ |y=n: wa
satisfies
Vayo (. n(x)) € H/?(RY).

Let R be the variational solution of
. 1
AryR=0inQ,  Rly—py=gn+ 5|qu5|2 ly=n -

We define the pressure P in the domain ) by

P(z,y) = R(a,y) - gy — 5| Vayd(,5) P

Remark 1.6. The main advantage of defining the pressure as the solution of a
variational problem is that it will satisfy automatically an a priori estimate (the
estimate given by the variational theory).

It remains to link the solutions to the Zakharov system to solutions of the free
boundary Euler system (1.3) with boundary conditions (1.4). To do so, we proved
in [3] that if (1, 1) is a solution of the Zakharov system, if we consider the variational
solution to (1.11), then the velocity field v = V¢ satisfies (1.3), which is of course
equivalent to

1
(1.12) P=—-0i¢— gy = 5|Vayol”
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Theorem 1.7 (from [3]). Assume that (n,v) € C([0,T); H¥ 2 (RY) x H*"2(RY)),
with s > 1+d/2, is a solution of the Zakharov/Craig-Sulem system (1.6). Then the
assumptions required to define the pressure are satisfied, and (1.12) is satisfied, and
the distribution Opp is well defined for fized t and belongs to the space HYC(Q(t))
(see Definition 3.3).

1.6. Plan of the paper. At first glance, Theorem 1.2 looks very similar to our
previous result in presence of surface tension [1, Theorem 1.1]. Indeed, the regularity
threshold exhibited by the velocity field (namely V, B € H3(R%),s > 1 +d/2) is the
same in both results and (as explained above) appears to be the natural one. How-
ever, an important difference between both cases is that the algebraic nature of (1.6)
(and its counter-part in presence of surface tension) requires that the free domain
is 3/2 smoother than the velocity field in presence of surface tension and only 1/2
smoother without surface tension. This algebraic rigidity of the system implies that
in order to lower the regularity threshold to the natural one (Lipschitz velocities),
we are forced to work with C%/2 domains (compared to the much smoother C°/2
regularity in [1]). This in turn poses new challenging questions in the study of the
Dirichlet—-Neumann operator. Indeed, at this level of regularity the regularity of the
remainder term in the paradifferential description of the Dirichlet-Neumann opera-
tor G(n)v is not given by the regularity of the function ¢ itself, but rather by the
regularity of the domain. This is this phenomenon which forces us to work with the
new unknowns V, B rather than with .

In Section 2, we wrote a review of paradifferential calculus and proved various tech-
nical results useful in the article. In Section 3 we study the Dirichlet-Neumann
operator. In Section 4, we symmetrize the system and prove a priori estimates. In
Section 5 we prove the contraction estimates required to show uniqueness and sta-
bility of solutions. In particular we prove a contraction estimate for the difference of
two Dirichlet Neumann operators, involving only the C 2 norm of the difference of
the functions defining the domains (see Theorem 5.2), while in Section 6 we prove
the existence of solutions by a regularization process.

2. Paradifferential calculus

Let us review notations and results about Bony’s paradifferential calculus. We refer
to [13, 34, 41, 42] for the general theory. Here we follow the presentation by
Métivier in [41].

2.1. Paradifferential operators. For k € N, we denote by W*>(R?) the
usual Sobolev spaces. For p = k+ 0, k € N,o € (0,1) denote by W»>(R%) the
space of functions whose derivatives up to order k are bounded and uniformly Holder
continuous with exponent o.

Definition 2.1. Given p € [0,1] and m € R, F;”(Rd) denotes the space of locally
bounded functions a(x, &) on R x (R%\ 0), which are C° with respect to & for & # 0
and such that, for all o € N and all € # 0, the function x — ag‘a(:c,f) belongs
to WP>°(R%) and there exists a constant C,, such that,

1
V€| > ||8?a(‘

25 < Ca(1+ fgl)™.

) 5) HWp,oo(Rd)
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Given a symbol a, we define the paradifferential operator T, by

—_

(2.1) Tou(e) = (2m)~ / X (€ = 1, mA(E — m, myb(n)a(n) dn,

where @(0,¢) = [ e @Y%(z,¢) dr is the Fourier transform of a with respect to the
first variable; x and 1 are two fixed C*° functions such that:

(2.2) P(n) =0 for [n| <1, () =1 for | >2,
and x(0,n) satisfies, for 0 < £; < €3 small enough,
x(@.m)=1 if [0 <eilnl,  x(@n)=0 if [0]>e2]nl,

and such that
v(0,n) :
The function x can be constructed as follows. Let x € C§°(R?) be such that
k(@) =1 for |0] <1.1, k(#) =0 for |6] > 1.9.
Then we define x(6,7) = 3720 kr—3(0)¢k(n), where

F5ORX(0,m)| < Cap(1 4+ [yl) 1117,

ki (0) = /{(2_]“0) for k € Z, ©o = Ko, and @ = kKE — kg1 for k> 1.
2.2. Symbolic calculus. We shall use quantitative results from [41] about
operator norms estimates in symbolic calculus. Introduce the following semi-norms.
Definition 2.2. Form e R, p € [0,1] and a € F;”(Rd), we set

(2.3) M) (a) =  sup sup H(l + ’ﬂ)la\fmag‘a

la|<3414p [6>1/2 Weee(Rd)

Definition 2.3 (Zygmund spaces). Consider a dyadic decomposition of the identity:
I=A_1+ Zgio Aq. If s is any real number, we define the Zygmund class C$(R%)
as the space of tempered distributions u such that

[ullgs := sup 2% [[Aqu|| o < +o0.
q

Remark 2.4. Recall that C3(R%) is the Hélder space W5 (R?) if s € (0, +-00) \ N.

Definition 2.5. Let m € R. An operatorT is said to be of order m if, for all u € R,
it is bounded from H* to HF™™.

The main features of symbolic calculus for paradifferential operators are given by
the following theorem.

Theorem 2.6. Let m € R and p € [0,1].

(1) If a € TP(RY), then T, is of order m. Moreover, for all u € R there exists a
constant K such that

(2.4) 1Tl s < KM (0.
it) If a e T™(RY),b € '™ (RY) then T, Ty, — T,y is of order m +m' — p. Moreover,
p p p
for all v € R there exists a constant K such that
(2.5) 1TaTy = Tt e prn-m-mr o < KM (@) Mg" (b) + K Mg (a) M" ().
i1i) Let a € T™(R?). Denote by (T,)* the adjoint operator of T, and by @ the
p

complex conjugate of a. Then (T,)* —Tg is of order m— p. Moreover, for all u there
exists a constant K such that

(2.6) I(Ta)* = Tall o pgimsn < KM (a).
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We shall need in this article to consider paradifferential operators with negative
regularity. As a consequence, we need to extend our previous definition.

Definition 2.7. For m € R and p € (—00,0), F;”(Rd) denotes the space of distri-

butions a(z,£) on R% x (R\ 0), which are C> with respect to & and such that, for
all o € N¢ and all € # 0, the function x — d¢a(x,§) belongs to CL(RY) and there
exists a constant C,, such that,

1 — |
(2.7) VIel > 5 [108al€)]|p < Ca(l+ Jgh™ 1.
For a € I']", we define
2.8 M™(aq) = su su 1+ \a|7maaa . .
= o \aléﬁfpﬂ |£\21F/)2 H( <D al §)’Ci’(Rd)

2.3. Paraproducts and product rules. If a = a(z) is a function of x only, the
paradifferential operator T, is called a paraproduct. A key feature of paraproducts
is that one can replace nonlinear expressions by paradifferential expressions up to
smoothing operators. Also, one can define paraproducts T, for rough functions a
which do not belong to L>®(R%) but merely to C;™(R%) with m > 0.

Definition 2.8. Given two functions a,b defined on R% we define the remainder

R(a,u) = au — Tyu — Tya.

We record here various estimates about paraproducts (see chapter 2 in [10] or [18]).

Theorem 2.9. i) Leta,f € R. If a+ 3 > 0 then

(2.9) 1B (@, )l oro-g gay < K llallgomay lull o gay -
(2.10) [ R(a; u) | gorsmay < K llallcomay vl gsma -
ii) Let m >0 and s € R. Then

(2.11) [ Taull gro-m < K |laf| gm [l g -

i11) Let sp, s1,s2 be such that sp < sp and sy < s; + s2 — g, then

(2.12) [Taull o < K llall gy Null s -

By combining the two previous points with the embedding H#(R?) c C¥ —d/ 2(Rd)
(for any p € R) we immediately obtain the following results.

Proposition 2.10. Let r,u € R be such that v+ u > 0. If v € R satisfies

d
vy<r and 'y<r+uf§,

then there exists a constant K such that, for all a € H"(R%) and all v € H*(R?),
law = Toull g < K (lall g [0l -

Corollary 2.11. i) Ifu; € H%(R?) (j =1,2) with s; + s2 > 0 then

(2.13) [urug | gso < K [Juall sy luzll g s

if so <s5,7=1,2, and s < 51 + 52 — d/2.
it) (Tame estimate in Sobolev spaces) If s > 0 then
(2.14) lurual s < K ([lunll s luzll oo + llunll oo lluzl gs)-
8



i11) Let p,m € R be such that p,m >0 and m ¢ N. Then
(2.15) luruall g < K (luallpoo luzll g + luzllgom lunll g )-

i) Let s > d/2 and consider F € C®(C™) such that F(0) = 0. Then there exists
a non-decreasing function F: Ry — Ry such that, for any U € H(RY)N,

(2.16) @) s < F (Ul ) 101125 -
PROOF. The first two estimates are well-known, see Hérmander [34] or Chemin
[18]. To prove iii) we write ujug = Ty, u2 + Ty,us + R(ui,u2) and use that
[Ty uzll e S | oo luzll g (see (2.4)),
[ Tuzurll e < lfuzllgrm [l praem (see (2.11)),
1R (urs u2) | g S Mluzllgom unllgrusm (see (2.10)).

Finally, iv) is due to Meyer [42, Théoréme 2.5 and remarque]. O

Finally, let us finish this section with a generalization of (2.11)

Proposition 2.12. Let p < 0, m € R and a € I.’Zl. Then the operator T, is of
order m — p:

(2.17) | Tall s prs=cm-o) < CMM (@), | Tall oy gs-tm-n) < CM"(a).

PROOF. Let us prove the first estimate. The proof of the second is similar.
Notice that if m = 0 and a(z,§) = a(x), then (2.17) is simply (2.11). Furthermore,
if a(z,&) = b(x)p(§), then T, = Tp(0p)(|Dz|), where 6 is a cutoff function vanishing
near 0 and equal to 1 for [ > 1. As a consequence, in this particular case, we get

1 Tall s prs=m-er < Cllbllcellp [ga-1 [[oe-

In the general case, we can expand, for fixed z, a(z,§) in terms of spherical har-
monics. Let (A, )y,en+ be an orthonormal basis of L2(S%!) consisting of eigenfunc-
tions of the (self-adjoint) Laplace-Beltrami operator, A,, = Ags—1 on L2(S%71), i.e.
Awﬁy = /\ﬁﬁ,,. By the Weyl formula, we know that A, ~ cué. Setting

hol€) = 1€ Fu(w), w= S, €£0,

we can write

veEN*
Since
N, (t,x) = . AF oz, w)hy, () dw,
gd—
we have, for all v > 1,
-3 _3_1
(2.18) lav(Hlge < CA 27 <v727d My (p).
Moreover,
- (d—1) L
(2.19) ||l SCA 2 < Crzad,

and the result follows because
11
1Tall s grs-m—) < CZV 2 M (p).

This completes the proof. O



We shall also need the following technical result.
Proposition 2.13. Set (D,) = (I — A)'/2.
i) Let s > % —l—% and o € R be such that o < s. Then there exists K > 0 such that
for all Ve Wh*(RY) N H5(RY) and u € H”_%(Rd) one has
H{D2)7 s Vil 2 ey < K{IIVIlwsoomey + 1V @y Hull ooy g

i1) Let s > 1+ % and o € R be such that o < s. Then there exists K > 0 such that
for all V € H*(RY) and u € H°~1(RY) one has

H[(DI)U?V]UHLQ(Rd) < KHVHHS(R‘Z)HUHHU—l(Rd)'

PROOF. To prove i) we write
(D)7, V]ullpe <A+ B, A=|[[(D2)”, Tylull2, B = [[[(D2)”,V =Tv]ul| 2.
By (2.5) we have A < K||V||yy1,0 ||u|| go—1. On the other hand one can write
B < [[(Dz)? (V = Ty)ull2 + (V' = Tv){D2)” ull 2 = B + Ba.

We use Proposition 2.10 two times. To estimate B, we take y = o,r = s, = 0 —

5-
To estimate By we take y =0,r = s, 0 = —% and we obtain,
B < K|[Vlasllull oy
To prove ii), to estimate By (resp. Ba) we use again Proposition 2.10 with vy = o,r =
s,u=0—1 (resp. y=0,r =s,u=—1). O

We shall need well-known estimates on the solutions of transport equations.

Proposition 2.14. Let I =[0,T], s > 1+ %l and consider the Cauchy problem
{8tu+V-Vu:f, tel,

2.20
( ) ult=0 = up.

There exists a non decreasing function F : RT — R™ such that

t
(2.21) Ju(®)llL2@may < FV 22w mayy) (luoll 2 ma) +/0 £, ) 2may dt')-

and for any o € [0, s| there exists a non decreasing function F : R™ — R™T such that
t
(2.22)  u®)llge@ay < FV I rmsmay) (1uoll o may +/0 1) o ey dt').

2.4. Commutation with a vector field. We prove in this paragraph a com-
mutator estimate between a paradifferential operator 7T}, and the convective deriv-
ative 0y +V - V. Inspired by Chemin [17] and Alinhac [6], we prove an estimate
which depends on estimates on d;p + V - Vp and not on V; ..

When a and u are symbols and functions depending on ¢ € I, we still denote
by T,u the spatial paradifferential operator (or paraproduct) such that for all ¢ € I,
(Tau)(t) = Towu(t). Given a symbol a = a(t;r,§) depending on time, we use the
notation
Mi(a)i= s sup sup ||+ ) ogat )|
tel0,T] o <34 +14p [€1>1/2 (R)
10



Given a scalar symbol p = p(t, z, £) of order m, it follows directly from the symbolic
calculus rules for paradifferential operators (see (2.4) and (2.5)) that,

[T, 0 + T - V]ul| 0 < K {AME(0ep) + MF (VD) IV [lypra.c0 } ll2e] e -

A technical key point in our analysis is that one can replace this estimate by a
tame estimate which does not involve the first order derivatives of p, but instead
8tp + V. Vp.

Lemma 2.15. Let V € C°([0,T]; C15(R%)) for some e > 0 and consider a sym-
bol p = p(t,z,&) which is homogeneous in & of order m. Then there exists K > 0
(independent of p, V) such that for any t € [0,T] and any u € C°([0,T]; H™(RY)).

(2.23) [T, 00+ Ty - V]u(t)]| 12 gay
K {M’o"(p) V@)l crve + Mg (O + V- Vp)} [w()] grm (R -

PROOF. Set I = [0,7] and denote by R the set of continuous operators R(t)

from H™(RY) to L?(RY) with norm satisfying
B0 g, 2y < K {MED) IVOlorie + MG @+ V- Vp)
We begin by noticing that it is sufficient to prove that
(2.24) (815 +V- V)Tp = Tp (615 + Ty - V) + R, ReTR.
Indeed, by Theorem 5.2.9 in [41], we have (for fixed t)
IOV =) - Tl e S IVIhyae 1Tyl S IV s M) [l

by using the operator norm estimate (2.4). This implies that (V — Tv) -VT, € R.

We split the proof of (2.24) into three steps. By decomposing p into a sum of
spherical harmonic, we shall reduce the analysis to establishing (2.24) for the special
case when T}, is a paraproduct. In the first step we prove (2.24) for m = 0 and p =
p(t, x). In the second step we prove (2.24) for p = a(t, z)h(§) where h is homogeneous
in £ of order m. Then we consider the general case.

Step 1: Paraproduct, m = 0, p = p(t,r). In this case MJ(p) = ||p||z~. We have
O Tpyu = Ty,pu + T,0¢u,
V-VIu=V -Ty,u+ VT, -Vu=: A+ B.

Decompose V = S;_3(V) + S773(V), with

Sia(V)= > AV, SV = Y AV,

k<j—2 k>j—3

(2.25)

to obtain
A= A1 + AQ,

(226) A1 =38, 5(V)Sj-s(Vp)Aju,  Az:= > ST73(V)S;_5(Vp)Aju.
J J
Let us consider the term As. Since
1S3V e € D0 AV e S Y0 27H 9 V] care S 2770V e
k>j5-3 k>j5-3

and ||S;-3(VDp)|| ;e < 27 ||p|| oo, We obtain

~

(2.27) 142012 £ D27 VlIgase Iplloe lull 2 € ME®) IV lcas Ilull 2 -

J
11



We now estimate A1 = Aq1 + Ajs, with
AH = Z Sj_3{Sj_3(V) . Vp}Aju,

Z{ SJ 3 Sj— 3]Vp}A u.

Write Sj_3(V) =V — S773(V), to obtain

Ay =) S 3(V-Vp)Aju—Y_ Sj3{S (V) Vp}Aju=Tyvpu+1+II
J J

(2.28)

where

I'= —Z(V ) Sj—3{5j73(V)P})AjU7 1l = ZSJ 3{SJ (V-V) p}A .
J
Then
e D27 |73 (V)| o 1A ull 1
J

<> 2o
i

1Pl oo lull 2 S 1V Il crve 121 oo lull 2 -

Moreover,
T2 S 3172 (VV)| e Pl o 1250l 12 S IV Ml e 1Pl oo flell 2
J
Therefore
(2.29) A1 = Tv.vpu + Ru, ReR.

In order to estimate A2, note that one can replace Vp by gj_g(Vp) where §j_3 =

(2-U-3) D) for some function ¢ € Cs°(RY) such that P(€) =1 for |€] < 2. Next,
observe that

Am—Z{ SJ 3 j 3]VSJ 3 )}Aju:ij,
J

where w; is spectrally supported in an annulus {¢127 < |¢] < 227}, ¢; > 0. These
annuli have only finite overlap, thus by Plancherel we have

|rA12||L2<ZH{ V). 85598 (o)} A

L2

S ZTZJ IVIIGs+e 2% NIl 7o 187ull T2 S IV Ilgave 1ol oo el
J
where we used the fact that the commutator [S773(V), S;_3] is of order —1 (uni-
formly in j), since V € C°([0,T]); W), It follows that Aj; = Ru with R € R.
Consequently, we deduce from (2.28) and (2.29) that A; = Ty.ypu+ Ru for some R
in R. It thus follows from (2.26) and (2.27) that A = Ty.ypu + Ru with R € R.

We estimate now the term B introduced in (2.25). We split this term as follows:
B=V-(T,Vu)=V-Y_ S; 3(p)VAju
J
= ZSJ 5(V)Sj-s(p)A;Vu+ Y S73(V)S; 5(Vp)A;Vu =: By + Ba.

J
12



We have
I1Ball 2 < Y 172V oo 1S53l e 18, VL]
J

S D27 IV gaee 2 ol pee Nl e -
J
and hence By = Ru with R € R. To deal with the term By, let us introduce
(2.30) C = TpTV -Vu = Z Sj_g(p)Aj Z Skfg(V) . VAku
J k
Since the spectrum of Sy,_3(V)-VAgu is contained in {(3/8)2%F < |¢] < (2+1/8)2F},
the term A;(Sk_3(V) - VAgu) vanishes unless |k — j| < 3. On the other hand,

for |k —j] <3, Sk—3(V) — Sj—3(V) ==+ ZéV:O_NO A4V, and hence we can write C
under the form

C=0C1+0C=01+ Z Sj-3(p)Aj{Sj-3(V) - Z VAu}

J |k—3]<3
where (] is given by
ZS] 3(p)A; Z Z {Ar i (V)VAL (1) = Apyji(VI)VA;i(u) },
i=1¢=—1

so that
ICI L2 S Pl o 2779V | cve 27 [Jul| 2

which implies that 1 = Ru with R € R. To estimate C3, as before we write
Co = (91 + Cag where

Co1 _ZSJ s(p)[A,85-3(V)] - > VA,
022 = ZSj_g P Sj_g(V) . Aj Z VAku,
J

where (using frequency localization in dyadic annuli and Plancherel formula)

2 2 —27 2 j 2
1C21 72 S D lpl7ee 272 VI 27 D [8kullze S 12l poe V]| o= lull -
' |k—jl<3

On the other hand, since A; Z\k—j|§3 Ay = Aj, we have

022_25J 5( (p)VAju = B.

We thus end up with
(2.31) Il =T, Ty -Vu+ Ru, RecR.

It follows from (2.25) and (2.31) that
(2.32) (8t + V. V)Tpu = Tp<at + TV . V)u + Tathrv.Vpu + Ru, ReR.

The symbolic calculus shows that Ty, ,4v.vp € R, which proves (2.24) and concludes
the proof of the first step.
13



Step 2 : Higher order paraproducts. We now assume that p(t,x, &) = a(t,x)h(§)
where h(€) = €] h(€/|€]) with h € C°°(S?1). Then, directly from the defini-
tion (2.1), we have T}, = T, (D,)h(D;) where v satisfies (2.2). We have

(15,0 + Tv - V| = [T, 0 + Tv - V]|(Dy)W(Dy) + To [(Dg)h(Dg), 8 + Ty - V.

The norm from H™ to L? of the first term in the right-hand side is estimated by
means of the previous step by

Kllallz< [[Vligite + 10+ V- Val L= [Vl o ,

while the norm of the second term simplifies to T, [¢)(D5)h(Dy), Ty - V] and is easily
estimated using (2.4) and (2.5) by

lallze IV llga+ (1l zoe + [1Veh |sa-n [|zo)-

Step 8 : Paradifferential operators. Consider an orthonormal basis (ﬁy)yeN*
of L?(S%1) consisting of eigenfunctions of the (self-adjoint) Laplace-Beltrami op-
erator, A, = Aga—1 on L2(S%71), i.e. Ayhy, = A2h,,. By the Weyl formula, we know
that A, ~ cvi. Setting h, (&) = |€]™ ﬁ,,(w), w=¢/1£], € #0, we can write

p(t,x, &) = Z ay(t,z)h,(§) where a,,(t,:r:):/ p(t, 2z, w)hy (w) dw.

yeN* Sd*l
Since
M, (t,x) = " AR p(t, 2, w)hy, (w) dw,
we deduce
_3d_4q
(2.33) Sup lav ()l < CA 2 Mg (p).

Moreover, there exists a positive constant K such that, for all v > 1,

- d-1
(2.34) ||| oo < CAZ .
Now we can write
10+ V-V, Tlull o < > 0+ V-V, Tan, ] ull o -
veN*

So using the estimates obtained in the previous steps for every v > 1 and the
estimates (2.33)—(2.34), we obtain (2.24), since the sum

1, —(3441 1
+)\V(2+)NZV_1_ﬁ
14

(d=1)

S

is finite. This completes the proof of the lemma. O

We have also a Sobolev analogue of Lemma 2.15 which can be proved similarly.

Lemma 2.16. Let s > 1 +d/2 and V € C°([0,T]; HS(RY)). There exists a positive
constant K such that for any symbol p = p(t,z,&) which is homogeneous in & of
order m € R and all u € C°([0, T]; H*™(R?)),
[T, 01+ Tv - V]u(®)|| e ey
< KAMG () IVl s + MG @ep + V- VD) [V ()| oo } 1w grssm ey -
14




2.5. Parabolic evolution equation. Consider the evolution equation
0w + |Dylw =0,

where z € R and = € R?. By using the Fourier transform, one easily checks that

(2.35) sup (=) + / [wI?,.y d2)* < K ()]
ZG

The purpose of this section is to prove similar results when the constant coefficient
operator |D,| is replaced by an elliptic paradifferential operator.

Given I C R, zp € I and a function ¢ = o(z, z) defined on R%x I, we denote by ((z)
the function = +— ¢(x,20). For I C R and a normed space E, ¢ € C%(I; E) means
that z — ¢(z) is a continuous function from I to E. Similarly, for 1 < p < +o0,
¢ € LE(I; F) means that z — ||¢(z)|| belongs to the Lebesgue space LP(I).

In this section, when a and u are symbols and functions depending on z, we still
denote by T,u the function defined by (Tqu)(z) = T,(.)u(z) where z € I is seen as a
parameter. We denote by Fm(Rd x I) the space of symbols a = a(z;z, ) such that
z +— a(z;-) is bounded from I into Fm(Rd) (see Definition 2.2), with the semi-norm

(2.36)  Mj'(a) =sup  sup sup H(l + ]f\)'o‘l_mag‘a(z; -,§)H

2€l |o|<3dypi1 [€[>1/2 Wree(Re)

Given i1 € R we define the spaces
XM(I) = I H(RY) 0 L2 (I HF+3 (RY)),

(2.37) )
YH(I) = LY(I; H*(RY)) + L(I; H* "2 (RY)).

Proposition 2.17. Letr € R, p € (0,1), J = [20,21] CR and let p € F})(Rd x J)
satisfying
Rep(z;z,€) > cl¢],

for some positive constant c. Then for any f € Y"(J) and wy € H"(R?), there
exists w € X"(J) solution of the parabolic evolution equation
(2.38) w+Tw=f W= =wo,
satisfying

leollxrcsy < K {lwollze + 1 lyrc }

for some positive constant K depending only on r,p,c and /\/lll)(p). Furthermore,
this solution is unique in X*°(J) for any s € R.

PROOF. Let r € R. Denote by (-, -) g+ the scalar product in H"(R%) and chose F}
and Fy such that f = Fy + F, with

£ L1y + 1] <[ fllyrcpy+6, >0

L2(J:H™"2)
Let us consider for € > 0 the equation
(2.39) Owe + e(—A +Id)w, + Thw, = f,  we|z=z = wo.

Then standard methods in parabolic equations show that for any z; > zp, this
equation have a unique solution in

C([z0, 21); H'(R?)) N L?((20, 21); H™(RY))

(here we only used that T}, is a Sobolev first order operator). To pass to the limit ¢ —
0, we need to establish uniform estimates with respect to €.
15



Taking the scalar product in H", directly from (2.39), we obtain

1d

5 7, lwel ()77 + (=2 + 1d)we(2), we(2)) 1 + Re(Ty(aywe(2), we(2)) e

< NE g lwe () e + 1F2 (2] -y

It follows from Garding’s inequality (see [41, Section 6.3.2]) that there exist two
constants Cp,Ce > 0 depending only on Ml( ) such that for any u € H",

Re(Ty(zyu(2), u(2)mr = Cu ()|} 1y — Calu(z )HHH;—TP,

for each fixed z € J. Therefore, we obtain

hoe (2l ey

27 lwe(2) |7 + (=2 + 1d)we(2), we(2)) i + C1 [we(2)I2 2y
< F () e lwe () e + I1EF2(2)] oy lwe(2)] Ly + C2 flwe(2 )IIZ JEEVIS
Integrating in z we obtain that, for all z € [z, 1],

1 z
A = 5 (@l ~ locolly } + [ Toalends’
20

2
z
—i—Cl/ ng(z’ H”% dz'
20
is bounded by
B = Bl s i ey + Wl gy 10 g
2
+ Cy st||L2(J;HT+1%p) .
By standard arguments, it follows that

(240) el siary + Cullwel?, iy, < ol

+ CIFL ey + 1B + e

L2(J:H™™3) L2(J; HH'T))
Finally, to eliminate the last term in the right hand side of (2.40), one notices that

the left hand side controls by interpolation c||w€\| o5y for some p > 2,

hence by Holder in the z variable, there exists x > 0 (depending only on p) such
that if |z9 — 21| < K, we have

2
c HweSHLQ(J;HngP) S §(Hw6HL°° sy +C1 Hw6HL2 JHHQ))
We consequently obtain
2 2 2 2 2
el iy + o el ey < 20l + CURMs sy + IR, oy

We can now iterate the estimate between zg + x and zg + 2k, ... to get rid of the
assumption |21 — zg| < k (and of course the constants will depend on z;). By
using the equation, we obtain now that (w.) is bounded in X" (J) N C*(J; H"~2).
It follows from the Banach—Alaoglu theorem that, up to a subsequence, (w.) con-
verges in the sense of distributions to w € X"(J), which satisfies the equation
O.w + Tp,w = f. Then 0,w belongs to Y"(J) which implies that w belongs to
C%([z0, z1]; H"(R%)). Moreover, by the Ascoli theorem, up to a subsequence, (w.)
converges in C%([z, z1]; H,, ') for some p > 0. Since we|.—o = wp we obtain that
w|,—0 = wp, which completes the existence part in Proposition 2.17. The proof of
uniqueness follows the same steps and we omit it. O
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3. The Dirichlet-Neumann operator

We shall prove some results about elliptic regularity which complement previous
works. To do this we shall use a paradifferential approach.

3.1. Definition and continuity. We begin by recalling from [1] the definition
of the Dirichlet—-Neumann operator under general assumptions on the bottom. One
of the novelty with respect to our previous work is that we clarify the regularity
assumptions: assuming only that n € Wh*®(R%) and f € H %(Rd), we show how to
define G(n)y and prove that the map

v e H2(RY) — G(n)¢ € H™2(RY)

is continuous. Our second contribution is to prove that the map n — G(n) is
Lipschitz (in a proper topology). Finally, we prove also that in some weak sense,
the Dirichlet-Neumann operator thus defined is a local operator (see Theorem 3.9).

The goal is to study the boundary value problem
(3'1) Aw,y¢ =0in Q, ¢‘E = fa 3n¢>\r =0.

See §1.1 for the definitions of €,%,I'. Since we make no assumption on I', the
definition of ¢ requires some care. We recall here the definition of ¢ as given in [1].

Notation 3.1. Denote by Z the space of functions u € C*°(Q2) such that V,  u €
L?(). We then define %, as the subspace of functions u € 2 such that u is equal
to 0 in a neighborhood of the top boundary 3.

Proposition 3.2 ([1, Proposition 2.2]). There ezists a positive weight g € L§° (),

loc

equal to 1 near the top boundary of Q) and a constant C > 0 such that for all u € Yy,
(3.2) /Q 9(,9) u(z, )| dudy < C /Q Ve, y) 2 dedy.

Definition 3.3. Denote by H'*(Q) the space of functions u on 2 such that there
exists a sequence (up) € Yy such that,

Vaytn = VU in L*(Q, dzdy), Uy — u in L2(Q, g(x, y)dzdy).

We endow the space HY? with the norm |u| = ||Vx,yu||L2(Q).

Let us recall that the space H?(Q) is a Hilbert space (see [1]). For later purpose,
we need to ensure that the functions having compact support in the x variable (at
least near the surface X)) are dense in H%?(Q). By regularizing the function 7 (see
Remark 3.7) it is easy to see that there is 7. € C2°(R?) such that 7 — 2% > 1, and

{(z,y) e R x R; nu(z) <y < n(2)} C Q.
Lemma 3.4. The set

~ h
Dy = {u € Dy ; supp(u) N {(z,y); —n« + 30 <y<n}is compact}

is dense in H'(€2,).

PROOF. Let u € Dy, and ¢ € C*°(R) equal to 0 for z < 0 and to 1 for z > h/30.
Then according to Proposition 3.2, we have ((y — n.)u € Dy and (1 — {(y — n«))u €
Do N HY() (where H}(Q) is the usual Sobolev space). Let v, € C§°(2) which
converges to (1 — ((y —nx))u in H} () (and hence in H0(Q)). We get that ((y —
1)U + Uy € Do and converges to u in H-0(€). O

17



We are able now to define the Dirichlet-Neumann operator. Let f € H %(Rd). We
first define an H'! lifting of f in Q. To do so let xo € C*°(R) be such that yg(z) = 1
if 2> —1 and xo(z) = 0 if z < —1. We set

U1 (x,2) = xo(2)e* P f(z), zeR2<0.

By the usual property of the Poisson kernel we have

Va1l 2210 xra) < C HfHH%(Rd)'

Then we set

Y(z,y) = Y1 (z, y—hn(m))’ (z,y) € Q.

This is well defined since 2 C {(z,y) : ¥y < n(x)}. Moreover since the bottom I is
contained in {(z,y) : y < n(x) — h}, we see that ¢ vanishes identically near T".

Now we have obviously 9|z = f and since Vn € L*®(R%), an easy computation
shows that v € H'(Q) and

(3.3) 1l i) < K+ w1l 3 gy

Then the map
v —/ Vi - Vg yvdody
0 ¥

is a bounded linear form on H°(Q). It follows from the Riesz theorem that there
exists a unique u € H%%(Q) such that

(3.4) Vo € HY0(Q), / Vayt - Vayvdedy = — / Vgt Vv dady.
Q Q

Then u is the variational solution to the problem
_szyu = Ar,y@ in D,(Q)v U ‘2: 07 anu ’F: 07
the latter condition being justified as soon as the bottom I' is regular enough.

Lemma 3.5. The function ¢ = u + ¢ constructed by this procedure is independent

on the choice of the lifting function v as long as it remains bounded in HY(Q) and
vanishes near the bottom.

PRroOOF. Consider two functions constructed by this procedure, ¢ = up+vx, k =
1,2. Then, by standard density arguments, since ¥, — 1 vanishes at the top bound-
ary ¥ and in a neighborhood of the bottom T, there exists a sequence of func-
tions ¢, € C§°(£2) supported in a fixed Lipschitz domain QcQ tending to 1 — 1o
in H&(ﬁ) and hence also in H'9(). As a consequence, ¥, — ¢y € H"0(Q) and
the function ¢ = ¢ — ¢2 is the unique (trivial) solution in H'%(€2) of the equation
Ay y¢ = 0 given by the Riesz Theorem. O

Definition 3.6. We shall say that the function ¢ = u+ 1) constructed by the above
procedure is the variational solution of (3.1). It satisfies

2 2
(35 [ 1900 dady < KA

for some constant K depending only on the Lipschitz norm of .

Formally the Dirichlet-Neumann operator is defined by
(36) G(n)w =V 1 + ’VTI\Z 8n¢ ’ y=n(z) = [ay¢ - VU : V(Zﬁ] ’ y=n(z)’

18



3.1.1. Straightenning the free boundary. We begin by straightening the bound-
ary. In this paragraph, we fix s > % + %

We shall assume here that one can find a function 7, such that
h
(i) me+ 7 € H(RY),
(3.7) y _ _h LB
(@) @) =n(@) =73+ lgllyge <5
(iii) T C{(z,y) € Oy <m(x)}.
Remark 3.7. Assume that we have a function depending smoothly on the time,

n e CO([O,T],HS‘%(Rd)), such that n|;—p = no and satisfying condition (1.2) with

% (such as a solution in Theorem 1.2). Then one can construct 7, = n.(z) satisfying

(i), (4i7) in (3.7) and for some 7" < T

@) 0t w) —m@) =5+ alta), ol

ol >

<
Le=([0,77], H°7(Rd)) -
Indeed set "

where v > 0 is chosen such that v||no]| % Then chose T” such that

S 2 (R4

() = 0l o3 ) <

and write

i h
n(t, ) = n.(x) = n(t, 2) = no(x) + no(x) — P + Ve
Then (i)’ follows from the estimate
h

_ o ¥(Da) —
HT]O($) € UOHHS—%(Rd) S V”nO”H5+%(Rd) é 10’

and (i77) is a consequence of (i7)'. Indeed for t € [0,7"] we have

IN

<h h h h
’r](tVf) - 77*( ) + HgHLOC(OT/}XRd) — 4 + HgHLoo [0 T/] H< de)) 5

therefore L
I {(z,y) 1y <nlt,z) = 5} < {(z,9) 1y <nu(2)}.

In what follows we shall set
% = {(z,) : 2 € R, () <y < ()},
(3-8) O ={(z,y) € Oy <nu(2)},
Q=0 UQs.
and
Q) ={(z,2):x R zel}, I=(-1,0),
(3.9) Qy = {(z,2) € R x (=00, —1] : (z, 2 + 1 + nu(z)) € Qa},
Q=01UQ.
Following Lannes ([37]), consider the map (x, ) — p(z, z) from Q to R defined by
{p@ 2) = (14 )P Py(a) — an.() if (3,2) € Dy,

,0(.%',2) =z+1+ 77*(33) if (.%',Z) € 527
19
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where ¢ is chosen such that

37|l = o is small enough.

H+E (Rd) :

Notice that p is Lipschitz on Q. Moreover since s > % + %, there exists a constant
C > 0 such that (recall that the spaces X*(I) are defined in (2.37))

h
. 80 = 3 ey < 08 (1 e gy + 1l )
192l umg gy < C (100 pest gy + 10 )
from which, taking dy small enough, we deduce
h -
1) O,p(z,z) >min(l,—-), V(z,z)e€Q,
1) { (@) 0op(a.2) 2 min(L 5). Va2
(i) 1920l oy < FWl e )

It follows from (3.12) (i) that the map (z,2) — (z, p(z,2)) is a C'-diffeomorphism
from Q to 2. We denote by x the inverse map of p:

(.I',Z) S ﬁ, (:c,p(a:,z)) = (wvy) Ang ((IZ,Z) = (x,/i(x,y)), (x,y) € .
Let ¢(z, 2) = ¢(z, p(z, z)). Then we have

(ay¢)($ap($a Z)) = (Alg)(xaz)a (VIQS)(JJ,IO(:L',Z)) = (AQQZ)(x’Z%

(3.13) 1 Vap
A = —_— 2 A = T z Z-.
1=, M=V g0

If ¢ is a solution of A, ;¢ = 0 in 2 then 5 satifies
(A24+ A2 =0 inQ

This yields

(3.14) (ad? + Ay +b- V30, — ¢d. )¢ =0,
where
1+ |Vap|? Vap 1 2
3.15 =12 =222 = ad?p+ App+b-V,0.p).
(3.15) (0.p)? d.p 8zp( g P 2

It will be convenient to have a constant coefficient in front of 2¢. Dividing (3.14)
by a we obtain

(3.16) (02 + aly + - V0, —7D.)p =0
where
82 az Vm 1
(3.17) o= — )’ B = g F2PYap (02p+alpp+B-V,0.p).

T 14 Vo 14 |Vap|? T d.p

In the coordinates (z, z), according to (3.6) we have
(3.18) Gy =Ul.co, U =M~ Vap- Ao
The following remark will be useful in the sequel. We have

(3.19) 8.U = —V,((9:p)A29).
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Indeed we can write
0:U = 0016 — Vi0:p- N2 — Vap - 0.026
= (0:p)A1) — Vu0ep - Mad + (0:p) (A2 — Vi) Aao
= (9:p) (AT + A3)6 — Vi ((9:p)A29).

Since (A2 + A2)¢ = 0 we obtain (3.19).
3.1.2. Continuity of the Dirichlet-Neumann operator.

Theorem 3.8. Letn € Wh*(R?), f € H%(Rd). In the system of coordinates (x, z)
defined above, the variational solution of (3.1), ¢, satisfies

(3.20) ¢ € CY([-1,0; H2(RY)) N CL([-1,0]; H~2 (RY)).
As a consequence, the map
(3.21)
Y e H:RY) = Gy = VI+[VnPouo|,_ = [0,6=Vn-Vo] | _
= ((1+|Vn|*)0:¢ — V1 - V) |.=0

is well defined. It furthermore satisfies

GOl gy < Flmllwr o)1 13

The Dirichlet—-Neumann operator is also weakly continuous. This fact will be used in
Section 6 to prove existence of solutions when passing to the weak limits on weakly
convergent sequences of suitably regularized systems.

Theorem 3.9. Assume that (,)neN and (Yp)neN are two sequences such that

i) the sequence (N, Yn)neN is bounded in W1 (R?) x H%(Rd),

ii) there exists n € WH(RY) such that n, converges strongly to n in VVli’coo(Rd),
i11) there exists ¢ € H%(Rd) such that (Yn)nen converges weakly to ¢ in H%(Rd),
iv) there exists n, € W1 (RY), h > 0 such that

n(z) — g > n.(z) > n(x) — hynu(z) — g > n(x) > gu(z) —h Vo e R

Then the sequence (G(np)r) is bounded in H 2 (RY) and converge weakly to G(n).

Let us also state the second basic strong continuity of the Dirichlet Neumann op-
erator. Notice that the map n — G(n) is non linear and hence continuity do not
imply weak continuity.

Theorem 3.10. There exists a non decreasing function F: Ry — Ry such that,
for all n; € Wh°(R9), j = 1,2 and all f € H2(RY),

(@)~ N AIL,3 < FUIomm)llwrsxwro)lm — mlwrelF], -

Remark 3.11. We shall only prove Theorems 3.9 and 3.10 as the choice 1, =
1, ¥n = ¥ in Theorem 3.9 implies Theorem 3.8. On the other hand, the fact that we
can pass to the limit in G(n,)¥, under convergence assumptions on (7,,%,) which
are only local in space, shows that, in a very weak sense, the Dirichlet—Neumann
operator is a local operator.
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PROOF OF THEOREM 3.9. Let My > 0 be such that for all n € N,
(3.22)

(-

Our purpose is to prove that G(n,), is well defined and bounded in H 7%(Rd) by

+ 11l Flnallwrcemay + [nllwree ey + (104 llwrco ray < Mo-

H2(Rd

Fllmmllwreo)llnll 3 gay

(hence uniformly bounded) and converges weakly to G(n)y in H _%(Rd). We shall
proceed in several steps.

Step 1: preliminaries. We start by straightening the boundaries of the domains
Q, and €2 using the previous section. We recall that

Q={(r,y) € Oy <m(a)},  Q={(x,y) € Oy <nlx)}.

For this purpose we use the diffeomorphisms given by p,, (constructed with 7,) and
p given by (3.10) and we shall use the vector fields A%, Aj,7 = 1,2 described in
(3.13) and we set

A" = (AT, A5) A= (Ar, Az).

We construct now a H'!- extension of . Let x € C®(R),x(z) = 1 if 2 > —
and x(z) =01if 2 < —1 and set

(3.23) Un(z,2) = x(2)e* Py, (2), Pz, 2) = x(2)e*PIyp(x).
Then ¢y (2, 2) € H (R x I) and [|¢n| g1 mass) < Cllvonlly gay < CMo

D=

3 (R4)
We make the same construction for 1. Then it is easy to see that the sequence (zzn)
converges in H'(Q) to 1, Then we set

(3.24) b = lin+ U, =T+
According to (3.5) and the assumptions on 7, and 1 we see easily that this implies
(3.25) IVastinll 2y < M2, Yn e N.

Then (uy,) is a bounded sequence in H 1’0(9)) and therefore that, up to a subsequence,
it converges weakly in this space to u.

Step 2: passing to the limit for the variational solutions. Setting X = (x,2) € Q
the variational formulation for w,, reads

3:26) [ A0 A IXAX = [ N(X) - ATCX) Ju(X)ax

for all ¢ € C5°(Q), where J,,(X) = |0.pn(X)|. We now want to identify the limit.
We have the following Lemma.

Lemma 3.12. For all { € Dy(Q2) we have

nEI—Poo A", (X) - A"(X)Ip(X)dX = /Au X)J(X)dX,
nEI—Poo/ﬁAn%( AM(X) T (X)dX = /Aq/J X)J(X)dX.

Corollary 3.13. The function u(x,y) = u(x,k(x,y)) is the variational solution
in HY°(Q) of the problem —Agyu = Ayt and u, converges weakly in this space
to u. a
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Proor oF LEMMA 3.12. Notice that

A" — A= B3,0, suppf, C{(z,2):z € R% z € (~1,0)} and

(3.27)
180l Lo (k) < FUInllw.co meay) 1 — nllwree (k)

Then we can write
Ay, -A"C-J, —Au-Al-J = Ay + Ay + Az + Ay,
A= (A" = MNu" - A" T, Ag=Au,-A"C-(J,—J),
As = Aty - (A" =N (- J, Ay =A(u, —u)-AC-J.

It follows from (3.27) that we have

(3.28)

/ﬁAl (X)dX' < C(Mo)||mn — 77||W17°°(K) ”azﬂnnp(ﬁ)||VX<HL2(§))-

The same estimate holds for the term coming from As. Moreover since ||.J, —
I g (i) < F(Mo)l[1n — nllwr.eo () we have for Ag the same estimate as (3.28).

Eventually since (%,,) converges to % in the weak topology of H'Y(£2) we obtain

lim Ay(z,y)dzdy = 0.
Q

n—-+o0o

Step 3: taking traces. Notice that we have
(3.29) (A2 + (AT = 0, ((A)? + (A2)?)ii = 0,
and
530) { Gm)on = (AF = Vapu - A3)iinlsc0 = Unl:o
G = (A1 — Vap - Mo)Ul.—0 =: U|.—0.

Since p, converges to p in VVlicoo(ﬁ) the sequence (U,) converges weakly to U in

L?(2). Now using (3.19) we obtain
0:Up = =V ((8:pn)ABTy).
By the same way we have
9.U = =V ((8:p)Agv).
Since Vg .pn — Vg .p in L*®R? x I) and u, — u weakly in H'(RY x I), the
sequence (9,U,) converges to 0.U weakly in L?(I, H~'(R%)).
Now we use the following well known interpolation lemma.

Lemma 3.14. Let I = (—1,0) and consider u € L*(I,L*(R%)) such that O,u €

L*(I, H-Y(R%)). Then u € C’O([fl,O],Hfé(Rd)) and there exists an absolute con-
stant K > 0 such that

HUHCO([fl,O],Hi%(Rd)) S K(HuHLz(I,L2(Rd)) + HaZu”L2([,H71(Rd)))

It follows from this lemma that the sequence (Up|.=o) is bounded in H _%(Rd)

by j:(HnnHWl’oo)Hwn”H%(Rd)

completes the proof of Theorem 3.9. U
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PROOF OF THEOREM 3.10. We use the notations introduced in §3.1.1. Namely,
for j = 1,2, we introduce p;(z, z) and v;(z, 2) defined by (3.10),

pj(z,z) = (1+ z)(e‘sz(D”nj)(ac) —zn., ifzeRYLzel:=(-1,0)
pj(z,z) =z+14mn,, if(z,2)€ Qy

Notice that we have the following estimates

() 0y >min(1,0), (2,2)ef

(3.31) (@) NVaepillpoo@) < CA+ il or g gay)

(@) Va1 = p2)l oo (.00 ma)) < Cllm — m2llw.oo may-
Recall also that we have set
i 1 i Vapi
3.32 AN=—0,, A,=V,—
(3:32) L 0. 2 i

It follows from (3.31) that for k = 1,2 we have with Wh> = W12 (R%),

0.

(3.33) (i) A} — A} =p;0,, with supp B, C R? x I, where I = (—1,0),
' (@) 1Bkl oo (rxmay < F U1, m2) oo swtoe ) m — mallpreo

Then we set gj(:c,z) = ¢j(z, pj(z,2)) (Where Ay yp; = 0 in Qj, ¢4ls, = f) and we
recall (see (3.18)) that

(3.34) G f =Ujlizo, Uj=ANj—Vaupj- MNo;.

Lemma 3.15. Set I = (—1,0), v = ¢1 — ¢, and AJ = (A{,Ag). There exists a non
decreasing function F : R* — R™T such that

(3.35) 10l L2 1.2 mayy < F (1, m2)lwroo oo I = m2llwrco £ 3 -

Let us show how this Lemma implies Theorem 3.10. According to (3.34) we have
U —Us=(1)+(2)+(3)+(4) + (5) where
(3.36) (1) =Ajv, (2) = (A = ADG2, (3) = ~Valpr — p2) A3
(4) = =(Vapa)Abv,  (5) = —(Vap2) (A3 — A3)do.

The L%(I, L?>(R%)) norms of (1) and (4) are estimated using (3.35). Also, the
L2(I, L*(R%)) norms of (2) and (5) are estimated by the right hand side of (3.35)
using (3.33) and (3.5). Eventually the L2(I, L?(R?)) norm of (3) is also estimated
by the right hand side of (3.35) using (3.31) (éi7) and (3.5). It follows that

(3.37) 1UL = Uzll2(z,n2) < F (10, m2) lwreescwree) lm = mallwree £ 1 -
Now according to (3.19) we have

(3.38)  0.(Ur — Uz) = —Va(9:(p1 — p2)Asdr + (92p2) (A5 — A3)d1 + (02p2)A30).
Therefore using the same estimates as above we see easily that

(3.39)  [10:(U1 = U2)ll2(r,-1) < F (1 m2)llwrce oo )l = m2llwroe | £ 1 -

Then Theorem 3.10 follows from (3.37), (3.39) and Lemma 3.14. O
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Proor or LEMMA 3.15. We use the variational characterization of the solu-
tions u;. First of all we notice that ¢; — ¢o = U3 — uz =: v. Now setting X = (z, 2)
we have

(3.40) /~Nm.Ai9 JidX = —/~A"f-Ai6J,~ dX
Q Q

for all § € H-0(2), where J; = |d.p4]-

Taking the difference between the two equations (3.40), using (3.31) and setting
0 = v = u1 — Uy one can find a positive constant C' such that

6
/~ AP dX < CY A,
Q k=1

where
/ [(AY — AUy ||Aty| J1 dX, Ay = /~ (AL — A?)o||A%Ts| J1dX,
Ag:/~|A2&2|A2v||J1—J2|dX, A4_/| — A?)f[|AYo| Jy dX,
A5 / | |A2 |J1 dX A6 = /~ |A2f”A2’U| |J1 *J2|dX
Q

Using (3.33), (3.5), (3.31) we can write

B L e L P
| < F(m, m)llwres o) mn = mellwre L1, 3 1A 02 g,

Since Ajl- —A? = 85;1 Ad the term Ay can be bounded by the right hand side of (3.41).

Now we have |[J1 — J2|| oo (1xmra) < Cllm — m2llw1.0c(ray and

1A%V 2@y < F I, m2) llwre oo ) 1A 0]l 2 g3

So using (3.5) we see that the term As can be also estimated by the right hand side
of (3.41). To estimate the terms A4 to Ag we use the same arguments and also (3.3).
This completes the proof. O

Let us finish this definition section by recalling also the following result which is a
consequence of [1, Lemma 2.9].

Lemma 3.16. Assume that —3 < a < b < —1 then the strip S, = {(z,y) €
R . ah <y —n(x) < bh} is included in Q and for any k > 1, there exists C > 0
such that

19l x5, 0) = C1N 3 gay:

3.2. Paralinearization of the Dirichlet-Neumann operator. In the case
of smooth domains, it is known that, modulo a smoothing operator, G(n) is a pseudo-
differential operator with principal symbol given by

(342) A €)== (L[ 9n() ) € — (Tnz) )2
Notice that A is well-defined for any C! function 7. The main result of this sec-
tion allow to compare G(n) to the paradifferential operator T when 7 has limited
regularity. Namely we want to estimate the operator
R(n) = G(n) = Tx.
25




Such an analysis was at the heart of our previous work [4] [1, Proposition 3.14] for
“smooth domains” (n € H S‘*'%,s > 2+ %) Here we are able to lower the regularity
thresholdsup to s > 1+ %. The following results, which we think are of independent

interest, complement previous estimates about the Dirichlet-Neumann operator by
Craig-Schanz-Sulem [27], Beyer—Giinther [12], Wu [51, 52|, Lannes [37].

Theorem 3.17. Let d > 1, s > %+% and % <o < s+ % Then there exists

a non-decreasing function F: Ry — Ry such that, for all n € HS+%(Rd) and
all f € H°(RY), we have G(n)f € H°~Y(RY), together with the estimate

(3.43) G fll o1 (may < f(HWHHH%(Rd)) 11l b1 ey -

We also prove error estimates.

Proposition 3.18. Letleands>%+%. Forany%ﬁagsandany
0< <1 - 1 d
e < — eE<S— = — —
_27 2 27

there exists a non-decreasing function F: Ry — Ry such that R(n)f := G(n)f—T>f
satisfies

HR(U)fHHo—Hs(Rd) < -7:(H77HH5+%(R(1)) HfHHU(Rd) :

To prove Theorem 3.17 and Proposition 3.18, we shall use the diffeomorphism p
defined by (3.10) which satisfies the estimates (3.12). Then recall from (3.16) that

the function ¢(z, z) = ¢(z, p(z, 2)) satisfies

(3.44) (2 +al, +0-Vi0: —10.)9 =0,  @laco = blymy) = f.

and

1+ [VpP, ~ =

G = (016 = Vo Ad)ls-0 = (—5—==0:6 = Vp- V9) | .y

We conclude this paragraph by stating elliptic estimates for the solutions of (3.44).
For later purpose, we will consider the non-homogeneous case. This yields no new
difficulty and will be useful later to estimate the pressure (see Section 4.2). We thus
consider the problem

(3.45) 020+ alv + B- Vo0 —y0.v = Fy, v|.—o = ,

where f = f(z) and Fy = Fy(x, z) are given functions. Recall that for yu € R, the
spaces X*(I),Y*(I) are defined by (see (2.37)):

5.16) XH(I) = CUT HU(RY) 0 LAT HYF 2 (RY)),

| YI(I) = LI HY(RY) + L2(1: H' 3 (R).

Recall that H°(RY) is an algebra for o > d/2 and so is C°(I; H°(RY)). Also, using
the tame estimate (2.14), we obtain the following

Lemma 3.19. Assume that o > % . Then the space X°(I) is an algebra. Moreover
if F: CN — C is a C®-bounded function such that F(0) = 0 one can find non
decreasing functions F,Fy from R to Rt such that

IE@)lxe ) < FUIUl Lo (rxra) U xo (1) < FrlU|xo 1))
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With these notations, we want to estimate the X?-norm of V,.v in terms of
the H°tl-norm of the data and the Y?-norm of the source term. An important
point is that we need to consider the case of rough coefficients. In this section we
only assume that n € HS"'%(Rd) for some s > 1/2 + d/2. An interesting point is
that we shall prove elliptic estimates as well as elliptic regularity (in other words,
we do not prove only a priori estimates). Our only assumption is that v is given by
a variational problem, so that

(3.47) Ve vl < too.

~2([-1,0])

Remark 3.20. In the case where v(z,z) = ¢(z, 2) = ¢(x, p(x, z)) with ¢ the varia-
tional solution of

Afﬂ,y(b = Oa ¢|y=n - f, @nqb =0 on F,
then (3.20) shows that v satisfies this assumption (3.47).

Proposition 3.21. Letd > 1 and

< 1 n d 1 << 1
Ty Tp=fE Ty
Consider f € H°t1(RY), Fy € Y?([~1,0]) and v satisfying the assumption (3.47)

solution to (3.45). Then for any zy € (—1,0), V,.v € X?([20,0]), and

1920l ooy < F O gey) {1 s + 1By vy + IVl oy o}

for some non-decreasing function F: Ry — Ry depending only on o.

To prove Proposition 3.21 we shall proceed by induction on the regularity o.

Definition 3.22. Given o such that —1/2 < o < s—1/2, we say that the property H,
is satisfied if for any interval I € (—1,0],
(3.48)

1Vl xoqry < F Il gesy) {1 s + 1Bl ooy + V203 g )

for some non-decreasing function F: Ry — R4 depending only on I cmd 0.

With this definition, note that Assumption (3.47) means that property H_; /2 s sat-
isfied. Consequently, Proposition 3.21 is an immediate consequence of the following
proposition which will be proved in Sections 3.3 and 3.3.1.

Proposition 3.23. Let s > % + %. For any € such that

1 d
3.49 0 < = - = — =
(3.49) <e e<s—5 5
if Hy is satisfied for some —1/2 < o0 <s—1/2—¢, then Hy4c is satisfied.

[\')?—‘

3.3. Nonlinear estimates. Let us fix ¢ satisfying (3.49), o such that
<og< 1
_— S N —
5 S0S 5 ¢

and assume that H, is satisfied. We begin by estimating the coefficients «, G,y
in (3.17) in terms of HnHHH%,

Lemma 3.24. Let J =[-1,0] and s > § + %. We have

2

o — —

(3.50) T

+ 114l

X572(J)

n Tl

o 3y < Flll ey
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PROOF. According to (3.11), we can write

2
(007 = 4G with 0],

by < F Ul sy )

Noticing that ﬁ =1- 1‘+|€| = We obtain
h2 h2 \V4 2 \V4 2
N/ . /i
16~ ‘16 1+ |Vp| 1+ |Vp
and we use Lemma 3.19 with 0 = s — § together with (3.11). The estimates for 3
and ~ are proved along the same lines. O

Lemma 3.25. There exists a constant K such that for all I C [—1,0],
(351) Fillyorey < K Il g g 10-0lxe )

where F1 = v0,v.

PROOF. We shall prove that, on the one hand, if —1/2 <o <s—1— ¢ then

(3.52) gfeR U”Ll LHo+e) S ||7HL2 LHs=1) 10- U||L2 (LHOTE)”
and on the other hand, if —e <o <s— 5 — ¢ then
(3.53) H’YazUHLQ(I;Haf%ﬁ) S VI p2ersprs-1y 1920 oo 1,1y -

Since s > e+ 5 +d/2,if —1/2 <o <s—1—¢ then
1 1 1 d
s—1+a—|—§>0, a+5§a+§, c+e<s—1, a—l—€<s—1+a+§—§.

and hence the product rule in Sobolev spaces (2.13) implies that

17(2)0:0(2) | go+e S V() gs-1 1020(2)] ory -

Integrating in z and using the Cauchy-Schwarz inequality, we obtain (3.52). On the
other hand, if —e <o <s5-— % — ¢ then one easily checks that

1 1 1 d
s—140>0, U—§+€§J, 0—§+5§s—1, 0—§+5<s—1—|—0—§,

and hence the product rule (2.13) implies that

IV(2)0:0() o-14e S 1) o1 1020(2) || o -
Taking the L2-norm in z, we obtain (3.53). O

Our next step is to replace the multiplication by « (resp. 3) by the paramultiplication
by Ti, (resp. 1p).

Lemma 3.26. There exists a constant K such that for all I C [—1,0], v satisfies
the paradifferential equation

(3.54) %0 + Ty Av + T - Vo,u = Fy + Fy + F,
for some remainder

(3.55) Fy =Ty —a)Av+ (Ig — ) - VO,v
satisfying

(3.56)

2

o — —

HFQHYUJrE(]) S K {]- + 16

+ ||/B|| 9—7 } HV.’I?,Z/UHXU I
[ 1.0]) X*72([-1,0]) (I)
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PROOF. According to Proposition 2.10, we have
lavw = Taull gy S llall g lJull o

provided that r, i,y € R satisfy

d
(3.57) r+upu>0, y<r and’y<r+/,t—§.

Since s > e+1/2+d/2,if —1/2 < 0 <s— 1 — ¢ then

1 1 d
s—i—a—§>07 o+e<s, U+6<S+J—§—§,

and hence (3.57) applies with

1
/YZU—’_E? T:S7 M:U_§
This implies that if —1/2 < o <s— 1 — ¢ then
|(To = ) Ao (-t ) llaw]
—« v .Hgo+e o — — v 1,
(3.58) " IR ~ 1611 L2 (r,ms) LA(LHO™3)

||(Tﬂ - ﬁ)vazUHLl([;HHs) < ||ﬁ||L2(1;Hs) VO,

which yields

L2(LH7"%)’

h2
a_i

HF2”YU+E([) S HF2HL1(I;HU+E) g {1—|— 16

3 V(L’Z (o8 .
. 18-t gy} Vvl

This concludes the proof. O

Our next task is to perform a decoupling into a forward and a backward parabolic
1

evolution equations. Recall that by assumption n € H*"2 (R?) with s > e+1/2+d/2.

In particular, n € C}+¢(RY).

Lemma 3.27. There exist two symbols a, A in T (R x [~1,0]) and a remainder F3
such that,

(3.59) (0, — T,)(0, — Ta)v = Fy + Fy + Fy + F3,
with

(3.60) M(a) + M(A) < F (Il ury)

and

for some non-decreasing function F: Ry — Ry

PrOOF. We seek a, A satisfying

a(z3,8)A(z2,8) = —a(z,2) |7, alz2,8) + A(z;2,€) = —iB(z,2) - €.
We thus set

(361) a= 5 (~ife—\aaleP — (3-€2), A= (-ieryaale? - (5-€2)
Directly from the definition of «, 3 (3.17), note that

>0, \JAale— (8-> cle].

29



According to (3.50) the symbols a, A belong to I'}(R? x [~1,0]) and they satisfy the
bound (3.60). Therefore, we have

(3.62) (0: — 1) (0. — Ta)v = 020 — TgV v + ToAv + Fj, F3 = Rov + Ryv,
where
Ro(2) == ToTaz) — Tod,  Ri(2) = —Th, a0)-
According to Theorem 2.6, applied with p = ¢, Ry(z) is of order 2 — ¢, uniformly in
€ [—1,0]. On the other hand, since

8.p € L®((—1,0); H"2),  82pe L®((—1,0); H2),
according to (2.13) we have
8.0,0.8 € L®((—1,0); H2) € L=((~1,0); C=1).

Therefore 9,A € F;fl(Rd x [—1,0]). As a consequence, using Proposition 2.12, we
get that Rq(z) is also of order 2 — . We end up with

sup 1R () e s e + I1RL () | ppuez—e g < F (U0l pory)-
ze|—1,

Now we notice that, given any symbol p and any function u, by definition of parad-
ifferential operators we have T,u = T,(1 — ¥(D,))u for any Fourier multiplier (1 —
V(D)) such that U(£) = 0 for |£| > 1/2. This means that we can replace Hv(z)\|HU+%

by ||Vv(2)]|..,.1. We thus obtain the desired result from Lemma 3.26. O
HoT2

3.3.1. Proof of Proposition 3.23. We shall apply Proposition 2.17 twice. At first
we apply it to the forward parabolic evolution equation 0,u — T,u = F (by def-
inition Re(—a) > c¢|{|). This requires an initial data on z = —1 that might be
chosen to be 0 by using a cut-off function, up to shrinking the interval I. Next we
apply it to the backward parabolic evolution equation d,u — Tqu = F' (by defini-
tion Re A > ¢[€]). This requires an initial data on z = 0 (which is given by our
assumption on f) and this requires also an estimate for the remainder term F' which
is given by means of the first step.

Suppose that H, is satisfied and let Iy = [¢p, 0] with {yp € (—1,0). Then

Hvﬂc,zUHXU(IO) < '7_—(”77”H5+ { 11| gro+r + ||F0”Yv o) T IV, zUHX—g ([~1,0]) }
We shall prove that, for any 0 > {1 > (o,
(3.63)
Va0l xose ey oy S FU os ) ) Npresase 1o lly e oop HIVavll oy L g 3

Introduce a cutoff function x such that x |c<¢o=0, X |[¢c>c,=1 . Set w := x(2)(9. —
T4)v. It follows from (3.59) for v that d,w — T,w = F’,

where
F' = x(2)(Fo + Fy + Fy + F3) + X' (2) (8. — Ta)v.

We have already estimated Fy, Fy, F3 and Fj is given. We now turn to an estimate
for (0, — T'a)v. According to (2.4) and (3.60), we have

ITavll g grsdy S F ) 0900 ey S F ) 120l o
and similarly

1Ta0l ety < Fll o) V0] e iy < FAIl ) V0l oz
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Consequently
102 = Ta)vll xo (1) < F U v 1) Va0l xo ) -
This implies that
(3.64) ol oy < FUI ey IVatlxo
(3.65) 1 oz ry < FUnN ) 1V 0l o gy + 1 Follyose gy -

Since w(x, z0) = 0 and since a € I'! satisfies Re(—a(x,€)) > ¢ €], by using Proposi-
tion 2.17 applied with J = Iy, p =€ and r = 0 + €, we have

fllxrseyy < Fl ) [ ooy
and hence, using (3.64) and (3.65)

(3.66) lwll xote(ryy < FUMI pos 1)L Va2Vl 5o (g0) + 1E0llyore(zg) }-

Now notice that on I; := [(1,0] we have x = 1 so that
O,v—Tyv=w forzel.
Therefore the function v defined by v(z, z) = v(x, —z) satisfies
80+ T;0=—w forzel =[0,—Cl,

with obvious notations for @ and A. By using Proposition 2.17 with J = :fl, noticing
that v],—0 = v|,—0 = f, we obtain that

0o sve iy < F o) (1 prosree + 1@ yararecry)-

Using the obvious estimate
Hw||yu+1+s(f1) = ||wHY0+1+E(11) < HwHLg(Il;H”%”) = HwHX"*E(h)’
it follows from (3.66) that

HUHXU+1+6(11) < F(HUHHS-Q—%)(Hf||H”+1+5 + Hvr,zU||Xa(10) + ”F0Hya+e(10))-

We easily estimate 0,v directly from 0,v = Tyv + w (by using (3.66) and the
fact that T4 is an operator of order 1). This completes the proof of (3.63). This
proves that if H, is satisfied then H, 4 is satisfied and hence concludes the proof
of Proposition 3.23 (and hence the proof of Proposition 3.21).

3.3.2. Proof of Theorem 3.17. Let v be the solution of (3.16) with data v|,—¢ =
f. By definition of the Dirichlet—-Neumann operator we have

1+|Vp|?
azf’azv—vp.vwzo.

Now, by applying Proposition 3.21 with Fy = 0 and Remark 3.20, we find that if v
solves (3.16), then for any I € (—1,0],

(3.67) Gn)f =

(3.68) 190 w0lxosry < Fley) 1l
According to (3.11) and (2.14), we obtain that
1+ |Vpf
——0:v=Vp-Vv < FUnll o ) 11 gze -
H azp ‘ CO([z0,0);Ho 1) a2 H

As a result, taking the trace on z = 0 immediately implies the desired result (3.43).
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3.3.3. Proof of Proposition 3.18. Let 1/2 < o¢ < s. It follows from (3.66) applied
with 0 = 09 — 1 and Fy = 0 that
1X(2) (020 = Tav)ll o014 (1) < FUMI oy 1) {1 Va2l o017 }

for some cut-off function x such that x(0) = 1. By using Proposition 3.21, we thus
obtain

(3.69) 10:0 = Tavlz=oll goo-1+¢ < F(Inll ur ) 1l oo -

The previous estimate allows us to express the “normal” derivative d,v in terms of
the tangential derivatives. Which is the main step to paralinearize the Dirichlet-
Neumann operator.

Now, as mentioned above, by definition of v,

1+|Vp|?
G(T])f = Tpﬁzv — Vp - Vo | 2=0"
Set )
1+1|V
(o= 8’[)|, (o := Vp.
zP
According to (3.11),
4
3.70 - — + 1 <F oil).
310 =g eh 1ty S F )
Let
R, =S Clé?zv - CQ -Vov — (Tglﬁzv — TCQV’U).
Since € < % and € < s — % — %, we verify that Proposition 2.10 applies with

y=o00—1+¢e, r=5-— w=o9—1,

57
which, according to (3.70) and (3.68), implies
1R coruggon-1+ey < F (Ul yusy ) I1F e -
Furthermore, according to (3.69) and (3.70), we obtain
Te, 0.0 — Te, Vv | o~ (T, Tav = Tigy v | o) =R,

with

IR || prog-vse < F (Il pesy ) I1F e -
Finally, thanks to (2.5), (3.70) and (3.60), we have

1T, Tac) = Ter ()40 | oy o= S 161 lyyrese M2(A) < F([I0l] ey,

and hence

Gn)f =Ty av — Tiev | ,_o+ R(n)f

where
IR fll groo-1+e < F(nll or 1) Il oo -
Let
1+ |Vpl? .
A=A ivp €)= O @R - (V0(e) - 6)”
Then

G(n)f =T\f+ R(n)f,

which concludes the proof of Proposition 3.18.
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4. A priori estimates in Sobolev spaces

In this section, we shall prove a priori estimates on smooth solutions on a fixed time
interval [0, 7. Recall that the system reads

Oy — G(n) =0,
(4.1) 1(Vn VY + Gnw)”
2 1+ |Vn|?
As already mentioned, we work with the unknowns B = B(n,) and V = V(n, )
defined by

=0.

1
Opp + gn + B |Vy|? —

. Y1 VY + Gy
' L+ [Vp2

It follows from Theorem 3.17 that, for all s > 1 4+ d/2 and all (n,v¢) € o3, B
and V are well defined and belong to H =3, Moreover, we shall prove that if they
belong initially to H® then this regularity is propagated by the equation. We shall
prove estimates in terms of

MS(T> ‘= Ssup H(Tb(’]’),B(T),V(T),?](T))H

(42) T7€[0,7T
Mo := |[(1(0), B(0), V(0), n(0))]|

V :=Vy — BVn.

et 1 1
HV2xHsxHsxH*"2 "’

H*" 3 x HSx HSx H T3
The main result of this section is the following proposition.

Proposition 4.1. Let d > 1 and consider s > 1+ %. Consider a fluid domain such
that, there exists h > 0 such that for all t € [0,T],

(4.3) {(:c,y) cR!XR : n(t,x)fh<y<77(t,x)} c Q).
Assume that for any t € [0,T],
a(t,z) > co,

for some given positive constant cy. Then, there exists a non-decreasing func-
tion F: RT — RT such that, for all T € (0,1] and all smooth solution (n,v) of
(4.1) defined on the time interval [0,T], there holds

(4.4) M(T) < F(F(Mso) + TF(Ms(T))).

Remark 4.2. The assumption (4.3) holds provided that it holds initially at time 0
and ||n — 7 [=0 HH‘“’% < ¢, for some small enough positive constant e.

4.1. A new formulation. Since we consider low regularity solutions, various
cancellations have to be used. We found that these cancellations are most easily seen
by working with the incompressible Euler equation directly, and hence we do not
use the Zakharov formulation. This means that we begin with a new formulation of
the water waves system which involves the following unknowns

(4'5) ¢(=Vn, B= ay¢|y=n7 V= vx(ﬁ’y:m a = _8yP|y:n7

where recall that ¢ is the velocity potential and the pressure P = P(t,x,y) is given
by

1
(4.6) ~P=00+; |Vayd|” + gy.
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Proposition 4.3. Let s > % + %. We have

(4.7) (00+V-V)B=a-—y,

(4.8) O+ V- -V)V+a( =0,

(4.9) O+ V-V)C =GV +(G(n)B +1,

where the remainder term v = v(n, ¥, V') satisfies the following estimate :
(4.10) Wy < FU@AEI oy )

Remark 4.4. In the case I' = (), one can see that at least formally v = 0.
PRrOOF. For any function f = f(t,z,y), by using the chain rule, we check that,
with V =V,
(8t +V- V)(f|y:n(t,z)) = (at +V- V)f(t, Zz, n(ta $))
=[0f +Vo-Vf+0,f(Om+V - -Vn)]

since Oy +V -V = B (see (3.21)). Applying 8, to (4.6), this identity yields (4.7).
On the other hand, applying 0;, to (4.6), the previous identity gives

O+ V - V)V + (VP)|yey = 0.

y=n(t,x)

Since P|,—, = 0, we have
0 = V(Plymy) = (VP)lymy + (8,P)lyr ¥,
which yields (4.8).
To derive equation (4.9) on ¢ := Vn we start from
om=B—-V -Vn
Differentiating with respect to x; (for i = 1,...,d) we find that d;n = 0y, satisfies

d
(4.11) (0y +V -V)0in = 0;B — Zaivjaj%
j=1
Starting from the definitions of B and V' (B = 0y¢|y—y, V = Vé|y—y), and using
the chain rule, we compute that

d d
0B = 0iV;0m = [0:0,¢ + 0mdy ] | P > 0m[0:0;6 + 0md;0,¢] | y=n

J=1 J=1

d d
= (0,00 = Y 0mdi0;o] |, + 0m[0y0 — > 0mdidye] | ,_,.
j=1 j=1
Therefore
(4.12) (0 +V -V)Oin = [@yaiqb —-Vn- V@igzﬂ | — amn [Oy(@ygb) —Vn- Vaygb] | i
Let now #; be the variational solution of the problem
Apyti =0in Q, bily—y =V, 0Opb; =0o0nT.
Then
GVi = V/TF VAP Yy = (08— T V)l

Then we write

(4.13) (0y—Vn-V)0;¢|y=y = G(n)Vi+R;, where R; = (0y—Vn-V)(0i9—b;)|y=n.
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Due to the presence of the bottom we have to localize the problem near ..

Let xo € C*°(R), m € H*(R?) be such that yo(z) = 1if 2 > 0, x0(2) = 0if 2 < -1
and
_ < < .
n(z) = <mlz) <n@) - ¢
Set )
—m(z
Uie.) = xo () 015 — ) o,
We see easily that R; = (0y — V- V)U;|y—y,. Moreover U; satisfies the equation

—m(x
(4.14) ApyUs = [Agy, Xo(yzl())] (B¢ — 0;) =
and, with a slight change of notation, we have
h
(4.15) suppFiCS%% = {(az,y):xGRd,n( )—§<y<n 77}

Moreover by ellipticity (see Lemma 3.16) we have for all € N4+1,

(4.16) 1D, Fill e, yuzis, o) < Call(ViB) ) o

I\J\H
cm—t

1
’5

M\»—A

Now we change variables. We set z = z,y = p(x,2) = (1 + z) 02(Day () — 2 ()
and g;(z, z) = gi(z, p(z, z)). Since we have taken S|l e < 1 it is easy to see that

on the image of 5’1 1 one has —h < z < ——. Now, according to section 3.1.1, U; is
a solution of the problem

(82 + aA + -V, —40,)U; = ME.
: 1+ |Vp|?

Due to the exponential smoothing and to (4.16), on the support of E the right hand
side of the above equation belongs in fact to C%((—h,0); H*(R?)). In particular we
can apply Proposition 3.21 with f = 0. It follows that

IV Ui < Fnll sy ) WElyoqv0p + 1Ve2Uill oy o) -

Notice that according to the constructions of variational solutions and (3.20), the
norm of U; in X_%([—I,O]) is bounded by

FUnll o) (1L, + 1Vl ).

CO([20,01; H*™ 2 (R4)

Since
1+ |Vyl?

R; — [(maz — v v)ﬁl}

z=0
we deduce that

IRy < F il ) Ul + Vi) < F (g el V),
since s > % + %. We use exactly the same argument to show that
(4.17) Oy — V- V)0y¢ly=n = G(n) B + R,

where Ry satisfies the same estimate as R;. This completes the proof. O

Following the same lines, we have the following relation between V and B.
Proposition 4.5. Let s > % + %. Then we have G(n)B = —divV + v where

ey < FU@ VB iyt
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PROOF. Recall that, by definition, B = 0y¢|y—, and V = V¢|,—,. Let 6 be the
variational solution to the problem

Apyd =0, 0Oly—, =B, 0,0r=0.
Then G(n)B = (8,6 — V- V0) | Y=y Now let 0 = Oy¢. We claim that
(0,0 = Vn-VO) | _ = —divV.
Indeed, on the one hand we have
(9,0 — V- V) = 92 — V- Vo,
and on the other hand
divv =3 0,V = ( 3 af¢+vn-ay¢) ‘

1<i<d 1<i<d b=

Then our claim follows from the fact that A, ,¢ = 0. Now we have
DNpy(0—0)=0, (8—0)]y==0,
S0, as in the proof of Proposition 4.3, we deduce from Proposition 3.21 that
(@, =vn-9)0-0)| ., <FUNOV B sy yhd)
which is the desired result. (|
4.2. Estimates for the Taylor coefficient. In this paragraph, we prove sev-

eral estimates for the Taylor coefficient.

Proposition 4.6. Letd > 1 and s > 1+ %. There exists a non-decreasing func-
tion F: RT — RY such that, for all t € [0,T],

(418) Ha/(t) - gHH.sf% S F(H(Th w7 ‘/? B)(t)HH&F% ><Hs+% XHSXHS)’
For 0 <e<s—1-—d/2, there exists a non-decreasing function F such that,
(419)  [@a+V-Va)Oller < F0 0V BYON ooy s o)

Recall that @ = —0y P|y—, where

1
P =P(t,z,y) = —(0p + % IVao|” + 5(3y¢)2 + gy).

The basic idea is that one should be able to easily estimate P since it satisfies an
elliptic equation. Indeed, since A, ,¢ = 0, we have

ApyP = — W?c,ygb‘z'

Moreover, by assumption we have P = 0 on the free surface {y = n(t,z)}. Yet, this
requires some preparation because, as we shall see, the regularity of P is not given
by the right-hand side in the elliptic equation above. Instead the regularity of P is
limited by the regularity of the domain (i.e. the regularity of the function 7).

Hereafter, since the time variable is fixed, we shall skip it. We use the change of
variables (z, z) — (x, p(x, z)) introduced in §3.1.1. Introduce ¢ and @ given by

90(1'72) = qb(m,p(x,z)), p(:):,z) = P(x,p(x,z)) + gp(:n,z),

and notice that .

d.p
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The first elementary step is to compute the equation satisfied by the new unknown v
in {z < 0} as well as the boundary conditions on {z = 0}. Set (see (3.13))
1 \Y%
v_ P

A = (AlaAQ); Al = 87[)827 A2 - a p

0.
We find that
(A24+A3)p=0in —1<2z<0,
(A2 + A3)p = — !AQ@’ -1<z<0,
(A2 +Adp=0in 2<0,

together with the boundary conditions

p=gn MAp=g—a on z=0,
Aop =V, Ap=B, on z=0.

According to (3.5) and Remark 3.20, we have the a priori estimate

Vbl gt s gy < F e
while according to Proposition 3.21
(4.20)
1Veatll gy 10 < F (IR s 1)+ IVEP s ) < FUMBery)-

where R(z,z) = R(x, p(x,z)) and R is deﬁned in Definition 1.5.

Expanding A? + A2, we thus find that p solves

(4.21) 8§p+ozAp+ﬁ'V83p—y8Zp:Fo(x,z) for z < 0,
' =491 on z =0,

where a, 3, are as above (see (3.15)) and where
(4.22) Fy = —a|A%|*.
Our first task is to estimate the source term Fj.

Lemma 4.7. Let d > 1 and s > 1+ d/2. Then there exists zy < 0 such that
F(l(n 0.V, B)|

1Bl .

0] Hsfi) — HS+%><HS+%><HS><HS)'

PROOF. Since [A1, As] = 0 we have
(AT +ADA2p =0, (A +AAip=0.

Since Agp|,—o = V and A1p|,—0 = B, it follows from Proposition 3.21 (and Theo-
rem 3.8 which guarantees that V, .o € X~ (zo, 0)) that

Hvzvaj(pHXs—l([zo,O]) < -7:(||(77,¢a v, B)H

By using the easy estimate (3.11)

H”%xH”%xmst)'

h
82/)_*

9] .

+!

Sl ey

CO([z0.0):H° 2) CO([20,0;H° 7)

and the product rule in Sobolev spaces, we obtain

(423) ||A]Ak(p||L2([ZO’O]7Hs—%) S F(||(n7¢) Vy B)||HS+%XHS+%XHS><HS).
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Since H5~ 7 is an algebra, according to Lemma 3.24, we obtain

2
4.24) | R 1 <1 - — AjAro|)?
(4.24) | °HL1<[ZO,01;H°5>N< BT co([zO,oLHs%)) Wi
Sf(”(n7w7MB)"H5+%XH5+%XH5XHS)'
This completes the proof. ]

It follows from Lemma 4.7 and Proposition 3.21 applied with o = s —1/2 that there

exists zg such that
(@2)  IVasbloy gy S FUO DNy IRl et

where we used the estimate (4.20) According to (4.24), this implies that

. <

which in turn implies that ||a — g| o4 15 bounded by a constant depending only on
12, D)oy and [[(V, B)| -

HS+%xHS+%xHSXHs)'

4.3. Paralinearization of the system. Introduce
(4.27) U=V +1T:B.

To clarify notations, let us mention that the ith component (i = 1,...,d) of this
vector valued unknown satisfies U; = V; + Tj,, B. The new unknown U is related to
what is called the good-unknown of Alinhac in [4, 1, 5, 7].

To estimate (U,() in Sobolev spaces, we want to estimate ((Dg)°U, (Dx)sfé Q)
in L>([0,T); L?> x L?) where (D,) := (I — A)Y/2. However, for technical reasons,
instead of working with ((D5)° U, <Dx>57% (), it is more convenient to work with
Us := (Da)*V + Te(D,)* B,
Cs := <Dm>s C.

Proposition 4.8. Under the assumptions of Proposition 4.1, there exists a non
decreasing function F such that

(4.29) (O +Tv - V)Us + TuCs = f1,
(4.30) (O +Tv - V)G = ThUs + fa,
where recall that \ is the symbol
A(t;@,€) = \/(1 + [Vt 2) ) €17 = (Vn(t, @) - €)2,
and where, for each time t € [0,T],
(4.31) 1A L2y < F Oy 1V B0 )

(4.28)

PRrROOF. The proof is based on the paralinearization of the Dirichlet-Neumann
operator (see Proposition 3.18), the Bony’s paralinearization formula for a product,
some simple computations and the commutator estimate proved in Section 2.4.

STEP 1: Paralinearization of the equation
O+ V- -V)V+al=0.

We begin by proving
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Lemma 4.9. We have
(O +Ty -V)V+To(+Te (0 + Ty - V)B =hy  with

4.32
(4.52) Wollze < F (Il oy 1V B)llge)-

PRrOOF. Using (2.10) and (2.4) we have V - VV =Ty - VV + A; where A =
> To,v Vi + R(0;V, V) satisfies
[All s S TVV oo IV s -
Similarly, (a — g)¢ = Ty—¢C + T¢(a — g) + R(¢,a — g) where
(4:33) IR0 = Dllge S I remsse o — gl e
and where |la — g|| js-1/2 is estimated by means of (4.18).
Since T¢g = 0, by replacing a by g + (0;B + V - VB) we obtain
TCCL = Tg(atB + V . VB)

= Tg(atB + Ty - VB) + TC(V — Tv) -VB.
As in the analysis of Ay above, we have

IV = Tv) - VBl e S IV Bl IVl -

Now we use ||T¢|| s g S €l poe S 0l gs1/2 (since s +1/2 > 14 d/2) to obtain

ITe(V =Tv) - VBl s S 0ll o3 IVBll oo VIl s -

ety
By Sobolev injection, this proves (4.32). O
STEP 2. We now commute (4.32) with (D,)® = (I — A)*/2. The paradifferential
rule (2.5) implies that

11T, (Da)* M gs—1/2 2 S llallwirzee ST+ lla = gllgs-z s
||[TCv <Dx>S]HHS,1/2_>L2 5 HCHWI/ZOO S, HCHHS—U%
1Ty - Vo (Da)* Mgsmr2 S TV e S IV s
Consequently, it easily follows from (4.19) and (4.32) that
(O +Tv - V)(Dy)* V +To(Dy)* ¢+ T¢(0r +Tv - V){(Dy)® B = ha

Hs+%7 ||(V¢ B)HH*)

for some remainder hy satisfying ||ha|| 2 < F(|[n|

On the other hand, Lemma 2.15 implies that
I1Te, 0 + Ty - VI{De)* B(t)ll 2 < F(In()l] ey - 1V, BYE) ] gs) -

Here we have used the fact that the L> norm of 0;( + V - V( is, since s > % + %,

estimated by means of the identity (4.11):

10:C + V- V| oo S VBl oo + [[Cll e [VV ][ oo
S IVB| g + nll IVV[ oo -

HTE
By combining the previous results we obtain

(0r + Ty - V)((De)* V + Te(D2)° B) + To(Dy)* ¢ = f1
where f; satisfies the desired estimate (4.31).
STEP 3. Paralinearization of the equation

O+ V- -V)(=Gn)V +(G(n)B +~.
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Writing (V —Tv) - V({ =Ty¢ -V + Z;-lzl R(0;¢,V;) and using (2.10) and (2.11), we
obtain

(4.34) 1V =Tv) - Vel oy SIVEN g 1V s S Ml g 1V s -

*

The key step is to paralinearize G(n)V + (G(n)B. This is where we use the analysis
performed in the previous Section. By definition of R(n) = G(n) — T\ we have

GV +¢G(n)B =T\U + F»(n,V, B),
where
(4.35) = [Tc, T\|B+ R(n)V +(R(n)B+ (¢ — Tc)T)\B.

The commutator [T¢, Ty|B is estimated by means of (2.5) which implies that
NTE DB yemy, S { MM () + Ma(OMN) | 1B e
Since Mf/Q(C) + Mll/Q(A) < IC(||77”H5+%) we conclude that

T, TABI ey < K0l ery s 1Blgge)-

1=
Moving to the estimate of the second and third terms in the right-hand side of (4.35),
we use Proposition 3.18 to obtain that the H*"z-norm of R(n)V and R(n)B satisfy

IRV Ol oy + IROE)BON ooy < FUnO ey 1V BYE) )

Since H7 is an algebra, the term (R(n)B satisfies the same estimate as R(n)B
does. It remains only to estimate (( — T¢)T\B. To do so we write

(¢ =T¢)ThB =T, ¢ + R(¢, ThB).
Thus (2.10) (applied with o = 0 and 8 = s — 1/2) implies that

1€ =TO)TABI 1 S ITABllco lICH -1 -

Using (2.4) this yields
(¢ = T)TABI| .

We thus end up with [Bl| ) < (Il ..y |(V.B) ).

< My(V) 1B

(e

% CHHbf% °

By combining the previous results, we obtain

(4.36) (8t + Ty - V)C =T\U + hs,
where Hh3||Hs_% < .7-"(||77||HS+%, [(V, B)||js)- As in the second step, by commuting
the equation (4.36) with (D;)® we obtain the desired result (4.30), which concludes

the proof. O

4.4. Symmetrization of the equations. We shall use Proposition 4.8. To
prove an L? estimate for System (4.29)-(4.30), we begin by performing a sym-
metrization of the non-diagonal part. Here we use in an essential way the fact that
the Taylor coefficient a is a positive function. Again, let us mention that this as-
sumption is automatically satisfied for infinitely deep fluid domain: this result was
first proved by Wu (see [51, 52]) and one can check that the proof remains valid for
any C1®-domain, with 0 < o < 1.
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Proposition 4.10. Introduce the symbols

7= Va, q:\/f,

(4.37) OUs + Ty - VU, + T,0s = F,
(4.38) 0i0s + Ty - Vs — T’yUs = Fy,

and set 05 = TyCs. Then

for some source terms Fy, F» satisfying

1), Fo ()l 2z < F (IO oy - [V B) @]

PROOF. Directly from (4.29)—(4.30), we obtain (4.37)—(4.38) with

Fl = fl + (Tfqu - Ta)(sa

Fy:=Tyfo+ (T,T\ — Ty)Us — [Ty, 00 + Tv - V] Gs.
The commutator between Tj; and d; + Ty - V is estimated by means of Lemma 2.15:
(4.39) ||[T4, 0+ Tv - V] CSHL?(Rd)

_1 _1

<K {Mo *(q) ||V”c*1+5 + M2 (Og+ V- VQ)} X ”CsHH—%(Rd) .
T, f2 is estimated by means of (2.4). The key point is to estimate (7,7, —T,)(s and
(T,T» — T,)Us. Since vq = a, the operator T,T, — T, if of order —1/2 since v is
a symbol of order 1/2, ¢ is of order —1/2, and since these symbols are CY/2 in .

Similarly, since g\ = +, the operator T, Ty — T, is of order 0. More precisely, by
using the tame estimate for symbolic calculus (see (2.5)), we obtain

b e S MM () + My P )My ),

—1/2 —1/2
ITTs = Tyl o ge S My (@M + My (@) M7 ().

17T~ Tl -

The above semi-norms are easily estimated by means of the C'/2 norms of ¢ = Vp
and a (given by the Sobolev injection and Proposition 4.6). O
We are now in position to prove an L? estimate for (U, 6s).

Lemma 4.11. There exists a non-decreasing function F such that

(4.40) 1Usll oo (jo.7:22) + 105l Lo 0,71:22) < F (Ms0) + TF(Ms(T)).

Remark 4.12. The fact that this implies corresponding estimates for the Sobolev
norms of 1, ¥, V, B is explained below in §4.5.

PROOF. Multiply (4.37) by Us and (4.38) by 65 and integrate in space to obtain

N0 + 105013} + (1) + (1) = (111),
where
(1) == (Tvy - VUs(1), Us(t)) + (T sy - VOs(t), 65(t)),
(II) = <T~/(t)es(t)a Us(t)> - <T'y(t) Us(t)a es(t»,
(II1) := (F1,Us) + (F»,6s).
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Then the key points are that (see point (#i7) in Theorem 2.6)
H(TV(t) v) +TV VHLQ—>L2 S HV( )HW1°°7

and

1Ty = (Do) || oo S M3 ((2).

We then easily obtain (4.40). O

4.5. Back to estimates for the original unknowns. Up to now, we only
estimated (Us, 0s) in L°°([0,T]; L? x L?). In this section, we shall show how we can
recover estimates for the original unknowns (n,, V, B) in L*(]0,T; H5 3 x H52 %
H? x H®). Recall that the functions Uy and 65 are obtained from (n, V, B) through:

Us := (D,)°V + T¢(D,)* B,

95 = M<Dm>s VT]

The analysis is in four steps:

(i) We first prove some estimates for (B, V,n) and the Taylor coefficient a in some
low order norms.

(ii) Then, by using the previous estimate of 65, we show how to recover an estimate
of the L*°([0,T7, Hs+%)—norm of .

(iii) Once 7 is estimated in LOO([O,T],HSJF%), by using the estimate for Us, we
estimate (B,V) in L*°([0,7T]; H®). Here we make an essential use of our
first result on the paralinearization of the Dirichlet-Neumann operator (see
Proposition 3.18). Namely, we use the fact that one can paralinearize the
Dirichlet-Neumann operator for any domain whose boundary is in H* for
some p > 1+d/2.

(iv) The desired estimate for 1 follows directly from the previous estimates for
n,V, B, the identity Vi = V + BVn and the fact that one easily obtain
an L>([0, T); L?)-estimate for 1.

We begin with the following lemma.

Lemma 4.13. There exists a non-decreasing function F such that,

(@A) Wl oy + B oy gty S FMs0) + TFQU(T)).

and, for any 0 <e <s—1-—4d/2,
(4.42) lall zoo o,r7,05) < F(Ms0) + VTF.

PROOF. The proof is based on the fact that it is easy to estimate the solution w
of a transport equation of the form Oyw + V - Vw = F. Indeed, by using the
estimates (4.18)—(4.19) for a, tame product rules in Sobolev or Holder spaces and
the identity 0;n + V - Vi = B, we readily obtain that there exists a non-decreasing
function C (depending only on parameters that are considered fixed) such that

la—gll .y =l0:B+V-VB| .1 <C(),

HaCHH,_% 10,V + V- VVI| .y <C(1),
10 +V - VnHH < C(1),
10ia+V - Val| e < C(1),

where C(t) = C([n(t)ll vy - 1V, B)(B)l| 72)-
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Let us come back to the proof of Lemma 4.13. To fix matters, we prove the esti-
mate for V only (the proofs of the estimates for B, n and a are similar) and we
begin by proving the Sobolev estimate. Using the obvious estimate ||h| . (.17 <
T ||All oo jo,7)» note that Fy := 9,V +V - VV satisfies

F <TF(Ms(T)).
I, ebrne 3y < TFORT)
Using Proposition 2.14 with 0 = s — 1, we estimate V in L>([0, T); HS_%). O

Lemma 4.14. There exists a non-decreasing function F such that

PRrROOF. Chose € and an integer N such that
d 1
0<e<s—1-_, (N+1)e > —.
2 2
Set R =1 —1T,,,1; to obtain
gs = Tl/qTqu + RCS?
where recall that (s = (D)% (. Consequently,
(= +R+ -+ R, Ty¢ + RN

By definition of ¢ = \/a/\, Theorem 2.6 implies that, for all © € R, there exists a
non-decreasing function 7 depending only on e and inf(; ;)c(0,77xre a(t; ) > 0 such
that,

IR g prue < F(lla®) gz 5 0]l crve)
and

T ja0) | s o gy < F () lyyra.e)-
Therefore

IVl ey = 11GH -y < Fllallce s Inllre) {I1TgCsll 2 + Gsl -1} -
Now it follows from Lemma 4.13 that
lall oo (o.13502) + WMl poe o,y + 1G5l oo o, 13501y < F (M 0) + TF(Ms(T)).
On the other hand, it follows from Lemma 4.11 that
HTqu”Loo([o,T};p) < F(Mso) + TF(Ms(T)).
This implies the desired result. ([l

It remains only to estimate (V| B).

Lemma 4.15. There exists a non-decreasing function F such that

(4.44) IOV Bl e 0,115y < F(F(Mso) + TF (Ms(T))).

PROOF. The proof is based on the relation between V and B given by Proposi-
tion 4.5.

STEP 1. Recall that U = V + T B. We begin by proving that there exists a non-
decreasing function F such that

(4.45) TN oo (o.13:11) < F(F (M) + TF(Mu(T))).

To see this, write
(D3)°U =Us + [(D,)*, T¢| B
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and use Theorem 2.6 to obtain
|[{D2)®, T¢] B[ 12 £ IICIIC*% 1Bl o1 -

Since, by assumption, s > 1+ d/2 we have ||| 1 < [[C]|
C.

< ||T}||HS+% and hence

1 s 1
3 H5 3
E

10Nl s < 11Usll 2 + Il

The three terms in the right-hand side of the above inequalities have been already
estimated (see Lemma 4.11 for Us, Lemma 4.13 for B and Lemma 4.14 for ). This
proves (4.45).

Hs+% ||BHH5—% .

STEP 2. Taking the divergence in U = V +T; B, we get according to Proposition 4.5,
Lemma 4.13 and Lemma 4.14:

divU = divV 4+ divI;B = divV + Tai, (B + T - VB

=GB+ Ticeraive B+

= —T\B+ R(n)B + Ticevdiv¢B +7

=TyB+ R(n)B + Taiv¢B + v
where, by notation,

q=—A+iC-&,

and

ey SFADV.B ey 1)
According to Proposition 3.18 (with 4 = s — 1) and Lemma 4.13, we deduce
(4.46) T,B = divU — Ty B — R(n)B — 7.
Now write

B=T.T,B+ (I ~T.T,)B
q q
to obtain from (4.46)
B=T,divU-T.v+ R_.B
q q
where

(4.47) R =T (—Tdivc - R(n)) + (I - T%Tq).

Notice now that according to Lemma 4.14, we control div{ = An in H 57%, and
since s > 1 + %, Tgiv¢ is an operator of order (both Sobolev and Holder) 1 —
Finally, ¢ = -\ +i(- & € Fi/g with M11/2(Q) < C'(HnHHH%). Moreover, g~
order —1 and we have

1
272
1

Mij(a™") < Ol yury)-
Consequently, according to (2.4) and (2.5), the operator R_. given by (4.47) is of
order —%. applying T(_xiic.c)-1 to (4.46), we get

B=W+R_B
where W := T% divU — T{y satisfies
Wl < F(F(Msp) + TF (Ms(T))).
Since R_. is an operator of order —% and since we have estimated the H*~2-norm
of B (see Lemma 4.13), we conclude that
1Bl < F(F(Ms) + TF (Ms(T))),

and coming back to the relation U = V + T: B we get that V satisfies the same
estimate. 0
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Lemma 4.16. There exists a non-decreasing function F such that

0 e o+ 3y < F (F (M) + TF(ML(D))).

PROOF. Since Vi = V4BV and since the L>°([0, T7; Hsfé)—norm of (Vn,V,B)
has been previously estimated, it remains only to estimate |9 ;oo (0,77, 22)-

Since
5 V-V Gy
' L+ |Vp2

the equation for ¢ can be written under the form

1 1
O +gn+ 5 Vel = 51+ |Val*) B2 = 0.
Therefore, since V = Vy — BV,
Op +V - Vb = dpp + |Vy|* — BV - Vo)

1 1
= —gn+ 5 [V + S (1 +|Val*)B* — BV - Vo
(4.48) 1

1 1
= —gn+ 5|V = BV’ = S B [Vnl* + 5 (1 + | Vn[*) B2

1 1
= — ~vi4y B2
gn + 5 + 5

The desired L? estimate then follows from classical results (see Proposition 2.14). [

5. Contraction

In this section we prove a contraction estimate for the difference of two solutions
which implies the uniqueness of solutions and a Lipschitz property in a lower norm
(H*~1, compared to the H* norm where the a priori estimates are established). This
phenomenon is standard for quasi-linear PDE’s. This choice of norm to establish the
contraction property is the result of a compromise as on the one hand, the highest
the norm is chosen the easiest the non linear analysis will be (as the norm controls
more quantities), while some loss of derivatives are necessary (in particular as far as
the Dirichlet—-Neumann operator is concerned), see Remark 5.3.

Theorem 5.1. Let (nj,v;), j = 1,2, be two solutions of (1.6) such that
(njs 65, Vs Bj) € CO([0, To]; H*3 x H™"2 x H* x H*),

for some fixzed Ty > 0, d > 1 and s > 1+ d/2. We also assume that the condition
(1.2) holds for 0 < t < Ty and that there exists a positive constant ¢ such that for
all 0 <t < Ty and for all z € R?, we have a;j(t,x) >c forj=1,2,t€[0,T]. Set

M; = sup ||(n;,v;,Vj, Bj)(t)

te[0,7)
ni=m-—1m, Y=Y1—1, V:=Vi-Vo, B=DB;— DBs.

Then we have

(5.0) (0. V. B,

41 Ll
HH”z xHT2 x Hsx Hs’

((O,T);Hsf%XHS*%stflesfl)
< K(My, Ma)[[(n,v,V, B) |i=o ||
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Let us recall that
(at—l-Vj‘V)Bj :aj—g,
(5.2) (O +V; - V)V +a;¢ =0,
(O + V- V)G = Gj)V; + GG (ny)Bj + v, G = Vnj,

where ~; is the remainder term given by (4.9). Let

N(T):= sup |(n,4,V,B)(#)]

s—1 5—% i—1 -1
t€[0,T] H " 2xH"2xHs~1xHSs

Our goal is to prove an estimate of the form
(5.3) N(T) < K(My, Ma)N(0) + T K(My, Ma)N(T),

for some non-decreasing function K depending only on s and d. Then, by choosing T’
small enough, this implies N(7T') < 2KC(M;, M2)N(0) for T} smaller than the mini-
mum of Ty and 1/2/C(My, Ms), and iterating the estimate between [17,271],..., [T —
Ty, Ty] implies Theorem 5.1.

5.1. Contraction for the Dirichlet-Neumann. The first step in the proof
of Theorem 5.1 is to prove a Lipschitz property for the Dirichlet-Neumann operator.
This was already achieved in a very weak norm in Theorem 3.10, and here we used
elliptic theory to improve the result.

Theorem 5.2. Assume that s > 1+ %. There exists a non-decreasing function F
such that, for all ni,me € H"2 and all f € HS, we have

(5:4) NG (m) = G fIl ey < FUn,m2)l yery) llm = m2ll ey 1 s -

Remark 5.3. We were unable to prove a similar estimate in a higher norm. On
the other hand, this estimate is in some sense stronger than Theorem 3.10. Indeed,
in view of Sobolev injections, the r.h.s. here does not control the Lipschitz norm of
(m — n2) which appears in Theorem 3.10.

PROOF. The proof follows closely that of Theorem 3.10 and we keep the nota-
tions pj, ¢j,v = P1 — P2, A introduced there.

Notice that, using the smoothing property of the Poisson kernel, we have

5.5 { (i) AL —AZ=p0., with supp B € RY x J, where J = [-1,0],
5.5

(’LZ) HﬁkHLQ(J,HS_l(Rd)) S f(”(nh 772)|HS+% ><}134»% ) Hnl - nQHHS*%(Rd)'
Recall that
(5.6) Gm)f = Ujlomo, Uj = Moj — Vap; - M.

Let us set U = Uy — Us. According to Lemma 3.14, Theorem 5.2 will follow from
the following estimate
(5.7)
HUHL?(J,HS*l) + H({)ZUHLQ(J,HS*Q) < f(||(7717772)”H5+%XH5+%) 11 s [l = TIZHH#% .
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According to (3.36) and (3.38) the estimate (5.7) will be a consequence of the fol-
lowing one

(5.8)
5

S 1Bl < F(I0m) ey gers) 1l lm =l oy where
k=1

By = Ajv, By = (Vu.p2)A3v, Bs= (A} )9252’ By =V,.(p1 — P2)A§§Z~51,
Bs = (vazpz)(l\% - A%)gl-

Since % is a variational solution, Proposition 3.21 with ¢ = s — 1 show that

Va2 @ill oo g5y + A5l e a1y < FInsl sy )L N
Since s > 1+ %l, it follows the from (3.33) that
5
(5.9) Y Billz2qmsy < Fm )l pory  ppee i)l = 2]l g 11l

=3
Since
IBill 2 ms=1) + [1Ball 2 ms=1y < FUI s m2)l ors | pror i) I Vazvlli2gr sy

using the estimate (5.9), we see that (5.8) will be a consequence of the following
Lemma. Therefore Theorem 5.2 will be proved if we prove the following result.

Lemma 5.4. We have

Va0l L2 ms-1y < F([[ (01, m2) Mine =2l oy I1f -

1 1
Hs+§ ><HS+7

Proor. Notice that v = q~51 — 52 is a solution of the problem
(5.10) v+ alAv+ B -Vou—y0.v=F, v|.—0=0
where N N N
F=(az —a1)Aps + (B2 — 1) - VO.2 — (72 — 71) 0202
and «; are given by (3.17). We would like to apply Proposition 3.21 with o = s — %
To this end, according to (2.37), we shall estimate the L?(J, HS~2(R%)) norm of F
and the Xfé(J) norm of V, ,v.

Estimate on F: Since s > 1+ % (thus 2s — 3 > 0) we may apply (2.13) with s; =
§—2,89=5—1,5=5—2. We get

H(Oél — 02)A¢s pper =K lor = a2l 2 g1y ‘A(bZHLOO JH5=2)
H(ﬁl — ) - V.2 L2(J,H*=2) < K161 = Bell 2 ms1) ’V(?Z@H (JH5=2)
H(’Yl —72)0: 05 peny = v =72l pag o2 Z@H JH1)

Then, using the product rule in Sobolev space (2.13), and (3.11), we obtaln

(5.11)  [len — @2l g2y ps—1y + 181 = Bell 2=y + 171 — Y2l L2 s—2)
< F(Omm)ll yors ors) I =m2ll oy -

Moreover from from Proposition 3.21 with ¢ = s — 1 we have

[958 sy < Ol 15 e
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It follows that
(5.12) 1Pl a2y < F Il y) s — el

Estimate of ”V:B,ZUHX— 1

by 7= (10

We claim that

(613) [ Vastll oy ) < FOOm ey ) I = ey 1 e

Since $j = U, +fwe have v = u; — u2. We begin by proving the following estimate.
There exists a non decreasing function F: Ry — R such that
(5.14) IVazvllrernzy) < FU0mm)ll ey gers) Im =2l oy £ e

For this purpose we use the variational characterization of the solutions u;. Setting
X = (z, z) we have

(5.15) /~Aim-Ai9 JidX = —/~Aif-Ai9Ji dx
Q Q

for all 0 € H“0(€2), where J; = |d.py].

Making the difference between the two equations (5.15), using (3.31) and taking
0 = v = uy — Uy one can find a positive constant C' such that

/~ A2 dX < C(A; + Ag + Az + Ay)
Q

where
Al /| A2 UQ||A1’U|J1dX AQ—/| A2 ’|A2ﬂ2|J1dX
Ag—/ |A%U||A20] | Jy — Jo| dX, A4_/| —A? f|yA1m JdX,
A5 /y —A?) HAQf\JldX A6:/~]A2fHA2v|\J1—J2\dX
Q

It follows from the elliptic regularity theorem that
Ar < A 25y 181 L2 @ 19502l Lo (5, (my)
< |rA1v||L2@ (1113 g 2 g gy 19 ey = 7203 -
Noticing that A' — A% = 5(0.p1)A} where 3 satisfies the estimate in (3.33) we obtain
Ag < HazleLoo(ﬁ)||ﬁHL2(§)|‘A2172‘|Loo(ﬁ)HA1U||L2(§)
Using (3.31), (3.33) and the elliptic regularity we obtain
Ag < Ay F I N vy roey) I =l ey e
Now we estimate Ag as follows. We have
Ag < A%l ) 201 2y 11 = Tl oy

Then we observe that
11 = J2ll 2@y < Cllm —mell
1A20] 2 < anl
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and we use the elliptic regularity. To estimate A4 and A5 we recall that f: e*(Da) .
Then we have

Hﬁaszm(Jde) < 1Bl 21 xrt) 1021 Loo (s xRA)-
Since ||azf||Loo(J><Rd) < HazzHLoo(LHs—l(Rd)) < |||l zrs(mey, using (3.33) we obtain
Ag+ A5 < HAlUHLz(Q)f(H(??h772)HH5+1) I = m2ll g I s -

The term Ag is estimated like As. Since % <s— = thls proves (5.14) .
To complete the proof of (5.13) we have to estimate ||V, 0| 1 . The esti-

Leo(I,H™2)
mate of ||V,v|| follows from (5.14)and from Lemma 3.14. To estimate

1
Lo(J,H™2)

||8ZUHLOO(JH7%) we have to use (5.14) and the equation satisfied by v. If we prove

that
(65.16) 02l < F(I )l ey ) I =l oy 1L

the result will follow again from Lemma 3.14. Recall that v satifies the equation
(5.10).

It follows that we have
1020l 22 -1y < llon Dl p2eg -1y + 1181 - VOl p2(g 1)
(5.17)
+ 00l L2y + 1 Fllp2sm-1)-
Since —1 < s — 2 (5.12) yields
TP HFHLQ(J,HS-Z) < f(\|(771a772)||Hs+%XHs+%) I = nell .y 1L

On the other hand, since s—5—1>0and -1 <s—5—-1—% (2 13) show that we
have

loa Avllpa(yp-1y < lleall o ;o3\ IVa¥llr2e e
181 - VOup2(gm—1) < |51l

I710:v] L2151y < ||71||Loo JHS_Q)Ha 20| 2 (g,02)-

oo JHrj 1 10; UHL2(JL2)

Using Lemma 3.24 and (5.14) we obtain eventually (5.16).

Now Lemma 5.4 follows from (5.12), (5.13) and Proposition 3.21 with o =s—3. [

Lemma 5.4 together with (5.8) prove (5.7) which in turn proves Proposition5.2. [

5.2. Paralinearization of the equations. We begin by noticing that, as in
the proof of Lemma 4.16, it is enough to estimate n, B, V. Indeed, the estimate

of the L>([0,T]; Hy~ 1/2 )-norm of ¢ is in two elementary steps. Firstly, since V; =
V; — B;Vn;, one can estimate the L>°([0, T]; H*~3/2)-norm of V4 from the identity

Vi) =V + BV + BoVn.

On the other hand, the estimate of the L>([0,T]; L2)-norm of ¢ follows from the
equation (4.48).
An elementary calculation shows that the functions

(=C—-C, V=Vi-Vo, B=DB;—D>
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satisfy the system of equations

0B+ Vi-VB+V - -VBy =a,
(5.18) OV +V1-VV + V. VVa +ax( +al =0,

HC+ Vo V(+V -V =Gm)V +GG(m)B +(G(n)B2 + R+,
where
(5.19) R =[G(m) — G(n2)] Vo + 1 [G(m) — G(n2)] Be,
and v = y1 — 72, 7; are given by (4.9)
Lemma 5.5. The differences (, B,V satisfy a system of the form

(O +V1-V)(V+GB) +ax = fi,

{ (O + V2 - V)= G(m)V — QG(m)B = fa,
for some remainders such that

11 21, (T x =8y = K(My, Ma)N(T).

(5.20)

PROOF. We begin by rewriting System (5.18) under the form
B+ Vi-VB=a+ Ry,
OV +V1-VV +as( + a1 = Ry,
0+ Vo -V(=Gm)V +GG(m)B+ R+~v+ Rs,
where R is given by (5.19), v = 1 — 72 and
Ry =-V-VBy, Ry=-V:-VVa, R3=V -V( +(G(n2)Bs
(From Theorem 5.2 one has

HRHLOO(OTHS 3 S < K(My, Ma)N(T).

Similarly, proceeding as in the end of the proof of Proposition 4.3, we have

I ey < KO MN(T).

On the other hand, since s — 1 > d/2, H*~! is an algebra and
V- VBa| o1 < K[Vl goa VB2l o1 < K[V || o || Ball s

and similarly
IV - VVallgor < KV o (1Vall s -
On the other hand, according to Theorem 3.17 we have
|G (n2) Ball gs—1 < C[n2ll gro+1/2) | Ball gs »
and hence
1CG(m2) Ball o5 < Cllln2ll grs+1/2) [ Ball s lIC]]
To estimate V' - V(1 we use the product rule (2.13) to deduce
V-Vl s < KVIgs VGl s < KV o Iml]
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By
Therefore we have,

IRl s + 1 Rall gsr + 1 B3l o3 <C {HnHHs_% + | Bl gs—1 + IIVHHH},
for some constant C' depending only on ”773'HHs+% NI Bjll s 5 IVjllys- The next step
consists in transforming again the equation. We want to replace a(; in the second
equation by

(OB+Vi-VB—Ri)(1.
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The idea is that this allows to factor out the convective derivative 9y + V5 - V .
Writing
(0:B+ V1 -VB)(1 = (0y + V1 - V)(BC1) — B(0y + V1 - V)(1
we thus end up with
(5.21) (O +V1i-V)(V+GB)+ax =R+ B0+ Vi - V)G + Rs.
Since
(O +V1-V)G1 =Gn)Vi + G G(m)Br + 71,
we have
1@+ Vi - V)l < F (I BVl ey o)

By using this estimate and our previous bounds for Rj, Re, we find
IBGa+ B0+ Vi V)1 + Rallgems < C{ oy + 1Bl e + Vs }

for some constant C' depending only on H77j||HS+% 1Bl ggs > IV}l gs- Notice that here,

as we used the equation satisfied by (1, it was important to have (9; + Vi - V) in the
Lh.s. of (5.21) and not (9; + V2 - V), and this algebraic reduction required some care
in the previous step. O

5.3. Estimates for the good unknown. We now symmetrize System (5.20).
We set I = [0,T].

Lemma 5.6. Set
=1/ Mag, ¢:= Tm(V +GB), v:= T\/@C.

Then
(5.22) (O +Tvy - V) + T = g1,
(5.23) (O + T, - V)9 = Top = go,
where

10159 g3 e 3, < KO Mo)N(T),
PrROOF. We start from Lemma 5.5. By using Proposition 2.10, one can re-

place V1 -V by Ty, - V and as( by T5,(, modulo admissible remainders. It is found
that

(5.24) O+ Ty, - V)(V+OB) 4+ Ty,( = f{,
for some remainder f] such that

Hf{HLOO(I;HS—l) < K(My, Ma)N(T).

Similarly, one can replace V2-V by Ty, -V. According to Proposition 3.18, with ¢ = %,
we have

1G(m)V =T\, V|| yt |G(m)B —Tx, B < K(My)N(T),

3
Loo(LH 2)

and according to Proposition 2.10, with y =r =5 — %, nw=s-— %,

3
Leo(IH*" 2

GG B = T T Bl o, ) ye-y) < KM)N(T).
We deduce
(5.25) (O + Ty, - V)¢ = T\ V = T, Ta, B = [,
where

A=V + VPR — (V- €)2,
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and

12l o gty < (M, Ma)N(T),

Now, according to Lemma 2.16, (3.42) and (4.9) and we find that

(526) ”[T\/H7 (8t + TVl ' V)]||HS_1—>H57%

< K(M) (MG (VD) + ME (80 + Vi - V)V/AD) < K/(My)

and similarly, according to Lemma 2.16 and (4.19),

(5:21) Tz @+ Ty Vs et

< K(Ms) (MQ(Vaz) + MY((0r + Va - V)az)) < K'(Ms),

which implies

(5.28) (O 4+ Tvy - V)T 5 (V + OB) + T 5 TayC = f1
(5.29) (B + Tvy - V)T yazC — T yaz (Tn,V — T, Tn, B) = [,
where

. . d
According to (2.5), (3.42) and (4.18), since s > 1+ §,

T‘\/xT‘a2 — TmT\/@ is of order O,

which implies (5.22). On the other hand, according to (2.5) and (3.42) the op-
erators T¢, T\, — T,¢, and Ty, T, — Th,¢, are of order 1/2 (with norm controlled
by K(M;i), which allows to commute T 5 and Tg, in (5.29)). Now, according

to Proposition 2.10 (withy =r=s— 3, u=s—1)

1T, B = QB oy < K(M)[| Bl -
Which implies (5.23) (using again (2.5)). O
Recall that we have set

(5.30) N(T) :=sup 100, Vo BYO o=t o s gt gt

Lemma 5.7. Set
/ ._
N'(T) = sup {190 g + (O] g -

We have
(5.31) N'(T) < K(My, M2)(N(0) + TN(T)).

PROOF. We first prove that
(5.32) N'(T) < K(My, My)(N'(0) + TN(T) + TN'(T)).
The desired estimate (5.31) then follows from the fact that
(5.33) N'(0) < K(My, M2)N(0), N'(T) < K(My, M2)N(T).

which follows from the continuity of paradifferential operators in the Sobolev spaces
(see Theorem (2.6)) and the fact that H5~'(R?) is an algebra since s > 1 + %.
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The proof of (5.32) is based on a classical argument : we commute (D,)5 3/
to (5.22)-(5.23) and perform an L? estimate. Then the key points are that (see
point (#4i) in Theorem 2.6)
(T, - V)" + Tv; - V| 122 S WVillwree

T2 = (Te) Nl o2 < F (I 0m,m2) sz )

and that the commutators [Ty, -V, (D)5=3/2] are, according to (2.5), of order s — 3.

(5.34)

Notice that since (¢, 9) € CL([0, Tp); Hs_%), we do not need to regularize the equa-
tions. 0

Finally, let us notice that an elementary argument allows to control lower norms
of (V,B) (and hence also of V + (1 B):

(5.35) IViB)l gty < KM M) (N(0) + TN(T)).

Indeed, (the proof of) Theorem 5.2 implies that (with a = a; — a2)

(5.36) 6l g, < KO, M)N(T),

Since ;B + V1 - VB =a —V - VBy, we have
(5.37)

T
1Bl (rspz-2) < 1B(O) | o2 + /0 (Vi VBl g2 + lall -2 + |V - V Bal| o )
< IB(O) | o2 + TK(My, Ma)N(T).

Similarly, we have
(5.38) IVl oo (2,25-2) < [IV(0)|| rs—2 + TK(My, M2)N(T).
Now we have
V+GB= Tmﬂgo + (Id — T\/HAT\/H)(V + (1B),
where according to (2.5), the operator Id — T 1 Tyxy i of order—1/2. Hence, we
deduce from (5.33), (5.31), (5.35), (5.38) and a bootstrap argument
(5.39) |V + ClBHLoo([;Hsfl) < K(My, M2){N(0)+TN(T)}.

5.4. Back to the original unknowns. Recall that I = [0,T] (resp. J =
(—1,0)) is an interval in the ¢ variable (resp. in the z variable).

Lemma 5.8. There holds

(5.40) < K(My, M2){N(0) + TN(T)}.

L[ Pp—,

PRrROOF. From the equation 0;n; = G(n;)y; we have,

t t
) =)+ [ Gty + [ (Glm) = Glm)) ottt
from which we deduce according to Theorem 5.2,

GA) il < 19O s + T M)l ey

Let R = Id — T 1 T /5, which, according to (2.5) and (4.18) is an operator of
Vaz
order —1 (with norm estimated by K(M>)). We have

Vn=RVn+T 1 9.
Vaz
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Therefore we deduce from (5.41), (5.31) and a bootstrap argument,

1Vl -3, < KM, M) (N(0) + TN(T)).

Combining with (5.41) gives Lemma 5.8. O

We are now ready to estimate (V, B).
Proposition 5.9. There holds
(5.42) 1V, B e 11ty < KMy, Ma) [N (0) + TN(T)}.
The proof will require several preliminary Lemmas. We begin by noticing that it is
enough to estimate B. Indeed, if
1B oo 1,151y < K(My, Ma){N(0) + TN(T)}.

then, by using the triangle inequality, the estimate (5.39) for V + (3 B implies that
V' satisfies the desired estimate.
Let v = 51 — 52, where gj is the harmonic extension in  of the function 1; and set
_ 82‘752

a,2,02

by : , w=uv—"Thp.

We notice that

(5.43) wlsmo = ¥ — Tpy1.

We first state the following result.

Lemma 5.10. We have

(5.44) 19 — Tpynll Lo (115 < (M, M) {N(0) + TN(T)}.

PROOF. Indeed, the low frequencies are estimated by (5.35), while for the high
frequencies, we write

V(¥ = Tgyn) =V — T,V — Tup,n

= Vi1 — Vipo =T,V —Typ,n

=Vi+BiVm — Vo — BoVip — T,V —Typ,n

=V + (Bl — BQ)V’I?l + Bz(an — V772) —TB,Vn —1TvB,n

=V + OB+ (B —Tp,)Vn — Typ,n,
where we used that, by definition, Vi); = V; + B;Vn; and ¢; = V.
The main term V + (1B is estimated using (5.39), while the two other terms are
estimated using (5.40), the a priori estimate on B and the product rules (2.9)
and (2.11). O
We next relate w, p and B.

Lemma 5.11. We have

B— [ <8Zw = (b2 = Tp,)0:p + Tf)zlwpﬂ ‘
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PrROOF. Write

B, By — .01 _ 0.
0:p1 Ozp2 12=0
— 8Z1p1 (0-31 —az¢2)+(a:pl - 5Z1p2) 0.0,
1 1 D.n
T 0 T Bupr 0pn 7 =0
and replace v by w + T3, p in the last expression. O

Lemma 5.12. Recall that by := BZ@ . For k=0,1,2, we have
st

|05, < C el sy

z

CO([=1,0), Lo (1"~ 2 )
for some constant C' depending only on HU?HHer%'

PROOF. We estimate V,.¢y in CO([—1,0], L(I, H5"2)) by using the elliptic
regularity (see Proposition 3.21 and Remark 3.20). Now, using the equation satisfied
by ¢2 and the product rule in Sobolev spaces, we successively estimate 62¢2 and

82’(152. This proves the lemma since the derivatives of po are estimated directly from
the definition of ps. O

Notice that n and hence p are estimated in L°(I; Hs_l) (see (5.40)). Now, use
Lemma 5.12 and Proposition 2.10 (applied with s > 1+d/2, vy =s—1,r=s—1/2,
@ =s—3/2) to obtain

1(b2 = Tb,)0zpll o1 S 02l o Ml 751 -
Now, (2.12) implies that

I To.00ll o1 S NIb2ll o172 Ill o1
and hence, to complete the proof of the Proposition 5.9, it remains only to estimate
O w|,—o in L°°(I, H5~1). This is the purpose of the following result.
Lemma 5.13. Fort € [0,T] we have

(5.45) IV wllcog1,00,ms-1) < K(My, Ma){N(0) + TN(T)}.

PRrooOF. To prove this estimate, we are going to show that w satisfies an elliptic
equation in the variables (z, z) to which we may apply the results of Proposition 3.21.
We have

v+ 01 v + By - V0 = mO.v = (1 = 12)0:02 + P,
where (see (5.10))

Fi = (a2 — a1)Ads + (B2 — B1) - V. 60.
We claim that for ¢ € [0, T

(5.46) | Fy(t < K(My, M2){N(0) + TN(T)}.

) .)”LQ(J,HS_%) —
The two terms in F) are estimated by the same way. We will only consider the first

one. Using the product rule (2.13) with sy = s — %,sl =s—1,59 =s— % we can
write for fixed ¢

Iz = ozl)AgzllL2 < Cllaz = a1l 21 102l
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Then we use (5.11), Proposition 3.21 with 0 = s — § and Lemma 5.8 to conclude
that the term above is estimated by the right hand side of (5.46).

Now we introduce the operators
Pj = 63+ajA+ﬂj-V82, Lj:Pj—yj&z, (]:1,2)

With these notations we have ~; = fijj p; and

(5.47) Liv = (11 — 72)0:02 + F1.
Moreover
1 1 1 1 1
o= ——Pip— ——Pypy = ——P +( . >P __—~ P
Y1 — 72 8.1 101 8.5 202 8.0 101 0.1 . 101 .09 202
1 1 1
Pip+ P, — P +( - )P
D.pa P 6zp2( 1= Pl 0.p1  0O.p2 1
1 1 1
- _—p +( ——)P + B,
0.p2 1P 0.p1 O:p2 oL
where
1
(5.48) F) = ((041 —a2)Apz + (61— [2) - Vazp2)-
82’92
Now we observe that
1 1 0,p P 0
azpl 8zp2 azp? azpl 8zp2

which implies
0:p 1

1
1= 72 = Pip— 1+ By =
S 0:2p2

Plugging this into (5.47) yields

(5.49) Lyv —ba(L1p) = F1 + (azﬁgZ)FQ'
We claim that for fixed t we have

(550 [@dFa )]

Lip+ F>.

page-dy < KM M2){N(0) + TN(T)}.

Indeed we first use the product rule (2.13) to write

|0-02)Fut. )| Y [CRR G ) TUDT F—
By the elliptic regularity the first term in the right hand side is bounded by K(My3).
It is therefore sufficient to bound the second one. We have, for fixed ¢
1
0.p2

3
L2(JH" 2

(a1 — a2)Apy

< K(Mz)ller — A '
L2(J’Hs—%)_ (Mz)llay Oz2||L2(J,H 1)|| P2||LOO(J7HS_%)

Using (5.11) and (3.11) we see that the right hand side is bounded by the right hand
side of (5.50). The second term in F5 is estimated by the same way.

To estimate v — Ty, p we paralinearize in writing

(551) bQ(Llp) = Tbngp + TLlpb2 + F3.

We claim that for ¢ € [0, T
(5.52) 1F5(t,-) < K(My, M2){N(0) + TN(T)}-
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To prove it we shall use (2.9) with a« = s — %,623—2. Then a + 3 — % > s—%. It
follows that, for fixed z and ¢t we have

1E5 (- 2)l omg < Clib2ll oy [1Lapll o2

.
Therefore
HF?)(t? )HL2(J,H57%

Now as we have seen before we have ||ba(t-)

) < Cb2|| )||L1P||L2(J,Hs—2)-

HLOO(JHS*%) < IC(MQ) and due to the
smoothing of the Poisson kernel HLlpHLz(‘LHSQ) < K(MI)HUHHS%- The estimate

(5.52) thus follows from (5.40).
Setting Fy = T}, ,b2 we claim that for fixed ¢ we have
(5.53) [F4(t, )l < K(My, M2){N(0) + TN(T)}.

Loo(J,H*" 3

L2(J,H*3)
To see this we use (2.12) with sp = s — 3,51 =5 — 2,5 = s — 1. We get

2
[Fa(t, ) ) S Lap(t 2= b2t )
and (5.53) follows from estimates used above.
Now according to (5.49), (5.51) we have

Liv — Ty, Lip = Fy + (0.00) Fy + F3 + F.

We claim that we have

HLQ(L,,Hsfg HLOO(J’H%%)

Llszp = szLlp — F5
with
| F5(t, ')||L2(J7HS‘%) < K(My, M2){N(0) +TN(T)}.
To see this we use (5.12) and (2.12). It follows then that we have
Lyw = Ly(v = Ty,p) = Py + (0:00) Fy + Py + Fy + Fs := F

where || F(t, ')HLQ(JHS*%) is bounded by the right hand side of (5.53).

Using (5.43) and Lemma 5.10 we may then apply to w Proposition 3.21 with 0 = s—1
to conclude the proof of Lemma 5.13 and thus that of Proposition 5.9. O

6. Well-posedness of the Cauchy problem

Here we conclude the proof of Theorem 1.2 about the Cauchy theory for the system
Om + G(n)yp =0,
(6.1) 1 (Vn -V + G(n)lb)2

=0.
2 1+ |Vnl?

1
Oph + gn + B WWZ -

We previously proved the uniqueness of solutions (see Theorem 5.1). To complete
the proof of Theorem 1.2, it remains to prove the existence. We obtain solutions to
the water waves system as limits of smooth solutions to approximate systems. This
approach has been detailed in [1], where we considered the problem with surface
tension. The analysis is actually easier without surface tension. One reason is that
with surface tension, we needed in [1] to use some mollifiers with various properties
(since we need good estimates for commutators with the principal part of the oper-
ator). Here it is possible to use a simpler regularization of the equations since the
reduced paradifferential system involves only operator of order less than or equal
to 1.
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To explain the scheme of the proof, we first consider the case without bottom (T' = ).
Then we know, from previous results (see Wu [51, 52|, Lannes [37], Lindblad [39]),
that the Cauchy problem is well-posed for smooth initial data. Then, one can
obtain the existence of smooth approximate solutions in a straightforward way : by
smoothing the initial data. Namely, denote by .J. the usual Friedrichs mollifiers,
defined by J. = j(¢D,) where j € C5°(R%), 0 < 7 < 1, is such that

€ =1 for ¢ <1, 5(§) =0 for [¢]>2.

Set 1§ = Jobo and 15 = Jemo. Then (¥§,n5) € H*®(R?)? and the Cauchy problem
for (6.1) has a unique smooth solution (1%, %) defined on some time interval [0, 7).
It follows from Proposition 4.1 that there exists a function F such that, for all
e € (0,1] and all T' < T, we have

(6.2) ME(T) < F(F(Mso) + TF(ME(T))),

with obvious notations. Then by standard arguments, we infer that the lifespan
of (ne, %) is bounded from below by a positive time 7j independent of € and that
we have uniform estimates on [0, Tp]. The fact that one can pass to the limit in the
equations follows from the previous contraction estimates (see (5.1)), which allows us
to prove that (., e, Be, V) is a Cauchy sequence (this argument has been explained
in [1]). Notice that these estimates were proved under the assumption a(t) > ag/2.
This actually follows from the a priori bound (6.2), (4.18), (4.19) and a bootstrap
method. Then, it remains to prove that the limit solution has the desired regularity
properties. Again, this follows from the analysis in [1].

In the case with a general bottom, to apply the strategy explained above, the only
remaining point is to prove that, for smooth enough initial data, the Cauchy problem
has a smooth solution. This can be proved using a parabolic regularization of the
equations. For the sake of conciseness, we omit the details.

References

[1] Thomas Alazard, Nicolas Burq, and Claude Zuily. On the water waves equations with
surface tension. Duke Math. J., 158(3):413-499, 2011.

[2] Thomas Alazard, Nicolas Burq, and Claude Zuily. Strichartz estimates for water waves.
Ann. Sci. Ec. Norm. Supér. (4), 44(5):855-903, 2011.

[3] Thomas Alazard, Nicolas Burqg, and Claude Zuily. The water waves equations: from
Zakharov to Euler. To appear in the proceedings of the conference Phase space analysis,
2011, Bertinoro, Italie.

[4] Thomas Alazard and Guy Métivier. Paralinearization of the Dirichlet to Neumann op-
erator, and regularity of three-dimensional water waves. Comm. Partial Differential
Equations, 34(10-12):1632-1704, 2009.

[5] Serge Alinhac. Paracomposition et opérateurs paradifférentiels. Comm. Partial Differ-
ential Equations, 11(1):87-121, 1986.

[6] Serge Alinhac. Interaction d’ondes simples pour des équations complétement non-
linéaires. Ann. Sci. Ecole Norm. Sup. (4), 21(1):91-132, 1988.

[7] Serge Alinhac. Existence d’ondes de raréfaction pour des systémes quasi-linéaires hy-
perboliques multidimensionnels. Comm. Partial Differential Equations, 14(2):173-230,
1989.

[8] David M. Ambrose and Nader Masmoudi. The zero surface tension limit of two-
dimensional water waves. Comm. Pure Appl. Math., 58(10):1287-1315, 2005.

[9] Hajer Bahouri and Jean-Yves Chemin. Equations d’ondes quasilinéaires et estimations
de Strichartz. Amer. J. Math., 121(6):1337-1377, 1999.

[10] Hajer Bahouri, Jean-Yves Chemin, and Raphaél Danchin. Fourier analysis and non-
linear partial differential equations, volume 343 of Grundlehren der Mathematischen
58



Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidel-
berg, 2011.

[11] Claude Bardos and David Lannes. Mathematics for 2d interfaces. To appear in
Panorama et Synthéses.

[12] Klaus Beyer and Matthias Giinther. On the Cauchy problem for a capillary drop. I.
Trrotational motion. Math. Methods Appl. Sci., 21(12):1149-1183, 1998.

[13] Jean-Michel Bony. Calcul symbolique et propagation des singularités pour les équations
aux dérivées partielles non lindaires. Ann. Sci. Ecole Norm. Sup. (4), 14(2):209-246,
1981.

[14] J. Boussinesq. Sur une importante simplification de la théorie des ondes que produisent,
a la surface d’un liquide, I’emersion d’un solide ou 'impulsion d’un coup de vent. Ann.
Sci. Ecole Norm. Sup. (8), 27:9-42, 1910.

[15] Angel Castro, Diego Cérdoba, Charles Fefferman, Francisco Gancedo, and Javier
Gomez-Serrano. Finite time singularities for the free boundary incompressible Euler
equations. arXiv:1112.2170.

[16] Angel Castro, Diego Cérdoba, Charles Fefferman, Francisco Gancedo, and Maria Lopez-
Fernandez. Turning waves and breakdown for incompressible flows. arXiv:1011.5996.

[17] Jean-Yves Chemin. Calcul paradifférentiel précisé et applications a des équations aux
dérivées partielles non semilinéaires. Duke Math. J., 56(3):431-469, 1988.

[18] Jean-Yves Chemin. Perfect incompressible fluids, volume 14 of Oxford Lecture Series in
Mathematics and its Applications. The Clarendon Press Oxford University Press, New
York, 1998. Translated from the 1995 French original by Isabelle Gallagher and Dragos
Iftimie.

[19] Robin, Ming Chen, Jeremy L. Marzuola, Daniel Spirn and J.Doug Wright. On the
regularity of the flow map for the gravity-capillary equations. arXiv:1111.5361v2.

[20] Demetrios Christodoulou and Hans Lindblad. On the motion of the free surface of a
liquid. Comm. Pure Appl. Math., 53(12):1536-1602, 2000.

[21] Antonio Cordoba, Diego Cordoba, and Francisco Gancedo. The Rayleigh-Taylor con-
dition for the evolution of irrotational fluid interfaces. Proc. Natl. Acad. Sci. USA,
106(27):10955-10959, 2009.

[22] Jean-Frangois Coulombel, Alessandro Morando, Paolo Secchi and Paola Trebeschi. A
priori estimates for 3D incompressible current-vortex sheets. Comm. Math. Phys. 311
(2012), no. 1, 247275.

[23] Daniel Coutand and Steve Shkoller. Well-posedness of the free-surface incompressible
Euler equations with or without surface tension. J. Amer. Math. Soc., 20(3):829-930
(electronic), 2007.

[24] Daniel Coutand and Steve Shkoller On the finite-time splash and splat singularities for
the 3-D free-surface Euler equations. arXiv:1201.4919.

[25] Walter Craig. An existence theory for water waves and the Boussinesq and Korteweg-
deVries scaling limits. Communications in Partial Differential Equations, 10(8):787—
1003, 1985.

[26] Walter Craig and David P. Nicholls. Travelling two and three dimensional capillary
gravity water waves. SIAM J. Math. Anal., 32(2):323-359 (electronic), 2000.

[27] Walter Craig, Ulrich Schanz, and Catherine Sulem. The modulational regime of three-
dimensional water waves and the Davey-Stewartson system. Ann. Inst. H. Poincaré
Anal. Non Linéaire, 14(5):615-667, 1997.

[28] Walter Craig and Catherine Sulem. Numerical simulation of gravity waves. J. Comput.
Phys. 108(1):7383, 1993.

[29] Walter Craig and C. Eugene Wayne. Mathematical aspects of surface waves on water.
Uspekhi Mat. Nauk, 62(3(375)):95-116, 2007.

[30] Bjorn E.J. Dahlberg and Carlos E. Kenig, Harmonic Analysis and PDE’s, 1985-1996,
http://www.math.chalmers.se/Math/Research/Geometry Analysis/Lecturenotes/

[31] Pierre Germain, Nader Masmoudi, and Jalal Shatah. Global solutions for the gravity
water waves equation in dimension 3. Annals of Mathematics, 175(2):691-754, 2012.

59



[32] Pierre Germain, Nader Masmoudi, and Jalal Shatah. Global existence for capillary
water waves. arXiv:1210.1601.

[33] Yan Guo and Ian Tice. Local well-posedness of the viscous surface wave problem without
surface tension. Preprint 2011.

[34] Lars Hormander. Lectures on nonlinear hyperbolic differential equations, volume 26 of
Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag,
Berlin, 1997.

[35] David Lannes. A stability criterion for two-fluid interfaces and applications. preprint,
arXiv:1005.4565.

[36] David Lannes. water waves: mathematical analysis and asymptotics. to appear.

[37] David Lannes. Well-posedness of the water waves equations. J. Amer. Math. Soc.,
18(3):605-654 (electronic), 2005.

[38] Gilles Lebeau. Régularité du probleme de Kelvin-Helmholtz pour 1'équation d’Euler
2d. ESAIM Control Optim. Calc. Var., 8:801-825 (electronic), 2002. A tribute to J. L.
Lions.

[39] Hans Lindblad. Well-posedness for the motion of an incompressible liquid with free
surface boundary. Ann. of Math. (2), 162(1):109-194, 2005.

[40] Nader Masmoudi and Frédéric Rousset. Uniform regularity and vanishing viscosity limit
for the free surface Navier-Stokes equations. arXiv:1202.0657.

[41] Guy Métivier. Para-differential calculus and applications to the Cauchy problem for
nonlinear systems, volume 5 of Centro di Ricerca Matematica Ennio De Giorgi (CRM)
Series. Edizioni della Normale, Pisa, 2008.

[42] Yves Meyer. Remarques sur un théoréme de J.-M. Bony. In Proceedings of the Seminar
on Harmonic Analysis (Pisa, 1980), number suppl. 1, pages 1-20, 1981.

[43] V. I. Nalimov. The Cauchy-Poisson problem. Dinamika Splosn. Sredy, (Vyp. 18 Di-
namika Zidkost. so Svobod. Granicami):104-210, 254, 1974.

[44] Mikhail V. Safonov. Boundary estimates for positive solutions to second order elliptic
equations. arXiv:0810.0522

[45] Monique Sablé-Tougeron. Régularité microlocale pour des problemes aux limites non
linéaires. Ann. Inst. Fourier (Grenoble), 36(1):39-82, 1986.

[46] Jalal Shatah and Chongchun Zeng. Geometry and a priori estimates for free boundary
problems of the Euler equation. Comm. Pure Appl. Math., 61(5):698-744, 2008.

[47] Jalal Shatah and Chongchun Zeng. A priori estimates for fluid interface problems.
Comm. Pure Appl. Math., 61(6):848-876, 2008.

[48] Jalal Shatah and Chongchun Zeng. Local well-posedness for fluid interface problems.
Arch. Ration. Mech. Anal., 199(2):653-705, 2011.

[49] Marvin Shinbrot. The initial value problem for surface waves under gravity. I. The
simplest case. Indiana Univ. Math. J., 25(3):281-300, 1976.

[50] Daniel Tataru. Strichartz estimates for operators with nonsmooth coefficients and the
nonlinear wave equation. Amer. J. Math., 122(2):349-376, 2000.

[61] Sijue Wu. Well-posedness in Sobolev spaces of the full water waves problem in 2-D.
Invent. Math., 130(1):39-72, 1997.

[52] Sijue Wu. Well-posedness in Sobolev spaces of the full water waves problem in 3-D. J.
Amer. Math. Soc., 12(2):445-495, 1999.

[63] Sijue Wu. Almost global wellposedness of the 2-D full water waves problem. Invent.
Math., 177(1):45-135, 20009.

[54] Sijue Wu. Global wellposedness of the 3-D full water waves problem. Invent. Math.,
184(1):125-220, 2011.

[65] Sijue Wu. On a class of self-similar 2D surface water waves. arXiv:1206.2208

[56] Hideaki Yosihara. Gravity waves on the free surface of an incompressible perfect fluid
of finite depth. Publ. Res. Inst. Math. Sci., 18(1):49-96, 1982.

[67] Vladimir E. Zakharov. Stability of periodic waves of finite amplitude on the surface of
a deep fluid. Journal of Applied Mechanics and Technical Physics, 9(2):190-194, 1968.

[58] Ping Zhang and Zhifei Zhang. On the free boundary problem of three-dimensional
incompressible Euler equations. Comm. Pure Appl. Math., 61(7):877-940, 2008.

60



	1. Introduction
	2. Paradifferential calculus
	3. The Dirichlet-Neumann operator
	4. A priori estimates in Sobolev spaces
	5. Contraction
	6. Well-posedness of the Cauchy problem
	References

