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Abstract. In [Do], Doi proved that the L2
tH

1/2
x local smoothing effect for Schrö-

dinger equations on a Riemannian manifold does not hold if the geodesic flow has
one trapped trajectory. We show in contrast that Strichartz estimates and L1 → L∞

dispersive estimates still hold without loss for eitΔ in various situations where the
trapped set is hyperbolic and of sufficiently small fractal dimension.

The influence of the geometry on the behaviour of solutions of linear or non-
linear partial differential equations has been widely studied recently, and especially
in the context of wave or Schrödinger equations. In particular, the understanding of
the smoothing effect for the Schrödinger flow and Strichartz type estimates has been
related to the global behaviour of the geodesic flow on the manifold (see for example
the works by Doi [Do] and Burq [Bu]). Let us recall that, for the Laplacian Δ on a
d-dimensional non-compact Riemannian manifold (M, g), the local smoothing effect
for bounded time t ∈ [0, T ] and Schrödinger waves u = eitΔu0 : M × R → C is the
estimate

‖χeitΔu0‖L2((0,T );H1/2(M)) ≤ CT ‖u0‖L2(M) , ∀u0 ∈ L2(M) ,

where CT > 0 is a constant depending a priori on T , and χ is a compactly supported
smooth function (the assumption on χ can of course be weakened in many cases,
e.g. for M = R

d) [CoS]. In other words, although the solution is only L2 in space
uniformly in time, it is actually half a derivative better (locally) in an L2-in-time
sense. For its description in geometric settings, the picture now is fairly complete:
the so called “nontrapping condition”, stating roughly that every geodesic maximally
extended goes to infinity, is known to be essentially necessary and sufficient (modulo
reasonable conditions near infinity) [Bu].

Another tool for analyzing non-linear Schrödinger equations is the family of so-
called Strichartz estimates introduced by [Str]: for Schrödinger waves on Euclidean
space R

d with initial data u0,

‖eitΔu0‖Lp((0,T );Lq(Rd)) ≤ CT ‖u0‖L2(Rd) if p, q ≥ 2 , 2
p + d

q = d
2 , (p, q) �= (2,∞) .

(0.1)
If supT∈(0,∞) CT < ∞, we will say that a global-in-time Strichartz estimate holds.
Such a global-in-time estimate has been proved by Strichartz for the flat Laplacian on
R
d while the local-in-time estimate is known in several geometric situations where
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the manifold is non-trapping (asymptotically Euclidean, conic or hyperbolic); see
[BoT], [Bo3], [HaTW], [StT]. On the other hand, it is clear that such a global-
in-time estimate cannot hold on compact manifolds, for it suffices to consider the
function u0 = 1. The situation is similar for the non-compact case in the presence
of elliptic (stable) non-degenerate periodic orbits of the geodesic flow: as remarked
by M. Zworski, the quasi-modes constructed by Babič [B] and Pyškina [Py] (see also
the work by Ralston [R]) show that, for Schrödinger solutions, some loss must occur
as far as Strichartz (or smoothing) estimates are concerned; and moreover, that
no Strichartz estimates can be true globally in time in the presence of such orbits.
On the other hand, Burq–Gérard–Tzvetkov [BuGT1] proved that (0.1) holds on
compact manifolds for finite time if one replaces ‖u0‖L2(M) by ‖u0‖H1/p(M), meaning
that a Strichartz estimate is satisfied if one accepts some loss of derivatives. It is
however certainly not optimal in general since Bourgain [Bou] proved that, for the
flat torus (R/2πZ)2, the Strichartz estimate for p = q = 4 holds with ε loss of
derivatives for any ε > 0. Another striking example has been given by Takaoka
and Tzvetkov [TT] by adapting the ideas of Bourgain, namely the case of the two-
dimensional infinite flat cylinder S1×R where (0.1) holds (with no loss of derivatives)
if p = q = 4; note that this manifold is trapping. An example with a repulsive
potential V (x1, x2) = x2

1−x2
2 has also been studied by Carles [Ca], who proved that

global-in-time Strichartz estimates with no loss hold in this case. To summarize,
it is not really understood when (i.e. under what geometric conditions) a loss in
Strichartz estimates must occur, and if it does, how large that loss must be.

The purpose of this article is precisely to give some examples of Riemannian
manifolds where trapping does occur (and consequently loss is unavoidable for the
smoothing effect), but nevertheless, since the dynamics are hyperbolic near the
trapped set, we are able to prove (local-in-time) Strichartz estimates without loss
for Schrödinger solutions.

The first example, which we treat in section 1, is the case of a convex co-compact
hyperbolic manifold of dimension d = n+1, with a limit set of Hausdorff dimension
δ < n/2. The simplest example of such a manifold is the two-dimensional infinite
hyperbolic cylinder with one single trapped geodesic. In this case, the calculations
are quite explicit, representing the Schrödinger kernel as an average over the group of
the Schrödinger kernel on the hyperbolic space H

n+1, and we are able to prove that
not only Strichartz estimates but also the stronger L1 → L∞ dispersive estimates
hold for the Schrödinger group.

Theorem 0.1. Let X be an (n + 1)-dimensional convex co-compact hyperbolic
manifold such that its limit set has Hausdorff dimension δ < n/2. Then the following
dispersive and Strichartz estimates without loss hold:

‖eitΔX‖L1(X)→L∞(X) ≤
{
C|t|−(n+1)/2 , for |t| ≤ 1 ,

C|t|−3/2 , for |t| > 1 ,

‖eitΔXu0‖Lp(R;Lq(X)) ≤ C‖u0‖L2(X) ,
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for all (p, q) such that (1/p, 1/q) ∈ Tn where

Tn :=

{(
1

p
,
1

q

)
∈
(
0,

1

2

]
×
(
0,

1

2

)
;
2

p
≥ n+ 1

2
− n+ 1

q

}
∪
{(

0,
1

2

)}
. (0.2)

These manifolds are non-compact, infinite volume, with finitely many ends of
funnel type, they have constant curvature −1 and possess infinitely many closed
geodesics; it is remarkable that despite this last fact, a sharp dispersive estimate
holds for all time. We also remark that Strichartz estimates for the same range
of (p, q) have been recently shown by Anker–Pierfelice [AnP] for the model non-
trapping case H

n+1 (see also [Ba], [IS] for the estimate (0.1) in that setting). The
triangle of admissibility for the Strichartz exponent (p, q) is a consequence of the ex-
ponential decay of the integral kernel of the Schrödinger operator at infinity. Notice
that in the asymptotically hyperbolic setting, J.-M. Bouclet [Bo3] proved Strichartz
estimates without loss of derivatives for bounded times and with admissibility ex-
ponents satisfying (0.1) for non-trapping such manifolds (in this case the sectional
curvature is not assumed constant, but rather tending to −1 at infinity).

The second example is on the manifold Z given by the connected sum of two
copies of Euclidean R

2. This we provide with a Riemannian metric g by gluing
two copies of the Euclidean metric on R

2 with the metric on the 2-dimensional
hyperbolic cylinder. Essentially because Z is formed from pieces all of which satisfy
Strichartz estimates without loss, the same is true for (Z, g). Actually we need to
use local smoothing estimates to control error terms in the transition region, but
since this region is disjoint from the single trapped orbit, there are no losses in such
local smoothing estimates. This example is given in section 2; the main result is
Theorem 2.1.

Our last family of examples, in section 3, is a generalization of that in section 2
to higher dimensions and more complicated trapped sets. It is similar to the class of
manifolds studied recently by Nonnenmacher and Zworski [NZ]: we consider asymp-
totically Euclidean (or more generally asymptotically conic) manifolds, the curvature
of which is assumed to be negative in a geodesically convex compact part that in-
cludes the (projection of) the trapped set, and such that the trapped set is small
enough in the sense that the topological pressure P (1/2) of the trapped set evaluated
at 1/2 is negative (see the definition in section 3.1). This is a dynamical condition
which generalizes the condition δ < n/2 above to this more general setting and
roughly speaking means that the trapped set is filamentary with small fractal di-
mension. For instance, for surfaces (dimension d = 2) this means that the trapped
set (as a subset of the cosphere bundle S∗M) has Hausdorff dimension less than 2.
More precisely, our result (which includes the example in section 2 as a special case)
is

Theorem 0.2. Let (M, g) satisfy assumptions (A1)–(A4) defined in section 3.
Then Strichartz estimates without loss hold for M : there exists C > 0 such that

‖eitΔu0‖Lp((0,1),Lq(M)) ≤ C‖u0‖L2(M) , (0.3)

for all u0 ∈ L2(M) and (p, q) satisfying (0.1) and p > 2.
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Note that Christianson [Chr] and Datchev [D] showed that Strichartz estimates
hold with an ε loss of derivatives for all ε > 0 in that setting. Our method is based on
the use of the local smoothing effect with log loss, which follows from the resolvent
estimate of [NZ] (see also [D])∥∥χ(Δ− λ+ i0)−1χ

∥∥
L2→L2 ≤ C

log(λ)

λ1/2 , for χ ∈ C∞
0 (M) ,

together with a sharp dispersive estimate on the logarithmically extended time
interval t ∈ (0, h log(h)) for the frequency localized operator eitΔϕ(h2Δ) where
ϕ ∈ C∞

0 ((0,∞)) and h ∈ (0, h0) is small. Roughly speaking this logarithmic ex-
tension of the time interval of validity of the dispersive estimate allows one to
recover the log loss in the local smoothing estimate. This dispersive estimate is
inspired by the works of Anantharaman [A], Anantharaman–Nonnenmacher [AN]
and Nonnenmacher–Zworski [NZ]. In particular, the technique for proving the dis-
persive estimate for logarithmically extended time originates in [A, Th. 1.3.3], while
the idea of combining the exponential decay provided by this theorem with the
topological pressure assumption (see (A4) in section 3) is due to [NZ].

Acknowledgement. We thank S. Nonnenmacher, N. Anantharaman and F. Plan-
chon for helpful discussions and references. N.B. is supported by ANR grant ANR-
07-BLAN-0250. C.G. is supported by ANR grant ANR-09-JCJC-0099-01 and thanks
the Mathematical Sciences Institute of ANU Canberra where part of this work
was done. A.H. is supported by Australian Research Council Discovery Grant
DP0771826 and thanks the mathematics department at Université Paris 11 for its
hospitality. We are finally grateful to the referee for his careful reading.

1 Hyperbolic Manifolds

A convex co-compact subgroup Γ ⊂ SO(n + 1, 1) is a discrete group of orientation
preserving isometries of hyperbolic space H

n+1, consisting of hyperbolic isometries
and such that the quotient X := Γ\Hn+1 has finite geometry and infinite volume. If
one considers the ball model Bn+1 of Hn+1, a hyperbolic isometry is an isometry of
H

n+1 which fixes exactly two points on Bn+1, and these points are on the boundary
Sn = ∂Hn+1. The manifold X := Γ\Hn+1 is said to be convex co-compact hyper-
bolic; it is a smooth complete hyperbolic manifold which admits a natural conformal
compactification X̄ and the hyperbolic metric g on X is of the form g = ḡ/x2 where
x is a smooth boundary defining function of X̄ and ḡ a smooth metric on X̄. The set
of closed geodesics is in correspondence with the classes of conjugacy of the group Γ.
The limit set of Γ is the set of accumulation points on the sphere Sn = ∂Hn+1 of
the orbit Γ.m where m ∈ H

n+1 is any point. It has a Hausdorff dimension given by
δ ∈ [0, n), and the trapped set of the geodesic flow on the unit tangent bundle SX
has Hausdorff dimension 2δ + 1; see [Su], [Z].

The simplest example is Γ = Z acting by powers of a fixed dilation D on the
upper half space model of Hn+1. Then the limit set consists of two points {0,∞},
δ = 0, and H

n+1/Γ is the (n+ 1)-dimensional hyperbolic cylinder.
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We prove the following.

Theorem 1.1. Let X be an (n + 1)-dimensional convex co-compact hyperbolic
manifold such that its limit set has Hausdorff dimension δ < n/2. Then eitΔX has a
smooth Schwartz kernel for t �= 0, and there is a constant C such that the following
dispersive estimate holds for all t �= 0:

‖eitΔX‖L1→L∞ ≤
{
C|t|−(n+1)/2, for |t| ≤ 1 ,

C|t|−3/2, for |t| > 1 .
(1.1)

Moreover, the following global-in-time Strichartz estimates hold:

‖eitΔXu0‖Lp(R;Lq(X)) ≤ C‖u0‖L2(X) , (1.2)

for all (p, q) such that (1/p, 1/q) ∈ Tn where Tn is given by (0.2).

Proof. The integral kernel of the Schrödinger operator eitΔHn+1 on hyperbolic space
was computed by V. Banica [Ba]. It is a function of the hyperbolic distance

K
(
t; ρ(z, z′)

)
= c|t|−1/2e−itn2/4( sinh(ρ)−1∂ρ

)n/2
eiρ

2/4t, n even ,

K
(
t; ρ(z, z′)

)
= c|t|−3/2e−itn2/4( sinh(ρ)−1∂ρ

)n−1
2

∫ ∞

ρ

eis
2/4ts√

cosh s− cosh ρ
ds , n odd ,

(1.3)
where ρ = ρ(z, z′) := dHn+1(z, z′). In both cases we remark, like for the heat kernel,
that the kernel K(t; · , · ) is smooth on H

n+1 × H
n+1 for t �= 0; this is clear when

n+1 is odd, and needs a bit more analysis when n+1 is even. From this expression
we obtain an upper bound for |K(t; z, z′)| (see [Ba, Prop. 4.1& §4.2]) for t �= 0 of the
form ⎧⎪⎨⎪⎩C|t|−(n+1)/2

(
ρ

sinh ρ

)n/2
, for |t| ≤ 1 ,

C|t|−3/2
(

ρ
sinh ρ

)n/2
, for |t| > 1 ,

(1.4)

for some constant C > 0. Using the inequality (ρ/ sinh ρ) ≤ (1 + ρ)e−ρ, and since

i∂tK(t; z, z′) = −ΔzK(t; z, z′) = −Δz′K(t; z, z′) ,

one can deduce that for t �= 0 bounded∣∣Δj
zK(t; z, z′)

∣∣+∣∣Δj
z′K(t; z, z′)

∣∣≤ {
C ′|t|−(n+1)/2−2j(1+ρ)

n
2
+2je−

n
2
ρ, for |t| ≤ 1 ,

C ′|t|−3/2(1+ρ)
n
2
+2je−

n
2
ρ, for |t|> 1 ,

(1.5)
and in particular K(t, z, z′) is smooth in z, z′.

To proceed we use the celebrated result of Patterson and Sullivan [Pa], [Su] that
the dimension of the limit set δ is the exponent of convergence of the Poincaré series

Ps(z, z
′) :=

∑
γ∈Γ

e−sρ(z,γ.z′), z, z′ ∈ H
n+1.

Lemma 1.2. Let F ∈ H
n+1 be a fundamental domain of the convex co-compact

group Γ, and let x be a boundary defining function of the compactification X̄ of
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X = Γ\Hd+1, which we also view as a function on F. For each γ ∈ Γ, define by �γ
the translation length of γ. Then there exists R > 0 such that, for all ε > 0, there
is Cε > 0 such that, for s > δ + ε and all z, z′ ∈ F,∑

γ∈Γ,�γ>R

e−sρ(z,γz′) ≤ Cε

(
x(z)x(z′)

)s
. (1.6)

Proof. In [GuMP, Lem. 5.2], it is shown that there exist constants C1, C2 > 0 such
that for all γ ∈ Γ such that �γ > C1

e−ρ(z,γz′) ≤ C2e
−�γx(z)x(z′) .

Now it suffices to sum after raising to the power s and to use the fact that
∑

γ∈Γ e−s�γ

< Cε for some Cε if s > δ + ε. �
Combining (1.6) and (1.4), we deduce that for z, z′ ∈ F, the series

KX(t; z, z′) :=
∑
γ∈Γ

K(t; z, γ.z′)

converges uniformly and for all s < n/2 there exists Cs > 0 such that for all z, z′ ∈ F∣∣KX(t; z, z′)
∣∣ ≤ {

Cs|t|−(n+1)/2
(∑

γ∈Γ,�γ≤R e−sρ(z,γz′)+x(z)sx(z′)s
)
, for |t| ≤ 1 ,

Cs|t|−3/2
(∑

γ∈Γ,�γ≤R e−sρ(z,γz′) + x(z)sx(z′)s
)
, for |t| > 1 ,

(1.7)
where R is the constant in (1.6). This leads directly to the dispersive estimate

sup
z,z′∈F

∣∣KX(t; z, z′)
∣∣ ≤ {

C ′|t|−(n+1)/2, for |t| ≤ 1 ,

C ′|t|−3/2, for |t| > 1 .
(1.8)

for some constants C ′. Moreover, using (1.5), the same argument shows that the
series KX(t; z, z′) is smooth in z, z′ for t �= 0. Let F be a fundamental domain of Γ.
For any u0 ∈ C∞

0 (X) the function u(t) :=
∫
F
KX(t; z, z′)u0(z

′)dz′ is smooth on H
n+1

and satisfies u(t, γz) = u(t, z) for any γ ∈ Γ, thus u(t) is smooth on X. Moreover, it
solves the Schrödinger equation on X with initial data u(0) = u0, so u(t) = eitΔXu0.
This implies that KX is the Schwartz kernel of eitΔX on X.

We next prove the global-in-time Strichartz estimates (1.2) (notice that these
estimates for a finite time interval follow immediately from the small-time dispersive
estimate (1.1) and from Keel–Tao [KT], following the method of Anker–Pierfelice
[AnP]). Let γ ∈ Γ be such that �γ ≤ R where R is the constant in (1.6), then define
K1

γ(t) to be the operator acting on F with L∞ kernel 1lF(z)K(t; z, γz′) 1lF(z′). Since γ
is an isometry of Hn+1, this operator can also be written as f → 1lF e

itΔ
Hn+1γ∗(1lF f).

Then from Theorem 3.4 of Anker–Pierfelice [AnP] and the fact that push-forward
γ∗ is an isometry on any Lr′(Hn+1), we get the estimate∥∥K1

γ(t)u0
∥∥
Lq(Hn+1) ≤C‖ 1lF u0‖Lr′ (Hn+1)×

{
|t|−(n+1)max( 1

2
− 1

q
, 1
2
− 1

r
)
, if |t| ≤ 1 ,

|t|− 3
2 , if |t|> 1 ,

(1.9)
for all 2 < q, r ≤ ∞ and 1/r′ + 1/r = 1, so the same estimate holds for K1(t) :=∑

γ∈Γ,�γ≤R K1
γ(t). Now consider the operator K2(t) acting on F whose L∞ kernel is
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K2(t; z, z′) := KX(t; z, z′)−K1(t; z, z′). From (1.6) and (1.4), this kernel is bounded
(for all s < n/2) by∣∣K2(t; z, z′)

∣∣ ≤ {
Cs|t|−(n+1)/2x(z)sx(z′)s, for |t| ≤ 1 ,

Cs|t|−3/2x(z)sx(z′)s, for |t| > 1 .

Since the hyperbolic metric on F induces a measure of the form x−n−1μ for some
bounded measure μ on F, we see that the function xs is in Lα(F, dvHn+1) for all
α > n/s, and hence deduce directly that K2(t) satisfies

‖K2(t)u0‖Lq(F,dv
Hn+1 ) ≤ C‖u0‖Lr′ (F,dv

Hn+1 ) ×
{

|t|−n+1
2 , if |t| ≤ 1 ,

|t|− 3
2 , if |t| > 1 ,

for all q, r ∈ (2,∞] and r′ the conjugate exponent of r, so the same estimate holds for
KX(t) when combining with (1.9). Then it suffices to conclude using the standard
TT ∗ argument exactly as in the proof of Theorem 3.6 of Anker–Pierfelice [AnP],
and we obtain the claimed Strichartz estimate. �
Remark 1.3. For hyperbolic quotients with dimension of limit set δ > n/2, the
positive number δ(n − δ) is an L2 eigenvalue with multiplicity one and smooth
eigenvector ψδ. It follows easily from section 2 of [Pe] (or the general result of
Mazzeo–Melrose [MM] about the structure of the resolvent) that ψδ ∈ Lp(X) for all
p > n/δ, thus in particular for all p ≥ 2. This implies that for q ≥ 2, 2 < p < ∞
and all χ ∈ L∞(X)

‖χeitΔXψδ‖Lq(X) = ‖χψδ‖Lq(X) /∈ Lp
t

(
(0,∞)

)
,

so global-in-time Strichartz estimates cannot hold when δ > n/2, even with a space
cut-off.

2 Connected Sum of Two Copies of R2

In this section, we give an example of a Riemannian manifold (Z, g) which is topo-
logically the connected sum of two copies of R2 and is geometrically Euclidean near
infinity and hyperbolic near the ‘waist’ (and hence with a single trapped ray), for
which Strichartz estimates without loss are valid. The idea is simple; since Strichartz
estimates without loss are valid on flat R2, and on the hyperbolic cylinder (thanks
to Theorem 1.1), then they should also be valid on a space obtained by gluing pieces
of these manifolds together, provided that no additional trapping is created by the
gluing procedure.

Let us consider an asymptotically Euclidean manifold (Z, g) which is the con-
nected sum of two copies of R2, joined by a neck which has a neighbourhood U
isometric to a neighbourhood U ′ of the short closed geodesic, or ‘waist’, on the hy-
perbolic two-cylinder C2. We denote this short closed geodesic by γ, whether on Z
or on C2. We can write down an explicit metric g for such a manifold, on R × S1,
in the form dr2 + f(r)2dθ2, where dθ2 is the metric on S1 of length 2π, and where
f(r) = cosh r for small r, say r ≤ 3η for some small η > 0, and is equal to |r| + a
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for large |r|, say |r| ≥ R (where a is a constant). We also choose f so that f ′(r)
has the same sign as r; it is easy to see that this is compatible with the condition
that f(r) = cosh r for small |r| and |r| + a for large |r|. The equations of motion
for geodesic flow then give r̈ = 2f ′(r)f(r)θ̇2, which has the same sign as r, and it
is straightforward to deduce from this that there can be no trapped geodesic other
than the waist γ at r = 0. For any such manifold (Z, g) we have

R2

R2

Figure 1: The manifold (Z, g)

Theorem 2.1. For any finite T there is a constant CT such that

‖eitΔZu0‖Lp([0,T ];Lq(Z)) ≤ CT ‖u0‖L2(Z) (2.1)

for all (p, q) satisfying (0.1) with d = 2 and all u0 ∈ L2(Z).

Before giving the proof we introduce some further notation and definitions. We
will compare Z to the hyperbolic cylinder C2 and to the auxiliary Riemannian
manifold (Z̃ = R

2, g̃), given in standard polar coordinates (r, θ) on R
2 by g̃ =

dr2 + f̃(r)2dθ, where f̃(r) = f(r) for r ≥ η, f̃ ′(r) > 0, and is equal to r for
small r. Reasoning as above, we see that the metric g̃ is nontrapping. We will take
a Schrödinger wave u on Z and decompose it so that one piece lives on C2 and the
other lives on Z̃, and we will deduce Strichartz without loss on Z from the fact that
Strichartz without loss holds for both C2 and Z̃.

Proof. Let U ⊂ Z be a neighbourhood of {r = 0}, say {|r| < 2η}, thus containing the
projection of the trapped set of Z. By construction, the metric is exactly hyperbolic
in a neighbourhood of U . We decompose u = ui + ue, where ui = χu is supported
in U and ue = (1 − χ)u is supported where the metric g is identical to g̃. (Thus
∇χ is supported where η ≤ |r| ≤ 2η.) We prove the estimate (2.1) separately for
ui and ue. As stated above, the idea is to regard ue as solving a PDE on Z̃ and to
regard ui as solving a PDE on C2.

We first prove a local smoothing result for Z, Z̃ and C2. This is essentially
standard, but we give the details for the reader’s convenience (and in keeping with
the expository character of this section). For applications in the following section,
we give a result in any dimension.

Lemma 2.2. (i) Suppose that X is a d-dimensional manifold with Euclidean ends
and with trapped set K ⊂ T ∗X. Suppose that u solves the Schrödinger equation on
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(X, g) with initial condition u0, and suppose that φ ∈ C∞
c (M) is supported away

from the projection of the trapped set π(K). Then

‖φu‖L2
t ([0,T ];H1/2(X)) ≤ C‖u0‖L2(X) .

(ii) Suppose that v solves the Schrödinger equation on (C2, ghyp) with initial
condition v0, and suppose that φ ∈ C∞

c (C2) is supported away from the closed
geodesic γ. Then

‖φv‖L2
t ([0,T ];H1/2(C2)) ≤ C‖ṽ0‖L2(C2) .

Proof. This result can be deduced from the resolvent estimate of Cardoso–Vodev
[CV], but for completeness we give a proof via a positive commutator argument. We
construct a zeroth-order pseudodifferential operator A on X such that i[Δ, A] has a
nonnegative principal symbol which is elliptic on the support of φ. Then we use the
identity 〈

Au( · , T ), u( · , T )〉− 〈
Au( · , 0), u( · , 0)〉 = ∫ T

0

〈
i[Δ, A]u, u

〉
dt (2.2)

valid for any Schrödinger wave u. Since i[Δ, A] is order one and elliptic on the
support of φ, the right-hand side is equal to c‖φu‖2

L2([0,T ];H1/2) plus terms which

are essentially positive, while the left-hand side is bounded by C‖u0‖2
L2 , giving the

estimate.
Let us set A = A1+A2, where A1 is supported in the region where X is Euclidean

and A2 is properly supported. We take R > 0 large enough so that each end of
X has a neighbourhood isometric to R

d \ B(0, R) and use Euclidean coordinates
x = (x1, x2, . . . xd) on this neighbourhood with dual cotangent coordinates ξ. We
write r = |x| and take A1 to have principal symbol

a1 = ζ2(r)〈ξ〉−1r−1x · ξ(1− r−ε) . (2.3)

Here ζ(t) is chosen to be 0 for t < R and 1 for t ≥ 2R and to be nondecreasing,
where R is sufficiently large that 1 − R−ε > 1/2, say. We understand this to mean
that a1 is defined as above on each end of X. Explicitly, we could take A1 =
ζ(r)r−1(1 + Δ)−1/2 1

2(x · Dx + Dx · x)ζ(r)(1 − r−ε), where here Δ denotes the flat

Laplacian on R
d; notice that (1 + Δ)−1/2 makes sense since it is both pre- and

post-multiplied by ζ(r) which is supported where the metric is Euclidean.
Then the derivative a1 along the Hamilton vector field of σ(ΔX), namely the

geodesic flow 2ξ · ∂x, is
2ζ2(r)〈ξ〉−1r−3(1− r−ε)

(
r2|ξ|2 − (x · ξ)2)

+ 4ζ(r)ζ ′(r)〈ξ〉−1r−2(1− r−ε)(x · ξ)2
+ 2ζ2(r)〈ξ〉−1r−3εr−ε(x · ξ)2.

We see that this is nonnegative everywhere, and bounded below by C〈ξ〉r−1−ε for
r ≥ 2R.

Now we define a symbol a2 which will be supported in the region r ≤ 4R. First we
introduce some notation: for R̃ ≥ R, let ER̃ denote the union of ends Rd \B(0, R̃),
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and let UR̃ ⊂ T ∗X denote π−1(X \ER̃). We choose conic neighbourhoods U< and U
ofK such that U< ⊂ U and π(U) is disjoint from suppφ. For any p ∈ π−1(suppφ) we
let β = β(p) denote the maximally extended geodesic through p, and we denote by
β+, resp. β−, the forward, resp. backward geodesic ray starting at p. Standard topo-
logical arguments show that one can choose U< so that for every p ∈ π−1(suppφ),
at least one of β+ or β− does not meet U<, which we will now assume.

Now choose an arbitrary p ∈ π−1(suppφ) and consider the geodesic β(p). Be-
cause of the way we chose U<, either β− or β+ does not intersect U<. Suppose, for
the sake of definiteness that β+ does not meet U< (the argument for β− ∩ U< = ∅
is similar). Let V be a conic neighbourhood of β+. We may construct a symbol of
order 0 that is

• supported on V ;
• non-decreasing with respect to geodesic flow on U2R;
• strictly increasing with respect to geodesic flow on V<∩(U2R\U)∩{|ξ| ≥ 1/2},
where V< is a conic neighbourhood of β+ such that V< ⊂ V ; and

• vanishing outside U4R.

To do this, we let t be an arc-length parameter along β with β(0) = p and β+ =
{β(t) | t ≥ 0}, and let t1 = sup{t | β(t) ∈ U<}, which is negative by assumption.
Also let t2 = sup{t | β(t) ∈ U2R}, and t4 = sup{t | β(t) ∈ U4R}, both of which are
positive by assumption. We choose a function along β that is 0 for t ≤ t1, strictly
increasing for t1 < t < t2 and zero for t ≥ t4. This can be extended to a symbol of
order 0 supported in V .

Using compactness, we can select a finite number of conic neighbourhoods V<

as above, covering π−1 suppφ \ {0}. Summing the corresponding symbols defined
above, we obtain a symbol a2 supported in U4R such that the Hamilton vector field
of ΔX applied to a2 is positive and elliptic on π−1 suppφ. Let A2 be a properly
supported pseudodifferential operator with symbol a2. Let A be the sum of A2 and
a sufficiently large multiple of A1. Then i[Δ, A] has nonnegative symbol, and (if
the symbol a2 is specified appropriately, i.e. so that {σ(Δ), a2} is a sum of squares
of symbols, which is always possible) may be expressed in the form

∑
iB

∗
i Bi + B0,

where the Bi are order 1/2 and
∑

iBi is elliptic on π−1 suppφ and B0 is order 0.
Then substituting i[Δ, A] =

∑
iB

∗
i Bi +B0, and using the sharp G̊arding inequality

in the form C
∑

i ‖Biu‖2
2 ≥ ‖φu‖2

H1/2(X) − C ′‖u‖2
L2(X) which is valid for sufficiently

large C, we deduce that ∫ T

0
‖φu‖2

H
1
2 (M)

dt ≤ C‖u0‖2
L2(M) ,

proving (i).
The proof of (ii) is very similar in spirit. Again we construct a pseudodifferential

operator A with the property that i[Δ, A] has a nonnegative principal symbol which
is elliptic on the support of φ. We construct A as A1 +A2, where A2 is constructed
exactly as above, but A1 is modified to reflect the hyperbolic rather than Euclidean
structure at infinity. We shall take A1 to be a zeroth-order pseudodifferential op-
erator in the 0-calculus of Mazzeo–Melrose [MM]. Recall that the 0-calculus of
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pseudodifferential operators on a manifold with boundary is the natural class of
pseudodifferential operators associated to differential operators generated by vector
fields that vanish at the boundary. This calculus is appropriate here since, if we
compactify C2 by adding circles at r = ±∞ with boundary defining functions e∓r,
then the Laplacian ΔC2 on C2 is an elliptic combination of such vector fields.

Using coordinates (ρ, ω) dual to (r, θ), we define A1 to be a zeroth-order 0-
pseudodifferential operator with symbol ζ2(r)(1−e−εr)ρ · (1+σ(ΔC2))−1/2. In these
coordinates, the symbol of ΔC2 is

σ(ΔC2) = ρ2 + (sech r)2ω2

and the Hamilton vector field is

2

(
ρ
∂

∂r
+ tanh r(sech r)2ω2 ∂

∂ρ
+ sech2 r ω

∂

∂θ

)
.

Applying this to the symbol of A1 gives the positive term

2ζ(r)
(
1 + σ(ΔC2)

)−1/2(
2ζ ′(r)(1− e−εr)ρ2 + εζ(r)e−εrρ2

+ tanh r(sech r)2ζ(r)(1− e−εr)ω2)
which is nonnegative everywhere and bounded below by a multiple of σ(ΔC2)1/2 on
the support of φ. The rest of the proof is the same as in part (i), using the fact that
zeroth-order operators in the 0-calculus are bounded on L2(C2). �
Remark 2.3. Exactly the same result holds if X is replaced by an asymptotically
conic manifold, with the same proof. We only have to replace r−1〈ξ〉−1x · ξ in (2.3)
by the cotangent variable dual to dr. We shall use this remark in the next section.

Remark 2.4. We can rephrase this result as follows: the operators TX = φe−itΔX

and TC2 = φe−itΔC2 , for φ ∈ C∞
c (M) supported away from the trapped set, and

TX̃ = φ̃e−itΔX̃ , for φ̃ ∈ C∞
c (X̃), are bounded from L2(X) to L2([0, T ]);H1/2(X),

resp. L2(C2) to L2([0, T ]);H1/2(C2), resp. L2(X̃) to L2([0, T ]);H1/2(X̃).

We return to the proof of Theorem 2.1. Consider the function ue = (1−χ)u. We
can regard it as a function on Z̃, and as such it satisfies on the time interval [0, T ]

(i∂t −ΔZ̃)ue = w ≡ −2∇χ · ∇u+ (ΔZ̃χ)u ; ue
∣∣
t=0 = (1− χ)u0 ∈ L2(Z̃) . (2.4)

By Lemma 2.2, w ∈ L2([0, T ];H−1/2(Z̃)). Let us write ue = u′e+u′′e , where u′e solves
the PDE above with zero initial condition, and u′′e solves the homogeneous equation
(i∂t −ΔZ̃)u

′′
e = 0 with initial condition (1−χ)u0. By [StT], the Strichartz estimate

(2.1) holds for u′′e . The function u′e is given by Duhamel’s formula

u′e( · , t) =
∫ t

0
e−i(t−s)ΔZ̃w( · , s)ds .

We want to show that this is in Lp
tL

q
x for Strichartz pairs (p, q). Since we are in

dimension d = 2, we have p > 2, and hence we can apply the Christ–Kiselev lemma
[ChK], which tells us that it is sufficient to show boundedness of the operator

w �→
∫ 1

0
e−i(t−s)ΔZ̃w( · , s)ds
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from L2([0, T ];H−1/2(Z̃)) to Lp
tL

q
x. But, defining TZ̃ as above, this is eitΔZ̃T ∗

Z̃
w

(for any φ̃ equal to 1 on the support of ∇χ). By Lemma 2.2 and duality, T ∗
Z̃
maps

L2([0, T ];H−1/2(Z̃)) to L2(Z̃), while by [StT], eitΔZ̃ maps L2 to Lp
tL

q
x. This shows

that (2.1) holds for the function ue.
It remains to consider ui = χu. We regard ui as a function on the hyperbolic

cylinder C2 since it is supported in the region where the metric is hyperbolic, and
as such it satisfies on the time interval [0, T ]

(i∂t −ΔC2)ui = w ≡ −2∇χ · ∇u+ (ΔC2χ)u ; ui
∣∣
t=0 = χu0 ∈ L2(C2) . (2.5)

As we have seen, w ∈ L2([0, T ];H−1/2(C2)). Let us write ui = u′i+u′′i , where u
′
i solves

the PDE above with zero initial condition, and u′′i solves the homogeneous equation
(i∂t − ΔC2)u′′i = 0 with initial condition χu0. By Theorem 1.1, the Strichartz
estimate (2.1) holds for u′′i . The function u′i is given by Duhamel’s formula

u′e( · , t) =
∫ t

0
e−i(t−s)ΔC2w( · , s)ds .

We want to show that this is in Lp
tL

q
x for Strichartz pairs (p, q). We use the Christ–

Kiselev trick again and show that the operator

w �→
∫ 1

0
e−i(t−s)ΔC2w( · , s)ds

is bounded from L2([0, T ];H−1/2(Z̃)) to Lp
tL

q
x. But, defining TC2 as above, this is

eitΔC2T ∗
C2w (for any φ̃ equal to 1 on the support of ∇χ). By (ii) of Lemma 2.2,

T ∗
C2 by duality maps L2([0, T ];H−1/2(C2)) to L2(C2), while by Theorem 1.1, eitΔZ̃

maps L2 to Lp
tL

q
x. This shows that (2.1) holds for the function ui, and completes

the proof of Theorem 2.1. �

3 Asymptotically Euclidean (or Conic) Manifolds with
Filamentary Hyperbolic Trapped Set

In the previous section, we used the dispersive estimate from section 1 for constant
negative curvature manifolds to prove Strichartz estimates without loss. It is natural
to ask if this result can be generalized to a variable negative curvature setting. In
this section, we shall show that a more general class of manifolds with hyperbolic
trapped set has this ‘Strichartz without loss’ property. The class of manifolds we
will consider are asymptotically Euclidean (and more generally asymptotically conic)
but the projection of their trapped set is contained in an open set where the metric
has (variable) negative curvature, so that the flow is hyperbolic there, and we will
assume, as in [NZ], that the topological pressure P (s) of the unstable Jacobian
on the trapped set satisfies P (1/2) < 0; this last condition roughly means that
the trapped set is thin enough, also called filamentary, although it may contain an
infinite number of closed geodesics.

An asymptotically conic manifold (or scattering manifold in the sense of [Me])
is a complete non-compact Riemannian manifold (M, g) which is the interior of a
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smooth compact manifold with boundary M and such that a collar neighbourhood
of the boundary is isometric to(

[0, ε)x × ∂M,
dx2

x4 +
h(x)

x2

)
where h(x) is a one-parameter family of metrics on ∂M depending smoothly on
x ∈ [0, ε). Here ∂M has really to be considered as the ‘points at infinity’ of (M, g).
The function x can be extended to a nonnegative smooth function on M and the
function r = 1/x is analogous to the radial function on Euclidean space.

The geodesic flow Φt, t ∈ R, is the flow of the Hamiltonian vector field VH

associated to H ∈ C∞(T ∗M) defined by H(m, ξ) := |ξ|2g. The trapped set K is
defined by K := Γ+ ∩ Γ− where

Γ± :=
{
(m, ξ) ∈ T ∗M | Φt(m, ξ) �→ ∞ , t → ∓∞} ⊂ T ∗M . (3.1)

Let us denote by π : T ∗M → M the projection on the base, and let d = dimM .
The geodesic flow is said to be hyperbolic on U ⊂ S∗M if, for all m ∈ U , the

tangent space at m splits into flow unstable and stable subspaces such that

(i) TmS∗U = RVH(m)⊕ E+
m ⊕ E−

m, dimE±
m = d− 1 ,

(ii) dΦt
m(E±

m) = E±
m, ∀t ∈ R ,

(iii) ∃λ > 0 ,
∥∥dΦt

m(v)
∥∥ ≤ Ce−λ|t|‖v‖ , ∀v ∈ E∓

m , ±t ≥ 0 .

(3.2)

for some uniform λ > 0; here the norm can be taken with respect to the Sasaki
metric on the cotangent bundle (see [P, Def. 1.17]). This is true in particular for
U = S∗M if M is a complete manifold with negative sectional curvatures contained
in an interval [−k1,−k0] for some ki > 0, see for instance [Kl, Th. 3.9.1].

We define the unstable Jacobian Ju
t (m) and the weak unstable Jacobian Jwu

t (m)
for the flow Φt at the point m to be

Ju
t (m) = det

(
dΦ−t(Φt(m))|E+

Φt(m)

)
,

Jwu
t (m) = det

(
dΦ−t(Φt(m))|E+

Φt(m)
⊕RVH(m)

)
,

(3.3)

where the volume form on d-dimensional subspaces of T (T ∗M) is induced by the
Sasaki metric. It follows from (iii) of (3.2) that Ju

t (m), Jwu
t (m) ≤ e−λt for t > 0.

If the geodesic flow on the trapped set K is hyperbolic, and s : K → R is a
continuous function, then the topological pressure of the unstable Jacobian at s is
a real number P (s), whose definition is given by (3.7). The topological pressure
of the unstable Jacobian can be viewed as a real function P of s. The quantity
P (0) is known as the topological entropy of the flow. For positive s, P (s) in a sense
measures two competing effects of the flow: the density of K (the denser K, the
longer points near K stay close by under the flow) and the instability of the flow (the
more unstable, the more quickly points near K move away from K under the flow).
In our analysis we encounter products of square roots of the unstable Jacobian,
which in view of (3.6) and (3.7) make it natural to consider the topological pressure
at s = 1/2; if P (1/2) < 0 then the instability dominates, which is crucial in our main
estimate (Lemma 3.13) of this section. The first use, to our knowledge, of topological



640 N. BURQ, C. GUILLARMOU AND A. HASSELL GAFA 

pressure in analytical estimates was by Nonnenmacher–Zworski [NZ] following work
of Gaspard–Rice [GR] in the physics literature.

Our assumptions on (M, g) and on the trapped set K in this section are

(A1) (M, g) is asymptotically conic.
(A2) There is an open set X− ⊂ X containing π(K) which can be extended to

a complete manifold M̃ with sectional curvatures bounded above by a nega-
tive constant (in particular, M− has sectional curvatures bounded above by a
negative constant).

(A3) M− is geodesically convex in M , i.e. any geodesic entering π−1(M \M−) from
π−1M− remains in this region thereafter.

(A4) The topological pressure P (s) of K evaluated at s = 1/2 is negative:

P
(1

2

)
< 0 . (3.4)

For examples, see section 3.2.

Remark 3.1. With these assumptions, the geodesic flow is hyperbolic on S∗M̃ and
K is the trapped set on both S∗M̃ and S∗M . On S∗M , the splitting satisfying (3.2)
only makes sense at points of K, but we can still consider the splitting TS∗M− =
RVH(m)⊕E+

m ⊕E−
m coming from the inclusion S∗M− ⊂ S∗M̃ : in particular, for all

m ∈ S∗M− and all t such that Φt(m) ∈ π−1(M−) we have

dΦt
m(E±

m) = E±
m ,

∃λ > 0 ,
∥∥dΦt

m(v)
∥∥ ≤ Ce−λ|t|‖v‖ , ∀v ∈ E∓

m , if ± t ≥ 0 .

Remark 3.2. It seems likely that (A2) actually follows from (A1) and (A3); that
is, that if M− is negatively curved and geodesically convex, then we expect that it
can always be extended to a complete manifold with negative sectional curvature.
We do not pursue this question further here as it is a purely differential-geometric
question.

Our main result in this section is

Theorem 3.3. Let (M, g) satisfy assumptions (A1)–(A4) above. Then local-in-
time Strichartz estimates without loss hold for M : there exists C > 0 such that

‖eitΔu0‖Lp((0,1),Lq(M)) ≤ C‖u0‖L2(M) (3.5)

for all u0 ∈ L2(M) and (p, q) satisfying (0.1).

Remark 3.4. In dimension d = 2, the condition P (1/2) < 0 is equivalent to
the Hausdorff dimension of the trapped set satisfying dH(K) < 3, or equivalently
dH(K ∩ S∗M) < 2. Note that this is the natural generalization of the condition
δ < n/2 in our hyperbolic quotients examples above, since dH(K ∩ S∗M) = 2δ + 1
in that case (recall d = n+ 1).

3.1 Topological pressure. We now define the topological pressure of the flow
P (s) on the trapped set, following [NZ] (which follows from Definition 20.2.1 of
[HK]): a set E ⊂ K ∩ S∗M is said to be (ε, T ) separated if, given (x1, v1) �= (x2, v2)
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in E, there exists t ∈ [0, T ] for which the distance between Φt(x1, v1) and Φt(x2, v2)
is at least ε > 0. For any s ∈ R we define

ZT (ε, s) := sup
E

∑
m∈E

(
Jwu
T (m)

)s
, (3.6)

where the sup is taken over all sets E which are (ε, T )-separated. The pressure of s
is

P (s) = lim
ε→0

lim sup
T→∞

1
T logZT (ε, s) . (3.7)

Remark. For later convenience we define the topological pressure using the weak unstable
Jacobian rather than the unstable Jacobian which is more standard. However, making this
change only changes logZT (ε, s) by O(1), uniformly in ε, and thus leads to the same value
of P (s).

For instance, if the metric has constant curvature, one has

Lemma 3.5. Let (M, g) be a convex cocompact hyperbolic manifold of dimension
n + 1 with limit set of dimension δ. Then the topological pressure at s = 1/2 is
given by P (1/2) = δ − n/2.

Proof. For a constant curvature −1 manifold, Ju
t (m) = e−tn. It follows from (3.6),

(3.7) and the remark above that P (s) = P (0)−ns. But P (0), which is the topological
entropy, is equal to δ by a result of Sullivan [Su]. �

Finally, we recall the alternate definition of topological pressure given in
[NZ, §5.2], which turns out to be easier to use. If V = (Vb)b∈B is an open finite
cover of K ∩ S∗M , let VT (T ∈ N) be the refined cover made of T -fold intersections

Vβ :=
T−1⋂
k=0

Φ−k(Vbk), β := b0b1 . . . bT−1 ∈ BT ,

and consider the set B′
T ⊂ BT of β such that Vβ ∩K �= ∅. For any W ⊂ S∗M with

W ∩K �= ∅, define the coarse-grained unstable Jacobian

SK
T (W ) := sup

m∈W∩K
log Ju

T (m) = − inf
m∈W∩K

log det
(
dΦT (m)|E+

m⊕RVH(m)

)
. (3.8)

The topological pressure is defined by

P (s) := lim
diamV→0

lim
T→∞

1
T log inf

{ ∑
β∈BT

exp
(
sSK

T (Vβ)
)
;BT⊂B′

T ,K∩S∗M⊂
⋃

β∈BT

Vβ

}
.

In particular, for all ε0 > 0 small, there exists ε1 > 0 such that, for all ε < ε1 and
all covers V of K ∩ S∗M as above with diameter smaller than ε, there is a T0 ∈ N,
a set BT0 ⊂ B′

T0
such that {Vβ , β ∈ BT0} is an open cover of K ∩ S∗M and∑

β∈BT0

exp
(
sSK

T0
(Vβ)

) ≤ exp
(
T0(P (s) + ε0/2)

)
. (3.9)

Moreover, Vβ are all included in π−1(M−) since they are ε close to K. Since by the
chain rule one has

Ju
T0
(m) =

T0∏
j=1

Ju
1
(
Φj−1(m)

)
,
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and since the unstable foliation is γ-Hölder [SS], we deduce that for any Vβ with
β ∈ BT0∣∣SK

T0
(Vβ)− ST0(Vβ)

∣∣ ≤ exp(CT0ε
γ) , where ST0(Vβ) := sup

m∈Vβ

log Ju
T0
(m)

for some constant C depending only on ε0 (notice that E+
m makes sense since π(Vβ)

is in the negative curved part M−). Therefore, renaming the family (Vβ)β∈BT0
by

(Wa)a∈A1 , we get, by taking for instance Cεγ ≤ ε0/2∑
a∈A1

exp
(
sST0(Wa)

) ≤ exp
(
T0(P (s) + ε0)

)
. (3.10)

3.2 Some examples. We first give examples of Riemannian manifolds satisfy-
ing assumptions (A1)–(A4). Consider any convex co-compact hyperbolic manifold
(M, g). Near infinity, it is conformally compact. That is, it admits a compactifi-
cation to a compact manifold M with a boundary defining function x, such that
x2g is a smooth nondegenerate metric up to the boundary of M . In other words,
near infinity g takes the form g = h/x2 for some smooth metric h on M . We shall
now modify the metric g near infinity to a metric that is asymptotically conic, in
such a way that the trapped set is left unchanged. (We recall that both asymptot-
ically conic and conformally compact metrics are nontrapping near infinity.) This
is straightforward: we have near infinity, in suitable coordinates (x, y) where x is a
boundary defining function for M and y is a local coordinate on Y = ∂M

g =
dx2 + h(x)

x2 .

Here h(x) is a smooth family of metrics on Y , i.e. is smooth in all its arguments.
Changing variables to the ‘geometric’ coordinate r = log(1/x), this reads

g = dr2 + e2rh(e−r) .

Assume that this is valid for r ≥ R. Then, for some R′ ≥ R we choose a function
f(r) such that f(r) = er for r ≤ 2R′ and f(r) = cr for r ≥ 4R′, and such that
f ′(r) > f(r)/2r for all r. This is possible for all R′ ≥ R and some c depending
on R′. Define the metric

gac = dr2 + f(r)2h(e−r) , r ≥ 2R ; gac ≡ g for r ≤ 2R . (3.11)

This is an asymptotically conic metric on M and satisfies assumption (A2). The
symbol of the Laplacian with respect to this metric is ρ2 + f(r)−2(h−1(e−r))ijηiηj
and along geodesics we have

r̈ = 2

(
f ′(r)
f(r)3

|η|2h−1(e−r) +
e−r

f(r)2
|η|2

ḣ−1(e−r)

)
.

Here ḣ−1(e−r) means d/ds(h−1(s)) | s = e−r. The metric d/ds(h−1(s)) is bounded
above by a constant times h−1(s) uniformly for s ∈ [0, logR−1]. Also, using f ′(r) >
f(r)/2r, we see that f ′(r)/f(r)3 � e−r/f(r)2 for large r. It follows that for R′

sufficiently large, and r ≥ R′, we have r̈ ≥ 0 and hence there is no trapped set in
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r ≥ R′ for the metric gac; moreover, the set {r ≤ R′} is geodesically convex. Hence
the metric satisfies condition (A3).

Finally to verify assumption (A4) it suffices to use Lemma 3.5.

3.3 Strategy of the proof. The proof of Theorem 3.3 is much more involved
than that of Theorem 2.1. We will need to localize both in frequency and in time.
To explain the idea, we first show how the Strichartz estimates on an asymptotically
conic nontrapping manifold M may be deduced via frequency and time localization.
Here we focus on estimating the solution on a compact set contained in M . Thus,
we consider χu, where χ ∈ C∞

0 (M) vanishes for small x.
We introduce the semiclassical parameter h, where h−1 will be (up to a constant)

the frequency of our frequency-localized wave u. Let ψ ∈ C∞
0 (1/2, 2). Then the

semiclassical dispersion estimate from [BuGT1] says that for sufficiently small c,∥∥ψ(h2ΔM )e−itΔM
∥∥
L1(M)→L∞(M) ≤ Ct−n/2 for t ∈ [0, ch] . (3.12)

Let us assume that u0 is localized near frequencies ≈ h−1 in the sense that
ψ(h2ΔM )u0 = u0 (this will then be true for all times t). This assumption is harmless
as a Littlewood–Paley argument (see [BuGT1, §2.3.2], using the Littlewood–Paley
estimate from [Bo1]) shows that if Strichartz is true for frequency-localized u, then
it holds for all u. It follows from (3.12) and Keel–Tao that Strichartz holds for u on
a time interval of length ch:

‖e−itΔMu0‖Lp[0,ch];Lq(M) ≤ C‖u0‖L2(M) (3.13)

for (p, q) satisfying (0.1). Here, c depends on the injectivity radius of M and the
support of ψ; for simplicity, below we assume that c = 1.

To extend this to a fixed-length time interval, we use time cutoffs and local
smoothing estimates. To define the time cutoffs, let ϕ(s) ∈ C∞

0 [−1, 1] satisfy
ϕ(0) = 1 and

∑
j∈Z ϕ(s − j) = 1. Then we can write, for any Schrödinger wave

u( · , t) = e−itΔMu0,

χu =
∑
j∈Z

ϕ(t/h− j)χu ≡
∑
j

uj ,

where each uj is supported on a time interval of length 2h. We work on the time
interval [0, 1] and assume that h−1 = N ∈ N; thus, we need to consider uj for
j = 0, 1, . . . , N . The functions u0 and uN are dealt with from the semiclassical
Strichartz estimate (3.13). So consider uj for 1 ≤ j ≤ N−1. These functions satisfy
the equation

(i∂t −ΔM )uj = h−1ϕ′(t/h− j)χu+ 2ϕ(t/h− j)
(∇χ · ∇u−ΔMχu

) ≡ wj . (3.14)

Since M is nontrapping, we have from Lemma 2.2 and Remark 2.3 the local smooth-
ing estimate

‖χ̃u‖L2[0,1];H1/2(M) ∼ h−1/2‖χ̃u‖L2[0,1];L2(M) ≤ C‖u0‖L2(M) (3.15)



644 N. BURQ, C. GUILLARMOU AND A. HASSELL GAFA 

for any χ̃ ∈ C∞
0 (M). Choose χ̃ to be 1 on the support of χ. It follows that

N∑
j=1

‖wj‖2
L2
t ;L2(M) ≤ Ch−1‖u0‖2

L2(M) . (3.16)

We can express uj in terms of wj using Duhamel’s formula,

uj(t) = χ̃

∫ t

(j−1)h
e−i(t−s)ΔM χ̃wj(s)ds . (3.17)

By the Christ–Kiselev lemma, if p > 2, in order to estimate the Lp
t norm of uj in

terms of the L2
t norm of wj it is sufficient to estimate the Lp norm of ũj defined by

ũj(t) =

∫ (j+1)h

(j−1)h
e−i(t−s)ΔMwj(s) ds = e−itΔM

∫ (j+1)h

(j−1)h
eisΔMwj(s)ds . (3.18)

Now we can use the semiclassical Strichartz estimate since the time interval is O(h).
The dual estimate to (3.15) gives∥∥∥∥∫ (j+1)h

(j−1)h
eisΔMwj(s)ds

∥∥∥∥
L2(M)

≤ Ch1/2‖wj‖L2
t ;L2(M) . (3.19)

Then (3.13) applied to this L2 function shows that

‖ũj‖Lp
t ;Lq(M) ≤ Ch1/2‖wj‖L2

t ;L2(M) , (3.20)

and the same estimate holds for uj by Christ–Kiselev. Squaring this inequality,
summing over j and using (3.16) shows that

N−1∑
j=1

‖uj‖2
Lp
t ;Lq(M) ≤ C‖u0‖2

L2(M) . (3.21)

Using the continuous embedding from l2(N) to lp(N) if p ≥ 2, we obtain(N−1∑
j=1

‖uj‖pLp
t ;Lq(M)

)2/p

≤ C‖u0‖2
L2(M) , (3.22)

and this gives
‖u‖Lp[0,1];Lq(M) ≤ C‖u0‖L2(M) (3.23)

with C independent of h.

Now suppose that M is trapping, but obeys assumptions (A1)–(A4) above. In
that case, the local smoothing estimate definitely fails [Bu], [Do], and then the
argument only gives Strichartz estimate with a loss (i.e. with additional negative
powers of h on the right-hand side) arising from the loss in the local smoothing
estimate. If the trapped set has negative topological pressure, the local smoothing
loss is |log h|1/2 as follows from work of Nonnenmacher–Zworski [NZ] and Datchev
[D], Theorem 3.7 below (see also [Bu], [BuZ]). In combination with the argument
above, this gives Strichartz with logarithmic loss, as shown for example in the case
of the exterior of several convex obstacles by Burq [Bu].
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However, when the topological pressure is negative then more is true: essentially
from the work of Anantharaman [A] and Nonnenmacher–Zworski [NZ], it follows that
the semiclassical Strichartz estimate can be improved by a logarithm: it is valid not
just on a time interval of length O(h), but actually on an interval of length h|log h|;
see Theorem 3.8 below. Then it turns out that this logarithmic improvement exactly
compensates for the logarithmic loss in the local smoothing estimate and we recover
the Strichartz estimate on a fixed finite time interval without loss. This is achieved
by localizing in time on intervals of length h|log h| rather than h for the part of u
localized near the trapped set.

More precisely, we proceed as above but with ϕ(t/h − j) replaced by
ϕ(t/h|log h| − j); that is, we localize to time intervals of length h|log h| which is
the maximum for which we can apply the semiclassical Strichartz estimate. We
then write wj = w′

j + w′′
j , where

w′
j=

1

h|log h|ϕ
′(t/h|log h|−j

)
uj , w′′

j=2ϕ
(
t/h|log h|−j

)
(∇χ·∇u−ΔMχu) . (3.24)

Then w′′
j is of size ∼ h−1 (since a derivative of u costs h−1). On the other hand,

it is supported in the nontrapping region and may be dealt with as above, as the
local smoothing estimate is valid without loss in the nontrapping region. The other
term, w′

j , is supported in the trapped region but is of size O((h|log h|)−1). On

this term we apply the local smoothing estimate, losing |log h|1/2 as compared to
the argument above. When we apply the dual estimate at the step (3.19) we lose a
further |log h|1/2, and then applying semiclassical Strichartz completes the argument
with no overall loss. The details are given in section 3.7.

In summary, the key ingredients of the proof will be the following three results:

Theorem 3.6 (Strichartz in the nontrapping region). Let M be an asymptotically
conic manifold, and suppose that χ ∈ C∞(M)∩L∞(M) vanishes in a neighbourhood
of π(K) where K ⊂ T ∗M is the trapped set. Then we have Strichartz estimates
without loss for χe−itΔMu0:

‖χe−itΔMu0‖Lp[0,1];Lq(M) ≤ C‖u0‖L2(M) (3.25)

for all (p, q) satisfying (0.1), p > 2.

Theorem 3.7 (Local smoothing with logarithmic loss). Suppose that M satisfies
assumptions (A1)–(A4). Then for any χ ∈ C∞

0 (M) and ψ ∈ C∞
c (1/2, 2), we have∥∥χe−itΔMψ(h2Δ)u0

∥∥
L2[0,1];L2(M) ≤ C

(
h|log h|)1/2‖u0‖L2(M) . (3.26)

Moreover, if χ is supported outside the trapping region, then the estimate holds
without the logarithmic loss in h on the right-hand side.

Theorem 3.8 (Semiclassical Strichartz on a logarithmic interval). Suppose that
M satisfies assumptions (A1)–(A4). Then for any χ supported in M−, we have on
a time interval of length h|log h|∥∥χe−itΔMψ(h2Δ)u0

∥∥
Lp[0,h|log h|];Lq(M) ≤ C‖u0‖L2(M)

for all (p, q) satisfying (0.1).
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3.4 Strichartz in the nontrapping region. In this section we sketch how
to prove Theorem 3.6. The argument is quite related to similar ideas in [StT].
Here, we follow fairly straightforward modifications of the argument in [HaTW]
for nontrapping metrics. Notice that none of the results about ‘local Schrödinger
integral operators’ in section 3 of [HaTW] use the nontrapping property, which only
enters when the local smoothing estimate is used. To adapt the results of [HaTW] to
prove (3.25), we modify the definition of the Banach space X in (4.6) of that paper
to include a cutoff function χ+, supported in the nontrapping region and equal to 1
on the support of χ in (3.25) in the ‖f‖H1/2,−1/2−ρ/2(M) term. This cutoff function
then needs to be included in Lemma 4.4 and Lemma 5.5 of [HaTW]. The proof

in section 6 then goes through provided that ψ
(0)
α is supported in the nontrapping

region.

3.5 Local smoothing effect. Theorem 3.7 follows fairly directly from the re-
solvent estimate from [D] (which generalizes [NZ, Th. 5] to scattering manifolds):∥∥χ(h2Δ− (1± iε))−1χ

∥∥
L2→L2 ≤ C

|log h|
h

, 0 < h < h0 � 1 , (3.27)

with C independent of ε (and h). From this, we deduce (3.26), following [BuGT2].
Indeed, denote by T the operator

T = χeitΔψ(h2Δ) .

The boundedness of T from L2 to L2((−∞,+∞);L2(M)) is equivalent to the bound-
edness of its adjoint T ∗ from L2((−∞,+∞);L2(M)) to L2 (with same norm), which
in turn is equivalent to the boundedness of TT ∗ from L2((−∞,+∞);L2(M)) to
itself (with same norm squared). But

TT ∗f(t) =
∫ +∞

−∞
χei(t−s)Δψ2(h2Δ)χf(s)ds = χ

∫ t

−∞
+χ

∫ +∞

t
≡ χA1f(t)+χA2f(t) ,

and it is enough to estimate for example χA1f . For this we can assume that f has
compact support, and consider uε = e−εtA1f(t) and fε = e−εtf (notice that uε is
supported in the set {t ≥ C}) which satisfy

(i∂t +Δ+ iε)uε = ψ2(h2Δ)χfε .

Taking Fourier transform with respect to the variable t, we get

χûε(τ) = χ
(
Δ− (τ − iε)

)−1
ψ2(h2Δ)χf̂ε ,

and according to the Plancherel formula (recall that the Plancherel formula is true
for functions taking values in any (separable) Hilbert space), and using (3.27) we
obtain

‖χuε‖L2((−∞,+∞);L2(M)) ≤ Ch log(1/h)‖χfε‖L2((−∞,+∞);L2(M)) .

Letting ε > 0 tend to 0 we obtain that the contribution of χA1 to TT ∗ satisfies the
required estimate. The other contribution χA2 is dealt with similarly.

The improved estimate when the support of χ does not meet the trapped set is
a consequence of Lemma 2.2 and Remark 2.3.
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3.6 Semiclassical Strichartz on a logarithmic interval. Using the work
of Nonnenmacher–Zworski [NZ] (which follows techniques of Anantharaman [A]),
we shall obtain a sharp dispersive estimate for the propagator e−itΔM for time
t ∈ (0, h|log h|) and in frequency localization in windows of size h. We want to
prove the following:

Proposition 3.9. There exists δ > 0 and C > 0 such that for all ψ ∈ C∞
0 ((1−δ/2,

1 + δ/2)), all t ∈ (0, h|log h|) with h ∈ (0, h0) small, we have for every χ ∈ C∞
0 (M)

supported in M− ∥∥χeitΔψ(h2Δ)χ
∥∥
L1→L∞ ≤ Ct−n/2.

Then Theorem 3.8 follows immediately from this by applying the main result of
Keel–Tao [KT].

The proof of Proposition 3.9 decomposes into several parts. Let us first introduce
the objects taken from [NZ] that we need to use for the proof.

Without loss of generality and to simplify notation, we assume as in [A] that
the injectivity radius of M is larger than 1. For t ∈ (0, h), the result is essentially
contained in [BuGT1], [BoT] since we are localized in a compact set of M . Now take
s0 ∈ [0, 1] and an integer L, with 1 ≤ L ≤ log(1/h). We want to obtain a dispersive
estimate for U(L+ s0), where

U(t) := eithΔ, h ∈ (0, h0) ,

by following [A], [NZ]. We consider, as in section 6.3 of [NZ], a microlocal partition
of unity (Πa)a∈A of the energy layer Eδ := {(m, ξ) ∈ T ∗M, |ξ| ∈ (1 − δ, 1 + δ)} for
some δ > 0 small. Let us recall how the partition (Πa) is defined. The operators
Πa are associated to an open covering (Wa)a∈A of Eδ in the sense that the semi-
classical wavefront set WFh(Πa) ⊂ Wa and

∑
a∈AΠa = I microlocally near Eδ/2, i.e.

WFh(Π∞) ∩ Eδ/2 = ∅ if Π∞ is defined by Π∞ := I −∑
a∈AΠa. Following section

5.2 and 5.3 in [NZ], the set A is decomposed into 3 parts, A = A1 � A2 � {0}. The
open set W0 is defined by

W0 := Eδ ∩ π−1(M \M−) .

(Wa)a∈A1 is chosen so that Wa ⊂ M− if a ∈ A1 and, as a ranges over A1, these sets
cover K ∩ Eδ in such a way that for any ε0 > 0 fixed small, there exist δ, ε > 0,
T0 ∈ N with Wa ⊂ {m ∈ T ∗M,d(Wa,K) ≤ ε} and∑

a∈A1

exp
(
sST0(Wa)

) ≤ exp
(
T0(P (s) + ε0)

)
, (3.28)

where ST0(Wa) is defined by (3.8). This is possible as explained in section 3.1 and
using the homogeneity of the Hamiltonian on T ∗M to deal with Eδ instead of S∗M .
Finally, the Wa for a ∈ A2 are defined so that there exists d1 > 0 such that

d(Wa,Γ
+ ∩ Eδ) + d(Wa,Γ

− ∩ Eδ) > d1

where Γ± are the forward/backward trapped sets defined in (3.1). By [NZ, Lem. 5.1],
there exists L0 ∈ N such that for all a ∈ A2

Φt(Wa) ⊂ W0 for t ≥ L0 or t ≤ −L0 . (3.29)
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For notational simplicity we replace both T0 and L0 by max(T0, L0); hence we have

Φt(Wa) ⊂ W0 for t ≥ T0 or t ≤ −T0 . (3.30)

To summarize, the energy layer Eδ is decomposed into the part W0 covering the
(spatial) infinity of Eδ, the part ∪a∈A1Wa covering the trapped set K ∩ Eδ, and
finally the part covering the complementary, whose flowout by Φt lies in W0 after
some large (positive or negative) time.

We write U(t) = eithΔ and we shall prove∥∥χψ(h2Δ)U(T )u
∥∥
L∞ ≤ C(Th)−n/2‖u‖L1 (3.31)

for T ∈ (2T0, |log h|). First we need a technical lemma.

Lemma 3.10. (i) Let (M, g) be a scattering manifold and ΔM its Laplacian.
Then for any ψ ∈ C∞

0 (R), ψ(h2ΔM ) is a semiclassical scattering operator of order
(−∞, 0, 0) in the sense of Wunsch–Zworski [WZ].

(ii) Let ψ be as above, then for each fixed t, the operator ψ(h2ΔM )e−ithΔM is a
semiclassical Fourier Integral operator associated to the canonical relation{

((z, ζ), (z′, ζ ′)) ∈ T ∗M × T ∗M | (z, tζ) = exp(z′, tζ ′)
}
.

Proof. (i) This follows from the argument in [HaV] for scattering pseudodifferential
operators. (We also remark that a similar, weaker result proved under more general
assumptions about the nature of the ends of the manifold by Bouclet [Bo1] would
also suffice for our purposes.)

(ii) It is shown in [NZ] that eithΔhφ(h2Δ) is a semiclassical FIO for each fixed t and
all φ ∈ C∞

0 (R). Thus, using the result of (i), ψ(h2Δ)eithΔφ(h2Δ) is a semiclassical
FIO. If φ = 1 on the support of ψ then this is precisely ψ(h2Δ)eithΔh by functional
calculus, proving the result. �

We decompose T > 2T0 into the form T = L − 1 + s0 = (2 +N)T0 + t0, where
L,N ∈ N and s ∈ (0, 1], t0 ∈ (0, T0]. Choosing ψ+ ∈ C∞

c (R) to be 1 on the support
of ψ, we have

ψ(h2Δ)U(T ) = ψ(h2Δ)ψL
+(h

2Δ)U(T ) = ψ(h2Δ)U(s0)
(
ψ+(h

2Δ)U(1)
)L−1

ψ+(h
2Δ) ,

and we can decompose

ψ+(h
2Δ)U(1) =

∑
a∈A∪∞

Ua , Ua := ψ+(h
2Δ)U(1)Πa . (3.32)

Hence we may write

ψ(h2Δ)U(T ) =
∑
α∈AL

ψ(h2Δ)U(s0)ΠαLUαL−1 . . . Uα1ψ+(h
2Δ) +RT (3.33)

where the RT term is the sum over all sequences α containing at least one index
αj = ∞. The first estimate we obtain corresponds to Lemma 6.5 in [NZ].

Lemma 3.11. If ψ, ψ+(x, hD) are chosen as above, we have

‖χRTχ‖L1→L∞ = O(h∞)

for 1 ≤ T ≤ |log h|, with implied constants independent of T .
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Proof. Since both Π∞ and ψ+(h
2Δ) are order zero pseudodifferential operators and

they have disjoint operator wavefront set, the composition Π∞ψ+(h
2Δ) is O(h∞)

as an operator from L2 to L2. The other factors in (3.33) are all bounded from L2

to L2, and there are at most CeCT terms in the sum. As T ≤ |log h| this contributes
at most a factor of a fixed power of h. Hence ‖RT ‖L2→L2 = O(h∞).

To get an L1 → L∞ estimate from this, we compose on the left with ψ(h2ΔM )
and observe that we still obtain an O(h∞) estimate if we pre- and post-multiply
by (1 + ΔM )m for any m, since this has the effect of increasing the operator norm
by at most Ch−4m. This is equivalent to an O(h∞) estimate from Sobolev spaces
H−m(M) to Hm(M), from which we obtain L1 → L∞ by Sobolev embedding for m
larger than half the dimension of M . �

The second estimate needed is similar to Lemma 6.6 of [NZ], but it is even better
since we cut on the left on a compact set. Let AL ⊂ (A \ {0})L defined by

α ∈ AL ⇐⇒
{
Φ1(Wαj ) ∩Wαj+1 �= ∅ , j = 1, . . . , L− 1 ,

and αj ∈ A1 for all j = T0, . . . , L− T0 .
(3.34)

Lemma 3.12. If α ∈ AL \AL and χ, ψ, ψ+(x, hD) are chosen as above, then∥∥χψ(h2Δ)U(s0)ΠαLUαL−1 . . . Uα1ψ(x, hD)χ
∥∥
L1→L∞ = O(h∞) (3.35)

for 2T0 < T ≤ |log h|, with T = L− 1 + s0 and s0 ∈ [0, 1].

Proof. This is proved in the same way as the previous lemma. We only need to
show that each term in (3.33) corresponding to a multi-index α ∈ AL \ AL has a
factor which is O(h∞) as a map from L2 to L2. This follows directly from Egorov’s
theorem if there is a j such that Φ1(Wαj ) ∩ Wαj+1 = ∅. Indeed, referring back to
Lemma 3.10 we can write

Uαj+1 ◦ Uαj = ψ+(h
2Δ)U(1)Παj+1ψ+(h

2Δ)eihΔψ++(h2Δ)Παj

where ψ++ ∈ C∞
c (R) is 1 on the support of ψ+. By Egorov, we have eihΔψ++(h2Δ)Παj

= QeihΔψ++(h2Δ) for some pseudodifferential operator Q with wavefront set given
by Φ−1(WF ′(Παj )). Since this is disjoint from the operator wavefront set of Παj+1

by hypothesis, this factor is O(h∞) as a map from L2 to L2.
If either α1 = 0 or αL = 0 then the O(h∞) estimate is immediate because Π0 is

microsupported in M \M− and χ is supported in M−. If any of the other αj = 0
then the O(h∞) estimate follows because of assumption (A3), which implies that
either a1 = 0 or aL = 0, or else the condition Φ1(Wαj ) ∩Wαj+1 = ∅ has to hold for
some intermediate j, showing that we are back in the situation considered above.
Similarly, if αj ∈ A2 for some T0 ≤ j ≤ L− T0 then (3.30) shows that we are again
back in the situation considered above. �

This lemma clearly implies the bound∑
α/∈AL

∥∥χψ(h2Δ)U(s0)ΠαLUαL−1 . . . Uα1χ
∥∥
L1→L∞ = O(h∞) , (3.36)

since |A|L = O(h− log |A|).
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It remains to deal with the elements α ∈ AL. We can obtain the following
bounds, again essentially from the analysis of [A] (and in a comparable way to [NZ,
Prop. 6.3]).

Lemma 3.13. Let χ be as above and let ε0 be the small parameter in (3.28). Then
for all small ε > 0, there exists C > 0 such that∑

α∈AL

∥∥χψ(h2Δ)U(s0)ΠαLUαL−1 . . . Uα1χ
∥∥
L1→L∞ ≤ Ch−d/2eT (P (1/2)+ε0+ε) (3.37)

for all h ∈ (0, h0) and 4T0 ≤ T ≤ |log h|, where T = L− 1 + s0 with s0 ∈ [0, 1].

Proof. We start by proceeding as in [A, §3]. If the cover is taken thin enough, we
may use coordinates (z, ξ) in each Wa, a ∈ A1, where z ∈ π(Wa) and ξ ∈ T ∗

zM are
cotangent variables. We can write, for u ∈ L1(M) and z ∈ π(Wα1),

Πα1χu(z) =

∫
π(Wα1 )

δy(z)u(y)dy +O(h∞) , with

δy(z) :=
1

(2πh)d

∫
(z,ξ)∈Wα1

ei
(z−y)ξ

h σ(z, ξ)dξ .

where σ(x, ξ) is the local symbol of Πα1χ in Wα1 . An upper bound for the left-hand
side of (3.37) is then the sum over all α ∈ AL of

sup
y,z

∣∣((ψ(h2Δ)U(t)ΠαJ+1)UαJ . . . Uα2e
ihΔ0δy)(z)

∣∣ . (3.38)

where we shall choose t = s0 and J = L − 1. Thus we take Πα1χu and evolve
it through eihΔ0 then microlocally cutoff in Wα2 , evolve again, microlocally cut off
again, and so on. For Anosov flows, it is shown in [A, §3] that, for any J,K ∈ N

fixed (independently of L), there exists a function SJ( · , t) ∈ C∞(π(WαJ )) and
bJ( · , h, t) ∈ C∞(π(WαJ )) with bJ smooth in h ∈ [0, h0) such that for t ∈ [0, 1](
(ψ(h2Δ)U(t)ΠαJ+1)UαJ . . . Uα2e

ihΔ0δy
)
(z)=(2πh)−

d
2 e

iSJ (z,t)

h bJ,K(z,h,t)+RJ,K(h,t) ,

bJ,K(z, h, t) =
K∑
k=0

hkbJ ;k(z, t) , (3.39)

with ‖RJ,K(h, t)‖L2 = CKJhK for some CK > 0 uniform in t, J (this estimate is
shown in [A, Lem. 3.2.2]). The function SJ(z, t) generates a smooth Lagrangian
submanifold LJ+t = LJ(t) = {(z, dzSJ(z, t)) ∈ T ∗M ; z ∈ π(WαJ )} which is part
of the graph of the canonical transformation ΦJ+t, namely that part with first
coordinate lying in the Lagrangian {(y, ξ) | 1− ε < |ξ| < 1 + ε}.
Remark 3.14. The key to the proof of Lemma 3.13 which we owe to [A] is
the following fact: as J → ∞ and since we only consider α ∈ AL, the geodesics
generating LJ(t) lie entirely within π−1(M−) which has sectional curvatures bounded
above by a negative constant, these Lagrangians LJ+t converge uniformly (indeed,
exponentially) to the weak unstable foliation as J → ∞. This will allow us to
compare the size of bJ with the weak unstable Jacobians Jwu

t (m), as we will shortly
show.
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We now take J = L−1, t = s0 and K large. We obviously have ‖χRL,K(h, s0)‖L2

≤ CKhK |log h| so using Sobolev embedding arguments as in the proof of Lemma 3.11,
we can replace the L2 norm by the L∞ norm, up to a loss of h−d/2−1, so∥∥χRL,K(h, s0)

∥∥
L∞ ≤ ChK−d/2−1|log h| .

Taking K large enough and summing over the α ∈ AL, the number of which is
bounded by h− log |A|, we conclude that these terms do not contribute.

It thus remains to study the L∞ norm of elements of the form

(2πh)−d/2χe
iSL−1(z,s0)

h bL−1,K(z, h, s0) ;

that is, the L∞ norm of bL−1,K . We can essentially use the estimates in [A] but
first we need to make some remarks on the different partitions of unity used here
as compared to [A]. There, the quantum partition of unity is implemented by
multiplication operators that cut off at the scale h−κ, 0 < κ < 1/2, while here we
use semiclassical pseudodifferential operators with symbols smooth in h. There are
two main differences: in [A], the multiplication operators are trivially bounded on
L2(M) with operator norm 1, while in our case, the operator norm of our microlocal
cutoffs is 1 +O(h) since the principal symbols are bounded by 1. This is inessential
since it contributes at most a factor (1 + Ch)|log h| to each term, which is bounded
uniformly as h → 0. Second, we need to replace the estimate on the derivatives of
the microlocal cutoffs from |DmAa| ≤ Ch−mκ in [A] to ‖ adm(D,Πa)‖L2→L2 ≤ C,
where D indicates differentiation and adm indicates the mth iterated commutator
(which is even better than in [A], as we do not get any negative powers of h in our
case).

With these remarks made, we can follow the analysis of section 3.2 of [A]. Let
us define J t

LL+s0
(z) to be the Jacobian of the map Φt, restricted to LL+s0 , and

evaluated at z = (z, dSL(s0)(z)) ∈ LL+s0 . Then the construction of [A] shows that
bL−1;k(z, s0) is only nonzero if Φ−j(z, dSL−1(z, 0)) ∈ π(WαL−j ) for all j = 1, . . . , L
and k = 0, . . . ,K, in which case∣∣bL−1;k(z, s0)

∣∣ ≤ CkL
3k(JL−1+s0

L−(L−1+s0)
(z))1/2. (3.40)

Notice that this is the analogue of [A, Lem. 3.2.1]. Let us write T = T1 +NT0 + T0,
where T1 = T0 + t0 ∈ [T0, 2T0]. Then we can decompose

J−T
LL−1+s0

(z) = J−T1
LL−1+s0

(z)× J−T0
L(N+1)T0

(
Φ−T1(z)

)× J−T0
LNT0

(
Φ−T1−T0(z)

)
. . .× J−T0

LT0

(
Φ−T+T0(z)

)
. (3.41)

The first and last Jacobian factors are uniformly bounded with respect to L; they
only depend on T0 since they can be written as a supremum of the Jacobian of
the flow at some time bounded by 2T0 on some set independent of L. Now using
Remark 3.14, by assuming that T0 is large enough, the Lagrangians LjT0 , j ≥ 1, are
arbitrarily close to the weak unstable foliation. Thus we can replace the Jacobian
of the flow by the weak unstable Jacobian, up to an ε > 0 error which can be taken
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as small as we like (possibly after increasing T0 sufficiently). Thus

J−T0
LjT0

(
Φ−T+jT0(z)

) ≤ Jwu
T0

(
Φ−T+jT0(z)

)
(1 + ε)

where Jwu
t (m) is defined in (3.3). But the right-hand side is uniformly bounded by

exp
(
ST0(Wαj′ )

)
(1 + ε) , with j′ := T − jT0 .

Consequently, using (3.39), (3.40) and (3.41), we find that (3.38) is bounded uni-
formly by

C(1 + ε)N exp

( N∑
j=1

1

2
ST0(Wαj′ )

)
for some subsequence (αj′)j′ ∈ AN

1 and some C > 0 depending only on T0. Now
summing over all α in AL, we clearly obtain the bound∑

α∈AL

∥∥χU(s0)ΠαLUαL−1 . . . Uα1χ
∥∥
L1→L∞ ≤ Ch−d/2(1 + ε)N

∑
α∈AL

N∏
j′=1

e
1
2
ST0

(Wα′
j
)

≤ Ch−d/2(1 + ε)N
( ∑

a∈A1

e
1
2
ST0

(Wa)
)N

which from (3.28) proves the Lemma since NT0 is comparable to T . �
Completion of the proof of Proposition 3.9. We first note that for times T ≤ 1, the
estimate ∥∥χψ(h2Δ)eiThΔχ

∥∥
L1→L∞ ≤ C(Th)−n/2

follows from the parametrix construction in [BuGT1, §2.2].
For times 1 ≤ T ≤ 4T0, the estimate can be obtained in the following way: by

replacing ψ with ψ2 in the estimate above, we obtain by the TT ∗ trick the following
estimates: ∥∥ψ(h2Δ)eihΔ/2χ

∥∥
L1→L2 ≤ Ch−n/4,∥∥χψ(h2Δ)eihΔ/2‖L2→L∞ ≤ Ch−n/4.

If we compose these estimates with the trivial intermediate estimate∥∥eih(T−1)Δ/2∥∥
L2→L2 ≤ 1 ,

then we obtain the estimate for 1 ≤ T ≤ 4T0.
For T ≥ 4T0 we can apply Lemmas 3.11, 3.12 with the estimate of Lemma 3.13

where ε0 + ε is chosen smaller than −P (1/2); we obtain the estimate∥∥χψ(h2Δ)eiThΔχ
∥∥
L1→L∞ ≤ Ch−n/2e−βT

for some β > 0, and all T ∈ (0, log(1/h)). It suffices to set t = Th and we get the
desired result since e−βTTn/2 ≤ C. �
3.7 Proof of Theorem 3.3. We shall be brief here since the proof was al-
ready outlined in section 3.3. We use the notation from that section. Thus,
uj = ϕ(t/h|log h| − j)χu satisfies

(i∂t −ΔM )uj = w′
j + w′′

j
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where w′
j , w

′′
j are defined in (3.24). Choose χ− ∈ C∞

0 (M) supported in M− and
identically 1 on the support of χ, and χ+ ∈ C∞(M) so that 1 − χ+ ∈ C∞

0 (M)
is identically 1 on π(K) and is 0 on the support of ∇χ. Then uj = χ+uj and
w′
j = χ−w′

j , w
′′
j = χ+w

′′
j . We define u′j by

u′j(t) = χ−
∫ t

(j−1)h|log h|
e−i(t−s)ΔMχ+w

′
j(s) ds (3.42)

with u′′j defined analogously. Clearly u′j + u′′j = uj .
To treat w′′

j , consider ũ
′′
j defined by

ũ′′j (t) = χ−
∫ (j+1)h|log h|

(j−1)h|log h|
e−i(t−s)ΔMχ+w

′′
j (s)ds

= χ−e−itΔM

∫ (j+1)h|log h|

(j−1)h|log h|
eisΔMχ+w

′′
j (s)ds . (3.43)

Using Lemma 2.2 and Remark 2.3 we see that∥∥∥∥∫ (j+1)h|log h|

(j−1)h|log h|
eisΔMχ+wj(s)ds

∥∥∥∥
L2(M)

≤ Ch1/2‖w′′
j ‖L2

t ;L2(M) .

Then Theorem 3.8 applied to this L2 function shows that

‖ũ′′j ‖Lp
t ;Lq(M) ≤ Ch1/2‖w′′

j ‖L2
t ;L2(M) , (3.44)

and the same estimate holds for u′′j by Christ–Kiselev. To treat w′
j , consider ũ′j

defined by

ũ′j(t) = χ−
∫ (j+1)h|log h|

(j−1)h|log h|
e−i(t−s)ΔMχ+w

′
j(s)ds

= χ−e−itΔM

∫ (j+1)h|log h|

(j−1)h|log h|
eisΔMχ+w

′
j(s)ds . (3.45)

The dual estimate to Theorem 3.7 implies∥∥∥∥∫ (j+1)h|log h|

(j−1)h|log h|
eisΔMχ+w

′
j(s)ds

∥∥∥∥
L2(M)

≤C
(
h|log h|) 1

2 ‖w′
j‖L2

t ;L2(M)≤
C‖χu‖L2

t ;L2(M)

(h|log h|)1/2 ,

using also ω
′
j = i(h|log h|)−1ϕ′(t/h|log h| − j)χu. Then we can use Theorem 3.8

applied to this L2 function shows that

‖ũ′j‖Lp
t ;Lq(M) ≤ C

(
h|log h|)−1/2‖χu‖L2

t ;L2(M) , (3.46)

and the same estimate holds for u′j by Christ–Kiselev.
Squaring and summing over j gives

N−1∑
j=1

‖uj‖2
Lp
t ;Lq(M) ≤ C

N−1∑
j=1

(
h‖w′′

j ‖2
L2
t ;L2(M) +

1

h|log h|‖w
′
j‖2

L2
t ;L2(M)

)
, (3.47)
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and the right-hand side is no bigger than C‖u0‖2
L2(M) using Lemma 2.2 for w′′

j and

Theorem 3.7 for w′
j . Using the continuous embedding from l2(N) to lp(N) as in

section 3.3 gives ∥∥χe−itΔMψ(h2Δ)u0
∥∥
Lp[0,1];Lq(M) ≤ C‖u0‖L2(M) .

Together with Theorem 3.6 this gives the Strichartz estimate without the space
cutoff χ: ∥∥e−itΔMψ(h2Δ)u0

∥∥
Lp[0,1];Lq(M) ≤ C‖u0‖L2(M) .

Finally using Bouclet’s Littlewood–Paley estimate (equation (1.4) of [Bo1]) and
the argument in [BuGT1], we remove the frequency cutoff and obtain (3.5), which
completes the proof.

Remark 3.15. The restriction p > 2 in Theorem 0.2 is only required because we
use the Christ–Kiselev lemma. It is likely that this condition could be eliminated
(for d > 2) with a more careful analysis.
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[Ca] R. Carles, Global existence results for nonlinear Schrödinger equations with
quadratic potentials, Discrete Contin. Dyn. Syst. 13:2 (2005), 385–398.

[ChK] M. Christ, A. Kiselev, Maximal functions associated to filtrations, J. Funct.
Anal. 179 (2001), 409–425.

[Chr] H. Christianson, Cutoff resolvent estimates and the semilinear Schrödinger
equation, Proc. Amer. Math. Soc. 136:10 (2008), 3513–3520.

[CoS] P. Constantin, J.-C. Saut, Effets régularisants locaux pour des équations dis-
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