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Abstract. In a series of papers in 1930-32, Paley and Zygmund proved that random series
on the torus enjoy better Lp bounds than the bounds predicted by the deterministic
approach (and Sobolev embeddings). The subject of random series was later largely
studied and developed in the context of harmonic analysis. Curiously, this phenomenon
was until recently not exploited in the context of partial differential equations. The
purpose of this talk is precisely to present some recent results showing that in some
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1. Introduction

In a series of papers in 1930-32, Paley and Zygmund [42] proved that for any square
summable sequence (cn) ∈ `2, if one consider the trigonometric series

u(x) =
+∞∑
n=0

cne
inx,

then, changing the signs of the coefficients cn randomly and independently ensures
that almost surely, the sum of the series is in every space Lp(T), 2 ≤ p < +∞. In
modern language, this result reads

Theorem 1.1. Consider a sequence (cn) ∈ `2 and a family of independent, mean
zero Bernouilli random variables, (bωn) on a probability space (Ω,P):

P(bn = ±1) =
1
2
,

and the corresponding series on the torus,

uω(x) =
+∞∑
n=0

bωncne
inx.
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Then almost surely
∀2 ≤ p < +∞, uω ∈ Lp(T).

Actually, in 1930, the most difficult part in this result was precisely to define
what is a ”family of independent, mean zero Bernouilli random variables”, and
Paley-Zygmund proof relied on an explicit realization (see Rademacher [43] and
Kolmogorov [27]). With modern technology, it is not difficult to give a quantitative
version of this result and one can prove (see section 2)

∀2 ≤ p < +∞,∃C > 0;∀λ > 0,P(‖uω‖Lp(T) > λ) ≤ Ce−λ
2/C .

This much celebrated result has been followed by many works on random series
of functions (see in particular the books by Kahane [24] and Marcus-Pisier [36])
where the studies focused mostly on the question of giving criteria for the uniform
convergence of the series. It is quite remarkable that this very active fields of
research for the point of view of harmonic analysis were not, until recently inves-
tigated from the point of view of partial differential equations. To my knowledge,
the first step toward this direction is due to Bourgain [7], where these properties of
random series on the torus T2 were exploited in the context of the (renormalized
by Wick ordering) two dimensional non linear cubic Schrödinger equations. The
purpose of this talk is in fact to show that these properties of random series can
be exploited in a number of situations including wave equations on manifolds and
non linear harmonic oscillators. The examples we have in mind are the semilinear
wave equation on a compact manifold

(
∂2

∂t2
−∆)u = −|u|p−1u, u |t=0= u0,

∂

∂t
u |t=0= u1, (1)

and the semilinear Schrödinger equation on the line

(i
∂

∂t
− ∂2

∂x2
+ x2)u = −κ|u|p−1u, u |t=0= u0, κ = 0;±1. (2)

As far as Cauchy theory is concerned, the (deterministic) behaviour of these equa-
tions has been investigated for a long time and the picture is by now fairly complete.
Notice that up to now, the ideas presented in this talk do not apply to the case
of nonlinear Schrödinger equations on compact manifolds (see Tzvetkov [47, Ap-
pendix] where some partial results are obtained in this case). Notice also that in
this setting of deterministic theory of semi-linear Schrödinger equations on man-
ifolds, the situation is much less well known, see Gérard [19] for a review of this
question). Many of the questions which remain open on Rd are essentialy about
the critical problems and the long time behaviour (or possibly explosion, see the
works by Merle-Raphael [37, 38, 40, 39]) of the solutions. In particular, for both the
wave equation on a compact manifold, and the Schrödinger equation, the Cauchy
problem is known to be well posed above the scaling index

sc =
d

2
− 2
p− 1

.
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(see Kapitanskii [25], Oh [41] and Carles [15], and the contributions by Bourgain [6],
Colliander-Keel-Staffilani-Takaoka-Tao [17], and Kenig-Merle [29, 30] for the crit-
ical problems), while it is known to be ill posed below the scaling index. Indeed,
the following result is known (see the works by Lebeau [32, 33], Christ-Colliander-
Tao [16], Burq-Gérard-Tzvetkov [9], Alazard-Carles [1] and Thomann [48]).

Theorem 1.2. Assume that 0 < s < sc. Then there exists a sequence of initial
data (u0,n, u1,n) → 0 in Hs(M) × Hs−1(M) as n → 0, and there exists times
tn → 0 such that the solutions of (1) exist (and are unique) in suitable spaces for
|t| ≤ tn, but

lim
n→+∞

‖u(tn)‖Hs(M) = +∞.

There exists also a sequence of initial data (u0,n) → 0 in Hs(R)) as n → 0, and
there exists times tn → 0 such that the solutions of (2) exist (and are unique) in
suitable spaces for |t| ≤ tn, but

lim
n→+∞

‖u(tn)‖Hs(R) = +∞.

In other word, the equations (1) and (2) admit no flow continuous at t = 0,
(u0, u1) = 0 (resp u0 = 0) for the Hs topology. Having this negative result in
mind, a natural question to ask is whether one can still find initial states with
super-critial regularity (i.e. (u0, u1) ∈ Hs(M) ×Hs−1(M), (resp. u0 ∈ Hs(M)),
s < sc), for which the Cauchy problem (1) (resp. (2)) is locally (or even better,
globally) well posed. The purpose of this talk is precisely to present such examples.

The paper is organized as follows: In Section 2, I will present a short proof of
Paley-Zygmund’s result which, using Hörmander-Sogge’s Laplace eigenfunctions
estimates [21, 45], or Hermite eigenfunctions estimates [31] extends readily to the
more general setting of random series on manifolds (or on Rd). In section 3, I will
show how these estimates, combined with the usual Strichartz estimates [46, 20, 28]
allow to obtain a nice ”probabilistic” Cauchy theory for the wave equation on
compact manifolds and I will give a particular example where this local theory
combined with Bourgain’s [7, 6] Gibbs measure arguments gives a global (in time)
result. In Section 4, I will follow the same program for the semi-linear Schrödinger
equation on the line R, with or without harmonic oscillator. Finally, in a last
section, I will focus on some different randomizations in connexion with Sobolev
embeddings.

2. Random series

2.1. Random series on the torus. In this section I will give a simple
proof of Paley-Zygmund’s theorem, to show the versatility of the result.

Theorem 2.1 (see [2, 13, 14]). Assume that the random variable bωn are

1. independent,
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2. have mean equal to 0,

3. have super-exponential decay

∃C, δ > 0;∀α ∈ R,E(eα|b
ω
n|) ≤ Ceδα

2
. (3)

Notice that this latter assumption is satisfied for Bernouilli, or more generally
for families of random variables having a (fixed) compact support, or for
standard Gaussian random variables.

Then, almost surely, uωn ∈ Lp(T),∀q < +∞. More precisely, the following large
deviation estimate holds

∀q < +∞,∃C; P(‖uω‖Lq(T) > λ) ≤ Ce−Λ2/C .

The remaining of this section is devoted to the proof of Theorem 2.1.

2.2. Proof of Theorem 2.1. The proof relies on

Proposition 2.2. [Large deviation estimate] Assume that the random variables
satisfy the assumptions of Theorem 2.1. Then there exists δ > 0 such that for any
Λ > 0, and any sequence (vn) ∈ `2,

P(|
∑
n

vnb
ω
n | > Λ) ≤ e−δ

Λ2P
n |vn|2 .

2.2.1. Proof of Theorem 2.1 assuming Proposition 2.2. Fix r ≥ q. Remark
that the norm of an integral is always smaller that the integral of the norm. As a
consequence,

‖‖uω(x)‖Lqx‖Lrω =
(
‖
∫
x

|uω(x)|qdx‖
L
r/q
ω

)1/q

,

≤
(∫

x

‖|uω(x)|q‖
L
r/q
ω
dx
)1/q

,

= ‖‖uω(x)‖Lrω‖Lqx .

(4)

Notice (x is a fixed parameter) that

‖uω(x)‖Lrω =
∫ +∞

0

rλr−1P(|uω(x)| > λ)dλ,

and according to Proposition 2.2 applied to vn = une
inx, with x a fixed parameter

(and the change of variables µ =
√

2δ1/2

(
P
n |uneinx|2)1/2 ),

‖uω(x)‖rLrω ≤ C
∫ +∞

0

rλr−1e
−δ λ2P

n |uneinx|2 dλ

≤ (C
∑
n

|un|2)r/2r
∫ +∞

0

µr−1e−
µ2

2 dµ,

≤ (C
∑
n

|un|2)r/2 × r × r − 2× · · · × 1 ≤ (C ′r
∑
n

|un|2)r/2. (5)
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Notice now that the norm with respect to the x parameter is harmless (as the bound
does not depend on x). For future use, it should be noticed that we use here that
the Lq norm of the functions einx are uniformly bounded. As a conclusion, we just
proved

‖‖uω(x)‖Lqx‖Lrω ≤ (C ′r
∑
n

|un|2)1/2.

To conclude, let us recall Tchebytchev inequality:

∀λ, λP(fω > Λ) ≤ E(f).

Apply this inequality to the random variable fω = ‖uω(x)‖r
Lqx

and λ = Λr. We get

P(‖uω(x)‖Lqx > Λ) = P(‖uω(x)‖rLqx > Λr = λ)

≤ 1
Λr

E(‖uω(x)‖rLqx) =
1

Λr
‖‖uω(x)‖Lqx‖

r
Lrω

≤
( (C ′r

∑
n |un|2)

Λ2

)r/2
.

(6)

Now we optimize this inequality by choosing r so that

(C ′r
∑
n |un|2)

Λ2
=

1
2

(notice that the assumption r ≥ p requires that λ is large enough, but for bounded
λ’s, the large deviation estimate in Theorem 2.1 is straightforward). This gives

P(‖uω(x)‖Lqx > Λ) ≤
(1

2

)r/2
= e
−δ Λ2P

n |un|2 ,

which ends the proof of Theorem 2.1.

2.2.2. Proof of Proposition 2.2. The proof we give is very classical. In the spe-
cial case where the random variables gn are gaussian random variables of variance
1, the result is straightforward. Indeed,

∑
n vngn is a Gaussian random variable of

variance
∑
n |vn|2 and the result follows. In the general case, it is enough to prove

P(
∑
n

vnb
ω
n > λ) ≤ e−δ

λ2P
n |vn|2 .

Indeed, the estimate for the other part, P(
∑
n vnb

ω
n < −λ) is obtained by changing

vn to −vn. Let us fix t > 0 and compute (using the fact that the random variables
are independent)

E(et
P
n vnb

ω
n ) = E(

∏
n

etvnb
ω
n ) =

∏
n

E(etvnb
ω
n )

≤
∏
n

eδt
2|vn|2 ≤ et

2 P
n |vn|

2
,

(7)
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where in the last but one inequality, we used the super-exponential decay assump-
tion(3). Now, using Tchebytchev inequality,

P(
∑
n

vnb
ω
n > λ) = P(et

P
n vnb

ω
n > etλ),

≤ e−tλE(et
P
n vnb

ω
n ),

≤ eδt
2 P

n |vn|
2−tλ.

(8)

Optimize by choosing δt2
∑
n |vn|2 = tλ/2, i.e. t = λ/(2δ

∑
n |vn|2), which gives

P(
∑
n

vnb
ω
n > λ) ≤ e−α

λ2P
n |vn|2 ,

which ends the proof of Proposition 2.2 and consequently the proof of Theorem 2.1.

2.3. Random series on manifolds and on the line. Consider M
a riemanian manifold and H a non-negative self adjoint operator on L2(M) with
compact resolvent (the examples we have in mind are M a compact riemanian
manifold with H = −∆ and M = R with H = − d2

dx2 +x2 the harmonic oscillator).
It is well known that the eigenfunctions of H, en, associated to eigenvalues −λ2

n

provide a Hilbert base of L2(M)

u ∈ L2(M)⇔ u =
∑
n∈N

unen(x), ‖u‖2L2(M) =
∑
n∈N
|un|2 < +∞

Definition 1. For any s ∈ R, let Hs(M) be the space of distributions such that
(Id + H)su ∈ L2(M), and let Ws,p(M) be the space of distributions u such that
( Id +H)s/2u ∈ Lp(M) endowed with their natural norm. In particular, we have

u ∈ Hs(M)⇔ u =
∑
n∈N

unen(x),
∑
n∈N

(1 + λ2
n)s)|un|2 = ‖un‖2Hs(M) < +∞

and notice that if M is a compact manifold, Hs(M) coincides with the usual
Sobolev space Hs(M) while if M is the real line and H the harmonic oscillator,
and s ≥ 0

Ws,p(M) = {u ∈ D′(R); 〈x〉su, 〈|Dx|〉su ∈ Lp(R)

(endowed with its natural norm [18]).

The starting point of the analysis is Hörmander-Sogge’s estimates for the
growth of the Lp norm of eigenfunctions on (compact) manifolds

Theorem 2.3. Consider M a compact riemanian manifold and (en)n∈N, the L2-
normalized eigenfunctions of the Laplace operator on M , associated to the eigenval-
ues −λ2

n. Then, there exists C > 0 such that for any n ∈ N, and any 2 ≤ p ≤ +∞

‖en‖Lp(M) ≤ Cλδ(p)n (9)
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where

δ(p) =

{
d−1

2 −
d
p if p ≥ 2(d+1)

d−1 ,
d−1

2 ( 1
2 −

1
p ) if p ≤ 2(d+1)

d−1 .
(10)

The end point p = ∞ is due to Hörmander [21] while the point p = 2(d+1)
d−1 is

due to Sogge [45] (notice that the last extremal point p = 2 is trivial).
Consider now the (L2 normalized) eigenfunctions of the Harmonic oscillator,

hn(x),

(− d2

dx2
+ x2)hn = λ2

nhn, λn =
√

2n+ 1

Then the analog of Sogge’s result is the following (see Yajima-Zhang [49] and
Koch-Tataru [31]

Theorem 2.4. For any 2 ≤ p ≤ +∞, there exists C > 0 such that for any n ∈ N,

‖hn‖Lp(R) ≤ Cλσ(p)
n (11)

with

σ(p) =

{
−
(

1
6 + 1

3p

)
if 4 < p ≤ +∞

= −
(

1
2 −

1
p

)
if 2 ≤ p < 4

(12)

and
‖hn‖L4(R) ≤ Cλ

− 1
4

n log(λn)1/4 (13)

Remark. Notice that in the case of the harmonic oscillator, the situation is much
more favorable as the Lp norms of the Hermite functions hn tend to be small as n
tend to infinity. This is of course natural, as, by elliptic regularity, the functions
hn are essentially concentrated in the set {|x| ≤ λn}, whose measure is growing.

Remark. Following the Xs,b approach by Bourgain [4, 3, 5], multilinear versions
of estimates (9) proved to be crucial in the analysis of the (deterministic) well
posedness of non linear Schrödinger equations on general compact manifolds and
spheres (see the works by Burq-Gérard-Tzvetkov [8, 10, 19]), while the bilinear
version of (13) was the starting point of our work on the non linear harmonic
oscillator (see [12] and Section 4.1).

Now the analog of Paley-Zygmund’s theorem is (see Burq-Tzvetkov [13])

Theorem 2.5. Consider a compact riemanian manifold, M . Fix 2 ≤ p < +∞
and consider

u =
∑
n

unen(x) ∈ Hs(M),

and random variables (bn) satisfying the assumptions in Theorem 2.1. Assume
that s > δ(p). Then almost surely the random series

uω =
∑
n∈N

bωnunen(x)



8 N. Burq

belongs to Lp(M) and more precisely

∃C > 0;P(‖uω‖Lp(M) > λ) ≤ Ce−λ
2/C . (14)

Furthermore, for any s′ > s, if u /∈ Hs′(M), then

P(‖uω‖Hs′ (M) < +∞) = 0. (15)

In the case of the harmonic oscillator, the analog of Paley-Zygmund’s theorem
is (see Burq-Thomann-Tzvetkov [12])

Theorem 2.6. Fix 2 ≤ p < +∞ and consider

u =
∑
n

unhn(x) ∈ Hs(R),

and random variables (bn) satisfying the assumptions in Theorem 2.1. Assume
that s > σ(p). Then almost surely the random series

uω =
∑
n∈N

bωnunhn(x)

belongs to Lp(R) and more precisely

∃C > 0;P(‖uω‖Lp(R) > λ) ≤ Ce−λ
2/C . (16)

Furthermore, for any s′ > s, if u /∈ Hs′(R), then

P(‖uω‖Hs′ (R) < +∞) = 0. (17)

Remark. Notice that these results exhibit gains of derivatives with respect to the
Sobolev embeddings. Indeed, it is of course clear for the harmonic oscillator case
as the Lp norms are better behaved almost surely than the L2 norms, while in the
case of a compact manifold, Sobolev embeddings read

‖u‖Lp(M) ≤ C‖u‖Hs(M), s = d
(1

2
− 1
p

)
, 2 ≤ p < +∞.

3. Wave equations and random series

3.1. Local theory. In this section, for simplicity, I shall consider the simplest
model on semi-linear wave equation, which is obtained for cubic non linearities on
three dimensional manifolds.

(∂2
t −∆)u+ u3 = 0, (u, ∂tu)|t=0 = (u1, u2) ∈ Hs(M)×Hs−1(M). (18)

Notice that for this equation, the critical index is sc = 1
2 . The following result

(Burq-Tzvetkov [13]) shows that neverthless, the Cauchy problem is locally well
posed for a large number of supercritical initial data
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Theorem 3.1. Consider a compact riemanian manifold, M . Let us fix s > 1
4 and

(u1, u2) =
∑
n

(un,1en(x), un,2en(x)) ∈ Hs(M)×Hs−1(M).

Let (gn) and (hn) be two families or independent random variables satisfying the
assumptions in Theorem 2.1. Consider

(uω0 , u
ω
1 ) =

∑
n

(un,1gωnen(x), hωnun,2en(x))

the associated random function. Then for almost every initial data (uω0 , u
ω
1 ), there

exists T > 0 such that there exists a unique solution u of (18) in a space continu-
ously embedded in C([−T, T ];Hs(M)), and furthermore, there exist C > 0, δ > 0
such that

p(T ≥ T0) ≥ 1− Ce−c/T
δ
0 , c, δ > 0. (19)

Remark. Notice that if the initial data (u0, u1) are in Hs(M)×Hs−1(M) but not
in Hσ(M)×Hσ−1(M), then almost surely (uω0 , u

ω
1 ) are not in Hσ(M)×Hσ−1(M).

Consequently, this theorem provides us with a large number of initial data of super-
critical regularity, for which local existence of a strong solution holds.

Sketch of proof. Let us recall first how, using purely deterministic arguments,
one can prove that (18) is locally well posed for initial data in Hs(M)×Hs−1(M)
when s ≥ 1/2. We shall use the following Strichartz estimate due to Kapitan-
skii [26]

Theorem 3.2. The solution of the linear wave equation

(∂2
t −∆)u = f, (u, ∂tu)|t=0 = (u1, u2) (20)

satisfies

‖u‖L4((0,T×Ω)) ≤ C
(
‖(u1, u2)‖H1/2(M)×H−1/2(M) + ‖f‖L4/3((0,T )×M)

)
.

Now, to solve (18), we simply look for a fixed point of the operator

K : u 7→ cos(t
√
−∆)u1 +

sin(t
√
−∆)√
−∆

u2 +
∫ t

0

sin((t− s)
√
−∆)√

−∆
u3(s)ds

in the space C0((0, T );Hs(M))∩L4((0, T )×M), and using Theorem 3.2, it is not
difficult to see the existence of such a fixed point (notice that u ∈ L4 ⇒ u3 ∈ L4/3).
The idea of the proof of Theorem 3.1 is now very simple. Instead of performing,
the previous fixed point in the Strichartz type space, we perform a first iteration
and search for a solution under the form

u = cos(t
√
−∆)u1 +

sin(t
√
−∆)√
−∆

u2 + v = ufree + v.
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The function v is solution of

(∂2
t −∆)v + (ufree + v)3 = 0, (v, ∂tv)|t=0 = (0, 0) (21)

and we can rewrite this equation as a fixed point

v = K̃(v) =
∫ t

0

sin((t− s)
√
−∆)√

−∆
(ufree + v)3(s)ds.

Now, according to Theorem 2.5, almost surely, there exists T > 0 such that

ufree ∈ L4((0, T )×M)

(notice that the additional time dependence plays no role and the proof of The-
orem 2.1 applies). As a consequence, the same proof as in the deterministic case
for the operator K applies and shows the existence of a fixed point for K̃.

3.2. A global existence result. Having the previous local result in mind,
a natural question is whether one can exhibit cases where it is possible to prove
global (in time) existence for the solutions. It turns out that it is the case for a
very particular model problem: Consider the case of the wave equation in the unit
ball of R3, B, with Dirichlet boundary conditions

(∂2
t −∆)u+ |u|p−1u = 0, u |∂B= 0, (u, ∂tu)|t=0 = (u1, u2) (22)

In this case, the critical index is

sc =
3
2
− 2
p− 1

,

and for k > 3, sc > 1
2 . Consider now (en)n∈N the sequence of radial eigenfunctions

of the Laplace operator with Dirichlet boundary conditions in B. The following
result [14] shows that the Cauchy problem is, in this particular case globally well
posed for a large number of super-critical initial data.

Theorem 3.3. Suppose that k < 4. Fix a real number p such that max(4, 2α) <
p < 6. Let ((hn(ω), ln(ω))∞n=1 be a sequence of independent standard real Gaussian
random variables on a probability space (Ω,A, p). Consider (22) with initial data

fω1 (r) =
∞∑
n=1

hn(ω)
nπ

en(r), fω2 (r) =
∞∑
n=1

ln(ω)en(r) , (23)

where (en(r))∞n=1 is the orthonormal basis consisting in radial eigenfunctions of
the Laplace operator with Dirichlet boundary conditions, associated to eigenvalues
−(πn)2. Then for every s < 1/2, almost surely in ω ∈ Ω, the problem (22) has a
unique global solution

uω ∈ C(R, Hs(B)) ∩ Lploc(Rt;L
p(B)) .
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Furthermore, the solution is a perturbation of the linear solution

uω(t) = U(t)(fω1 , f
ω
2 ) + vω(t) = cos(t

√
−∆)fω1 +

sin (t
√
−∆)√
−∆

fω2 + vω(t),

where vω ∈ C(R, Hσ(B)) for some σ > 1/2. Moreover there exists C > 0, and
almost surely Dω such that

‖uω(t)‖Hs(B) ≤ C log(Dω + |t|) 1
2 ,P(Dω > Λ) ≤ Ce−λ

2/C .

Notice that as soon as s < 1/2, the initial data given by (23) are almost surely in
Hs(B)×Hs−1(B) and as soon as s ≥ 1

2 are almost surely not in Hs(B)×Hs−1(B),
and consequently in the range of non linearities 3 < k < 4, the initial data we
consider are super-critical. The proof of this result combines a local Cauchy at
the probabilistic level with the Gibbs measure strategy performed by Bourgain [7],
following the trend iniciated by Lebowitz-Rose-Speer [34].

4. Non linear harmonic oscillators

In this section, I will present some results on the non linear harmonic oscillator{
i∂tu+ ∂2

xu− x2u = κ0|u|k−1u, (t, x) ∈ R× R,
u(0, x) = f(x),

(24)

where k ≥ 3 is an odd integer and where either κ0 = 1 or κ0 = −1. Our main
result [12] shows once again that the Cauchy problem is globally well posed for a
large number of initial data.

Theorem 4.1. Consider the L2 Wiener measure on D′(R), µ, constructed on the
harmonic oscillator eigenbasis, i.e. µ is the distribution of the random variable

∞∑
n=0

√
2

2n+ 1
gn(ω)hn(x),

where (hn)∞n=0 are the Hermite functions and (gn)∞n=0 is a system of standard
independent complex Gaussian random variables. Then in the defocusing case,
for any order of nonlinearity k < +∞, and in the focusing case for the cubic
non linearity, the Cauchy problem (24) is globally well posed for µ-almost every
initial data. Furthermore, in both cases, there exists a Gibbs measure, absolutely
continuous with respect to µ, which is invariant by this flow.

An interesting by-product of our analysis is the following result for the L2

critical and super-critical equation{
i∂tu+ ∂2

xu = |u|k−1u, k ≥ 5, (t, x) ∈ R× R,
u(0, x) = u0(x)

(25)
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Theorem 4.2. [[12]] For any 0 < s < 1/2, the equation (25) has for µ-almost
every initial data a unique global solution satisfying

u(t, ·)− e−it∆u0 ∈ C
(
R;Hs(R)

)
(the uniqueness holds in a space continuously embedded in C

(
R;Hs(R)

)
). More-

over, the solution scatters in the following sense. There exists µ-almost surely
states g± ∈ Hs(R) so that

‖u(t, ·)− eit∆(f + g±)‖Hs(R) −→ 0, when t −→ ±∞.

Remark. Notice that Theorem 4.2 gives global existence whilst no invariant mea-
sure is involved in the proof (see Colliander-Oh [23, 22] for results in this direction).

The proof of Theorem 4.2 uses the pseudo-conformal transform (see [15] for a
use of this transform in the context of L2 scattering problems).

Proposition 4.3. Suppose that v(s, y) is a solution of the problem

i∂sv + ∂2
yv = |v|k−1v, s ∈ R, y ∈ R. (26)

We define u(t, x) = L(v)(t, x) for |t| < π
4 , x ∈ R by

u(t, x) =
1

cos
1
2 (2t)

v
( tan(2t)

2
,

x

cos(2t)
)
e−

ix2tg(2t)
2 . (27)

Then u solves the problem

i∂tu− (∂2
x − x2)u = cos

k−5
2 (2t)|u|k−1u, |t| < π

4
, x ∈ R. (28)

As a consequence, in the case k = 5, (28) reduces to (25), and Theorem 4.2
follows rather directly from Theorem 4.1 In the case k ≥ 7, the proof is more
involved and relies on an analog of Theorem 4.1 for (28) (notice that this latter
equation is non autonomous).

Sketch of proof of Theorem 4.1. For low order non linearities (p ≤ 7), the proof
follows the same lines as in the case of wave equations, and relies on Theorem 2.6
(or more precisely on similar estimates for the solution of the linear harmonic
Schrödinger equation u = eitHu0). However, as soon as p ≥ 9, these estimates are
not sufficient, because they allow only for a gain of at most 1/4 space derivatives,
and the exponent for which sc = 1

4 is precisely k = 9. As a consequence, our
analysis requires a full bi-linear analysis at the probabilistic level. The bilinear
nature of our probabilistic analysis can be seen though the following statement
which shows that by considering nonlinear quantities, a gain of (almost) 1/2 space
derivatives can be achieved.

∀ θ < 1/2, ∀ t ∈ R, ‖(e−itHuω)2‖Hθ < +∞, µ almost surely. (29)
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4.1. Bilinear estimates. In this section we give a proof of (29) which was
pointed to us by P. Gérard. Observe that (29), applied with t = 0 implies that
(uω0 )2(x) is a.s. in Hθ for every θ < 1/2 which is a remarkable smoothing property
satisfied by the random series (uω0 )(x). The key point in the proof of (29) is the
following bilinear estimate for Hermite functions.

Lemma 4.4. There exists C > 0 so that for all 0 ≤ θ ≤ 1 and n,m ∈ N

‖hn hm‖Hθ(R) ≤ C max (n,m)−
1
4 + θ

2
(

log
(

min (n,m) + 1
)) 1

2 . (30)

Proof. We give an argument we learned from Patrick Gérard. It suffices to prove
(30) for θ = 0 and θ = 1 (the general case then follows by interpolation). The
case θ = 1 can actually be directly reduced to the case θ = 0 by taking space
derivatives. We are going to use the generating series:

E(x, y, α) =
∑
n≥0

αn hn(x)hn(y)

=
1√

π(1− α2)
exp

(
− 1− α

1 + α

(x+ y)2

4
− 1 + α

1− α
(x− y)2

4
)
. (31)

Therefore, if we set

I(α, β) ≡
∫

R
E(x, x, α)E(x, x, β)dx,

then we get

I(α, β) =
1
π

(1− α2)−
1
2 (1− β2)−

1
2

∫
R
e−
(

1−α
1+α+ 1−β

1+β

)
x2

dx

=
1√
2π

(1− α)−
1
2 (1− β)−

1
2 (1− αβ)−

1
2 . (32)

On the other hand, coming back to the definition

I(α, β) =
∑
n,m≥0

αnβm
∫

R
h2
n(x)h2

m(x)dx.

Hence to get a useful expression for the L2 norm of the product of two Hermite
functions, it suffices to expand (32) in entire series in α and β. Write

(1− x)−
1
2 =

∑
p≥0

cpx
p, c0 = 1, cp =

(2p− 1) !
22p−1 p ! (p− 1) !

, p ≥ 1.

Therefore, by the Stirling formula, there exists C > 0 so that |cp| ≤ C√
p+1

for all
p ≥ 0. Now by (32) and the previous estimate∫

R
h2
n(x)h2

m(x)dx =
1√
2π

∑
p,q,r≥0

p+r=n, q+r=m

cp cq cr

≤ C
∑

0≤r≤min(n,m)

(n− r + 1)−
1
2 (m− r + 1)−

1
2 (r + 1)−

1
2 .
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Without restricting the generality we may suppose that m ≥ n. If m ≤ 2n then
we obtain the needed bound by considering separately the cases when the sum
runs over r < m/2 and r ≥ m/2. If m > 2n, then we can write (m − r + 1)−

1
2 ≤

c(1 + m)−
1
2 and the needed bound follows directly. Therefore we get (30) in the

case θ = 0. This completes the proof of Lemma 4.4.

Denote by uωfree(t, x) the free Schrödinger solution with initial condition uω0 φ(ω, x),
i.e.

uωfree(t, x) = e−itHuω0 =
∑
n≥0

√
2

λn
e−itλ

2
n gωnhn(x).

Write the decomposition u =
∑
N uN , where the summation is taken over the

dyadic integers and for N a dyadic integer

uN (ω, t, x) =
∑

N≤n<2N

αn(t)hn(x)gωn , αn(t) =

√
2

2n+ 1
e−i(2n+1)t .

Let us fix t ∈ R and 0 ≤ θ < 1
2 . It suffices to show that the expression

J(t, x, ω) ≡ |
∑
M

∑
N

Hθ/2
(
uN uM )|

belongs to L2(R×Ω) (here the summation is again taken over the dyadic values of
M,N). Using the Cauchy-Schwarz inequality, a symmetry argument and summing
geometric series, for all ε > 0 we can write

J(t, x, ω) ≤ C
( ∑
N≤M

M ε|Hθ/2
(
uN uM

)
|2
) 1

2 . (33)

Coming back to the definition we can write

Hθ/2
(
uN uM

)
=

∑
N≤n≤2N

M≤m≤2M

αn αm gn gmH
θ/2
(
hn hm

)
.

We now estimate E(|Hθ/2
(
uN uM

)
|2. We make the expansion

|Hθ/2
(
uN uM

)
|2 =∑

N≤n1,n2≤2N

M≤m1,m2≤2M

αn1 αn2 αm1 αm2 gn1 gn2 gm1 gm2 H
θ/2
(
hn1 hm1

)
Hθ/2

(
hn2 hm2

)
.

The random variables gn are centered and independent, and consequently, we have
E
[
gn1 gn2 gm1 gm2

]
= 0, unless the indexes are pairwise equal (i.e. (n1 = n2 and

m1 = m2), or (n1 = m2 and n2 = m1). This implies that

E(|Hθ/2
(
uN uM

)
|2) ≤ C

∑
N≤n≤2N

M≤m≤2M

|αn|2|αm|2|Hθ/2
(
hn hm

)
|2. (34)
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We integrate (34) in x and by (30) we deduce that for all ε > 0∫
Ω×R
|Hθ/2(uN uM )|2 ≤ C

∑
N≤n≤2N

M≤m≤2M

|αn|2|αm|2
∫

R
|Hθ/2

(
hn hm

)
|2dx

≤ C
∑

N≤n≤2N

M≤m≤2M

(max (M,N))−
1
2 +θ+ε|αn|2|αm|2.

Therefore using that |αn| ≤ 〈n〉−
1
2 , we get

E(J(t, x, ω)2) ≤ C
∑
N≤M

∑
N≤n≤2N

M≤m≤2M

M−
1
2 +θ+2ε|αn|2|αm|2

≤ C
∑
N≤M

∑
N≤n≤2N

M≤m≤2M

M−
1
2 +θ+2ε(MN)−1 <∞,

provided ε is small enough, namely ε such that − 1
2 + θ + 2ε < 0. This completes

the proof of (29).

5. Improved Sobolev embeddings

As shown in the previous section, our applications to partial differential equations
of Paley-Zygmund’s result rely on the simple observation that ”typical” functions
n Hs(M) enjoy better Lp properties than what the Sobolev embeddings would
predict. Namely, the L∞ norm is essentially bounded (modulo logarithmic loss)
by theH d−1

2 norm (versus theHd/2 norm for classical Sobolev embeddings). Notice
that this bound is improved, in the case of the tora Td all the way down to H0. In
this section, I will present some other randomizations obtained with G. Lebeau [11]
on compact manifolds. Notice that other applications to linear and non linear
problems are developped in [11], and we expect these constructions to be of interest
in view of further applications to partial differential equations.

5.1. Construction of the measure. Let M be a compact riemanian
manifold, let I = [c, c′], 0 ≤ c < c′ < ∞ be an interval and EI,h the subspace of
L2(M) of dimension N(I, h) defined by

EI,h = {u =
∑
k∈Ih

zkek(x), zk ∈ C}, Ih = {k, hωk ∈ I}. (35)

According to the precised Weyl formula (see [21, Theorem 1.1]), we have for h ∈
]0, 1]

N(I, h) = (2πh)−dVol(M)Vol(Sd−1)
∫
I

ρd−1dρ+O(h−d+1). (36)
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Let us recall that Sobolev injections read

‖u‖L∞(M) ≤ Ch−d/2‖u‖L2(M) ∀u ∈ EI,h. (37)

Notice that these estimates are optimal as can easily bee seen by considering the
sequence h−d/2χ(x/h), where χ ∈ C∞0 a fixed function (in a local coordinate chart).
Denote by SI,h the unit sphere of the euclidean space EI,h = CN(I,h), and PI,h the
uniform probability on SI,h. We can now define probability measures on EI,h by
picking a probability measure in the radial variable ρ(r), with sufficient fast decay
near infinity (e.g. Gaussian), and defining

dµI,h = dPI,h ⊗ dρ.

A typical example (to which all other examples reduce eventually) is of course the
simplest choice ρ = δr=1 for which the measure µI,h is simply the uniform measure
on the unit sphere of EI,h, which in the sequel will still be denoted by PI,h. Finally,
taking any family of positive real numbers (αn) > 0, we can rescale (in the radial
variable) the measure by defining

dµI,h,αh = dPI,h ⊗ αhdρ(
r

αh
).

The choice I = [1/2, 2[, hk = 2−k, k ∈ N (with a suitable modification for k = 0)
gives

L2(M) = {u =
∑
k

uk;uk ∈ EI,hk ;
∑
k

‖uk‖2L2 < +∞}

and the Sobolev space Hs(M) can also be expressed in terms of this decomposition

Hs(M) = {u =
∑
k

uk;uk ∈ EI,hk ;
∑
k

22ks‖uk‖2L2 < +∞}.

As a consequence, the choice of αhk = 2−kβk with βk ∈ `2 ensures that the measure

dµs,(βn) = ⊗kdµI,hk,αhk

defines a measure on ⊕kEI,hk which is supported by Hs(M).

5.2. Improved Sobolev embeddings. The measures constructed in the
previous section satisfy:

Theorem 5.1. • For any choice of sequence (βn) ∈ `2, the measure dµs,(βn)

is supported in Hs(M).

• For any s′ > s, if the sequence (βn) satisfies∑
n

|βn|2(1 + 22(s′−s)) = +∞,

then the space Hs′(M) has dµs,(βn)-measure equal to 0.
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• For any s > 0, the measure dµs,(βn) is supported in L∞(M). In other words,
”for any ε > 0, almost surely, Hε(M) ⊂ L∞(M)”.

Remark. A similar result was obtained by Shiffman-Zelditch in [44] in the dif-
ferent context of random sequences of holomorphic sections of high powers of a
positive line bundle.

The main step for the proof of Theorem 5.1 is the proof of the following semi-
classical result

Theorem 5.2. For any c < Vol(M), there exists C > 0 such that for any h ∈
(0, 1], and any λ > 0,

PI,h({u ∈ EI,h; ‖u‖L∞ > λ}) ≤ Ch−d(1+d/2)e−c2λ
2
. (38)

Indeed, taking λ = h−ε in (38), we obtain

PI,h({u ∈ EI,h; ‖u‖L∞ > h−ε}) ≤ C ′e−c
′h−2ε

,

and Theorem 5.1 follows after suitable resummations. Now, in turn, Theorem 5.2
follows from the classical concentration of measure phenomenon (see Ledoux [35])

Theorem 5.3. Consider a Lipshitz function F , on the N dimensional sphere SN ,
endowed with its natural geodesic metric, and with the uniform probability measure
µN . Let us define the mediane, M(F ), of the function F by the relation

µN ({x ∈ SN ;F (x) ≥M(F )}) ≥ 1
2
, µ({x ∈ SN ;F (x) ≤M(F )}) ≥ 1

2
.

Then for any r > 0,

µ({x ∈ SN ; F (x)−M(F )| > r}) ≤ 2e
−(N−1) r2

‖f‖2
Lip .
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