Random data for Partial Differential Equations

Nicolas Burq

Université Paris-Sud 11, Laboratoire de Mathématiques d'Orsay, CNRS, UMR 8628

Hyderabad, aug. 20th, 2010
International congress of mathematicians
based on joint works with
Nikolay Tzvetkov,
Univ. Cergy-Pontoise, Département de Mathématiques,
CNRS. UMR 8088 FRANCE

A result by Paley and Zygmund (1932)

Consider a sequence $(\alpha_k)_{k\in\mathbb{N}}\in\ell^2$

$$\sum_{k} |\alpha_k|^2 < +\infty.$$

Let u be the trigonometric series on \mathbb{T}

$$u = \sum_{k} \alpha_{k} e^{ik\theta}$$

This series is convergent in $L^2(\mathbb{T})$ but "in general" (generically for the ℓ^2 topology), the function u is in

no
$$L^p(\mathbb{T}), p > 2$$
 space.

If one changes the signs in front of the coefficients α_k randomly and independently, i.e. if one considers

$$\sum_{k} g_{k}(\omega) \alpha_{k} e^{ik\theta} = u^{\omega}(\theta)$$

where Ω , P is a probabilistic space and $g_k(\omega)$ are Bernouilli independent random variables on Ω ,

$$P(g_k(\omega)=\pm 1)=\frac{1}{2}$$

then

Theorem (Paley- Zygmund 1930-32)

For any $p < +\infty$, almost surely, the series $u^{\omega} = \sum_{k} g_{k}(\omega) \alpha_{k} e^{ik\theta}$ is convergent in $L^{p}(\mathbb{T})$. Furthermore, large deviation estimate:

$$\mathcal{P}(\{\|u^{\omega}\|_{L^{p}(\mathbb{T})} > \lambda\}) \leq Ce^{-c\lambda^{2}}$$

Why study PDEs with low regularity initial data?

- ▶ Global existence of smooth solutions: local (in time) classical strategy for initial data in a space X such that the norm in X is essentially preserved by the flow. If it is possible to solve the equation between t = 0 and $t = T(\|u_0\|_X)$ and if $\|u(T)\|_X \le \|u_0\|_X$ then it is possible to solve between t = T and t = 2T, etc...
- ► Large time behaviour of solutions with *smooth* initial data (scattering), or large time behaviour of the norms of these solutions (exponential/polynomial increase rate, etc...)
- ► Informations about the behaviour of the blowing up solutions in some cases.

Super/sub critical PDEs (in Sobolev spaces)

While solving non linear PDEs, very often a critical threshold of regularities appears, s_c , for which

- ▶ If the initial data are smooth enough, $u_0 \in H^s$, $s > s_c$ then local existence holds (with a time existence depending only on the norm of u_0 in H^s)
- If the initial data are not smooth enough i.e u₀ ∈ H^s, s < s_c (and not better) then the PDE is unstable, or even ill posed

For example for the Navier-Stokes equation, the critical index is

- $ightharpoonup s_c = 0$ in space dimension 2
- $ightharpoonup s_c = 1/2$ in space dimension 3

Some unstabilities

- ► The solution ceases to exist after a finite time: finite time blow up.
- ▶ No continuous flow (on any ball in H^s) ill posedness.
- The flow defined by the PDE (if it exists) is not uniformly continuous on the balls of H^s.

N.B. This type of instabilities say very little about the smooth solutions.

The 3-dimensional wave equation: a model dispersive PDE

Let (M,g) be a 3-dimensional riemannian manifold (without boundary) and

$$\Delta = \sum_{i,j=1,\cdots,3} \frac{1}{\sqrt{\det g}} \frac{\partial}{\partial x_i} g^{i,j}(x) \sqrt{\det g} \frac{\partial}{\partial x_j},$$

be the Laplace operator on functions, and

(NLW)
$$\begin{cases} (\frac{\partial^2}{\partial t^2} - \mathbf{\Delta})u + u^3 = 0, \\ (u, \partial_t u)_{t=0} = (u_0(x), u_1(x)) \in H^s(M) \times H^{s-1}(M) \end{cases}$$

the cubic defocusing non linear wave equation.

Critical index: $s_c = 1/2$

Theorem (Strichartz, Ginibre-Velo, Kapitanskii, ...)

Let $s \ge 1/2$. For any initial data $(u_0, u_1) \in \mathcal{H}^s(M) = H^s(M) \times H^{s-1}(M)$, there exists T > 0 and a unique solution to the system (NLW) in the space

$$C^0([0,T];H^s(M))\cap C^1([0,T];H^{s-1}(M))\cap L^4((0,T)\times M)$$

Furthermore, if $s > \frac{1}{2}$, $T = T(\|(u_0, u_1)\|_{\mathcal{H}^s(M)})$.

The super-critical wave equation is ill posed

Theorem (Lebeau 01, Christ-Colliander-Tao 04, Burq-Tzvetkov 07)

▶ There exists sequences $(u_{0,n}, u_{1,n}) \in C_0^{\infty}(M), (t_n) \in \mathbb{R}$ such that the solution of (NLW) with initial data (u_0, u_1) exists on $[0, t_n]$ but

$$\begin{split} \lim_{n \to +\infty} t_n &= 0, \lim_{n \to +\infty} \| (u_{0,n}, u_{1,n}) \|_{\mathcal{H}^s(M)} = 0, \\ \lim_{n \to +\infty} \| u_n(t_n) \|_{H^s(M)} &= +\infty \end{split}$$

▶ There exists an initial data $(u_0, u_1) \in \mathcal{H}^s(M)$ such any weak solution of (NLW) associated to this initial data, satisfying the finite speed of propagation principle ceases instantaneously to belong to $\mathcal{H}^s(M)$

Is instability a generic situation?

▶ Lebeau's initial data are very particular:

$$(u_{0,n},u_{1,n})=n^{\frac{3}{2}-s}(\phi(nx),n^{-1}\psi(nx)), \quad \phi,\psi\in C_0^{\infty}(\mathbb{R}^3).$$

Question: are the initial data exhibiting the pathological behaviour described by Lebeau's result rares or on the contrary generic?

A first answer is that in some sense the situation is much better behaved than what Lebeau's theorem might let think: the phenomenon described by lebeau's theorem appears to be rare (in some sense). We show that for random initial data, the situation is much better behaved.

Random initial data: the case of \mathbb{T}^3 .

 $(e_n=e^{in\cdot x}\sqrt{|n|^2},n\in\mathbb{Z}^3)$ be the Hilbert basis of $L^2(\mathbb{T}^3)$. Any function $u\in H^s(\mathbb{T}^3)$ writes

$$u = \sum_{n} \alpha_{n} e_{n}(x), \qquad \sum_{n} (1 + |n|^{2})^{s} |\alpha_{n}|^{2} = ||u||_{H^{s}(P^{1/2})}^{2} < +\infty.$$

Let Ω , \mathcal{A} , p be a probabilistic space and (g_n) a sequence of *independent* random random variables with mean equal to 0 and super exponential decay at infinity:

$$\exists C, \delta > 0; \forall \alpha > 0, \sup_{n} \mathbb{E}(e^{\alpha|g_n|}) < Ce^{\delta\alpha^2}$$

a random function in $H^s(\mathbb{T}^3)$ takes the form

$$u_0^{\omega}(x) = \sum_{n \in \mathbb{Z}^3} g_n^{\omega} \alpha_n e_n(x), \qquad \sum_n (1 + |n|^2)^s |\alpha_n|^2 < +\infty$$

Almost sure local well posedness for random initial data in $\mathcal{H}^s = H^s \times H^{s-1}, \forall s \geq 0$

Theorem (Tzvetkov-B. 2007)

Consider s > 0 and a random initial data

$$(u_0, u_1) = \left(\sum_{n \in \mathbb{Z}^3} g_n^{\omega} \alpha_n e_n(x), \sum_{n \in \mathbb{Z}^3} \widetilde{g}_n^{\omega} \beta_n e_n(x)\right)$$

Notice that a.s. $(u_0, u_1) \in \mathcal{H}^s(\mathbb{T}^3)$. Then a.s. there exists T > 0 and a unique solution $u^\omega(t, x)$ of (NLW) in a space

$$X_T \subset C([0,T];H^s(M)) \cap C^1([0,T];H^{s-1}(M)).$$

Furthermore

$$\mathcal{P}(T_{max}(\omega) < T) < Ce^{-c/T^{\delta}}$$
.

From local to global existence

The result above shows that we have a good Cauchy theory at the probabilistic level in $\mathcal{H}^s(\mathbb{T}^3)$, $s \ge 0$. and we can almost surely solve the non linear wave equation on a maximal time interval (0, T).

Natural question: $T = +\infty$? (global existence).

Theorem (Tzvetkov-B.2010)

For any $0 \le s$, the solution of (NLW) constructed above exists almost surely globally in time and satisfies:

$$\|(u^{\omega}(t,\cdot),\partial_t u^{\omega}(t,\cdot))\|_{\mathcal{H}^s(\mathbb{T}^3)}^2 \leq C((M^{\omega}+t))^{\frac{(1-s)}{s}+0}$$

with

$$\mathbb{P}(M^{\omega} > \Lambda) \leq Ce^{-c\Lambda}$$

Rk 1. Almost surely, the initial data $(u_0^{\omega}, u_1^{\omega}) \in \mathcal{H}^s(\mathbb{T}^3)$, s > 0, but as soon as

$$\sum_{n \in \mathbb{Z}^3} (1 + |n|^2)^{s'} |\alpha_n|^2 + (1 + |n|^2)^{s'-1} |\beta_n|^2 = +\infty$$

and the random variables g_n, \widetilde{g}_n do not accumulate at 0 (say they are i.i.d. non trivial), then almost surely

$$(u_0^\omega, u_1^\omega) \notin \mathcal{H}^{s'}(\mathbb{T}^3)$$

and the result provides many initial data for which the classical Cauchy theory does not apply (even locally in time) Rk 2. In the deterministic setting, global well posedness below H^1 iniciated by Bourgain using high/low decomposition. Then global well posedness obtained for $s > \frac{3}{4}$ by Kenig-Ponce-Vega (see also Gallagher-Planchon), and then for $s = \frac{3}{4}$ by Bahouri-Chemin

Deterministic theory: Strichartz estimates

$$S(t)(u_0, u_1) = \cos(\sqrt{-\Delta})u_0 + \frac{\sin(\sqrt{-\Delta})}{\sqrt{-\Delta}}u_1$$

the solution to the linear wave equation with data (u_0, u_1) .

$$(\partial_t^2 - \Delta)u = 0,$$
 $u \mid_{t=0} = u_0, \partial_t u \mid_{t=0} = u_1.$

Theorem (Strichartz)

$$||S(t)(u_0, u_1)||_{L^4((0,T)\times M)} \le C||(u_0, u_1)||_{\mathcal{H}^{1/2}(M)}$$

Rk.:

- ▶ Similar estimates for norms L_t^p ; L_x^q , $\frac{1}{p} + \frac{3}{q} = \frac{3}{2} - s, 2
 Sobolev inequalities imply$

$$||u||_{L^4(M)} \le C||u||_{H^{3/4}(M)}$$

Deterministic theory: local Cauchy theory in H^1

Theorem

Assume that

$$||u_0||_{H^1} + ||u_1||_{L^2} \leq \Lambda.$$

There exists a unique solution of (NLW)

$$u \in L^{\infty}([0, C^{-1}\Lambda^{-3}], H^1 \times L^2(M))$$

Moreover the solution satisfies

$$\|(u,\partial_t u)\|_{L^{\infty}([0,C\Lambda^{-3}],H^1\times L^2)}\leq C\Lambda$$

and $(u, \partial_t u)$ is unique in the class

$$L^{\infty}([0, C\Lambda^{-3}], H^1 \times L^2)$$

Proof: Fixed point in the ball centered on $S(t)(u_0, u_1)$ in

$$L^{\infty}((0,T);H^1_{\times})$$

Use that \underline{u} satisfies $(\partial_t^2 - \Delta)\underline{u} = -\underline{u}^3$, and hence Duhamel formula gives

$$u = S(t)(u_0, u_1) - \int_0^t \frac{\sin((t-s)\sqrt{-\Delta})}{\sqrt{-\Delta}} u^3(s) ds$$

= $S(t)(u_0, u_1) + K(t)(u)$

where K(t) satisfies (using Sobolev embeddings $H_x^1 \hookrightarrow L_x^6$)

$$||K(t)(u)||_{L^{\infty}(0,T);H^{1}(M)} \leq ||u^{3}||_{L^{1}(0,T);L^{2}(M)}$$

$$\leq T||u||_{L^{\infty}(0,T);L^{6}(M)}^{3} \leq CT||u||_{L^{\infty}(0,T);H^{1}(M)}^{3}$$

Deterministic theory in H^1 : a remark

Theorem

Assume that

$$||u_0||_{H^1} + ||u_1||_{L^2} + ||f||_{L^{\infty}(\mathbb{R};L^6(M))} \leq \Lambda.$$

There exists a unique solution in $L^{\infty}([0, C\Lambda^{-3}], H^1 \times L^2)$ of

$$(\partial_t^2 - \Delta)u + (f + u)^3 = 0, (u, \partial_t u)|_{t=0} = (u_0, u_1)$$

Moreover the solution satisfies

$$\|(u,\partial_t u)\|_{L^{\infty}([0,\tau],H^1\times L^2)}\leq C\Lambda.$$

(same proof as before)

Paley-Zygmund Theorem, quantitative version

Theorem

Assume \mathcal{H}^0 random initial data.

$$\mathcal{P}(\{\|S(t)(u_0^{\omega},u_1^{\omega})\|_{L^p((0,T)\times\mathbb{T}^3)}>\lambda\})\leq Ce^{-c\frac{\lambda^2}{(u_0,u_1)\|_{\mathcal{H}^0(M)}^2}}$$

Assume \mathcal{H}^s random initial data.

$$\mathcal{P}(\{\|S(t)(u_0^{\omega}, u_1^{\omega})\|_{L^{\infty}((0,T)\times\mathbb{T}^3)} > \lambda\}) \le Ce^{-c\lambda^2}$$

$$\mathcal{P}(\{\|S(t)(Id - \Pi_N)(u_0^{\omega}, u_1^{\omega})\|_{L^{\infty}((0,T)\times\mathbb{T}^3)} > N^{-s}\}) \le Ce^{-cN^{2s-0}}$$

where

$$\Pi_N(\sum_n w_n e^{in\cdot x}) = \sum_{|n| < N} w_n e^{in\cdot x}$$

Proof: same as (modern) proof of Paley-Zygmund theorem

Local existence

We look for the solution u^{ω} under the form

$$u^{\omega} = S(t)(u_0^{\omega}, u_1^{\omega}) + v^{\omega} = u_f^{\omega} + v^{\omega}$$

 v^{ω} is solution of an equation of the form

$$(\partial_t^2 - \Delta)v^\omega + (S(t)(u_0^\omega, u_1^\omega) + v)^3 = 0, \qquad (v, \partial_t v)|_{t=0} = (0, 0)$$

which is essentially a cubic non linear wave equation with a source term $(S(t)(u_0^\omega,u_1^\omega)^3)$. According to Paley-Zygmund, a.s. this source term is admissible, and according to the deterministic H^1 theory, there exists a time $T^\omega>0$ such that this equation is well posed in H^1 : notice that

$$L^{p/3}(I;L^2(\mathbb{T}^3))\subset L^1_t;L^2_x.$$

In some sense, this result shows that the seemingly super-critical problem is in fact sub-critical

Global existence: probabilistic version of Bourgain's high/low decomposition method

(See Colliander-Oh for a related idea on the well posedness of NLS below L^2 on \mathbb{T}).

Fix T > 0. Want to prove almost surely existence up to time T of a solution. Fix $N \gg 1$. Seek u^{ω} as

$$u = w_{N}^{\omega} + v_{N}^{\omega} = S(t)(Id - \Pi_{N})(u_{0}^{\omega}, u_{1}^{\omega}) + v_{N}^{\omega}$$
$$(\partial_{t}^{2} - \Delta)v_{N}^{\omega} + (S(t)(Id - \Pi_{N})(u_{0}^{\omega}, u_{1}^{\omega}) + v^{\omega})^{3} = 0,$$
$$(v_{N}^{\omega}, \partial_{t}v^{\omega})|_{t=0} = \Pi_{N}(u_{0}^{\omega}, u_{1}^{\omega})$$

AIM: Prove that v_N^{ω} exists on [0, T] with probability $p_N \to 1, N \to +\infty$.

 H^1 -norm controls local Cauchy theory, hence enough to prove that H^1 norm of v_N^ω remains bounded on [0, T] with

$$p_N \ge 1 - Ce^{-cN^{\epsilon}}$$

A priori bound

$$\begin{split} E(v) &= \int_{\mathbb{T}^3} \frac{1}{2} |\partial_t v|^2 + \frac{1}{2} |\nabla_x v|^2 + \frac{1}{4} |v|^4 dx \\ \frac{d}{dt} E(t) &= \int_{\mathbb{T}^3} \partial_t u (v^3 - (w_N^\omega + v^\omega)^3) dx \\ &= \int_{\mathbb{T}^3} \partial_t u (-3v_N^2 w_N - 3w_N^2 v - w_N^3) dx \\ &\leq 3 \|\partial_t v_N\|_{L_x^2} \|v_N\|_{L_x^4}^2 \|w_N\|_{L_x^\infty} + 3 \|\partial_t v_N\|_{L_x^2} \|v_N\|_{L_x^4} \|w_N\|_{L_x^\infty}^2 \\ &\qquad \qquad + \|\partial_t v_N\|_{L_x^2} \|w_N\|_{L_x^\infty}^3 \\ &\leq C(E(t) \|w_N\|_{L_x^\infty} + E(t)^{3/4} \|w_N\|_{L_x^\infty}^2 + E(t)^{1/2} \|w_N\|_{L_x^\infty}^3) \end{split}$$

 $\boldsymbol{\epsilon}$ Sobolev injection in time gives

$$\mathcal{P}(\|w_N\|_{L^{\infty}((0,T)\times\mathbb{T}^3)} > N^{-s+\epsilon}) \leq \mathcal{P}(\|w_N\|_{L^p_t;L^{\infty}_x} > N^{-s}) \leq Ce^{-cN^{2s}}$$

Conclude using Gronwall

Further developments

- Extends to other non-linearities (but require the use of Strichartz estimates for the proof)
- ► Allow correlations in the random variables (using some slack in the arguments)
- ▶ Relax the mean equal to 0 assumption on the random variables i.e. perform the randomization around a given solution (e.g. smooth, or given by the preceding procedure) instead of the trivial (vanishing) solution
- Extend the result to other manifolds. Possible (but not in the full range $s \ge 0$) using this Paley-Zygmund randomization, or use other randomization to get the range s > 0 (work with Lebeau)
- ► Extend to other dispersive equations such as non linear Schrödinger equations with or without harmonic potential (with L. Thomann)

