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A result by Paley and Zygmund (1932)

Consider a sequence (αk)k∈N ∈ `2∑
k

|αk |2 < +∞.

Let u be the trigonometric series on T

u =
∑

k

αke ikθ

This series is convergent in L2(T) but ”in general” (generically
for the `2 topology), the function u is in

no Lp(T), p > 2 space.



If one changes the signs in front of the coefficients αk

randomly and independently, i.e. if one considers∑
k

gk(ω)αke ikθ = uω(θ)

where Ω,P is a probabilistic space and gk(ω) are Bernouilli
independent random variables on Ω,

P(gk(ω) = ±1) =
1

2

then

Theorem (Paley- Zygmund 1930-32)
For any p < +∞, almost surely, the series
uω =

∑
k gk(ω)αke ikθ is convergent in Lp(T).

Furthermore, large deviation estimate:

P({‖uω‖Lp(T) > λ}) ≤ Ce−cλ2



Why study PDEs with low regularity initial data?

I Global existence of smooth solutions: local (in time)
classical strategy for initial data in a space X such that
the norm in X is essentially preserved by the flow. If it is
possible to solve the equation between t = 0 and
t = T (‖u0‖X ) and if ‖u(T )‖X ≤ ‖u0‖X then it is
possible to solve between t = T and t = 2T , etc...

I Large time behaviour of solutions with smooth initial data
(scattering), or large time behaviour of the norms of these
solutions (exponential/polynomial increase rate, etc...)

I Informations about the behaviour of the blowing up
solutions in some cases.

I ...



Super/sub critical PDEs (in Sobolev spaces)

While solving non linear PDEs, very often a critical threshold
of regularities appears, sc , for which

I If the initial data are smooth enough, u0 ∈ H s , s > sc

then local existence holds (with a time existence
depending only on the norm of u0 in H s)

I If the initial data are not smooth enough i.e
u0 ∈ H s , s < sc (and not better) then the PDE is
unstable, or even ill posed

For example for the Navier-Stokes equation, the critical index
is

I sc = 0 in space dimension 2

I sc = 1/2 in space dimension 3



Some unstabilities

I The solution ceases to exist after a finite time: finite time
blow up.

I No continuous flow (on any ball in H s) ill posedness.

I The flow defined by the PDE (if it exists) is not uniformly
continuous on the balls of H s .

N.B. This type of instabilities say very little about the smooth
solutions.



The 3-dimensional wave equation: a model

dispersive PDE

Let (M , g) be a 3-dimensional riemannian manifold (without
boundary) and

∆ =
∑

i ,j=1,···3

1√
detg

∂

∂xi
g i ,j(x)

√
detg

∂

∂xj
,

be the Laplace operator on functions, and

(NLW)

 (
∂2

∂t2
−∆)u + u3 = 0,

(u, ∂tu)t=0 = (u0(x), u1(x)) ∈ H s(M)× H s−1(M)

the cubic defocusing non linear wave equation.



Critical index: sc = 1/2

Theorem (Strichartz, Ginibre-Velo, Kapitanskii, ...)
Let s ≥ 1/2. For any initial data
(u0, u1) ∈ Hs(M) = H s(M)× H s−1(M), there exists T > 0
and a unique solution to the system (NLW) in the space

C 0([0,T ]; H s(M)) ∩ C 1([0,T ]; H s−1(M)) ∩ L4((0,T )×M)

Furthermore, if s > 1
2
, T = T (‖(u0, u1)‖Hs(M)).



The super-critical wave equation is ill posed

Theorem (Lebeau 01, Christ-Colliander-Tao 04,
Burq-Tzvetkov 07)

I There exists sequences (u0,n, u1,n) ∈ C∞0 (M), (tn) ∈ R
such that the solution of (NLW) with initial data (u0, u1)
exists on [0, tn] but

lim
n→+∞

tn = 0, lim
n→+∞

‖(u0,n, u1,n)‖Hs(M) = 0,

lim
n→+∞

‖un(tn)‖Hs(M) = +∞

I There exists an initial data (u0, u1) ∈ Hs(M) such any
weak solution of (NLW) associated to this initial data,
satisfying the finite speed of propagation principle ceases
instantaneously to belong to Hs(M)



Is instability a generic situation?

I Lebeau’s initial data are very particular:

(u0,n, u1,n) = n
3
2
−s(φ(nx), n−1ψ(nx)), φ, ψ ∈ C∞0 (R3).

I Question: are the initial data exhibiting the pathological
behaviour described by Lebeau’s result rares or on the
contrary generic?

A first answer is that in some sense the situation is much
better behaved than what Lebeau’s theorem might let think:
the phenomenon described by lebeau’s theorem appears to be
rare (in some sense). We show that for random initial data,
the situation is much better behaved.



Random initial data: the case of T3.

(en = e in·x
√
|n|2, n ∈ Z3) be the Hilbert basis of L2(T3) . Any

function u ∈ H s(T3) writes

u =
∑

n

αnen(x),
∑

n

(1 + |n|2)s |αn|2 = ‖u‖2
Hs(P1/2) < +∞.

Let Ω,A, p be a probabilistic space and (gn) a sequence of
independent random random variables with mean equal to 0
and super exponential decay at infinity:

∃C , δ > 0;∀α > 0, sup
n

E(eα|gn|) < Ceδα
2

a random function in H s(T3) takes the form

uω0 (x) =
∑
n∈Z3

gωn αnen(x),
∑

n

(1 + |n|2)s |αn|2 < +∞



Almost sure local well posedness for random initial

data in Hs = H s × H s−1,∀s ≥ 0

Theorem (Tzvetkov-B. 2007)
Consider s ≥ 0 and a random initial data

(u0, u1) =
(∑

n∈Z3

gωn αnen(x),
∑
n∈Z3

g̃ωn βnen(x)
)

Notice that a.s. (u0, u1) ∈ Hs(T3). Then a.s. there exists
T > 0 and a unique solution uω(t, x) of (NLW) in a space

XT ⊂ C ([0,T ]; H s(M)) ∩ C 1([0,T ]; H s−1(M)).

Furthermore

P(Tmax(ω) < T ) ≤ Ce−c/T δ

.



From local to global existence

The result above shows that we have a good Cauchy theory at
the probabilistic level in Hs(T3), s ≥ 0. and we can almost
surely solve the non linear wave equation on a maximal time
interval (0,T ).
Natural question: T = +∞? (global existence).

Theorem (Tzvetkov-B.2010)
For any 0 ≤ s, the solution of (NLW) constructed above exists
almost surely globally in time and satisfies:

‖(uω(t, ·), ∂tu
ω(t, ·))‖2

Hs(T3) ≤ C ((Mω + t))
(1−s)

s
+0

with
P(Mω > Λ) ≤ Ce−cΛ



Rk 1. Almost surely, the initial data (uω0 , u
ω
1 ) ∈ Hs(T3), s > 0,

but as soon as∑
n∈Z3

(1 + |n|2)s′|αn|2 + (1 + |n|2)s′−1|βn|2 = +∞

and the random variables gn, g̃n do not accumulate at 0 (say
they are i.i.d. non trivial), then almost surely

(uω0 , u
ω
1 ) /∈ Hs′(T3)

and the result provides many initial data for which the classical
Cauchy theory does not apply (even locally in time)
Rk 2. In the deterministic setting, global well posedness below
H1 iniciated by Bourgain using high/low decomposition. Then
global well posedness obtained for s > 3

4
by Kenig-Ponce-Vega

(see also Gallagher-Planchon), and then for s = 3
4

by
Bahouri-Chemin



Deterministic theory: Strichartz estimates

S(t)(u0, u1) = cos(
√
−∆)u0 +

sin(
√
−∆)√
−∆

u1

the solution to the linear wave equation with data (u0, u1).

(∂2
t −∆)u = 0, u |t=0= u0, ∂tu |t=0= u1.

Theorem (Strichartz)

‖S(t)(u0, u1)‖L4((0,T )×M) ≤ C‖(u0, u1)‖H1/2(M)

Rk.:
I Similar estimates for norms Lp

t ; Lq
x ,

1
p

+ 3
q

= 3
2
− s, 2 < p ≤ +∞

I Sobolev inequalities imply

‖u‖L4(M) ≤ C‖u‖H3/4(M)



Deterministic theory: local Cauchy theory in H1

Theorem
Assume that

‖u0‖H1 + ‖u1‖L2 ≤ Λ.

There exists a unique solution of (NLW)

u ∈ L∞([0,C−1Λ−3],H1 × L2(M))

Moreover the solution satisfies

‖(u, ∂tu)‖L∞([0,CΛ−3],H1×L2) ≤ C Λ

and (u, ∂tu) is unique in the class

L∞([0,C Λ−3],H1 × L2)



Proof: Fixed point in the ball centered on S(t)(u0, u1) in

L∞((0,T ); H1
x )

Use that u satisfies (∂2
t −∆)u = −u3, and hence Duhamel

formula gives

u = S(t)(u0, u1)−
∫ t

0

sin((t − s)
√
−∆)√

−∆
u3(s)ds

= S(t)(u0, u1) + K (t)(u)

where K (t) satisfies (using Sobolev embeddings H1
x ↪→ L6

x)

‖K (t)(u)‖L∞(0,T );H1(M) ≤ ‖u3‖L1(0,T );L2(M)

≤ T‖u‖3
L∞(0,T );L6(M) ≤ CT‖u‖3

L∞(0,T );H1(M)



Deterministic theory in H1: a remark

Theorem
Assume that

‖u0‖H1 + ‖u1‖L2 + ‖f ‖L∞(R;L6(M) ≤ Λ.

There exists a unique solution in L∞([0,C Λ−3],H1 × L2) of

(∂2
t −∆)u + (f + u)3 = 0, (u, ∂tu) |t=0= (u0, u1)

Moreover the solution satisfies

‖(u, ∂tu)‖L∞([0,τ ],H1×L2) ≤ C Λ.

(same proof as before)



Paley-Zygmund Theorem, quantitative version

Theorem
Assume H0 random initial data.

P({‖S(t)(uω0 , u
ω
1 )‖Lp((0,T )×T3) > λ}) ≤ Ce

−c λ2

(u0,u1)‖2
H0(M)

Assume Hs random initial data.

P({‖S(t)(uω0 , u
ω
1 )‖L∞((0,T )×T3) > λ}) ≤ Ce−cλ2

P({‖S(t)(Id − ΠN)(uω0 , u
ω
1 )‖L∞((0,T )×T3) > N−s}) ≤ Ce−cN2s−0

where
ΠN(

∑
n

wne in·x) =
∑
|n|≤N

wne in·x

Proof: same as (modern) proof of Paley-Zygmund theorem



Local existence
We look for the solution uω under the form

uω = S(t)(uω0 , u
ω
1 ) + vω = uωf + vω

vω is solution of an equation of the form

(∂2
t −∆)vω + (S(t)(uω0 , u

ω
1 ) + v)3 = 0, (v , ∂tv) |t=0= (0, 0)

which is essentially a cubic non linear wave equation with a
source term (S(t)(uω0 , u

ω
1 )3. According to Paley-Zygmund, a.s.

this source term is admissible, and according to the
deterministic H1 theory, there exists a time T ω > 0 such that
this equation is well posed in H1: notice that

Lp/3(I ; L2(T3)) ⊂ L1
t ; L2

x .

In some sense, this result shows that the seemingly
super-critical problem is in fact sub-critical



Global existence: probabilistic version of

Bourgain’s high/low decomposition method
(See Colliander-Oh for a related idea on the well posedness of
NLS below L2 on T).
Fix T > 0. Want to prove almost surely existence up to time
T of a solution. Fix N � 1. Seek uω as

u = wω
N + vωN = S(t)(Id − ΠN)(uω0 , u

ω
1 ) + vωN

(∂2
t −∆)vωN + (S(t)(Id − ΠN)(uω0 , u

ω
1 ) + vω)3 = 0,

(vωN , ∂tv
ω) |t=0= ΠN(uω0 , u

ω
1 )

AIM: Prove that vωN exists on [0,T ] with probability
pN → 1,N → +∞.
H1-norm controls local Cauchy theory, hence enough to prove
that H1 norm of vωN remains bounded on [0,T ] with

pN ≥ 1− Ce−cNε



A priori bound

E (v) =

∫
T3

1

2
|∂tv |2 +

1

2
|∇xv |2 +

1

4
|v |4dx

d

dt
E (t) =

∫
T3

∂tu(v 3 − (wω
N + vω)3)dx

=

∫
T3

∂tu(−3v 2
NwN − 3w 2

Nv − w 3
N)dx

≤ 3‖∂tvN‖L2
x
‖vN‖2

L4
x
‖wN‖L∞x + 3‖∂tvN‖L2

x
‖vN‖L4

x
‖wN‖2

L∞x

+ ‖∂tvN‖L2
x
‖wN‖3

L∞x

≤ C (E (t)‖wN‖L∞x + E (t)3/4‖wN‖2
L∞x

+ E (t)1/2‖wN‖3
L∞x

)

ε Sobolev injection in time gives

P(‖wN‖L∞((0,T )×T3) > N−s+ε) ≤ P(‖wN‖Lp
t ;L∞x

> N−s) ≤ Ce−cN2s

Conclude using Gronwall



Further developments
I Extends to other non-linearities (but require the use of

Strichartz estimates for the proof)

I Allow correlations in the random variables (using some
slack in the arguments)

I Relax the mean equal to 0 assumption on the random
variables i.e. perform the randomization around a given
solution (e.g. smooth, or given by the preceding
procedure) instead of the trivial (vanishing) solution

I Extend the result to other manifolds. Possible (but not in
the full range s ≥ 0) using this Paley-Zygmund
randomization, or use other randomization to get the
range s > 0 (work with Lebeau)

I Extend to other dispersive equations such as non linear
Schrödinger equations with or without harmonic potential
(with L. Thomann)


