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A result by Paley and Zygmund (1932)

Consider a sequence () ken € (2
2
> ol < +oc.
k
Let u be the trigonometric series on T

U= E akelke
k

This series is convergent in L2(T) but "in general” (generically
for the /2 topology), the function u is in

no LP(T), p > 2 space.



If one changes the signs in front of the coefficients o
randomly and independently, i.e. if one considers

ng w)ake™ = u*(0)

where Q, P is a probabilistic space and gi(w) are Bernouilli
independent random variables on €2,

P(gr(w) = +1) = 5
then
Theorem (Paley- Zygmund 1930-32)

For any p < +00, almost surely, the series
u? =", gr(w)are™ is convergent in LP(T).
Furthermore, large deviation estimate:

P({I|u”llesry > A}) < G



Why study PDEs with low regularity initial data?

» Global existence of smooth solutions: local (in time)
classical strategy for initial data in a space X such that
the norm in X is essentially preserved by the flow. If it is
possible to solve the equation between t = 0 and
t = T(||uol|x) and if |[u(T)||x < |luo||x then it is
possible to solve between t = T and t = 2T, etc...

» Large time behaviour of solutions with smooth initial data
(scattering), or large time behaviour of the norms of these
solutions (exponential /polynomial increase rate, etc...)

» Informations about the behaviour of the blowing up
solutions in some cases.



Super/sub critical PDEs (in Sobolev spaces)

While solving non linear PDEs, very often a critical threshold
of regularities appears, s., for which

» If the initial data are smooth enough, vy € H*,s > s,
then local existence holds (with a time existence
depending only on the norm of wug in H?)

» If the initial data are not smooth enough i.e
up € H*,s < s. (and not better) then the PDE is
unstable, or even ill posed

For example for the Navier-Stokes equation, the critical index
is

» s. = 0 in space dimension 2

» s. = 1/2 in space dimension 3



Some unstabilities

» The solution ceases to exist after a finite time: finite time
blow up.

» No continuous flow (on any ball in H*®) ill posedness.

» The flow defined by the PDE (if it exists) is not uniformly
continuous on the balls of H°.

N.B. This type of instabilities say very little about the smooth
solutions.



The 3-dimensional wave equation: a model
dispersive PDE

Let (M, g) be a 3-dimensional riemannian manifold (without
boundary) and

1 0 . 0
A= —g" detg—,
ijz1:~.3 Vdetg (?X,-g (x)/de g(?xj/

be the Laplace operator on functions, and

0? ;
(NLW) (@—A)u—ku =0,

(U, 0¢t1) =0 = (Uo(x), t1(x)) € H*(M) x H*~Y(M)

the cubic defocusing non linear wave equation.



Critical index: s. =1/2
Theorem (Strichartz, Ginibre-Velo, Kapitanskii, ...)

Let s > 1/2. For any initial data
(ug, uy) € H¥(M) = H¥(M) x H*"Y(M), there exists T >0
and a unique solution to the system (NLW) in the space

Co([0, T]; H*(M)) N C}([0, T]; H (M) N L*((0, T) x M)

Furthermore, if s > % T = T(||(vo, ) |l2s(m)-



The super-critical wave equation is ill posed

Theorem (Lebeau 01, Christ-Colliander-Tao 04,
Burg-Tzvetkov 07)
» There exists sequences (up ,, t1 ,) € C°(M),(t,) € R

such that the solution of (NLW) with initial data (uo, uy)
exists on [0, t,| but

lim t, =0, I|T | (vo,n, t1,n) || 3s(my = 0,

n—-+o00

ity = +00

» There exists an initial data (ug, u;) € H*(M) such any
weak solution of (NLW) associated to this initial data,
satisfying the finite speed of propagation principle ceases
instantaneously to belong to H*(M)



s instability a generic situation?

» Lebeau’s initial data are very particular:

3
2

(UO,na Ul.n) =n 75(®(nx)’ nilw(nx)% 01# € C(S)O(Ra)

» Question: are the initial data exhibiting the pathological
behaviour described by Lebeau’s result rares or on the
contrary generic?

A first answer is that in some sense the situation is much
better behaved than what Lebeau's theorem might let think:
the phenomenon described by lebeau’s theorem appears to be
rare (in some sense). We show that for random initial data,
the situation is much better behaved.



Random initial data: the case of T3.

(e, = e™*\/|n|2, n € Z*) be the Hilbert basis of L>(T%) . Any
function u € H*(T?) writes

=Y ane(x),  SO(LH1RPlanP = o < +oo.

Let Q, A, p be a probabilistic space and (g,) a sequence of
independent random random variables with mean equal to 0
and super exponential decay at infinity:

3C, 6 > 0;Va > 0, supE(e”#)) < Ce®®’

a random function in H*(T?) takes the form

() =) gianea(x), Y (14 [nf)lanl < +oo

neZ3 n



Almost sure local well posedness for random initial
data in H® = H* x H 1. Vs >0
Theorem (Tzvetkov-B. 2007)

Consider s > 0 and a random initial data

(o, 1) (Z 8, (tnen(x Zgnﬁnen )

neZ3 nez3

Notice that a.s. (ug, u1) € H*(T?). Then a.s. there exists
T > 0 and a unique solution u“(t,x) of (NLW) in a space

Xr C C([0, T]; H*(M)) N Cl([O, T]; Hs_l(l\/l)).
Furthermore

P(Tax(w) < T) < Ce /T,



From local to global existence

The result above shows that we have a good Cauchy theory at
the probabilistic level in *(T?),s > 0. and we can almost
surely solve the non linear wave equation on a maximal time

interval (0, T).
Natural question: T = +00? (global existence).

Theorem (Tzvetkov-B.2010)

For any 0 <'s, the solution of (NLW) constructed above exists
almost surely globally in time and satisfies:

w w w @
1w (t, ), et (t, Ds(rsy < C((M? + £)) =0
with
P(M“ > A\) < Ce= <



Rk 1. Almost surely, the initial data (u¢, u¥) € H*(T?), s > 0,
but as soon as

S+ [0 Janl + (1 + (1) |Baf? = +oo

nez3

and the random variables g,, g, do not accumulate at 0 (say
they are i.i.d. non trivial), then almost surely

(g, uf') & M= (T°)

and the result provides many initial data for which the classical
Cauchy theory does not apply (even locally in time)

Rk 2. In the deterministic setting, global well posedness below
H* iniciated by Bourgain using high/low decomposition. Then
global well posedness obtained for s > % by Kenig-Ponce-Vega
(see also Gallagher-Planchon), and then for s = 2 by
Bahouri-Chemin



Deterministic theory: Strichartz estimates

sin(v/—A)
VB

the solution to the linear wave equation with data (uo, uy).

S(t)(uo, uy) = cos(vV—2A)ug + Uy
(0?2 — A)u =0, U |¢=0= Ug, OrU |¢=0= .

Theorem (Strichartz)

1S5(t) (o, ur)l 4o, 7yxmy < Cll (o, ur)llparz(my

Rk.:

» Similar estimates for norms L7; L9,
1,3 _3
}+i=3-s2<p< oo

» Sobolev inequalities imply

[ull sy < Cllullpersm



Deterministic theory: local Cauchy theory in H*

Theorem
Assume that
ol + [lunll2 < A

There exists a unique solution of (NLW)

u € L=([0, CIAT3], HY x [2(M))
Moreover the solution satisfies

[[(u; Oeu) || 1o (0, cn-31, Hix12) < CA
and (u, Ozu) is unique in the class

L>([0, CA73], H* x L?)



Proof: Fixed point in the ball centered on S(t)(uo, 1) in
L=((0, T); Hy)

Use that v satisfies (0?7 — A)u = —u?, and hence Duhamel
formula gives

u=S(t)(uo, u1) — /O NEN

= 5(t)(uo, tn) + K(t)(v)

where K(t) satisfies (using Sobolev embeddings H! «— L°)

1K (£) ()]l oo o, s iy < 116l 2o, Tysez(uy
< Tlullfso, oy < CT Nl i o, 71 (my



Deterministic theory in H': a remark

Theorem
Assume that

Juoll i + [funl 2 + (1] oo riromy < A
There exists a unique solution in L>([0, CA=3], H* x L?) of
(07 — A)u+ (f + u)® =0, (u, 0¢t) |e—o= (uo, u1)
Moreover the solution satisfies

| (u, Orur)[| oo (0,77, x12) < CA

(same proof as before)



Paley-Zygmund Theorem, quantitative version

Theorem
Assume H° random initial data.

A2

P({HS(t)(uS, UT)H[_P((QT)X’]IG) > )\}) < Ce “oo, u1)HHO(M)
Assume H° random initial data.

P({HS(t)(Uaj, UL]I.J)HLOO((O,T)X']I‘-’*) > A}) S C‘efc,\2
PIS(E)d — )65 05 = o 7y > N7} < eV

I'IN(Z W,,ei"x Z w,e

[n|<N

where

Proof: same as (modern) proof of Paley-Zygmund theorem



Local existence
We look for the solution u® under the form

u? = S(t)(ug, ui) + v = uf +v*
v¥ is solution of an equation of the form
(07 = D)+ (S(t)(ug, uf) +v)> =0, (v,9v) |e=o= (0,0)

which is essentially a cubic non linear wave equation with a
source term (S(t)(ug, u')?. According to Paley-Zygmund, a.s.
this source term is admissible, and according to the
deterministic H! theory, there exists a time T > 0 such that
this equation is well posed in H': notice that

LPR(I; 12(T%) C Ly; L2.

In some sense, this result shows that the seemingly
super-critical problem is in fact sub-critical



Global existence: probabilistic version of

Bourgain’s high /low decomposition method

(See Colliander-Oh for a related idea on the well posedness of
NLS below L2 on T).

Fix T > 0. Want to prove almost surely existence up to time
T of a solution. Fix N > 1. Seek u“ as

u=wp+ vy =St)(Id —Ny)(ug, uy) + vy
(07 — D)viy + (S(t)(Id — M) (g, uy) + v¥)* =0,
(Vﬁ'/ atvw) |t:0: HN(US}? uf)

AIM: Prove that v} exists on [0, T] with probability

pny — 1, N — 4o0.

H'-norm controls local Cauchy theory, hence enough to prove
that H! norm of v§ remains bounded on [0, T] with

py >1— Ce



A priori bound

1 1 1
E(W) = [ 5100 + IV + 5 vl
d

—E(t) = [ Owu(v® — (wjy + v¥)*)dx
dt T3

= [ Owu(—3viwy — 3wiv — wy)dx
T3
< 301 0evill izl vllZellwll e + 301 0evllcz vl w7
+1|0cvill 2 | wil | oo
< C(E(®)Iwnllie + E(E)* lwwll e + E(£)?lwn]l7e)

¢ Sobolev injection in time gives
Pllwnll (0, 7yxm3y > N™H¢) < P(||wi| 2,100 > N7%) < Cem M

Conclude using Gronwall



Further developments

>

Extends to other non-linearities (but require the use of
Strichartz estimates for the proof)

Allow correlations in the random variables (using some
slack in the arguments)

Relax the mean equal to 0 assumption on the random
variables i.e. perform the randomization around a given
solution (e.g. smooth, or given by the preceding
procedure) instead of the trivial (vanishing) solution

Extend the result to other manifolds. Possible (but not in
the full range s > 0) using this Paley-Zygmund
randomization, or use other randomization to get the
range s > 0 (work with Lebeau)

Extend to other dispersive equations such as non linear

Schrodinger equations with or without harmonic potential
(with L. Thomann)



