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Abstract

This memoir is devoted to the proof of a well-posedness result for the gravity water
waves equations, in arbitrary dimension and in fluid domains with general bot-
toms, when the initial velocity field is not necessarily Lipschitz. Moreover, for two-
dimensional waves, we can consider solutions such that the curvature of the initial
free surface does not belong to L2.

The proof is entirely based on the Eulerian formulation of the water waves equations,
using microlocal analysis to obtain sharp Sobolev and Hölder estimates. We first
prove tame estimates in Sobolev spaces depending linearly on Hölder norms and
then we use the dispersive properties of the water-waves system, namely Strichartz
estimates, to control these Hölder norms.
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Chapter 1

Introduction

In this paper we consider the free boundary problem describing the motion of wa-
ter waves over an incompressible, irrotational fluid flow. We are interested in the
study of the possible emergence of singularities and would like to understand which
quantities govern the boundedness of the solutions.

We shall work in the Eulerian coordinate system where the unknowns are the velocity
field v and the free surface elevation η. Namely, consider a simply connected domain,
Ω, located between a fixed bottom Γ and a free unknown surface Σ, given as a graph

Σ = {(x, y) ∈ Rd ×R ; y = η(t, x)}.

In this framework, water waves are described by a system of coupled equations: the
incompressible Euler equation in the interior of the domain and a kinematic equation
describing the deformations of the domain. Moreover, the velocity will be assumed
to be irrotational. Thus we are interested in the following system

(1.1)



∂tv + v · ∇x,yv +∇x,y(P + gy) = 0 in Ω,

div x,yv = 0, curl x,yv = 0 in Ω,

v · ν = 0 on Γ,

∂tη = (1 + |∇xη|2)1/2 v · n on Σ,

P = 0 on Σ,

augmented with initial data (η0, v0) at time t = 0. Here n (resp. ν) is the outward
unit normal to the free surface (resp. the bottom), P is the pressure and g > 0 is
the acceleration of gravity.

The first equation is the usual Euler equation in presence of a gravity force directed
along the y coordinate, the third one is the solid wall boundary condition at the
bottom, the fourth equation describes the movement of the interface under the action
of the fluid and ensures that the fluid particles initially at the interface remain at
the interface, while the last one expresses the continuity of the pressure through the
interface (no tension surface).
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In [3] we proved that the Cauchy problem for the system (1.1) is well-posed under the
minimal assumptions that insure that at time t = 0, in terms of Sobolev embeddings,
the initial velocity v0 is Lipschitz up to the boundary (see also the improvement to
velocities whose derivatives are in BMO by Hunter-Ifrim-Tataru [37]). This Lipschitz
regularity threshold for the velocity appears to be very natural. However, it has been
known for some time (see the work by Bahouri-Chemin [11] and Tataru [59]) that
taking benefit of dispersive effects, it is possible to go beyond this threshold on
some quasilinear wave-type systems. The goal of this article is to show that such an
improvement is also possible on the water-waves system.

To describe our main result, we need to introduce some notations. For (η, v) as
above, denote by V = vx |Σ, B = vy |Σ the horizontal and vertical components of
the velocity field at the interface. Since v is irrotational, and incompressible, we can
write v = ∇x,yφ, with ∆x,yφ = 0 in the domain. We set ψ = φ |Σ. We shall prove
the following result (see Section 1.4 for a more complete statement).

Theorem. Let

s > 1 +
d

2
− µ, with

{
µ = 1

24 if d = 1,

µ = 1
12 if d ≥ 2,

and set Hs = Hs+ 1
2 ×Hs+ 1

2 × (Hs)d ×Hs where Hσ = Hσ(Rd).

Then for any initial data (η0, v0) such that (η0, ψ0, V0, B0) ∈ Hs and satisfying the
Taylor sign condition, there exist T > 0 and a solution (η, v) of the water-waves
system (1.1) (unique in a suitable space) such that (η, ψ, V,B) ∈ C0((−T, T );Hs).

Remark 1.1. • The Taylor sign condition expresses the fact that the pressure
increases going from the air into the fluid domain (∂yP |Σ ≤ c < 0). It is always
satisfied when there is no bottom (see Wu [65]) or for small perturbations of
flat bottoms (see Lannes [43]). Notice that the water-waves system is ill-posed
when this condition is not satisfied (see Ebin [33]).

• The curvature κ0 of the initial free surface involves two derivatives of η0.
Hence, we have κ0 ∈ Hs− 3

2 which, according to our assumption on s, can be
negative in dimension 1. This shows that, when d = 1, no control on the
L2(R)-norm of the curvature of the initial free surface is to be assumed.

• In any dimension, in view of Sobolev embeddings, our assumptions require that
V0, B0 belong to the Hölder space W 1−µ,∞. Consequently, our result applies
to initial data for which the initial velocity field is not Lipschitz.

• In this article we consider only gravity water waves. We refer to the works
[31, 32] by de Poyferré and Nguyen for the case with surface tension.

• At the end of this introduction, we explain the strategy of the proof. The main
restriction on µ comes from the fact that we use a Strichartz estimate with
loss of derivative (this means a loss compared to the estimate which holds for
the linearized equation). This in turn comes from the fact that we prove a
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dispersive estimate which holds only on a small time interval whose length is
taylored to the size of the frequency.

To prove this result, we follow several steps. The first one is (roughly speaking) to
reduce the water waves equations to a quasilinear wave type equation of the form

(1.2) (∂t + TV · ∇x + iTc)u = f,

where TV is the paramultiplication by V , Tc is a paradifferential operator of order 1
2

and almost self-adjoint (such that T ∗c − Tc is of order 0) and f is a remainder term
in the paradifferential reduction. Actually, this reduction is not new. It was already
performed in our previous work [3] and was based on two facts: the Craig-Sulem-
Zakharov reduction to a system on the boundary, introducing the Dirichlet-Neumann
operator and (following Lannes [43] and [1, 8]) the use of paradifferential analysis to
study the Dirichlet-Neumann operator in non smooth domains. The second major
step in the proof consists in proving that the solutions of the water waves system
enjoy dispersive estimates (Strichartz-type inequalities). For the equations with
surface tension in the special case of dimension 1, Strichartz estimates were proved
by Christianson, Hur and Staffilani in [22] for smooth enough data and in [2] for the
low regularity solutions constructed in [1]. In the present context, the main difficulty
will consist in proving these dispersive estimates for gravity waves at a lower level of
regularity than the threshold where we proved the existence of the solutions in [3].
This will be done by constructing parametrices on small time intervals tailored to the
size of the frequencies considered (in the spirit of the works by Lebeau [46], Bahouri-
Chemin [11], Tataru [59], Staffilani-Tataru [58], and Burq-Gérard-Tzvetkov [17]).

The important new points in the present article with respect to our previous analysis
are the following.

• To go beyond the analysis previously developed in [3] (under the assumption
s > 1 + d

2), we need to develop much more technically involved approaches,
in order to work with very rough functions and domains (most parts in our
analysis extend to s > 1

2 + d
2). We believe that these results on the Dirichlet-

Neumann operator in very rough domains can be of independent interest (see
also the work by Dahlberg-Kenig [29] and Craig-Schanz-Sulem [27]).

• The a priori estimates we prove involve L∞t (Hs
x) norms (energy estimates) and

L2
t (C

σ
x ) norms (dispersive estimates). For this, we need to estimate the non

linear (and non local) remainder terms given by the paradifferential calculus
using these norms. The loss of integrability in time (L2

t ) for the Hölder norms
forces us to track down the precise dependence of the constants in our analysis
and prove tame estimates depending linearly on Hölder norms.

• A simpler model operator describing our system is (∂t+V ·∇x)+i|Dx|
1
2 (while

in presence of surface tension, |Dx|
1
2 is replaced by |Dx|

3
2 ). Consequently,

the dispersive properties exhibited on the water-waves system without surface
tension are generated by the lower order term in the equation (the principal
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part, being a simple transport equation, induces no dispersive effects). To our
knowledge, this is the only known example of such phenomenon.

• The main point in the proof of dispersive estimates is the construction of a
parametrix for solutions to (1.2). One of the difficulties in the approach will
be to get rid of this low regularity transport term by means of a parachange
of variables (see the work by Alinhac [9]). Once this reduction is performed,
we finally have to handle the low regularity in the parametrix construction.

In the rest of this section we shall describe more precisely the problem and outline
the steps of the proof on the main result.

1.1 Equations and assumptions on the fluid domain

We consider the incompressible Euler equation in a time dependent fluid domain Ω
contained in a fixed domain O, located between a free surface and a fixed bottom.
We consider the general case where the bottom is arbitrary which means that the
only assumption we shall make on the bottom is that it is separated from the free
surface by a strip of fixed length.

Namely, we assume that,

Ω = {(t, x, y) ∈ I ×O : y < η(t, x)} ,

where I ⊂ Rt andO ⊂ Rd×R is a given open connected set. The spatial coordinates
are x ∈ Rd (horizontal) and y ∈ R (vertical) with d ≥ 1. We assume that the free
surface

Σ =
{

(t, x, y) ∈ I ×Rd ×R : y = η(t, x)
}
,

is separated from the bottom Γ = ∂Ω \ Σ by a curved strip. This means that we
study the case where there exists h > 0 such that, for any t in I,

(1.3)
{

(x, y) ∈ Rd ×R : η(t, x)− h < y < η(t, x)
}
⊂ O.

Examples.

1. O = Rd ×R corresponds to the infinite depth case ( Γ = ∅);

2. The finite depth case corresponds to O = {(x, y) ∈ Rd ×R : y > b(x)} for
some continuous function b such that η(t, x) − h > b(x) for any time t (then
Γ = {y = b(x)}). Notice that no regularity assumption is required on b.

3. See the picture below.
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Ω(t)

Σ(t) = {y = η(t, x)}

Γ

We consider a potential flow such that the velocity v is given by v = ∇x,yφ for some
function φ : Ω→ R, such that ∆x,yφ = 0. The system (1.1) reads

(1.4)


∂tφ+

1

2
|∇x,yφ|2 + P + gy = 0 in Ω,

∂tη = ∂yφ−∇η · ∇φ on Σ,

P = 0 on Σ,

∂νφ = 0 on Γ,

where as above g > 0 is acceleration due to gravity, P is the pressure and ν denotes
the normal vector to Γ (whenever it exists; for general domains, one solves the
boundary value problem by a variational argument, see [1, 3]).

1.2 Regularity thresholds for the water waves

A well-known property of smooth solutions is that their energy is conserved

d

dt

{1

2

∫
Ω(t)
|∇x,yφ(t, x, y)|2 dxdy +

g

2

∫
Rd

η(t, x)2 dx
}

= 0.

However, we do not know if weak solutions exist at this level of regularity (even the
meaning of the equations is not clear). This is the only known coercive quantity
(see [14]).

Another regularity threshold is given by the scaling invariance which holds in the
infinite depth case (that is when O = Rd × R). If φ and η are solutions of the
gravity water waves equations, then φλ and ηλ defined by

φλ(t, x, y) = λ−3/2φ(
√
λt, λx, λy), ηλ(t, x) = λ−1η(

√
λt, λx),

solve the same system of equations. The (homogeneous) Hölder spaces invariant by
this scaling (the scaling critical spaces) correspond to η0 Lipschitz and φ0 in Ẇ 3/2,∞

(one can replace the Hölder spaces by other spaces having the same invariance by
scalings).
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According to the scaling argument, one could expect that the problem exhibits some
kind of “ill-posedness” for initial data such that the free surface is not Lipschitz.
See e.g. [19, 20] for such ill-posedness results for semi-linear equations. However,
the water waves equations are not semi-linear and it is not clear whether the scaling
argument is the only relevant regularity threshold to determine the optimal regu-
larity in the analysis of the Cauchy problem (we refer the reader to the discussion
in Section 1.1.2 of the recent result by Klainerman-Rodnianski-Szeftel [41]). In par-
ticular, it remains an open problem to prove an ill-posedness result for the gravity
water waves equations. We refer to the recent paper by Chen, Marzuola, Spirn and
Wright [21] for a related result in the presence of surface tension.

Several additional criterions have appeared in the mathematical analysis of the water
waves equations. The first results on the water waves equations required very smooth
initial data. The literature on the subject is now well established, starting with
the pioneering work of Nalimov [52] (see also Yosihara [67] and Craig [26]) who
showed the unique solvability in Sobolev spaces under a smallness assumption. Wu
proved that the Cauchy problem is well posed without smallness assumption ([65,
64]). Several extensions of this result were obtained by various methods and many
authors. We shall quote only some recent results on the local Cauchy problem:
[3, 18, 25, 43, 47, 48, 56], see also [7, 34, 37, 39, 66] for global existence results.

To ensure that the particles flow is well defined, it seems natural to assume that the
gradient of the velocity is bounded (or at least in BMO, see the work by Hunter, Ifrim
and Tataru in [37]). We refer to blow-up criteria by Christodoulou and Lindblad [23]
or Wang and Zhang [63]. Below we shall construct solutions such that the velocity
is still in L2((−T, T );W 1,∞) even though it is initially only in W 1−µ,∞.

Finally, notice that though the above continuation criterions are most naturally
stated in Hölder spaces, the use of L2-based Sobolev spaces seems unavoidable (recall
from the appendix of [5] that the Cauchy problem for the linearized equations is ill-
posed on Hölder spaces, as it exhibits a loss of d/4 derivatives). So let us rewrite
the previous discussion in this framework. Firstly, the critical space for η0 (resp.

the trace v0 of the velocity at the free surface) is Ḣ1+ d
2 (Rd) (resp. Ḣ

1
2

+ d
2 (Rd)).

We proved in [3] that the Cauchy problem is well-posed for initial data (η0, v0) in

H
3
2

+ d
2

+ε(Rd)×H1+ d
2

+ε(Rd) with ε > 0. This corresponds to the requirement that
the initial velocity field should be Lipschitz. In this paper we shall prove that the

Cauchy problem is well posed for initial data (η0, v0) belonging to H
3
2

+ d
2
−δ(Rd) ×

H1+ d
2
−δ(Rd) for 0 < δ < µ. One important conclusion is that, in dimension d = 1,

one can consider initial free surface whose curvature does not belong to L2.

1.3 Reformulation of the equations

Following Zakharov ([68]) and Craig and Sulem ([28]) we reduce the water waves
equations to a system on the free surface. To do so, notice that since the velocity po-
tential φ is harmonic, it is fully determined by the knowledge of η and the knowledge
of its trace at the free surface, denoted by ψ. Then one uses the Dirichlet-Neumann
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operator which maps a function defined on the free surface to the normal derivative
of its harmonic extension. Namely, if ψ = ψ(t, x) ∈ R is defined by

ψ(t, x) = φ(t, x, η(t, x)),

and if the Dirichlet-Neumann operator is defined by

(G(η)ψ)(t, x) =
√

1 + |∇η|2 ∂nφ|y=η(t,x)

= (∂yφ)(t, x, η(t, x))−∇η(t, x) · (∇φ)(t, x, η(t, x)),

then one obtains the following system for two unknowns (η, ψ) of the variables (t, x),

(1.5)

{
∂tη −G(η)ψ = 0,

∂tψ + gη +
1

2
|∇ψ|2 − 1

2

(
∇η · ∇ψ +G(η)ψ

)2
1 + |∇η|2

= 0.

We refer to [1, 3] for a precise construction of G(η) in a domain with a general
bottom. We also mention that, for general domains, we proved in [4] that if a

solution (η, ψ) of System (1.5) belongs to C0([0, T ];Hs+ 1
2 (Rd)×Hs+ 1

2 (Rd)) for some
T > 0 and s > 1/2 + d/2, then one can define a velocity potential φ and a pressure
P satisfying (1.4). Below we shall always consider solutions such that (η, ψ) belongs

to C0([0, T ];Hs+ 1
2 (Rd) ×Hs+ 1

2 (Rd)) for some s > 1/2 + d/2 (which is the scaling
index). It is thus sufficient to solve the Craig–Sulem–Zakharov formulation (1.5) of
the water waves equations.

1.4 Main result

We shall work with the horizontal and vertical traces of the velocity on the free
boundary, namely

B = (∂yφ)|y=η, V = (∇xφ)|y=η.

They are given in terms of η and ψ by means of the formula

(1.6) B =
∇η · ∇ψ +G(η)ψ

1 + |∇η|2
, V = ∇ψ −B∇η.

Also, recall that the Taylor coefficient a defined by

(1.7) a = −∂yP |y=η

can be defined in terms of η, ψ only (see [4] or Definition 1.5 in [3]).

For ρ = k + σ with k ∈ N and σ ∈ (0, 1), recall that one denotes by W ρ,∞(Rd)
the space of functions whose derivatives up to order k are bounded and uniformly
Hölder continuous with exponent σ. Hereafter, we always consider indexes ρ 6∈ N.

In our previous paper [3], we proved that the Cauchy problem is well-posed in
Sobolev spaces for initial data such that, for some s > 1 + d/2, (η0, ψ0, V0, B0)
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belongs to Hs+ 1
2 × Hs+ 1

2 × (Hs)d × Hs. Our main result in this paper is a well-
posedness result which holds for some s < 1 + d/2. In addition, we shall prove
Strichartz estimates.

Theorem 1.2. Let d ≥ 1 and consider two real numbers s and r satisfying

s > 1 +
d

2
− µ, 1 < r < s + µ− d

2
where µ =

{
1
24 if d = 1,
1
12 if d ≥ 2.

Consider an initial data (η0, ψ0) such that

(H1) η0 ∈ Hs+ 1
2 (Rd), ψ0 ∈ Hs+ 1

2 (Rd), V0 ∈ Hs(Rd), B0 ∈ Hs(Rd),

(H2) there exists h > 0 such that condition (1.3) holds initially for t = 0,

(H3) (Taylor sign condition) there exists c > 0 such that, for all x ∈ Rd, a0(x) ≥ c.

Then there exists T > 0 such that the Cauchy problem for (1.5) with initial data
(η0, ψ0) has a unique solution such that

1. η and ψ belong to C0
(
[0, T ];Hs+ 1

2 (Rd)
)
∩Lp

(
[0, T ];W r+ 1

2
,∞(Rd)

)
where p = 4

if d = 1 and p = 2 for d ≥ 2,

2. V and B belong to C0
(
[0, T ];Hs(Rd)

)
∩Lp

(
[0, T ];W r,∞(Rd)

)
with p as above,

3. the condition (1.3) holds for 0 ≤ t ≤ T , with h replaced with h/2,

4. for all 0 ≤ t ≤ T and for all x ∈ Rd, a(t, x) ≥ c/2.

Remark 1.3. • Notice that the last two assumptions in (H1) do not imply that
ψ0 ∈ Hs+1(Rd) since ∇η0 does not belong to Hs(Rd). Notice also that the

assumption (H1) holds, for instance, when η0 ∈ Hs+ 1
2 (Rd) and ψ0 = 0.

• The velocity is the gradient of the velocity potential and hence it could be
interesting to make an assumption on ∇ψ0 instead of ψ0 (indeed, the assump-
tion that ψ0 belongs to L2 implies a restriction on the moment of the velocity
in dimension 1). We refer to [64, 65, 43] for such well-posedness results in
infinite depth or in the case with a smooth bottom. However, because we
consider here general bottoms, it was convenient to make an assumption on
ψ0 instead of ∇ψ0 and we did not try to improve the result by weakening the
low frequency assumption on ψ0.

1.5 Paradifferential reduction

The proof relies on a paradifferential reduction of the water-waves equations, as in
[1, 3, 8]. This is the property that the equations can be reduced to a very simple
form

(1.8)
(
∂t + TV · ∇+ iTγ

)
u = f

8



where TV is a paraproduct and Tγ is a paradifferential operator of order 1
2 with

symbol
γ =
√
aλ

where

λ =

√(
1 + |∇η|2

)
|ξ|2 −

(
ξ · ∇η

)2
.

Here a is the Taylor coefficient (see (1.7)) and λ is the principal symbol of the
Dirichlet-Neumann operator (see Appendix A for the definition of paradifferential

operators). When d = 1, λ simplifies to |ξ| so Tγu = T√a |Dx|
1
2 u.

To prove Theorem 1.2 we need tame estimates which complement the estimates
already proved in [3]. We shall study the Dirichlet-Neumann operator.

In the case without bottom (Γ = ∅), when η is a smooth function, it is known that,
modulo a smoothing operator, G(η) is a pseudo-differential operator whose principal
symbol is given by λ.

Notice that λ is well-defined for any C1 function η. In [3] we proved several results
which allow to compare G(η) to the paradifferential operator Tλ when η has limited
regularity. In particular we proved that, for any s > 1 + d/2,

(1.9) ‖G(η)f − Tλf‖
Hs− 1

2 (Rd)
≤ F

(
‖η‖

Hs+1
2 (Rd)

)
‖f‖Hs(Rd) .

When η is a smooth function, one expects that G(η)−Tλ is of order 0 which means
that G(η)f − Tλf has the same regularity as f (this holds true whenever η is much
smoother than f). On the other hand, (1.9) gives only that this difference “is
of order” 1/2 (it maps Hs to Hs−1/2). This is because we allow η to be only 1/2-
derivative more regular than f . This is tailored to the analysis of gravity waves since,
for scaling reasons, it is natural to assume that η is 1/2-derivative more regular than
the trace of the velocity on the free surface.

We shall improve (1.9) by proving that G(η) − Tλ is of order 1/2 assuming only
that s > 3/4 + d/2 together with sharp Hölder regularity assumptions on both η
and f (these Hölder assumptions are the ones that hold by Sobolev injections for
s > 1 + d/2). Since Hölder norms are controlled only in some Lp spaces in time (by
Strichartz estimates), we need to precise the dependence of the constants. We shall
prove in Appendix B the following result that we believe is of independent interest.

Theorem 1.4. Let d ≥ 1 and consider real numbers s, r such that

s >
3

4
+
d

2
, r > 1.

Consider η ∈ Hs+ 1
2 (Rd) ∩W r+ 1

2
,∞(Rd) and f ∈ Hs(Rd) ∩W r,∞(Rd), then G(η)f

belongs to Hs− 1
2 (Rd) and

(1.10) ‖G(η)f − Tλf‖
Hs− 1

2
≤ F

(
‖η‖

Hs+1
2

+ ‖f‖Hs

){
1 + ‖η‖

W r+1
2 ,∞

+ ‖f‖W r,∞

}
,

for some non-decreasing function F : R+ → R+ depending only on s and r.
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Remark 1.5. This estimate is tame in the following sense. In the context we will
be mostly interested in (s < 1 + d/2), for oscillating functions, we have (r > 1)∥∥∥u(x

ε

)∥∥∥
W r+1

2 ,∞
∼
(1

ε

)r+ 1
2 �

(1

ε

)s+ 1
2
− d

2 ∼
∥∥∥u(x

ε

)∥∥∥
Hs+1

2
,

and consequently, the estimate (1.10) is linear with respect to the highest norm.

1.6 Strichartz estimates

Using the previous paradifferential reduction, the key point is to obtain estimates in
Hölder spaces coming from Strichartz ones. Most of the analysis is devoted to the
proof of the following result. Set for I = [0, T ],

‖V ‖E0 = ‖V ‖L∞(I,L∞(Rd)) + ‖V ‖Lp(I,W 1,∞(Rd)),

Nk(γ) =
∑
|α|≤k

sup
ξ∈C
‖Dα

ξ γ‖L∞(I,L∞(Rd)) +
∑
|α|≤k

sup
ξ∈C
‖Dα

ξ γ‖Lp(I,W
1
2 ,∞(Rd))

,

where C = {ξ ∈ Rd : 1
10 ≤ |ξ| ≤ 10.}.

Theorem 1.6. Let I = [0, T ], d ≥ 1, µ such that µ < 1
24 if d = 1, µ < 1

12 if d ≥ 2
and p = 4 if d = 1, p = 2 if d ≥ 2.

There exists k = k(d) such that, for all s ∈ R, one can find a non decreasing function
F : R+ → R+ such that the following property holds. If u ∈ C0(I;Hs(Rd)) and
f ∈ Lp(I;Hs(Rd)) solve (1.8), then

‖u‖
Lp(I;C

s− d2+µ
∗ (Rd))

≤ F
(
‖V ‖E0 +Nk(γ)

){
‖f‖Lp(I;Hs(Rd)) + ‖u‖C0(I;Hs(Rd))

}
,

where Cr∗ is the Zygmund space of order r ∈ R (see Definition A.2),

This last theorem is proved in Chapter 2. We conclude this introduction by explain-
ing the strategy of its proof.

Linearized equation

To explain our strategy, let us first consider as a simple model the linearized equation
at (η = 0, ψ = 0) when d = 2, g = 1, in the case without bottom. Then G(0) = |Dx|
and the linearized system reads

∂tη − |Dx|ψ = 0, ∂tψ + gη = 0,

which, with u = η + i|Dx|1/2ψ can be written under the form

∂tu+ i |Dx|1/2 u = 0.

10



Since the operators e−it|Dx|
1/2

are unitary on Sobolev spaces, the Sobolev embedding
H1+ε(R2) ⊂ L∞(R2) (ε > 0) implies that∥∥∥e−it|Dx|1/2u0

∥∥∥
L∞t (]0,1[;L∞(R2

x))
≤ C ‖u0‖H1+ε(R2

x) .

We shall recall the proof of the following Strichartz estimate

∃C > 0,∀2 < p ≤ +∞, :
∥∥∥e−it|Dx|1/2u0

∥∥∥
Lpt (]0,1[;L

2p
p−2 (R2

x))
≤ C ‖u0‖

H
3
2p (R2)

,

which (taking p close to 2) allows to gain almost 1/4 derivative with respect to the
Sobolev embedding.

The strategy of the proof is classical (see Ginibre-Velo [35] and Keel-Tao [40]).
Firstly, by using the Littlewood-Paley decomposition, one can reduce the analysis
to the case where the spectrum of u0 is in a dyadic shell. Namely, it is sufficient to
prove that ∥∥e−it|Dx|1/2χ(h|Dx|)u0

∥∥
Lpt (]0,1[;L

2p
p−2 )
≤ Ch−

3
2p ‖u0‖L2(R2) ,

where C is uniform with respect to h ∈]0, 1[ and χ ∈ C∞0 (R \ 0) equals 1 on [1, 2].

To prove that T = e−it|Dx|
1/2
χ(h|Dx|) is bounded from L2

x to Lpt (L
q
x) (q = 2p

p−2) with

norm bounded by A := Ch
− 3

2p , it suffices to prove that the operator TT ∗ is bounded

from Lp
′

t (Lq
′
x ) to Lpt (L

q
x) with norm bounded by A2 = C2h

− 3
p . Now, write

TT ∗f = χ(h|Dx|)e−it|Dx|
1/2

∫ 1

0
eis|Dx|

1/2
χ(h|Dx|)f(s, ·)ds.

Using the Hardy-Littlewood-Sobolev inequality, the desired estimate for TT ∗ will
be a consequence of the following dispersive estimate :

‖χ(h|Dx|)e−i(t−s)|Dx|
1/2
χ(h|Dx|)‖L1

x→L∞x ≤
C

h
3
2 |t− s|

·

The proof of this estimate is classical: we have

χ(h|Dx|)e−it|Dx|
1/2
χ(h|Dx|)u =

1

(2π)2

∫
e−it|ξ|

1/2+i(x−y)·ξ)χ2(h|ξ|)u(y)dydξ,

and the estimate follows after changing variables (η = hξ) from the stationary phase
inequality.

The nonlinear system

We now consider the nonlinear equation (1.8), which reads(
∂t + TV · ∇+ iTγ

)
u = f.

To apply the strategy recalled in the previous paragraph, the main difficulties are
the following:

11



• this is a paradifferential equation with non constant coefficients,

• the coefficients are not smooth. Indeed, V is in L∞t (C1
x) and the symbol

γ = γ(t, x, ξ), of order 1/2 in ξ, is only L∞t (C
1/2
x ) in the space-time variables,

• the dispersion is due to the operator Tγ of order 1/2, while the equation con-
tains the term TV · ∇ of order 1.

The first step of the proof is classical in the context of quasi-linear wave equations
(see the works by Lebeau [44], Smith [57], Bahouri-Chemin [11], Tataru [59] and
Blair [15]). It consists, after a dyadic decomposition at frequency h−1, in regularizing
the coefficients at scale h−δ, where δ ∈ (0, 1) is to be chosen properly. Using the
Littlewood-Paley decomposition u =

∑
j≥−1 ∆ju, we can write(

∂t + Sj−2(V ) · ∇+ iTγ

)
∆ju = fj ,

where Sj−2u =
∑j−3

k=−1 ∆ku and fj is easily estimated. Then, for some δ ∈]0, 1[ (here

δ = 2
3), one considers instead the equation with smoothed coefficients:(

∂t + Sjδ(V ) · ∇+ iTγδ

)
∆ju = fj + gjδ, γδ = χ0(2−jδDx)γ

where
gjδ =

(
Sjδ(V )− Sj(V )

)
· ∇+ i(Tγ − Tγδ)

)
∆ju.

Since the dispersion is due to the sub-principal term, we chose to straighten the
vector field ∂t + Sjδ(V ) · ∇ by means of a parachange of variables (following Alin-
hac [9]). To do so, we solve the system Ẋ(t) = Sjδ(V )(t,X(t)) with X(0) = x to
obtain a mapping x 7→ X(t, x) which is a small perturbation of the identity in small
time, satisfying

‖∂X
∂x

(t, ·)− Id‖L∞(Rd) ≤ C(‖V ‖C1)|t|
1
2 .

However, as the vector field V is only Lipschitz, we have only the following estimates
for the higher order derivatives:

‖(∂αxX)(t, ·)‖L∞(Rd) ≤ Cα(‖V ‖E0)h−δ(|α|−1)|t|
1
2 , |α| ≥ 2, h = 2−j .

So one controls ∂αxX only on small time intervals whose sizes depend of h = 2−j

and α. This is one reason why we will prove a dispersive estimate only in short time
intervals whose size is tailored to the frequency.

Then, one makes the change of variables

vh(t, y) = (∆ju)(t,X(t, y)), h = 2−j ,

to obtain an equation of the form

∂tvh + iAh(t, y,Dy)vh = gh,
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for an explicit operator A of order 1/2. For convenience we reduce the equation to
a semi classical form by changing variables

z = h−
1
2 y, h̃ = h

1
2 , wh̃(t, z) = vh(t, h̃y)

and multiplying the equation by h̃. We get an equation of the form

(h̃∂t + iP (t, h̃z, h̃Dz, h̃))wh̃ = h̃Fh̃.

Finally, we are able to write a parametrix for this reduced system, which allows
to prove Strichartz estimates using the classical strategy outlined above, on a small

time interval |t| ≤ h̃δ = h
δ
2 . The key step here is to prove that, on such time intervals

one has a parametrix of the form

Kv(t, z) = (2πh̃)−d
∫∫

e
i
h̃

(φ(t,z,ξ,h̃)−z′·ξ)b(t, z, ξ, h̃)v(z′)dz′dξ

where b is a symbol and φ a real-valued phase function, such that

φ|t=0 = z · ξ, b|t=0 = χ(ξ), suppχ ⊂ {ξ :
1

3
≤ |ξ| ≤ 3}.

Using the parametrix, the stationary phase estimate and coming back to the original
variable z → y = h

1
2 z → x = X(t, y) we obtain a dispersive estimate (see Theo-

rem 2.35). This gives a Strichartz estimate on a time interval of size hδ/2. Finally,
splitting the time interval [0, T ] into Th−δ/2 time intervals of size hδ/2, and gluing
together all these estimates, we obtain a Strichartz estimate with loss on the time
interval [0, T ].

Acknowledgements. We would like to thank the referees for their comments which
lead to significant improvements in the presentation of the memoir.
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Chapter 2

Strichartz estimates

In this chapter we shall prove Strichartz estimates for rough solutions of the gravity
water waves equations. This is the main new point in this paper. Namely, we shall
prove Theorem 1.6 stated in the introduction.

The first section of this chapter is based on a paradifferential analysis of the water-
wave equations — we refer the reader to Appendix A for the definition of parad-
ifferential operators. This paradifferential analysis relies on the approach given in
[1, 3, 8] combined with some tame estimates which are proved in the appendix.

2.1 Symmetrization of the equations

We begin by recalling from [3] that the water-waves equations can be reduced to a
very simple form

(2.1)
(
∂t + TV · ∇+ iTγ

)
u = f

where TV is a paraproduct and Tγ is a para-differential operator of 1/2. To do so,
we begin by recalling a formulation of the water waves system which involves the
unknowns

(2.2) ζ = ∇η, B = ∂yφ|y=η, V = ∇xφ|y=η, a = −∂yP |y=η,

where recall that φ is the velocity potential, P = P (t, x, y) is the pressure given by

(2.3) −P = ∂tφ+
1

2
|∇x,yφ|2 + gy,

and a is the Taylor coefficient.

We consider smooth solutions (η, ψ) of (1.5) defined on the time interval [0, T0] and
satisfying the following assumptions on that time interval.

Assumption 2.1. We consider smooth solutions of the water waves equations such
that
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i) (η, ψ) belongs to C1([0, T0];Hs0(Rd) ×Hs0(Rd)) for some s0 large enough and
0 < T0;

ii) there exists h > 0 such that (1.3) holds for any t in [0, T0] (this is the assumption
that there exists a curved strip of width h separating the free surface from the
bottom);

iii) there exists c > 0 such that the Taylor coefficient a(t, x) = −∂yP |y=η(t,x) is

bounded from below by c for any (t, x) in [0, T0]×Rd.

We begin by recalling two results from [3].

Proposition 2.2 (from [3]). For any s > 1
2 + d

2 one has

(2.4) G(η)B = −div V + γ̃

where

(2.5) ‖γ̃‖
Hs− 1

2
≤ F(‖(η, V,B)‖

Hs+1
2×H

1
2×H

1
2
).

Proposition 2.3 (from [3]). We have

(∂t + V · ∇)B = a− g,(2.6)

(∂t + V · ∇)V + aζ = 0,(2.7)

(∂t + V · ∇)ζ = G(η)V + ζG(η)B + γ,(2.8)

where the remainder term γ = γ(η, ψ, V ) satisfies the following estimate : if s > 1
2 + d

2
then

(2.9) ‖γ‖
Hs− 1

2
≤ F(‖(η, ψ, V )‖

Hs+1
2×Hs×Hs

).

Remark 2.4. With γ and γ̃ as above, there holds γ = −ζγ̃. In particular, it follows
from (2.4) and (2.8) that

(2.10) (∂t + V · ∇)ζ = G(η)V − (div V )ζ.

Moreover, in the case without bottom (Γ = ∅), one can see that γ̃ = 0 and hence
γ = 0.

The analysis then uses in an essential way the introduction of a new unknown (fol-
lowing Alinhac, see [8, 1, 9, 10]) which allows us to circumvent the classical issue
that there is a loss of 1/2 derivative when one works with the Craig-Sulem-Zakharov
system. By working with the unknowns (η, V,B), the introduction of this good un-
known amounts to work with U = V + TζB where recall that ζ = ∇η (the ith
component (i = 1, . . . , d) of this vector valued unknown is Ui = Vi + T∂iηB).

To prove Sobolev estimates, it is convenient to work with

(2.11)
Us := 〈Dx〉s V + Tζ〈Dx〉s B,

ζs := 〈Dx〉s ζ.

Now we can state the following result which complements [3, Prop. 4.8].
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Proposition 2.5. Let d ≥ 1 and consider real numbers s, r such that

s >
3

4
+
d

2
, r > 1.

There holds

(∂t + TV · ∇)Us + Taζs = f1,(2.12)

(∂t + TV · ∇)ζs = TλUs + f2,(2.13)

where recall that λ is the symbol

λ(t;x, ξ) :=

√
(1 + |∇η(t, x)|2) |ξ|2 − (∇η(t, x) · ξ)2,

and where, for each time t ∈ [0, T ],

(2.14) ‖(f1(t), f2(t))‖
L2×H−

1
2

≤ F
(
‖(η, ψ)(t)‖

Hs+1
2
, ‖(V,B)(t)‖Hs

){
1 + ‖η(t)‖

W r+1
2 ,∞

+ ‖(V,B)(t)‖W r,∞

}
.

By using the tame estimates for the paralinearization of the Dirichlet-Neumann
operator proved in Appendix B, there is nothing new in the proof of Proposition 2.5
compared to the proof of Prop. 4.8 in [3]. Indeed, the proof of Prop. 4.8 in [3] applies
verbatim (up to replacing F

(
‖(η, ψ, V,B)‖

Hs+1
2×Hs+1

2×Hs×Hs

)
by the right-hand side

of (2.14)).

The next step is a symmetrization of the non-diagonal part of the equations. We
have the following result, whose proof follows directly from the proof of Proposi-
tion 4.10 in [3] and the estimates on the Taylor coefficient proved in the appendix
(see Proposition C.1 in Appendix C).

Proposition 2.6. Let d ≥ 1, s > 3
4 + d

2 and r > 1. Introduce the symbols

γ =
√
aλ, q =

√
a

λ
,

and set θs = Tqζs. Then

∂tUs + TV · ∇Us + Tγθs = F1,(2.15)

∂tθs + TV · ∇θs − TγUs = F2,(2.16)

for some source terms F1, F2 satisfying

‖(F1(t), F2(t))‖L2×L2

≤ F
(
‖(η, ψ)(t)‖

Hs+1
2
, ‖(V,B)(t)‖Hs

){
1 + ‖η(t)‖

W r+1
2 ,∞

+ ‖(V,B)(t)‖W r,∞

}
.
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We are now in position to obtain the following corollary, which will be the starting
point of the proof of the Strichartz estimate.

Corollary 2.7. With the above notations, set

(2.17) u = 〈Dx〉−s (Us − iθs) = 〈Dx〉−s (Us − iT√a/λ∇ηs).

Then u satisfies the complex-valued equation

(2.18) ∂tu+ TV · ∇u+ iTγu = f,

where f satisfies for each time t ∈ [0, T ],
(2.19)
‖f(t)‖Hs

≤ F
(
‖(η, ψ)(t)‖

Hs+1
2
, ‖(V,B)(t)‖Hs

){
1 + ‖η(t)‖

W r+1
2 ,∞

+ ‖(V,B)(t)‖W r,∞

}
.

Proof. It immediately follows from (D.2)–(D.3) that Us − iθs satisfies

(2.20) (∂t + TV · ∇+ iTγ)(Us − iθs) = h,

where, for each time t ∈ [0, T ], the L2(Rd)-norm of h(t) is bounded by the right-
hand side of (2.19). We now have to commute this equation with 〈Dx〉−s . If follows
from (A.5) that

(2.21)
∥∥[〈Dx〉−s , TV · ∇

]
u
∥∥
Hs . ‖V ‖W 1,∞ ‖u‖Hs .

Now we claim that

(2.22) ‖u‖Hs ≤ F
(
‖(η, ψ)‖

Hs+1
2
, ‖(V,B)‖Hs

)
.

To see this, write, by definition of u,

‖u‖Hs ≤ ‖Us‖L2 + ‖θs‖L2

≤ ‖〈Dx〉sV ‖L2 + ‖Tζ〈Dx〉sB‖L2 + ‖Tqζs‖L2

≤ ‖V ‖Hs + ‖ζ‖L∞ ‖B‖Hs +M−
1
2

0 (q) ‖ζ‖
Hs− 1

2

where we used that ‖Tpv‖Hµ−m . Mm
0 (p) ‖v‖Hµ for any paradifferential operator

with symbol p in Γm0 (cf (A.4) and (A.3) for the definition of Mm
0 (p)). Now we have,

using the Sobolev embedding,

‖ζ‖L∞ +M−
1
2

0 (q) ≤ F
(
‖η‖W 1,∞ , ‖a‖L∞

)
≤ F

(
‖η‖

Hs+1
2
, ‖a‖

Hs− 1
2

)
so the claim (2.22) follows from the Sobolev estimates for a (see Proposition C.1 in
the appendix). As a result, it follows from (2.22) and (2.21) that the Hs-norm of
[〈Dx〉−s , TV · ∇]u is bounded by the right-hand side of (2.19).

To complete the proof of the Corollary it remains to prove a similar bound for
‖[〈Dx〉−s , Tγ ]u‖Hs . To do so, we use again (A.5) to infer that∥∥[〈Dx〉−s , Tγ

]
u
∥∥
Hs .M

1/2
1/2 (γ) ‖u‖Hs

(see (A.3) for the definition of M
1/2
1/2 (γ)). Thus, in view of (2.22), it remains only to

estimate M
1/2
1/2 (γ), which is done below in Lemma 2.8.
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2.2 Smoothing the paradifferential symbol

In this section we smooth out the paradifferential symbol γ and we give some esti-
mates on it.

From now on we fix r > 1 and we assume s > 1 + d
2 − σd where σ1 = 1

24 , σd = 1
12 if

d ≥ 2 and we set s0 := 1
2 − σd > 0. Then s − 1

2 >
d
2 + s0.

Now, with I = [0, T ], we introduce the spaces

(2.23)


E := C0(I;Hs− 1

2 (Rd)) ∩ Lp(I;W
1
2
,∞(Rd)),

F := C0(I;Hs(Rd)) ∩ Lp(I;W 1,∞(Rd)),

G := C0(I;W s0,∞(Rd)) ∩ Lp(I;W
1
2
,∞(Rd))

where p = 4 if d = 1, p = 2 if d ≥ 2, endowed with their natural norms.

We shall assume that

(2.24)
(i) a ∈ E, ∇η ∈ E, V ∈ F,
(ii) ∃c > 0 : a(t, x) ≥ c, ∀(t, x) ∈ I ×Rd.

Let us recall that

(2.25)
γ(t, x, ξ) =

(
a2U(t, x, ξ)

) 1
4

U(t, x, ξ) := (1 + |∇η|2(t, x))|ξ|2 − (ξ · ∇η(t, x))2.

Now we have, for ξ ∈ C0 := {ξ : 1
2 ≤ |ξ| ≤ 2} considered as a parameter,

a2U ∈ G

uniformly in ξ.

Lemma 2.8. There exists F : R+ → R+ such that ‖γ‖G ≤ F(‖∇η‖E+‖(V,B)‖F×F )
for all ξ ∈ C0.

Proof. By the Cauchy-Schwartz inequality we have U(t, x, ξ) ≥ |ξ|2 from which we
deduce that

(2.26) γ(t, x, ξ) ≥ c0 > 0 ∀(t, x, ξ) ∈ I ×Rd × C0.

Moreover γ ∈ C0(I;L∞(Rd × C0)). On the other hand, since

γ4(t, x, ξ)− γ4(t, y, ξ) = (γ(t, x, ξ)− γ(t, y, ξ))

3∑
j=0

(γ(t, x, ξ))3−j(γ(t, y, ξ))j

we have, using (2.26),

|γ(t, x, ξ)− γ(t, y, ξ)|
|x− y|σ

≤ 1

4c3
0

|(a2U)(t, x, ξ)− (a2U)(t, y, ξ)|
|x− y|σ

·

Taking σ = s0, σ = 1/2 and using (C.1) in Appendix C we deduce the lemma.
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Guided by works by Lebeau [44], Smith [57], Bahouri-Chemin [11], Tataru [59] and
Blair [15], we smooth out the symbol of the operator.

Definition 2.9. Let ψ ∈ C∞0 (Rd), even, ψ(ξ) = 1 if |ξ| ≤ 1
2 , ψ(ξ) = 0 if |ξ| ≥ 1.

With h = 2−j and δ > 0, which will be chosen later on, we set

(2.27) γδ(t, x, ξ) = ψ(hδDx)γ(t, x, ξ).

Lemma 2.10. (i) ∀α, β ∈ Nd ∃Cα,β > 0 : ∀t ∈ I, ∀ξ ∈ Rd

|Dα
xD

β
ξ γδ(t, x, ξ)| ≤ Cα,βh

−δ|α|‖Dβ
ξ γ(t, ·, ξ)‖L∞(Rd).

(ii) ∀α, β ∈ Nd, |α| ≥ 1 ∃Cα,β > 0 : ∀t ∈ I, ∀ξ ∈ Rd

|Dα
xD

β
ξ γδ(t, x, ξ)| ≤ Cα,βh

−δ(|α|− 1
2

)‖Dβ
ξ γ(t, ·, ξ)‖

W
1
2 ,∞(Rd)

.

Proof. (i) follows from the fact that

γδ(t, x, ξ) = (2π)−dh−δdψ̂
( ·
hδ

)
∗ γ(t, ·, ξ).

(ii) We write

Dα
xD

β
ξ γδ(t, x, ξ) =

+∞∑
k=−1

∆kD
α
xψ(hδDx)Dβ

ξ γ(t, x, ξ) :=
+∞∑
k=−1

vk

where ∆k denotes the usual Littlewood-Paley frequency localization.

If 1
22k ≥ h−δ = 2jδ we have ∆kψ(hδDx) = 0. Therefore

Dα
xD

β
ξ γδ(t, x, ξ) =

2+[jδ]∑
k=−1

vk.

Now
vk = 2k|α|ϕ1(2−kDx)ψ(hδDx)∆kD

β
ξ γ(t, x, ξ)

where ϕ1(ξ) is supported in {1
3 ≤ |ξ| ≤ 3}. Therefore,

‖vk‖L∞(Rd) ≤ 2k|α|‖∆kD
β
ξ γ(t, ·, ξ)‖L∞(Rd) ≤ C2k|α|2−

k
2 ‖Dβ

ξ γ(t, ·, ξ)‖
W

1
2 ,∞(Rd)

.

It follows that

‖Dα
xD

β
ξ γδ(t, ·, ξ)‖L∞(Rd) ≤ C

2+[jδ]∑
k=−1

2k(|α|− 1
2

)‖Dβ
ξ γ(t, ·, ξ)‖

W
1
2 ,∞(Rd)

.

Since |α| − 1
2 > 0 we deduce that

‖Dα
xD

β
ξ γδ(t, ·, ξ)‖L∞(Rd) ≤ C2jδ(|α|−

1
2

)‖Dβ
ξ γ(t, ·, ξ)‖

W
1
2 ,∞(Rd)

.

This completes the proof.
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We introduce now the Hessian matrix of γδ,

(2.28) Hessξ(γδ)(t, x, ξ) =
( ∂2γδ
∂ξj∂ξk

(t, x, ξ)
)
.

Our purpose is to prove the following result.

Proposition 2.11. There exist c0 > 0, h0 > 0 such that

| det Hessξ(γδ)(t, x, ξ)| ≥ c0

for all t ∈ I, x ∈ Rd, ξ ∈ C0, 0 < h ≤ h0.

With the notation in (2.25) we can write

U(t, x, ξ) = 〈A(t, x)ξ, ξ〉,

where A(t, x) is a symmetric matrix. Since we have

(2.29) |ξ|2 ≤ U(t, x, ξ) ≤ C(1 + ‖∇η‖2L∞(I×Rd))|ξ|
2

we see that the eigenvalues of A are greater than one; therefore we have

(2.30) detA(t, x) ≥ 1 ∀(t, x) ∈ I ×Rd.

We shall need the following lemma.

Lemma 2.12. With α = 1
4 we have

| det Hessξ(γ)(t, x, ξ)| = a
d
2 (2α)d|2α− 1| detA(t, x)

(
U(t, x, ξ)

)(α−1)d
.

Proof. Here t and x are fixed parameters. The matrix A being symmetric one can
find an orthogonal matrix B such that B−1AB = D = diag(µj) where the µ′js

are the eigenvalues of A. Setting C = diag(
√
µj) and M = CB−1 we see that

U(t, x, ξ) = |Mξ|2 which implies that

(2.31) γ(t, x, ξ) = a
1
2 g(Mξ) where g(ζ) = |ζ|2α,

so that Hessξ(γ)(t, x, ξ) = a
1
2 tM

(
Hessζ(g)(Mξ)

)
M . Since |detM |2 = |detC|2 =

detA we obtain

(2.32) |det Hessξ(γ)(t, x, ξ)| = a
d
2 detA(t, x) | det Hessζ(g)(M(t, x)ξ)|.

Now we have,

(2.33)
∂2g

∂ζj∂ζk
(ζ) = 2α|ζ|2α−2

(
δjk + 2(α− 1)ωjωk

)
, ωj =

ζj
|ζ|
.

Let us consider the function F : R→ R defined by

F (λ) = det
(
δjk + λωjωk

)
.
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It is a polynomial in λ and we have

(2.34) F (0) = 1.

Let us denote by Cj(λ) the jth column of this determinant. Then

F ′(λ) =
d∑

k=1

det
(
C1(λ), . . . , C ′k(λ), . . . Cd(λ)

)
.

We see easily that
det
(
C1(0), . . . , C ′k(0), . . . Cd(0)

)
= ω2

j

which ensures that

(2.35) F ′(0) = 1.

Now since Cj(λ) is linear with respect to λ we have C ′′j (λ) = 0 therefore

F ′′(λ) =
d∑
j=1

d∑
k=1,k 6=j

det
(
C1(λ), . . . , C ′j(λ), . . . , C ′k(λ), . . . , Cd(λ)

)
.

Now C ′j(λ) = ωj(ω1, . . . , ωd) and C ′k(λ) = ωk(ω1, . . . , ωd). It follows that F ′′(λ) = 0
for all λ ∈ R. We deduce from (2.34), (2.35) that F (λ) = 1 +λ and from (2.33) that

det Hessζ(g)(ζ) =
(
2α|ζ|2α−2

)d
(2α− 1).

The lemma follows then from (2.32) since U(t, x, ξ) = |M(t, x)ξ|2.

Corollary 2.13. One can find c0 > 0 such that

| det Hessξ(γ)(t, x, ξ)| ≥ c0,

for all t ∈ I, x ∈ Rd, ξ ∈ C0.

Proof. This follows from the previous lemma and from (2.29), (2.30).

Proof of Proposition 2.11. Recall that we have for all α ∈ Nd

sup
t∈I

sup
|ξ|≤2
‖Dα

ξ γ(t, ·, ξ)‖W s0,∞(Rd) < +∞.

For fixed j, k ∈ {1, . . . , d} we write

(2.36)
∂2γδ
∂ξj∂ξk

(t, x, ξ) =
∂2γ

∂ξj∂ξk
(t, x, ξ)− (I − ψ(hδDx))

∂2γ

∂ξj∂ξk
(t, x, ξ).

Setting γjk = ∂2γ
∂ξj∂ξk

we have, since ψ(0) = 1,

(I − ψ(hδDx))γjk(t, x, ξ) = h−δd
∫
Rd

Fψ
( y
hδ

)[
γjk(t, x, ξ)− γjk(t, x− y, ξ)

]
dy,
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where F denotes the inverse Fourier transform with respect to x. Then

‖(I − ψ(hδDx))γjk(t, ·, ξ)‖L∞(Rd)

≤ h−δd
(∫

Rd

|Fψ
( y
hδ
)
||y|s0dy

)
‖γjk(t, ·, ξ)‖W s0,∞(Rd)

≤ Chδs0 sup
t∈I

sup
|ξ|≤2
‖γjk(t, ·, ξ)‖W s0,∞(Rd).

Then Proposition 2.11 follows from Corollary 2.13 and (2.36) if h0 is small enough.

2.3 The pseudo-differential symbol

In this paragraph, we study the pseudo-differential symbol of Tγδ

Let χ ∈ C∞(Rd \ {0} ×Rd \ {0}) be such that

(2.37)

(i) χ(−ζ, ξ) = χ(ζ, ξ),

(ii) χ is homogeneous of order zero ,

(iii) χ(ζ, ξ) = 1 if |ζ| ≤ ε1|ξ|, χ(ζ, ξ) = 0 if |ζ| ≥ ε2|ξ|

where 0 < ε1 < ε2 are small constants. Let us set

(2.38) σγδ(t, x, ξ) =
(∫

Rd

eix·ζχ(ζ, ξ)γ̂δ(t, ζ, ξ) dζ
)
ψ0(ξ)

where γ̂δ denotes the Fourier transform of γδ with respect to the variable x and ψ0

is a cut-off function such that ψ0(ξ) = 0 for |ξ| ≤ 1
4 , ψ0(ξ) = 1 for |ξ| ≥ 1

3 . Then
modulo an operator of order zero we have

(2.39)

Tγδu(x) = (2π)−d
∫∫

ei(x−y)·ξ σγδ(t, x, ξ)u(y) dy dξ,

(Tγδ)
∗u(x) = (2π)−d

∫∫
ei(x−y)·ξ σγδ(t, y, ξ)u(y) dy dξ.

In the sequel we shall set

(2.40) Tγδ =
1

2

(
Tγδ + (Tγδ)

∗).
The following result will be useful.

Lemma 2.14. For all N ∈ N,M > 0 and all α, β ∈ Nd there exists C > 0 such
that

sup
|η|≤M

|Dα
µD

β
η χ̂(µ, η)| ≤ C

〈µ〉N

where the Fourier transform is taken with respect to the first variable of χ.
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Proof. Recall that we have suppχ ⊂ {(ζ, η) : |ζ| ≤ ε2|η|}. Then for |η| ≤M we see
easily that for any k ∈ N we can write

|µ|2kDα
µD

β
η χ̂(µ, η) =

∫
Rd

e−iµ·ζ(−∆ζ)
k
[
(−ζ)αDβ

ηχ(ζ, η)
]
dζ.

The result follows then from the fact that when |η| ≤ M the domain of integration
is contained in the set {ζ : |ζ| ≤ ε2M}.

2.4 Several reductions

Let us recall the Littlewood-Paley decomposition. There exists an even function
ψ ∈ C∞0 (Rd) such that ψ(ξ) = 1 for |ξ| ≤ 1/2 and ψ(ξ) = 0 for |ξ| ≥ 1, and an even
function ϕ ∈ C∞0 (Rd) whose support is contained in the shell C0 := {ξ : 1

2 ≤ |ξ| ≤ 2}
such that

ψ(ξ) +

N−1∑
k=0

ϕ(2−kξ) = ψ(2−Nξ).

We set

∆−1u = ψ(D)u, ∆ju = ϕ(2−jD)u, Sju =

j−1∑
k=−1

∆ku = ψ(2−jD)u.

We introduce te following definition.

Definition 2.15. A right hand side function Fj is said to be controlled if it satisfies
the following estimate

(2.41)
‖Fj‖Lp(I,Hs(Rd)) ≤ ‖f‖Lp(I,Hs(Rd))

+ C
(
‖V ‖Lp(I,W 1,∞(Rd)) + ‖γ‖E

)
‖u‖L∞(I,Hs(Rd))

with C independent of j.

We proceed now to several reductions.

Let u ∈ L∞(I;Hs(Rd)) be a solution of the paradifferential equation (2.1) namely

(2.42) Lu := ∂tu+ TV · ∇u+ iTγu = f ∈ L2(I;Hs(Rd)).

Point 1. We have

L∆ju = f1
j ,

where f1,j is controlled.

Indeed we can write

f1,j = ∆jf + [∆j , TV ] · ∇u+ i[∆j , Tγ ]u.
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Moreover [∆j , TV ] · ∇u = [∆j , TV ] · ∇∆̃ju, [∆j , Tγ ]u = [∆j , Tγ ]∆̃ju and the estimate
follows from the symbolic calculus.

Point 2. The solution u satisfies

(2.43)
(
∂t + Sj(V ) · ∇+ iTγ

)
∆ju = f2,j

where f2,j is controlled.

Indeed we have f2,j = f1,j−
(
TV ·∇∆ju−Sj(V )·∇∆ju

)
. Since ∆k∆j = 0 if |k−j| ≥ 2

we can write

TV ·∆j∇u =
∑
|j−k|≤1

Sk−3(V ) ·∆k∆j∇u = Sj(V ) ·
∑
|j−k|≤1

∆k∆j∇u+Rju

= Sj(V )∆j∇u+Rju,

where Rju = −
∑
|j−k|≤1

(
Sj(V ) − Sk−3(V )

)
· ∆k∆j∇u. We have three terms in

the sum defining Rju. Each of them is a finite sum of terms of the form Aj =
∆j+µ(V ) ·∆j+ν∆j∇u. Since the spectrum of Aj is contained in a ball of radius C2j

we can write for fixed t

‖Aj‖Hs ≤ C12js‖Aj‖L2 ≤ C12js‖∆j+µV ‖L∞‖∆j+ν∆j∇u‖L2

≤ C22js2−j‖V ‖W 1,∞2−js2j‖∆ju‖Hs ≤ C2‖V ‖W 1,∞‖∆ju‖Hs .

Thus

‖TV · ∇∆ju− Sj(V ) · ∇∆ju‖Lp(I,Hs(Rd)) ≤ C‖V ‖L∞(I,W 1,∞(Rd))‖∆ju‖L∞(I,Hs(Rd)).

which proves our claim since f1,j is controlled.

Point 3. As already mentioned, we need to smooth out the symbols. To do so, we
replace Sj(V ) and γ by

Sjδ(V ) = ψ(2−jδD)V, γδ = ψ(2−jδD)γ

where δ = 2
3 . Then the solution u satisfies(

∂t + Sjδ(V ) · ∇+ iTγδ
)
∆ju = f3,j

where

(2.44) f3,j = f2,j + (Sjδ(V ) · ∇ − Sj(V ) · ∇)∆ju+ i(Tγδ − Tγ)∆ju.

Finally for later use we write the equation under a symmetric form.

Point 4. The solution u satisfies

(2.45) Lδ∆ju :=
(
∂t +

1

2
(Sjδ(V ) · ∇+∇ · Sjδ(V )) +

i

2
(Tγδ + T ∗γδ)

)
∆ju = f4,j

where

(2.46)
f4,j = f3,j +

1

2

{
Sjδ(V ) · ∇ −∇ · Sjδ(V ) + i(Tγδ − T

∗
γδ

)
}

∆ju,

= f3,j +
{1

2
Sjδ(div V ) + i(Tγδ − T

∗
γδ

)
}

∆ju.
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If we set

(2.47) Tγδ =
1

2
(Tγδ + T ∗γδ)

then we can write

(2.48) Lδ = ∂t + Sjδ(V ) · ∇+
1

2
Sjδ(divV ) + iTγδ .

Notice that the operator

1

2
(Sjδ(V ) · ∇+∇ · Sjδ(V )) + iTγδ

is anti-symmetric.

Our goal now is to prove a Strichartz estimate for Lδ.

2.5 Straightening the vector field

We want to straighten the vector field ∂t + Sjδ(V ) · ∇. Consider the system of
differential equations

(2.49)

{
Ẋk(s) = Sjδ(Vk)(s, X(s)), 1 ≤ k ≤ d, X = (X1, . . . , Xd)

Xk(0) = xk.

For k = 1, . . . , d we have Sjδ(Vk) ∈ L∞(I;H∞(Rd)) and

|Sjδ(Vk)(s, x)| ≤ C‖Vk‖L∞(I×Rd) ∀(s, x) ∈ I ×Rd.

Therefore System (2.49) has a unique solution defined on I which will be denoted
X(s;x, h)(h = 2−j) or sometimes simply X(s).

We shall set

(2.50) E0 = Lp(I;W 1,∞(Rd))d ∩ L∞(I;L∞(Rd))d

where p = 4 if d = 1, p = 2 if d ≥ 2, endowed with its natural norm.

Proposition 2.16. For fixed (s, h) the map x 7→ X(s;x, h) belongs to C∞(Rd,Rd).
Moreover there exist functions F ,Fα : R+ → R+ such that

(i)
∥∥∥∂X
∂x

(s; ·, h)− Id
∥∥∥
L∞(Rd)

≤ F(‖V ‖E0)|s|
1
2 ,

(ii) ‖(∂αxX)(s; ·, h)‖L∞(Rd) ≤ Fα(‖V ‖E0)h−δ(|α|−1)|s|
1
2 , |α| ≥ 2

for all (s, h) ∈ I × (0, h0].
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Proof. To prove (i) we differentiate the system with respect to xl and we obtain
˙∂Xk

∂xl
(s) =

d∑
q=1

Sjδ

(∂Vk
∂xq

)
(s, X(s))

∂Xq

∂xl
(s)

∂Xk

∂xl
(0) = δkl

from which we deduce

(2.51)
∂Xk

∂xl
(s) = δkl +

∫ s

0

d∑
q=1

Sjδ

(∂Vk
∂xq

)
(σ,X(σ))

∂Xq

∂xl
(σ) dσ.

Setting |∇X| =
∑d

k,l=1 |
∂Xk
∂xl
| we obtain from (2.51)

|∇X(s)| ≤ Cd +

∫ s

0
|∇V (σ,X(σ))| |∇X(σ)| dσ.

The Gronwall inequality implies that

(2.52) |∇X(s)| ≤ F(‖V ‖E0) ∀s ∈ I.

Coming back to (2.51) and using (2.52) we can write∣∣∣∣∂X∂x (s)− Id
∣∣∣∣ ≤ F(‖V ‖E0)

∫ s

0
‖∇V (σ, ·)‖L∞(Rd) dσ ≤ F1(‖V ‖E0)|s|

1
2 .

Notice that in dimension one we have used the inequality |s|
3
4 ≤ C|s|

1
2 when s ∈ I.

To prove (ii) we shall show by induction on |α| that the estimate

‖(∂αxX)(s; ·, h)‖L∞(Rd) ≤ Fα(‖V ‖E0)h−δ(|α|−1)

for 1 ≤ |α| ≤ k implies (ii) for |α| = k + 1. The above estimate is true for |α| = 1
by (i). Let us differentiate |α| times the system (2.49). We obtain

(2.53)
d

ds

(
∂αxX

)
(s) = Sjδ(∇V )(s, X(s))∂αxX + (1)

where the term (1) is a finite linear combination of terms of the form

Aβ(s, x) = ∂βx
(
Sjδ(V )

)
(s, X(s))

q∏
i=1

(
∂Lix X(s)

)Ki
where

2 ≤ |β| ≤ |α|, 1 ≤ q ≤ |α|,
q∑
i=1

|Ki|Li = α,

q∑
i=1

Ki = β.
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Then 1 ≤ |Li| < |α| which allows us to use the induction. Therefore we can write

‖Aβ(s, ·)‖L∞(Rd) ≤
∥∥∂βx(Sjδ(V )

)
(s, ·)

∥∥
L∞(Rd)

q∏
i=1

∥∥∥∂Lix X(s, ·)
∥∥∥|Ki|
L∞(Rd)

≤ Ch−δ(|β|−1)‖V (s, ·)‖W 1,∞(Rd)h
−δ

∑q
i=1 |Ki|(|Li|−1)F(‖V ‖E0)

≤ F(‖V ‖E0)h−δ(|α|−1)‖V (s, ·)‖W 1,∞(Rd).

It follows then from (2.53) that

(2.54)

|∂αxX(s)| ≤ F(‖V ‖E0)h−δ(|α|−1)

∫ s

0
‖V (σ, ·)‖W 1,∞(Rd) dσ

+ C

∫ s

0
‖V (σ, ·)‖W 1,∞(Rd)|∂αxX(σ)| dσ.

The Hölder and Gronwall inequalities imply immediately (ii).

Corollary 2.17. There exist T0 > 0, h0 > 0 such that for t ∈ [0, T0] and 0 < h ≤ h0

the map x 7→ X(t;x, h) from Rd to Rd is a C∞ diffeomorphism.

Proof. This follows from a result by Hadamard (see [13]). Indeed if T0 is small
enough, Proposition 2.16 shows that the matrix

(
∂Xk
∂xj

(t;x, h)
)

is invertible. On the

other hand since

|X(t;x, h)− x| ≤
∫ t

0
|Sjδ(V )(σ,X(σ))| dσ ≤ T0‖V ‖L∞([0,T0]×Rd)

we see that the map x 7→ X(t;x, h) is proper.

2.6 Reduction to a semi-classical form

In the sequel we shall set
U = ∆ju.

According to (2.45) we see that the function U is a solution of the equation(
∂t +

1

2

{
Sjδ(V ) · ∇+∇ · Sjδ(V )

}
+ iTγδϕ1(hDx)

)
U(t, x) = f4,j(t, x), h = 2−j

where

(2.55) ϕ1 ∈ C∞(Rd), suppϕ1 ⊂ {ξ :
1

4
≤ |ξ| ≤ 4}, ϕ1 = 1 on {ξ :

1

3
≤ |ξ| ≤ 3}

and f4,j has been defined in (2.46). According to (2.39), (2.40) we have

(2.56)
Tγδϕ1(hDx)U(t, x) = (2π)−d

∫∫
ei(x−y)·ξ a(t, x, y, ξ, h)u(y) dy dξ,

a(t, x, y, ξ, h) =
1

2

(
σγδ(t, x, ξ) + σγδ(t, y, ξ)

)
ϕ1(hξ).
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We make now the change of variable x = X(t;x′, h). Let us set

(2.57) vh(t, x′) = U(t,X(t;x′, h)) t ∈ [0, T0].

Then it follows from (2.49) that

(2.58) ∂tvh(t, x′) = −i
(
Tγδϕ1(hDx)U

)
(t,X(t;x′, h)) + Fj(t,X(t;x′, h)).

Our next purpose is to give another expression to the quantity

(2.59) A =
(
Tγδϕ1(hDx)U

)
(t,X(t;x′, h)).

In the computation below, t ∈ [0, T0] and h being fixed, we will omit them. We have

A(x′) = (2π)−d
∫∫

ei(X(x′)−y)·ξa(X(x′), y, ξ)U(y) dy dξ.

Notations: we set

(2.60)
H(x′, y′) =

∫ 1

0

∂X

∂x
(λx′ + (1− λ)y′) dλ, M(x′, y′) =

(
tH(x′, y′)

)−1

M0(x′) =
(
t
(∂X
∂x

(x′)
))−1

, J(x′, y′) =
∣∣∣ det

(∂X
∂x

(y′)
)∣∣∣|detM(x′, y′)|.

Let us remark that M,M0 are well defined by Proposition 2.16. Moreover M0(x′) =
M(x′, x′) and J(x′, x′) = 1.

In the integral defining A, we make the change of variables y = X(y′). Then using
the equality X(x′)−X(y′) = H(x′, y′)(x′ − y′) and setting ξ = M(x′, y′)ζ we get,

A(x′) = (2π)−d
∫∫

ei(x
′−y′)·ζa

(
X(x′), X(y′),M(x′, y′)ζ

)
J(x′, y′)vh(y′) dy′ dζ.

Now we set

(2.61) z = h−
1
2x′, wh(z) = vh(h

1
2 z), h̃ = h

1
2 .

Then

A(h̃z) = (2π)−d
∫∫

ei(h̃z−y
′)·ζa

(
X(h̃z), X(y′),M

(
h̃z, y′

)
ζ
)
J
(
h̃z, y′

)
vh(y′) dy′dζ.

Then setting y′ = h̃z′ and h̃ζ = ζ ′ we obtain

(2.62)
A(h̃z) = (2π)−d

∫∫
ei(z−z

′)·ζ′a
(
X(h̃z), X(h̃z′),M

(
h̃z, h̃z′

)
h̃−1ζ ′

)
J
(
h̃z, h̃z′

)
wh(z′) dz′ dζ ′.

Our aim is to reduce ourselves to a semi-classical form, after multiplying the equation
by h̃. However this not straightforward since the symbol a is not homogeneous in ξ
although γ is homogeneous of order 1

2 . We proceed as follows.
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First of all on the support of the function ϕ1 (see (2.55)) the function ψ0 appearing
in the definition of σγδ (see (2.38)) is equal to one.

Therefore we can write for X ∈ Rd, ρ ∈ Rd, (skipping the variable t),

σγδ(X, h̃
−1ρ) =

∫
eiX·ζχ

(
ζ, h̃−1ρ

)
γ̂δ(ζ, h̃

−1ρ) dζ

=

∫∫
ei(X−y)·ζχ

(
ζ, h̃−1ρ

)
γδ(y, h̃

−1ρ) dy dζ

=

∫
χ̂
(
µ, h̃−1ρ

)
γδ
(
X − µ, h̃−1ρ

)
dµ.

Now since χ is homogeneous of degree zero we have,

χ̂(µ, λη) = λdχ̂(λµ, η),

which follows from the fact that χ(ζ, λη) = χ(λλ−1ζ, λη) = χ(λ−1ζ, η).

Applying this equality with λ = h̃−2 and η = h̃ρ we obtain,

σγδ(X, h̃
−1ρ) = h̃−2d

∫
χ̂(h̃−2µ, h̃ρ)γδ(X − µ, h̃−1ρ) dµ

=

∫
χ̂(µ′, h̃ρ)γδ(X − h̃2µ′, h̃−1ρ) dµ′.

Using the fact that γ and γδ are homogeneous of order 1
2 in ξ we obtain

h̃σγδ(X, h̃
−1ρ) =

∫
χ̂(µ, h̃ρ)γδ(X − h̃2µ, h̃ρ) dµ

Now γδ is real and by (2.37) (i) χ̂ is also real, therefore since h̃−1h = h̃ using (2.56)
we obtain

h̃a(X,Y, h̃−1ρ) =
1

2

∫
χ̂(µ, h̃ρ)

[
γδ(X − h̃2µ, h̃ρ) + γδ(Y − h̃2µ, h̃ρ)

]
dµ
)
ϕ1(h̃ρ).

It follows then from (2.58),(2.59),(2.62) that the function wh defined in (2.61) is
solution of the equation

(2.63) (h̃∂t + h̃c+ iP )wh(t, z) = h̃f4,j(t,X(t, h̃z, h))

where c(t, z, h̃) = 1
2Sjδ(divV )(t,X(t, h̃z)) and

(2.64) Pw(t, z) = (2πh̃)−d
∫∫

eih̃
−1(z−z′)·ζ p̃(t, z, z′, ζ, h̃)w(t, z′) dz′ dζ

with
(2.65)

p̃(t, z, z′, ζ, h̃) =
1

2

∫
χ̂
(
µ,M(t, h̃z, h̃z′)ζ

)[
γδ
(
t,X(t, h̃z)− h̃2µ,M(t, h̃z, h̃z′)ζ

)
+γδ

(
t,X(t, h̃z′)− h̃2µ,M(t, h̃z, h̃z′)ζ

)]
dµ× ϕ1(M(t, h̃z, h̃z′)ζ)J(t, h̃z, h̃z′).
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We shall set in what follows

p(t, z, ζ, h̃) = p̃(t, z, z, ζ, h̃).

Since M(t, h̃z, h̃z) = M0(t, h̃z) and J(t, h̃z, h̃z) = 1 we obtain

(2.66)
p(t, z, ζ, h̃) =

∫
χ̂
(
µ,M0(t, h̃z)ζ

)
γδ
(
t,X(t, h̃z)− h̃2µ,M0(t, h̃z)ζ

)
dµ

· ϕ1(M0(t, h̃z)ζ).

Since the function χ is even with respect to its first variable the symbol p is real.

Summing up we have proved that

(2.67) h̃
{
∂t +

1

2

(
Sjδ(V ) · ∇+∇ · Sjδ(V )

)
+ iTγδ

}
U(t, x) =

(
h̃∂t + h̃c+ iP

)
wh(t, z)

where
(2.68)

x = X(t, h̃z), c(t, z, h̃) =
1

2
Sjδ(divV )(t,X(t, h̃z)), wh(t, z) = U(t,X(t, h̃z))

and the self-adjoint operator P is given by (2.64)

2.6.1 Estimates on the pseudo-differential symbol

Let I
h̃

:= [0, h̃δ]. We introduce the following norms on the paradifferential symbol
γ. For k ∈ N we set

(2.69) Nk(γ) =
∑
|α|≤k

sup
ξ∈C3
‖Dα

ξ γ‖L∞(I
h̃
,L∞(Rd)) +

∑
|α|≤k

sup
ξ∈C3
‖Dα

ξ γ‖Lp(I
h̃
,W

1
2 ,∞(Rd))

,

where p = 4 if d = 1 and p = 2 if d ≥ 2. Recall moreover that

(2.70) ‖V ‖E0 = ‖V ‖L∞(I
h̃
,L∞(Rd)) + ‖V ‖Lp(I

h̃
,W 1,∞(Rd))

We estimate now the derivatives of the symbol of the operator appearing in the right
hand side of (2.67).

Lemma 2.18. For any α ∈ Nd there exists Fα : R+ → R+ such that for t ∈ I
h̃

‖(Dα
z c)(t, ·)‖L∞(Rd) ≤ Fα(‖V ‖E0)h̃|α|(1−2δ)‖V (t, ·)‖W 1,∞(Rd).

Proof. By the Faa-di-Bruno formula Dα
z c is a finite linear combination of terms of

the form

(2.71) (1) = h̃|α|Da
x

[
Sjδ(divV )

]
(t,X(t, h̃z))

r∏
j=1

((
D
lj
xX
)
(t, h̃z)

)pj
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where 1 ≤ |a| ≤ |α|, |lj | ≥ 1,
∑r

j=1 |pj |lj = α,
∑r

j=1 pj = a. For fixed t we
have

(2.72) |Da
x

[
Sjδ(divV )

]
(t, ·)| ≤ Cαh̃−2δ|a|‖V (t, ·)‖W 1,∞(Rd)

and by Proposition 2.16

|(Dlj
xX
)
(t, ·)| ≤ Fα(‖V ‖E0)h̃−2δ(|lj |−1).

The product appearing in the term (1) is bounded by Fα(‖V ‖E0)h̃M where M =
−2δ

∑r
j=1 |pj |(|lj | − 1) = −2δ|α|+ 2δ|a|. The lemma follows from (2.71) and (2.72).

Lemma 2.19. For every k ∈ N there exist Fk : R+ → R+ such that,

|Dα
zD

β
ζ p(t, z, ζ, h̃)| ≤ Fk(‖V ‖E0)

∑
|a|≤k

sup
ξ∈C3
‖Da

ξγ(t, ·, ξ)‖L∞(Rd)h̃
|α|(1−2δ)

for all |α|+ |β| ≤ k and all (t, z, ζ, h̃) ∈ I
h̃
×Rd × C1 × (0, h̃0].

Corollary 2.20. For every k ∈ N there exist Fk : R+ → R+ such that,∫ s

0
|Dα

zD
β
ζ p(t, z, ζ, h̃)| dt ≤ Fk(‖V ‖E0)Nk(γ)) h̃|α|(1−2δ)+δ

for all |α|+ |β| ≤ k and all (s, z, ζ, h̃) ∈ I
h̃
×Rd × C1 × (0, h̃0].

Proof of Lemma 2.19. Here t is considered as a parameter which will be skipped,
keeping in mind that the estimates should be uniform with respect to t ∈ [0, h̃δ]. On
the other hand we recall that, by Proposition 2.16 and Lemma 2.10, we have (since
h = h̃2)

|Dα
xX(x)| ≤ Fα(‖V ‖E0) h̃−2δ(|α|−1), |α| ≥ 1, β ∈ Nd(2.73)

|Dα
xD

β
ξ γδ(x, ξ)| ≤ Cα,β h̃

−2δ|α|‖Dβ
ξ γ(·, ξ)‖L∞(Rd), α, β ∈ Nd.(2.74)

Set
F (µ, z, ζ, h̃) = χ̂

(
µ,M0(z)ζ

)
ϕ1(M0(z)ζ)γδ

(
X(z)− h̃2µ,M0(z)ζ

)
,

the lemma will follow immediately from the fact that for every N ∈ N we have

(2.75) |Dα
zD

β
ζ F (µ, z, ζ, h̃)|

≤ Fα,β(‖V ‖E0)
∑

|a|≤|α|+|β|

sup
ξ∈C3
‖Da

ξγ(·, ξ)‖L∞(Rd)h̃
−2δ|α|CN 〈µ〉−N .

If we call mij(z) the entries of the matrix M0(z) we see easily that Dβ
ζ F is a finite

linear combination of terms of the form
(2.76)

(Dβ1
ξ (χ̂ϕ1))(µ,M0(z)ζ) · (Dβ2

ξ γδ)(X(z)− h̃2µ,M0(z)ζ) · P|β|(mij(z)) := G1 ·G2 ·G3
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where P|β| is a polynomial of order |β|.
The estimate (2.75) will follow from the following ones.

|Dα
zG1| ≤ Fα,β(‖V ‖E0)h̃−2δ|α|CN 〈µ〉−N ,(2.77)

|Dα
zG2| ≤ Fα,β(‖V ‖E0))

∑
|a|≤|α|+|β|

sup
ξ∈C3
‖Da

ξγ(·, ξ)‖L∞(Rd)h̃
−2δ|α|(2.78)

|Dα
zG3| ≤ Fα,β(‖V ‖E0)h̃−2δ|α|.(2.79)

Using the equality t
(
∂X
∂z

)
(z)M0(z)ζ = ζ, Proposition 2.16 and an induction we see

that

(2.80) |Dα
zmij(z)| ≤ Fα(‖V ‖E0)h̃−2δ|α|+ δ

2

from which (2.79) follows since G3 is polynomial. Now according to the Faa-di-Bruno
formula Dα

zG1 is a finite linear combination of terms of the form

Dβ1+b
ξ (χ̂ϕ1))(µ,M0(z)ζ)

r∏
j=1

(
D
lj
z M0(z)ζ)

)pj
,

1 ≤ |b| ≤ |α|, |lj | ≥ 1,

r∑
j=1

|pj |lj = α,

r∑
j=1

pj = b.

Then (2.77) follows immediately from Lemma 2.14 and (2.80). By the same formula
we see that Dα

zG2 is a linear combination of terms of the form

(Da
zD

β2+b
ξ γδ)(X(z)− h̃2µ,M0(z)ζ)

r∏
j=1

(
D
lj
z X(z)

)pj(
D
lj
z M0(z)ζ

)qj
where 1 ≤ |a| + |b| ≤ |α|,

∑r
j=1(|pj | + |qj |)lj = α,

∑r
j=1 pj = a,

∑r
j=1 qj = b.

Then (2.78) follows (2.73), (2.74) and (2.80). The proof is complete.

Remark 2.21. By exactly the same method we can show that we have the estimate

(2.81) |Dα1
z Dα2

z′ D
β
ζ p̃(t, z, z

′, ζ, h̃)| ≤ Fk(‖V ‖E0 Nk(γ)) h̃(|α1|+|α2|)(1−2δ)

for all |α1|+ |α2|+ |β| ≤ k and all (t, z, z′, ζ, h̃) ∈ I
h̃
×Rd ×Rd × C1 × (0, h̃0].

Proposition 2.22. There exist T0 > 0, c0 > 0, h̃0 > 0 such that∣∣∣∣det
( ∂2p

∂ζj∂ζk
(t, z, ζ, h̃)

)∣∣∣∣ ≥ c0

for any t ∈ [0, T0], z ∈ Rd, ζ ∈ C0 = {1
2 ≤ |ζ| ≤ 2}, 0 < h̃ ≤ h̃0.
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Proof. By Proposition 2.16, (2.60) and (2.55) we have ϕ1(M0(t, h̃z)ζ) = 1. Let us
set

M0(t, h̃z) = (mij) and M0(t, h̃z)ζ = ρ.

Then we have,
∂2p

∂ζj∂ζk
(t, z, ζ, h̃) = A1 +A2 +A3,

where

(2.82)

A1 =

d∑
l,r=1

∫
∂2χ̂

∂ζl∂ζr
(µ, ρ)mljmrkγδ

(
t,X(t, h̃z)− h̃2µ, ρ

)
dµ,

A2 = 2

d∑
l,r=1

∫
∂χ̂

∂ζl
(µ, ρ)

∂γδ
∂ζr

(
t,X(t, h̃z)− h̃2µ, ρ

)
mljmrk dµ,

A3 =

d∑
l,r=1

∫
χ̂(µ, ρ)

∂2γδ
∂ζl∂ζr

(
t,X(t, h̃z)− h̃2µ, ρ

)
mljmrk dµ.

Now we notice that by (2.37) we have∫
(∂αζ χ̂)(µ, ρ)dµ = (2π)d(∂αζ χ)(0, ρ) =

{
0, α 6= 0
(2π)d, α = 0.

Using this remark we can write

A1 =

d∑
l,r=1

∫
∂2χ̂

∂ζl∂ζr
(µ, ρ)mljmrk

[
γδ
(
t,X(t, h̃z)− h̃2µ, ρ

)
− γδ

(
t,X(t, h̃z), ρ

)]
dµ.

Now recall (see (2.23) and Lemma 2.8) that for bounded |ζ| (considered as a param-
eter) we have for all α ∈ Nd

∂αζ γδ ∈ L∞(I;Hs− 1
2 (Rd)) ⊂ L∞(I;W s0,∞(Rd)), s0 > 0,

uniformly in ζ. Since, by Proposition 2.16, ‖M0(t, h̃z)‖ is uniformly bounded we
can write

|A1| ≤ Ch̃2s0

d∑
l,r=1

∫
|µ|s0

∣∣∣∣ ∂2χ̂

∂ζl∂ζr
(µ, ρ)

∣∣∣∣ dµ,
the integral in the right hand side being bounded by Lemma 2.14.

By exactly the same argument we see that we have the following inequality

|A2| ≤ Ch̃2s0 .

Moreover one can write

A3 =

d∑
l,r=1

∂2γδ
∂ζl∂ζr

(
t,X(t, h̃z), ρ

)
mljmrk

(∫
χ̂(µ, ρ) dµ

)
+O(h̃2s0).
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Gathering the estimates we see that

(2π)−d
( ∂2p

∂ζj∂ζk
(t, z, ζ, h̃)

)
= tM0(t, h̃z)Hessζ(γδ)(t, z, ζ, h̃)M0(t, h̃z) +O(h̃2s0).

Then our claim follows from Proposition 2.11 and Proposition 2.16 if h̃0 is small
enough.

2.7 The parametrix

Our aim is to construct a parametrix for the operator L = h̃∂t + h̃c+ iP on a time
interval of size h̃δ where δ = 2

3 . This parametrix will be of the following form

Kv(t, z) = (2πh̃)−d
∫∫

eih̃
−1(φ(t,z,ξ,h̃)−y·ξ)b̃(t, z, y, ξ, h̃)v(y) dydξ.

Here φ is a real valued phase such that φ|t=0 = z · ξ, b̃ is of the form

(2.83) b̃(t, z, y, ξ, h̃) = b(t, z, ξ, h̃)Ψ0

(∂φ
∂ξ

(t, z, ξ, h̃)− y
)

where b|t=0 = χ(ξ), χ ∈ C∞0 (Rd \ {0}) and Ψ0 ∈ C∞0 (Rd) is such that Ψ0(t) = 1 if
|t| ≤ 1.

More precisely, we shall define in Proposition 2.23 a phase φ and in (2.120) a symbol
b such that we have

e−ih̃
−1φ(h̃∂t + h̃c+ iP )

(
eih̃
−1φb̃

)
= RN

where RN is a negligible remainder.

2.7.1 Preliminaries

An important step in this construction is to compute the expression

(2.84) J(t, z, y, ξ, h̃) = e−ih̃
−1φ(t,z,ξ,h̃)P (t, z,Dz)

(
eih̃
−1φ(t,·,ξ,h̃)b̃(t, ·, y, ξ, h̃)

)
.

In this computation since (t, y, ξ, h̃) are fixed we shall skip them and write φ =
φ(z), b̃ = b̃(z).

Using (2.64) we obtain

J = (2πh̃)−d
∫∫

eih̃
−1(φ(z′)−φ(z)+(z−z′)·ζ)p̃(z, z′, ζ )̃b(z′) dz ′dζ.

Then we write

(2.85) φ(z′)− φ(z) = θ(z, z′) · (z′ − z), θ(z, z′) =

∫ 1

0

∂φ

∂z
(λz + (1− λ)z′) dλ.
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Using this equality and setting ζ − θ(z, z′) = η in the integral we obtain

J = (2πh̃)−d
∫∫

eih̃
−1(z−z′)·ηp̃(z, z′, η + θ(z, z′))̃b(z′) dz′dη.

The phase that we will obtain will be uniformly bounded, say |∂φ∂z | ≤ C0. It also can
be seen that, due to the cut-off ϕ1 in the expression of p̃ and to Proposition 2.16,
we also have |η+ θ(z, z′)| ≤ C0. Therefore |η| ≤ 2C0. Let κ ∈ C∞0 (Rd) be such that
κ(η) = 1 if |η| ≤ 2C0. Then we can write

J = (2πh̃)−d
∫∫

eih̃
−1(z−z′)·ηκ(η)p̃(z, z′, η + θ(z, z′))̃b(z′) dz′ dη.

By the Taylor formula we can write

p̃(z, z′, η + θ(z, z′)) =
∑

|α|≤N−1

1

α!
(∂αη p̃)(z, z

′, θ(z, z′))ηα + rN

rN =
∑
|α|=N

N

α!

∫ 1

0
(1− λ)N−1(∂αη p̃)(z, z

′, η + λθ(z, z′))ηα dλ.

It follows that
(2.86)

J = JN +RN

JN =
∑

|α|≤N−1

(2πh̃)−d

α!

∫∫
eih̃
−1(z−z′)·ηκ(η)(∂αη p̃)(z, z

′, θ(z, z′))ηαb̃(z′) dz′dη

RN = (2πh̃)−d
∫∫

eih̃
−1(z−z′)·ηκ(η)rN (z, z′, η)̃b(z′) dz′dη.

Using the fact that ηαeih̃
−1(z−z′)·η = (−h̃Dz′)

αeih̃
−1(z−z′)·η and integrating by parts

in the integral with respect to z we get

JN = (2πh̃)−d
∑

|α|≤N−1

h̃|α|

α!

∫∫
eih̃
−1(z−z′)·ηκ(η)Dα

z′
[
(∂αη p̃)(z, z

′, θ(z, z′))̃b(z′)
]
dz′dη.

Therefore we can write

JN = (2πh̃)−d
∑

|α|≤N−1

h̃|α|

α!

∫
κ̂
(z′ − z

h̃

)
Dα
z′
[
(∂αη p̃)(z, z

′, θ(z, z′))̃b(z′)
]
dz′.

Let us set

(2.87) fα(z, z′, h̃) = Dα
z′
[
(∂αη p̃)(z, z

′, θ(z, z′))̃b(z′)
]

and then, z′ − z = h̃µ in the integral. We obtain

JN = (2π)−d
∑

|α|≤N−1

h̃|α|

α!

∫
κ̂(µ)fα(z, z + h̃µ, h̃) dµ.
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By the Taylor formula we can write

JN = (2π)−d
∑

|α|≤N−1

h̃|α|

α!

∑
|β|≤N−1

h̃|β|

β!

(∫
µβκ̂(µ) dµ

)(
∂βz′fα

)
(z, z, h̃) + SN ,

with
(2.88)

SN = (2π)−d
∑

|α|≤N−1
|β|=N

N
h̃|α|+|β|

α!β!

∫ ∫ 1

0
(1− λ)N−1µβκ̂(µ)

(
∂βz′fα

)
(z, z + λh̃µ, h̃) dλ dµ.

Noticing that ∫
µβκ̂(µ) dµ = (2π)d(Dβκ)(0) =

{
0 if β 6= 0
(2π)d if β = 0

we conclude that

JN =
∑

|α|≤N−1

h̃|α|

α!
fα(z, z, h̃) + SN .

It follows from (2.86), (2.87) and (2.88) that

(2.89) J =
∑

|α|≤N−1

h̃|α|

α!
Dα
z′
[
(∂αη p̃)(z, z

′, θ(z, z′))̃b(z′)
]
|z′=z +RN + SN

where RN and SN are defined in (2.86) and (2.88).

Reintroducing the variable (t, y, ξ, h̃) we conclude from (2.84) that
(2.90)

e−ih̃
−1φ(t,z,ξ,h̃)(h̃∂t+ h̃c+ iP )

(
eih̃
−1φ(t,z,ξ,h̃)b̃

)
=
[
i
∂φ

∂t
b̃+ iJ + h̃

∂b̃

∂t
+ h̃cb̃

](
t, z, y, ξ, h̃

)
.

We shall gather the terms the right hand side of (2.90) according to the power of h̃.
The term corresponding to h̃0 leads to the eikonal equation.

2.7.2 The eikonal equation

It is the equation

(2.91)
∂φ

∂t
+ p
(
t, z,

∂φ

∂z
, h̃
)

= 0 φ(0, z, ξ, h̃) = z · ξ

where p is defined by the formula
(2.92)

p(t, z, ζ, h̃) =

∫
χ̂
(
µ,M0(t, h̃z)ζ

)
γδ
(
t,X(t, h̃z)−h̃2µ,M0(t, h̃z)ζ

)
dµ·ϕ1(M0(t, h̃z)ζ).

We set
q(t, z, τ, ζ, h̃) = τ + p(t, z, ζ, h̃)
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and for j ≥ 1 we denote by Cj the ring

Cj = {ξ ∈ Rd : 2−j ≤ |ξ| ≤ 2j}.

Moreover in all what follows we shall have

(2.93) δ =
2

3
.

The solution of the eikonal equation

Recall that I
h̃

= [0, h̃δ] is the time interval, (where δ = 2
3) and Cj the ring {2−j ≤

|ξ| ≤ 2j}. Consider the null-bicharacteristic flow of q(t, z, τ, ζ, h̃) = τ + p(t, z, ζ, h̃).
It is defined by the system

(2.94)



ṫ(s) = 1, t(0) = 0,

ż(s) =
∂p

∂ζ

(
t(s), z(s), ζ(s), h̃

)
, z(0) = z0,

τ̇(s) = −∂p
∂t

(
t(s), z(s), ζ(s), h̃

)
, τ(0) = −p(0, z0, ξ, h̃),

ζ̇(s) = −∂p
∂z

(
t(s), z(s), ζ(s), h̃

)
, ζ(0) = ξ.

Then t(s) = s and this system has a unique solution defined on I
h̃
, depending on

(s, z0, ξ, h̃).

We claim that for all fixed s ∈ I
h̃

and ξ ∈ Rd, the map

z0 7→ z(s; z0, ξ, h̃)

is a global diffeomorphism from Rd to Rd. This will follow from the facts that this
map is proper and the matrix

(
∂z
∂z0

(s; z0, ξ, h̃)
)

is invertible. Let us begin by the
second point.

Let us set m(s) = (s, z(s), ζ(s), h̃). Differentiating System (2.94) with respect to z0,
we get

(2.95)

d

ds

(
∂z

∂z0

)
(s) = p′′zζ(m(s))

∂z

∂z0
(s) + p′′ζζ(m(s))

∂ζ

∂z0
(s),

∂z

∂z0
(0) = Id

d

ds

(
∂ζ

∂z0

)
(s) = −p′′zz(m(s))

∂z

∂z0
(s)− p′′zζ(m(s))

∂ζ

∂z0
(s),

∂ζ

∂z0
(0) = 0.

Setting U(s) = ( ∂z∂z0 (s), ∂ζ∂z0 (s)) and

(2.96) A(s) =

(
p′′zζ(m(s)) p′′ζζ(m(s))

−p′′zz(m(s)) −p′′zζ(m(s))

)
.

38



The system (2.95) can be written as U̇(s) = A(s)U(s), U(0) = (Id, 0). Lemma 2.19
gives

(2.97) |p′′ζζ(m(s))|+ |p′′zζ(m(s))|+ |p′′zz(m(s))|

≤ F(‖V ‖E0)
∑
|β|≤2

sup
ξ∈C3
‖Dβ

ξ γ(t, ·, ξ)‖L∞(Rd)h̃
2(1−2δ),

therefore

‖A(s)‖ ≤ F(‖V ‖E0)
∑
|β|≤2

sup
ξ∈C3
‖Dβ

ξ γ(t, ·, ξ)‖L∞(Rd)h̃
2(1−2δ).

Using the equality 2(1− 2δ) + δ = 0, we deduce that for s ∈ I
h̃

= (0, h̃δ) we have

(2.98)

∫ s

0
‖A(σ)‖ dσ ≤ F(‖V ‖E0)N2(γ).

The Gronwall inequality shows that ‖U(s)‖ is uniformly bounded on I
h̃
. Coming

back to (2.95) we see that we have

(2.99)

∣∣∣∣ ∂ζ∂z0
(s)

∣∣∣∣ ≤ F(‖V ‖E0 +N2(γ)
)
,

∣∣∣∣ ∂z∂z0
(s)− Id

∣∣∣∣ ≤ F(‖V ‖E0 +N2(γ)
)
h̃
δ
2 .

Taking h̃ small enough we obtain the invertibility of the matrix
(
∂z
∂z0

(s; z0, ξ, h̃)
)
.

Now we have

|z(s; z0, ξ, h̃)− z0| ≤
∫ s

0
|ż(σ, x0, ξ, h̃)| dσ.

Since the right hand side is uniformly bounded for s ∈
[
0, h̃δ

]
, we see that our map

is proper. Therefore we can write

(2.100) z(s; z0, ξ, h̃) = z ⇐⇒ z0 = κ(s; z, ξ, h̃).

Let us set for t ∈
[
0, h̃δ

]
(2.101) φ(t, z, ξ, h̃) = z · ξ −

∫ t

0
p
(
σ, z, ζ(σ;κ(σ; z, ξ, h̃), ξ, h̃), h̃

)
dσ.

Proposition 2.23. The function φ defined in (2.101) is the solution of the eikonal
equation (2.91).

Proof. The initial condition is trivially satisfied. Moreover we have

∂φ

∂t

(
t, z, ξ, h̃

)
= −p

(
t, z, ζ(t;κ

(
t; z, ξ, h̃

)
, ξ, h̃), h̃

)
.

Therefore it is sufficient to prove that

(2.102)
∂φ

∂z

(
t, z, ξ, h̃

)
= ζ
(
t;κ
(
t; z, ξ, h̃

)
, ξ, h̃

)
.
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Let us consider the Lagrangean manifold

(2.103) Σ =
{(
t, z(t; z0, ξ, h̃), τ(t; z0, ξ, h̃), ζ(t; z0, ξ, h̃)

)
: t ∈ I

h̃
, (z0, ξ) ∈ R2d

}
.

According to (2.100) we can write

Σ =
{

(t, z, τ(t;κ(t; z, ξ, h̃), ξ, h̃), ζ(t;κ(t; z, ξ, h̃), ξ, h̃)) : t ∈ I
h̃
, (z, ξ) ∈ R2d

}
.

Let us set
F0

(
t, z, ξ, h̃

)
= τ

(
t;κ(t; z, ξ, h̃), ξ, h̃

)
,

Fj
(
t, z, ξ, h̃

)
= ζj

(
t;κ(t; z, ξ, h̃), ξ, h̃

)
.

Since the symbol q is constant along its bicharacteristic and q(0, z(0), τ(0), ζ(0), h̃) =
0 we have

F0

(
t, z, ξ, h̃

)
= −p

(
t, z, ζ(t;κ(σ; z, ξ, h̃), ξ, h̃

)
, h̃
)
.

Now Σ being Lagrangean we have

d t ∧ dF0 + d z ∧ dF = 0.

Thus ∂zjF0− ∂tFj = 0 since it is the coefficient of d t∧ d zj in the above expression.
Therefore using (2.101) we can write

∂φ

∂zj
(t, z, ξ, h̃) = ξj −

∫ t

0

∂

∂zj

[
p
(
σ, z, ζ(σ;κ(σ; z, ξ, h̃), ξ, h̃)

)]
dσ

= ξj +

∫ t

0

∂

∂σ

[
ζj
(
σ;κ(σ; z, ξ, h̃

)
, ξ, h̃)

]
dσ

= ζj
(
t;κ(t; z, ξ, h̃), ξ, h̃

)
.

The Hessian of the phase

Let us recall that the phase φ is the solution of the problem

(2.104)


∂φ

∂t
(t, z, ξ, h̃) + p

(
t, z,

∂φ

∂z
(t, z, ξ, h̃), h̃

)
= 0

φ|t=0 = z · ξ.

On the other hand the map (t, z, ξ) 7→ φ(t, z, ξ, h̃) is C1 in time and C∞ in (x, ξ).
Differentiating twice, with respect to ξ, the above equation we obtain

∂

∂t

( ∂2φ

∂ξi∂ξj

)
= −

d∑
k,l=1

∂2p

∂ζk∂ζl

(
t, z,

∂φ

∂z
, h̃
) ∂2φ

∂zk∂ξi

∂2φ

∂zl∂ξj

−
d∑

k=1

∂p

∂ζk

(
t, z,

∂φ

∂z
, h̃
) ∂3φ

∂zk∂ξi∂ξj
·
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By the initial condition in (2.104) we have

∂2φ

∂zk∂ξi


t=0

= δki
∂2φ

∂zl∂ξj


t=0

= δlj ,
∂3φ

∂zk∂ξi∂ξj


t=0

= 0,
∂2φ

∂ξi∂ξj


t=0

= 0.

It follows that
∂

∂t

( ∂2φ

∂ξi∂ξj

)
t=0

= − ∂2p

∂ξi∂ξj

(
0, z, ξ, h̃

)
from which we deduce that

∂2φ

∂ξi∂ξj
(t, z, ξ, h̃) = −t ∂2p

∂ξi∂ξj
(0, z, ξ, h̃) + o(t).

It follows from Proposition 2.22 that one can find M0 > 0 such that

(2.105)

∣∣∣∣det
( ∂2φ

∂ξi∂ξj
(t, z, ξ, h̃)

)∣∣∣∣ ≥M0t
d,

for t ∈ I
h̃
, z ∈ Rd, ξ ∈ C0, 0 < h̃ ≤ h̃0.

Our goal now is to prove estimates of higher order on the phase (see Corollary 2.28
below.)

Classes of symbol and symbolic calculus

Recall here that δ = 2
3 and that Nk(γ) has been defined in (2.69).

Definition 2.24. Let m ∈ R, µ0 ∈ R+ and a = a(t, z, ξ, h̃) be a smooth function
defined on Ω = [0, h̃δ]×Rd × C0 × (0, h̃0]. We shall say that

(i) a ∈ Smµ0 if for every k ∈ N one can find Fk : R+ → R+ such that for all

(t, z, ξ, h̃) ∈ Ω

(2.106) |Dα
zD

β
ξ a(t, z, ξ, h̃)| ≤ Fk(‖V ‖E0 +Nk+1(γ)) h̃m−|α|µ0 , |α|+ |β| = k,

(ii) a ∈ Ṡmµ0 if (2.106) holds for every k ≥ 1.

Remark 2.25. 1. If m ≥ m′ then Smµ0 ⊂ S
m′
µ0 and Ṡmµ0 ⊂ Ṡ

m′
µ0 .

2. Let a(t, z, ξ, h̃) = z and b(t, z, ξ, h̃) = ξ. Then a ∈ Ṡδ/22δ−1, b ∈ Ṡ0
2δ−1.

3. If a ∈ Smµ0 with m ≥ 0 then b = ea ∈ S0
µ0 .

We study now the composition of such symbols.

Proposition 2.26. Let m ∈ R, f ∈ Sm2δ−1(resp.Ṡm2δ−1), U ∈ Ṡδ/22δ−1, V ∈ Ṡ
0
2δ−1 and

assume that V ∈ C0. Set

F (t, z, ξ, h̃) = f(t, U(t, z, ξ, h̃), V (t, z, ξ, h̃), h̃).

Then F ∈ Sm2δ−1(resp. Ṡm2δ−1).
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Proof. Let Λ = (α, β) ∈ Nd ×Nd, |Λ| = k. If k = 0 the estimate of F follows easily
from the hypothesis on f . Assume k ≥ 1. Then DΛF is a finite linear combination
of terms of the form

(1) = (DAf)(· · · )
r∏
j=1

(DLjU)pj (DLjV )qj

where A = (a, b), 1 ≤ |A| ≤ |Λ|, Lj = (lj ,mj) and

r∑
j=1

pj = a,
r∑
j=1

qj = b,
r∑
j=1

(|pj |+ |qj |)Lj = Λ

By the hypothesis on f we have

(2.107) |DAf(· · · )| ≤ Fk(‖V ‖E0 +Nk+1(γ)) h̃m−|a|(2δ−1).

By the hypotheses on U, V , the product occuring in the definition of (1) is bounded
by Fk(‖V ‖E0 +Nk+1(γ)) h̃M where

M =

r∑
j=1

|pj |
(δ

2
− |lj |(2δ − 1)

)
−

r∑
j=1

|qj |(|lj |(2δ − 1)) = −|α|(2δ − 1) +
δ

2
|a|.

Using (2.107) and the fact that 1− 2δ+ δ
2 = 0 we obtain the desired conclusion.

Further estimates on the flow

We shall denote by z(s) = z(s; z, ξ, h̃), ζ(s) = ζ(s; z, ξ, h̃) the solution of (2.94) with
z(0) = z, ζ(0) = ξ. Recall that δ = 2

3 .

Proposition 2.27. There exists F : R+ → R+ non decreasing such that

(i)

∣∣∣∣∂z∂z (s)− Id
∣∣∣∣ ≤ F(‖V ‖E0 +N2(γ)

)
h̃
δ
2 ,

∣∣∣∣∂ζ∂z (s)

∣∣∣∣ ≤ F(‖V ‖E0 +N2(γ)
)
,

(ii)

∣∣∣∣∂z∂ξ (s)

∣∣∣∣+

∣∣∣∣∂ζ∂ξ (s)− Id
∣∣∣∣ ≤ F(‖V ‖E0 +N2(γ)

)
h̃
δ
2 .

for all s ∈ I
h̃

=
[
0, h̃δ

]
, z ∈ Rd, ξ ∈ C0.

For any k ≥ 1 there exists Fk : R+ → R+ non decreasing such that for α, β ∈ Nd

with |α|+ |β| = k

(2.108)


∣∣∣Dα

zD
β
ξ z(s)

∣∣∣ ≤ Fk(‖V ‖E0 +Nk+1(γ)
)
h̃|α|(1−2δ)+ δ

2 ,∣∣∣Dα
zD

β
ξ ζ(s)

∣∣∣ ≤ Fk(‖V ‖E0 +Nk+1(γ)
)
h̃|α|(1−2δ).
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Proof. The estimates of the first terms in (i) and (ii) have been proved in (2.99).
By exactly the same argument one deduces the estimates on the second terms.

We shall prove (2.108) by induction on k. According to (i) and (ii) it is true for
k = 1. Assume it is true up to the order k and let |α|+ |β| = k + 1 ≥ 2. Let us set

Λ = (α, β), DΛ = Dα
zD

β
ζ and m(s) = (s, z(s), ζ(s), h̃). By the Faa-di-Bruno formula

we have

(2.109)

{
DΛ[p′ζ(m(s))] = p′′zζ(m(s))DΛz(s) + p′′ζζ(m(s))DΛζ(s) + F1(s),

DΛ[p′z(m(s))] = p′′zz(m(s))DΛz(s) + p′′zζ(m(s))DΛζ(s) + F2(s).

It follows that U(s) = (DΛz(s), DΛζ(s) is the solution of the problem

U̇(s) = A(s)U(s) + F (s), U(0) = 0

where A(s) has been defined in (2.96) and F (s) = (F1(s), F2(s)).

According to the estimates of the symbol p given in Lemma 2.19 the worse term is
F2. By the formula mentionned above we see that F1 is a finite linear combination
of terms of the form

(
DAp′z

)
(m(s))

r∏
i=1

(
DLiz(s)

)pi r∏
i=1

(
DLiζ(s)

)qi ,
where A = (a, b), 2 ≤ |A| ≤ |Λ| and

Li = (li, l
′
i), 1 ≤ |Li| ≤ |Λ| − 1,

r∑
i=1

pi = a,
r∑
i=1

qi = b,
k∑
i=1

(|pi|+ |qi|)Li = Λ.

It follows from Corollary 2.20 that for s in [0, h̃δ] we have,
(2.110)∫ s

0

∣∣(DAp′z
)
(m(σ))

∣∣ dσ ≤ N|A|+1(γ)h̃(|a|+1)(1−2δ)+δ ≤ N|A|+1(γ)h̃|a|(1−2δ)+ δ
2 .

since 1− 2δ + δ = δ
2 . Now since 1 ≤ |Li| ≤ |Λ| − 1 = k we have, by the induction,

|DLiz(s)| ≤ h̃|li|(1−2δ)+ δ
2Fk

(
‖V ‖E0 +Nk+1(γ)

)
,

|DLiζ(s)| ≤ h̃|li|(1−2δ)Fk
(
‖V ‖E0 +Nk+1(γ)

)
.

It follows that∫ s

0
|F2(σ)|dσ ≤

(∫ s

0

∣∣(DAp′z
)
(m(σ))

∣∣ dσ)Fk+1

(
‖V ‖E0 +Nk+1(γ)

)
h̃M

where M =
∑r

i=1

(
(|pi|+ |qi|)|li|(1−2δ)|+ |pi| δ2

)
= |α|(1−2δ)+ |a| δ2 . It follows from

(2.110) and the fact that 1− 3δ
2 = 0 that∫ s

0
|F2(σ)|dσ ≤ Fk+1

(
‖V ‖E0 +Nk+1(γ)

)
h̃|α|(1−2δ)+ δ

2 .
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Since DAp′ζ has even a better estimate, the same computation shows that∫ s

0
|F1(σ)|dσ ≤ Fk+1

(
‖V ‖E0 +Nk+1(γ)

)
h̃|α|(1−2δ)+ δ

2 .

Then we write

U(s) =

∫ s

0
F (σ)dσ +

∫ s

0
A(σ)U(σ)dσ

and we use the above estimates on F1, F2, (2.98) and the Gronwall lemma to see that
the step k+ 1 of the induction is achieved. This completes the proof of Proposition
2.27.

Corollary 2.28. For every k ≥ 1 there exists Fk : R+ → R+ non decreasing such
that for every (α, β) ∈ Nd ×Nd with |α|+ |β| = k we have

(i) |Dα
zD

β
ξ κ(s, z, ξ, h̃)| ≤ Fk

(
‖V ‖E0 +Nk+1(γ)

)
h̃|α|(1−2δ)+ δ

2 ,

(ii)
∣∣∣Dα

zD
β
ξ

(∂φ
∂z

)
(s, z, ξ, h̃)

∣∣∣ ≤ Fk(‖V ‖E0 +Nk+1(γ)
)
h̃|α|(1−2δ),

(iii) |Dβ
ξ φ(s, z, ξ, h̃)| ≤ Fk

(
‖V ‖E0 +Nk+1(γ)

)
|s|, |β| ≥ 2,

for all s ∈ I
h̃
, z ∈ Rd, ξ ∈ C0. This implies that κ ∈ Ṡδ/22δ−1 and ∂φ

∂z ∈ S
0
2δ−1.

Proof. We first show (ii) and (iii). Recall that

∂φ

∂z
(s, z, ξ, h̃) = ζ(s;κ(s; z, ξ, h̃), ξ, h̃).

By Proposition 2.27 (since ζ is bounded) we have ζ ∈ S0
2δ−1. By (i) we have κ ∈

Ṡ
δ/2
2δ−1 and by Remark 2.25 we have ξ ∈ Ṡ0

2δ−1. Then Proposition 2.26 implies that
∂φ
∂z ∈ Ṡ

0
2δ−1. Moreover ∂φ

∂z is bounded since |ζ(s)−ξ| ≤
∫ s

0 |
∂p
∂z (t, . . .)|dt ≤ F

(
‖V ‖E0 +

N2(γ)
)
h̃
δ
2 and ξ ∈ C0. Now (iii) follows from the definition (2.101) of the phase, the

facts that p ∈ S0
2δ−1, z ∈ Ṡ

1
2
2δ−1, ζ(s;κ(s; z, ξ, h̃), ξ, h̃) ∈ Ṡ0

2δ−1 and Proposition 2.26.

We are left with the proof of (i). We proceed by induction on |α| + |β| = k ≥ 1.
Recall that by definition of κ we have the equality z(s;κ(s; z, ξ, h̃), ξ, h̃) = z. It
follows that

∂z

∂z
· ∂κ
∂z

= Id,
∂z

∂z
· ∂κ
∂ξ

= −∂z
∂ξ
.

Then the estimate for k = 1 follows from (i) in Proposition 2.27. Assume the esti-
mate true up to the order k and let Λ = (α, β), |Λ| = k+ 1 ≥ 2. Then differentiating
|Λ| times the first above equality we see that ∂z

∂z ·D
Λκ is a finite linear combination

of terms of the form

(2) = DAz(· · · )
r∏
j=1

(
DLjκ

)pj r∏
j=1

(
DLjξ)qj
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where A = (a, b) 2 ≤ |A| ≤ |Λ|, Lj = (lj ,mj), 1 ≤ |Lj | ≤ k and

r∑
j=1

pj = α,
r∑
j=1

qj = β,
r∑
j=1

(|pj |+ |qj |)Lj = (α, β).

We use the estimate (given by Proposition 2.27)

|DAz(· · · )| ≤ Fk+1

(
‖V ‖E0 +N 0

k+2(γ)
)
h̃|a|(1−2δ)+ δ

2 ,

the induction, the fact that ξ ∈ Ṡ0
2δ−1 and the equality 1− 2δ + δ

2 = 0 to see that

|(2)| ≤ Fk+1

(
‖V ‖E0 +N 0

k+2(γ)
)
h̃|α|(1−2δ)+ δ

2 .

Then we use Proposition 2.27 (i) to conclude the induction.

Remark 2.29. Since θ(t, z, z′, ξ, h̃) =
∫ 1

0
∂φ
∂z (t, λz + (1 − λ)z′, ξ, h̃) dλ we have also

the estimate

(2.111)
∣∣∣Dα1

z Dα2
z′ D

β
ξ θ(s, z, z

′, ξ, h̃)
∣∣∣ ≤ Fk(‖V ‖E0 +Nk+1(γ)

)
h̃(|α1|+|α2|)(1−2δ).

for |α1|+ |α2|+ |β| = k

2.7.3 The transport equations

According to (2.89) and (2.90) if φ satisfies the eikonal equation we have

(2.112)

e−ih̃
−1φ(h̃∂t + h̃c+ iP )

(
eih̃
−1φb̃

)
= h̃∂tb̃+ h̃cb̃+ i

N−1∑
|α|=1

h̃|α|

α!
Dα
z′

[
(∂αη p̃)

(
t, z, z′, θ(t, z, z′, h̃)), h̃

)
b̃(z′)

]
z′=z

+RN + SN

Recall (see (2.83)) that b̃ = bΨ0. Let us set
(2.113)

TN = ∂tb+ cb+ i
∑

1≤|α|≤N−1

h̃|α|−1

α!
Dα
z′

[
(∂αη p̃)

(
t, z, z′, θ(t, z, z′, h̃), h̃

)
b(z′)

]
z′=z

.

Then

(2.114) e−ih̃
−1φ(h̃∂t + h̃c+ iP )

(
eih̃
−1φb̃

)
= h̃TNΨ0 + UN +RN + SN ,

where

UN = h̃b(∂tΨ0)

+ i

N−1∑
|α|=1

∑
β≤α
β 6=0

(
α

β

)
h̃|α|−1

α!
Dβ
z′

[
(∂αη p̃)

(
t, z, z′, θ(t, z, z′, h̃), h̃

)
b(z′)

]
Dα−β
z′ Ψ0


z′=z

.
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Our purpose is to show that one can find a symbol b such that, in a sense to be
explained,

(2.115) TN = O(h̃M ), ∀M ∈ N.

We set

Lb = ∂tb+ c+
n∑
i=1

∂

∂z′i

[ ∂p̃
∂ζi

(
t, z, z′, θ(t, z, z′, h̃), h̃

)
b(t, z′, ξ, h̃)

]
z′=z

Then we can write

(2.116) L =
∂

∂t
+

d∑
i=1

aj(t, z, ξ, h̃)
∂

∂zi
+ c0(t, z, ξ, h̃)

where

(2.117)



ai(t, z, ξ, h̃) =
∂p

∂ζi

(
t, z,

∂φ

∂z
(t, z, ξ, h̃), h̃

)
,

c0(t, z, ξ, h̃) =
d∑
i=1

∂

∂z′i

[ ∂p̃
∂ζi

(
t, z, z′, θ(t, z, z′, ξ, h̃), h̃

)]
z′=z

+ c(t, z, h̃),

θ(t, z, z′, ξ, h̃) =

∫ 1

0

∂φ

∂z

(
t, λz + (1− λ)z′, ξ, h̃

)
dλ

and c has been defined in (2.68).

Notice that, with m = (t, z, ξ, h̃) we have
(2.118)

c0(m) =

d∑
i=1

∂2p̃

∂ζi∂z′i
(t, z, z,

∂φ

∂z
(m), h̃) +

1

2

d∑
i,j=1

∂2p

∂ζi∂ζj
(t, z,

∂φ

∂z
(m), h̃))

∂2φ

∂zi∂zj
(m) + c.

Then we can write
(2.119)

TN = Lb+ i
∑

2≤|α|≤N−1

h̃|α|−1

α!
Dα
z′

[
(∂αζ p̃)

(
t, z, z′, θ(t, z, z′, h̃), h̃

)
b(t, z′, ξ, h̃)

]
z′=z

.

We shall seek b on the form

(2.120) b =
N∑
j=0

h̃j bj .

Including this expression of b in (2.119) after a change of indices we obtain

TN =
N∑
k=0

h̃kLbk + i
N+1∑
k=1

h̃k
∑

2≤|α|≤N−1

h̃|α|−2

α!
Dα
z′
[
(∂αζ p̃)(· · · )bk−1

]
z′=z

.

46



We will take bj for j = 0, . . . , N, as solutions of the following problems
(2.121)

Lb0 = 0, b0|t=0 = χ, χ ∈ C∞0 (Rd),

Lbj = Fj−1 := −i
∑

2≤|α|≤N−1

h̃|α|−2

α!
Dα
z′
[
(∂αζ p̃)(· · · )bj−1

]
z′=z

, bj |t=0 = 0.

This choice will imply that

(2.122) TN = ih̃N+1
∑

2≤|α|≤N−1

h̃|α|−2

α!
Dα
z′
[
(∂αζ p̃)(· · · )bN

]
z′=z

.

Proposition 2.30. The system (2.121) has a unique solution with bj ∈ S0
2δ−1.

We prove this result by induction. To solve these equations we use the method of
characteristics and we begin by preliminaries.

Lemma 2.31. We have ai ∈ S0
2δ−1 for i = 1, . . . , d.

Proof. This follows from Lemma 2.19, Proposition 2.26 with f = ∂p
∂ζi
, U(t, z, ξ, h̃) =

z, V (· · · ) = ∂φ
∂z and Corollary 2.28.

Consider now the system of differential equations

Żj(s) = aj(s, Z(s), ξ, h̃), Zj(0) = zj , 1 ≤ j ≤ d.

By Lemma 2.31 aj is bounded. Therefore this system has a unique solution defined
on I

h̃
. Differentiating with respect to z we obtain∣∣∣∣∂Z∂z (s)

∣∣∣∣ ≤ C + F2(‖V ‖E0 +N2(γ))

∫ s

0
h̃1−2δ

∣∣∣∣∂Z∂z (σ)

∣∣∣∣ dσ, 0 < s ≤ h̃δ,

since |s| h̃1−2δ ≤ h̃1−δ = h̃
δ
2 , the Gronwall inequality shows that

∣∣∂Z
∂z (s)

∣∣ is uniformly

bounded. Using again the equation satisfied by ∂Z
∂z (s) we deduce that

(2.123)

∣∣∣∣∂Z∂z (s)− Id
∣∣∣∣ ≤ F2(‖V ‖E0 +N2(γ)) h̃

δ
2 , 0 < s ≤ h̃δ.

This shows that the map z 7→ Z(s; z, ξ, h̃) is a global diffeomorphism from Rd to
itself so

(2.124) Z(s; z, ξ, h̃) = z ⇐⇒ z = ω(s;Z; ξ, h̃).

An analogue computation shows that

(2.125)

∣∣∣∣∂Z∂ξ (s)

∣∣∣∣ ≤ F2(‖V ‖E0 +N2(γ)) h̃δ, 0 < s ≤ h̃δ.
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Lemma 2.32. The function (s, z, ξ, h̃) 7→ Z(s, z, ξ, h̃) belongs to Ṡ
δ/2
2δ−1.

Proof. We have to prove that for |α|+ |β| = k ≥ 1 we have the estimate

(2.126) |Dα
zD

β
ξ Z(s; z, ξ, h̃)| ≤ Fk(‖V ‖E0 +Nk+1(γ)) h̃|α|(1−2δ)+ δ

2 .

Indeed this is true for k = 1 by (2.123), (2.125). Assume this is true up to the order
k and let |α|+β| = k+1 ≥ 2. Set U(s) = DΛZ(s; z, ξ, h̃) where Λ = (α, β). It satifies
the system U̇(s) = ∂a

∂z (s;Z(s), ξ, h̃)U(s)+F (s), U(0) = 0 where F (s) is a finite linear
combination of terms of the form

(1) = (DAa)(· · · )
r∏
j=1

(∂LjZ(s))pj (∂Ljξ)qj

where A = (a, b), 2 ≤ |A| ≤ |Λ|, Lj = (lj ,mj), 1 ≤ |Lj | ≤ k and

r∑
j=1

(|pj |+ |qj |)Lj = (α, β),
r∑
j=1

pj = α,
r∑
j=1

qj = β.

First of all, by Lemma 2.31 we can write

|(DAa)(· · · )| ≤ Fk
(
‖V ‖E0 +Nk+1(γ)

)
h̃|a|(1−2δ).

Using the induction and the fact that ξ ∈ Ṡ0
2δ−1 we can estimate the product occuring

in (1) by Fk
(
‖V ‖E0 +Nk+1(γ)

)
h̃M where

M =
r∑
j=1

{
|pj |
(
|lj |(1− 2δ) +

δ

2

)
+ |qj ||lj |(1− 2δ)

}
= |α|(1− 2δ) + |a|δ

2
.

It follows that
∫ s

0 |F (t)|dt ≤ Fk
(
‖V ‖E0 +Nk+1(γ)

)
h̃|α|(1−2δ)+δ and we conclude by

the Gronwall inequality.

Corollary 2.33. The function ω defined in (2.124) belongs to Ṡ
δ/2
2δ−1.

Proof. The proof is the same as that of Corollary 2.28.

Proof of Proposition 2.30. Now, with the notations in (2.117) and (2.121) we have

d

ds

[
bj(s, Z(s))

]
=
(∂u
∂t

+ a · ∇u
)
(s, Z(s)) = −(c0u)(s, Z(s)) + Fj−1(s, z(s)), j ≥ 0

with F−1 = 0. It follows that

d

ds

[
e
∫ s
0 c0(σ,Z(σ))dσbj(s, Z(s))

]
= e

∫ s
0 c0(σ,Z(σ)) dσFj−1(s, Z(s)),

48



Using (2.124) we see that the unique solution of (2.121) is given by
(2.127)

b0(s, z, ξ, h̃) = χ(ξ) exp
(∫ s

0
c0(t, Z(t;ω(s, z, ξ, h̃), ξ, h̃)) dt

)
,

bj(s, z, ξ, h̃) =

∫ s

0
e
∫ σ
s c0(t,Z(t;ω(s,z,ξ,h̃),ξ,h̃) dtFj−1(σ, Z(σ;ω(s, z, ξ, h̃), ξ, h̃) dσ.

The last step in the proof of Proposition 2.30 is contained in the following lemma.

Lemma 2.34. We have bj ∈ S0
2δ−1.

Proof. Step1: we show that

(2.128) e
∫ σ
s c0(t,Z(t;ω(s,z,ξ,h̃),ξ,h̃) dt ∈ S0

2δ−1.

According to Remark 2.25 this will be implied by
∫ σ
s c0(t, Z(t;ω(s, z, ξ, h̃), ξ, h̃) dt ∈

S
δ/2
2δ−1. By Lemma 2.32 we have Z ∈ Ṡ

δ/2
2δ−1 and ω ∈ Ṡ

δ/2
2δ−1. Moreover ξ ∈ Ṡ0

2δ−1.

By Proposition 2.26 the function Z(t;ω(s; z, ξ, h̃), ξ, h̃) belongs to Ṡ
δ/2
2δ−1. Now by

Corollary 2.28 we have ∂φ
∂z ∈ Ṡ

0
2δ−1 and ∂2φ

∂z2
∈ S−δ/22δ−1 (since 1−2δ = −δ/2.) It follows

from Proposition 2.26 that for s ∈ [0, h̃δ]

(2.129)


U1(t; z, ξ, h̃) =

∂φ

∂z
(t, Z(t;ω(s, z, ξ, h̃), ξ, h̃), ξ, h̃) ∈ Ṡ0

2δ−1,

U2(t; z, ξ, h̃) =
∂2φ

∂z2
(t, Z(t;ω(s, z, ξ, h̃), ξ, h̃), ξ, h̃) ∈ S−δ/22δ−1 .

Now by Lemma 2.19 the functions ∂2p̃
∂ζ∂z′ (t, z, z, ζ, h̃) (resp. ∂2p

∂ζ∂ζ (t, z, ζ, h̃)) satisfy the
condition of Proposition 2.26 with m = 1− 2δ (resp. m = 0.) Using (2.129) and the

fact that z ∈ Ṡδ/22δ−1 we deduce that∫ σ

s

∂2p̃

∂ζ∂z′
(
t, z, z, U1

(
t, z, ξ, h̃

)
, h̃
)
dt ∈ S

δ
2
2δ−1,∫ σ

s

∂2p

∂ζ2

(
t, z, U1

(
t, z, ξ, h̃

)
, h̃
)
U2

(
t; z, ξ, h̃

)
dt ∈ S

δ
2
2δ−1.

This shows that
∫ σ
s c0

(
t, Z(t;ω

(
s, z, ξ, h̃

)
, ξ, h̃

)
dt ∈ S

δ
2
2δ−1 as claimed.

Step 2: we show that for |a|+ |b| = k ≥ 0 we have, with Λ = (a, b) ∈ Nd ×Nd

(2.130)∫ s

0

∣∣∣DΛ
[
Gj−1

(
σ;Z

(
σ;ω

(
s; z, ξ, h̃

)
, ξ, h̃

))]∣∣∣ dσ ≤ Fk(‖V ‖E0 +Nk+1(γ)
)
h̃|a|(1−2δ)

where for |ρ| ≥ 2,
(2.131)
Gj−1(σ, z, ξ, h̃) = h̃|ρ|−2Dρ

z′
[
(∂ρζ p̃)

(
σ; z, z′, θ

(
σ; z, z′, ξ, h̃

)
, h̃
)
bj−1(σ; z′, ξ, h̃)

]
z′=z

.
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We claim that for Λ = (α, β), |α|+ |β| = k ≥ 0,

(2.132)
∣∣∣DΛGj−1(σ, z, ξ, h̃)

∣∣∣ ≤ h̃−δ+|α|(1−2δ)Fk
(
‖V ‖E0 +Nk+1(γ)

)
.

Indeed DΛGj−1 is a finite sum of terms of the form H1 ×H2 with

H1 = h̃|ρ|−2DΛ1Dρ1
z′
[
(∂ρζ p̃)(σ, , z, z

′, θ(σ; z, z′, ξ, h̃), h̃
)
)
]
|z′=z,

H2 = DΛ2Dρ2
z bj−1(σ, z, ξ, h̃),

where Λi = (αi, βi) |Λ1|+ |Λ2| = |Λ|, |ρ1|+ |ρ2| = |ρ|.
By the induction we have

|H2| ≤ Fk
(
‖V ‖E0 +Nk+1(γ)

)
h̃(|α2|+|ρ2|)(1−2δ)

and since z′ ∈ Ṡ2δ−1, θ ∈ Ṡ0
2δ−1 using Proposition 2.19 we see that

|H1| ≤ Fk
(
‖V ‖E0 +Nk+1(γ)

)
h̃|ρ|−2+(|α1|+|ρ1|)(1−2δ).

Now since |ρ| ≥ 2 and δ = 2
3 , we have |ρ|−2+|α|(1−2δ)+|ρ|(1−2δ) ≥ |α|(1−2δ)−δ

which proves (2.132).

Eventually since the function Z
(
t;ω(s; z, ξ, h̃), ξ, h̃

)
belongs to Ṡ

δ/2
2δ−1 (see Step 1),

we deduce from Proposition 2.26, with m = −δ, that (2.130) holds. Then Step 1
and Step 2 prove the lemma. Notice that bj can be written χ(ξ)b0j .

Thus the proof of Proposition 2.30 is complete.

Summing up we have proved that with the choice of φ and b made in Proposition
2.23 and in (2.120) we have

(2.133) e−ih̃
−1φ(h̃∂t + h̃c+ iP )

(
eih̃
−1φb̃

)
= h̃TNΨ0 + UN +RN + SN

where RN is defined in (2.86), SN in (2.88), TN in (2.122) and UN in (2.114).

2.8 The dispersion estimate

The purpose of this section is to prove the following result. Recall that δ = 2
3 .

Theorem 2.35. Let χ ∈ C∞0 (Rd) be such that suppχ ⊂ {ξ : 1
2 ≤ |ξ| ≤ 2}. Let

t0 ∈ R, u0 ∈ L1(Rd) and set u0,h = χ(hDx)u0. Denote by S(t, t0)u0,h the solution
of the problem(

∂t +
1

2
(Sjδ(V ) · ∇+∇ · Sjδ(V )) + iTγδ

)
Uh(t, x) = 0, Uh(t0, x) = u0,h(x).

Then there exist F : R+ → R+ k = k(d) ∈ N and h0 > 0 such that

‖S(t, t0)u0,h‖L∞(Rd) ≤ F
(
‖V ‖E0 +Nk(γ)

)
h−

3d
4 |t− t0|−

d
2 ‖u0,h‖L1(Rd),

for all 0 < |t− t0| ≤ h
δ
2 and all 0 < h ≤ h0.
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This result will be a consequence of the following one in the variables (t, z).

Theorem 2.36. Let χ ∈ C∞0 (Rd) be such that suppχ ⊂ {ξ : 1
2 ≤ |ξ| ≤ 2}. Let

t0 ∈ R, w0 ∈ L1(Rd) and set w
0,h̃

= χ(h̃Dz)w0. Denote by S̃(t, t0)w
0,h̃

the solution
of the problem (

h̃∂t + h̃c+ iP
)
Ũ(t, z) = 0, Ũ(t0, z) = w

0,h̃
(z).

Then there exist F : R+ → R+, k = k(d) ∈ N and h0 > 0 such that

‖S̃(t, t0)w
0,h̃
‖L∞(Rd) ≤ F

(
‖V ‖E0 +Nk(γ)

)
h̃−

d
2 |t− t0|−

d
2 ‖w

0,h̃
‖L1(Rd)

for all 0 < |t− t0| ≤ h̃δ and 0 < h̃ ≤ h̃0.

Indeed suppose that Theorem 2.36 is proved. We can assume t0 = 0. According
to the two change of variables x = X(t, y) and z = h̃−1y we have for any smooth
function W (see (2.67) and (2.68))(
h̃∂t+h̃c+iP

)[
W (t,X(t, h̃z)

]
= h̃

((
∂t+

1

2
(Sjδ(V )·∇+∇·Sjδ(V ))+iTγδ

)
W
)(
t,X(t, h̃z)

)
.

It follows that (
S̃(t, 0)w

0,h̃

)
(t, z) =

(
S(t, 0)u0,h

)
(t,X(t, h̃z)).

Moreover since w0(z) = u0(h̃z) we have

w
0,h̃

(z) = (χ(h̃Dz)w0)(z) = (χ(hDx)u0)(h̃z) = u0,h(h̃z).

Therefore using Theorem 2.36 we obtain

‖S(t, 0)u0,h‖L∞(Rd) = ‖S̃(t, 0)w
0,h̃
‖L∞(Rd) ≤ F(· · · ) h̃−

d
2 t−

d
2 ‖w

0,h̃
‖L1(Rd)

≤ F(· · · ) h̃−
d
2 t−

d
2 h̃−d‖u0,h‖L1(Rd)

≤ F(· · · )h−
3d
4 t−

d
2 ‖u0,h‖L1(Rd)

since h̃ = h
1
2 . Thus Theorem 2.35 is proved.

Proof of Theorem 2.36. We set
(2.134)

Kw
0,h̃

(t, z) = (2πh̃)−d
∫∫

eih̃
−1(φ(t,z,ξ,h̃)−y·ξ)b̃

(
t, z, y, ξ, h̃

)
χ1(ξ)w

0,h̃
(y) dy dξ

where χ1 belongs to C∞0 (Rd) with χ1 ≡ 1 on the support of χ and b̃ is defined in
(2.83). We can write

(2.135)

Kw
0,h̃

(t, z) =

∫
K
(
t, z, y, h̃

)
w

0,h̃
(y)dy with

K(t, z, y, h̃) = (2πh̃)−d
∫
eih̃
−1(φ(t,z,ξ,h̃)−y·ξ)b̃(t, z, y, ξ, h̃

)
χ1(ξ) dξ.
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Recall from (2.120) that

b =
N∑
j=0

h̃j bj ,

where the bj ’s are given by Proposition 2.30 with bj ∈ S0
2δ−1. On the other hand, it

follows from the (2.105) that the hessian of the phase satisfies∣∣∣∣det
( ∂2φ

∂ξi∂ξj
(t, z, ξ, h̃)

)∣∣∣∣ ≥M0t
d,

for some M0 > 0 and all t ∈ [0, hδ/2], z ∈ Rd, ξ ∈ C0, 0 < h̃ ≤ h̃0. Then we have the
following estimate.

Lemma 2.37. There holds∣∣K(t, z, y, h̃)
∣∣ ≤ F(‖V ‖E0 +Nk+1(γ)

)
h̃−

d
2 t−

d
2

for all 0 < t ≤ h̃δ, z, y ∈ Rd and 0 < h̃ ≤ h̃0.

Proof. See the Appendix E.

Using this lemma we obtain

(2.136)
∥∥Kw

0,h̃
(t, ·)

∥∥
L∞(Rd)

≤ F(· · · ) h̃−
d
2 t−

d
2

∥∥w
0,h̃

∥∥
L1(Rd)

for all 0 < t ≤ h̃δ and 0 < h̃ ≤ h̃0.

We can state now the following result.

Proposition 2.38. Let σ0 be an integer such that σ0 >
d
2 . Set(

h̃∂t + h̃c+ iP
)(
Kw

0,h̃

)
(t, z) = F

h̃
(t, z).

Then there exists k = k(d) ∈ N and for any N ∈ N, FN : R+ → R+ such that

sup
0<t≤h̃δ

∥∥F
h̃
(t, ·)

∥∥
Hσ0 (Rd)

≤ FN
(
‖V ‖E0 +Nk+1(γ)

)
h̃N‖w

0,h̃
‖L1(Rd).

We shall use the following result.

Lemma 2.39. Let k0 >
d
2 . Let us set m(t, z, y, ξ, h̃) = ∂φ

∂ξ (t, z, ξ, h̃)− y and

Σ =
{

(t, y, ξ, h̃) : 0 < h̃ ≤ h̃0, 0 ≤ t ≤ h̃δ, y ∈ Rd, |ξ| ≤ C
}
.

Then

sup
(t,y,ξ,h̃)∈Σ

∫
Rd

dz

〈m(t, z, y, ξ, h̃)〉2k0
≤ F

(
‖V ‖E0 +N2(γ)

)
.
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Proof. By (2.102) we have ∂φ
∂z

(
t, z, ξ, h̃

)
= ζ
(
t;κ
(
t; z, ξ, h̃

)
, ξ, h̃

)
so ∂2φ

∂ξ∂z = ∂ζ
∂z

∂κ
∂ξ + ∂ζ

∂ξ .

We deduce from Proposition 2.27 and Corollary 2.28 that | ∂
2φ

∂ξ∂z − Id| ≤ F
(
‖V ‖E0 +

N2(γ)
)
h̃
δ
2 . It follows that the map z 7→ ∂φ

∂ξ (t, z, ξ, h̃) is proper and therefore is a

global diffeomorphism from Rd to itself. Consequently, we can perform the change
of variable X = ∂φ

∂ξ (t, z, ξ, h̃) and the lemma follows.

Proof of Proposition 2.38. According to (2.135) Proposition 2.38 will be proved if
we have

(2.137) sup
(t,y,h̃)∈Σ

∥∥(h̃∂t + h̃c+ iP
)
K(t, ·, y, h̃

)∥∥
Hσ0
≤ FN (· · · ) h̃N .

Now, setting L = h̃∂t + h̃c+ iP (t, z,Dz), we have

(2.138) LK
(
t, z, y, h̃

)
=
(
2πh̃

)−d ∫
e−ih̃

−1y·ξL
(
eih̃
−1φ(t,z,ξ,h̃)b̃

(
t, z, y, ξ, h̃

))
χ1(ξ) dξ

and according to (2.112), (2.113), (2.122) we have,
(2.139)

L
(
eih̃
−1φ(t,z,ξ,h̃)b̃

(
t, z, y, ξ, h̃

))
= eih̃

−1φ(t,z,ξ,h̃)
(
RN + SN + h̃TNΨ0 + UN

)
(t, z, y, ξ, h̃)

where RN , SN , TN , UN are defined in (2.86), (2.88), (2.113), (2.114).

Lemma 2.40. Let σ0, k0 be integers, σ0 >
d
2 , k0 >

d
2 . There exists a fixed integer

N0(d) such that for any N ∈ N there exists CN > 0 such that, if we set Ξ =
(t, z, y, ξ, h̃), then
(2.140)〈

m
(
Ξ
)〉k0 {|Dβ

zRN (Ξ)|+ |Dβ
z SN (Ξ)|+ |Dβ

z (h̃(TNΨ0)(Ξ)
)
|
}
≤ FN (· · · ) h̃δN−N0 ,

for all |β| ≤ σ0, all (t, y, ξ, h̃) ∈ Σ and all z ∈ Rd.

Proof. According to (2.86), Dβ
zRN (Ξ) is a finite linear combination of terms of the

form

RN,β(Ξ) = h̃−d−|β1|
∫∫

eih̃
−1(z−z′)·ηηβ1κ(η)Dβ2

z rN (t, z, z′, η, ξ, h̃)

b(t, z′, ξ, h̃)Ψ0

(∂φ
∂ξ

(
t, z′, ξ, h̃

)
− y
)
dz′ dη

where β1 + β2 = β and

Dβ2
z rN (· · · ) =

∑
|α|=N

N

α!

∫ 1

0
(1− λ)N−1Dβ2

z

[(
∂αη p̃

)
(t, z, z′, η + λθ(t, z, z′, ξ, h̃))

]
ηα dλ.
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Using the equality ηα+β1eih̃
−1(z−z′)·η = (−h̃Dz′)

α+β1eih̃
−1(z−z′)·η we see that RN,β is

a linear combination of terms of the form

R′N,β(Ξ) = h̃N−d
∫ 1

0

∫∫
eih̃
−1(z−z′)·ηκ(η)×

Dα+β1
z′ Dβ2

z

[
(∂αη p̃)(t, z, z

′, η + λθ(t, z, z′, ξ, h̃))

b(t, z′, ξ, h̃)Ψ0

(∂φ
∂ξ

(t, z′ξ, h̃)− y
)]
dλ dz′ dη.

Then we insert in the integral the quantity
(∂φ
∂ξ (t, z, ξ, h̃)− y

)γ
where |γ| = k0. It is

a finite linear combination of terms of the form(∂φ
∂ξ

(t, z, ξ, h̃)− ∂φ

∂ξ
(t, z′, ξ, h̃)

)γ1(∂φ
∂ξ

(t, z′, ξ, h̃)− y
)γ2

.

Using the Taylor formula we see that 〈m(Ξ)〉k0R′N,β(Ξ) is a finite linear combination
of terms of the form

h̃N−d
∫ 1

0

∫∫
(z − z′)νeih̃−1(z−z′)·ηF (t, z, z′, ξ, h̃)κ(η)

(∂φ
∂ξ

(t, z′, ξ, h̃)− y
)l

Dα+β1
z′ Dβ2

z

[
(∂αη p̃)(· · · )b(t, z′, ξ, h̃)Ψ0

(∂φ
∂ξ

(t, z′, ξ, h̃)− y
)]
dλ dy dη,

where, by Corollary 2.28 (ii), F is a bounded function.

Eventually we use the identity (z − z′)νeih̃−1(z−z′)·η = (h̃Dη)
νeih̃

−1(z−z′)·η, we inte-
grate by parts in the integral with respect to η and we use Remark 2.21, Remark
2.29, the estimate (ii) in Corollary 2.28, the fact that b ∈ S0

2δ−1 and the fact that
N +N(1− 2δ) = δN to deduce that

(2.141)
〈
m
(
Ξ
)〉k0 |Dβ

zRN (Ξ)| ≤ FN (· · · ) h̃δN−Nd

where Nd is a fixed number depending only on the dimension.

Let us consider the term SN . Recall that Dβ
z SN is a finite linear combination for

|α| ≤ N − 1 and |γ| = N of terms of the form

SN,α,β,γ = h̃N+|α|
∫ 1

0

∫
(1− λ)N−1µγ κ̂(µ)Dα+β+γ

z′

[(
∂αζ p̃

)(
t, z, z′, θ(t, z, z′, ξ, h̃), h̃

)
b
(
t, z′, ξ, h̃

)
Ψ0

(∂φ
∂ξ

(
t, z′, ξ, h̃

)
− y
)]

z′=z+λh̃µ
dλ dµ.

Then we multiply SN,α,β,γ by 〈m(Ξ)〉k0 and we write

∂φ

∂ξ

(
t, z, ξ, h̃

)
− y =

∂φ

∂ξ

(
t, z, ξ, h̃

)
− ∂φ

∂ξ

(
t, z + λh̃µ, ξ, h̃

)
+
∂φ

∂ξ

(
t, z + λh̃µ, ξ, h̃

)
− y.

By the Taylor formula the first term will give rise to a power of λh̃µ which will be
absorbed by κ̂(µ) and the second term will be absorbed by Ψ0. Then we use again
Remark 2.21, Remark 2.29 to conclude that

(2.142)
〈
m
(
Ξ
)〉k0 |Dβ

z SN (Ξ)| ≤ FN (· · · ) h̃δN−N ′d .
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Let us look now to the term h̃Dβ
z TNΨ0. According to (2.122) this expression is a

linear combination for 2 ≤ |α| ≤ N of terms of the form

h̃|α|+NDβ
z

{
Dα
z′

[
(∂αζ p̃(t, x, z, z

′, θ(t, z, z′, ξ, h̃), h̃)bN (t, z′, ξ, h̃)
]

z′=z

Ψ0

(∂φ
∂ξ

(t, z′, ξ, h̃)− y
)}
.

It follows from Remark 2.21, Remark 2.29 and Corollary 2.28 that we have

(2.143)
〈
m(Ξ)

〉k0∣∣h̃Dβ
z

[
TNΨ0

]∣∣ ≤ FN (· · · ) h̃δN .

Lemma 2.40 follows from (2.141), (2.142), (2.143).

¿From Lemma 2.40 we can write
(2.144)

h̃−d
∫ ∥∥eih̃−1(φ(t,z,ξ,h̃)−y·ξ)(RN + SN + h̃TNΨ0

)∥∥
H
σ0
z
|χ1(ξ)| dξ ≤ FN (· · · ) h̃δN−N1(d)

where N1(d) is a fixed number depending only on the dimension.

To conclude the proof of Proposition 2.38 we have to estimate the integrals

IN,β = (2πh̃)−d
∫
Dβ
z

[
eih̃
−1(φ(t,z,ξ,h̃)−y·ξ)UN

(
t, z, y, ξ, h̃

)]
χ1(ξ) dξ.

Now according to (2.112), (2.113) and (2.114) on the support of UN the function Ψ0 is
differentiated at least one time. Thus on this support one has

∣∣∂φ
∂ξ (t, z, ξ, h̃)−y

∣∣ ≥ 1.
Then we can use the vector field

X =
h̃∣∣∂φ

∂ξ (t, z, ξ, h̃)− y
∣∣2

d∑
j=1

( ∂φ
∂ξj

(t, z, ξ, h̃)− yj
)
Dξj

to integrate by parts in IN,β to obtain

|IN,β| ≤ FN (· · · ) h̃δN .

The proof of Proposition 2.38 is complete.

We show now that

(2.145) Kw
0,h̃

(0, z) = w
0,h̃

(z) + r
h̃
(z)

with

(2.146)
∥∥r
h̃

∥∥
Hσ0 (Rd)

≤ FN (· · · ) h̃N
∥∥w

0,h̃

∥∥
L1(Rd)

∀N ∈ N.

It follows from the initial condition on φ given in (2.91) and the initial condition on
b that (2.145) is true with

r
h̃
(z) = (2πh̃)−d

∫∫
eih̃
−1(z−y)·ξχ1(ξ)(1−Ψ0(z − y))w

0,h̃
(y) dy dξ.
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We see easily that for |β| ≤ σ0, D
β
z rh̃(z) is a finite linear combination of terms of

the form

r
h̃,β

(z) = h̃−d−|β1|
∫∫

eih̃
−1(z−y)·ξξβ1χ1(ξ)Ψβ(z − y)w

0,h̃
(y) dy dξ, |β1| ≤ |β|

where Ψβ ∈ C∞b (Rd) and |z − y| ≥ 1 on the support of Ψβ. Then one can write

r
h̃,β

(z) =
(
F
h̃
∗ w

0,h̃

)
(z)

where

F
h̃
(X) = h̃−d−|β1|

∫
eih̃
−1X·ξξβ1χ1(ξ)Ψβ(X) dξ

and |X| ≥ 1 on the support of Ψβ(X). Then we remark that if we set L =
1
|X|2

∑d
j=1Xj

∂
∂ξj

we have h̃Leih̃
−1X·ξ = eih̃

−1X·ξ. Therefore one can write

F
h̃
(X) = h̃M−d−|β1|

∫
eih̃
−1X·ξ(−L)M

[
ξβ1χ1(ξ)

]
Ψβ(X) dξ

from which we deduce

|F
h̃
(X)| ≤ FM (· · · ) h̃M−d−|β1| |Ψ̃(X)|

|X|M
, ∀M ∈ N

where Ψ̃ ∈ C∞b (Rd) is equal to 1 on the support of Ψβ.

It follows then that ‖F
h̃
‖L2(Rd) ≤ FM (· · · ) h̃M−d−|β1| from which we deduce that for

|β| ≤ σ0, ∥∥Dβr
h̃

∥∥
L2(Rd)

≤ FN (· · · )
∥∥F

h̃

∥∥
L2(Rd)

∥∥w
0,h̃

∥∥
L1(Rd)

≤ FN (· · · ) h̃M−d−|β1|
∥∥w

0,h̃

∥∥
L1(Rd)

which proves (2.146).

Using Proposition 2.38 and the Duhamel formula one can write

S̃(t, 0)w
0,h̃

(z) = Kw
0,h̃

(t, z)− S̃(t, 0)r
h̃
(z)−

∫ t

0
S̃(t, s)[F

h̃
(s, z)] ds.

Now we can write∥∥∥∥∫ t

0
S̃(t, s)

[
F
h̃
(s, z)

]
ds

∥∥∥∥
L∞(Rd)

≤
∫ t

0

∥∥∥S̃(t, s)
[
F
h̃
(s, z)

]∥∥∥
Hσ0 (Rd)

ds

≤ C
∫ t

0

∥∥F
h̃
(s, z)

∥∥
Hσ0 (Rd)

ds

≤ FN (· · · ) h̃N
∥∥w

0,h̃

∥∥
L1(Rd)

and, for every N ∈ N,∥∥S̃(t, 0)r
h̃

∥∥
L∞(Rd)

≤ C
∥∥S̃(t, 0)r

h̃

∥∥
Hσ0 (Rd)

≤ C ′
∥∥r
h̃

∥∥
Hσ0 (Rd)

≤ FN (· · · ) h̃N‖w
0,h̃

∥∥
L1(Rd)

.

Then Theorem 2.36 follows from these estimates and (2.136).
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2.9 The Strichartz estimates

Theorem 2.41. Consider the problem(
∂t +

1

2
(Sjδ(V ) · ∇+∇ · Sjδ(V )) + iTγδ

)
uh(t, x) = fh(t, x), uh(t0, x) = u0,h(x).

where uh, u0,h and fh have spectrum in
{
ξ : c1h

−1 ≤ |ξ| ≤ c2h
−1
}

. Let Ih = (0, h
δ
2 ).

Then there exists k = k(d), h0 > 0 such that for any s ∈ R and ε > 0 there exists
F ,Fε : R+ → R+, such that, with N := ‖V ‖E0 +Nk(γ),

(i) if d = 1 :

‖uh‖
L4(Ih,W

s− 3
8 ,∞(R))

≤ F
(
N
) (
‖u0,h‖Hs(R) + ‖fh‖L1(Ih,Hs(R))

)
,

(ii) if d ≥ 2 :

‖uh‖
L2+ε(Ih,W

s− d2+1
4−ε,∞(Rd))

≤ Fε
(
N
) (
‖u0,h‖Hs(Rd) + ‖fh‖L1(Ih,Hs(Rd))

)
,

for any 0 < h ≤ h0

Proof. If d = 1, by the TT ∗ argument we deduce from the dispersive estimate given
in Theorem 2.35 that

‖uh‖L4(Ih,L∞(R)) ≤ F(· · · )h−
3
8

(
‖u0,h‖L2(R) + ‖fh‖L1(Ih,L2(R))

)
.

Then multiplying this estimate by hs and using the fact that uh, u0,h, fh are spec-
trally supported in {ξ : c1h

−1 ≤ |ξ| ≤ c2h
−1} we deduce (i).

If d ≥ 2 we use the same argument. Then if (q, r) ∈ R2 is such that q > 2 and
2
q = d

2 −
d
r we obtain

(2.147) ‖uh‖Lq(Ih,Lr(Rd)) ≤ F(· · · )h−
3
2q

(
‖u0,h‖L2(Rd) + ‖fh‖L1(Ih,L2(Rd))

)
.

Taking q = 2 + ε we find r = 2 + 8
(2+ε)d−4 . Moreover h

− 3
2q ≤ h−

3
4 . Then multiplying

both members of (2.147) by hs we obtain

‖uh‖
L2+ε(Ih,W

s− 3
4 ,r(Rd))

≤ F(· · · )
(
‖u0,h‖Hs(Rd) + ‖fh‖L1(Ih,Hs(Rd))

)
.

On the other hand the Sobolev embedding shows that W a+b,r(Rd) ⊂ W b,∞(Rd)
provided that a > d

r = d
2 − 1 + ε

2+ε . In particular we can take a = d
2 − 1 + ε. Taking

d
2 − 1 + ε+ b = s − 3

4 we obtain the conclusion of the Theorem.

Corollary 2.42. With the notations in Theorem 2.41 and δ = 2
3 , I = [0, T ] we have

(i) if d = 1:

‖uh‖
L4(I;W s− 3

8−
δ
8 ,∞(R))

≤ F
(
N
) (
‖fh‖

L4(I;Hs− δ2 (R))
+ ‖uh‖C0(I;Hs(R))

)
,
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(ii) if d ≥ 2:

‖uh‖
L2(I;W s− d2+1

4−
δ
4−ε,∞(Rd))

≤ Fε
(
N
) (
‖fh‖

L2(I;Hs− δ2 (Rd))
+ ‖uh‖C0(I;Hs(Rd))

)
for any ε > 0.

Proof. Let T > 0 and χ ∈ C∞0 (0, 2) equal to one on [1
2 ,

3
2 ]. For 0 ≤ k ≤ [Th−

δ
2 ]− 2

define

Ih,k = [kh
δ
2 , (k + 2)h

δ
2 ], χh,k(t) = χ

( t− kh δ2
h
δ
2

)
, uh,k = χh,k(t)uh.

Then(
∂t +

1

2
(Sjδ(V ) · ∇+∇ · Sjδ(V )) + iTγδ

)
uh,k = χh,kfh + h−

δ
2χ′
( t− kh δ2

h
δ
2

)
uh

and uh,k(kh
δ
2 , ·) = 0.

Consider first the case d = 1. Applying Theorem 2.41, (i) to each uh,k on the interval

Ih,k we obtain, since χh,k(t) = 1 for (k + 1
2)h

δ
2 ≤ t ≤ (k + 3

2)h
δ
2 ,

‖uh‖
L4((k+ 1

2
)h
δ
2 ,(k+ 3

2
)h
δ
2 );W s− 3

8 ,∞(R))

≤ F(· · · )
(
‖fh‖

L1((kh
δ
2 ,(k+2)h

δ
2 );Hs(R))

+ h−
δ
2 ‖χ′

( t− kh δ2
h
δ
2

)
uh‖L1(R;Hs(R))

)
≤ F(· · · )

(
h

3δ
8 ‖fh‖

L4((kh
δ
2 ,(k+2)h

δ
2 );Hs(R))

+ ‖uh‖L∞(I;Hs(R))

)
.

Multiplying both members of the above inequality by h
δ
8 and taking into account

that uh and fh are spectrally supported in a ring of size h−1 we obtain

(2.148)

‖uh‖
L4((k+ 1

2
)h
δ
2 ,(k+ 3

2
)h
δ
2 );W s− 3

8−
δ
8 ,∞(R))

≤ F(· · · )
(
‖fh‖

L4((kh
δ
2 ,(k+2)h

δ
2 );Hs− δ2 (R))

+ h
δ
8 ‖uh‖L∞(I;Hs(R))

)
.

Taking the power 4 of (2.148), summing in k from 0 to [Th−
δ
2 ]− 2 we obtain (since

there are ≈ Th−
δ
2 intervals)

‖uh‖
L4(I;W s− 3

8−
δ
8 ,∞(R))

≤ F(· · · )
(
‖fh‖

L4(I;Hs− δ2 (R))
+ ‖uh‖C0(I;Hs(R))

)
.

This completes the proof of (i).

The proof of (ii) follows exactly the same path. We apply Theorem 2.41, (ii) to each
uh,k on the interval Ih,k. The only difference with the case d = 1 is that, passing

from the L1 norm in t of fh to the L2 norm, it gives rise to a h
δ
4 factor. Therefore

we multiply the inequality by h
δ
4 , we take the square of the new inequality and we

sum in k.
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2.9.1 End of the proof of Theorem 1.6

Let u be a solution of equation (1.8). We have proved in (2.45) that ∆ju satifies the
equation (

∂t +
1

2
(Sjδ(V ) · ∇+∇ · Sjδ(V )) + iTγδ

)
∆ju = f4,j

where

f4,j = f2,j +
{

(Sjδ(V )−Sj(V )) · ∇+ i(Tγδ − Tγ) +
1

2
Sjδ(div V ) +

i

2
(Tγδ − T

∗
γδ

)
}

∆ju

and with p = 4 if d = 1, p = 2 if d ≥ 2 we have

‖f2,j‖Lp(I,Hs(Rd)) ≤ ‖∆jf‖Lp(I,Hs(Rd)) + F(N)‖u‖C0(I,Hs(Rd))

where N(V, γ) = ‖V ‖E0 +Nk(γ).

We can therefore apply Corollary 2.42 to ∆ju.

Since δ = 2
3 we have when d = 1, s − 3

8 −
δ
8 = s − 1

2 + 1
24 and when d ≥ 2,

s − d
2 + 1

4 −
δ
4 − ε = s − d

2 + µ with µ < 1
12 . Therefore in all cases the left hand side

is ‖∆ju‖
Lp(I,C

s− d2+µ′
∗ (Rd))

where µ′ < 1
24 id d = 1, µ′ < 1

12 if d ≥ 2.

It remains to estimate the quantities

(1) = ‖(Sjδ(V )− Sj(V )) · ∇∆ju‖
Lp(I,Hs− δ2 (Rd))

,

(2) = ‖(Tγδ − Tγ)∆ju‖
Lp(I,Hs− δ2 (Rd))

,

(3) = ‖Sjδ(div V )∆ju‖
Lp(I,Hs− δ2 (Rd))

,

(4) = ‖(Tγδ − T
∗
γδ

)∆ju‖
Lp(I,Hs− δ2 (Rd))

.

We first estimate the quantities (1), (2), (3) for fixed t which will be skipped.

Consider the term (1). Set Aj = (Sjδ(V )− Sj(V )) · ∇∆ju.

Since the spectrum of Aj is contained in a ball of radius C 2j , we can write

‖Aj‖
Hs− δ2 (Rd)

≤ C 2j(s−
δ
2

)‖(Sj(V )− Sjδ(V )) · ∇∆ju‖L2(Rd)

≤ C 2j(s−
δ
2

)‖Sj(V )− Sjδ(V )‖L∞(Rd)2
j(1−s)‖∆ju‖Hs(Rd).

Now we can write

(Sj(V )− Sjδ(V ))(t, x) =

∫
Rd

ψ̂(z)
(
V (t, x− 2−jz)− V (t, x− 2−jδz)

)
dz.

where ψ ∈ C∞0 (Rd) has its support contained in a ball of radius 1. It follows easily,
since 0 < δ < 1, that

‖(Sj(V )− Sjδ(V ))(t, ·)‖L∞(Rd) ≤ F(· · · ) 2−jδ‖V (t, ·)‖W 1,∞(Rd).
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Therefore we obtain with p = 2, 4 and I = [0, T ],

‖Aj‖
Lp(I;Hs− δ2 (Rd))

≤ F(· · · ) 2j(1−
3δ
2

)‖V ‖Lp(I;W 1,∞(Rd))‖∆ju‖L∞(I;Hs(Rd)).

Since 1− 3δ
2 = 0 we deduce that

(2.149) (1) ≤ F(N(V, γ))‖u‖L∞(I;Hs(Rd)).

Consider the term (2). Since the spectrum of (Tγδ − Tγ)∆ju is contained in a ball
of radius C2j one can write (for fixed t) using moreover the symbolic calculus,

(2.150)
‖(Tγδ − Tγ)∆ju‖

Hs− δ2 (Rd)
≤ C2

1−δ
2
j‖Tγδ − Tγ)∆ju‖

Hs− 1
2 (Rd)

,

≤ C ′2
1−δ
2
jM

1
2

0 ((γδ − γ)ϕ(2−j ·))‖u‖Hs(Rd).

Recall that for a ∈ Γmρ ,m ∈ R, ρ ≥ 0 we have

Mm
ρ (a) = sup

|α|≤k(d)
sup
|ξ|≥ 1

2

‖〈ξ〉|α|−mDα
ξ a(·, ξ)‖W ρ,∞(Rd).

Set γj = ϕ(2−j ·)γ, γδ,j = ϕ(2−j ·)γδ. We have

Dα
ξ γδ,j(x, ξ) = (2π)−d2jδd ψ̂(2jδ·) ? Dα

ξ γj(·, ξ).

Since (2π)−d 2jδd
∫
ψ̂(2jδy) dy = 1 one can write

Dα
ξ (γδ,j(x, ξ)− γj(x, ξ)) = (2π)−d2jδd

∫
ψ̂(2jδy)

(
Dα
ξ γj(x− y, ξ)−Dα

ξ γj(x, ξ)
)
dy.

It follows that

|Dα
ξ (γδ,j(x, ξ)− γj(x, ξ))| ≤ C2jδd

∫
ψ̂(2jδy)|y|

1
2 dy ‖Dα

ξ (γj(·, ξ)‖
W

1
2 ,∞(Rd)

.

Setting 2jδy = z in the integral we see that

M
1
2

0 (γδ,j − γj) ≤ C2−j
δ
2M

1
2
1
2

(γj).

Using (2.150) we deduce that

‖(Tγδ − Tγ)∆ju‖
Hs− δ2 (Rd)

≤ 2j(
1
2
−δ)M

1
2
1
2

(γj)‖u‖Hs(Rd).

Taking the Lp norm in t and using the fact that 1
2 − δ = 1

2 −
2
3 < 0 we deduce that

(2.151) (2) ≤ CN(V, γ)‖u‖L∞(I;Hs(Rd)).
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Consider the term (3). Since Sjδ(div V )∆ju has its spectrum contained in a ball of
radius C2j on can write

‖Sjδ(div V )∆ju‖Hs(Rd) ≤ C2js‖Sjδ(divV )∆ju‖L2(Rd),

≤ C2js‖Sjδ(div V )‖L∞(Rd)‖∆ju‖L2(Rd),

≤ C‖Sjδ(div V )‖L∞(Rd)‖∆ju‖Hs(Rd),

≤ C ′‖V ‖W 1,∞(Rd)‖∆ju‖Hs(Rd).

It follows that

(2.152) (3) ≤ F(N(V, γ))‖u‖L∞(I;Hs(Rd)).

Finally by the symbolic calculus (see Theorem A.5) we can write

(2.153) (4) ≤ F(N(V, γ))‖u‖L∞(I;Hs(Rd)).

Summing up, it follows from the estimates in (2.149) to (2.153) that one can apply
Corollary 2.42 to ∆ju to deduce that

‖∆ju‖
Lp(I,C

s− d2+µ′
∗ (Rd))

≤ F(N(V, γ))
{
‖∆jf‖Lp(I,Hs(Rd)) + ‖u‖L∞(I,Hs(Rd))

}
.

Now for all µ < µ′ we can write

‖∆ju‖
Lp(I,C

s− d2−µ
∗ (Rd))

≤ 2−j(µ
′−µ)‖∆ju‖

Lp(I,C
s− d2−µ

′
∗ (Rd))

,

≤ 2−j(µ
′−µ)F(N(V, γ))

{
‖∆jf‖Lp(I,Hs(Rd)) + ‖u‖L∞(I,Hs(Rd))

}
,

≤ 2−j(µ
′−µ)F(N(V, γ)))

{
‖f‖Lp(I,Hs(Rd)) + ‖u‖L∞(I,Hs(Rd))

}
.

Summing in j and using the fact that
∑+∞

j=−1 2−j(µ
′−µ) < +∞ we obtain the conclu-

sion of Theorem 1.6. The proof is complete.
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Chapter 3

Cauchy problem

In this chapter we complete the proof of our main result, which is Theorem 1.2
stated in the introduction. We begin in Section 3.1 by combining Sobolev and
Strichartz estimates to obtain a priori estimates. Then, in Section 3.2, we obtain an
estimate for the difference of two solutions. This estimate will be used to prove the
uniqueness of solutions as well as to prove that a family of approximate solutions is
a Cauchy sequence, in some larger space, and then converges strongly. In Section 3.3
we prove that one can pass to the limit in the equations under weak assumptions.
In Section 3.4 we briefly recall how to complete the proof from these three technical
ingredients.

3.1 A priori estimates

3.1.1 Notations

For the sake of clarity we recall here our assumptions and notations. We work with
the Craig-Sulem-Zakharov formulation of the water-waves equations:

(3.1)

{
∂tη −G(η)ψ = 0,

∂tψ + gη +
1

2
|∇ψ|2 − 1

2

(
∇η · ∇ψ +G(η)ψ

)2
1 + |∇η|2

= 0.

Assumption 3.1. We consider smooth solutions of (3.1) such that

i) (η, ψ) belongs to C1([0, T0];Hs0(Rd)×Hs0(Rd)) for some T0 in (0, 1] and some
s0 large enough;

ii) there exists h > 0 such that (1.3) holds for any t in [0, T0] (this is the assumption
that there exists a curved strip of width h separating the free surface from the
bottom);

iii) there exists c > 0 such that the Taylor coefficient a(t, x) = −∂yP |y=η(t,x) is

bounded from below by c for any (t, x) in [0, T0]×Rd.
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We work with the horizontal and vertical traces of the velocity on the free boundary,
namely B = (∂yφ)|y=η and V = (∇xφ)|y=η, which can be defined in terms of η and
ψ by means of

(3.2) B :=
∇η · ∇ψ +G(η)ψ

1 + |∇η|2
, V := ∇ψ −B∇η.

Let s and r be two positive real numbers such that

(3.3) s >
3

4
+
d

2
, s +

1

4
− d

2
> r > 1, r 6∈ 1

2
N.

Define, for T in (0, T0], the norms

(3.4)
Ms(T ) := ‖(ψ, η,B, V )‖

C0([0,T ];Hs+1
2×Hs+1

2×Hs×Hs)
,

Zr(T ) := ‖η‖
Lp([0,T ];W r+1

2 ,∞)
+ ‖(B, V )‖Lp([0,T ];W r,∞×W r,∞) ,

where p = 4 if d = 1 and p = 2 for d ≥ 2.

Our goal is to estimate Ms(T ) + Zr(T ) in terms of

(3.5) Ms,0 := ‖(ψ(0), η(0), B(0), V (0))‖
Hs+1

2×Hs+1
2×Hs×Hs

.

In Appendix D, using results already proved in [3], we prove that, for any s and
r satisfying (3.3), there exists a continuous non-decreasing function F : R+ → R+

such that, for all smooth solution (η, ψ) of (3.1) defined on the time interval [0, T0]
and satisfying Assumption 3.1 on this time interval, for any T ∈ (0, T0],

(3.6) Ms(T ) ≤ F
(
F(Ms,0) + TF

(
Ms(T ) + Zr(T )

))
.

If s > 1 + d/2, then one can apply the previous inequality with r = s − d/2. Then
Zr(T ) . Ms(T ) by Sobolev embedding and one deduces from (3.6) an estimate
which involves only Ms(T ). Thus we recover the a priori estimate in Sobolev spaces
proved in [3] under the assumption that s > 1 + d/2. Using classical inequalities,
this implies that for any A > 0 there exist B > 0 and T1 > 0 such that

Ms,0 ≤ A⇒Ms(T1) ≤ B.

We shall prove that a stronger a priori estimate holds. We extend the previous
estimate in two directions. Firstly, we prove that one can control Sobolev norms for
some s < 1 + d/2. Secondly, we prove that one can control Strichartz norms even
for rough solutions.

Proposition 3.2. Let µ be such that µ < 1
24 if d = 1 and µ < 1

12 for d ≥ 2.
Consider two real numbers s and r satisfying

(3.7) s > 1 +
d

2
− µ, 1 < r < s + µ− d

2
, r 6∈ 1

2
N.

For any A > 0 there exist B > 0 and T1 > 0 such that, for all 0 < T0 ≤ T1

and all smooth solution (η, ψ) of (1.5) defined on the time interval [0, T0] satisfying
Assumption 2.1 on this time interval, then the solution satisfies the a priori bound

Ms,0 ≤ A⇒Ms(T0) + Zr(T0) ≤ B.
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3.1.2 Reduction

In this section we show that one can reduce the proof of Proposition 3.2 to the proof
of an a priori estimate for Zr(T ).

To prove Proposition 3.2, the key point is to prove that there exists a continuous
non-decreasing function F : R+ → R+ such that

(3.8) Ms(T ) + Zr(T ) ≤ F
(
F(Ms,0) + TF

(
Ms(T ) + Zr(T )

))
.

Since µ < 1/4 and since the estimate (3.6) is proved under the general assump-
tion (3.3), it remains only to prove that Zr(T ) is bounded by the right-hand side of
(3.8).

Proposition 3.3. Let d ≥ 1 and consider s, r, µ satisfying (3.7). There exists a
continuous non-decreasing function F : R+ → R+ such that, for all T0 ∈ (0, 1] and
all smooth solution (η, ψ) of (3.1) defined on the time interval [0, T0] and satisfying
Assumption 3.1 on this time interval, there holds

(3.9) Zr(T ) ≤ F
(
TF
(
Ms(T ) + Zr(T )

))
,

for any T in [0, T0].

Let us admit this result and deduce Proposition 3.2.

Proof of Proposition 3.2 given Proposition 3.3. Introduce for T in [0, T0], f(T ) =
Ms(T ) + Zr(T ). It follows from (3.6) and (3.9) that (3.8) holds. This means
that there exists a continuous non-decreasing function F : R+ → R+ such that,
for all T ∈ (0, T0],

(3.10) f(T ) ≤ F
(
F(A) + TF

(
f(T )

))
.

Now fix B such that B > max
{
A,F

(
F(A)

)}
and then chose T1 ∈ (0, T0] such that

F
(
F(A) + T1F(B)

)
< B.

We claim that f(T ) < B for any T in [0, T1]. Indeed, since f(0) = Ms,0 ≤ A < B,
assume that there exists T ′ ∈ (0, T1] such that f(T ′) > B. Since f is continuous, this
implies that there is T ′′ ∈ (0, T1) such that f(T ′′) = B. Now it follows from (3.10),
the fact that F is increasing, and the definition of T1 that

B = f(T ′′) ≤ F
(
F(A) + T ′′F

(
f(T ′′)

))
≤ F

(
F(A) + T1F

(
B
))
< B.

Hence the contradiction which proves that f(T ) ≤ B for any T in [0, T1].

It remains to prove Proposition 3.3. This will be the purpose of the end of this
chapter.

We begin by using an interpolation inequality to reduce the proof of Proposition 3.3
to the proof of the following proposition.
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Proposition 3.4. Let d ≥ 1 and consider µ, s, r as in (3.7). Consider in addition
r′ such that

r < r′ < s + µ− d

2
, r′ 6∈ 1

2
N

and set

Zr′(T ) := ‖η‖
Lp([0,T ];W r′+1

2 ,∞)
+ ‖(B, V )‖Lp([0,T ];W r′,∞×W r′,∞)

where p = 4 if d = 1 and p = 2 for d ≥ 2. There exists a continuous non-decreasing
function F : R+ → R+ such that, for all T0 ∈ (0, 1] and all smooth solution (η, ψ)
of (3.1) defined on the time interval [0, T0] and satisfying Assumption 3.1 on this
time interval, there holds

(3.11) Zr′(T ) ≤ F
(
Ms(T ) + Zr(T )

)
,

for any T in [0, T0].

We prove in this paragraph that Proposition 3.4 implies Proposition 3.3. Proposi-
tion 3.4 will be proved in the next paragraph.

Proof of Proposition 3.3 given Proposition 3.4. Consider a function v = v(t, x). By
interpolation, since 1 − µ < 1 < r < r′, there exists a real number θ ∈ (0, 1) such
that

‖v(t, ·)‖W r,∞ . ‖v(t, ·)‖θW 1−µ,∞ ‖v(t, ·)‖1−θ
W r′,∞ .

This implies that∫ T

0
‖v(t, ·)‖pW r,∞ dt . ‖v‖pθ

C0([0,T ];W 1−µ,∞)

∫ T

0
‖v(t, ·)‖p(1−θ)

W r′,∞ dt.

The Hölder inequality then implies that

‖v‖Lp([0,T ];W r,∞) . T
θ
p ‖v‖θC0([0,T ];W 1−µ,∞) ‖v‖

1−θ
Lp([0,T ];W r′,∞)

.

By the same way, there holds

‖v‖
Lp([0,T ];W r+1

2 ,∞)
. T

θ′
p ‖v‖θ

′

C0([0,T ];W 1−µ+1
2 ,∞)
‖v‖1−θ

′

Lp([0,T ];W r′+1
2 ,∞)

.

Since s > (1− µ) + d/2, the Sobolev embedding implies that

‖v‖C0([0,T ];W 1−µ,∞) . ‖v‖C0([0,T ];Hs) , ‖v‖
C0([0,T ];W 1−µ+1

2 ,∞)
. ‖v‖

C0([0,T ];Hs+1
2 )
.

This proves that

Zr(T ) ≤ T
θ
pMs(T )θ(Zr′(T ))1−θ

for some θ > 0. This in turn proves that (3.11) implies (3.9).
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3.1.3 Proof of Proposition 3.4

Recall that the positive real number µ has been chosen such that µ < 1/24 if d = 1
and µ < 1/12 for d ≥ 2, and s, r, r′ are such that

s > 1 +
d

2
− µ, 1 < r < r′ < s + µ− d

2
, r 6∈ 1

2
N.

Let T > 0 and set I = [0, T ].

The proof of Proposition 3.4 is based on Corollary 2.7 and Theorem 1.6. By com-
bining these two results we shall deduce in the first step of the proof that

(3.12) ‖u‖Lp(I;W r′,∞) ≤ F
(
Ms(T ) + Zr(T )

)
where u is defined in terms of (η, V,B) by (see (2.17))

(3.13)

u = 〈Dx〉−s (Us − iθs),

Us := 〈Dx〉s V + Tζ〈Dx〉s B (ζ = ∇η),

θs := T√
a/λ
〈Dx〉s∇η.

In the next steps of the proof we show how to recover estimates for the original
unknowns (η, V,B) in Lp([0, T ];W r′+ 1

2 ×W r′,∞ ×W r′,∞).

Step 1: proof of (3.12). It follows from Theorem 1.6 that

‖u‖Lp(I;W r′,∞(Rd)) ≤ F
(
‖V ‖E0 +Nk(γ)

){
‖f‖Lp(I;Hs(Rd)) + ‖u‖C0(I;Hs(Rd))

}
.

Clearly we have

‖V ‖E0 ≤ Z1(T ) ≤ Zr(T ), Nk(γ) .Ms(T ).

Moreover, (2.19) and (2.22) imply that

‖u‖C0(I;Hs(Rd)) ≤ F(Ms(T )), ‖f‖Lp(I;Hs(Rd)) ≤ F
(
Ms(T ) + Zr(T )

)
.

By combining the previous estimates we deduce the desired estimate (3.12).

Step 2: estimate for η. Separating real and imaginary parts, directly from the
definition (3.13) of u, we get∥∥〈Dx〉−s T√a/λ〈Dx〉s∇η

∥∥
W r′,∞ ≤ ‖u‖W r′,∞ .

We shall make repeated uses of the following elementary result.
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Lemma 3.5. Consider m ∈ R and ρ in [0, 1]. Let (r, r1, r2) ∈ [0,+∞)3 be such that
r ≤ min(r1 + ρ, r2 +m), r 6∈ N. Consider the equation Tτv = f where τ = τ(x, ξ) is
a symbol such that τ (resp. 1/τ) belongs to Γmρ (resp. Γ−mρ ). Then

‖v‖W r,∞ ≤ K ‖v‖W r1,∞ +K ‖f‖W r2,∞

for some constant K depending only on Mm
ρ (τ) +M−mρ (1/τ).

Proof. Write
v =

(
I − T1/τTτ

)
v + T1/τf

and use (A.4) (resp. (A.5)) to estimate the first (resp. second) term.

Now write
〈Dx〉−s T√a/λ〈Dx〉s∇ = T√

a/λ
∇+R

where R =
[
〈Dx〉−s , T√a/λ〈Dx〉s∇

]
. Since

√
a/λ is a symbol of order −1/2 in ξ, it

follows from (A.5) that, for any ρ ∈ (0, 1),

‖Rη‖W r′,∞ ≤ KM
− 1

2
ρ

(√a

λ

)
‖η‖

W r′+1
2−ρ,∞

and hence
‖Rη‖W r′,∞ ≤ F

(
‖∇η‖W ρ,∞ , ‖a‖W ρ,∞

)
‖η‖

W r′+1
2−ρ,∞

.

Now by assumption on s and r′ we can chose ρ (say ρ = 1/4) so that

ρ < s − 1

2
− d

2
, r′ +

1

2
− ρ < s +

1

2
− d

2

and hence
‖Rη‖W r′,∞ ≤ F

(
‖η‖

Hs+1
2
, ‖a− g‖

Hs− 1
2

)
.

Recalling (see (C.1)) that ‖a− g‖
Hs− 1

2
≤ F(Ms) for any s > 3/4 + d/2, we obtain

‖Rη‖W r′,∞ ≤ F(Ms).

We thus deduce that ∥∥∥T√
a/λ
∇η
∥∥∥
W r′,∞

≤ ‖u‖W r′,∞ + F(Ms).

Now, Lemma 3.5, applied with m = −1/2 and ρ = 1/4, yields an estimate for the

W r′− 1
2
,∞-norm of ∇η which implies that

‖η‖
W r′+1

2 ,∞
≤ K ‖u‖W r′,∞ +K ‖η‖

W r′+1
2−ρ,∞

+KF(Ms)

for some constant K depending only on M−
1
2

ρ

(√
a
λ

)
. As already seen, K ≤ F(Ms)

and ‖η‖
W r′+1

2−ρ,∞
≤Ms (using the Sobolev embedding). We conclude that

‖η‖
W r′+1

2 ,∞
≤ F(Ms) ‖u‖W r′,∞ + F(Ms).

Therefore (3.12) implies that

(3.14) ‖η‖
Lp(I;W r′+1

2 ,∞)
≤ F

(
Ms(T ) + Zr(T )

)
.
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Step 3: estimate for V + TζB. We proceed as above: starting from (3.12) one
deduces an estimate for the W r′,∞-norm of 〈Dx〉−s

(
〈Dx〉s V + Tζ〈Dx〉s B

)
. One

rewrite this term as V + TζB plus a commutator which is estimated by means of
(A.5) and the Sobolev embedding. It is find that

‖V + TζB‖W r′,∞ ≤ F(Ms) ‖u‖W r′,∞ + F(Ms)

so that (3.12) implies that

(3.15) ‖V + TζB‖Lp(I;W r′,∞) ≤ F
(
Ms(T ) + Zr(T )

)
.

Step 4: estimate for V and B. We shall estimate the Lp(I;W r′,∞)-norm of B.
The estimate for the Lp(I;W r′,∞)-norm of V will follow from V = (V +TζB)−TζB
since the first term V + TζB is already estimated (see (3.15)) and since, for the
second term, one can use the rule (A.4) to obtain ‖TζB‖W r′,∞ . ‖ζ‖L∞ ‖B‖W r′,∞ .
‖η‖

Hs+1
2
‖B‖W r′,∞ .

To estimate the W r′,∞-norm of B, as above, we use the identity G(η)B = −div V +γ̃
where (see (2.5))

‖γ̃‖W r′−1,∞ ≤ ‖γ̃‖
Hs− 1

2
≤ F

(
‖(η, V,B)‖

Hs+1
2×H

1
2×H

1
2

)
.

In order to use this identity, write

(3.16)

div
(
V + TζB

)
= div V + Tdiv ζB + Tζ · ∇B
= −G(η)B + Tdiv ζB + Tζ · ∇B + γ̃

= T−λ+iζ·ξB + r

where
r = Tdiv ζB + γ̃ + (Tλ −G(η))B.

The first term in the right-hand side is estimated by means of

‖Tdiv ζB‖W r′−1,∞ . ‖Tdiv ζB‖Hs−1+µ since r′ < s + µ− d

2
. ‖div ζ‖

Cµ−1
∗
‖B‖Hs (see (A.12))

. ‖η‖W 1+µ,∞ ‖B‖Hs since div ζ = ∆η

. ‖η‖
Hs+1

2
‖B‖Hs since 1 + µ < 1 +

1

4
< s +

1

2
− d

2
·

The key point is to estimate (Tλ − G(η))B. To do so we use Proposition D.4

with (µ, σ, ε) replaced by (s + 1
2 , s,

1
4) and the Sobolev embedding Hs− 3

4 (Rd) ⊂
W r′−1,∞(Rd). This implies that

‖(Tλ −G(η))B‖W r′−1,∞ . ‖(Tλ −G(η))B‖
Hs− 3

4
≤ F

(
‖η‖

Hs+1
2

)
‖B‖Hs .

We end up with
‖r‖W r′−1,∞ ≤ F

(
‖(η, V,B)‖

Hs+1
2×Hs×Hs

)
.
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Writing (see (3.16))

T−λ+iζ·ξB = div
(
V + TζB

)
− r,

it follows from (3.15) and Lemma 3.5 that

‖B‖Lp(I;W r′,∞) ≤ F
(
Ms(T ) + Zr(T )

)
.

This completes the proof of Proposition 3.4 and hence the proof of Proposition 3.2.

3.2 Contraction estimates

Our goal in this section is to prove the following estimate for the difference of two
solutions.

Theorem 3.6. Let µ be such that µ < 1
24 if d = 1 and µ < 1

12 for d ≥ 2. Consider
two real numbers s and r satisfying

s > 1 +
d

2
− µ, 1 < r < s + µ− d

2
, r 6∈ 1

2
N.

Let (ηj , ψj), j = 1, 2, be two solutions such that

(ηj , ψj , Vj , Bj) ∈ C0([0, T ];Hs+ 1
2 ×Hs+ 1

2 ×Hs ×Hs),

(ηj , Vj , Bj) ∈ Lp([0, T ];W r+ 1
2
,∞ ×W r,∞ ×W r,∞),

for some fixed T > 0, d ≥ 1 with p = 4 if d = 1 and p = 2 otherwise. We also
assume that the condition (B.1) holds for 0 ≤ t ≤ T and that there exists c > 0 such
that for all 0 ≤ t ≤ T and x ∈ Rd, we have aj(t, x) ≥ c for j = 1, 2. Set

Mj := sup
t∈[0,T ]

‖(ηj , ψj , Vj , Bj)(t)‖
Hs+1

2×Hs+1
2×Hs×Hs

,

+ ‖(ηj , Vj , Bj)‖
Lp([0,T ];W r+1

2 ,∞×W r,∞×W r,∞)
.

Set

η := η1 − η2, ψ := ψ1 − ψ2, V := V1 − V2, B := B1 −B2,

and

N(T ) := sup
t∈[0,T ]

‖(η, ψ, V,B)(t)‖
Hs− 1

2×Hs− 1
2×Hs−1×Hs−1

+ ‖(η, V,B)‖
Lp([0,T ];W r− 1

2 ,∞×W r−1,∞×W r−1,∞)
.

Then we have

(3.17) N(T ) ≤ K‖(η, ψ, V,B) |t=0 ‖
Hs− 1

2×Hs− 1
2×Hs−1×Hs−1

,

where K is a positive constant depending only on T,M1,M2, r, s, d, c.
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Remark 3.7. To prove this theorem, we shall follow closely the analysis in [3].
However, there are quite difficulties which appear for s < 1 + d/2, in particular for

d = 1 and with a general bottom. For instance, one has to estimate the Hs− 3
2 -norm

of various products of the form uv with u ∈ Hs−1 and v ∈ Hs− 3
2 . For s < 1 + d/2,

the product is no longer bounded from Hs−1 ×Hs− 3
2 to Hs− 3

2 and, clearly, one has
to further assume some control in Hölder or Zygmund norms. Namely, we assume

that u ∈ Hs−1 ∩ L∞ and v ∈ Hs− 3
2 ∩ C−

1
2

∗ . Then, paralinearizing the product
uv = Tuv + Tvu+R(u, v) and using the usual estimate for paraproducts (see (A.4)
and (A.12)), one obtains

‖Tuv‖
Hs− 3

2
. ‖u‖L∞ ‖v‖Hs− 3

2
, ‖Tvu‖

Hs− 3
2
. ‖v‖

C
− 1

2
∗
‖u‖Hs−1

so the only difficulty is to estimate the Hs− 3
2 -norm of the remainder R(u, v). How-

ever, the estimate (A.11) requires that s − 3
2 > 0, which does not hold in general

under the assumption (3.7). To circumvent this problem, each times that we shall

need to estimate the Hs− 3
2 -norm of such remainders, we shall prove that one can fac-

tor out some derivative exploiting the structure of the water waves equations. This
means that one can replace R(u, v) by ∂xR(ũ, ṽ) for some functions, say, ũ ∈ L∞

and ṽ ∈ Hs− 1
2 . Now one can estimate the Hs− 1

2 -norm of R(ũ, ṽ) by means of (A.11)

which immediately implies the desired estimate for the Hs− 3
2 -norm of ∂xR(ũ, ṽ).

3.2.1 Contraction for the Dirichlet-Neumann

A key step in the proof of Theorem 3.6 is to prove a Lipschitz property for the
Dirichlet-Neumann operator.

Proposition 3.8. Assume d ≥ 1, s > 3
4 + d

2 , s + 1
4 −

d
2 > r > 1. Then there

exists a non decreasing function F : R+ → R+ such that

(3.18)

‖G(η1)f −G(η2)f‖
Hs− 3

2

≤ F(‖(η1, η2)‖
Hs+1

2

){
‖η1 − η2‖

W r− 1
2 ,∞
‖f‖Hs

+ ‖η1 − η2‖
Hs− 1

2

(
‖f‖Hs + ‖f‖W r,∞

)}
.

In the proof of Proposition 3.8 we shall use the following classical lemma.

Lemma 3.9. Let I = (−1, 0) and σ ∈ R. Let u ∈ L2
z(I,H

σ+ 1
2 (Rd)) such that

∂zu ∈ L2
z(I,H

σ− 1
2 (Rd)). Then u ∈ C0([−1, 0], Hσ(Rd)) and there exists an absolute

constant C > 0 such that

sup
z∈[−1,0]

‖u(z, ·)‖Hσ(Rd) ≤ C
(
‖u‖

L2(I,Hσ+1
2 (Rd))

+ ‖∂zu‖
L2(I,Hσ− 1

2 (Rd))

)
.

Proof of Proposition 3.8. In the sequel we shall denote by RHS the right hand side
of (3.18) where F may vary from line to line.
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We want to apply changes of variable as in (B.4). However, here, we have an
additional constraint. Indeed, after this change of variables, we want to get the
same domain for η1 and η2 to be able to compare the variational solutions. For this
purpose, we need to modify slightly the change of variables in (B.4).

To prove the theorem, we can assume without loss of generality that ‖η1− η2‖L∞ is
small enough. Then there exists η̃ ∈ C∞b such that for j = 1; 2,

ηj −
3h

4
≤ η̃ ≤ ηj −

2h

3
.

Let

(3.19)



Ω1,j = {(x, y) : x ∈ Rd, ηj(x)− h

2
< y < ηj(x)},

Ω2,j = {(x, y) ∈ O : η̃(x) < y ≤ ηj(x)− h

2
},

Ω3 = {(x, y) ∈ O : y < η̃(x)}
Ωj = Ω1,j ∪ Ω2,j ∪ Ω3

and

(3.20)



Ω̃1 = Rd
x × [−1, 0)z

Ω̃2 = Rd
x × [−2,−1)z

Ω̃3 = {(x, z) ∈ Rd × (−∞,−2) : (x, z + 2 + η̃(x)) ∈ Ω3},

Ω̃ = Ω̃1 ∪ Ω̃2 ∪ Ω̃3.

We define Lipschitz diffeomorphisms from Ω̃ to Ωj of the form (x, z) 7→ (x, ρj(x, z))

where the map (x, z) 7→ ρj(x, z) from Ω̃ to R is defined as follows
(3.21)

ρj(x, z) = (1 + z)eδz〈Dx〉ηj(x)− ze−(1+z)δ〈Dx〉(ηj(x)− h

2

)
if (x, z) ∈ Ω̃1,

ρj(x, z) = (2 + z)eδz〈Dx〉
(
ηj(x)− h

2

)
− (1 + z)η̃ if (x, z) ∈ Ω̃2,

ρj(x, z) = z + 2 + η̃(x) if (x, z) ∈ Ω̃3

for some small enough positive constant δ. Notice that, since for z ∈ I = (−2, 0) we
kept essentially for ρj the same expression as in (B.4), we get the same estimates as
in Lemma B.1.

Recall that according to (B.13) we have for j = 1, 2

G(ηj)f = Uj |z=0, Uj =
1 + |∇xρj |2

∂zρj
∂zφ̃j −∇xρj · ∇xφ̃j ,

where φ̃j is the variational solution of the problem

P̃jφ̃j = 0, φ̃j |z=0 = f.

72



Set U = U1 − U2. According to Lemma 3.9 with σ = s − 3
2 , the theorem will be a

consequence of the following estimate

(3.22) ‖U‖L2(I,Hs−1) + ‖∂zU‖L2(I,Hs−2) ≤ RHS, I = (−1, 0).

Set φ̃ = φ̃1 − φ̃2. We claim that (3.22) is a consequence of the following estimate

(3.23) ‖∇x,zφ̃‖L2(I,Hs−1) ≤ RHS.

Indeed assume that (3.23) is proved. One term in U can be written as

∇xρ1 · ∇xφ̃1 −∇xρ2 · ∇xφ̃2 = ∇xρ1 · ∇xφ̃+∇x(ρ1 − ρ2) · ∇xφ̃2.

Now, since s > 3
4 + d

2 , we can apply (A.16) with s0 = s − 1, s1 = s − 1
2 , s2 = s − 1. It

follows that

‖∇xρ1 · ∇xφ̃‖L2(I,Hs−1) . ‖∇xρ1‖
L∞(I,Hs− 1

2 )
‖∇xφ̃‖L2(I,Hs−1)

. ‖η1‖
Hs+1

2
RHS.

For the second term, since s > 3
4 + d

2 > 1, we can write

‖∇x(ρ1 − ρ2) · ∇xφ̃2‖L2(I,Hs−1) .‖∇x(ρ1 − ρ2)‖L2(I,Hs−1)‖∇xφ̃2‖L∞(I,L∞)

+ ‖∇x(ρ1 − ρ2)‖L2(I,L∞)‖∇xφ̃2‖L∞(I,Hs−1).

Now we have (as in (B.6) and (B.7))

‖∇x(ρ1 − ρ2)‖L2(I,Hs−1) . ‖η1 − η2‖
Hs− 1

2
,

‖∇x(ρ1 − ρ2)‖L2(I,L∞) . ‖η1 − η2‖
W r− 1

2 ,∞
.

Also it follows from (B.18) that∥∥∥∇xφ̃2

∥∥∥
L∞(I,Hs−1)

≤ F
(
‖η2‖

Hs+1
2

)
‖f‖Hs

and it follows from Proposition B.7 that

‖∇xφ̃2‖L∞(I,L∞) ≤ F
(
‖η2‖

Hs+1
2

){
‖f‖Hs + ‖f‖W r,∞

}
.

Therefore

(3.24) ‖∇x(ρ1 − ρ2) · ∇xφ̃2‖L2(I,Hs−1) ≤ RHS.

We have thus completed the estimate of the first term in U . For the second term,
one checks that, similarly, the L2(I,Hs−1)-norm of

1 + |∇xρ1|2

∂zρ1
∂zφ̃1 −

1 + |∇xρ2|2

∂zρ2
∂zφ̃2
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is bounded by RHS. This completes the proof of the fact ‖U‖L2(I,Hs−1) ≤ RHS
provided that (3.23) is granted.

Let us now prove that, similarly, (3.23) implies that ‖∂zU‖L2(I,Hs−2) ≤ RHS. We
begin by claiming that we have, for j = 1, 2,

(3.25) ∂zUj = div(∇xρj∂zφ̃j)− div(∂zρj∇xφ̃j).

This follows from the fact (see (B.12)) that we can write

0 = P̃jφ̃j = −div(∇xρj∂zφ̃j) + div(∂zρj∇xφ̃j) + ∂zUj .

Therefore we have

‖∂zU‖L2(I,Hs−2) ≤ ‖∇xρ1∂zφ̃1 −∇xρ2∂zφ̃2‖L2(I,Hs−1)

+ ‖∂zρ1∇xφ̃1 − ∂zρ2∇xφ̃2‖L2(I,Hs−1).

Since s − 1 > 0, we can argue as above and conclude the estimate by means of
product rules.

Therefore we are left with the proof of (3.23). Since P̃jφ̃j = 0, j = 1, 2 we can write

(3.26)

P̃1φ̃ = (P̃2 − P̃1)φ̃2 = F + ∂zG

F = div
(
∂z(ρ2 − ρ1)∇xφ̃2

)
+ div

(
∇x(ρ1 − ρ2)∂zφ̃2

)
G = ∇x(ρ1 − ρ2) · ∇xφ̃2 +

(1 + |∇xρ2|2

∂zρ2
− 1 + |∇xρ1|2

∂zρ1

)
∂zφ̃2.

Arguing exactly as in the proof of (3.24) we can write

(3.27) ‖F‖L2(I,Hs−2) + ‖G‖L2(I,Hs−1) ≤ RHS.

It follows from Proposition B.21 that

(3.28) ‖∇x,zφ̃‖L2(I,Hs−1) ≤ F(‖η1‖
Hs+1

2
)
(
RHS + ‖∇x,zφ̃‖

X−
1
2 (I)

)
.

Then (3.23) will be proved if we show that

(3.29) ‖∇x,zφ̃‖
X−

1
2 (I)
≤ RHS.

We begin by proving the following estimate.

(3.30) ‖∇x,zφ̃‖L2(J,L2) ≤ RHS.

For this purpose we use the variational characterization of the solutions given in
[1, 3]. It is sufficient to know that φ̃j = ũj + f̃ where f̃ = ez〈Dx〉f and ũj is such
that, with the notations

X = (x, z) ∈ Ω̃ = {(x, z) : x ∈ Rd,−1 < z < 0},

Λj = (Λj1,Λ
j
2), Λj1 =

1

∂zρj
∂z, Λj2 = ∇x −

∇xρj
∂zρj

∂z,
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we have

(3.31)

∫
Ω̃

Λj ũj · Λjθ Jj dX = −
∫

Ω̃
Λj f̃ · Λjθ Jj dX

for all θ ∈ H1,0(Ω̃), where Jj = |∂zρj |.

Making the difference between the two equations (3.31), and taking θ = φ̃ = ũ1− ũ2

one can find a positive constant C such that∫
Ω̃
|Λ1φ̃|2 dX ≤ C(A1 + · · ·+A6)

where
(3.32)

A1 =

∫
Ω̃
|(Λ1 − Λ2)ũ2||Λ1φ̃| J1 dX, A2 =

∫
Ω̃
|(Λ1 − Λ2)φ̃||Λ2ũ2| J1dX,

A3 =

∫
Ω̃
|Λ2ũ2||Λ2φ̃| |J1 − J2| dX, A4 =

∫
Ω̃
|(Λ1 − Λ2)f̃ ||Λ1ũ| J1 dX,

A5 =

∫
Ω̃
|(Λ1 − Λ2)φ̃||Λ2f̃ | J1 dX, A6 =

∫
Ω̃
|Λ2f̃ ||Λ2φ̃| |J1 − J2| dX.

Noticing that Λ1 − Λ2 = β∂z we deduce from Proposition B.7 that

A1 ≤ ‖Λ1φ̃‖
L2(Ω̃)

‖β‖
L2(Ω̃)

‖∂zũ2‖L∞(I,L∞)

≤ ‖Λ1φ̃‖
L2(Ω̃)

F(‖(η1, η2)‖
Hs+1

2×Hs+1
2
)‖η1 − η2‖

H
1
2
{‖f‖Hs + ‖f‖W r,∞} .

Now

A2 ≤ ‖β‖L2(Ω̃)
‖Λ2ũ2‖L∞(Ω̃)

‖∂zφ̃‖L2(Ω̃)
.

Using Proposition B.7 we obtain

A2 ≤ F
(
‖(η1, η2)‖

Hs+1
2×Hs+1

2

)
‖η1 − η2‖

H
1
2
{‖f‖Hs + ‖f‖W r,∞} ‖Λ1φ̃‖

L2(Ω̃)

≤ F
(
‖(η1, η2)‖

Hs+1
2×Hs+1

2

)
‖η1 − η2‖

Hs− 1
2
{‖f‖Hs + ‖f‖W r,∞} ‖Λ1φ̃‖

L2(Ω̃)
.

Now we estimate A3 as follows. We have

A3 ≤ ‖Λ2ũ2‖L∞(Ω̃)
‖Λ2φ̃‖

L2(Ω̃)
‖J1 − J2‖L2(Ω̃)

.

Then we observe that ‖J1 − J2‖L2(Ω̃)
. ‖η1 − η2‖

H
1
2
. ‖η1 − η2‖

Hs− 1
2

and we use

the elliptic regularity to obtain

A3 ≤ F
(
‖(η1, η2)‖

Hs+1
2×Hs+1

2

)
‖f‖W r,∞‖η1 − η2‖

Hs− 1
2
‖Λ2φ̃‖

L2(Ω̃)
.

To estimate A4 and A5 we recall that f̃ = ez〈Dx〉f. Then we have

‖β∂z f̃‖L2(I×Rd) ≤ ‖β‖L2(I×Rd)‖∂z f̃‖L∞(I×Rd).
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Since ‖∂z f̃‖L∞(I×Rd) ≤ ‖f‖W r,∞ we obtain

A4 +A5 ≤ ‖Λ1φ̃‖
L2(Ω̃)

F
(
‖(η1, η2)‖

Hs+1
2

)
‖η1 − η2‖

Hs− 1
2×Hs− 1

2
‖f‖W r,∞ .

The term A6 is estimated like A3. This proves (3.30).

To complete the proof of (3.29), in view of (3.30), it remains only to prove that
‖∇x,zφ̃‖

L∞(I,H−
1
2 )
≤ RHS. First of all by Lemma 3.9 we have

‖∇xφ̃‖
L∞(I,H−

1
2 )
≤ C

(
‖∇xφ̃‖L2(I,L2) + ‖∂z∇xφ̃‖L2(I,H−1)

)
≤ C ′‖∇x,zφ̃‖L2(I,L2)

and we use (3.30) to deduce that ‖∇xφ̃‖
L∞(I,H−

1
2 )
≤ RHS. So it remains to prove

that, similarly, ‖∂zφ̃‖
L∞(I,H−

1
2 )
≤ RHS. Here, by contrast with the estimate for∇xφ̃,

one cannot obtain the desired result from Lemma 3.9, exploiting the previous bound
(3.30). Indeed, one cannot use the equation satisfied by φ̃ to estimate the L2(I,H−1)-
norm of ∂2

z φ̃. As above, we shall exploit the fact that one can factor out a spatial
derivative by working with U instead of φ̃. We shall prove that ‖U‖

L∞(I,H−
1
2 )
≤ RHS

and then relate ∂zφ̃ and U to complete the proof.

Lemma 3.9 implies that

‖U‖
L∞(I,H−

1
2 )

. ‖U‖L2(I,L2) + ‖∂zU‖L2(I,H−1) .

The L2(L2)-norm of U is easily estimated using the bound (3.30) for the L2(L2)-
norm of ∇x,zφ̃. To estimate ‖∂zU‖L2(I,H−1), write

∂zU = div(∇ρ1∂zφ̃) + div(∇ρ∂zφ̃2)− div(∂zρ1∇φ̃)− div(∂zρ∇φ̃2)

so

‖∂zU‖L2(I,H−1) ≤ ‖∇x,zρ1‖L∞(I,L∞)

∥∥∇x,zφ̃∥∥L2(I,L2)

+ ‖∇x,zρ‖L2(I,L2)

∥∥∇x,zφ̃2

∥∥
L∞(I,L∞)

which implies that ‖U‖
L∞(I,H−

1
2 )
≤ RHS. Now, directly from the definition of U

one has

∂zφ̃ =
∂zρ1

1 + |∇ρ1|2
[
U +

(1 + |∇ρ2|2

∂zρ2
− 1 + |∇ρ1|2

∂zρ1

)
∂zφ̃2 +∇ρ1 · ∇φ̃+∇ρ · ∇φ̃2

]
.

The L∞(I,H−
1
2 )-norm of the term between brackets is bounded by RHS, using the

fact that the product is bounded from Hs− 1
2 ×H−

1
2 (resp. L2×Hs−1) to H−

1
2 (resp.

H−
1
2 ) in order to estimate ∇ρ1 · ∇φ̃ (resp. the other terms). Since the coefficient

∂zρ1
1+|∇ρ1|2 belongs to L∞(I,Hs− 1

2 ) and since the product is bounded from Hs− 1
2×H−

1
2

to H−
1
2 , this concludes the proof.
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3.2.2 Paralinearization of the equations

Recall from Proposition 2.3 that

(3.33)


(∂t + Vj · ∇)Bj = aj − g,
(∂t + Vj · ∇)Vj + ajζj = 0,

(∂t + Vj · ∇)ζj = G(ηj)Vj + ζjG(ηj)Bj + γj , ζj = ∇ηj ,

where γj is the remainder term given by (2.8). We now compute and paralinearize
the equations satisfied by the differences

ζ = ζ1 − ζ2, V = V1 − V2, B = B1 −B2.

In [3], assuming that s > 1 + d/2, we deduced that

(3.34)

{
(∂t + V1 · ∇)(V + ζ1B) + a2ζ = F1,

(∂t + V2 · ∇)ζ −G(η1)V − ζ1G(η1)B = F2,

for some remainders such that

‖(F1, F2)‖
Lp([0,T ];Hs−1×Hs− 3

2 )
≤ K(M1,M2)N(T ).

However, the estimate for f2 no longer hold when s < 3/2 for the reason explained in
Remark 3.7. To overcome this problem, the key point is that one obtains the desired
result by replacing ∂t + V2 · ∇ (resp. ζ1G(η1)B) by ∂t + TV2 · ∇ (resp. Tζ1G(η1)B in
the equation for ζ (there is a cancellation when one adds the remainders).

Lemma 3.10. The differences ζ,B, V satisfy a system of the form

(3.35)

{
(∂t + TV1 · ∇)(V + ζ1B) + a2ζ = f1,

(∂t + TV2 · ∇)ζ −G(η1)V − Tζ1G(η1)B = f2,

for some remainders such that

‖(f1, f2)‖
Lp([0,T ];Hs−1×Hs− 3

2 )
≤ K(M1,M2)N(T ).

Proof. Directly from (3.33), it is easily verified that

(3.36)

{
∂tB + V1 · ∇B = a+R1,

∂tV + V1 · ∇V + a2ζ + aζ1 = R2,

where a = a1 − a2 and

R1 = −V · ∇B2, R2 = −V · ∇V2.

Now we use the first equation of (3.36) to express a in terms of ∂tB+V1 ·∇B in the
last term of the left-hand side of the second equation of (3.36). Replacing V1 · ∇ in
the right-hand side by TV1 · ∇, we thus obtain the first equation of (3.35) with

f1 = B(∂tζ1 + V1 · ∇ζ1) +R1ζ1 +R2 − T∇(V+ζ1B) · V1 −R
(
V1,∇(V + ζ1B)

)
.
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To estimate ∂tζ1 + V1 · ∇ζ1 we use the identity (2.10) to deduce

∂tζ1 + V1 · ∇ζ1 = G(η1)V1 − (div V1)ζ1.

Then, using (B.20) to estimate G(η1)V1 and the fact that the product is bounded

from Hs−1 ×Hs− 1
2 into Hs−1, we get

‖∂tζ1 + V1 · ∇ζ1‖Hs−1 ≤ ‖G(η1)V1‖Hs−1 + ‖div V1‖Hs−1 ‖ζ1‖
Hs− 1

2

≤ F
(
‖η1‖

Hs+1
2

)
‖V1‖Hs .

Also, it follows from the L∞-estimate (B.31) for G(η)f that

‖∂tζ1 + V1 · ∇ζ1‖L∞ ≤ F
(
‖η1‖

Hs+1
2

){
‖V1‖Hs + ‖V1‖W r,∞

}
.

Then the estimate of the Hs−1-norm of f1 follows from the usual tame estimate
in Sobolev space (see (A.17)), the rule (A.12) applied with m = 1 to estimate
T∇(V+ζ1B) · V1, the rule (A.11) applied with α = 1 and a = V1 to estimate the
remainder R

(
V1,∇(V + ζ1B)

)
as well as the estimates for the Dirichlet-Neumann

operator given by Propositions B.2 and B.7.

To compute and to estimate f2 we shall rewrite the equation for ζj , j = 1, 2, by
using the identity (2.10) written under the form

∂tζj = G(ηj)Vj −Θj

where Θj is the function with values in Rd whose coordinates Θk
j is given by Θk

j =

div(Vjζ
k
j ). Now write

Θk
j = div(Vjζ

k
j ) = div(TVjζ

k
j ) + div(Tζkj

Vj) + div(R(ζkj , Vj))

and use the Leibniz rule ∂αTab = T∂αab+ Ta∂αb to obtain

Θk
j = TVj∇ζkj + Tζkj

div Vj + F kj

with
F kj = Tdiv Vjζ

k
j + T∇ζkj

· Vj + div(R(ζkj , Vj)).

Using the identity G(ηj)Bj = −div Vj + γ̃j where γ̃j is estimated by means of (2.4),
we obtain

Θj = TVj · ∇ζj − TζjG(ηj)Bj + Tζj γ̃j + Fj

so
∂tζj + TVj · ∇ζj = G(ηj)Vj + TζjG(ηj)Bj − Tζj γ̃j − Fj .

Subtracting the equation for j = 1 and the one for j = 2 we obtain the desired
equation for ζ = ζ1 − ζ2 with

f2 := (I) + (II) + (III)− F
(I) :=

(
G(η1)−G(η2)

)
V2 + Tζ2

(
G(η1)−G(η2)

)
B2,

(II) := −TV · ∇ζ1 + TζG(η1)B2,

(III) := −Tζ1 γ̃ − Tζ γ̃2,

F := F1 − F2.
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The term (I) is estimated by means of Proposition 3.8. To estimate (II), write

‖TV · ∇ζ1‖
Hs− 3

2
. ‖V ‖L∞ ‖ζ1‖

Hs− 1
2

and

‖TζG(η1)B2‖
Hs− 3

2
. ‖ζ‖

C
− 1

2
∗
‖G(η1)B2‖Hs−1 ≤ ‖ζ‖

C
− 1

2
∗
F
(
‖η1‖

Hs+1
2

)
‖B2‖Hs

where we used Proposition B.2 to estimate G(η1)B2.

It remains to estimate F given by

F = Tdiv V2ζ + Tdiv V ζ1 + T∇ζ2 · V + T∇ζ · V1 + div
(
R(ζ, V2)

)
+ div

(
R(ζ1, V )

)
.

Write

‖Tdiv V2ζ‖Hs− 3
2
. ‖div V2‖L∞ ‖ζ‖Hs− 3

2
. ‖V2‖W r,∞ ‖η‖

Hs− 1
2
,

‖Tdiv V ζ1‖
Hs− 3

2
. ‖div V ‖C−1

∗
‖ζ1‖

Hs− 1
2
. ‖V ‖W r−1,∞ ‖η1‖

Hs 12
,

‖T∇ζ2 · V ‖Hs− 3
2
. ‖∇ζ2‖

C
− 1

2
∗
‖V ‖Hs−1 . ‖η‖

W r+1
2 ,∞
‖V ‖Hs−1 .

Now the key point of this proof is that one has the following obvious inequalities∥∥div
(
R(ζ, V2)

)
+ div

(
R(ζ1, V )

)∥∥
Hs− 3

2
≤ ‖R(ζ, V2) +R(ζ1, V )‖

Hs− 1
2
.

Since s − 1/2 > 0 (by contrast with s − 3/2 which might be negative), one can use
(A.11) to deduce

‖R(ζ, V2)‖
Hs− 1

2
. ‖ζ‖

C
− 1

2
∗
‖V2‖Hs . ‖η‖

W r− 1
2 ,∞
‖V2‖Hs ,

‖R(ζ1, V )‖
Hs− 1

2
. ‖ζ1‖

Hs− 1
2
‖V ‖L∞ . ‖η1‖

Hs+1
2
‖V ‖W r−1,∞ .

This completes the proof.

Once Proposition 3.8 and Lemma 3.10 are established, the end of the proof of the
contraction estimate in Theorem 3.6 follows from the analysis in [3]. We shall recall
the scheme of the proof for the sake of completeness.

Our goal is to prove an estimate of the form

(3.37) N(T ) ≤ F(M1,M2)N(0) + T δ F(M1,M2)N(T ),

for some δ > 0 and some function F depending only on s and d. This implies
N(T1) ≤ 2F(M1,M2)N(0) for T1 small enough (depending on T and 1

2F(M1,M2)),
and iterating the estimate between [T1, 2T1],. . . , [T − T1, T ] implies Theorem 3.6.

Firstly, one symmetrize the equations (3.35).

79



Lemma 3.11. Set I = [0, T ] and

λ1 :=
√

(1 + |∇η1|2)|ξ|2 − (∇η1 · ξ)2,

and
` :=

√
λ1a2, ϕ := T√λ1(V + ζ1B), ϑ := T√a2ζ.

Then

(∂t + TV1 · ∇)ϕ+ T`ϑ = g1,(3.38)

(∂t + TV2 · ∇)ϑ− T`ϕ = g2,(3.39)

where
‖(g1, g2)‖

Lp(I;Hs− 3
2×Hs− 3

2 )
≤ K(M1,M2)N(T ).

The previous result is proved following the proof of Lemma 5.6 in [3].

We then use the previous result and classical arguments to obtain a Sobolev estimate.

Lemma 3.12. Set

M ′(T ) := sup
t∈I

{
‖ϑ(t)‖

Hs− 3
2

+ ‖ϕ(t)‖
Hs− 3

2

}
.

We have

(3.40) M ′(T ) ≤ K(M1,M2)
(
N(0) + T δN(T )

)
for some δ > 0.

This follows by using mutatis mutandis the arguments used in the proof of Lemma 5.7
in [3].

Then the end of the proof of Theorem 3.6 is in two steps. Firstly, using (3.40), one
deduces a Sobolev estimate for the original unknown (η, ψ, V,B). Again, this follows
from the analysis in [3]. Secondly, one has to estimate the Hölder norms. To do
so, we use Theorem 1.6. To use this theorem, one has to reduce the analysis to a
scalar equation. Notice that System (3.38)–(3.39) involves two different transport
operators ∂t+V1 ·∇ and ∂t+V2 ·∇. This is used in the proof of Lemma 5.6 in [3] to
bound the commutator [T√a2 , ∂t+V2 ·∇] in terms of the L∞-norm of ∂ta2 +V2 ·∇a2.
However, once this symmetrization is done and Lemma 3.11 is proved, one can freely
replace ∂t + TV2 · ∇ by ∂t + TV1 · ∇ in the equation for ϑ. Indeed, this produces an
error TV1−V2 · ∇ϑ that we estimate writing

TV1−V2 · ∇ϑ =
{
TV1−V2 · ∇T√a2ζ1

}
−
{
TV1−V2 · ∇T√a2ζ2

}
and we estimate separately the contribution of each term, writing∥∥∥TV1−V2 · ∇T√a2ζ1

∥∥∥
Hs− 3

2
. ‖V1 − V2‖L∞ ‖

√
a2‖L∞ ‖ζ1‖

Hs− 1
2
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together with a similar estimate for the other term. By so doing, it follows from
(3.39) that

(∂t + TV1 · ∇)ϑ− T`ϕ = G2,

where G2 satisfies ‖G2‖
Lp(I;Hs− 3

2×Hs− 3
2 )
≤ K(M1,M2)N(T ). Now we find that u =

ϑ+ iϕ satisfies

∂tu+ TV1 · ∇u+ iT`u = g

with

‖g‖
Lp(I;Hs− 3

2×Hs− 3
2 )
≤ K(M1,M2)N(T ).

Since the Lp(I;Hs− 3
2 ×Hs− 3

2 )-norm of Tdiv V1u is bounded by K(M1,M2)N(T ), one
can further reduce the analysis to

∂tu+
1

2

(
TV1 · ∇+∇ · TV1

)
u+ iT`u = g′

with ∥∥g′∥∥
Lp(I;Hs− 3

2 )
≤ K(M1,M2)N(T ).

Then one is in position to apply Theorem 1.6 with s replaced by s−3/2 (notice that
s in any real number in Theorem 1.6) to obtain

‖u‖
Lp(I;W r− 1

2 ,∞)

≤ ‖u‖
Lp(I;C

s− 3
2−

d
2+µ

∗ )

≤ F
(
‖V1‖E0 +Nk(

√
λ1a2)

){
‖g′‖

Lp(I;Hs− 3
2 )

+ ‖u‖
C0(I;Hs− 3

2 )

}
≤ K(M1,M2)N(T ).

Then, proceeding as above, we recover an estimate for the original unknowns, that
is an estimate for ‖(η, V,B)‖

Lp([0,T ];W r− 1
2 ,∞×W r−1,∞×W r−1,∞)

. This completes the

proof of Theorem 3.6.

3.3 Passing to the limit in the equations

Below we shall obtain rough solutions of the water waves system as limits of smoother
solutions. This requires to prove that one can pass to the limit in the equations.
Here we shall prove that it is possible to do so even under very mild assumptions.

Firstly, we prove a strong continuity property of the Dirichlet Neumann operator at
the minimal level of regularity required to prove that G(η)ψ is well-defined, that is

for any Lipschitz function η and any ψ in H
1
2 (Rd), recalling that

(3.41) ‖G(η)f‖
H−

1
2
≤ F

(
‖η‖W 1,∞

)
‖f‖

H
1
2
.

We have the following result which complements Proposition 3.8.
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Proposition 3.13. There exists a non decreasing function F : R+ → R+ such that,

for all ηj ∈W 1,∞(Rd), j = 1, 2 and all f ∈ H
1
2 (Rd),

(3.42)
∥∥(G(η1)−G(η2)

)
f
∥∥
H−

1
2
≤ F

(
‖(η1, η2)‖W 1,∞×W 1,∞

)
‖η1 − η2‖W 1,∞‖f‖

H
1
2
.

Proof. The proof follows the one of Proposition 3.8. In particular, we shall use the
variational formulation of the harmonic extension of f used in the last part of the
proof of Proposition 3.8.

Recall that, for j = 1, 2, we introduce ρj(x, z) defined by (B.4) (replacing of course
η by ηj). Recall also (see the paragraph below (3.30)) that we have set

Λj1 =
1

∂zρj
∂z, Λj2 = ∇x −

∇xρj
∂zρj

∂z.(3.43)

and φ̃j(x, z) = φj(x, ρj(x, z)) (where ∆x,yφj = 0 in Ωj , φj |Σj = f). As already seen,
we then have

(3.44) G(ηj)f = Uj |z=0, Uj = Λj1φ̃j −∇xρj · Λ
j
2φ̃j .

We shall make repeated use of the bound

(3.45) ‖∇x,z(ρ1 − ρ2)‖L∞(I,L∞(Rd)) ≤ C‖η1 − η2‖W 1,∞(Rd).

This implies that

(3.46)

{
(i) Λ1

k − Λ2
k = βk∂z, with suppβk ⊂ Rd × I,where I = (−1, 0),

(ii) ‖βk‖L∞(I×Rd) ≤ F(‖(η1, η2)‖W 1,∞×W 1,∞)‖η1 − η2‖W 1,∞ .

Lemma 3.14. Set I = (−1, 0), v = φ̃1− φ̃2, and Λj = (Λj1,Λ
j
2). There exists a non

decreasing function F : R+ → R+ such that

(3.47) ‖Λjv‖L2(I;L2(Rd)) ≤ F(‖(η1, η2)‖W 1,∞×W 1,∞)‖η1 − η2‖W 1,∞‖f‖
H

1
2
.

Let us show how this Lemma implies Theorem 3.13. According to (3.44) we have

(3.48)

U1 − U2 = (1) + (2) + (3) + (4) + (5) where

(1) = Λ1
1φ̃, (2) = (Λ1

1 − Λ2
1)φ̃2, (3) = −∇x(ρ1 − ρ2)Λ1

2φ̃1

(4) = −(∇xρ2)Λ1
2φ̃, (5) = −(∇xρ2)(Λ1

2 − Λ2
2)φ̃2.

The L2(I, L2(Rd)) norms of (1) and (4) are estimated using (3.47). Also, the
L2(I, L2(Rd)) norms of (2) and (5) are estimated by the right hand side of (3.47)
using (3.46) and (3.23). Eventually the L2(I, L2(Rd)) norm of (3) is also estimated
by the right hand side of (3.47) using (3.45) and (3.23). It follows that

(3.49) ‖U1 − U2‖L2(I,L2) ≤ F(‖(η1, η2)‖W 1,∞×W 1,∞)‖η1 − η2‖W 1,∞‖f‖
H

1
2
.
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Now according to (3.25) we have

(3.50) ∂z(U1 − U2) = −∇x
(
∂z(ρ1 − ρ2)Λ1

2φ̃1 + (∂zρ2)(Λ1
2 − Λ2

2)φ̃1 + (∂zρ2)Λ2
2φ̃
)
.

Therefore using the same estimates as above we see easily that

(3.51) ‖∂z(U1 − U2)‖L2(I,H−1) ≤ F(‖(η1, η2)‖W 1,∞×W 1,∞)‖η1 − η2‖W 1,∞‖f‖
H

1
2
.

Then Theorem 3.13 follows from (3.49), (3.51) and Lemma 3.9.

Proof of Lemma 3.14. We proceed as in the end of the proof of Proposition 3.8.
Namely we use the inequality∫

Ω̃
|Λ1φ̃|2 dX ≤ C(A1 + · · ·+A6)

where A1, . . . , A6 are given by (3.32), and we recall their expressions for the reader
convenience:

A1 =

∫
Ω̃
|(Λ1 − Λ2)ũ2||Λ1φ̃| J1 dX, A2 =

∫
Ω̃
|(Λ1 − Λ2)φ̃||Λ2ũ2| J1dX,

A3 =

∫
Ω̃
|Λ2ũ2||Λ2φ̃| |J1 − J2| dX, A4 =

∫
Ω̃
|(Λ1 − Λ2)f̃ ||Λ1ũ| J1 dX,

A5 =

∫
Ω̃
|(Λ1 − Λ2)φ̃||Λ2f̃ | J1 dX, A6 =

∫
Ω̃
|Λ2f̃ ||Λ2φ̃| |J1 − J2| dX,

where f̃ and ũj (ũ := ũ1 − ũ2) are such that φ̃j = ũj + f̃ with f̃ = ez〈Dx〉f .

Using (3.46), (3.23), (3.45) we can write

(3.52)
|A1| ≤ ‖β‖L∞(I×Rd)‖J1‖L∞(I×Rd)‖∂zũ2‖L2(I×Rd)‖Λ1φ̃‖

L2(Ω̃)

≤ F(‖(η1, η2)‖W 1,∞×W 1,∞)‖η1 − η2‖W 1,∞‖f‖
H

1
2
‖Λ1φ̃‖

L2(Ω̃)
.

Since Λ1
j − Λ2

j = βj∂zρ1Λ1
1 the term A2 can be bounded by the right hand side of

(3.52).

Now we have ‖J1 − J2‖L∞(I×Rd) ≤ C‖η1 − η2‖W 1,∞(Rd) and

‖Λ2φ̃‖
L2(Ω̃)

≤ F(‖(η1, η2)‖W 1,∞×W 1,∞)‖Λ1φ̃‖
L2(Ω̃)

.

So using (3.23) we see that the term A3 can be also estimated by the right hand
side of (3.52). To estimate the terms A4 to A6 we use the same arguments and also
‖f̃‖

H1(Ω̃)
. ‖f‖

H
1
2 (Rd)

. This completes the proof.

Notation 3.15. Given two functions η, ψ one writes

B(η)ψ =
G(η)ψ +∇η · ∇ψ

1 + |∇η|2
, V (η)ψ = ∇ψ − (B(η)ψ)∇η.

83



Corollary 3.16. Fix s > 1
2 + d

2 . Consider two functions η and ψ in Hs+ 1
2 (Rd) as

well as two sequences (ηn)n∈N and (ψn)n∈N such that the following properties hold:

1. (ηn)n∈N and (ψn)n∈N are bounded sequences in Hs+ 1
2 (Rd);

2. (ηn)n∈N converges to η in W 1,∞(Rd);

3. (ψn)n∈N converges to ψ in H
1
2 (Rd).

Then G(ηn)ψn (resp. B(ηn)ψn, resp. V (ηn)ψn) converges in H−
1
2 (Rd) to G(η)ψ

(resp. B(η)ψ, resp. V (η)ψ).

Proof. The proof is straightforward. Write

G(ηn)ψn −G(η)ψ =
(
G(ηn)−G(η)

)
ψn +G(η)(ψn − ψ).

The inequality (3.41) (resp. (3.42)) then implies that the second (resp. first) term

in the right-hand side converges to 0 in H−
1
2 (Rd).

To study the limit of B(ηn)ψn, we first prove that ∇ηn · ∇ψn converges to ∇η · ∇ψ
in H−

1
2 . To do so, one makes the difference and then use the fact that the product

is bounded from Hs− 1
2 ×H−

1
2 to H−

1
2 to obtain

‖∇ηn · ∇(ψn − ψ)‖
H−

1
2
. ‖ηn‖

Hs+1
2
‖ψn − ψ‖

H
1
2
.

On the other hand

‖∇(ηn − η) · ∇ψ‖
H−

1
2
≤ ‖∇(ηn − η) · ∇ψ‖L2 ≤ ‖ηn − η‖W 1,∞ ‖ψ‖

Hs+1
2
.

This proves that ∇ηn · ∇ψn converges to ∇η · ∇ψ in H−
1
2 .

Now set an = (1 + |∇ηn|2)−1, bn = G(ηn)ψn +∇ηn · ∇ψn. We have proved that bn
converges to its limit b = G(η)ψ + ∇η · ∇ψ in H−

1
2 . It is easily checked that an

converges to a = (1 + |∇η|2)−1 in L∞ and that a−1 belongs to Hs− 1
2 . So, as above,

one easily verify that B(ηn)ψn = anbn converges to B(η)ψ = ab in H−
1
2 . This in

turn easily implies that V (ηn)ψn converges to V (η)ψ in H−
1
2 .

3.4 Existence and uniqueness

We have already proved the uniqueness of solutions (which is a straightforward
consequence of Theorem 3.6) so, to complete the proof of Theorem 1.2, it remains
to prove the existence. This is done by means of standard arguments together with
a sharp blow up criterion proved by de Poyferré [30]. Namely, it follows from his
result that, if the lifespan T ∗ of a smooth solution of the water waves system is
finite, then

(3.53) lim
T→T ∗

(
Ms(T ) + Zr(T )

)
= +∞,
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with notations as above (with the same assumptions on s and r, see (3.7)).

We use this criterion to obtain solutions to the water waves system as limits of
smooth solutions. Namely, consider a family of initial data (ψε0, η

ε
0) in H∞(Rd)2

converging to (ψ0, η0). It follows that the Cauchy problem has a unique smooth
solution (ψε, ηε) defined on some time interval [0, T ∗ε ) (this follows from the Cauchy
result in [3] (see also [64, 65] and [43]). The question is to prove that this family of
smooth solutions exists on a uniform time interval and that, in addition, it converges
to a solution of the water waves system. By applying our a priori estimate (3.8), it
follows that there exists a function F such that, for all ε ∈ (0, 1] and all T < Tε, we
have

(3.54) M ε
s (T ) + Zεr (T ) ≤ F

(
F(Ms,0) + TF

(
M ε

s (T ) + Zεr (T )
))
,

with obvious notations.

Then, by standard arguments and using the blow up criterion (3.53), we infer that
the lifespan is bounded from below by a positive time T independent of ε and that
we have uniform estimates on [0, T ] for M ε

s (T ) + Zεr (T ).

For σ ∈ R and a ∈ [0,+∞], set

Hσ := Hσ+ 1
2 ×Hσ+ 1

2 ×Hσ ×Hσ, Wa := W a+ 1
2
,∞ ×W a+ 1

2
,∞ ×W a,∞ ×W a,∞.

Since (ηε, ψε, Vε, Bε) is uniformly bounded in X := L∞([0, T ];Hs) ∩ Lp([0, T ];Wr)
and since X is the dual of a Banach space, it has (after extraction of a subsequence) a
weak limit (η, ψ, V,B) in X. Moreover, the contraction estimate (3.17) implies that
(ηε, ψε, Bε, Vε) is a Cauchy sequence in L∞([0, T ];Hs−1) ∩ Lp([0, T ];Wr−1). There-

fore (ηε, ψε) converges to its limit (η, ψ) strongly in L∞([0, T ];Hs− 1
2 ×Hs−1). Since

(ηε, ψε) is uniformly bounded in L∞([0, T ];Hs+ 1
2 × Hs), by interpolation, (ηε, ψε)

converges also strongly in L∞([0, T ];Hs′+ 1
2 × Hs′) for any s′ < s. In particular,

(ηε, ψε) converges strongly to (η, ψ) in L∞([0, T ];W 1,∞ × H
1
2 ). As a result (see

Corollary 3.16)

G(ηε)ψε, Bε =
G(ηε)ψε +∇ηε · ∇ψε

1 + |∇ηε|2
, Vε = ∇ψε −Bε∇ηε

converge, respectively, to

G(η)ψ,
G(η)ψ +∇η · ∇ψ

1 + |∇η|2
, ∇ψ −B∇η.

This proves that the weak limits B, V of Bε, Vε satisfy

B =
G(η)ψ +∇η · ∇ψ

1 + |∇η|2
, V = ∇ψ −B∇η,

as well as the fact that one can pass to the limit in the equations. We thus obtain
a solution (η, ψ) such that (η, ψ, V,B) is in L∞([0, T ];Hs) ∩ Lp([0, T ];Wr). By
interpolation, (η, ψ, V,B) is continuous in time with values in Hs′ for any s′ < s. It
remains to prove that the solution is continuous in time with values in Hs. This was
done in details in [1] for the case with surface tension. For the case without surface
tension, this is done by Nguyen [53] following the Bona-Smith’ strategy.
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Appendix A

Paradifferential calculus

A.1 Notations and classical results

For the reader convenience, we recall notations as well as estimates for Bony’s parad-
ifferential operators (following [16, 49, 51, 61]). We also gather various estimates in
Hölder or Zygmund spaces.

For k ∈ N, we denote by W k,∞(Rd) the usual Sobolev spaces. For ρ = k + σ,
k ∈ N, σ ∈ (0, 1) denote by W ρ,∞(Rd) the space of functions whose derivatives up
to order k are bounded and uniformly Hölder continuous with exponent σ.

Definition A.1. Given ρ ∈ [0, 1] and m ∈ R, Γmρ (Rd) denotes the space of locally

bounded functions a(x, ξ) on Rd× (Rd \ 0), which are C∞ functions of ξ outside the
origin and such that, for any α ∈ Nd and any ξ 6= 0, the function x 7→ ∂αξ a(x, ξ) is

in W ρ,∞(Rd) and there exists a constant Cα such that,

∀ |ξ| ≥ 1

2
,
∥∥∂αξ a(·, ξ)

∥∥
W ρ,∞(Rd)

≤ Cα(1 + |ξ|)m−|α|.

Given a symbol a in one such symbol class, one defines the paradifferential opera-
tor Ta by

(A.1) T̂au(ξ) = (2π)−d
∫
χ(ξ − η, η)â(ξ − η, η)ψ(η)û(η) dη,

where â(θ, ξ) =
∫
e−ix·θa(x, ξ) dx is the Fourier transform of a with respect to the

first variable; χ and ψ are two fixed C∞ functions such that:

(A.2) ψ(η) = 0 for |η| ≤ 1, ψ(η) = 1 for |η| ≥ 2,

and χ(θ, η) satisfies, for some small enough positive numbers ε1 < ε2,

χ(θ, η) = 1 if |θ| ≤ ε1 |η| , χ(θ, η) = 0 if |θ| ≥ ε2 |η| ,

and
∀(θ, η) :

∣∣∣∂αθ ∂βηχ(θ, η)
∣∣∣ ≤ Cα,β(1 + |η|)−|α|−|β|.
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Given a symbol a ∈ Γmρ (Rd), we set

(A.3) Mm
ρ (a) = sup

|α|≤1+2d+ρ
sup
|ξ|≥1/2

∥∥∥(1 + |ξ|)|α|−m∂αξ a(·, ξ)
∥∥∥
W ρ,∞(Rd)

.

Notice that the cut-off function χ can be so chosen that the definition of Ta coincides
with the usual one of a paraproduct (in terms of Littlewood-Paley decomposition)
when the symbol a depends on x only.

A.2 Symbolic calculus

We shall use quantitative results from [49] about operator norms estimates in sym-
bolic calculus. To do so, introduce the following semi-norms.

Definition A.2 (Zygmund spaces). Consider a dyadic decomposition of the identity:
I = ∆−1 +

∑∞
q=0 ∆q. If s is any real number, the Zygmund class Cs

∗(R
d) is the space

of tempered distributions u such that

‖u‖Cs
∗

:= sup
q

2qs ‖∆qu‖L∞ < +∞.

Remark A.3. It is known that Cs
∗(R

d) is the usual Hölder space W s,∞(Rd) if s > 0
is not an integer.

Definition A.4. Let m ∈ R. An operator T is said to be of order m if, for all µ ∈ R,
it is bounded from Hµ to Hµ−m and from Cµ∗ to Cµ−m∗ .

The main features of symbolic calculus for paradifferential operators are given by
the following theorem.

Theorem A.5. Let m ∈ R and ρ ∈ [0, 1].

(i) If a ∈ Γm0 (Rd), then Ta is of order m. Moreover, for all µ ∈ R there exists a
constant K such that

(A.4) ‖Ta‖Hµ→Hµ−m ≤ KMm
0 (a), ‖Ta‖Cµ∗→Cµ−m∗

≤ KMm
0 (a).

(ii) If a ∈ Γmρ (Rd), b ∈ Γm
′

ρ (Rd) then TaTb − Tab is of order m+m′ − ρ. Moreover,
for all µ ∈ R there exists a constant K such that

(A.5)
‖TaTb − Tab‖Hµ→Hµ−m−m′+ρ ≤ KMm

ρ (a)Mm′
0 (b) +KMm

0 (a)Mm′
ρ (b),

‖TaTb − Tab‖Cµ∗→Cµ−m−m′+ρ∗
≤ KMm

ρ (a)Mm′
0 (b) +KMm

0 (a)Mm′
ρ (b).

(iii) Let a ∈ Γmρ (Rd). Denote by (Ta)
∗ the adjoint operator of Ta and by a the

complex conjugate of a. Then (Ta)
∗−Ta is of order m−ρ. Moreover, for all µ there

exists a constant K such that

(A.6)
‖(Ta)∗ − Ta‖Hµ→Hµ−m+ρ ≤ KMm

ρ (a),

‖(Ta)∗ − Ta‖Cµ∗→Cµ−m+ρ
∗

≤ KMm
ρ (a).
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We also need in this article to consider paradifferential operators with negative
regularity. As a consequence, we need to extend our previous definition.

Definition A.6. For m ∈ R and ρ ∈ (−∞, 0), Γmρ (Rd) denotes the space of distri-

butions a(x, ξ) on Rd × (Rd \ 0), which are C∞ with respect to ξ and such that, for
all α ∈ Nd and all ξ 6= 0, the function x 7→ ∂αξ a(x, ξ) belongs to Cρ∗ (R

d) and there
exists a constant Cα such that,

(A.7) ∀ |ξ| ≥ 1

2
,
∥∥∂αξ a(·, ξ)

∥∥
Cρ∗
≤ Cα(1 + |ξ|)m−|α|.

For a ∈ Γmρ , we define

(A.8) Mm
ρ (a) = sup

|α|≤ 3d
2

+ρ+1

sup
|ξ|≥1/2

∥∥∥(1 + |ξ|)|α|−m∂αξ a(·, ξ)
∥∥∥
Cρ∗ (Rd)

.

A.3 Paraproducts and product rules

We recall here some properties of paraproducts (a paraproduct is a paradifferential
operator Ta whose symbol a = a(x) is a function of x only). For our purposes, a key
feature is that one can define paraproducts Ta for rough functions a which do not
belong to L∞(Rd) but merely C−m∗ (Rd) with m > 0.

Definition A.7. Given two functions a, b defined on Rd we define the remainder

R(a, u) = au− Tau− Tua.

We record here various estimates about paraproducts (see chapter 2 in [12]).

Theorem A.8. i) Let α, β ∈ R. If α+ β > 0 then

‖R(a, u)‖
Hα+β− d2 (Rd)

≤ K ‖a‖Hα(Rd) ‖u‖Hβ(Rd) ,(A.9)

‖R(a, u)‖
Cα+β∗ (Rd)

≤ K ‖a‖Cα∗ (Rd) ‖u‖Cβ∗ (Rd)
,(A.10)

‖R(a, u)‖Hα+β(Rd) ≤ K ‖a‖Cα∗ (Rd) ‖u‖Hβ(Rd) .(A.11)

ii) Let m > 0 and s ∈ R. Then

‖Tau‖Hs−m ≤ K ‖a‖C−m∗ ‖u‖Hs ,(A.12)

‖Tau‖Cs−m
∗
≤ K ‖a‖C−m∗ ‖u‖Cs

∗
.(A.13)

‖Tau‖Cs
∗
≤ K ‖a‖L∞ ‖u‖Cs

∗
.(A.14)

iii) Let s0, s1, s2 be such that s0 ≤ s2 and s0 < s1 + s2 − d
2 , then

(A.15) ‖Tau‖Hs0 ≤ K ‖a‖Hs1 ‖u‖Hs2 .
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By combining the two previous points with the embedding Hµ(Rd) ⊂ C
µ−d/2
∗ (Rd)

(for any µ ∈ R) we immediately obtain the following results.

Proposition A.9. Let r, µ ∈ R be such that r + µ > 0. If γ ∈ R satisfies

γ ≤ r and γ < r + µ− d

2
,

then there exists a constant K such that, for all a ∈ Hr(Rd) and all u ∈ Hµ(Rd),
we have

‖au− Tau‖Hγ ≤ K ‖a‖Hr ‖u‖Hµ .

Corollary A.10. i) If uj ∈ Hsj (Rd) (j = 1, 2) with s1 + s2 > 0 then u1u2 ∈
Hs0(Rd) and

(A.16) ‖u1u2‖Hs0 ≤ K ‖u1‖Hs1 ‖u2‖Hs2 ,

if
s0 ≤ sj , j = 1, 2, and s0 < s1 + s2 − d/2.

ii) (Tame estimate in Sobolev spaces) If s ≥ 0 then

(A.17) ‖u1u2‖Hs ≤ K
(
‖u1‖Hs ‖u2‖L∞ + ‖u1‖L∞ ‖u2‖Hs

)
.

iii) (Tame estimate in Zygmund spaces) If s ≥ 0 then

(A.18) ‖u1u2‖Cs
∗
≤ K

(
‖u1‖Cs

∗
‖u2‖L∞ + ‖u1‖L∞ ‖u2‖Cs

∗

)
.

iv) Let µ,m ∈ R be such that µ,m > 0 and m 6∈ N. Then

(A.19) ‖u1u2‖Hµ ≤ K
(
‖u1‖L∞ ‖u2‖Hµ + ‖u2‖C−m∗ ‖u1‖Hµ+m

)
.

v) Let β > α > 0 . Then

(A.20) ‖u1u2‖C−α∗ ≤ K ‖u1‖Cβ∗ ‖u2‖C−α∗ .

vi) Let s > d/2 and consider F ∈ C∞(CN ) such that F (0) = 0. Then there exists
a non-decreasing function F : R+ → R+ such that

(A.21) ‖F (U)‖Hs ≤ F
(
‖U‖L∞

)
‖U‖Hs ,

for any U ∈ Hs(Rd)N .

vii) Let s ≥ 0 and consider F ∈ C∞(CN ) such that F (0) = 0. Then there exists a
non-decreasing function F : R+ → R+ such that

(A.22) ‖F (U)‖Cs
∗
≤ F

(
‖U‖L∞

)
‖U‖Cs

∗
,

for any U ∈ Cs
∗(R

d)N .
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Proof. The first three estimates are well-known, see Hörmander [38] or [12]. To
prove iv) and v) we write

u1u2 = Tu1u2 + Tu2u1 +R(u1, u2).

Then (A.19) follows from

‖Tu1u2‖Hµ . ‖u1‖L∞ ‖u2‖Hµ (see (A.4)),

‖Tu2u1‖Hµ . ‖u2‖C−m∗ ‖u1‖Hµ+m (see (A.12)),

‖R(u1, u2)‖Hµ . ‖u2‖C−m∗ ‖u1‖Hµ+m (see (A.11)),

while similarly (A.20) follows from

‖Tu1u2‖C−α∗ . ‖u1‖L∞ ‖u2‖C−α∗ . ‖u1‖Cβ∗ ‖u2‖C−α∗ ,

‖Tu2u1‖C−α∗ . ‖u2‖C−α∗ ‖u1‖C0
∗
≤ ‖u2‖C−α∗ ‖u1‖Cβ∗ ,

‖R(u1, u2)‖C−α∗ ≤ ‖R(u1, u2)‖
Cβ−α∗

. ‖u2‖C−α∗ ‖u1‖Cβ∗ .

(With regards to the last inequality, to apply (A.10) we do need β > α > 0.) Finally,
vi) and vii) are due to Meyer [51, Théorème 2.5 and remarque], in the line of the
work by Bony [16].

Finally, we recall Prop. 2.12 in [3] which is a generalization of (A.12).

Proposition A.11. Let ρ < 0, m ∈ R and a ∈ Γ̇mρ . Then the operator Ta is of
order m− ρ:

(A.23)
‖Ta‖Hs→Hs−(m−ρ) ≤ CMm

ρ (a),

‖Ta‖Cs
∗→C

s−(m−ρ)
∗

≤ CMm
ρ (a).

We also need the following technical result.

Proposition A.12. Set 〈Dx〉 = (I −∆)1/2.

i) Let s > 1
2 + d

2 and σ ∈ R be such that σ ≤ s. Then there exists K > 0 such that

for all V ∈W 1,∞(Rd) ∩Hs(Rd) and u ∈ Hσ− 1
2 (Rd) one has

‖[〈Dx〉σ , V ]u‖L2(Rd) ≤ K
{
‖V ‖W 1,∞(Rd) + ‖V ‖Hs(Rd)

}
‖u‖

Hσ− 1
2 (Rd)

.

ii) Let s > 1 + d
2 and σ ∈ R be such that σ ≤ s. Then there exists K > 0 such that

for all V ∈ Hs(Rd) and u ∈ Hσ−1(Rd) one has

‖[〈Dx〉σ , V ]u‖L2(Rd) ≤ K‖V ‖Hs(Rd)‖u‖Hσ−1(Rd).

iii) Let s > 1
2 + d

2 and V ∈ Hs(Rd). Then

‖[〈Dx〉
1
2 , V ]u‖L∞(Rd) ≤ K‖V ‖Hs(Rd)‖u‖L∞(Rd).
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Proof. The first two statements are proved in [3]. To prove iii) we use (A.5)
with m = 1

2 ,m
′ = 0, ρ = 1

2 + ε to obtain

‖[〈Dx〉
1
2 , TV ]u‖Cε∗ ≤ C‖V ‖Hs‖u‖C0

∗
≤ C‖V ‖Hs‖u‖L∞ .

On the other hand,

[〈Dx〉
1
2 , V − TV ]u = 〈Dx〉

1
2 (V − TV )u− (V − TV )〈Dx〉

1
2 u.

Let 1
2 < r < s − d

2 so that
‖V ‖Cr∗ ≤ C‖V ‖Hs .

According to (A.14) and (A.10), V −TV is bounded from L∞ to Cr∗ by K‖V ‖Cr∗ and

according to (A.13) and (A.10), from C
− 1

2
∗ to C

r− 1
2

∗ by K‖V ‖Cr∗ , which implies

‖[〈Dx〉
1
2 , V − TV ]u‖

C
r− 1

2
∗
≤ K‖V ‖Hs‖u‖L∞ .

This completes the proof.

We need elementary estimates on the solutions of transport equations that we recall
now.

Proposition A.13. Let I = [0, T ] and consider the Cauchy problem

(A.24)

{
∂tu+ V · ∇u = f, t ∈ I,
u|t=0 = u0.

We have the following estimates

(A.25) ‖u(t)‖L∞(Rd) ≤ ‖u0‖L∞(Rd) +

∫ t

0
‖f(σ, ·)‖L∞(Rd)dσ.

There exists a non decreasing function F : R+ → R+ such that

(A.26) ‖u(t)‖L2(Rd) ≤ F
(
‖V ‖L1(I;W 1,∞(Rd))

)(
‖u0‖L2(Rd) +

∫ t

0
‖f(t′, ·)‖L2(Rd) dt

′).
If s > 1 + d

2 and σ ≤ s there exists a non decreasing function F : R+ → R+ such
that

(A.27) ‖u(t)‖Hσ(Rd) ≤ F
(
‖V ‖L1(I;Hs(Rd))

)(
‖u0‖Hσ(Rd) +

∫ t

0
‖f(t′, ·)‖Hσ(Rd) dt

′).
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Appendix B

Tame estimates for the
Dirichlet-Neumann operator

In this appendix we prove Theorem 1.4 on the paralinearization of the Dirichlet-
Neumann operator.

B.1 Scheme of the analysis

We shall revisit the approach given in [8, 1, 3] using tame estimates at each step. In
this section, we recall the scheme of the analysis and indicate the points at which
the argument must be adapted.

Hereafter, we consider a time-independent fluid domain Ω satisfying the assumptions
given in Section 1.1, which we recall here. We assume that

Ω = {(x, y) ∈ O : y < η(x)} ,

for some Lipschitz function η and a given open domain O. We denote by Σ (resp.
Γ) the free surface (resp. the bottom). They are defined by

Σ = {(x, y) ∈ Rd ×R : y = η(x)}, Γ = ∂Ω \ Σ.

We assume that the domain O contains a fixed strip separating the free surface and
the bottom. This implies that there exists h > 0 such that

(B.1)
{

(x, y) ∈ Rd ×R : η(x)− h < y < η(t, x)
}
⊂ Ω.

We also assume that the domain O (and hence the domain Ω) is connected. Without
loss of generality we assume below that h > 1.

The fact that the Dirichlet-Neumann operator G(η) is well-defined in such domains
is proved in [1, 3].

93



In the analysis of free boundary problems it is classical to begin by reducing the
analysis to a domain with a fixed boundary. We flatten the free surface by using a
diffeomorphism introduced in [3] whose definition is here recalled. Set

(B.2)


Ω1 = {(x, y) : x ∈ Rd, η(x)− h < y < η(x)},
Ω2 = {(x, y) ∈ O : y ≤ η(x)− h},
Ω = Ω1 ∪ Ω2,

and

(B.3)


Ω̃1 = {(x, z) : x ∈ Rd, z ∈ I}, I = (−1, 0),

Ω̃2 = {(x, z) ∈ Rd × (−∞,−1] : (x, z + 1 + η(x)− h) ∈ Ω2},

Ω̃ = Ω̃1 ∪ Ω̃2.

Guided by Lannes ([43]), we consider a Lipschitz diffeomorphism from Ω̃1 to Ω1 of
the form (x, z) 7→ (x, ρ(x, z)) where the map (x, z) 7→ ρ(x, z) from Ω̃ to R is defined
as follows

(B.4)

{
ρ(x, z) = (1 + z)eδz〈Dx〉η(x)− z

{
e−(1+z)δ〈Dx〉η(x)− h

}
if (x, z) ∈ Ω̃1,

ρ(x, z) = z + 1 + η(x)− h if (x, z) ∈ Ω̃2

for some small enough positive constant δ.

Lemma B.1. Assume η ∈W 1,∞(Rd).

1. There exists C > 0 such that for every (x, z) ∈ Ω̃ we have

|∇xρ(x, z)| ≤ C‖η‖W 1,∞(Rd).

2. There exists K > 0 such that, if δ‖η‖W 1,∞(Rd) ≤ h
2K we have

(B.5) min
(
1,
h

2

)
≤ ∂zρ(x, z) ≤ max (1,

3h

2
), ∀(x, z) ∈ Ω̃.

3. The map (x, z) 7→ (x, ρ(x, z)) is a Lipschitz diffeomorphism from Ω̃1 to Ω1.

4. Let I = (−1, 0) and s be a real number. There exists C > 0 such that for every

η ∈ Hs+ 1
2 (Rd) we have

(B.6)

‖∂zρ− h‖
C0
z (I;Hs− 1

2 (Rd))∩L2
z(I;Hs(Rd))

≤ C
√
δ‖η‖

Hs+1
2 (Rd)

,

‖∇xρ‖
C0
z (I;Hs− 1

2 (Rd))∩L2
z(I;Hs(Rd))

≤ C√
δ
‖η‖

Hs+1
2 (Rd)

.

5. Assume that η ∈W r+ 1
2
,∞(Rd) with r > 1/2. Then, for any r′ in [1/2, r],

(B.7) ‖∇x,zρ‖
C0([−1,0];W r′− 1

2 ,∞)
+‖∇x,zρ‖L2([−1,0];W r′,∞) ≤ C(1+‖η‖

W r+1
2 ,∞

).

94



Proof. The first four statements are proved in [3]. The last one follows from the fact
that, for any µ′ > µ ≥ 0, |z|µ′〈Dx〉µez〈Dx〉 is bounded from L∞ to L∞, uniformly in
z ∈ [−1, 0] and therefore

‖∆je
z〈Dx〉u‖L∞ = |z|−µ′‖|z|µ′〈Dx〉µez〈Dx〉〈Dx〉−µ∆ju‖L∞

≤ C|z|−µ′‖〈Dx〉−µ∆ju‖L∞

which easily implies the desired result in view of Remark A.3.

Flattening the free surface. In [1, 3] we proved that the problem

∆x,yφ = 0, φ|y=η = f, ∂nφ = 0 on Γ,

has a unique variational solution. Then we introduce the following function

v(x, z) = φ(x, ρ(x, z))

where (x, z) belongs to the ‘flattened’ domain Ω̃ (notice that we flatten only the free
surface).

The equation satisfied by v in Ω̃ can be written in three forms. Firstly,

(B.8) (∂2
z + α∆x + β · ∇x∂z − γ∂z)v = 0,

where

(B.9) α :=
(∂zρ)2

1 + |∇ρ|2
, β := −2

∂zρ∇xρ
1 + |∇xρ|2

, γ :=
1

∂zρ

(
∂2
zρ+α∆xρ+ β · ∇x∂zρ

)
.

Secondly, one has

(B.10) (Λ2
1 + Λ2

2)v = 0,

where

(B.11) Λ1 =
1

∂zρ
∂z Λ2 = ∇x −

∇xρ
∂zρ

∂z.

Eventually,
(B.12)

P̃ v := div
(
∂zρ∇xv

)
− div

(
∇xρ ∂zv

)
− ∂z

(
∇xρ · ∇xv

)
+ ∂z

(1 + |∇xρ|2

∂zρ
∂zv
)

= 0,

as can be verified starting from (B.10) by a direct calculation. Moreover,

v|z=0 = φ|y=η(x) = f,

and

(B.13) G(η)f =
(1 + |∇ρ|2

∂zρ
∂zv −∇xρ · ∇xv

)
z=0

= (Λ1v −∇xρ · Λ2v)|z=0.
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The analysis of the Dirichlet-Neumann operator is then divided into three steps.

First step. We paralinearize the equation. That is we write the equation for
v = φ(x, ρ(x, z)) in the form

(B.14) ∂2
zv + Tα∆v + Tβ · ∇∂zv = F1 + F2,

where

(B.15)
F1 = γ∂zv,

F2 = (Tα − α)∆v + (Tβ − β) · ∇∂zv.

We are going to estimate F1 by product rules in Sobolev spaces and F2 by using
results recalled in Appendix A.

Second step. We factor out the elliptic equation as the product of a forward and
a backward parabolic evolution equations. We write, for some symbols a,A and a
remainder F3,

(B.16) (∂z − Ta)(∂z − TA)v = F1 + F2 + F3.

Namely

(B.17) a =
1

2

(
−iβ·ξ−

√
4α |ξ|2 − (β · ξ)2

)
, A =

1

2

(
−iβ·ξ+

√
4α |ξ|2 − (β · ξ)2

)
.

The term F3 is estimated by means of the symbolic calculus rules recalled in §A.2.

Third step. Let us view z as a time variable. Then ∂zu− Tau = F is a parabolic
equation (since Re(−a) ≥ c |ξ|). On the other hand, ∂zu − TAu = F is a backward
parabolic evolution equation (by definition ReA ≥ c |ξ|). We shall use parabolic
estimates twice to deduce from the previous step estimates for ∇x,zv and (∂z−TA)v.

Previous results. Let I = [−1, 0]. By using the approach explained above, we
proved in [3] that, for any s > 1/2 + d/2,

(B.18) ‖∇x,zv‖
C0
z (I;Hs−1(Rd))∩L2

z(I;Hs− 1
2 (Rd))

≤ F(‖η‖
Hs+1

2
) ‖f‖Hs .

Moreover, for any 0 < ε ≤ 1
2 such that ε < s − 1

2 −
d
2 , we have

(B.19) ‖∂zv − TAv‖
C0
z (I;Hs−1+ε(Rd))∩L2

z(I;Hs− 1
2+ε(Rd))

≤ F(‖η‖
Hs+1

2
) ‖f‖Hs .

The key point to prove Theorem 1.4 will be to prove an estimate analogous to (B.19)
with ε = 1/2 and s < 1+d/2, assuming an extra control of η and f in Hölder spaces.

Actually, concerning elliptic regularity, in [3] we proved more general results than
(B.18) and we record here two statements for later references.

Proposition B.2. Let d ≥ 1, s > 1
2 + d

2 and 1
2 ≤ σ ≤ s + 1

2 . Then there exists

a non-decreasing function F : R+ → R+ such that, for all η ∈ Hs+ 1
2 (Rd) and

all f ∈ Hσ(Rd), we have G(η)f ∈ Hσ−1(Rd), together with the estimate

(B.20) ‖G(η)f‖Hσ−1(Rd) ≤ F
(
‖η‖

Hs+1
2 (Rd)

)
‖f‖Hσ(Rd) .
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Given µ ∈ R we define the spaces

Xµ(I) = C0
z (I;Hµ(Rd)) ∩ L2

z(I;Hµ+ 1
2 (Rd)),

Y µ(I) = L1
z(I;Hµ(Rd)) + L2

z(I;Hµ− 1
2 (Rd))

and we consider the problem

(B.21) ∂2
zv + α∆v + β · ∇∂zv − γ∂zv = F0 + ∂zG0, v|z=0 = f,

where f = f(x), F0 = F0(x, z), G0 = G0(x, z) are given functions. Then we have,

Proposition B.3. Let d ≥ 1 and

s >
1

2
+
d

2
, −1

2
≤ σ ≤ s − 1

2
.

Consider f ∈ Hσ+1(Rd), F0 ∈ Y σ([−1, 0]), G0 ∈ Y σ+1([−1, 0]) and v a solution

to (B.21) such that ∇x,zv ∈ X−
1
2 ([−1, 0]). Then for any z0 ∈ (−1, 0), ∇x,zv ∈

Xσ([z0, 0]), and

‖∇x,zv‖Xσ([z0,0]) ≤ F(‖η‖
Hs+1

2
)
{
‖f‖Hσ+1 + ‖F0‖Y σ([−1,0]) + ‖G0‖Y σ+1([−1,0])

+ ‖∇x,zv‖
X−

1
2 ([−1,0])

}
for some non-decreasing function F : R+ → R+ depending only on σ and d.

B.2 Parabolic evolution equation

As explained above, we need estimates for paradifferential parabolic equations of
the form

∂zw + Tpw = f, w|z=z0 = w0,

where p is an elliptic symbol and z ∈ R plays the role of a time variable.

Given J ⊂ R, z0 ∈ J and ϕ = ϕ(x, z) defined on Rd × J , we denote by ϕ(z0) the
function x 7→ ϕ(x, z0). When a and u are symbols and functions depending on z, we
still denote by Tau the function defined by (Tau)(z) = Ta(z)u(z) where z ∈ J is seen

as a parameter. Γmρ (Rd × J) denotes the space of symbols a = a(z;x, ξ) such that

z 7→ a(z; ·) is bounded from J into the space Γmρ (Rd) introduced in Definition A.1.
This space is equipped with the semi-norm

(B.22) Mm
ρ (a) = sup

z∈J
sup

|α|≤ 3d
2

+ρ+1

sup
|ξ|≥1/2

∥∥∥(1 + |ξ|)|α|−m∂αξ a(z; ·, ξ)
∥∥∥
W ρ,∞(Rd)

.

The next proposition is a parabolic estimate in Zygmund spaces Cr∗(R
d) with r ∈ R

(see Definition A.2 for the definition of these spaces). Recall that Cr∗(R
d) is the

usual Hölder space W r,∞(Rd) if r > 0 is not an integer (since we shall need to
consider various negative indexes, we shall often prefer to use the notation Cr∗(R

d)
instead of W r,∞(Rd) even when r > 0 is not an integer).
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Proposition B.4. Let ρ ∈ (0, 1), J = [z0, z1] ⊂ R, p ∈ Γ1
ρ(R

d × J) with the
assumption that

Re p(z;x, ξ) ≥ c |ξ| ,

for some positive constant c. Assume that w solves

∂zw + Tpw = F1 + F2, w|z=z0 = w0.

Then for any q ∈ [1,+∞], (r0, r) ∈ R2 with r0 < r, if

w ∈ L∞(J ;Cr0∗ ), F1 ∈ L1(J ;Cr∗), F2 ∈ Lq(J ;C
r−1+ 1

q
+δ

∗ ) with δ > 0,

and w0 ∈ Cr∗(Rd), we have w ∈ C0(J ;Cr∗) and

‖w‖C0(J ;Cr∗)
≤ K

{
‖w0‖Cr∗ + ‖F1‖L1(J ;Cr∗)

+ ‖F2‖
Lq(J ;C

r−1+1
q+δ

∗ )
+ ‖w‖L∞(J ;C

r0
∗ )

}
,

for some positive constant K depending only on r0, r, ρ, c, δ, q and M1
ρ(p).

Proof. We follow a classical strategy (see [62, 45, 8, 1]).

For this proof, we denote by K various constants which depend only on r0, r, ρ, c
and M1

ρ(p). Given y ∈ J introduce the symbol e = e(y, z;x, ξ) defined by

e(y, z;x, ξ) = exp
(
−
∫ y

z
p(s;x, ξ) ds

)
(z ∈ [z0, y]).

This symbol satisfies ∂ze = ep, so that

∂z(Tew) = (Tep − TeTp)w + TeF, F = F1 + F2.

Integrating on [z0, y] the function d
dzTe(y,z,x,ξ)w(z), we find

(B.23) T1w(y) = Te|z=z0w0 +

∫ y

z0

(TeF )(z) dz +

∫ y

z0

(Tep − TeTp)w(z) dz.

(Notice that the paraproduct T1 differs from the identity I only by a smoothing
operator.) Introduce G(y) = Te|z=z0w0 +

∫ y
z0

(TeF )(z) dz and the operator R defined

on functions u : J → Cm∗ (Rd) by

(Ru)(y) = u(y)− T1u(y) +

∫ y

z0

(Tep − TeTp)u(z) dz

so that w = G + Rw. Now, by a bootstrap argument, to complete the proof it is
enough to prove that the function G belongs to L∞(J ;Cr∗) and that R is a smooth-
ing operator of order −a for some a > 0, which means that R maps L∞(J ;Ct∗)
to L∞(J ;Ct+a∗ ). Indeed, by writing

w = (I +R+ · · ·RN )G−RN+1w,
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and choosing N large enough, we can estimate the second term in the right-hand
side in L∞(J ;Cr∗) by means of any L∞(J ;Cr0∗ )-norm of w.

In the analysis, we need to take into account how the semi-norms M−mρ (e(z)) (see
Definition A.1) depend on z. Then the key estimates are stated in the following
lemma.

Lemma B.5. For any m ≥ 0 there exists a positive constant K depending only on
supJM

1
ρ (p(·;x, ξ)) such that, for all y ∈ (0,−z1] and all z ∈ [0, y),

(B.24) M−mρ (e(z)) ≤ K

(y − z)m
.

This follows easily from the assumptions p ∈ Γ1
ρ, Re p(s;x, ξ) ≥ c |ξ| , and the ele-

mentary inequalities (valid for any a ≥ 0)

(y − z)a |ξ|a exp
(
(z − y) |ξ|

)
. 1.

By using the bound (B.24), applied with m = 0, it follows from the operator norm
estimate (A.5) that, for any z ≤ y and any function f = f(x), we have

(B.25)
∥∥Te(y,z)f∥∥Cr∗ .M0

0 (e(y, z)) ‖f‖Cr∗ ≤ K ‖f‖Cr∗ .

This implies that∥∥∥∥Te|z=z0w0 +

∫ y

z0

(TeF1)(z) dz

∥∥∥∥
L∞(J ;Cr∗)

≤ K ‖w0‖Cr∗ +K ‖F1‖L1(J ;Cr∗)
.

On the other hand, by using the bound (B.24), applied with m = 1 − 1
q − δ, we

obtain that ∥∥∥∥∫ y

z0

(TeF2)(z) dz

∥∥∥∥
L∞(J ;Cr∗)

≤ K
∫ y

z0

1

|y − z|m
‖F2(z)‖Cr−m∗ dz,

which implies by Hölder inequality that

‖G‖L∞(J ;Cr∗)
≤ K ‖w0‖Cr∗ +K ‖F1‖L1(J ;Cr∗)

+ ‖F2‖
Lq(J ;C

r−1+1
q+δ

∗ )
.

It remains to show that R is a smoothing operator. To do that, we first use the
operator norm estimate (A.5) (applied with (m,m′, ρ) replaced with (−m, 1, ρ)) to
obtain

‖(Tep − TeTp)(z)‖Ct∗→Ct+m−1+ρ
∗

.M−mρ (e(z))M1
ρ (p(z)).

Taking m = 1− ρ/2, it follows from the previous bound and Lemma B.5 that

‖(Tep − TeTp)v(z)‖
C
t+ρ/2
∗

≤ K

(y − z)m
‖v(z)‖Ct∗ .

Since 0 ≤ m < 1 we have
∫ y

0 (y − z)−m dz < +∞ and hence

(B.26) ‖Ru(y)‖
C
t+ρ/2
∗

≤
∫ y

0
‖(Tep − TeTp)u(z)‖

C
t+ρ/2
∗

≤ K ‖u‖L∞(J ;Ct∗)
,

which completes the proof.
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We shall also need the following estimate in Sobolev spaces. Given µ ∈ R, recall
that we define the spaces

(B.27)
Xµ(I) = C0

z (I;Hµ(Rd)) ∩ L2
z(I;Hµ+ 1

2 (Rd)),

Y µ(I) = L1
z(I;Hµ(Rd)) + L2

z(I;Hµ− 1
2 (Rd)).

Proposition B.6 (from [3]). Let r ∈ R, ρ ∈ (0, 1), J = [z0, z1] ⊂ R and let
p ∈ Γ1

ρ(R
d × J) satisfying

Re p(z;x, ξ) ≥ c |ξ| ,

for some positive constant c. Then for any f ∈ Y r(J) and w0 ∈ Hr(Rd), there
exists w ∈ Xr(J) solution of the parabolic evolution equation

(B.28) ∂zw + Tpw = f, w|z=z0 = w0,

satisfying

‖w‖Xr(J) ≤ K
{
‖w0‖Hr + ‖f‖Y r(J)

}
,

for some positive constant K depending only on r, ρ, c and M1
ρ(p). Furthermore,

this solution is unique in Xs(J) for any s ∈ R.

B.3 Paralinearization

We are now ready to prove Theorem 1.4. Recall that we consider the elliptic equation

(B.29) ∂2
zv + α∆v + β · ∇∂zv − γ∂zv = 0, v|z=0 = f,

where f = f(x) is a given function and the coefficients α, β, γ are given by (B.9)
(these coefficients depend on the variable ρ which is given by (B.4)). In the sequel
we fix indexes δ, s, r, ε in R such that

(B.30) 0 < δ <
1

4
, s > 1 +

d

2
− δ, r > 1,

1

4
< ε =

1

2
− δ < min(

1

2
, s − 1

2
− d

2
).

It follows from (B.18) and the Sobolev embedding that we have

‖∇x,zv‖C0([−1,0];C
s−1−d/2
∗ )

≤ F(‖η‖
Hs+1

2
) ‖f‖Hs ,

for some non-decreasing function F . Since we only assume that s > 3/4 + d/2, this
is not enough to control the L∞ norm of ∇x,zv. The purpose of the next result is
to provide such control under the additional assumption that f belongs to Cr∗ for
some r > 1.

Proposition B.7. Let r > 1 and s > 3/4 + d/2. For any −1 < z1 < 0, we have

‖∇x,zv‖C0∩L∞(Rd×[z1,0]) ≤ F
(
‖η‖

Hs+1
2

)
{‖f‖Hs + ‖f‖W r,∞} ,

for some non-decreasing function F : R+ → R+.
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Remark B.8. i) Since v|z=0 = f ∈ L∞(Rd), we have also

‖v‖L∞(Rd×[z1,0]) ≤ ‖f‖L∞(Rd) + |z1| ‖∂zv‖L∞(Rd×[z1,0])

≤ F(‖η‖
Hs+1

2
)
{
‖f‖Hs + ‖f‖Cr∗

}
.

ii) Let µ > 1 + d/2. Since∥∥∥1 + |∇ρ|2

∂zρ

∥∥∥
L∞

. 1 + ‖η‖Hµ , ‖∂zρ‖L∞ . 1 + ‖η‖Hµ ,

it follows from the previous proposition and the definition of the Dirichlet-Neumann
operator that, for any r > 1 and s > 3/4 + d/2, we have

(B.31) ‖G(η)f‖L∞ ≤ F
(
‖η‖

Hs+1
2

){
‖f‖Hs + ‖f‖W r,∞

}
.

Other estimates are known which involve only Hölder norms (see Hu-Nicholls [36]),
but they did not apply directly to our case with arbitrary bottoms. The fact that
the previous bound involves a Sobolev estimate is harmless for our purposes.

Proof. Recall that the space Xµ(I) is defined by (B.27). Recall also that (see (B.18)
and (B.19))

(B.32) ‖∇x,zv‖Xs−1([−1,0]) ≤ F(‖η‖
Hs+1

2
) ‖f‖Hs

and

(B.33) ‖∂zv − TAv‖Xs−1+ε([−1,0]) ≤ F(‖η‖
Hs+1

2
) ‖f‖Hs .

Since v |z=0= f , writing v(z) = v(0) +
∫ z

0 ∂zv, this implies that

(B.34) ‖v‖Xs−1([−1,0]) ≤ F(‖η‖
Hs+1

2
) ‖f‖Hs .

Introduce a cutoff function χ such that

χ(−1) = 0, χ(z) = 1 for z ≥ z1,

and set w := χ(z)(∂z − TA)v. We shall use the fact that w is already estimated by
means of (B.33) together with the parabolic estimate in Hölder spaces established
above to deduce an estimate for v.

Since it is convenient to work with forward evolution equation, define the function ṽ
by ṽ(x, z) = v(x,−z), so that

∂z ṽ + T
Ã
ṽ = −w̃ for z ∈ Ĩ1 := [0,−z1].

We split ṽ as ṽ = ṽ1 + ṽ2 where ṽ1 is the solution to the system

∂z ṽ1 + T
Ã
ṽ1 = 0 for z ∈ Ĩ1, ṽ1|z=0 = ṽ|z=0 = f
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given by Proposition B.6, while ṽ2 = ṽ − ṽ1 satisfies

∂z ṽ2 + T
Ã
ṽ2 = −w̃ for z ∈ Ĩ1, ṽ2|z=0 = 0.

According to (B.19) we have

‖w̃‖
Y s+ε(Ĩ1)

≤ ‖w̃‖
L2(Ĩ1;Hs+ε− 1

2 )
≤ F(‖η‖

Hs+1
2
) ‖f‖Hs ,

which in turn implies, according to Proposition B.6,

(B.35) ‖ṽ2‖Xs+ε(Ĩ1)
≤ F(‖η‖

Hs+1
2
) ‖f‖Hs .

Set m = s − 1 + ε− d
2 . By the Sobolev embedding we have

‖∇xṽ2‖L∞(Ĩ1;Cm∗ )
. ‖∇xṽ2‖L∞(Ĩ1;Hs−1+ε)

≤ ‖ṽ2‖Xs+ε(Ĩ1)
≤ F(‖η‖

Hs+1
2
) ‖f‖Hs .

Let us prove that ∂z ṽ2 satisfies the same estimate. Using the equation for ṽ2, we
obtain ∂z ṽ2 = −T

Ã
ṽ2 − w̃. Now, w̃ is estimated by means of the bound (B.19).

Moving to the estimate of T
Ã
ṽ2, recall that T

Ã
is an operator of order 1 whose

operator norm is estimated by means of the first inequality in (A.4), to get∥∥T
Ã
ṽ2

∥∥
L∞(Ĩ1;Cm∗ )

.
∥∥T

Ã
ṽ2

∥∥
Xs−1+ε(Ĩ1)

≤ F(‖η‖
Hs+1

2
) ‖ṽ2‖Xs+ε(Ĩ1)

≤ F(‖η‖
Hs+1

2
) ‖f‖Hs .

We conclude
‖∇x,z ṽ2‖L∞(Ĩ1;Cm∗ )

≤ F(‖η‖
Hs+1

2
) ‖f‖Hs .

Now, by assumption s > 1 + d/2− δ with δ < 1/4 and ε = 1/2− δ, so that

m = s − 1 + ε− d

2
= s − 1 +

1

2
− δ − d

2
>

1

2
− 2δ > 0,

and hence
‖∇x,z ṽ2‖L∞(Rd×[0,−z1]) ≤ F(‖η‖

Hs+1
2
) ‖f‖Hs .

It remains to estimate ṽ1. Using Proposition B.4 with r = 1, r0 = −1, we obtain

(B.36) ‖ṽ1‖C0(Ĩ1;Cr∗)
≤ K

(
‖f‖Cr∗ + ‖ṽ1‖C0(Ĩ1;C−1

∗ )

)
.

To estimate the last term in the right-hand side above, write, according to (B.34)
and (B.35),

‖ṽ1‖C0(Ĩ1;C−1
∗ )
≤ C

(
‖ṽ‖

C0(Ĩ1;Hs−1)
+ ‖ṽ2‖C0(Ĩ1;Hs−1)

)
≤ F(‖η‖

Hs+1
2
)‖f‖Hs .

Since ∂z ṽ1 = −T
Ã
ṽ1, and since T

Ã
is an operator of order 1 whose operator norm is

estimated by means of the second inequality in (A.4), the previous inequality (B.36)
implies also

‖∇x,z ṽ1‖C0(Ĩ1;Cr−1
∗ )
≤ F(‖η‖

Hs+1
2
)(‖f‖Hs + ‖f‖Cr∗ ).

This completes the proof of Proposition B.7.
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Gathering (B.18) and the previous estimate, for any z0 in (−1, 0], we have

(B.37)

‖∇x,zv‖
C0([z0,0];Hs−1)∩L2((z0,0);Hs− 1

2 )
≤ F(‖η‖

Hs+1
2
) ‖f‖Hs ,

‖∇x,zv‖C0∩L∞(Rd×[z0,0]) ≤ F(‖η‖
Hs+1

2
)
{
‖f‖Hs + ‖f‖Cr∗

}
.

The end of the proof of Theorem 1.4 is in four steps.

Step 1. Tame estimates in Zygmund spaces. (See Definition A.2 for the
definition of Zygmund spaces.)

Recall the following bounds for the coefficients α, β, γ defined in (B.9) (see [3,
Lemma 3.25]): for any s > 1

2 + d
2 , we have

(B.38)
∥∥α− h2

∥∥
Xs− 1

2 ([−1,0])
+ ‖β‖

Xs− 1
2 ([−1,0])

+ ‖γ‖
Xs− 3

2 ([−1,0])
≤ F(‖η‖

Hs+1
2
).

We need also estimates in Zygmund spaces.

Lemma B.9. There holds

(B.39) ‖(α, β)‖
C0([−1,0];W

1
2 ,∞)

+ ‖γ‖L2([−1,0];L∞) ≤ F(‖η‖Hs+1/2)
{

1 + ‖η‖
W r+1

2 ,∞

}
.

Proof. Recall that, according to Lemma B.1,

‖∇xρ‖
C0([−1,0];W

1
2 ,∞)

+ ‖∇x,zρ‖L2([−1,0];W 1,∞) . ‖η‖W r+1
2 ,∞

,(B.40)

‖∂zρ− h‖
C0([−1,0];W

1
2 ,∞)

. 1 + ‖η‖
W r+1

2 ,∞
.

and (since s − 1/2 > d/2), by Sobolev embedding,

(B.41) ‖∇x,zρ‖L∞(Rd×(−1,0)) . 1 + ‖η‖
Hs+1

2
.

We deduce the estimates for α− 1 and β from the composition rule (A.22) and the

equality W 1/2,∞ = C
1/2
∗ . The estimate for γ follows from (B.41) and the estimate∥∥∇2

x,zρ
∥∥
L2([−1,0];L∞)

. ‖η‖
W r+1

2 ,∞
.

which follows from (B.40) and the equation satisfied by ρ (to estimate ∂2
zρ).

Step 2. Estimates for the source terms. We now estimate the source terms
F1, F2 and F3 which appear in (B.15) and (B.16).

Lemma B.10. For any z0 ∈ (−1, 0), and any j = 1, 2, 3 we have,

(B.42) ‖Fj‖L2
z((z0,0);Hs−1) ≤ F

(
‖η‖

Hs+1
2
, ‖f‖Hs

){
1 + ‖η‖

W r+1
2 ,∞

+ ‖f‖W r,∞

}
.
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Proof. By using the tame product rule (see (A.17))

‖u1u2‖Hs−1 . ‖u1‖L∞ ‖u2‖Hs−1 + ‖u2‖L∞ ‖u1‖Hs−1

we find that F1 = γ∂zv satisfies

‖F1‖L2((z0,0);Hs−1) . ‖∂zv‖C0([z0,0];L∞) ‖γ‖L2((z0,0);Hs−1)

+ ‖γ‖L2((z0,0);L∞) ‖∂zv‖L∞((z0,0);Hs−1) .

The desired estimate for F1 follows from Lemma B.9, (B.37) and (B.38).

Let us now study

F2 = (Tα−α)∆v+ (Tβ−β) ·∇∂zv = −
(
T∆vα+R(α,∆v) +T∇∂zv ·β+R(β,∇∂zv)

)
.

According to (A.12), we obtain∥∥T∆v(z)α(z)
∥∥
Hs−1 . ‖∆v(z)‖C−1

∗
‖α(z)‖Hs ,∥∥T∇∂zv(z) · β(z)

∥∥
Hs−1 . ‖∇∂zv(z)‖C−1

∗
‖β(z)‖Hs .

On the other hand, since s − 1 > 0 we can apply (A.11) to obtain

‖R(α,∆v)(z)‖Hs−1 . ‖∆v(z)‖C−1
∗
‖α(z)‖Hs ,

‖R(β,∇∂zv)(z)‖Hs−1 . ‖∇∂zv(z)‖C−1
∗
‖β(z)‖Hs .

Consequently we have proved

(B.43) ‖F2‖L2([z0,0];Hs−1) . ‖∆v‖C0([z0,0];C−1
∗ ) ‖α‖L2([z0,0];Hs)

+ ‖∇∂zv‖C0([z0,0];C−1
∗ ) ‖β‖L2([z0,0];Hs) .

Notice that

‖∆v‖C−1
∗

. ‖∇v‖C0
∗
. ‖∇v‖L∞ , ‖∇∂zv‖C−1

∗
. ‖∂zv‖C0

∗
. ‖∂zv‖L∞

and consequently, according to (B.37) and (B.38) we conclude the proof of the claim
(B.42) for j = 2.

It remains to estimate F3. In light of (B.37) it is enough to prove that

(B.44) ‖F3‖L2(I;Hs−1) ≤ F
(
‖η‖

Hs+1
2

)
‖η‖

W r+1
2 ,∞
‖∇x,zv‖

L2(I;Hs− 1
2 )
,

for some non-decreasing function. Directly from the definition of α and β, by using
the tame estimates in Hölder spaces (A.18), we verify that the symbols a,A (given
by (B.17)) belong to Γ1

1/2(Rd × I) and that they satisfy

(B.45) M1
1/2(a) +M1

1/2(A) ≤ F
(
‖η‖

Hs+1
2

)
‖η‖

W r+1
2 ,∞

.

(For later purpose, notice that we used here only s > 1
2 + d

2 .) Moreover,

M1
−1/2(∂zA) ≤ F

(
‖η‖

Hs+1
2

)
‖η‖

W r+1
2 ,∞

.
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By definition (B.17), a+A = −iβ · ξ so Ta + TA = −Tβ · ∇. It follows that

F3 =
(
TaTA − Tα∆

)
v − T∂zAv.

Set
R0(z) := Ta(z)TA(z) − Tα∆, R1(z) := −T∂zA.

Since aA = −α|ξ|2, we deduce, using Theorem A.5 (see (ii) applied with ρ = 1/2),
that for any µ ∈ R,

(B.46) sup
z∈[−1,0]

‖R0(z)‖
Hµ+3

2→Hµ
≤ F

(
‖η‖

Hs+1
2

)
‖η‖

W r+1
2 ,∞

.

On the other hand, Proposition A.11 (applied with ρ = −1/2) implies that

(B.47) sup
z∈[−1,0]

‖R1(z)‖
Hµ+3

2→Hµ
≤ F

(
‖η‖

Hs+1
2

)
‖η‖

W r+1
2 ,∞

.

Using these inequalities for µ = s − 1, we obtain the desired result (B.44). This
completes the proof of Lemma B.10.

Step 3 : elliptic estimates Introduce a cutoff function κ = κ(z), z ∈ [−1, 0],
such that κ(z) = 1 near z = 0 and such that κ(z1) = 0 (recall that I1 = [z1, 0] for
some z1 ∈ (−1, 0)). Set

(B.48) W := κ(z)(∂z − TA)v.

Now it follows from the paradifferential equation (B.16) for v that

∂zW − TaW = F ′,

where
F ′ = κ(z)(F1 + F2 + F3) + κ′(z)(∂z − TA)v.

Our goal is to prove that

(B.49) ‖W‖
L∞(I1;Hs− 1

2 )
≤ F

(
‖η‖

Hs+1
2
, ‖f‖Hs

){
1 + ‖η‖

W r+1
2 ,∞

+ ‖f‖W r,∞

}
.

We have already proved that

‖F1 + F2 + F3‖L2
z(I1;Hs−1) ≤ F

(
‖η‖

Hs+1
2
, ‖f‖Hs

){
1 + ‖η‖

W r+1
2 ,∞

+ ‖f‖W r,∞

}
.

We now turn to an estimate for (∂z − TA)v. To do that we estimate separately ∂zv
and TAv. Clearly, by definition of the space Xs−1, noting that I1 ⊂ I0 = [−1, 0], we
have

‖∂zv‖
L2(I1;Hs− 1

2 )
≤ ‖∂zv‖

L2(I0;Hs− 1
2 )
≤ ‖∇x,zv‖Xs−1(I0) .

On the other hand, as in the previous step, since M1
0(A) ≤ C

(
‖η‖

Hs+1
2

)
, we have

‖TAv‖
L2(I1;Hs− 1

2 )
≤ F(‖η‖

Hs+1
2
) ‖∇xv‖

L2(I1;Hs− 1
2 )

≤ F(‖η‖
Hs+1

2
) ‖∇x,zv‖Xs−1(I0) .
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Now recall from (B.18) that ‖∇x,zv‖Xs−1(I0) ≤ F(‖η‖
Hs+1

2
) ‖f‖Hs . Therefore,

‖(∂z − TA)v‖
L2(I0;Hs− 1

2 )
≤ F(‖η‖

Hs+1
2
) ‖f‖Hs ,

and we end up with∥∥F ′∥∥
L2(I1;Hs−1)

≤ F
(
‖η‖

Hs+1
2
, ‖f‖Hs

){
1 + ‖η‖

W r+1
2 ,∞

+ ‖f‖W r,∞

}
.

Since ∂zW − TaW = F ′ and W (x, z1) = 0 (by definition of the cutoff function κ)
and since a ∈ Γ1

ε satisfies Re(−a(x, ξ)) ≥ c |ξ|, by using Proposition B.6 applied
with J = I1, ρ = ε and r = s − 1/2, we have

‖W‖
Xs− 1

2 (I1)
≤ F(‖η‖

Hs+1
2
)
∥∥F ′∥∥

Y s− 1
2 (I1)

.

Now, by definition, ‖F ′‖
Y s− 1

2 (I1)
≤ ‖F ′‖L2(I1;Hs−1), so we conclude that W satisfies

the desired estimate (B.49).

Step 4 : paralinearization of the Dirichlet-Neumann. We shall only use
the following obvious consequence of (B.49): ‖W |z=0‖

Hs− 1
2

is estimated by the

right-hand side of (B.49) (we can take the trace on z = 0 since W belongs to

Xs− 1
2 ⊂ C0

z (Hs− 1
2 ) and not only to L∞z (Hs− 1

2 ), as follows from Proposition B.6).
Since W |z=0 = ∂zv − TAv|z=0, we thus have proved that

(B.50) ‖∂zv − TAv|z=0‖
Hs− 1

2
≤ F

(
‖η‖

Hs+1
2
, ‖f‖Hs

){
1 + ‖η‖

W r+1
2 ,∞

+ ‖f‖W r,∞

}
.

Now, recall that
G(η)f = ζ1∂zv − ζ2 · ∇v


z=0

with

ζ1 :=
1 + |∇ρ|2

∂zρ
, ζ2 := ∇ρ.

As for the coefficients α, β (see Lemma B.9), we have∥∥∥∥ζ1 −
1

h

∥∥∥∥
L∞([−1,0];W

1
2 ,∞)

+ ‖ζ2‖
L∞([−1,0];W

1
2 ,∞)
≤ F(‖η‖

Hs+1
2
)‖η‖

W r+1
2 ,∞

,(B.51) ∥∥∥∥ζ1 −
1

h

∥∥∥∥
L∞([−1,0];Hs−1/2)

+ ‖ζ2‖L∞([−1,0];Hs−1/2) ≤ F(‖η‖
Hs+1

2
).(B.52)

Write

ζ1∂zv − ζ2 · ∇v = Tζ1∂zv − Tζ2∇v +R′,

with

(B.53) R′ = T∂zvζ1 − T∇v · ζ2 +R(ζ1, ∂zv)−R(ζ2,∇v).
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Since a paraproduct by an L∞ function acts on any Sobolev spaces, according to
Proposition B.7 and (B.52), we obtain

‖T∂zvζ1 − T∇v · ζ2‖
L∞(I1;Hs− 1

2 )
≤ F

(
‖η‖

Hs+1
2
, ‖f‖Hs

)
{1 + ‖f‖W r,∞} .

We estimate similarly the last two terms in the right-hand side of (B.53), so∥∥R′∥∥
L∞(I1;Hs− 1

2 )
≤ F

(
‖η‖

Hs+1
2
, ‖f‖Hs

)
{1 + ‖f‖W r,∞} .

Furthermore, (B.50) implies that

Tζ1∂zv − Tζ2∇v

z=0

= Tζ1TAv − Tiζ2·ξv

z=0

+R′′,

where ‖R′′‖
Hs− 1

2
satisfies

∥∥R′′∥∥
Hs− 1

2
≤ F

(
‖η‖

Hs+1
2
, ‖f‖Hs

){
1 + ‖η‖

W r+1
2 ,∞

+ ‖f‖W r,∞

}
.

Thanks to (A.5) we have

‖Tζ1TA − Tζ1A‖Hs→Hs− 1
2
. ‖ζ1‖L∞M

1
1/2(A) + ‖ζ1‖

W
1
2 ,∞
M1

0(A)

≤ F(‖η‖
Hs+1

2
)‖η‖

W r+1
2 ,∞

,

where we used (B.45) and M1
0(A) ≤ C

(
‖η‖

Hs+1
2

)
. Therefore,

G(η)f = Tζ1Av − Tiζ2·ξv

z=0

+R(η)f

where

‖R(η)f‖
Hs− 1

2
≤ F

(
‖η‖

Hs+1
2
, ‖f‖Hs

){
1 + ‖η‖

W r+1
2 ,∞

+ ‖f‖W r,∞

}
.

Now by definition of A (see (B.17)) one has

ζ1Av − iζ2 · ξ =
√

(1 + |∇ρ|2)|ξ|2 − (∇ρ · ξ)2

so Tζ1Av − Tiζ2·ξv

z=0

= Tλf since, by definition of λ,

λ =
√

(1 + |∇η|2)|ξ|2 − (∇η · ξ)2.

This proves that G(η)f = Tλf +R(η)f which concludes the proof of Theorem 1.4.
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Appendix C

Estimates for the Taylor
coefficient

Here we prove several estimates for the Taylor coefficient.

Proposition C.1. Let d ≥ 1 and consider s, r such that

s >
3

4
+
d

2
, r > 1.

For any 0 < ε < min(r−1, s− 3
4 −

d
2), there exists a non-decreasing function F such

that, for all t ∈ [0, T ],

(C.1) ‖a(t)− g‖
Hs− 1

2
≤ F

(
‖(η, ψ, V,B)(t)‖

Hs+1
2×Hs+1

2×Hs×Hs

)
,

and

(C.2) ‖a(t)‖
W

1
2+ε,∞ + ‖(∂ta + V · ∇a)(t)‖W ε,∞

≤ F
(
‖(η, ψ)(t)‖

Hs+1
2
, ‖(V,B)(t)‖Hs

){
1 + ‖η(t)‖

W r+1
2 ,∞

+ ‖(V,B)(t)‖W r,∞

}
.

The estimate of ‖a− g‖
Hs− 1

2
follows directly from the arguments in [3]. The estimate

of the W ε,∞-norm of ∂ta+V ·∇a is the easiest one. The main new difficulty here is to
prove a tame estimate for ‖a‖

W
1
2+ε,∞ . Indeed, there are several further complications

which appear in the analysis in Hölder spaces.

Hereafter, since the time variable is fixed, we shall skip it. To prove the above
estimates on a, we form an elliptic equation for P . As explained in Appendix B
we flatten the free surface by using the change of variables (x, z) 7→ (x, ρ(x, z)) (see
(B.4) and Lemma B.1). Set

v(x, z) = φ(x, ρ(x, z)), ℘(x, z) = P (x, ρ(x, z)) + gρ(x, z),

and notice that

a− g = − 1

∂zρ
∂z℘ |z=0 .
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The first elementary step is to compute the equation satisfied by the new unknown
as well as the boundary conditions on {z = 0}. As in [3], one computes that

(C.3)
∂2
z℘+ α∆℘+ β · ∇∂z℘− γ∂z℘ = F0(x, z) for z < 0,

℘ = gη on z = 0,

where α, β, γ are as above (see (B.9)) and where

(C.4) F0 = −α
∣∣Λ2v

∣∣2 , Λ = (Λ1,Λ2), Λ1 =
1

∂zρ
∂z, Λ2 = ∇− ∇ρ

∂zρ
∂z.

Our first task is to estimate the source term F0.

Lemma C.2. Let d ≥ 1 and consider s ∈]1,+∞[ such that

s >
3

4
+
d

2
.

Then there exists z0 < 0 such that

‖F0‖
L1([z0,0];Hs− 1

2 )
+ ‖F0‖

L2([z0,0];C
s+1

4−
d
2

∗ )
≤ F

(
‖(η, ψ, V,B)‖

Hs+1
2×Hs+1

2×Hs×Hs

)
.

Proof. The first part of this result follows from the proof of [3, Lemma 4.7] (although
this lemma is proved under the assumption that s > 1 + d/2, its proof shows that
the results (C.5)–(C.6) we quote below hold for any s > 1/2 + d/2). We proved in
[3] that

(C.5) ‖F0‖
L1([z0,0];Hs− 1

2 )
≤ F

(
‖(η, ψ, V,B)‖

Hs+1
2×Hs+1

2×Hs×Hs

)
,

together with

(C.6) ‖ΛjΛkv‖C0([z0,0];Hs−1) + ‖ΛjΛkv‖
L2([z0,0];Hs− 1

2 )

≤ F
(
‖(η, ψ, V,B)‖

Hs+1
2×Hs+1

2×Hs×Hs

)
.

By interpolation, (C.6) also implies that

‖ΛjΛkv‖
L4([z0,0];Hs− 3

4 )
≤ F

(
‖(η, ψ, V,B)‖

Hs+1
2×Hs+1

2×Hs×Hs

)
.

Since s > 3/4 + d/2 by assumption, the Sobolev space Hs− 3
4 (Rd) is an algebra and

hence, according to (B.38),∥∥∥α |ΛjΛkv|2∥∥∥
L2([z0,0];Hs− 3

4 )
.
(
1 +

∥∥α− h2
∥∥
L∞([z0,0];Hs− 3

4 )

)
‖ΛjΛkv‖2

L4([z0,0];Hs− 3
4 )
.

The Sobolev embedding Hs− 3
4 ⊂ Cs− 3

4
− d

2
∗ then yields

(C.7) ‖F0‖
L2([z0,0];C

s− 3
4−

d
2

∗ )
≤ F

(
‖(η, ψ, V,B)‖

Hs+1
2×Hs+1

2×Hs×Hs

)
.

This completes the proof.
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The proof of the fact that ‖a− g‖
Hs− 1

2
is bounded by a constant depending only

on ‖(η, ψ)‖
Hs+1

2
and ‖(V,B)‖Hs then follows from elliptic regularity which implies

that

(C.8) ‖∇x,z℘‖
Xs− 1

2 ([z0,0])
≤ F

(
‖(η, ψ, V,B)‖

Hs+1
2×Hs+1

2×Hs×Hs

)
,

as can be proved using the arguments given above the statement of Proposition 4.8
in [3]. We shall now prove the estimate of ‖a‖W 1/2+ε,∞ . This estimate will follow
directly from the following result.

Proposition C.3. Let d ≥ 1 and consider (s, r, r′) ∈ R3 such that

s >
3

4
+
d

2
, s +

1

4
− d

2
> r > r′ > 1.

Then there exists z0 < 0 such that
(C.9)

‖∇x,z℘‖
C0([z0,0];W r′− 1

2 ,∞)
≤ F

(
‖(η, ψ, V,B)‖

Hs+1
2×Hs+1

2×Hs×Hs

){
1 + ‖η‖

W r+1
2 ,∞

}
for some non-decreasing function F depending only on s, r, r′.

Proof. It follows from (C.8) and the Sobolev embedding Hs− 1
2 (Rd) ⊂W r− 3

4
,∞(Rd)

that

(C.10) ‖∇x,z℘‖
L∞([z0,0];W r− 3

4 ,∞)
≤ F

(
‖(η, ψ, V,B)‖

Hs+1
2×Hs+1

2×Hs×Hs

)
.

The key point is that, since r − 3/4 ≥ 0, we now have an L∞-estimate for ∇x,z℘
which does not depend on the hölder norms, which are the highest order norms for
s < 1 + d/2 (compare with Proposition B.7).

To prove (C.9), let us revisit the proof of Theorem 1.4. With the notations of
Appendix B (see (B.48)), W = κ(z)(∂z−TA)℘ satisfies a parabolic evolution equation
of the form

(C.11) ∂zW − TaW = F0 + F1 + F2 + F3 + F4,

where the symbols a and A are as defined in (B.17), F0 is given by (C.4) and

F1 = γ∂z℘,

F2 = −
(
T∆℘α+R(α,∆℘) + T∇∂z℘ · β +R(β,∇∂z℘)

)
,

F3 = (TaTA − Tα∆)℘− T∂zA℘,
F4 = κ′(z)(∂z − TA)℘.

Since (∂z−TA)℘ = W for z small enough (by definition of W ), in light of (C.10) and
Proposition B.4 (applied with r0 = 1/4, q = +∞), one can reduce the proof of (C.9)

to proving that, for some δ > 0, the L∞([z0, 0];C
r′− 1

2
+δ

∗ ) norm of W is bounded by
the right-hand side of (C.9). Again, since W |z=z1 = 0, by using Proposition B.4
(with q = 2), the former estimate for W will be deduced from the equation (C.11)
and the following lemma.
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Lemma C.4. There exists z0 < 0 and ε > 0 such that, for i ∈ {0, . . . , 4},

‖Fi‖L2([z0,0];Cr
′−1+ε
∗ )

≤ F
(
‖(η, ψ, V,B)‖

Hs+1
2×Hs+1

2×Hs×Hs

){
1 + ‖η‖

W r+1
2 ,∞

}
.

To prove Lemma C.4 we begin by recording the following easy refinement of previous
bounds on the coefficients α, β, γ. We shall use the following variant of Lemma B.9:

(C.12) ‖α‖L2([z0,0];Cr∗)
+ ‖β‖L2([z0,0];Cr∗)

+ ‖γ‖L2([z0,0];Cr−1
∗ )

≤ F(‖η‖
Hs+1

2
)(‖η‖

C
r+1

2
∗

+ 1).

As in the proof of Lemma B.9, such estimates follow from the definition of ρ (by

means of the Poisson kernel), the Sobolev embedding Hs+ 1
2 ⊂ W 1,∞ and tame

estimates in Hölder spaces (A.22). We are now ready to conclude the proof of
Lemma C.4.

Estimate of F0. Since C
s−3/4−d/2
∗ ⊂ Cr−1

∗ , (C.7) implies that

‖F0‖L2([z0,0];Cr−1
∗ ) ≤ F

(
‖(η, ψ, V,B)‖

Hs+1
2×Hs+1

2×Hs×Hs

)
.

Estimate of F1. Using (A.18), the term F1 = γ∂z℘ is estimated by

‖F1‖L2
z([z0,0];Cr−1

∗ ) ≤ K ‖∂z℘‖L∞z ([z0,0];Cr−1
∗ ) ‖γ‖L2

z([z0,0];Cr−1
∗ ) .

The desired estimate then follows from (C.10) and (C.12).

Estimate of F2. According to (A.13) with m = 1, s = r, we obtain∥∥T∆℘(z)α(z)
∥∥
Cr−1
∗

. ‖∆℘(z)‖C−1
∗
‖α(z)‖Cr∗ ,∥∥T∇∂z℘(z) · β(z)

∥∥
Cr−1
∗

. ‖∇∂z℘(z)‖C−1
∗
‖β(z)‖Cr∗ .

On the other hand, since r > 1 we can apply (A.10) to obtain

‖R(α,∆℘)(z)‖Cr−1
∗

. ‖∆℘(z)‖C−1
∗
‖α(z)‖Cr∗ . ‖∇℘(z)‖L∞ ‖α(z)‖Cr∗ ,

‖R(β,∇∂z℘)(z)‖Cr−1
∗

. ‖∇∂z℘(z)‖C−1
∗
‖β(z)‖Cr∗ . ‖∂z℘(z)‖L∞ ‖β(z)‖Cr∗

By using (C.10) and (C.12), we conclude the proof of the claim in Lemma C.4
for i = 2.

Estimate of F3. Using (B.46)–(B.47) with µ = s − 1/2 we find

‖F3(z)‖Cr−1
∗

. ‖F3(z)‖
Hs− 1

2
≤ F

(
‖η‖

Hs+1
2

)
‖η‖

W r+1
2 ,∞
‖∇x,z℘(z)‖Hs ,

and hence

‖F3‖L2([z0,0];Cr−1
∗ ) ≤ F

(
‖η‖

Hs+1
2

)
‖η‖

W r+1
2 ,∞
‖∇x,z℘‖

Xs− 1
2 ([z0,0])

,

by definition of Xs−1/2([z0, 0]). The desired estimate follows from (C.8).

Estimate of F4. This follows from (C.10) and (A.4).

This completes the proof of Lemma C.4 and hence the proof of Proposition C.3.
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Appendix D

Sobolev estimates

In this appendix, we prove sharp a priori estimates in Sobolev spaces.

D.1 Introduction

Our goal is to estimate, for T in (0, T0], the norm

Ms(T ) := ‖(ψ, η,B, V )‖
C0([0,T ];Hs+1

2×Hs+1
2×Hs×Hs)

,

in terms of the norm of the initial data

Ms,0 := ‖(ψ(0), η(0), B(0), V (0))‖
Hs+1

2×Hs+1
2×Hs×Hs

and in terms of a quantity which involves Hölder norms, that will be later estimated
by means of a Strichartz estimate, defined by

Zr(T ) := ‖η‖
Lp([0,T ];W r+1

2 ,∞)
+ ‖(B, V )‖Lp([0,T ];W r,∞×W r,∞) ,

where p = 4 if d = 1 and p = 2 for d ≥ 2.

Our goal in this chapter is to prove the following result.

Theorem D.1. Let T0 > 0, d ≥ 1 and consider s, r ∈]1,+∞[ such that

s >
3

4
+
d

2
, s +

1

4
− d

2
> r > 1.

There exists a non-decreasing function F : R+ → R+ such that, for all smooth solu-
tion (η, ψ) of (1.5) defined on the time interval [0, T0] and satisfying Assumption 2.1
on that time interval, for any T in [0, T0], there holds

(D.1) Ms(T ) ≤ F
(
F(Ms,0) + TF

(
Ms(T ) + Zr(T )

))
.
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If s > 1 + d/2 then one can apply the previous inequality with r = s − d/2. Then
Zr(T ) .Ms(T ) and one deduces from (D.1) an estimate which involves only Ms(T ).
Thus we recover the a priori estimate in Sobolev spaces proved in [3] for s > 1+d/2.
The proof of Theorem D.1 follows closely the proof of [3, Prop. 4.1]. For the reader
convenience we shall recall the scheme of the analysis, but we shall only prove the
points which must be adapted. The main new difficulty is to prove sharp Hölder
estimates for the Taylor coefficient.

Hereafter, F always refers to a non-decreasing function F : R+ → R+ depending
only on s, r, d and h, c0 (being of course independent of the time T and the un-
knowns).

D.2 Symmetrization of the equations

As already used in the analysis of the Strichartz estimate, the key point is to sym-
metrize the equations. To ease the readability, we recall this result here. Recall that
we introduced the following notations

ζ = ∇η, Us := 〈Dx〉s V + Tζ〈Dx〉s B, ζs := 〈Dx〉s ζ, q =

√
a

λ
, θs = Tqζs.

As already mentioned in Section 2.1, by combining the analysis done in [3] com-
bined with the improved tame estimates established in Appendix B, one obtains the
following result:

∂tUs + TV · ∇Us + Tγθs = F1,(D.2)

∂tθs + TV · ∇θs − TγUs = F2,(D.3)

for some source terms F1, F2 satisfying

(D.4) ‖(F1(t), F2(t))‖L2×L2

≤ C
(
‖(η, ψ)(t)‖

Hs+1
2
, ‖(V,B)(t)‖Hs

){
1 + ‖η(t)‖

W r+1
2 ,∞

+ ‖(V,B)(t)‖W r,∞

}
,

for any real numbers s and r such that s > 3
4 + d

2 , r > 1.

D.3 Sobolev estimates

We now explain how to deduce Theorem D.1 from (D.2)–(D.4).

Notice that, by definition of Ms(T ) and Zr(T ),

‖(F1, F2)‖L1([0,T ];L2×L2)

≤ F(Ms(T ))
{
T + ‖η‖

L1([0,T ];W r+1
2 ,∞)

+ ‖(V,B)‖L1([0,T ];W r,∞)

}
≤
√
TF(Ms(T ))Zr(T ),
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for T ≤ 1. Then it follows from the previous estimate and energy estimates (see §4.4
in [3]) that we have the following L∞t (L2

x) estimate for (Us, θs).

Lemma D.2. There exists a non-decreasing function F such that

(D.5) ‖Us‖L∞([0,T ];L2) + ‖θs‖L∞([0,T ];L2) ≤ F(Ms,0) +
√
TF(Ms(T ))(1 + Zr(T )).

It remains to deduce from this lemma estimates for the Sobolev norms of η, ψ, V,B.
Recall that the functions Us and θs are obtained from (η, V,B) through:

Us := 〈Dx〉s V + Tζ〈Dx〉s B,

θs := T√
a/λ
〈Dx〉s∇η.

We begin with the following result. It gives the desired estimate for η but only
weaker estimates for (V,B) and the Taylor coefficient a.

Lemma D.3. There exists a non-decreasing function F such that for any r > 0,

(D.6) ‖η‖
L∞([0,T ];Hs+1

2 )
+ ‖(B, V )‖

L∞([0,T ];Hs− 1
2 )

≤ F(Ms,0) +
√
TF(Ms(T ))(Zr(T ) + 1),

and, for any 1 < r′ < r,

(D.7) ‖a‖
L∞([0,T ];Cr

′−1
∗ )

≤ F(Ms,0) +
√
TF(Ms(T ))(Zr(T ) + 1).

We omit the proof since this lemma follows directly from the proof of Lemma 4.13
and Lemma 4.14 in [3].

Once η is estimated in L∞([0, T ];Hs+ 1
2 ), by using the estimate for Us, we are going

to estimate (B, V ) in L∞([0, T ];Hs). Here we shall make an essential use of the
following result about the paralinearization of the Dirichlet-Neumann operator for
domains whose boundary is in Hµ for some µ > 1 + d/2.

Proposition D.4 (from [3]). Let d ≥ 1 and µ > 1 + d
2 . For any 1

2 ≤ σ ≤ µ−
1
2 and

any

0 < ε ≤ 1

2
, ε < µ− 1− d

2
,

there exists a non-decreasing function F : R+ → R+ such that R(η)f := G(η)f−Tλf
satisfies

‖R(η)f‖Hσ−1+ε(Rd) ≤ F
(
‖η‖Hµ(Rd)

)
‖f‖Hσ(Rd) .

Lemma D.5. There exists a non-decreasing function F such that

(D.8) ‖(V,B)‖L∞([0,T ];Hs) ≤ F
(
F(Ms,0) + TF

(
Ms(T ) + Zr(T )

))
.
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Proof. Step 1. Recall that U = V + TζB. We begin by proving that there exists a
non-decreasing function F such that

(D.9) ‖U‖
L∞([0,T ];Hs− 1

4 )
≤ F

(
F(Ms,0) + TF

(
Ms(T ) + Zr(T )

))
.

Since Us = 〈Dx〉s V + Tζ〈Dx〉s B by definition, we have

〈Dx〉s−
1
4 U = 〈Dx〉−

1
4
{
Us +

[
〈Dx〉s , Tζ

]
B
}
.

Theorem A.5 implies that

(D.10)
∥∥[〈Dx〉s , Tζ

]∥∥
Hµ→Hµ−s+1

4
. ‖ζ‖

W
1
4 ,∞

so ∥∥[〈Dx〉s , Tζ
]
B
∥∥
H−

1
4
. ‖ζ‖

W
1
4 ,∞
‖B‖

Hs− 1
2
.

Since s > 3/4 + d/2, we have

‖ζ‖
W

1
4 ,∞

. ‖ζ‖
Hs− 1

2
≤ ‖η‖

Hs+1
2

and hence
‖U‖

Hs− 1
4
. ‖Us‖

H−
1
4

+ ‖η‖
Hs+1

2
‖B‖

Hs− 1
2
.

The three terms in the right-hand side of the above inequalities have been already
estimated; indeed, Lemma D.2 gives an estimate for the L∞t (L2

x)-norm of Us and a

fortiori for its L∞t (H
− 1

4
x )-norm, see also Lemma D.3 for B and Lemma D.3 for η.

This proves (D.9).

Step 2. Recall that we have already estimated the L∞t (H
s− 1

2
x )-norms of B, V and

that we want to estimate their L∞t (Hs
x)-norms. As an intermediate step, we begin

by proving that

(D.11) ‖B‖
L∞([0,T ];Hs− 1

4 )
≤ F

(
F(Ms,0) + TF

(
Ms(T ) + Zr(T )

))
.

To do so, the two key points are the paralinearization estimate for R(η) := G(η)−Tλ
(see Proposition D.4) and the relation (2.5) between V and B: for any s > 1

2 + d
2

one has G(η)B = −div V + γ̃ where

(D.12) ‖γ̃‖
Hs− 1

2
≤ F(‖(η, V,B)‖

Hs+1
2×H

1
2×H

1
2
).

Taking the divergence in U = V + TζB, we get according to Lemma D.3 and the
previous identity G(η)B = −div V + γ̃,

divU = div V + div TζB = div V + Tdiv ζB + Tζ · ∇B
= −G(η)B + Tiζ·ξ+div ζB + γ̃

= −TλB −R(η)B + Tiζ·ξ+div ζB + γ̃

= TqB −R(η)B + Tdiv ζB + γ̃
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where, by notation,
q := −λ+ iζ · ξ.

Now write
TqB = divU − Tdiv ζB +R(η)B − γ̃

and
B = T 1

q
TqB +

(
I − T 1

q
Tq

)
B

to obtain

(D.13) B = T 1
q

divU − T 1
q
γ̃ +RB

where

(D.14) R := T 1
q

(
−Tdiv ζ +R(η)

)
+
(
I − T 1

q
Tq

)
.

We now claim that R is of order −1/4 together with the following estimate: for any
1/2 ≤ σ ≤ s, we have

(D.15) ‖RB‖
Hσ+1

4
≤ F

(
‖η‖

Hs+1
2

)
‖B‖Hσ .

Fix σ ∈ [1/2, s]. We begin by estimating R(η). According to Proposition D.4
(applied with µ = s + 1

2 and ε = 1
4), we have

‖R(η)B‖
Hσ− 3

4
≤ F

(
‖η‖

Hs+1
2

)
‖B‖Hσ .

On the other hand, since div ζ = ∆η, the rule (A.12) implies that

‖Tdiv ζ‖
Hσ→Hσ− 3

4
. ‖div ζ‖

C
− 3

4
∗

. ‖η‖
Hs+1

2
.

Finally, q = −λ+iζ ·ξ ∈ Γ1
1/4 with M1

1/4(q) ≤ C(‖η‖
Hs+1

2
) since s > 3

4 + d
2 . Moreover,

q−1 is of order −1 and we have

M−1
1/4

(
q−1
)
≤ F

(
‖η‖

Hs+1
2

)
.

Consequently, according to (A.4) and (A.5), we have

(D.16)
∥∥∥T 1

q

∥∥∥
Hσ− 3

4→Hσ+1
4

+
∥∥∥I − T 1

q
Tq

∥∥∥
Hσ→Hσ+1

4
≤ F

(
‖η‖

Hs+1
2

)
.

By combining the previous bound, we obtain the desired estimate (D.15). Now,
(D.15) applied with σ = s − 1/2 implies the following estimate for the last term in
the right-hand side of (D.13),

‖RB‖
Hs− 1

4
≤ F

(
‖η‖

Hs+1
2

)
‖B‖

Hs− 1
2
.

To estimate the two other terms in the right-hand side of (D.13), we use the operator
norm estimate (D.16) for T1/q, to obtain∥∥∥T 1

q
divU − T 1

q
γ̃
∥∥∥
Hs− 1

4
≤ F

(
‖η‖

Hs+1
2

){
‖U‖

Hs− 1
4

+ ‖γ̃‖
Hs− 5

4

}
.
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By combining the two previous estimates, it follows from (D.13) that

(D.17) ‖B‖
Hs− 1

4
≤ F

(
‖η‖

Hs+1
2

){
‖U‖

Hs− 1
4

+ ‖γ̃‖
Hs− 5

4
+ ‖B‖

Hs− 1
2

}
.

Taking the L∞-norm in time, one obtains the claim (D.11) from the previous esti-
mates, see (D.9), (D.12) and (D.6).

Step 3: Bootstrap. We now use the previous bound (D.11) for B to improve the
estimate (D.9) for U , namely to prove that

(D.18) ‖U‖L∞([0,T ];Hs) ≤ F
(
F(Ms,0) + TF

(
Ms(T ) + Zr(T )

))
.

Firstly, writing 〈Dx〉s U = Us +
[
〈Dx〉s , Tζ

]
B and using (D.10), one has

‖U‖Hs . ‖Us‖L2 + ‖η‖
Hs+1

2
‖B‖

Hs− 1
4
.

As above, the three terms in the right-hand side of the above inequalities have been
already estimated; indeed, Lemma D.2 gives an estimate for the L∞t (L2

x)-norm of
Us, η is estimated by means of Lemma D.3 and we can now use (D.13) to estimate
‖B‖

Hs− 1
4
. This proves (D.18).

We next use (D.18) to improve the estimate (D.13) for B. Firstly, by using the
estimate (D.15) with σ = s − 1/4 instead of s − 1/2, we obtain as above

(D.19) ‖B‖Hs ≤ F
(
‖η‖

Hs+1
2

){
‖U‖Hs + ‖γ̃‖

Hs− 1
2

+ ‖B‖
Hs− 1

4

}
.

Taking the L∞-norm in time, it follows from the previous estimates (see (D.18),
(D.12) and (D.11)) that

(D.20) ‖B‖L∞([0,T ];Hs) ≤ F
(
F(Ms,0) + TF

(
Ms(T ) + Zr(T )

))
.

Step 4: Estimate for V . Writing V = U − TζB, it easily follows from (D.18) and
(D.20) that ‖V ‖L∞([0,T ];Hs) is bounded by the right-hand side of (D.8).

This completes the proof of the lemma.

It remains to estimate the L∞([0, T ];Hs+ 1
2 )-norm of ψ. This estimate is obtained

in two steps. Firstly, since ∇ψ = V + B∇η and since the L∞([0, T ];Hs− 1
2 )-norm

of (∇η, V,B) has been previously estimated, we obtain the desired estimate for the

L∞([0, T ];Hs− 1
2 )-norm of ∇ψ. It remains to estimate ‖ψ‖L∞([0,T ];L2). This in turn

follows from the identity

∂tψ + V · ∇ψ = −gη +
1

2
V 2 +

1

2
B2

and classical L2 estimate for hyperbolic equations (see (A.26)).
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Appendix E

Proof of a technical result

Here we prove Lemma 2.37 using an inequality proved in [6]. Let

I(λ) =

∫
Rd

eiλΦ(ξ)b(ξ) dξ

where Φ ∈ C∞(Rd) is a real phase, b ∈ C∞(Rd) is a symbol with compact support.
We shall set K = supp b and let V be a small open neighborhood of K. We shall
assume that

(E.1)

(i) Mk :=
∑

2≤|α|≤k

supξ∈V |Dα
ξ Φ(ξ)| < +∞, 2 ≤ k ≤ d+ 2,

(ii) Nl :=
∑
|α|≤l

supξ∈K |Dα
ξ b(ξ)| < +∞, l ≤ d+ 1,

(iii) |det Hess Φ(ξ)| ≥ a0 > 0, ∀ξ ∈ V,

where Hess Φ denotes the Hessian matrix of Φ. In [6], it is proved that, for all (Φ, b)
satisfying the above assumptions (see [6] for another technical assumption which is
easily checked for our purpose), there exists a constant C such that, for all λ ≥ 1,

(E.2) |I(λ)| ≤ C
max

{
1,Md+2(Φ)

d
2

+d2
}

a1+d
0

Nd+1λ
− d

2 .

We begin by recalling the notations. First of all

K(t, z, y, h̃) = (2πh̃)−d
∫
eih̃
−1(φ(t,z,ξ,h̃)−y·ξ)b̃(t, z, y, ξ, h̃

)
χ1(ξ) dξ,

where 0 < t ≤ h̃δ, (δ = 2
3), χ1 ∈ C∞0 (Rd) b̃ is given by (2.83). On the other hand
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(see (2.101))

φ(t, z, ξ, h̃) = z · ξ −
∫ t

0
p
(
σ, z, ζ(σ;κ(σ; z, ξ, h̃), ξ, h̃), h̃

)
dσ,

= z · ξ − t
∫ 1

0
p
(
ts, z, ζ(ts;κ(ts; z, ξ, h̃), ξ, h̃), h̃

)
ds,

=: z · ξ − t θ(t, z, ξ, h̃),

and (see (2.105))

(E.3)

∣∣∣∣det
( ∂2θ

∂ξi∂ξj
(t, z, ξ, h̃)

)∣∣∣∣ ≥M0 > 0

for all 0 < t ≤ h̃δ, z ∈ Rd, ξ ∈ suppχ1, 0 < h̃ ≤ h̃0. Recall that we want to prove
that

(E.4)
∣∣K(t, z, y, h̃)

∣∣ ≤ F(‖V ‖E0 +Nk+1(γ)
)
h̃−

d
2 t−

d
2

for all 0 < t ≤ h̃δ, z, y ∈ Rd and 0 < h̃ ≤ h̃0.

Case 1. If 0 < t ≤ h̃ then the estimate (E.4) follows imediately from the fact that

h̃−d ≤ h̃−
d
2 t−

d
2 .

Case 2. Let h̃ ≤ t ≤ h̃δ, (δ = 2
3). Set λ = t

h̃
∈ [1, h̃−

1
3 ] and let Z = z

t , Y = y
t . Then

our kernel can be written as

K(t, z, y, h̃) = (2πh̃)−d
∫
eiλΦ(t,Z,Y,ξ,h̃)b̃(t, tZ, tY, ξ, h̃

)
χ1(ξ) dξ

where
Φ(t, Z, Y, ξ, h̃) = (Z − Y ) · ξ − θ(t, tZ, ξ, h̃).

Now Corollary 2.28, Proposition 2.30 and (E.3) allow us to apply Theorem 1 in [6]
where (t, Z, Y, h̃) are considered as parameters. We obtain

|K(t, z, y, h̃)| ≤ F
(
‖V ‖E0 +Nk+1(γ)

)
h̃−

d
2 h̃−dλ−

d
2

which proves (E.4).
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linear partial differential equations, volume 343 of Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidel-
berg, 2011.

[13] M.S Berger, Non linearity and functionnal analysis, Academic Press New York, 1977.

121



[14] T. Brooke Benjamin and Peter J. Olver. Hamiltonian structure, symmetries and con-
servation laws for water waves. J. Fluid Mech., 125:137–185, 1982.

[15] Matthew Blair. Strichartz estimates for wave equations with coefficients of Sobolev
regularity. Comm. Partial Differential Equations, 31(4-6):649–688, 2006.

[16] Jean-Michel Bony. Calcul symbolique et propagation des singularités pour les équations
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[30] Thibault de Poyferré Blow-up conditions for gravity water-waves. arXiv:1407.6881.
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