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Abstract

This memoir is devoted to the proof of a well-posedness result for the gravity water
waves equations, in arbitrary dimension and in fluid domains with general bot-
toms, when the initial velocity field is not necessarily Lipschitz. Moreover, for two-
dimensional waves, we can consider solutions such that the curvature of the initial
free surface does not belong to L2.

The proof is entirely based on the Eulerian formulation of the water waves equations,
using microlocal analysis to obtain sharp Sobolev and Hélder estimates. We first
prove tame estimates in Sobolev spaces depending linearly on Holder norms and
then we use the dispersive properties of the water-waves system, namely Strichartz
estimates, to control these Holder norms.
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Chapter 1

Introduction

In this paper we consider the free boundary problem describing the motion of wa-
ter waves over an incompressible, irrotational fluid flow. We are interested in the
study of the possible emergence of singularities and would like to understand which
quantities govern the boundedness of the solutions.

We shall work in the Eulerian coordinate system where the unknowns are the velocity
field v and the free surface elevation n. Namely, consider a simply connected domain,
Q, located between a fixed bottom I' and a free unknown surface X, given as a graph

Y= {(z,y) e R xR; y =n(t,z)}.

In this framework, water waves are described by a system of coupled equations: the
incompressible Euler equation in the interior of the domain and a kinematic equation
describing the deformations of the domain. Moreover, the velocity will be assumed
to be irrotational. Thus we are interested in the following system

O +v-Vayv+ Ve y(P+gy) =0in Q,

div 4 4v = 0, curl, v =0 in €,

(1.1) v-v=0onT,
on =1+ |Vx77|2)1/2'0 -m on X,
P=0ony,

augmented with initial data (19, vg) at time ¢ = 0. Here n (resp. v) is the outward
unit normal to the free surface (resp. the bottom), P is the pressure and g > 0 is
the acceleration of gravity.

The first equation is the usual Euler equation in presence of a gravity force directed
along the y coordinate, the third one is the solid wall boundary condition at the
bottom, the fourth equation describes the movement of the interface under the action
of the fluid and ensures that the fluid particles initially at the interface remain at
the interface, while the last one expresses the continuity of the pressure through the
interface (no tension surface).



In [3] we proved that the Cauchy problem for the system (1.1) is well-posed under the
minimal assumptions that insure that at time ¢ = 0, in terms of Sobolev embeddings,
the initial velocity vg is Lipschitz up to the boundary (see also the improvement to
velocities whose derivatives are in BMO by Hunter-Ifrim-Tataru [37]). This Lipschitz
regularity threshold for the velocity appears to be very natural. However, it has been
known for some time (see the work by Bahouri-Chemin [11] and Tataru [59]) that
taking benefit of dispersive effects, it is possible to go beyond this threshold on
some quasilinear wave-type systems. The goal of this article is to show that such an
improvement is also possible on the water-waves system.

To describe our main result, we need to introduce some notations. For (n,v) as
above, denote by V' = v, |5, B = vy |x the horizontal and vertical components of
the velocity field at the interface. Since v is irrotational, and incompressible, we can
write v = Vg 40, with A, y¢ = 0 in the domain. We set ¢ = ¢ |5 We shall prove
the following result (see Section 1.4 for a more complete statement).

Theorem. Let

d =L ifd=1,
s>1+ - —pu, with 4 214 Z'f
2 :U’:ﬁ Zfd227

and set HS = H**2 x H5T2 x (H%)? x H® where H® = H°(RY).

Then for any initial data (no,vo) such that (no, o, Vo, Bo) € H® and satisfying the
Taylor sign condition, there exist T > 0 and a solution (n,v) of the water-waves
system (1.1) (unique in a suitable space) such that (n,,V, B) € C°((=T,T); H®).

Remark 1.1. e The Taylor sign condition expresses the fact that the pressure
increases going from the air into the fluid domain (9, P|s; < ¢ < 0). It is always
satisfied when there is no bottom (see Wu [65]) or for small perturbations of
flat bottoms (see Lannes [43]). Notice that the water-waves system is ill-posed
when this condition is not satisfied (see Ebin [33]).

e The curvature kg of the initial free surface involves two derivatives of 7.
Hence, we have kg € H s=3 which, according to our assumption on s, can be
negative in dimension 1. This shows that, when d = 1, no control on the
L?(R)-norm of the curvature of the initial free surface is to be assumed.

e In any dimension, in view of Sobolev embeddings, our assumptions require that
Vo, By belong to the Holder space W1~ Consequently, our result applies
to initial data for which the initial velocity field is not Lipschitz.

e In this article we consider only gravity water waves. We refer to the works
[31, 32] by de Poyferré and Nguyen for the case with surface tension.

e At the end of this introduction, we explain the strategy of the proof. The main
restriction on p comes from the fact that we use a Strichartz estimate with
loss of derivative (this means a loss compared to the estimate which holds for
the linearized equation). This in turn comes from the fact that we prove a
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dispersive estimate which holds only on a small time interval whose length is
taylored to the size of the frequency.

To prove this result, we follow several steps. The first one is (roughly speaking) to
reduce the water waves equations to a quasilinear wave type equation of the form

(12) (8t+TV vx+ZTc)u = fa

where Ty is the paramultiplication by V', T, is a paradifferential operator of order %
and almost self-adjoint (such that 7" — T¢ is of order 0) and f is a remainder term
in the paradifferential reduction. Actually, this reduction is not new. It was already
performed in our previous work [3] and was based on two facts: the Craig-Sulem-
Zakharov reduction to a system on the boundary, introducing the Dirichlet-Neumann
operator and (following Lannes [43] and [1, 8]) the use of paradifferential analysis to
study the Dirichlet-Neumann operator in non smooth domains. The second major
step in the proof consists in proving that the solutions of the water waves system
enjoy dispersive estimates (Strichartz-type inequalities). For the equations with
surface tension in the special case of dimension 1, Strichartz estimates were proved
by Christianson, Hur and Staffilani in [22] for smooth enough data and in [2] for the
low regularity solutions constructed in [1]. In the present context, the main difficulty
will consist in proving these dispersive estimates for gravity waves at a lower level of
regularity than the threshold where we proved the existence of the solutions in [3].
This will be done by constructing parametrices on small time intervals tailored to the
size of the frequencies considered (in the spirit of the works by Lebeau [46], Bahouri-
Chemin [11], Tataru [59], Staffilani-Tataru [58], and Burq-Gérard-Tzvetkov [17]).

The important new points in the present article with respect to our previous analysis
are the following.

e To go beyond the analysis previously developed in [3] (under the assumption
s> 1+ %), we need to develop much more technically involved approaches,
in order to work with very rough functions and domains (most parts in our
analysis extend to s > % + %) We believe that these results on the Dirichlet-
Neumann operator in very rough domains can be of independent interest (see
also the work by Dahlberg-Kenig [29] and Craig-Schanz-Sulem [27]).

e The a priori estimates we prove involve L°(H5) norms (energy estimates) and
L?(C?) norms (dispersive estimates). For this, we need to estimate the non
linear (and non local) remainder terms given by the paradifferential calculus
using these norms. The loss of integrability in time (L?) for the Hélder norms
forces us to track down the precise dependence of the constants in our analysis
and prove tame estimates depending linearly on Holder norms.

e A simpler model operator describing our system is (0;+V - V) +z']Dx|% (while
in presence of surface tension, |Dx|% is replaced by \Dx]%) Consequently,
the dispersive properties exhibited on the water-waves system without surface
tension are generated by the lower order term in the equation (the principal
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part, being a simple transport equation, induces no dispersive effects). To our
knowledge, this is the only known example of such phenomenon.

e The main point in the proof of dispersive estimates is the construction of a
parametrix for solutions to (1.2). One of the difficulties in the approach will
be to get rid of this low regularity transport term by means of a parachange
of variables (see the work by Alinhac [9]). Once this reduction is performed,
we finally have to handle the low regularity in the parametrix construction.

In the rest of this section we shall describe more precisely the problem and outline
the steps of the proof on the main result.

1.1 Equations and assumptions on the fluid domain

We consider the incompressible Euler equation in a time dependent fluid domain €2
contained in a fixed domain O, located between a free surface and a fixed bottom.
We consider the general case where the bottom is arbitrary which means that the
only assumption we shall make on the bottom is that it is separated from the free
surface by a strip of fixed length.

Namely, we assume that,
Q={{t,z,y) eI x0 :y<n(t,z)},
where I € R; and @ ¢ R*xR is a given open connected set. The spatial coordinates

are x € R? (horizontal) and y € R (vertical) with d > 1. We assume that the free
surface

Y= {(t,x,y) eI xRIxR : y:n(t,:z)},

is separated from the bottom I' = 9Q \ ¥ by a curved strip. This means that we
study the case where there exists h > 0 such that, for any ¢ in I,

(1.3) {(m,y)GRde : n(t,:v)—h<y<77(t,:n)}c(9.
Examples.

1. O = R? x R corresponds to the infinite depth case ( T' = 0);
2. The finite depth case corresponds to @ = {(z,y) € R x R : y > b(z)} for
some continuous function b such that n(¢,x) —h > b(z) for any time ¢ (then

I' = {y = b(x)}). Notice that no regularity assumption is required on b.

3. See the picture below.



We consider a potential flow such that the velocity v is given by v = V,, ,¢ for some
function ¢: 2 — R, such that A, ,¢ = 0. The system (1.1) reads

1
Op+ 5 [Vaydl + P+gy=0 inQ

(1.4) Om=0yp—Vn-V¢ onk,
P=0 onk,
0,6=0 onT,

where as above g > 0 is acceleration due to gravity, P is the pressure and v denotes
the normal vector to I' (whenever it exists; for general domains, one solves the
boundary value problem by a variational argument, see [1, 3]).

1.2 Regularity thresholds for the water waves

A well-known property of smooth solutions is that their energy is conserved
d 1 2 9 2
oz etz y)? dody + 2 t,2)2d } —0.
dt{2/ﬂ(t)lv wo(t, 2, y)] :vy+2/Rdn( ) dzy =0

However, we do not know if weak solutions exist at this level of regularity (even the
meaning of the equations is not clear). This is the only known coercive quantity
(see [14]).

Another regularity threshold is given by the scaling invariance which holds in the

infinite depth case (that is when © = R% x R). If ¢ and 7 are solutions of the
gravity water waves equations, then ¢, and 1) defined by

oAtz y) = A32O(VA A2, Ny),  ma(tz) = A In(Vat, Ax),

solve the same system of equations. The (homogeneous) Holder spaces invariant by
this scaling (the scaling critical spaces) correspond to 1 Lipschitz and ¢¢ in TW3/2:00
(one can replace the Holder spaces by other spaces having the same invariance by
scalings).



According to the scaling argument, one could expect that the problem exhibits some
kind of “ill-posedness” for initial data such that the free surface is not Lipschitz.
See e.g. [19, 20] for such ill-posedness results for semi-linear equations. However,
the water waves equations are not semi-linear and it is not clear whether the scaling
argument is the only relevant regularity threshold to determine the optimal regu-
larity in the analysis of the Cauchy problem (we refer the reader to the discussion
in Section 1.1.2 of the recent result by Klainerman-Rodnianski-Szeftel [41]). In par-
ticular, it remains an open problem to prove an ill-posedness result for the gravity
water waves equations. We refer to the recent paper by Chen, Marzuola, Spirn and
Wright [21] for a related result in the presence of surface tension.

Several additional criterions have appeared in the mathematical analysis of the water
waves equations. The first results on the water waves equations required very smooth
initial data. The literature on the subject is now well established, starting with
the pioneering work of Nalimov [52] (see also Yosihara [67] and Craig [26]) who
showed the unique solvability in Sobolev spaces under a smallness assumption. Wu
proved that the Cauchy problem is well posed without smallness assumption ([65,
64]). Several extensions of this result were obtained by various methods and many
authors. We shall quote only some recent results on the local Cauchy problem:
[3, 18, 25, 43, 47, 48, 56], see also [7, 34, 37, 39, 66] for global existence results.

To ensure that the particles flow is well defined, it seems natural to assume that the
gradient of the velocity is bounded (or at least in BMO, see the work by Hunter, Ifrim
and Tataru in [37]). We refer to blow-up criteria by Christodoulou and Lindblad [23]
or Wang and Zhang [63]. Below we shall construct solutions such that the velocity
is still in L2((=T,T); W1*°) even though it is initially only in W17+,

Finally, notice that though the above continuation criterions are most naturally
stated in Holder spaces, the use of L2-based Sobolev spaces seems unavoidable (recall
from the appendix of [5] that the Cauchy problem for the linearized equations is ill-
posed on Hélder spaces, as it exhibits a loss of d/4 derivatives). So let us rewrite
the previous discussion in this framework. Firstly, the critical space for ny (resp.
the trace v, of the velocity at the free surface) is HHg(Rd) (resp. H%Jr%(Rd)).
We proved in [3] that the Cauchy problem is well-posed for initial data (ng,v) in
H%+g+5(Rd) X H1+g+5(Rd) with € > 0. This corresponds to the requirement that
the initial velocity field should be Lipschitz. In this paper we shall prove that the
Cauchy problem is well posed for initial data (1o, v,) belonging to H %+%7‘5(Rd) X
H1+%_5(Rd) for 0 < § < p. One important conclusion is that, in dimension d = 1,
one can consider initial free surface whose curvature does not belong to L?.

1.3 Reformulation of the equations

Following Zakharov ([68]) and Craig and Sulem ([28]) we reduce the water waves
equations to a system on the free surface. To do so, notice that since the velocity po-
tential ¢ is harmonic, it is fully determined by the knowledge of 77 and the knowledge
of its trace at the free surface, denoted by 1. Then one uses the Dirichlet-Neumann
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operator which maps a function defined on the free surface to the normal derivative
of its harmonic extension. Namely, if ¢ = ¢ (¢,x) € R is defined by

w(tv fL‘) = gb(t, €z, n(tv SU)),
and if the Dirichlet-Neumann operator is defined by
(G(U)!Z))(t»ﬂ?) =1+ |V’I’}‘2 an¢|y:n(t,x)
= (0y9)(t,z,n(t, x)) — Vn(t,z) - (V) (t,2,n(t, x)),

then one obtains the following system for two unknowns (7, 1) of the variables (t, x),

(1.5) 1(Vn- Vo + Gn)y)?

= = 0.
2 1+ |Vn|?

1
Opp + gn + B IVy|* —

We refer to [1, 3] for a precise construction of G(n) in a domain with a general
bottom. We also mention that, for general domains, we proved in [4] that if a
solution (,%) of System (1.5) belongs to C°([0, T7; H5+3 (R%) x H5+3 (R%)) for some
T >0 and s > 1/2 4 d/2, then one can define a velocity potential ¢ and a pressure
P satisfying (1.4). Below we shall always consider solutions such that (7, 1) belongs
to CO([O,T];H5+%(Rd) X HS"’%(Rd)) for some s > 1/2 + d/2 (which is the scaling
index). It is thus sufficient to solve the Craig-Sulem-Zakharov formulation (1.5) of
the water waves equations.

1.4 Main result

We shall work with the horizontal and vertical traces of the velocity on the free
boundary, namely

B = (8y¢)‘y:m V= (Vr¢)|y:n'
They are given in terms of n and 1 by means of the formula

V-V +G(n)y
(1.6) B= e

V =Vy — BVn.

Also, recall that the Taylor coefficient a defined by
(1.7) @ = —0,Pl,

can be defined in terms of 1,1 only (see [4] or Definition 1.5 in [3]).

For p = k+ o with k € N and o € (0,1), recall that one denotes by W#>(R%)
the space of functions whose derivatives up to order k are bounded and uniformly
Holder continuous with exponent o. Hereafter, we always consider indexes p € N.

In our previous paper [3], we proved that the Cauchy problem is well-posed in
Sobolev spaces for initial data such that, for some s > 1+ d/2, (no, o, Vo, Bo)
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belongs to H*"3 x H 3 x (H®)% x H®. Our main result in this paper is a well-
posedness result which holds for some s < 1+ d/2. In addition, we shall prove
Strichartz estimates.
Theorem 1.2. Let d > 1 and consider two real numbers s and r satisfying
d d Loifd=1
s>14+—-—pu, 1<r<s+p—- wherep=7< 2 ’
y K HT g : {éﬁdzz

Consider an initial data (no, o) such that

(H1) m € HT2(RY), o€ H*3(RY), Vo€ H'R?), Boe HRY),
(H2) there exists h > 0 such that condition (1.3) holds initially for t =0,

(H3) (Taylor sign condition) there exists ¢ > 0 such that, for all x € R?, ag(x) > c.

Then there exists T > 0 such that the Cauchy problem for (1.5) with initial data
(N0, %0) has a unique solution such that

1. 1 and 1 belong to C°([0,TY; HS+%(R“J‘)) NLF([0,T]; WT+%’°°(Rd)) wherep =4
ifd=1andp=2 ford > 2,

2. V and B belong to C°([0,T]; H*(R%)) N L* ([0, T]; W™>(R%)) with p as above,
3. the condition (1.3) holds for 0 <t < T, with h replaced with h/2,
4. for all0 <t < T and for all x € RY, a(t,z) > c/2.

Remark 1.3. e Notice that the last two assumptions in (H1) do not imply that
Yo € H¥TH(R?) since Vg does not belong to H¥(R?). Notice also that the
assumption (H1) holds, for instance, when ng € Hs+%(Rd) and ¢y = 0.

e The velocity is the gradient of the velocity potential and hence it could be
interesting to make an assumption on Vi) instead of ¢y (indeed, the assump-
tion that 19 belongs to L? implies a restriction on the moment of the velocity
in dimension 1). We refer to [64, 65, 43] for such well-posedness results in
infinite depth or in the case with a smooth bottom. However, because we
consider here general bottoms, it was convenient to make an assumption on
g instead of Vg and we did not try to improve the result by weakening the
low frequency assumption on g.

1.5 Paradifferential reduction

The proof relies on a paradifferential reduction of the water-waves equations, as in
[1, 3, 8]. This is the property that the equations can be reduced to a very simple
form

(1.8) (O +Tv-V+iT))u=f
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where Ty is a paraproduct and T, is a paradifferential operator of order % with

v =Vval

symbol

where

N N O

Here a is the Taylor coefficient (see (1.7)) and A is the principal symbol of the
Dirichlet-Neumann operator (see Appendix A for the definition of paradifferential

operators). When d = 1, A simplifies to [§] so Tyu =T 5 |Dm\% u.

To prove Theorem 1.2 we need tame estimates which complement the estimates
already proved in [3]. We shall study the Dirichlet-Neumann operator.

In the case without bottom (I' = (}), when 7 is a smooth function, it is known that,
modulo a smoothing operator, G(n) is a pseudo-differential operator whose principal
symbol is given by A.

Notice that A is well-defined for any C! function . In [3] we proved several results
which allow to compare G(7) to the paradifferential operator T when 7 has limited
regularity. In particular we proved that, for any s > 1+ d/2,

(1.9) NG = DSl ey gy < F Ul ey ) 1 Vs ey -

When 7 is a smooth function, one expects that G(n) — T is of order 0 which means
that G(n)f — T f has the same regularity as f (this holds true whenever 7 is much
smoother than f). On the other hand, (1.9) gives only that this difference “is
of order” 1/2 (it maps H® to H*~/2). This is because we allow 7 to be only 1/2-
derivative more regular than f. This is tailored to the analysis of gravity waves since,
for scaling reasons, it is natural to assume that 7 is 1/2-derivative more regular than
the trace of the velocity on the free surface.

We shall improve (1.9) by proving that G(n) — T) is of order 1/2 assuming only
that s > 3/4 + d/2 together with sharp Holder regularity assumptions on both 7
and f (these Holder assumptions are the ones that hold by Sobolev injections for
s > 1+d/2). Since Hélder norms are controlled only in some LP spaces in time (by
Strichartz estimates), we need to precise the dependence of the constants. We shall
prove in Appendix B the following result that we believe is of independent interest.

Theorem 1.4. Let d > 1 and consider real numbers s,r such that

3
-4+ = 1.
s>4+2, r >

Consider n € HS+%(Rd) N WT"'%’OO(Rd) and f € HS(RY) NW">(RY), then G(n)f
belongs to HS_%(Rd) and

(1.10) G S = TS ey < F (0l ey + 17 e) {2+ 10l g + 1l

for some non-decreasing function F: Rt — R™ depending only on s and r.

9



Remark 1.5. This estimate is tame in the following sense. In the context we will
be mostly interested in (s < 1+ d/2), for oscillating functions, we have (r > 1)

x 1r+% 1s+%* xT
[oE) s~ ) 7= 0~ [0 s
e/ llwrtz e £ € e/ Ngsts

and consequently, the estimate (1.10) is linear with respect to the highest norm.

d
2

1.6 Strichartz estimates

Using the previous paradifferential reduction, the key point is to obtain estimates in
Holder spaces coming from Strichartz ones. Most of the analysis is devoted to the
proof of the following result. Set for I = [0, 7],

IVllzo = IVl oo (r,p00 )y + 1V o (1,100 m))

Ni(y) = |Z|<:k81€1£> I DEY Lo (1,20 (may) + Z|<:k 51615 | D¢ /YHLP(I,W%’OO(Rd))j
al< A=

where C = {¢ e R?: {5 < [¢] < 10.}.

Theorem 1.6. Let I = [0,T], d > 1, pu such that p < 57 ifd =1, p < & ifd > 2
andp=4ifd=1,p=21ifd > 2.

There exists k = k(d) such that, for all s € R, one can find a non decreasing function
F : Rt — R* such that the following property holds. If w € C°(I; H3(RY)) and
f € LP(I; H(RY)) solve (1.8), then

Il comtom gy S FOVIE + M) {1 ey + Nl oy

where CY is the Zygmund space of order r € R (see Definition A.2),

This last theorem is proved in Chapter 2. We conclude this introduction by explain-
ing the strategy of its proof.

Linearized equation
To explain our strategy, let us first consider as a simple model the linearized equation

at (n=0,1v =0) when d = 2,¢ = 1, in the case without bottom. Then G(0) = |D,|
and the linearized system reads

O —|Dalp =0, Op+gn =0,
which, with u = 1 + 4| D,|"/? can be written under the form
Au+ i | Dy ?u = 0.

10



Since the operators e~ P =12 are unitary on Sobolev spaces, the Sobolev embedding
H'*5(R?) C L®(R?) (¢ > 0) implies that

He‘ith'm

< .
uo‘ L2 (J0,1[;L>=(R2)) — C lluoll grr+erz)

We shall recall the proof of the following Strichartz estimate

C uol|

3C > 0,V2 < p < 400, He_it‘D“lﬂuO‘ 3
L (o, 1[L‘2(R2)) H?r (R?)

which (taking p close to 2) allows to gain almost 1/4 derivative with respect to the
Sobolev embedding.

The strategy of the proof is classical (see Ginibre-Velo [35] and Keel-Tao [40]).
Firstly, by using the Littlewood-Paley decomposition, one can reduce the analysis
to the case where the spectrum of ug is in a dyadic shell. Namely, it is sufficient to
prove that

—it| Dy |12 ~2
le X(bDDuol] o g, < O Tuollzagre

where C' is uniform with respect to h €]0,1[ and x € C§°(R \ 0) equals 1 on [1,2].

To prove that T' = e‘it‘D’”ll/2X(h|D:p|) is bounded from L2 to LY(L%) (¢ = ﬁ) with
3

norm bounded by A := Ch™ 2?» it suffices to prove that the operator TT™* is bounded

from LF' (L%) to LP(LY) with norm bounded by A2 = C2h~ v Now, write

1
« —it|D,[1/2 is|Dy|1/2
TT* f = x(h|Dyl)e P! /0 eID="\ (B Dy ) £ (5, -)ds.

Using the Hardy-Littlewood-Sobolev inequality, the desired estimate for T7T™ will
be a consequence of the following dispersive estimate :

—i(t—s)|Dy|'/? C
(L Dal)e I (B D, Dl 1 < —5 O
h2|t —s|

The proof of this estimate is classical: we have
1
KD XD = oy [ O bty
T
and the estimate follows after changing variables (n = h&) from the stationary phase
inequality.
The nonlinear system

We now consider the nonlinear equation (1.8), which reads
(O + Ty -V +iTy)u = f.

To apply the strategy recalled in the previous paragraph, the main difficulties are
the following:
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e this is a paradifferential equation with non constant coefficients,

e the coefficients are not smooth. Indeed, V is in L{°(Cl) and the symbol

v =7(t,x,§), of order 1/2 in &, is only L,?O(C;/Q) in the space-time variables,

e the dispersion is due to the operator T of order 1/2, while the equation con-
tains the term Ty - V of order 1.

The first step of the proof is classical in the context of quasi-linear wave equations
(see the works by Lebeau [44], Smith [57], Bahouri-Chemin [11], Tataru [59] and
Blair [15]). It consists, after a dyadic decomposition at frequency A}, in regularizing
the coefficients at scale h=9, where § € (0,1) is to be chosen properly. Using the
Littlewood-Paley decomposition u = Zj>_1 Aju, we can write

(00 + S2(v) - V i1, ) Aju = f;,

where S;_qu = Zi;g_l Ajpu and f; is easily estimated. Then, for some § €]0, 1] (here
6= %), one considers instead the equation with smoothed coefficients:

(3t +855(V) -V + iTw)Aju = fi+gis v =x0(27Da)y

where

935 = (Sip(V) = $5(V)) - V + (T, = To) ) Agu.

Since the dispersion is due to the sub-principal term, we chose to straighten the
vector field 0; + Sjs(V) - V by means of a parachange of variables (following Alin-
hac [9]). To do so, we solve the system X (t) = S;s(V)(t, X (t)) with X(0) = z to
obtain a mapping x +— X (¢, z) which is a small perturbation of the identity in small
time, satisfying

0X 1
H%(t, ) = 1d| oo ray < C([[V ) t]2.

However, as the vector field V' is only Lipschitz, we have only the following estimates
for the higher order derivatives:

—(lal—1)1.1 1 iy
1O X) (8, ) e may < CallVIIE)R I De]2, o] 22, h=27.

So one controls X only on small time intervals whose sizes depend of h = 277
and «. This is one reason why we will prove a dispersive estimate only in short time
intervals whose size is tailored to the frequency.

Then, one makes the change of variables
un(t.y) = (Aju)(t, X (t,y)), h=27,
to obtain an equation of the form
Oyon, + 1AR(t, y, Dy)vy, = gn,

12



for an explicit operator A of order 1/2. For convenience we reduce the equation to
a semi classical form by changing variables

= h_%ya il’ = héa wﬁ(tv Z) = Uh(tv hy)

and multiplying the equation by h. We get an equation of the form

(hy + iP(t,hz,hD,, h))w; = hF;.

Finally, we are able to write a parametrix for this reduced system, which allows
to prove Strichartz estimates using the classical strategy outlined above, on a small
time interval |t| < 7% = B3, The key step here is to prove that, on such time intervals
one has a parametrix of the form

Ko(t, z) = (2wh) / / e @8N ="yt o ¢ Byp(2')dz'de
where b is a symbol and ¢ a real-valued phase function, such that

Shoo==-6 Bemo=x(O), swpxC{€: 5 <[ <3

Using the parametrixi, the stationary phase estimate and coming back to the original
variable z — y = h2z — x = X (t,y) we obtain a dispersive estimate (see Theo-
rem 2.35). This gives a Strichartz estimate on a time interval of size h%/2. Finally,
splitting the time interval [0, 7] into Th~%2 time intervals of size h%/?, and gluing
together all these estimates, we obtain a Strichartz estimate with loss on the time
interval [0, 7).

Acknowledgements. We would like to thank the referees for their comments which
lead to significant improvements in the presentation of the memoir.
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Chapter 2

Strichartz estimates

In this chapter we shall prove Strichartz estimates for rough solutions of the gravity
water waves equations. This is the main new point in this paper. Namely, we shall
prove Theorem 1.6 stated in the introduction.

The first section of this chapter is based on a paradifferential analysis of the water-
wave equations — we refer the reader to Appendix A for the definition of parad-
ifferential operators. This paradifferential analysis relies on the approach given in
[1, 3, 8] combined with some tame estimates which are proved in the appendix.

2.1 Symmetrization of the equations

We begin by recalling from [3] that the water-waves equations can be reduced to a
very simple form

(2.1) (8 +Tv -V +iTy)u=f

where Ty is a paraproduct and T, is a para-differential operator of 1/2. To do so,
we begin by recalling a formulation of the water waves system which involves the
unknowns

(2.2) ¢=Vn, B= ayﬁb’y:na V= Vz@yzm a= _8yP’y:777

where recall that ¢ is the velocity potential, P = P(t,x,y) is the pressure given by

1
(2:3) —P =019+ 5 [Vaydl’ + 9,

and a is the Taylor coefficient.

We consider smooth solutions (7,%) of (1.5) defined on the time interval [0, Tp] and
satisfying the following assumptions on that time interval.

Assumption 2.1. We consider smooth solutions of the water waves equations such
that
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i) (n,1) belongs to C1([0, Tol; H* (R?) x H*(R?)) for some sy large enough and
0 < Tp;

ii) there exists h > 0 such that (1.3) holds for anyt in [0, Ty] (this is the assumption
that there exists a curved strip of width h separating the free surface from the
bottom);

i) there erists ¢ > 0 such that the Taylor coefficient a(t,z) = —0yP|y—y.z) 15
bounded from below by c for any (t,x) in [0, Ty] x R2.

We begin by recalling two results from [3].

Proposition 2.2 (from [3]). For any s> % + % one has

(2.4) G(n)B=—divV +7

where

(2.5) Al ey, < VB sy st
Proposition 2.3 (from [3]). We have

(2.6) (O +V - -V)B=a—g,

(2.7) Oy +V-V)V+4+a( =0,

(2.8) (O +V-V)C =GV +(G(n)B +7,

where the remainder term v = ~y(n, ¥, V') satisfies the following estimate : if s > %+%
then

(2.9) IVl ey < FUO DV perd e )

Remark 2.4. With v and 7 as above, there holds v = —(75. In particular, it follows
from (2.4) and (2.8) that
(2.10) O+ V-V)(=G(n)V — (divV)C.

Moreover, in the case without bottom (I' = }), one can see that ¥ = 0 and hence
v=0.

The analysis then uses in an essential way the introduction of a new unknown (fol-
lowing Alinhac, see [8, 1, 9, 10]) which allows us to circumvent the classical issue
that there is a loss of 1/2 derivative when one works with the Craig-Sulem-Zakharov
system. By working with the unknowns (7, V, B), the introduction of this good un-
known amounts to work with U = V + T¢B where recall that ¢ = V7 (the ith
component (i = 1,...,d) of this vector valued unknown is U; = V; + Ty,, B).

To prove Sobolev estimates, it is convenient to work with
Us := (D3)*V +T¢(D,)® B,
Gs = (Dx)"C.

Now we can state the following result which complements [3, Prop. 4.8].

(2.11)
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Proposition 2.5. Let d > 1 and consider real numbers s,r such that

>§+§ >1

s 13 T .
There holds
(2.12) (O + Ty - V)Us + TaGs = fi,
(2.13) (O +Tv - V) = Th\Us + fa,

where recall that X\ is the symbol

Alt;,8) = \/(1 +[Vn(t,2)]*) [€° = (Vn(t,z) - €)2,

and where, for each time t € [0,T],

(2.14)  [[(A@), 2O 5, -1
< F(ltm YOl vy - IV B) Ol g72) {1 + @Iy es g0 + 1V B)(t)HWnoo} :

By using the tame estimates for the paralinearization of the Dirichlet-Neumann
operator proved in Appendix B, there is nothing new in the proof of Proposition 2.5
compared to the proof of Prop. 4.8 in [3]. Indeed, the proof of Prop. 4.8 in [3] applies
verbatim (up to replacing F (||(n, %, V, B) || by the right-hand side

of (2.14)).

HS+%xHS+%xH5xHS)

The next step is a symmetrization of the non-diagonal part of the equations. We
have the following result, whose proof follows directly from the proof of Proposi-
tion 4.10 in [3] and the estimates on the Taylor coefficient proved in the appendix
(see Proposition C.1 in Appendix C).

Proposition 2.6. Letd > 1, s > % + % and v > 1. Introduce the symbols

7= Val, qz\/f,

and set 05 = Ty(Cs. Then

(2.15) OUs + Ty - VU, + T, 05 = F1,
(2.16) O0s + Ty - Vs — T, U, = F,

for some source terms Fy, F satisfying

ICEL (), B2 ()| g2 12
< F(I. YOl oy NV BY B 5) {1 F 0@l .00 + IV B)(t)llwmo} :
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We are now in position to obtain the following corollary, which will be the starting
point of the proof of the Strichartz estimate.

Corollary 2.7. With the above notations, set

(2.17) u=(Dz)"" (Us = i0s) = (D) " (Us —iT 775 V1s)-
Then u satisfies the complex-valued equation
(2.18) Ou+ Ty - Vu+iTyu = f,
where f satisfies for each time t € [0,T],
(2.19)
1N s

< F(Im DOl yor s > 1V BY O s ) {1 + @Ol i g0 + 1V B)(t)llwmo} :

Proof. Tt immediately follows from (D.2)—(D.3) that Us — i satisfies
(2.20) (O + Ty -V +4T,)(Us — i6s) = h,

where, for each time ¢ € [0,7], the L?(R%)-norm of h(t) is bounded by the right-
hand side of (2.19). We now have to commute this equation with (D). If follows
from (A.5) that

(2.21) |[(Dz)~%, Tv - V] ul

e S IV e lullgs -
Now we claim that

(2.22) lull s < FCNO D ey NV B g )
To see this, write, by definition of u,

lell s < 11Usll 2 + 1165l 2
< (D) VI ge + 1T (D2)* Bl 2 + [ TyGsll 2

_1
<AVl gs + Sl oo 1Bl gs + Mo * (@) lICH o3

where we used that | T,v|| gu-m S MG (p) ||v]| gu for any paradifferential operator

~

with symbol p in I'j* (cf (A.4) and (A.3) for the definition of M{"(p)). Now we have,
using the Sobolev embedding,

€1 oo + My 2 () < F(lInllyroe s llall g ) < F(lIn]

so the claim (2.22) follows from the Sobolev estimates for a (see Proposition C.1 in
the appendix). As a result, it follows from (2.22) and (2.21) that the H®-norm of
[(Dg)~%,Ty - V]u is bounded by the right-hand side of (2.19).

To complete the proof of the Corollary it remains to prove a similar bound for
|[{Dz)~*,Ty] ul| <. To do so, we use again (A.5) to infer that

1[(D2) ™ T ]
(see (A.3) for the definition of M2 (7). Thus, in view of (2.22), it remains only to

1/2
estimate ]\411 //22 (7), which is done below in Lemma 2.8. O

et lalloy)

1/2
ie S MLTS ) el e
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2.2 Smoothing the paradifferential symbol

In this section we smooth out the paradifferential symbol v and we give some esti-
mates on it.

From now on we fix r > 1 and we assumes>1+g—ad where o1 = 24,0d——1f
d > 2 and we set sy := ,_0d>0 Then s — 1 >g+so.

Now, with I = [0, 7], we introduce the spaces

E = C(I; B3 (RY) N L (I; W2 (RY)),
(2.23) F = C%I; H3(RY) N LP(I; WH(RY)),

G == CO(I; W= (R%)) N LP(I; W2 (RY))
where p=4ifd =1, p =2 if d > 2, endowed with their natural norms.
We shall assume that
(2.24) (i) a€E, VnekE, VEF,

(i) Je>0:alt,z)>c, V(t,x)elxRL

Let us recall that

el

7(t7 $’€) = (aQU(tv l‘,f))

(2.25) . ) ,
Ut, z,8) == 1+ |Vnl™(t,2))[E]" — (& - Vn(t,z))".

Now we have, for £ € Co := {£ : 1 < |¢| < 2} considered as a parameter,
U € G
uniformly in £.
Lemma 2.8. There exists F : RT™ — R such that |[7]l¢ < F(IVnlle+](V, B)|lrxr)
for all € € Cy.

Proof. By the Cauchy-Schwartz inequality we have U(t, z, &) > |¢|? from which we
deduce that

(2.26) (2, 6) > o >0 Y(t,x, &) el xR xCo.
Moreover v € C%(I; L®(R% x Cp)). On the other hand, since
3 .
Yt 2, ) =y, ©) = (v(t 2, &) — (61, 6) D (vt 2,£)* T ((t,, £))
7=0
we have, using (2.26),

Iy (t,2,&) = (L, y,8) < 1 [(@®U)(t, 7€) — (@PU)(t,y,6)|
|z —y|° 4cg |z — gyl
1)

Taking o = 59, 0 = 1/2 and using (C.1) in Appendix C we deduce the lemma. [
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Guided by works by Lebeau [44], Smith [57], Bahouri-Chemin [11], Tataru [59] and
Blair [15], we smooth out the symbol of the operator.

Definition 2.9. Let 1 € C°(RY), even,9(€) = 1if [¢] < 4,9(¢) = 0 4f |¢] > 1.
With h =279 and § > 0, which will be chosen later on, we set

(2.27) st ,€) = Y(h’ Do)y (t, , ).
Lemma 2.10. (i) Vo,3 € N¢ dCn 5 >0:Vt € I,V€ € R¢

D3 D35 (t,2,6)] < Cagh™ [ DLt -, €| oo (et
(i)) Ya,B €N |a|>1 3C,p>0:VteI,VEcR?

«a —5(la]—1L
(DE Dy (12, €)] < Cogh™ =D DEA (1 )l 3 e gy

Proof. (i) follows from the fact that

%(t,€) = (2m) " hTG (5 ) (2, ).

(13) We write

—+00
DSDlys(t.6) = Y ApDIp(h’ Dy) DA (t,,€) : Z vk

k=-1 k=—1
where Ay denotes the usual Littlewood-Paley frequency localization.
If 2% > h=° = 29° we have Ayt)(h°D,) = 0. Therefore

2+[46]

DSDB%S ta, &)= > g
k=1

Now

v = 25100y (27K D, )i (W D) A DA (8, 2, €)
where ¢1(£) is supported in {3 < [¢| < 3}. Therefore,

_k
vkl oo (rey < 2k|a|HAkD?’Y(t7‘aﬁ)HLoo(Rd) < C2Melas ||D§ (&l

°°(Rd)’
It follows that
24[56] .
1DSDEs(t, &) ooy < C kzl 2#= )| Dy (¢, 0| 4 <y
Since | — & > 0 we deduce that
(el — L
1D D¢+ ) w(rey < C2 DDA O e gy

This completes the proof. ]
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We introduce now the Hessian matrix of ~;,
075
90k

(2.28) Hesse (1) (¢ 2,€) = (2 (t,2,€) ).

Our purpose is to prove the following result.

Proposition 2.11. There exist cg > 0, hg > 0 such that
| det Hesse (vs) (2, 2, §)| = co

forallte I,z € R, € €Cy,0< h < ho.

With the notation in (2.25) we can write

Ut,,€) = (A(t, )€, €),

where A(t,x) is a symmetric matrix. Since we have

(2.29) €1 <Ut,2,€) < CO+ IVl e ema) 14

we see that the eigenvalues of A are greater than one; therefore we have
(2.30) det A(t,z) > 1 V(t,z) eI xR

We shall need the following lemma.

Lemma 2.12. With o = + we have

4

d (a=1)d

| det Hess (v) (L, =, €)| = a2 (2a)?2a — 1| det A(t, x) U(t,z,¢))

Proof. Here t and z are fixed parameters. The matrix A being symmetric one can
find an orthogonal matrix B such that B~'AB = D = diag(y;) where the s
are the eigenvalues of A. Setting C' = diag(,/p;) and M = CB~! we see that
U(t,r,&) = |ME|? which implies that

1
(2.31) Yt a,€) = azg(ME)  where g(¢) = [¢[**,

so that Hess¢(y)(t,,§) = az M (Hess¢(g)(ME)) M. Since |det M|* = |det C|* =
det A we obtain

(2.32) | det Hesse (v)(t, z,§)| = a? det A(t,z) | det Hess¢ (g) (M (t, z)§)|.
Now we have,

0%g
9C0Ck
Let us consider the function F': R — R defined by

_ G
<1’

(2.33) () = 2a[¢)**2(61, + 2(a — Dwjwy),  w;

F()\) = det (5jk + )\ijk).
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It is a polynomial in A and we have
(2.34) F(0) =1.

Let us denote by C;(A) the j* column of this determinant. Then

d
F'(A) = _det (C1(N), ..., Cr(N), ... Ca(N)).
k=1

We see easily that

det (C1(0), .., C4(0), ... C4(0)) = wj

which ensures that
(2.35) F'(0) =1.
Now since Cj(A) is linear with respect to A we have C}/(\) = 0 therefore
d d
F'O)=>" > det (CL(A),..., Cj(A), ., Cr(N), ..., Ca(N)).
j=1 k=1,k#j

Now C%(A) = wj(wi, . .., wa) and C}(A) = wi(wi, . .. ,wa). It follows that F”(\) =0
for all A € R. We deduce from (2.34), (2.35) that F/(A\) = 1+ X and from (2.33) that

det Hess¢(9)(¢) = (2a/¢[**%)%(2a — 1).
The lemma follows then from (2.32) since U(t, z,£) = |M(t, z)&[%. O
Corollary 2.13. One can find co > 0 such that
| det Hesse¢ () (t, 2, &)| > co,

forallt e I,z € R4 € € Cy.
Proof. This follows from the previous lemma and from (2.29), (2.30). O

Proof of Proposition 2.11. Recall that we have for all o € N¢

sup sup [|Dg (¢, )y = (e < +00.
tel |¢|<2

For fixed j, k € {1,...,d} we write

0%y

0808k,

%75 _ 9%y
0&; 08k

(2'36) (t,x,{) - (I - ¢(h6Dz)) (t,x,{).

Setting ;i = 8583-2787& we have, since ¥(0) = 1,

(I — (W Dy))i(ty 2, €) = h= /
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where F denotes the inverse Fourier transform with respect to z. Then
(I = (1’ D))kt &)l oo (e
_ =, Y ;
<n ([ FOGE 1) it ) s

< Ch* sup sup |[vjk(t, -, €)oo (ra)-
tel |g|<2

Then Proposition 2.11 follows from Corollary 2.13 and (2.36) if hg is small enough.
O

2.3 The pseudo-differential symbol

In this paragraph, we study the pseudo-differential symbol of T’,;
Let x € C®(R%\ {0} x R?\ {0}) be such that

(@) x(=¢& =x(9),

(2.37) (79)  x is homogeneous of order zero ,

(iii)  x(¢, &) = 1if[¢] <eilé],  x(¢,€) = 0if [¢] = e¢]

where 0 < €1 < €9 are small constants. Let us set

(239) mta§) = ([ T8 dC) o)

where 75 denotes the Fourier transform of 45 with respect to the variable 2 and v
is a cut-off function such that ¢o(§) = 0 for [¢] < $,90(&) = 1 for |¢| > 3. Then
modulo an operator of order zero we have

Tysu(z) = (2m) // @ o (b2, €) uly) dy de,

(2.39)
(Ty;) u(z) = (27T)_d // el@=y)€ 05 (t,y, &) uly) dy d§.

In the sequel we shall set
1 *
(2.40) Ty = §(T75 + (T5) )

The following result will be useful.

Lemma 2.14. For all N € N,M > 0 and all o, 8 € N9 there exists C > 0 such

that o
sup |DYDIX (1) < —=
m<m T (N

where the Fourier transform is taken with respect to the first variable of x.
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Proof. Recall that we have supp x C {((,n) : |¢| < e2|n|}. Then for |n| < M we see
easily that for any k € N we can write

|ul* DY DER (1, m) = /Rd e M (=A)F[(=O)*DEx (¢, m)] dC.

The result follows then from the fact that when |n| < M the domain of integration
is contained in the set {¢ : |(] < eaM}. O

2.4 Several reductions

Let us recall the Littlewood-Paley decomposition. There exists an even function
Y € C§°(RY) such that ¥(¢) = 1 for |¢] < 1/2 and ¥(&) = 0 for |¢| > 1, and an even
function ¢ € C§°(R?) whose support is contained in the shell Cy := {¢ : % < ¢ <2}

such that
N—

)+ Y o2 w2 Ne).
k=0

)_I

We set

Aqu=v¢(D)u, Aju=@(2/D)u, Sju= Z Apu =277 D)u.
k=—1

We introduce te following definition.

Definition 2.15. A right hand side function Fj is said to be controlled if it satisfies
the following estimate

F} a < .
(241) H ]HLP(I:H (Rd)) = ||f”LP([’H (R4))

+ C(HVHLP(I,leOO(Rd)) + [I7ll=) [ull oo (1, m5(RAY)

with C independent of j.

We proceed now to several reductions.

Let u € L®(I; H(R%)) be a solution of the paradifferential equation (2.1) namely
(2.42) Lu =+ Ty - Vu +iTyu = f € L*(I; H(RY)).

Point 1. We have
LAju = f},

where f ; is controlled.

Indeed we can write
f17j = A]f -+ [Aj, Tv] -Vu+ i[Aj, TW]’U,.

24



Moreover [A;, Ty] - Vu = [A;, Ty ] - Vﬁju, A, T u = [Ay, TV]Eju and the estimate
follows from the symbolic calculus.

Point 2. The solution u satisfies
(2.43) (0r + S;(V) -V +iTy) Aju = fa
where f> ; is controlled.

Indeed we have fa; = f1;— (Ty-VAju—S;(V)-VAju). Since ApA; = 0if [k—j| > 2

we can write

Ty -AjVu= Y Ses(V)-ApAVu=S;(V): Y DA Vu+ Rju
li—kI<1 i—kl<1

= Sj(V)AjVu + Rju,

where Rju = =37 41 (S;(V) = Sk—3(V)) - AgA;jVu. We have three terms in
the sum defining R;u. Each of them is a finite sum of terms of the form A; =
Ajrpu(V) - AjiyAjVau. Since the spectrum of A; is contained in a ball of radius C'27
we can write for fixed ¢

1451 ms < CL27%|| 4|2 < Cr2%°(|Ag 1V || poe 1810 V| 2
< G227 |[V[wree27 2 | Ajul s < Col [V [lwee | Agul| s
Thus
|Tv - VAju—S;(V) - VAjul o1, sy < ClIV oo 1m0 ey 1256l oo (1, 15 (r2Y) -
which proves our claim since fi ; is controlled.

Point 3. As already mentioned, we need to smooth out the symbols. To do so, we
replace S;(V') and 7 by

Sis(V) =(27°D)V, 45 =4(277°D)y
where 6 = % Then the solution w satisfies
(O + Sj5(V) - V +iTy ) Aju = f3
where
(2.44) f35 = fo;+(Sjs(V) -V =8;(V)-V)Aju+i(Ty; — T))Aju.
Finally for later use we write the equation under a symmetric form.

Point 4. The solution w satisfies

1 { X
(245) EgAju = (815 + 5(8]5(‘/) . V + V . 8]5(‘/)) + §(T»y§ + T%))Aju == f4,j
where

1 . .
0.16) fag=faj+ 5{516(‘/) -V = V- 855(V) +i(Ty, — Ty) }Aju,
- 1 , . .
= f3,;+ {§5jé(le V) +i(Ty, — T3, } Aju.
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If we set
1 .
(2.47) Ty = §(T75 + T’y(;)
then we can write
1
(2.48) Ls =0+ Sj(;(V) -V + §Sj5(diVV) + 1%,

Notice that the operator

1 .
i(SJ(;(V) . V + V . SJ(;(V)) -+ Zs%;

is anti-symmetric.

Our goal now is to prove a Strichartz estimate for Ls.

2.5 Straightening the vector field

We want to straighten the vector field 0; + Sjs(V') - V. Consider the system of
differential equations

(2.49) X,(0) = o

{Xk(s) = Sis(Vi)(s,X(s)), 1<k<d, X=(X1,...,Xg)
For k=1,...,d we have S;5(V},) € L>=(I; H*(R%)) and
19i5(Vie) (5, 2)| < Cl|Viell oo (rxmay  V(s,2) € I x RY.

Therefore System (2.49) has a unique solution defined on I which will be denoted
X (s;x,h)(h = 277) or sometimes simply X(s).

We shall set
(2.50) Eo = LP(I; WH°(RY))4 0 L®(I; L= (R%))?
where p=4if d =1, p =2 if d > 2, endowed with its natural norm.

Proposition 2.16. For fived (s, h) the map x +— X (s;x,h) belongs to C*(RY, RY).
Moreover there exist functions F, Fo : RT — RT such that

W || h) 1| < F V)l

L (R4)
(i) 1@X) (55, 1)l o (ray < FalllV im0 Vs|z, [a] > 2

for all (s,h) € I x (0, ho].
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Proof. To prove (i) we differentiate the system with respect to z; and we obtain

an Vi X,
G Zsja( £) 5 X () G,
0X,
87:1( ) = Okl
from which we deduce
0Xp, S OV 0X,
(2.51) (e = b+ /0 ;Sga(%)w,xwam(a)da

Setting |[VX| = Zkl 1 |8X’“| we obtain from (2.51)

IVX(s)| < Cy+ /OS IVV (o, X(0))||VX(0)|do.

The Gronwall inequality implies that
(2.52) IVX(s)| < F(IVg,) Vsel.
Coming back to (2.51) and using (2.52) we can write

0X 5 1
) = 1] < FWVs) [ 19V (0 o do < AV )l

: 1
Notice that in dimension one we have used the inequality |S|% < (Cls|2 when s € I.

To prove (ii) we shall show by induction on || that the estimate
”(@?X)(Sv R h)”L‘X’(Rd) < fa(”VHEo)hiéqa‘il)

for 1 < |a| < k implies (i7) for || = k + 1. The above estimate is true for |a| = 1
by (7). Let us differentiate |a| times the system (2.49). We obtain

d
(2.53) %(8§X)(s) = S;5(VV)(s, X (5))05 X + (1)
where the term (1) is a finite linear combination of terms of the form

q
Apg(s,x) = 9%(S;s(V s) [T (0F X (s
=1

where

q q
2< (B <lal, 1<g<lal, Y |KilLi=a, Y Ki=8.
i=1 =1

27



Then 1 < |L;| < || which allows us to use the induction. Therefore we can write

H\KI

4505 Mty < 102(S550) 5| e e H( P

< Ch=0UBI=D| v (s, .)||W1700(Rd)h*52i:1 KL= F(1V ] )
< F(IVIz)h D1V (5, lwr oo (ma)-

It follows then from (2.53) that

|02 X (s)] SF(IIVHEo)h‘s(“'”/ 1V (o, Mwr.cemay do
(2.54) 0

+C [V o 02X () o
The Hoélder and Gronwall inequalities imply immediately (i7). O

Corollary 2.17. There exist To > 0,hg > 0 such that fort € [0,Tp] and 0 < h < hgy
the map = +— X (t;x, h) from RY to R? is a C° diffeomorphism.

Proof. This follows from a result by Hadamard (see [13]). Indeed if Ty is small
enough, Proposition 2.16 shows that the matrix (%—i’?(t; z, h)) is invertible. On the
other hand since

t
X (t2,h) — 2] < / 1855(V)(0, X (0))] do < To|[V || e oz ey

we see that the map x — X(¢; z, h) is proper. O

2.6 Reduction to a semi-classical form

In the sequel we shall set
U= A]’U.

According to (2.45) we see that the function U is a solution of the equation
1 , —j
(0 + 5{955(V) - V+ V- 855(V) } +iTy501(hD) ) Ut 2) = fu (b 2), h=27
where
1 1
(255) @1 € CX(RY), suppyr € {€: 7 <[¢[ <4}, @r=1on{¢: 5 < g <3}

and fy; has been defined in (2.46). According to (2.39), (2.40) we have

//Hﬁy a(t, x,y,& h)u(y) dy de,

(05 (t, 2, &) + Ty5 (£, 9, €)) 01 (RE).

Trsp1(hD2)U (¢, x) = (27
(2.56) |
(t T y>§ h‘) 5
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We make now the change of variable x = X (¢; 2, h). Let us set

(2.57) vp(t, ') =U{, X (t2', k) t€[0,Ty).

Then it follows from (2.49) that

(2.58) Opop(t,a) = —i(‘Z%cpl(hDr)U) (t, X (t;2', b)) + F;(t, X (t; 2", h)).
Our next purpose is to give another expression to the quantity

(2.59) A= (Ty501(hD)U) (8, X (t; 2/, h)).

In the computation below, ¢ € [0, Tp] and h being fixed, we will omit them. We have

(2m)~ // (XG0 €0 (X (2!), y, E)U (y) dy d.

Notations: we set

1
HE ) = [ G001 M) = (HE )

Mo(a:’):<t<%i{(:c')))_l, I, o) ‘det(af( ) |1 det MG, /).

Let us remark that M, My are well defined by Proposition 2.16. Moreover My(z') =
M(2',2") and J(a/,2") = 1.

(2.60)

In the integral defining A, we make the change of variables y = X (y’). Then using
the equality X (2') — X (v') = H(2/,y') (2’ — ') and setting £ = M (2/,y') we get,

HJI) _ (27T)_d // ei(x/—y/)‘ca(X(:c’),X(y’),M(x’,y’)() J(x',y’)vh(y’) dy/ dC
Now we set
(2.61) z= h_%x’, wp(z) = vh(h%z), h=hs.
Then
A(hz) = (27)~ // i(hz—y’) X(h2), X(y), M(%z,y')C)J(Ez,y/)vh(y') dy'd¢.
Then setting ' = hz’ and h¢ = ¢’ we obtain
A( hz (2m)~ // z=2)C g hz X (he' M ﬁz,ﬁz’ E_IC’
(2.62) ) X(h) ( ) )
J(hz, hz")wp(2") dz" d¢'.
Our aim is to reduce ourselves to a semi-classical form, after multiplying the equation
by h. However this not straightforward since the symbol a is not homogeneous in &

although v is homogeneous of order % We proceed as follows.
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First of all on the support of the function ¢ (see (2.55)) the function vy appearing
in the definition of o, (see (2.38)) is equal to one.

Therefore we can write for X € R%, p € R?, (skipping the variable t),
S K (U S (L
= // e XN ) sy, B p) dy dC
— [ R A o) (X = 7).

Now since x is homogeneous of degree zero we have,

X, An) = AR (A, ),

which follows from the fact that x(¢, An) = x(AANTL, Ap) = x(A71¢, 7).
Applying this equality with A\ = h~2 and n= Ep we obtain,

0y (X, Bt p) = h % / X2, hp)ys(X — p, ™t p) dps
= /i(u’ﬁp)%(X — W2 B p) dyd.
Using the fact that v and 5 are homogeneous of order % in £ we obtain
By (X7 p) = [ R Fo)s(X — W o) d

Now s is real and by (2.37) (i) X is also real, therefore since h~'h = h using (2.56)
we obtain

- ~ 1 [ ~ — o~ — - -
ha(X,Y,h™'p) = 5 /X(Mv hp) [s(X — 12, hp) + 75(Y — h?p, hp)] dp) 1 (hp).

It follows then from (2.58),(2.59),(2.62) that the function wy defined in (2.61) is
solution of the equation

(2.63) (hd; + he + iP)wy(t, 2) = hfs;(t, X (t, hz, b))

where c(t, 2, h) = 955 (divV)(t, X(t,hz)) and

(2.64) Puw(t,z) = (27h)~ // Pt, 2,2, ¢, hw(t, 2') dz d¢

with
(2.65)

Blt, 2,2 ¢, h) = % / X (s M(t, hz, h2')C) [vs (t, X (£, hz) — B2, M{(t, hz, h')C)
+s (t,X(t,Ez’) — By, M(t,ﬁz,ﬁz’)g)]du x p1(M(t, hz, h2')C)J(t, hz, h').
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We shall set in what follows
plt, 2, ¢ h) = p(t,z,2,C, h).
Since M(t, hz, hz) = My(t, hz) and J(t, hz, hz) = 1 we obtain
Pt G.F) = [ R Mo(t,R)C) s (0, X (1. F2) — R Mot h2)C) d

-1 (Mo(t, hz)Q).

(2.66)

Since the function yx is even with respect to its first variable the symbol p is real.

Summing up we have proved that
~ 1 ~ ~
(2.67) h{0;+ 3 (S;s(V)-V+V-S;5(V)) +i%, }U (¢t ) = (hdy + he + iP)wp(t, 2)

where

(2.68)
x=X(t hz), cft,zh)= % s(AiVV) (8, X (8, h2)),  wi(t,z) = U(t, X (¢, hz))

and the self-adjoint operator P is given by (2.64)

2.6.1 Estimates on the pseudo-differential symbol

Let [} := [0,%5]. We introduce the following norms on the paradifferential symbol
~. For k € N we set

2.69) Ni(v) = sup ||DEYy|| foo (1. ro0o(mdyy + sup ||D& 1 ,
(260) M) = 32 g 10 ity + 32 S0

where p =4 if d =1 and p = 2 if d > 2. Recall moreover that
(2.70) WVillzy = IV Il oo r; oo ayy + IV o woe may)

We estimate now the derivatives of the symbol of the operator appearing in the right

hand side of (2.67).

Lemma 2.18. For any o € N? there exists Fo : Rt — Rt such that fort € I
I(D2e)(t, ) oo (ray < FalllV |z W2V (R, )l (may-

Proof. By the Faa-di-Bruno formula Dfc is a finite linear combination of terms of
the form

(2.71) (1) = Bl D2 [S,5(divV)] (£, X (¢, 7)) H ((Dﬁg'x) (t,ﬁz))”
j=1
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where 1 < |a| < |, [l;| > 1, Y% pjlly; = «, 374 pj = a. For fixed t we
have

(2.72) | DE[S;5(divV)] (2, )] < Cale™ 24|V (t, ) |yp1.00 ey
and by Proposition 2.16
(DZ X)) (t,)] < Fa(|[V ] 5y)h~ 200010,

The product appearing in the term (1) is bounded by .7-'&(HV|]EO)7LM where M =
=20 3% Ipjl(|lj| = 1) = —25|a| + 26]al. The lemma follows from (2.71) and (2.72).

O

Lemma 2.19. For every k € N there exist Fj, : RT — R such that,

1D2D.p(t, 2,6, M) < Fie(VIm) Y sup [ DEY(E, -, ) poe rayh!* =20

Jaf <k ©€C8
for all |a| + 18] < k and all (t,2,(, ) € I; x R x C1 x (0, ho).
Corollary 2.20. For every k € N there exist Fj, : R™ — R™ such that,

[ 12 Dbt e < FIV ) M) RI202

for all |a| + |8] < k and all (s,2,,h) € I; x RY x Cy x (0, ho).

Proof of Lemma 2.19. Here t is considered as a parameter which will be skipped,
keeping in mind that the estimates should be uniform with respect to t € [0, °]. On
the other hand we recall that, by Proposition 2.16 and Lemma 2.10, we have (since
h = h?)

(2.73) IDSX (2)] < Fa(|V]g) B 20D o] > 1,8 € N
(2.74) DD 5(w,€)] < Ca i 25‘a'||D§v<-,f>||Loo<Rd>, o,f € N,
Set

Fp, 2, ¢, h) = X (1, Mo(2)C) p1(Mo(2)) 75 (X (2) = B, Mo(2)C),
the lemma will follow immediately from the fact that for every N € N we have
(2.75) |DIDZF(n,2,¢, )|

< Fap(lVIE) D sup [IDEY( )l poomayh ™2 O ) ™.
la|<[a]+|3| $€C3

If we call m;;(z) the entries of the matrix My(z) we see easily that D?F is a finite
linear combination of terms of the form

(2.76) B
(D2 (Re1)) (1 Mo(2)C) - (D25) (X (2) — h?pt, Mo (2)C) - Pl (mij(2)) := G1 - G2 - Gs
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where Pg) is a polynomial of order |f|.

The estimate (2.75) will follow from the following ones.

(2.77) ID2Gh| < Fag([V[1o) B2 Cn ()Y,

(2.78) ID2Go| < Fap(IVIlm) > sup [IDEY( &)l poorayh >
lal<|al+|8] ¢S

(2.79) ID2G3| < Fapg(|V|E)h 20

Using the equality t(%—f)(z)Mo(z)g = (, Proposition 2.16 and an induction we see
that

(2.80) 1D2mi;(2)] < Fal V][5 )b 210+

from which (2.79) follows since '3 is polynomial. Now according to the Faa-di-Bruno
formula D$ (G is a finite linear combination of terms of the form

DI () (. Mo(2)) [T (DY Mo(2)0)) "

Jj=1

T T
1< b < Jal ;]| = 1) Ipilli =,y pj=b.
j=1 j=1

Then (2.77) follows immediately from Lemma 2.14 and (2.80). By the same formula
we see that DG is a linear combination of terms of the form

(DD ) (X (2) — i Mof2)0) [T (D))" (DY (o))"
j=1

where 1 < |a| + [b] < |a|, >0 i(Ipjl + gy =a, Yioipj=a, >_,q; =D
Then (2.78) follows (2.73), (2.74) and (2.80). The proof is complete. O

Remark 2.21. By exactly the same method we can show that we have the estimate

(2:81) D2 DI DI, 2,2, ¢ h)| < Fil|[V ]|y Ni(7)) Bl lezn(=20)

for all || + Jao| + 8] < k and all (t,2,2',(,h) € I x R x R x C; x (0, ho).

Proposition 2.22. There exist Ty > 0, c¢p > (),710 > 0 such that

2

0%p ~
det (agjack(t7Z7C7 h))‘ > Co

for any t € [0,Tp), 2 € RY, ¢ € Co = {3 < [¢| <2},0 < h < ho.
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Proof. By Proposition 2.16, (2.60) and (2.55) we have ¢1(Mo(t, hz)¢) = 1. Let us
set

My(t, hz) = (my;) and Mo(t, hz)¢ = p.

Then we have,

TP (12 T) = Ay + g + A
8C]aCk T -4 2 35
where
%X _ ,
Ay = Z /3@3@ 1, p)mugmeys (¢, X (6, hz) — h*p, p) dp,
8% _
(2.82) Ay =2 Z G2 (b X (8. Dz) = 2y, p)ms v

l,r=1

Az = Z/ X1, p) 848@ O (t, X (t, hz) — h2p, p)myymyx dps.

lr=1
Now we notice that by (2.37) we have

[ o = mreeo.n = { (5 a 070

Using this remark we can write

. ~ _
Z /82(% (1, PYmugma [ (1, X (8, 702) = W20, p) = 3 (1, X (8,722), ) |

Now recall (see (2.23) and Lemma 2.8) that for bounded |(| (considered as a param-
eter) we have for all a € N¢

-1 o0 S0 ,00
085 € L(I; H~2(RY)) € L=(; WO2(RY)), 50 >0,

uniformly in ¢. Since, by Proposition 2.16, || My(t, hz)|| is uniformly bounded we

can write
IO %
Al < Ch2 / 50 , ‘d,
Ay < ”ZZI 1™ | e ge (s e) | di

the integral in the right hand side being bounded by Lemma 2.14.

By exactly the same argument we see that we have the following inequality
|Ag| < Ch?.

Moreover one can write

-y

lr=1

i Y 7250
8(;8@ t X(t hz) )mz]mrk</X(Map) d,u> + O(h*0).
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Gathering the estimates we see that

2 - - - - ~
(27T)*d( a? ; 2 (t,2,¢, h)) ="My (t, hz)Hessc(75)(t, 2, ¢, h) Mo(t, hz) + O(h*©).
J

Then our claim follows from Proposition 2.11 and Proposition 2.16 if %[) is small
enough. O

2.7 The parametrix

Our aim is to construct a parametrix for the operator L = ﬁat + he 4¢P on a time

interval of size h® where § = % This parametrix will be of the following form

Ku(t,z) = (2mh)~ // HOt=EN YOGt 2y € B)o(y) dyde.

Here ¢ is a real valued phase such that ¢|;—g = z - £, b is of the form

(2.83) Bt 2y, €. 5) = bk, 2, €, )W (g?(t 2 6.1) )

where bl;—o = x(£),x € C¢(R4\ {0}) and ¥ € C5°(RY) is such that Wo(t) = 1 if
lt] < 1.

More precisely, we shall define in Proposition 2.23 a phase ¢ and in (2.120) a symbol
b such that we have

e_ﬁrl‘é(ﬁﬁt + he+iP) (e”wfl‘f’g) =Ry

where Ry is a negligible remainder.

2.7.1 Preliminaries
An important step in this construction is to compute the expression
~ _‘Nfl e 1
(284)  J(tzy, & h) = e T OEEEN Pt 2 D) (OB g g ).

In this computation since (t,y,f,ﬁ) are fixed we shall skip them and write ¢ =
¢(2),b=0b(2).
Using (2.64) we obtain

J = (2wh)~¢ // e’%il(d’(zl)*‘b(z)*(zle)'C)'ﬁ(z,z’,C)g(z’)dz 'dc¢.

Then we write
1
(2.85) &) — p(2) =0(2,2) - (' —2), 0(z,7) = /0 g—f()\z + (1= X\)2)dA
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Using this equality and setting ¢ — 6(z, 2’) = 7 in the integral we obtain
(27h)~ // =252 2 4 0(z, 2'))b(2) d2'dn.

The phase that we will obtain will be uniformly bounded, say |%| < Cp. It also can
be seen that, due to the cut-off ¢1 in the expression of p and to Proposition 2.16,
we also have |+ 6(z, )| < Cy. Therefore |n| < 2Cy. Let x € C5°(R%) be such that
k(n) = 11if |n| < 2Cy. Then we can write

= (2rh) [ [ )z, 0,2 B A

By the Taylor formula we can write

. 1
Pz n+0(z2)) = Y —(07p)(= 700" + 1y

|a|<N-1
TN = N/ N L (0nD)(z, 2+ M(z, 2"))n® dX.
lo]=N
It follows that
(2.86)
(J = JN“‘RN
2
Jy = Z 7Th // ih~ Hz—z' nH( )(81113)(2 P 9(2 Z)) ab( )dz'dn

|a|<N-1

(27h)™ // =) (Ve n (2, 2, n)b(2) d2'dn.

Using the fact that n®e i~ (z=2)m = (—EDZ/)aeiﬁil(Z*Z,)’” and integrating by parts
in the integral with respect to z we get

Flal -
JIn = (2mh)~ Z e // (220 )Dg[(@g‘ﬁ)(z, 2, 0(z,2"))b(z")] d2'dn.
lo|<N-1
Therefore we can write

Jy = (27h)~ Z h|a/

|a|<N-1

(ﬁaﬁ(z Z,6(z,2)b(2’ )] dz'.

Let us set
(2.87) falz, 2/ k) = DS[(00P) (2, 2, 0(2, 2'))b(2")]

and then, 2 — z = hy in the integral. We obtain

hlal
Iy = (2m)” Z / 1) folz, 2 + hys, h) dp.

|| <N-1
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By the Taylor formula we can write

hlel hlBl ~
w=n S e S ([ iR dn) (9200) (25 B + S

la|<N-1 ' |B|<N-1
with
(2.88)
4 Blal+18] MLz 3 ~ -
Sy = (2m) 04'5' // R(p) (92 fa) (2, 2 + Ahp, h) dX dp.
| |<N 1
|Bl=N

Noticing that

[ iR an= a0 ={ {0 § 57

we conclude that

It follows from (2.86), (2.87) and (2.88) that
h‘ of
280)  I= Y UDS[055) (20 N e + R + S
la|<N-1

where Ry and Sy are defined in (2.86) and (2.88).

Reintroducing the variable (t,y, & ,i~z) we conclude from (2.84) that
(2.90)

e~ thT19 (2L R) (hd; + he+iP) (eiﬁ71¢(t’z’§’ﬁ)g) = [i%g—FiJ—I-E% +ﬁcg} (t, 2y, f,ﬁ).

We shall gather the terms the right hand side of (2.90) according to the power of h.
The term corresponding to h? leads to the eikonal equation.

2.7.2 The eikonal equation

It is the equation

0¢ 0¢ B T
(2.91) S p(tz g h) =0 60,26 R) =2
where p is defined by the formula

(2.92)
p(t,Z,{,%) = /55(“7 MO(t777’Z)<)75(t7X(taﬁz)_fﬁzﬂvMO(t?%Z)g) d/J"(Pl(MO(tﬂﬁz)C)‘

We set B B
Q(tv 277-7 C? h‘) =T +p(t7 27 C? h‘)
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and for j > 1 we denote by C; the ring
C;={¢cR: 277 < ¢ < 27}.
Moreover in all what follows we shall have

2
2.93 0= —.
(299) y

The solution of the eikonal equation

Recall that Iz = [0, h%] is the time interval, (where § = 2) and C; the ring {277 <

€] < 27}. Consider the null-bicharacteristic flow of ¢(t, z, T, C,E) =7+ p(t, z, C,E).
It is defined by the system

t(s) =1, t(0)=0,
£08) = 52 (161,069,661, T). 2(0) =20

(2.94) ' Do N N
#5) =~ 2 (4(s), 2(), C(5).F), (0) = ~p(0, 20, &, ),
{s) =~ 22 (1(5),2(9), <L) F), - C(0) =€

Then t(s) = s and this system has a unique solution defined on I, depending on
(Sv 20, fa h‘)
We claim that for all fixed s € I and § € R?, the map

20 Z(S; ZngvaL)

is a global diffeomorphism from R? to R¢. This will follow from the facts that this
map is proper and the matrix (g—;(s; 20, &, h)) is invertible. Let us begin by the
second point.

Let us set m(s) = (s, 2(s),((s), h). Differentiating System (2.94) with respect to zo,
we get

2 (5’0) (s) —p;’<<m<s>>§;<s> +p’<’<<m<s>>§§)<s>’ §;<0> = 1d
(2.95)

d (9 oy 0z " ¢ ¢ _

(55 ) ) = “pLme) 5= ) = elmls) g (), 5 (0) =0,

(2.96) Als) =



The system (2.95) can be written as U(s) = A(s)U(s), U(0) = (Id,0). Lemma 2.19
gives
(2.97)  Ipgc(m(s))| + IpZe(m(s))] + 2. (m(s))]

< F(IVIEe) D sup IDE(t )l mayh* >,
|8l<2 8¢

therefore

JAGI < FUIVIEe) D sup [DZy(E, )l e (rayh2 2.
181<2 ¢S

Using the equality 2(1 — 26) + § = 0, we deduce that for s € I; = (0, h%) we have

(2.98) /0 ()| do < F(IV Il 2o)Na(7)-
The Gronwall inequality shows that [|U(s)|| is uniformly bounded on I;. Coming

back to (2.95) we see that we have

299) |55 0)| < F(Vlls+ M), |20~ 1] < F(V s + M)

Taking h small enough we obtain the invertibility of the matrix (é%zo(s; 20, & ,ﬁ))

Now we have

~ s ~
|Z(S; Zoagvh) - ZO| < / |’é(0-7 $07£ah)| do.
0

Since the right hand side is uniformly bounded for s € [O,E‘S], we see that our map
is proper. Therefore we can write

(2.100) (5320, 6, h) = 2 = 20 = K(s; 2, &, ).
Let us set for t € [O,%‘s]
~ t ~ ~ ~
(2101) ¢(ta Z)f? h’) =z é- - / p(O’, 2, C(O-’ K,(O'; 2767 h)vé-’ h)a h) do.
0

Proposition 2.23. The function ¢ defined in (2.101) is the solution of the eikonal
equation (2.91).

Proof. The initial condition is trivially satisfied. Moreover we have

b ~ ~ o~ -
00t 1) = —plt, 2, (1 (12,6, 7), €T, ).
Therefore it is sufficient to prove that
0o ~ ~ .~
(2.102) E(t,z,g, h) = ((t;k(t; 2,&, ), & h).
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Let us consider the Lagrangean manifold

(2103) Y= {(t7 Z(t; z(]aé.v%)’ T(t; 20757}2)7 C(t; ZO7£>%)) RS Iﬁa (2075) € RQd}'

According to (2.100) we can write

Y= {(t,z,T(t; m(t;z,f,ﬁ),ﬁ,ﬁ),g(t; k(t; z,{,%),&,ﬁ)) tel;, (2,6) € RZd}.

Let us set _ _ _
Fo(t,2,&,h) = 7(t;(t; 2, €, 1), €, h),

F(t,z,6,h) = ¢ (t; w(t; 2,€, 1), €, h).

Since the symbol ¢ is constant along its bicharacteristic and ¢(0, z(0), 7(0),(0),h) =
0 we have

Fo(t, z,6,h) = —p(t, z,C(t; k(05 2, €, h), £, h) , h).

Now X being Lagrangean we have
dtANdFyp+dzAdF =0.

Thus azj Fy — 0, F; = 0 since it is the coefficient of d¢ A d z; in the above expression.
Therefore using (2.101) we can write

99
a(tth /azj JzC(ali(azgh)fh))]

=€j+/ 55 G (7:5(03 2,6, h), 6, 1)] do
= (i (t;m(t 2,6, R), €, B).

The Hessian of the phase

Let us recall that the phase ¢ is the solution of the problem
ot

Pli=0 = 2 - €.

On the other hand the map (t,z,§) — ¢(t,z,£,ﬁ) is C! in time and C* in (z,&).
Differentiating twice, with respect to &, the above equation we obtain

d¢ o) ~ =\
(2.104) { o (t,2,6,h) +p<t %5, —(t,2,&, h),h) =0

gt< 9% )=- L (v KL ) Py 8%

0E,08; 0C0G \" 7 927") 02,0€; 02,0€;
B i (.., % ) _Pe
8@ 0y 8zk8§}8§]



By the initial condition in (2.104) we have
¢ _s. 0% ‘ Y o ’ _o 0% ‘ a
02,06 =0 " 020& li=0 7 02,060 li=0 06,0 l=0

It follows that 5 82¢ o
_ p 7
aiaeae) oo = (0.2.6h)

08,0 0&;0¢;
from which we deduce that
0% 0%p
t,z h 0,z2,¢, t).
e (126 1) = ~tge e (0.5.61) +ol
It follows from Proposition 2.22 that one can find My > 0 such that
92
¢ d
2.1 det t h) )| > Myt
(2.105) et (g g 122610 | = 2t

forteIﬁ,zeRd,£€C0,0<h§h0.

Our goal now is to prove estimates of higher order on the phase (see Corollary 2.28
below.)

Classes of symbol and symbolic calculus

Recall here that § = Z and that Nj(7) has been defined in (2.69).

Definition 2.24. Let m € R, up € RT and a = a(t, z,&, h) be a smooth function
defined on Q = [0, %] x R x Cy x (0, hg]. We shall say that

(1) a € Sy if for every k € N one can find Fj : Rt — R such that for all
(t,2,&h) € Q

(2.106)  |DDlalt,z, & W) < Fi([Vl|my + Nesa () B0, o] + (8] =k,

(1) a €Sy if (2.106) holds for every k > 1.

Remark 2.25. 1. If m > m/ then ST C S™ and S C STV
2. Let a(t,z,f,};) =z and b(t, 2,¢&, ) & Then a € ngl, be 5’35_1.
: _ 0
3. IfaeSlTé WlthmZOthenb—e“GSMO.

We study now the composition of such symbols.

Proposition 2.26. Let m € R, f € S} (resp. 525 ),.U € 5%21,\/ € 5'85_1 and

assume that V € Cy. Set

F(t,2,6,h) = f(t,U(t, 2,6, h), V(t, 2, h), h).
Then F € SJ_ | (resp. S5 ).

41



Proof. Let A = (o, 3) € N x N9 |A| = k. If k = 0 the estimate of F follows easily
from the hypothesis on f. Assume k > 1. Then DAF is a finite linear combination
of terms of the form

(1) = (D)) [T(D" vy (Drv e
j=1

where A = (a,b), 1<|A[<|A|, L;j =(l;,m;) and
Sopi=a, > g=0b > (Ipjl+lg)L; =A
j=1 j=1 j=1

By the hypothesis on f we have

(2.107) IDAS(- ) < FllIV Iz, + N (7)) 1@,

By the hypotheses on U, V, the product occuring in the definition of (1) is bounded
by Fr(lIV ]| £y + Nega(v)) B where

o
M = Z Ip] 5 — 5120 = 1)) Z\qa (11(20 = 1)) = —[a](26 — 1) + al.
Using (2.107) and the fact that 1 —2§ + % = 0 we obtain the desired conclusion. [J
Further estimates on the flow

We shall denote by z(s) = z(s; z,&, h), C(s) = ((s; 2, &, h) the solution of (2.94) with
2(0) = 2,¢(0) = &. Recall that § =

wino

Proposition 2.27. There exists F : R™ — R non decreasing such that

0) |56~ 1d] < F(V s + a0 §g<> < F(IV s + M),
() (5] +[5606) ~ 1d] < F(V s, + Nate) B

for all s € I = [0,R%],2 € R4, € € C.

For any k > 1 there exists Fi, : RT — RT non decreasing such that for o, 3 € N¢
with |a] + |B] = k

~ 5
108 |D2DZ2(s)| < FlIV g + N () 102075,
|D2DZC(s)| < Fu(IV sy + Ny (7)) Blel0-29),
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Proof. The estimates of the first terms in (i) and (i) have been proved in (2.99).
By exactly the same argument one deduces the estimates on the second terms.

We shall prove (2.108) by induction on k. According to (¢) and (i7) it is true for
k = 1. Assume it is true up to the order k and let |a| + |5| = k + 1 > 2. Let us set
A = (a,B8), DM = D?D? and m(s) = (s, 2(s), ((s), h). By the Faa-di-Bruno formula
we have

DA pl(m(s))] = pl(m(s)) D"z (s) + ple (m(s))DA((s) + Fi(s
DApl(m(s))] = pl.(m(s)) D"z (s) + plle (m(s)) DA((s) + Fa(s).

~—

)

(2.109) {

It follows that U(s) = (D*z(s), D*((s) is the solution of the problem
U(s) = A(s)U(s) + F(s), U(0)=0

where A(s) has been defined in (2.96) and F'(s) = (Fi(s), Fa(s)).

According to the estimates of the symbol p given in Lemma 2.19 the worse term is
F5. By the formula mentionned above we see that F} is a finite linear combination
of terms of the form

r T

(D) () [ [ (DH2(9)™ [T (DF ()",

i=1 i=1

where A = (a,b), 2 <|A| <|A| and

r r k
Li=(l), 1<ILd<A-1, Spi=a Ya=b S(nl+lahLi=A
i=1 i=1 i=1
It follows from Corollary 2.20 that for s in [0, h%] we have,
(2.110)
s _ B ~al(1 5
(D) (m(0)] do < My (RO < Ay () RIICO200%3,

since 1 —20 4+ 4§ = g. Now since 1 < |L;| < |A| — 1 = k we have, by the induction,

) (1 — 3
|DFiz(s)| < WEIA=2042 1 (V| gy + Nir (),
IDE¢(s)| < RO B (V| gy + Nt (7))

It follows that
[ 150 < ([ 104 (o) do) Far (1V 5, + A ()
0 0

where M = 31, ((Ipi| + i) |1 (1 —28) |+ |pil3) = |a|(1—25) + |a|§. It follows from
(2.110) and the fact that 1 — 32 = 0 that

/ |Fa(o)|do < Frp1 (|V | 5 +/\/’k+1(7))ﬁlo¢|(1—25)+g‘
0
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Since DAy has even a better estimate, the same computation shows that

/\mwwwSImmmw%+mewﬂM“%”?
0

U(s) = /OSF(a)da—l— /OSA(U)U o)do

and we use the above estimates on Fi, F, (2.98) and the Gronwall lemma to see that
the step k 4 1 of the induction is achieved. This completes the proof of Proposition
2.27. O

Then we write

Corollary 2.28. For every k > 1 there exists Fi, : R™ — R non decreasing such
that for every (a, B) € N¢ x N< with |a| + |8| = k we have

(4) |DQD6/€(S 2,60) < Fe([V |z +Nk+1(7))ﬁ‘a|(l_2§)+g,

(i1) \DO‘DB g¢)(s 2., h)] < Fi(IV || 5 + Nisr (7)) Blel0-20),

(ii))  |D{6(s,2 &0 < Fi(IV o + Niwa () sl 18] = 2,
for all s € I,z € R, & € Cy. This implies that k € ngl and 8¢ € SS(;A.
Proof. We first show (ii) and (7i7). Recall that

00 (5,20 6.1) = Clssls 2,6 1), ).

By Proposition 2.27 (since ¢ is bounded) we have ¢ € S9; ;. By (i) we have s €

5%21 and by Remark 2.25 we have & € 525 1 Then Proposition 2.26 implies that
g‘ﬁ € 595 . Moreover ‘g is bounded since [((s) —&| < fo L, )dt < F(|V g+

No(y ))h2 and £ € Cy. Now (#i7) follows from the definition (2.101) of the phase, the
1 ~
facts that p € S95 1,2 € S 1, ((s;k(s;2,&, h), &, ) € 525 , and Proposition 2.26.

We are left with the proof of (7). We proceed by induction on |a| 4 |3| = k > 1.
Recall that by definition of k we have the equality z(s;k(s;z,&,h),&h) = 2. Tt
follows that

8z 0z 0 9z 9¢  o¢
Then the estimate for £ = 1 follows from (7) in Proposition 2.27. Assume the esti-
mate true up to the order k and let A = («, 8),|A| = k+1 > 2. Then differentiating
|A| times the first above equality we see that % - DMk is a finite linear combination
of terms of the form

0z 8H—Id 0z 8,%_ 0z

7 T

(2) = DAz(~ ) H (DL]',Q)W H (Dng)qJ'

j=1 j=1
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where A = (a, b) 2< ’A‘ < ’A’, Lj = (lj,mj), 1< ‘Lj‘ < k and

r r
Y pi=a, ZQJ Y (il + gLy = (o, B).
j=1 j=1
We use the estimate (given by Proposition 2.27)
D22 )] S Frpa (IV 1o + Mo (y)) R0,
the induction, the fact that & € 58571 and the equality 1 — 20 + % = 0 to see that
(@) < Frrr (V1] 5y + Ny (7)) RICO2075,
Then we use Proposition 2.27 (i) to conclude the induction. O

Remark 2.29. Since 0(t, 2,2/, &, h) = [ 8‘z’(t Az 4 (1 — N2, & h) d\ we have also
the estimate

(2.111) D31D§2D§0<s,z,z',g,ﬁ>( < Fi(IV Il 5y + Niey1 (7)) hlleal+lazh(1-20)

for |ay| + |ae| + |8 = k

2.7.3 The transport equations
According to (2.89) and (2.90) if ¢ satisfies the eikonal equation we have

e_ﬂ}l‘t’(ﬁ@t + he+iP) (eiﬁ71¢5)
N—1 F|q

e e~ plel v - e~
(2.112) — hOb + heb +i Z jDZ/ [(&@(t, 2,2 ,0(t, 2,2, h)), h)b(zr)} o
la|=1
+ Ry + SN
Recall (see (2.83)) that b= b¥. Let us set
(2.113)
. plal-1 ~ -
T =0b+cb+1 Z o D [(8,07‘{5) (t, 2,2',0(t, 2,2, h), h)b(z’)} s
1<a|<N-1
Then
(2.114) e (o, + he + iP) (¢ ') = hTnWo + Uy + Ry + S,
where
Uy = ﬁb(at\lfo)
+i Z 3 ( ) [(ag@(t,z,z’,e(t,z,z',%),%)b(z')}pji Wo|

lal=1 3<a
B#0
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Our purpose is to show that one can find a symbol b such that, in a sense to be
explained,

(2.115) Ty = O(KM), VM e N.

We set

t,2, 2, 0(t, 2,2 ), h) (t,z’,&,%)]

" op
Lbz@tb+c+;az, [%(

Then we can write
(2.116) +Za3 (t,2,¢&, h) +co(t 2,6, h)
where

Op 0¢

ai(t,z,€,h) = %(t So(t 2,6 ), )
- i 9 rop ~

@17 { atngh) =Y [a (t, 2,2, 0(t 2, 2 € ]), )} etz h),

i=1 7, C’L 2=z

0t 2 €, 1) —/ 8¢(t Azt (1— N2, ) da

0
and ¢ has been defined in (2.68).
Notice that, with m = (t, z, f,ﬁ) we have
(2.118)

d ~ d
0%p 8¢ ~ 0p ~. 0%
aga / 7 %5 %, Z 8618@ 7 7&(7”)7}7’ aziazj m)+c‘
Then we can write
(2.119)
_ plol=t ~
Ty=Lb+i Y =D [(8413)(75 2,2 0t 2,2, h), h)b(t, z’,g,h)} L

2<|a|<N-1

We shall seek b on the form

(2.120)

|
E
{‘)2

J=0

Including this expression of b in (2.119) after a change of indices we obtain

N N+1 Blal-2
T =Y Rch+i Y BF ST S D [(02B) (- bk | L,
k=0 k=1  2<|a|<N-1 o
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We will take b; for j = 0,..., N, as solutions of the following problems
(2.121)
['bO = 07 b0|t=0 =X, XE€ Cgo(Rd)a

. E\a|72
Lhj=Fjq=—i Y, — D@D bl |,y bili=o = 0.
2<|a|<N-1
This choice will imply that

N o
(2.122) Ty =ih"+0 Y ha_QDa [(02D) (- )bw] | L.

2<|a|<N-1

Proposition 2.30. The system (2.121) has a unique solution with b; € S9s .

We prove this result by induction. To solve these equations we use the method of
characteristics and we begin by preliminaries.

Lemma 2.31. We have a; € 585_1 fori=1,...,d.
Proof. This follows from Lemma 2.19, Proposition 2.26 with f = gg U(t, z,g,ﬁ) =
2, V()= % and Corollary 2.28. O

Consider now the system of differential equations
Z'j(S):aj(S,Z(S),S,?L), Z](O) = Zj, 1 g] <d.

By Lemma 2.31 a; is bounded. Therefore this system has a unique solution defined
on I;. Differentiating with respect to 2z we obtain

0z

Y
5, )

9, “Z(o)|do, 0<s<h,

<O+ Fl|V]g + Moy >>/ -2

since |s| A1720 < p1-0 = h2 the Gronwall 1nequahty shows that |%§ s)| is uniformly

bounded. Using again the equation satisfied by 2 5 ( ) we deduce that

(2.123) aaf( ) [d‘ < FZ(HVHEO +N2( )) g 0<s< 7L6.

This shows that the map z — Z(s; z,g,ﬁ) is a global diffeomorphism from RY to
itself so

(2.124) Z(s;z,ﬁ,ﬁ) :z<:>z:w(s;Z;§,E).
An analogue computation shows that

0Z

(2.125) 5

< Fo(|[Vlm +No() B 0 <5 <R,
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Lemma 2.32. The function (s, z, &, h) — Z(s, z,&, h) belongs to S;ngl

Proof. We have to prove that for |a| 4+ |3] = k > 1 we have the estimate
2.126 DD Z(s; 2,6, 1) < Fil|V |z + N Rlel1-20)+3
( : ) ‘ z e (S,Z,é, )‘ = k(” HEO + k+1(7)) :

Indeed this is true for £ = 1 by (2.123), (2.125). Assume this is true up to the order
kandlet |a|+8| = k+1 > 2. Set U(s) = DMZ(s; 2,€, h) where A = (a, ). Tt satifies
the system U(s) = gg (s;Z(s),&, h)U(s)+ F(s),U(0) = 0 where F(s) is a finite linear

combination of terms of the form

T

(1) = (Da)(---) [ [(@% Z(s))Pi (9" )%

j=1
where A = (a,b),2 < |A| <|A[,L; = (I;,m;),1 <|L;| <k and
Z(|pj‘+’%|)l/ = ij =aQ, ZQJ':
j=1 j=1
First of all, by Lemma 2.31 we can write

|(DAa)(...)’ < ]:k:(HVHEo "‘Nk—&-l(’Y))ﬁlal(l_%).

Using the induction and the fact that £ € 58571 we can estimate the product occuring
n (1) by }—k(HVHEO +Nk+1(’y))hM where

M = Z{m 1~ 26) + ) + las 1511 — 28)} = Jal(1 ~ 26) + |al

It follows that [ |F(t)|dt < Fi(||V] g, + Nkﬂ(’y))ﬁla‘(l*%)*‘; and we conclude by
the Gronwall inequality. O

Corollary 2.33. The function w defined in (2.124) belongs to 5’%31.
Proof. The proof is the same as that of Corollary 2.28. O

Proof of Proposition 2.30. Now, with the notations in (2.117) and (2.121) we have

D [b3(5 2] = (G + - Fu) (s, 2(5)) = ~(eom)ls, Z(5)) + Fya(s, ), 5 >0

with F_1 = 0. It follows that

ds[ J§ cole:Z(@Ndoy, (5 7 (s >)} = eloco@Z@do g, (5, 7(s)),
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Using (2.124) we see that the unique solution of (2.121) is given by
(2.127)

bo(s,2.6.F) = x(©exp( [ colt Zltswls. ,6.B),6.B) de).

b(s, 2,6, h) = / el ot Zwlse e ER AR, | (5 7(03w(s, 2, €, h), €, h) do.
0

The last step in the proof of Proposition 2.30 is contained in the following lemma.

Lemma 2.34. We have b; € 535,1-

Proof. Stepl: we show that

(2. 128) ejiea co (t7Z(t;w(S7Z9£’E)7£7?L) dt 6 S85_1 .

According to Remark 2.25 this will be implied by [7 ¢o(t, Z(t; w(s, z, &, h),& ) dt €
S%il By Lemma 2.32 we have Z € 5%21 and w € Sgﬁl. Moreover & € 5'85_1.
By Proposition 2.26 the function Z(t'w(S' z,&, E) &, 7L) belongs to S’gﬁl. Now by
Corollary 2.28 we have a¢ €S9, and e Sos. 5/2 1 (since 1 -20 = —§/2.) It follows
from Proposition 2.26 that for s € [0, h‘s]

1)) ~ =~ 0

87(75 Z(tv (JJ(S, 2, Ea h)a 57 h)7 ga h’) € 525—17

0%¢
922

Ul (ta 2, 57 %) =
(2.129)

/2
Us(t; 2,6, h) = 2o (t, Z(t;w(s, 2, &, h), &, ), &, h) € Sy /7.
Now by Lemma 2.19 the functions %(t, 2,2, C,E) (resp. 884—281”4(1&, 2, C,E)) satisfy the
condition of Proposition 2.26 with m =1 — 2§ (resp. m = 0.) Using (2.129) and the
fact that z € 5%31 we deduce that

o 82~
s 0C07

2p
/gCQ(tZUl(tth) )U2(tth)dt€S251

(tzzUl(tzgh) )thSQQ(; 1

~ ~ s
This shows that f: co (t, Z(t;w(s, z, &, h),{, h) dt € S35, as claimed.

Step 2: we show that for |a| + |b| = k > 0 we have, with A = (a,b) € N¢ x N
(2.130)
S

[ [PMGii (0 2 (s 260, 60))]| do < BV, + N (7)) RI10-20

where for |p| > 2,
(2.131) _ _ o _
Gj-1(0,2,6,h) = WP2D2,[(905) (03 2,2/, 0(05 2, 2, &, 1) h) b1 (03 2,6, )] |

Zl=z"
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We claim that for A = (o, 8),|a| + |B] = k > 0,
(2.132) DG (o, z,g,%)‘ < B 7 (1 gy + Nia ()
Indeed DAGj,l is a finite sum of terms of the form H; x Hy with
H, = E“"_QDAlDZ’D,1 [(85]5')(0’, 2,2 ,0(0; 2, z',ﬁ,ﬁ),ﬁ))} =2,
Hy = D*2D22b;_y(0, 2,, 1),
where Ai = (i, Bi)  |Ar] + [Aaf = [A], |p1] + |p2| = [p].

By the induction we have
[Ho| < Fi(IV ]|y + Nis1 (7)) hlloziHezD (0720
and since 2’ € ,5"25,1, 0 € 535—1 using Proposition 2.19 we see that
[Hi| < Fi(I[V 5y +Niga (7)) BlP2F (et =20),

Now since |p| > 2 and § = %, we have |p| —2+|a|(1—20)+|p|(1—26) > |a|(1—26) =6
which proves (2.132).

Eventually since the function Z(t;w(s; z,f,%),g,ﬁ) belongs to Sgﬁl (see Step 1),
we deduce from Proposition 2.26, with m = —4, that (2.130) holds. Then Step 1
and Step 2 prove the lemma. Notice that b; can be written X(ﬁ)b?. O

Thus the proof of Proposition 2.30 is complete. 0

Summing up we have proved that with the choice of ¢ and b made in Proposition
2.23 and in (2.120) we have

(2.133) e (hy + he +iP) (e 9B) = hTnWo + Uy + Ry + Sy
where Ry is defined in (2.86), Sy in (2.88), T in (2.122) and Uy in (2.114).

2.8 The dispersion estimate

The purpose of this section is to prove the following result. Recall that § = %

Theorem 2.35. Let xy € Cg°(R?) be such that suppx C {€ : § < [¢] < 2}. Let
to € R, ug € L'(R?) and set upp, = X(hDz)ug. Denote by S(t,to)uop the solution
of the problem

1 .
(0 + 5(S6(V) - V 4 V- 835(V)) 4o, ) Un(t) = 0, Un(to, @) = o (a).
Then there exist F : Rt — R k= k(d) € N and hy > 0 such that
_3d _d
1S (¢, to)uonll Lo ey < F(IVIlEo +Ne(v) B~ [t —to] ™2 [luo,nll L (ra),

for all 0 < |t —to| < h% and all 0 < h < hy.
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This result will be a consequence of the following one in the variables (¢, z).

Theorem 2.36. Let xy € Cg°(R?) be such that suppx C {€ : § < [£] < 2}. Let

to € R, wo € LY(RY) and set wy 5 = x(hD:)wp. Denote by g(t,to)woﬁ the solution
of the problem

(h0: + he +iP)U(t,2) =0,  Ulto, 2) = wy(2)-
Then there exist F : Rt — R", k = k(d) € N and ho > 0 such that
15t to)wg fll oty < F(IV iy +Nic(1) B[t~ tol = g 711 (may
for all 0 < |t —to| < h? and 0 < h < hy.

Indeed suppose that Theorem 2.36 is proved. We can assume tp = 0. According
to the two change of variables = X (¢,%) and z = h~'y we have for any smooth
function W (see (2.67) and (2.68))

-~ ~ ~ 1 ~
(h+he+iP) [W(t, X (¢, he)] = h((8,5—1—5(Sjg(V)-V+V'Sj5(V))+iT%)W) (t, X (t,h2)).
It follows that B _

(S(ta O)U)O,TL) (t’ Z) = (S(ta O)UO,h) (t7 X(ta hz))
Moreover since wy(z) = ug(hz) we have

wo(2) = ((RD:)wo)(2) = (x(hD)uo) (h2) = o (hz).

Therefore using Theorem 2.36 we obtain

5 ~_d, _d
15(t, 0)uo,nll oo may = 1S(E, 0)wy 5l oo (ray < F(---) A7 287>
F(

_sd _d
S F(-) ™ot 2 luopl 1 ray

||w0,ﬁ [l 21 (R%)

IN

~_d _d~_
Jh™zt7zh d||U0,hHL1(Rd)

since h = h. Thus Theorem 2.35 is proved.

Proof of Theorem 2.36. We set
(2.134)

Kuwy 5t 2) = (2mh) / / e E U Oh (1, 2.y, € h)xa (§)w, 7 (y) dy dE

where 1 belongs to C§° (R%) with x; = 1 on the support of x and b is defined in
(2.83). We can write

Kwo,ﬁ(t7z) :/K(thvyvh)woﬁ(y)dy with
(2.135)

K(t,2,y,h) = (2nh) ¢ / M OZEN (¢ 2y € )y (€) dE.
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Recall from (2.120) that
N
b=> hb;
=0

where the b;’s are given by Proposition 2.30 with b; € 585_1. On the other hand, it
follows from the (2.105) that the hessian of the phase satisfies

82¢ ~ d
’det ((m(t,z,ﬁ,h)>’ > Myt

for some My > 0 and all ¢t € [0, h5/2],z e R4, €€y, 0< h < iNLO. Then we have the
following estimate.
Lemma 2.37. There holds

T4, d
2t 2

‘K(t,z,y,ﬁ)‘ < F(IVlge + Nis1 (7)) b2t
forallO<t§%5, z,y € R? and 0 < h < h.
Proof. See the Appendix E. O
Using this lemma we obtain
(2.136) 1wy ) oo ety < F VB2 2wy 3 e

for all 0 < ¢ < h® and 0 < h < hy.
We can state now the following result.

Proposition 2.38. Let og be an integer such that og > g. Set
(hdy + he + iP) (ICwO z) (t,2) = Fo(t,2).
Then there exists k = k(d) € N and for any N € N, Fx : RT — R such that

sup | 5 (8 ) | ooy < F (V5o + Nics1 (9) BV g 512 -
0<t<hf

We shall use the following result.
Lemma 2.39. Let kg > g. Let us set m(t,z,y,f,ﬁ) = g—?(t,z,ﬁ,ﬁ) —y and

2:{(t,y,§,7;,):0<E§EO,0_t§7L5,yeRd,|§y gc}.

Then

dz
o / ——— < F(IVll5 +Na(7)).
(ty,g,ﬁ)ez R4 <m(t> 25 Y, 51 h)>2k0 0
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Proof. By (2.102) we have %(t z,&, E) = C(t'/{(t'z &, ﬁ) §,~) SO g;g; = %224- 9.
We deduce from Proposition 2.27 and Corollary 2.28 that \(%az Id) < F(|V]lg, +

/\[2(7)) 7. Tt follows that the map z 6—?(1&,,2,{, h) is proper and therefore is a

global dlﬁeomorphlsm from R to itself. Consequently, we can perform the change
of variable X = 8—5(15 z,&,h) and the lemma follows. O

Proof of Proposition 2.38. According to (2.135) Proposition 2.38 will be proved if
we have

(2.137) sup || (h0s + he +iP)K(t, -y, h)|| oy < Fn(--+) AN,
(t,y,h)eX

Now, setting L = hdy + he + iP(t,z,D,), we have

(2.138) LK (t,z,y,h) = (%B)‘d/eiﬁ‘ly'%( B GRER (1 2y €, h)) () de

and according to (2.112), (2.113), (2.122) we have,
(2.139)

LM AEEMb(1, 2y, ,R) ) = XD (R 4 Sy + BT W + Un) (¢, 23,6, R)
where Ry, Sy, T, Uy are defined in (2.86), (2.88), (2.113), (2.114).

Lemma 2.40. Let og, kg be integers, og > %, ko > g. There exists a fived integer
No(d) such that for any N € N there exists Cy > 0 such that, if we set = =
(t,z,y,& h), then

(2.140)

(m(2))" {\DZBRN(E)\ +|DISN(E)| + !Df(fb(TN‘Ifo)(E))!} < Fn (o) BN,
for all |8] < o0, all (t,y,&,h) € S and all z € R™.

Proof. According to (2.86), D’ Ry (Z) is a finite linear combination of terms of the
form

RN,B E il d= Bl// (== 2)7]7751/{( )D§2TN(t,Z,Z,,77,£,E)

bt =, &, By (52

a¢ (67567) - y) =’ di

where 81 + 82 = 8 and

N ~
Dr (- S U e [ R RV G )
|Oé| v @
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USing the equality 'I’]a—’_ﬁl ei};il(z_zj)'n — (7;LDZ/)OC+ﬂ1€i7171(Z—Z,)~’V] we see that RN,B is
a linear combination of terms of the form

~ 1 g ’
ol =i [ [t
0

DETDE (055)(t, 2.2 sn + ML 2,2, 6, 7)

¢

b(tv Z/, 57 ﬁ)\IJO(a(S

(t, 7€, h) — y)} d\dz dn.

Then we insert in the integral the quantity ( O¢ (t,2,&, h) ) where |y| = ko. It is
a finite linear combination of terms of the form

(Getts6h - G 6 h) " (o6 — o)™

Using the Taylor formula we see that (m(E))kORN’ 5(E) is a finite linear combination
of terms of the form

e d/ Jf = rer e mm e Ry (G 6. o)

- 0
D3+51D§2 [(82‘@( ~)b(t, 2 €, h)\Ifo(a(é(t 2 €, h) )] d\ dy dn,

where, by Corollary 2.28 (ii), F' is a bounded function.

Eventually we use the identity (z — z’)”eiﬁil(z_z,)'" = (ﬁDn)”eizil(z_z,)'", we inte-
grate by parts in the integral with respect to n and we use Remark 2.21, Remark
2.29, the estimate (ii) in Corollary 2.28, the fact that b € S9s | and the fact that
N + N(1 —20) = 6N to deduce that

(2.141) (m(E)Y*|DPRy(Z)] < Fn(---) hON—Na

where Ny is a fixed number depending only on the dimension.

Let us consider the term Sy. Recall that DZB Sy is a finite linear combination for
la| < N —1 and |y| = N of terms of the form

~ 1 ~ ~
SNapy = h /0 / (1= NN R DS (925) (12, 2,00t 2,2 6, R), )

~ 0
b(t, 7€, h)\I/()(a? (t.2,61) ~y)] o, N
Then we multiply Sy a5~ by (m(Z))* and we write
0 0 ~ 0 0
8?( 2,6, h) — (;g(t,z,ﬁ,h) a?(t 2+ M, €, 1) +8(§(t 2+ M, €,h) —

By the Taylor formula the first term will give rise to a power of )\ﬁu which will be
absorbed by &(u) and the second term will be absorbed by Wy. Then we use again
Remark 2.21, Remark 2.29 to conclude that

(2.142) (m(2))Y*|DSN(Z)] < F(---) RN,
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Let us look now to the term %Df TnVy. According to (2.122) this expression is a
linear combination for 2 < |a| < N of terms of the form

h|a|+NDB{Da {(8€p(t z,2,2,0(t, 2,2 €, ), )by (t, 2, €, h)}

0, <g§(t JEh) — )}

It follows from Remark 2.21, Remark 2.29 and Corollary 2.28 that we have

Z'=z

(2.143) (m(2))*[hD? [TxWo]| < Fu(---) R,
Lemma 2.40 follows from (2.141), (2.142), (2.143). O

JFrom Lemma 2.40 we can write
(2.144)

e / [ @ER O (R 1 Sy + BT Wo) | yoo X1 (€)] dE < Fav(- ) BON-M(@)

where Ni(d) is a fixed number depending only on the dimension.

To conclude the proof of Proposition 2.38 we have to estimate the integrals
Ing = (2mh)™ / D[ M OSSN 1O (£, 2.y, €, ]) 1 (€) de.

Now according to (2.112), (2.113) and (2.114) on the support of Uy the function W is
differentiated at least one time. Thus on this support one has ‘g—?(t, 2,6, h)— y} > 1.
Then we can use the vector field

T d
h
X = — Z( tth) y-)D.
F) J 3
%(ta 2, 57 h) - =1 ’
to integrate by parts in I g to obtain
(- )RV,
The proof of Proposition 2.38 is complete. O
We show now that
(2.145) Kwy5(0,2) = wy 5(2) + r5(2)
with
(2.146) 75| 7 (RY) S Fn(: ”)hNHwo,EHLI(Rd) VN eN.

It follows from the initial condition on ¢ given in (2.91) and the initial condition on
b that (2.145) is true with

ri(z) = (27@)_‘1 // €i‘ﬁ71(z—y)'£X1(§)(1 - Wo(z — y))wo,ﬁ(y) dy d§.
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We see easily that for |8| < og, DY 77:(2) is a finite linear combination of terms of
the form

ria(e) = B [[ S wae — ugpwdyds, 1< 13

where W5 € C°(RY) and |z — y| > 1 on the support of ¥g. Then one can write

Tﬁ,ﬁ() (F *w()h)()
where

F(X) = h-d-18] / eI XE ()W (X) de

and |X| > 1 on the support of Wg(X). Then we remark that if we set L =
ﬁ Z? 1 ij we have hLe’h X6 = ¢ih™'X€ Therefore one can write

F0) = R0l [l X LM e (€)]w () de
from which we deduce

a2 (X))
B (X)] < Fag (o) RV 1A xpre TMeN

where ¥ € C°(R%) is equal to 1 on the support of Wg.

It follows then that || ;|| j2ay < Far(- -+ ) A =47181] from which we deduce that for

18] < o0,
[r28 thLQ(Rd) < Fn(-) HFEHH(Rd)HwofﬁHLl(Rd)
< Fn(- )EM_d_l’Bl‘Hwo,ﬁHLl(Rd)
which proves (2.146).

Using Proposition 2.38 and the Duhamel formula one can write

S(t, 0)wy () = Kuig (1 2) — S(t, 05 / 3(t, 8)[F- (s, )] ds.

Now we can write

/0 S(t,s) [F;Z(s, z)] ds

< /t 80,9 F(s. 2]
Le®d)  Jo

t
< C/o 155 (s, Z>HHUO(R‘1) ds

< Fn(e-- )ﬁNHwo,EHU(Rd)

H°o (Rd)

and, for every N € N,
I1S(,0) < C[[S 05 oo (e

< Fn() WV jw

hHLoo RY) < C/HthHffo (R4)
OﬁHLl(Rd)'

Then Theorem 2.36 follows from these estimates and (2.136). O
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2.9 The Strichartz estimates
Theorem 2.41. Consider the problem

1(Sjé(v) -V+V-S;5(V))+ iffyg)uh(t,x) = fu(t,z), un(to, ) = uon(x).

(8t+ 5

where up,ugp and fy, have spectrum in {f ceth <€) < czh_l}. Let I, = (0, hg)

Then there exists k = k(d),hy > 0 such that for any s € R and € > 0 there exists
F,Fe: RT = R*, such that, with N := ||V|| g, + Nk(7),

(1) ifd=1:
el g, ey < F V) (ol + 1l s )
(i) ifd>2:

0l g e ey < Fe @) (w0l sy + 1 allsr e )

for any 0 < h < hy

Proof. If d = 1, by the TT™* argument we deduce from the dispersive estimate given
in Theorem 2.35 that

_3
Junl s 2oy < FC-) 8 (luonlzzey + 1l oy )

Then multiplying this estimate by h*® and using the fact that wuy,ugp, frn are spec-
trally supported in {¢ : c;h™! < |¢] < coh™!} we deduce (7).

If d > 2 we use the same argument. Then if (¢,7) € R? is such that ¢ > 2 and

2 —d_ d e ohtain
q 2 r

_3
(2.147) lwnllLa(r,,ormay) < F(---)h 2 (HUO,hHL?(Rd) + ||fh||L1(1h,L2(Rd))>-

Taking ¢ =2+¢ we find r =2+ m Moreover h % < h~ 1. Then multiplying
both members of (2.147) by h® we obtain

ah,H%Rd)))'

”uhHLQ“(Ih,W*%T(Rd)) <F() (!

On the other hand the Sobolev embedding shows that Wetb"(R9) ¢ W»>*(RY)

provided that a > C=20—-1+4 W In particular we can take a = % —1+e¢. Taking
S—1+e+b=5s— % we obtam the conclusion of the Theorem. O

Corollary 2.42. With the notations in Theorem 2.1 and 6 = %, I =10,T] we have
(1) ifd=1:

ol ot gy < FO) (10l et ) + I llcoqrsm)-
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(13) ifd > 2:
ol - 4eomqgaty < Fo () (Il g e gy + Il
for any € > 0.

Proof. Let T > 0 and x € C§°(0,2) equal to one on [%,3]. For 0 < k < [Th*%] _
define

)

s 5 t —kh?
Ing = [kh2, (k4 2)h2], xpi(t) = x(hé), Uhk = Xhk(t)Uh-

2
Then
) . s ,/t—kh3
(at+§(5j6(v).v+V-Sj5(V))+zT7 )Uhk—thfh+h /( 3 )“h
2

and uh7k(k‘h%, ) =0.
Consider first the case d = 1. Applying Theorem 2.41, (i) to each up, j on the interval
Iy, we obtain, since xp, 1 (t) = 1 for (k + %)hg <t<(k+ %)hg,

lunll

(k203 (et 2)n 3w 8 (R))
)
_3 t—kh2
FC (g1 gy + X (gl )
gf(---)( *Hfhnm( o e ey Il )-

Multiplying both members of the above inequality by h% and taking into account
that uy, and fj, are spectrally supported in a ring of size h~! we obtain

o

” h” g -3
LA((k+3 h? E+3)h2) ;WS 878 (R

(2.148) ((k+3)hZ,(k+5)h2) (R)) ,

F( )(HthUl( kh3 (k+2)h2) Hs’i(R)) hs HuhHLw(I?HS(R)))

Taking the power 4 of (2.148), summing in & from 0 to [Th_g] — 2 we obtain (since
there are ~ Th™3 intervals)

< FC) (Il

Smy T HuhHCO(I;Hs(R))>-

|| hH LA(LHS™2(

LA(Lws -8 (R))
This completes the proof of ().

The proof of (i7) follows exactly the same path. We apply Theorem 2.41, (i7) to each
up 1 on the interval Ij ;. The only difference with the case d = 1 is that, passing
from the L' norm in ¢ of f; to the L? norm, it gives rise to a hi factor. Therefore
we multiply the inequality by hg, we take the square of the new inequality and we
sum in k. O
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2.9.1 End of the proof of Theorem 1.6

Let u be a solution of equation (1.8). We have proved in (2.45) that Aj;u satifies the
equation

LS55(V) -V 4+ V- 855(V)) +iToy) Aju = fu

(at+2

where
fag = foj +{(Sjs(V) = S;(V)) -V +i(Ty; = T,) + Sgé(dlv V) + ( Y — o) P Aju
and withp=4ifd=1,p=2if d > 2 we have

1251l Lo rsmety) < 185 Fll o r, s may) + F (N [[ull oo 1,5 mey)
where N(V,v) = ||V g, + Nk(7)-

We can therefore apply Corollary 2.42 to Aju.

Sinceéz%wehavewhendzl,s—%—%:s—%—i-iandwhendZZ,

5 — % 410 =g g + p with p < % Therefore in all cases the left hand side

e 2+u(Rd))Where,u’<ﬁiddzl,,u’<%ifd22.

It remains to estimate the quantities

(1) = 1S55(V) = S50V - VAl e ey
()= (T =L)AL ot

) = st V), Wl e ey

(1) = (T, —T;,) A0

Lp(I,H*~ (Rd))'
We first estimate the quantities (1), (2), (3) for fixed ¢ which will be skipped.
Consider the term (1). Set A; = (S;5(V) — S;(V)) - VAju.

Since the spectrum of A; is contained in a ball of radius C'27, we can write
1451 - ey
6
< CQJ(ST)II( Si(V) = Sjs(V)) - VAjul| p2ray
<Ccb HS (V) - Sj5(v)HL°°(Rd)2j(l_s)HAJUHHS(Rd)'
Now we can write

(S;(V) = Sis(V)(t,z) = - 1&(2) (V(t, T — 2_jz) —Vt,x — 2_j5z)) dz.

where 1) € C5°(RY) has its support contained in a ball of radius 1. It follows easily,
since 0 < § < 1, that

1S5 (V) = Sjs(V)) (s oo may < F (=) 27 IV (E ) lwroo -
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Therefore we obtain with p = 2,4 and I = [0, T,

7138
HAjHLP(I;HS*%(Rd)) < F( ) DNV oo rety |50l oo 1,5y

Since 1 — 22 = 0 we deduce that

(2.149) (1) < FIN(Vy ) lull oo (1,15 (mY) -

Consider the term (2). Since the spectrum of (T; — T5)Aju is contained in a ball
of radius C27 one can write (for fixed t) using moreover the symbolic calculus,

;6 .
(s = T) Ajull C22 T = T)Ajul

8 Rd) H 3 (Rd)’

(2.150)
< (25" ’M2 ((v5 = M7 N lull s (ray-

Recall that for a € I']', m € R, p > 0 we have

M) = sup sup ()1 Dga(-, &)llwoeera).
o <k(d) []>

Set v; = ©(277-)7,75,; = ¢(277)vs. We have
Dgs (w, €) = (2m)7427% §(27°) % Dg; (-, €).
Since (2m)~427%4 [ 4)(27%) dy = 1 one can write
D (55(2,€) = 75w, €)) = (2m) =927 /@(2]"5?/) (Dgvj(x —y,€) — Dgv;(,€)) dy
It follows that

D2 (g2, = 25, )] < C2% [ G lul dy 1DE (5, b v g

Setting 279y = z in the integral we see that
1 .5 1
Mg (755 —v5) < C2772 M 2 ().
2
Using (2.150) we deduce that

2j(%—6)M

(T = T Al g g <

) lull s ey

(ML

Taking the LP norm in ¢ and using the fact that % -0 = % — % < 0 we deduce that

(2.151) (2) < ON(V,)lull poo (1,15 (RA))-
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Consider the term (3). Since Sj5(div V))Aju has its spectrum contained in a ball of
radius C27 on can write
15j5(div V) Ajull gs(ray < C2°||55(div V)Ajull p2rays
< C2%°||8j5(div V)| oo ety | Ajull L2 (met
< CISjs(div V)| oo (rey 1A ull s (ma)s
< NV Iwroo ey | Agull s (ray -

It follows that

(2.152) (3) < FINV ) ull o (11:qrey
Finally by the symbolic calculus (see Theorem A.5) we can write
(2.153) (4) < FOVi) o sty

Summing up, it follows from the estimates in (2.149) to (2.153) that one can apply
Corollary 2.42 to Aju to deduce that

A ull ol S FINVANLNA; Fll o, s ey + ull poo (r,msmay) }-

Lr(I,C, (R4))

Now for all p < p’ we can write

1Al <

< zfj(u',u)HAjuH d 7
Lr(1,C, 2 7 (R4))

< 279 F(N(VA) LA Fll ooz s ray) + 0l oo (1,15 ()
< 279 = E(N VAN N f | oo ray) + ull oo (1 sz ety }-

sfdf,u
Lr(1,Cy * "(RY)

Summing in j and using the fact that Z;fo_l 273" =1) < 450 we obtain the conclu-
sion of Theorem 1.6. The proof is complete.
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Chapter 3

Cauchy problem

In this chapter we complete the proof of our main result, which is Theorem 1.2
stated in the introduction. We begin in Section 3.1 by combining Sobolev and
Strichartz estimates to obtain a priori estimates. Then, in Section 3.2, we obtain an
estimate for the difference of two solutions. This estimate will be used to prove the
uniqueness of solutions as well as to prove that a family of approximate solutions is
a Cauchy sequence, in some larger space, and then converges strongly. In Section 3.3
we prove that one can pass to the limit in the equations under weak assumptions.
In Section 3.4 we briefly recall how to complete the proof from these three technical
ingredients.

3.1 A priori estimates

3.1.1 Notations

For the sake of clarity we recall here our assumptions and notations. We work with
the Craig-Sulem-Zakharov formulation of the water-waves equations:

{ om — G(n)y =0,

(3.1) 1
Opp + gn + B IVy|* —

1 (V- Vo + Gnw)”
2 14 |Vn)?

Assumption 3.1. We consider smooth solutions of (3.1) such that

=0.

i) (n,1)) belongs to C([0, Tp); H®(RY) x H*(R®)) for some Ty in (0,1] and some
so large enough;

it) there exists h > 0 such that (1.3) holds for anyt in [0, To] (this is the assumption
that there exists a curved strip of width h separating the free surface from the
bottom);

i) there exists ¢ > 0 such that the Taylor coefficient a(t,z) = —0yP|y—yz) 15
bounded from below by c for any (t,x) in [0, Ty] x R
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We work with the horizontal and vertical traces of the velocity on the free boundary,
namely B = (9y¢)|y—, and V = (V¢)|y—,, which can be defined in terms of 7 and
1 by means of

_ V-V + Gy

3.2 B = , V :=Vy — BVn.
(3:2) 1+ V2 ¥ K
Let s and r be two positive real numbers such that

3 d 1 d 1
. -+ = - == 1 —N.
(3.3) s>4+2, s+4 2>r> , r§Z2

Define, for T in (0, Tp], the norms

(3 4) MS(T) = ||(w7’r]? B’ V)HCO([O,T};HS-’_%XHS+%><HS><HS) )

ZT) = 1l g ey 1B V)l ape
where p=4if d=1and p =2 for d > 2.
Our goal is to estimate M(T') + Z,(T) in terms of

(3.5) Myo = 1| (0(0), n(0), BOLVO) oy i
In Appendix D, using results already proved in [3], we prove that, for any s and
r satisfying (3.3), there exists a continuous non-decreasing function F: RT — R™
such that, for all smooth solution (n,) of (3.1) defined on the time interval [0, Tp]
and satisfying Assumption 3.1 on this time interval, for any 7' € (0, Tp],

(3.6) M(T) < F(F(Msp) +TF(M(T) + Z,(T))).

If s > 1+ d/2, then one can apply the previous inequality with r = s — d/2. Then
Z(T) < Ms(T) by Sobolev embedding and one deduces from (3.6) an estimate
which involves only Mg (T). Thus we recover the a priori estimate in Sobolev spaces
proved in [3] under the assumption that s > 1+ d/2. Using classical inequalities,

this implies that for any A > 0 there exist B > 0 and T} > 0 such that
M570 < A= MS(Tl) < B.

We shall prove that a stronger a priori estimate holds. We extend the previous
estimate in two directions. Firstly, we prove that one can control Sobolev norms for
some s < 1+ d/2. Secondly, we prove that one can control Strichartz norms even
for rough solutions.
Proposition 3.2. Let u be such that pu < i ifd=1and p < % for d > 2.
Consider two real numbers s and r satisfying
1

r & —N.

3 2

d d
(3.7) s>1+§—u, 1<r<s+u—§,

For any A > 0 there exist B > 0 and Ty > 0 such that, for all 0 < Ty < T}
and all smooth solution (n,v) of (1.5) defined on the time interval [0,Ty] satisfying
Assumption 2.1 on this time interval, then the solution satisfies the a priori bound

MS70 <A= MS(T()) + ZT(TO) < B.
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3.1.2 Reduction
In this section we show that one can reduce the proof of Proposition 3.2 to the proof
of an a priori estimate for Z,(T).

To prove Proposition 3.2, the key point is to prove that there exists a continuous
non-decreasing function F: Rt — R™ such that

(3.8) My(T) + Z,(T) < F(F(Msp) + TF(Ms(T) + Z,(T))).

Since p < 1/4 and since the estimate (3.6) is proved under the general assump-
tion (3.3), it remains only to prove that Z,(T") is bounded by the right-hand side of
(3.8).

Proposition 3.3. Let d > 1 and consider s,r, u satisfying (3.7). There exists a
continuous non-decreasing function F: RT — R such that, for all Ty € (0,1] and
all smooth solution (n,v) of (3.1) defined on the time interval [0,Ty] and satisfying
Assumption 3.1 on this time interval, there holds

(3.9) Z,(T) < F(TF(M(T) + Z:(T))),
for any T in [0, Tp).
Let us admit this result and deduce Proposition 3.2.

Proof of Proposition 3.2 given Proposition 3.3. Introduce for T in [0,Tp], f(T) =
My(T) + Z.(T). It follows from (3.6) and (3.9) that (3.8) holds. This means
that there exists a continuous non-decreasing function F: RT™ — R™ such that,
for all T € (0, Tp],

(3.10) () < F(F(A) +TF(f(T))).
Now fix B such that B > max {4, F(F(A))} and then chose T} € (0, Ty] such that
F(F(A)+ Ty F(B)) < B.

We claim that f(7') < B for any T in [0,7]. Indeed, since f(0) = Myo < A < B,
assume that there exists 77 € (0, T1] such that f(7") > B. Since f is continuous, this
implies that there is 7" € (0,7}) such that f(T"”) = B. Now it follows from (3.10),
the fact that F is increasing, and the definition of T} that

B = f(T") < F(F(A) + T"F(f(T"))) < F(F(A) + T1F(B)) < B.

Hence the contradiction which proves that f(7") < B for any T in [0, T}]. O

It remains to prove Proposition 3.3. This will be the purpose of the end of this
chapter.

We begin by using an interpolation inequality to reduce the proof of Proposition 3.3
to the proof of the following proposition.
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Proposition 3.4. Let d > 1 and consider p,s,r as in (3.7). Consider in addition
r’ such that

d 1
/ /
+u— = -N
r<r <s+pu % r & 5
and set
Zr’ ) HnHLp ([0,T7; wr'+ ”(B [ )HLF ([0,T);Wr’s00 x W' 00)

where p=4ifd=1 and p=2 for d > 2. There exists a continuous non-decreasing
function F: Rt — R such that, for all Ty € (0,1] and all smooth solution (n,1))
of (3.1) defined on the time interval [0,Ty] and satisfying Assumption 3.1 on this
time interval, there holds

(3'11) Zr’(T) < ]:(MS(T) + ZT(T))7

for any T in [0, Tp).

We prove in this paragraph that Proposition 3.4 implies Proposition 3.3. Proposi-
tion 3.4 will be proved in the next paragraph.

Proof of Proposition 3.3 given Proposition 3.4. Consider a function v = v(t,x). By
interpolation, since 1 — pu < 1 < r < 1/, there exists a real number 6 € (0,1) such
that

[4
ot Mlwree S HoCE ) yammee 100 ) i o -

This implies that

T T
1-6
PR T ey (OB

The Holder inequality then implies that

HUHLp( [0,T); W) ~S T” HUH(JO ([0,T);W1i=n,00) ”UHLP([O ;W o0y *
By the same way, there holds

1-0’
[[o]]

<
Tp || || Lp([OT] WT+2 )

”U||Lp([O7T];WT+%’OO) ~ [0 T] Wl ;/,+§ oo

Since s > (1 — p) + d/2, the Sobolev embedding implies that
HUHCO([O,T];Wl—N’OO) S HUHCO([O,T};HS)’ HUHCO([07T};W1*M+%,OO) S HUHCO([O,T];HS+%) )

This proves that
Z,(T) < T» My(T)?(Z0(T))*~"

for some 6 > 0. This in turn proves that (3.11) implies (3.9). O
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3.1.3 Proof of Proposition 3.4

Recall that the positive real number p has been chosen such that p < 1/24if d =1
and p < 1/12 for d > 2, and s, r, 7" are such that

d d 1
s>1+§—/$, 1<r<r'<s+u—§, r¢§N.

Let T > 0 and set I = [0, 7.

The proof of Proposition 3.4 is based on Corollary 2.7 and Theorem 1.6. By com-
bining these two results we shall deduce in the first step of the proof that

(3.12) ||u”Lp([;Wr’,oo) < }—(MS(T) + ZT(T))
where u is defined in terms of (1, V, B) by (see (2.17))

u = (Dy)"* (Us — ibs),
(3.13) Us = (Ds)"V +Te(Dx)* B (C= V),
95 = Tm(Dg)s VT}

In the next steps of the proof we Sh?W how to recover estimates for the original
unknowns (1, V, B) in LP([0,T]; W™ T2 x W' x W),

Step 1: proof of (3.12). It follows from Theorem 1.6 that

el o ey < F UV o + MDY {1 oy + Nl cogms ey |-
Clearly we have
Ve, < Z:1(T) < Z:(T), Ni(v) S Ms(T).
Moreover, (2.19) and (2.22) imply that
lulloocr.msray < FMs(T)), 1 fllzor.msmay) < F(Ms(T) + Zo(T)).

By combining the previous estimates we deduce the desired estimate (3.12).

Step 2: estimate for 7. Separating real and imaginary parts, directly from the
definition (3.13) of u, we get

H<Dx>7s TM<DI>S VUHWW,OQ < ||u”wr’7oo

We shall make repeated uses of the following elementary result.
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Lemma 3.5. Consider m € R and p in [0,1]. Let (r,r1,72) € [0,+00)3 be such that
r < min(ry + p,ro+m), r € N. Consider the equation Trv = f where 7 = 7(x,§) is
a symbol such that T (resp. 1/7) belongs to I (resp. T',;™ ). Then

[ollyroo < K 0llgprryce + K[ Fllprace
for some constant K depending only on M} (1) + M,;™(1/T).
Proof. Write
V= (I - TI/TTT)U + Tl/Tf
and use (A.4) (resp. (A.5)) to estimate the first (resp. second) term. O

Now write

<Dz> Tm(D;p) V = va + R
where R = [(Dg)™* ,T\/a/—/\(Dgc>s V]. Since y/a/X is a symbol of order —1/2 in &, it
follows from (A.5) that, for any p € (0, 1),

_1 a
e < KM (1)) Wy

IBnllyyrr o < FIVllwooo s llalloce ) 0l g—po -

and hence

Now by assumption on s and 7’ we can chose p (say p = 1/4) so that
d d

<52 ’+1 <+1
PsSmo Ty TR TPSSTH TS

and hence
1Bl < F(lll oy Nla=gll .y )-
Recalling (see (C.1)) that [la —gl|, . 1 < F(Mj) for any s > 3/4 + d/2, we obtain
1By 00 < F(Ms).
We thus deduce that

|7 ], < Nl + F O

Now, Lemma 3.5, applied with m = —1/2 and p = 1/4, yields an estimate for the
W' =2°°_norm of Vn which implies that

17l s 300 < I Nullyynr oo + BN i g o0 + ICF (M)

1

for some constant K depending only on M, 2 <\/§> As already seen, K < F(Mj)
and HT]HWH%,MO < M; (using the Sobolev embedding). We conclude that

1]+ 300 < F(Ms) llullyyrr e + F (M)
Therefore (3.12) implies that

(3.14) < F(My(T) + Z,(T)).

Hn||Lp(];W’I‘,+%,OO)
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Step 3: estimate for V' + T:B. We proceed as above: starting from (3.12) one
deduces an estimate for the W' *®-norm of (D,)~* ((Dg)*V + Te(Dy)* B). One
rewrite this term as V' + T¢B plus a commutator which is estimated by means of
(A.5) and the Sobolev embedding. It is find that

IV +TeBllyr o < F(Ms) Jullyyr oo + F(Ms)
so that (3.12) implies that

(3.15) IV + Te Bl ooy < F(M(T) + Z(T)).

Step 4: estimate for V and B. We shall estimate the LP(I; WT/"X’)—norm of B.
The estimate for the LP(I; W' *)-norm of V will follow from V = (V +T;B) —T;B
since the first term V' + Ty B is already estimated (see (3.15)) and since, for the
second term, one can use the rule (A.4) to obtain || T¢ By c0 S ICl oo By e S

100 ~v

19l v 1Bl

To estimate the W' *°-norm of B, as above, we use the identity G(n)B = —divV+7y
where (see (2.5))

il < Iy < FUOVB g s )-

In order to use this identity, write
div (V +T;B) = divV + Tgiy B+ T¢ - VB
(3.16) =—-Gn)B+TagvcB+T:-VB+75
=T ticeB+r
where
r=Tav¢B+75+ (Ih— Gn))B.
The first term in the right-hand side is estimated by means of

. d
| Taiv e Bllyyr—1.00 S 1 Taiv ¢ Bll gro—14n since 1’ < s+ p — 3
S div(]lu-r [|Bllgs  (see (A.12))
S nllwisuoe |Bll s since div{ = Anp

1 1 d
§Hn||Hs+% | Bl| since 1+u<1+1<s+§—§-

The key point is to estimate (T — G(n))B. To do so we use Proposition D.4
with (u,0,¢) replaced by (s + 3,s,3) and the Sobolev embedding HS*%(Rd) C
W'=L(R%). This implies that

1Ty = G)Bllyrrr—1.00 S T = GBI ooy < F(Inll yory ) 1Bl

We end up with

1Pl —roe < FUIOL VB sy e e )-
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Writing (see (3.16))
T aticeB=div(V+T¢B) —r,

it follows from (3.15) and Lemma 3.5 that
1Bl o (g ooy < F(Ms(T) + Z(T)).

This completes the proof of Proposition 3.4 and hence the proof of Proposition 3.2.

3.2 Contraction estimates

Our goal in this section is to prove the following estimate for the difference of two
solutions.

Theorem 3.6. Let i be such that p < 2—14 ifd=1and p < % for d > 2. Consider
two real numbers s and r satisfying

d d 1
s>1+§—u, 1<r<s+u—§, 7“§Z§N.

Let (n;,v;), j = 1,2, be two solutions such that
(njs 165, Vi, By) € CO([0,T); H*2 x H**2 x H* x HY),
(15, Vi, By) € LP(0, T, W50 x 70  ree),

for some fired T > 0, d > 1 withp =4 if d =1 and p = 2 otherwise. We also
assume that the condition (B.1) holds for 0 <t <T and that there exists ¢ > 0 such
that for all 0 <t < T and x € R%, we have a;(t,x) > c for j =1,2. Set

1 1
HV2xH 2 xHsxHs '

t€[0,T]
+ ||(77,77 ‘/j7B‘j)”Lp([O7T];WT+%’Oo xWryoo XWT,OO) :
Set
ni=mn—"1n2, Y=t -1, V:=Vi-Vy, B:=DB — By,
and

N(T) := sup [(n,%,V,B){@)]|

1 1
H 7 2xH"2xHs~1xHs1

t€[0,T7]

) O
Then we have
(317) N(T> S KH("’]? ¢> ‘/7 B) ’t:() HHsf% XHS*%XHS—I XHs—l’

where KC is a positive constant depending only on T, My, Ms,r, s, d, c.
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Remark 3.7. To prove this theorem, we shall follow closely the analysis in [3].
However, there are quite difficulties which appear for s < 1 + d/2, in particular for

d =1 and with a general bottom. For instance, one has to estimgtte the H53-norm

of various products of the form uv with u € H1 and v € H*"2. For s < 1 +d/2,
the product is no longer bounded from H™' x H =3 to H 3 and, clearly, one has
to further assume some control in Holder or Zygmund norms. Namely, we assume

_1
that w € HS"' N L® and v € H 3 N C, %. Then, paralinearizing the product
wv = T,v + Tyu + R(u,v) and using the usual estimate for paraproducts (see (A.4)
and (A.12)), one obtains

Tuvll o S Nullpoe 10l g s I1Toull g SR -y llull o

so the only difficulty is to estimate the H s=3-norm of the remainder R(u,v). How-
ever, the estimate (A.11) requires that s — % > 0, which does not hold in general
under the assumption (3.7). To circumvent this problem, each times that we shall

need to estimate the H*~3-norm of such remainders, we shall prove that one can fac-
tor out some derivative exploiting the structure of the water waves equations. This
means that one can replace R(u,v) by 0;R(@,v) for some functions, say, u € L™
and & € H*2. Now one can estimate the H*~2-norm of R(1,?) by means of (A.11)
which immediately implies the desired estimate for the H s=3-norm of 0. R(,0).

3.2.1 Contraction for the Dirichlet-Neumann
A key step in the proof of Theorem 3.6 is to prove a Lipschitz property for the

Dirichlet-Neumann operator.

Proposition 3.8. Assume d > 1, s > %—F %, s+ % — % > r > 1. Then there
exists a non decreasing function F : RT — R™ such that

IGm)S = Gy
(3.18) < F (72l sy ) { N =2l e 16

U = mall ey (U g+ e ) -

In the proof of Proposition 3.8 we shall use the following classical lemma.

Lemma 3.9. Let I = (—1,0) and 0 € R. Let u € L%(I, H"Jr%(Rd)) such that

0,u € LA(I, H"fé(Rd)). Then u € C°([—1,0], H°(R%)) and there exists an absolute
constant C > 0 such that

sup [u(z, )|l o ray < C(|lull

+ |01
2€[—1,0] ) [0z

L2(1,H" % (R4 L2(I,H"™ % (Rd))) :

Proof of Proposition 3.8. In the sequel we shall denote by RHS the right hand side
of (3.18) where F may vary from line to line.
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We want to apply changes of variable as in (B.4). However, here, we have an
additional constraint. Indeed, after this change of variables, we want to get the
same domain for 7; and 72 to be able to compare the variational solutions. For this
purpose, we need to modify slightly the change of variables in (B.4).

To prove the theorem, we can assume without loss of generality that || — 12| is
small enough. Then there exists 7 € Cp° such that for j = 1;2,

P 7h <n<mn: — %
75 1 ST 3"
Let
d h
Dy =A{(z,9) 12 € R mj(2) — 5 <y <mi(a)},
~ h
(3.19) Dy ={(a,y) € O:(x) <y <) = 5},
Q3 ={(z,y) € O:y <nx)}
L Qj = QLJ' U QQJ‘ U Qs
and
Q1 =R? x [~1,0),
Oy =R? x [-2,-1),
(3.20) 2 =Ry x| )

Qs = {(2,2) € R x (=00, —2) : (z,2+ 2+ 7(z)) € Q3},
ﬁ = Ql U QQ U 63.

We define Lipschitz diffeomorphisms from Q to ; of the form (z, 2) — (z, pj(z, 2))

where the map (z, z) — p;(x, z) from © to R is defined as follows
(3.21)

i 2) = (14 )™ (@) — e+ (,0) = 2y i (2, € 0,

. 2) = @+ 9P () — B) — (L4 2 i (2.2) € o
pi(z,z) =z+2+1n(x) if (z,2) € Qs

for some small enough positive constant J. Notice that, since for z € I = (—2,0) we
kept essentially for p; the same expression as in (B.4), we get the same estimates as
in Lemma B.1.

Recall that according to (B.13) we have for j = 1,2

1+ |prj|2 oy

Gnj)f =Ujl:=0, U;j = Dop: 8.0; — Vapj - Vi,
2P

where $j is the variational solution of the problem
Pig;j =0, &jl.—0=f.
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Set U = Uy — Us. According to Lemma 3.9 with o = s — %, the theorem will be a
consequence of the following estimate

(3.22) 1Ulz2(1,m55-1) + 10Ul 21,552y < RHS, I =(-1,0).
Set 5 = (}51 — 52. We claim that (3.22) is a consequence of the following estimate
(3.23) Hvx,z¢~5||LQ(I,HS—1) < RHS.
Indeed assume that (3.23) is proved. One term in U can be written as
Vapr - Va1 = Vapa - Vadz = Vopi - Vo + Valpr = p2) - Vadn.

Now, since s > % + g, we can apply (A.16) with s =s—1,8 =5 — %,SQ =s—1.1T¢t
follows that
IVapr - va[:‘lﬁHL?(I,HS*l) < ||v$p1”L°°(I,HS’%
< limll, .., RES.

s+§

)HV:cah?(I,HH)

For the second term, since s > % =+ % > 1, we can write
IVa(p1 = p2) - Vadall 2, ms-1) SIV2(p1 — p2) 20,551y [ Vad2l oo (1,0
+ [IVa(p1 = p2)ll2(r,200) [V ab2 || oo (1, 155-1)-
Now we have (as in (B.6) and (B.7))
IVa(pr = p2)ll 21y S llm = mell oy
IVa(pr = p2)llz2 gm0y S llm = m2ll e o -

Also it follows from (B.18) that

19262y sy < Ul V17

and it follows from Proposition B.7 that

Va2l ooy < F(Imall g )L e + 15 e 3
Therefore
(3.24) IVa(p1 — p2) - Vx¢~52||L2(1,HH) < RHS.

We have thus completed the estimate of the first term in U. For the second term,
one checks that, similarly, the L?(I, H5~!)-norm of

14+ |Vepr? .~ 14 |Vepel? . ~
L+ Vapl"y 5 1+ Vapal”y =
d.p1 0.p2
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is bounded by RHS. This completes the proof of the fact ||U| p2(;,zs—1y) < RHS
provided that (3.23) is granted.

Let us now prove that, similarly, (3.23) implies that [0.U||r2(; gs—2) < RHS. We
begin by claiming that we have, for j = 1,2,

(3.25) 8.U; = div(Vep;0.0;) — div(9.p;Vad;).
This follows from the fact (see (B.12)) that we can write
0 = Pigy; = —div(Vap;0-0;) + div(0:p;Ved;) + 0.U;.
Therefore we have
10U || 21, mr5-2) < | Vap10:01 — Vap2dz0ol 2z o1y
+ 1891V 21 — 8zp2vm$2”L2(I,HS*1)'

Since s — 1 > 0, we can argue as above and conclude the estimate by means of
product rules.

Therefore we are left with the proof of (3.23). Since 15;5] =0,j = 1,2 we can write

Pig= (P, — P = F +0.G
(3.26) F = div(9.(p2 — p1)Vat2) + div(Va(p1 — p2)0:62)

~ 1+ |Vapa? 14 |Vepi®\ , ~
G = Valpr = p2) - Vudo + ( 8‘@”’— a'm’”’ )0-62.

Arguing exactly as in the proof of (3.24) we can write
(327) HF”LQ(I,HS_Q) + ”GHLQ(I’HS—I) S RHS
It follows from Proposition B.21 that

(3.28) Ve e@ll2(z o) < Flmll pery) (RES + |V 20

1 1 .
HT2 X*f([))

Then (3.23) will be proved if we show that

(3.29) ||Vx,z¢llx_%u) < RHS.
We begin by proving the following estimate.
(3.30) Va0l 1212y < RHES.

For this purpose we use the variational characterization of the solutions given in
[1, 3]. It is sufficient to know that ¢; = u; + f where f = e*P«) f and u; is such
that, with the notations
X=(2,2)eQ={(x,2): 2 € R -1 <2< 0},
1 vzpj

A= A), AN=-—29., AN=v,—-2Hjy,
( 1 2) 1 azpj 2 8ij
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we have
(3.31) /ﬁAﬂ'aj-AJ‘er dX:—/ﬁAjf-A]PdeX

for all € H0(2), where .J; = |d.pjl.

Making the difference between the two equations (3.31), and taking 6 = 5 = Uy — Uy
one can find a positive constant C' such that

/~ NG dX < C(Ay + -+ + Ag)
Q

where
(3.32)
Ay = /J(Al—A?)%HAlEEr JidX, Ay = / (AT = A®)||A%Ty| J1dX,
Q
A3=/~|A252||A25||J1—J2|dX, A4—/| —A? f||A1€Z] JidX,
A5 /\ — A2 ¢y|A2 flJhdX, A6:/~|A2f|\A2¢\|J1—JQ|dX.
Q

Noticing that A — A? = 30, we deduce from Proposition B.7 that
A < 1A G o) 181l ooy 95zl oo o0
<Al 2y F U, )| ey e ) = m2ll g Al + Ll -

Now B
Ay < H/BHLz(Q)HAQ&QHLM(Q)Haz(ﬁuj;z(())

Using Proposition B.7 we obtain

As < F(lnm) ey oey) I =l g A+ 1 e} 1AM 2
< F(lnm)l ey o) I =2l oy G0 lge + 1 e} IA Bl 2y

Now we estimate As as follows. We have
A < [IN%0a| oo ) A% 0N L2y 1 T2 = T2l 12 sy

Then we observe that ||J; — JQ”LQ(ﬁ) Slm — 772||H% S lm — 772HH57% and we use
the elliptic regularity to obtain

A3 < F(I0mm) vy poey) 1wl = ell oy 1A% 2
To estimate A4 and As we recall that z: e*(Dz) £ Then we have

HﬁazzuL?'(Ide) < HﬁHL2(1de)HazﬂLoo(Idey
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Since HaszLoo(Ide) < || fllwre we obtain

Ast A5 <IN oy F NG oy i =l oy ey 1l

The term Ag is estimated like As. This proves (3.30).

To complete the proof of (3.29), in view of (3.30), it remains only to prove that
< RHS. First of all by Lemma 3.9 we have

||Vw<;”Loo([,H—%) < C(IVadll2L2y + 10:Vedll L2q.m-1)) < C'NVasollr2.r2)
and we use (3.30) to deduce that ||V,¢|| 1 < RHS. So it remains to prove

Leo(I,H™2)
I < RHS. Here, by contrast with the estimate for V¢,
one cannot obtain the desired result from Lemma 3.9, exploiting the previous bound
(3.30). Indeed, one cannot use the equation satisfied by ¢ to estimate the L3(I,H™Y)-
norm of 9?¢. As above, we shall exploit the fact that one can factor out a spatial

derivative by working with U instead of ¢. We shall prove that ||U HLOO(I a4 < RHS

that, similarly, |0, 4 Lot

and then relate 345 and U to complete the proof.

Lemma 3.9 implies that

HU”LO@(LH*%) S WU 2 p2y + 192U 21,51y -

The L*(L*)-norm of U is easily estimated using the bound (3.30) for the L?(L?)-
norm of Vy .¢. To estimate ||0:U| 12(f -1y, write

0.U = div(Vp10,0) + div(Vpd.ds) — div(d,p1 V) — div(d, pV )
SO
10:Ull 21,51y < IVa,2p1ll oo 1) vagnpa,m)
+ Hva:,zPHL2(I,L2) HV%Z‘??HLOO(I,Loo)

which implies that [|[U ||LOO(I a4 < RHS. Now, directly from the definition of U
one has 7

az% =

0:p1 { 14+ Vo2 1+ |Vpi*\, ~ ~ ~
[ ( - )0:62+ V1 - V6 + Vp - Vo
The L>°(I,H _%)—norm of the term between brackets is bounded by RHS, using the
fact that the product is bounded from H 3 x H™ 3 (resp. L? x H571) to H 2 (resp.
H 7%) in order to estimate Vp; - V¢ (resp. the other terms). Since the coefficient
1

Ha‘zvippllp belongs to L>°(I, H*" 2 ) and since the product is bounded from H 2 xH 2

to H _%, this concludes the proof. ]
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3.2.2 Paralinearization of the equations

Recall from Proposition 2.3 that
(at—i-‘/j'V)Bj =a; — ¢,
(3.33) (0 + Vi V)V] + Clej =0,
(O +V; - V)G = Gny)V; + GGny) B+, G = Vi,

where 7; is the remainder term given by (2.8). We now compute and paralinearize
the equations satisfied by the differences

C:C1_C27 V:‘/I_‘/Qa B:BI_B2~

In [3], assuming that s > 1 + d/2, we deduced that

(3.34) { (at+V1 'V)(V+<1B)+GQCZF1,

(O +Va-V)C = G(m)V = QG(m)B = F,
for some remainders such that

[ (F1, F2)| < K(My, Ma)N(T).

3
Le([0,T);Hs— 1 x H*"2) —

However, the estimate for f no longer hold when s < 3/2 for the reason explained in
Remark 3.7. To overcome this problem, the key point is that one obtains the desired
result by replacing 0; + V2 - V (resp. (1G(m)B) by 0, + Ty, - V (resp. T, G(m)B in
the equation for ¢ (there is a cancellation when one adds the remainders).

Lemma 3.10. The differences (, B,V satisfy a system of the form

{ (O +Tv, - V)(V +(1B) +a¢ = f1,

3.35
(3:35) (00 + Ty, - V) — Gm)V — T G(m)B = fo

for some remainders such that

| (f1, f2)l < K(My, Ma)N(T).

Lo([0,T);H— 1 x HS= %) =
Proof. Directly from (3.33), it is easily verified that

&B+V, - VB=a+R,,
(3.36) {t ' ¢

OV + V1 - VV 4+ a2 + a1 = Ro,
where a = a1 — as and
Ri=-V-VBy, Ry=-V-VW.

Now we use the first equation of (3.36) to express a in terms of 9B+ V) - VB in the
last term of the left-hand side of the second equation of (3.36). Replacing V; - V in
the right-hand side by Ty, - V, we thus obtain the first equation of (3.35) with

fi= B(at<1 + V- VQ) 4+ Ri1(1 + Ry — TV(V+<1B) -V = R(Vl, V(V + ClB))-
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To estimate 9;(1 + Vi - V(1 we use the identity (2.10) to deduce

0iC1+ V1 -V = G(m)Vi — (div V7).
Then, using (B.20) to estimate G(n1)V1 and the fact that the product is bounded
from H* 1 x H5 3 into H5"!, we get

10:C + Vi - VGl g1 < IGO)Vall gs—r + v Vil o Gl o s
< F(lmlpey ) Wil
Also, it follows from the L*-estimate (B.31) for G(n)f that
18:61 + Vi - Vil oo < F (Il sy ) IVAl s + VAl pree }-

Then the estimate of the H¥ '-norm of f; follows from the usual tame estimate
in Sobolev space (see (A.17)), the rule (A.12) applied with m = 1 to estimate
Tgw+eB) - V1, the rule (A.11) applied with a = 1 and a = V; to estimate the
remainder R(Vl, V(V + ClB)) as well as the estimates for the Dirichlet-Neumann
operator given by Propositions B.2 and B.7.

To compute and to estimate fo we shall rewrite the equation for ¢;, j = 1,2, by
using the identity (2.10) written under the form

9G; = G(n;)V; — ©;
where ©; is the function with values in R? whose coordinates @;‘? is given by @;? =
div(%@‘f). Now write
OF = div(V;¢F) = div(Ty,¢F) + div(Tx V) + div(R(¢, V)
and use the Leibniz rule 0,Tpb = T, b + 150,b to obtain
05 =Ty, V() + Ty div V; + Ff
with
Ff =Ty, () + Tyer - Vj + div(R(C}, V5)).
Using the identity G(n;)Bj = —div V; +7; where 7; is estimated by means of (2.4),
we obtain
0; =Ty, -V = T,G(ng) Bj + Te, 75 + £
SO
Oy +Tv; - VG = Gny)Vy + Te; G(nj) Bj — Te;7; — Fy-
Subtracting the equation for j = 1 and the one for j = 2 we obtain the desired
equation for ¢ = (1 — (o with
for=()+UI)+ (III)-F
(I) := (G(m) — G(n2)) Va + T, (G(m) — G(n2)) Ba,
(I1) == =Ty - V(G + TcG(m) Bz,
(1) = =T,y = Ter,
F:=F — F.
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The term (I) is estimated by means of Proposition 3.8. To estimate (IT), write

1Ty -Vl g SNV Lo G e-g

and

ITeG () Bz ||

o=t Sl - 1G0m) Ball ot <Kl 4 F(lmll s s ) 1Bl s

where we used Proposition B.2 to estimate G(1;)Ba.

It remains to estimate F' given by

F =TaivvyC + Taivv G + Tye, - V + Tye - Vi + div (R(¢, Va)) + div (R(¢1, V).

Write
[TaivvaCll g S 1AV Vallpoo [ICH omg S IV2llree 01l oy s
vl g < 10w Viigos 16l g < IVl soe Il
Twe, -Vl o3 S IIVCQH 3 WV llErs=2 S Ml s g oo 1Vl g1 -

Now the key point of this proof is that one has the following obvious inequalities

[div (R(¢, Vo)) + div (R(G, V)| g < RIS V2) + R(CL V) oy -

Since s —1/2 > 0 (by contrast with s — 3/2 which might be negative), one can use
(A.11) to deduce

1R Vo)l -y SACH - V2l S Wil o V2l s

1RGN g S 16y VI S Tl ey 1V roses

This completes the proof. O

Once Proposition 3.8 and Lemma 3.10 are established, the end of the proof of the
contraction estimate in Theorem 3.6 follows from the analysis in [3]. We shall recall
the scheme of the proof for the sake of completeness.

Our goal is to prove an estimate of the form
(3.37) N(T) < F(My, Mz)N(0) + T° F(My, Ma)N(T),
for some & > 0 and some function F depending only on s and d. This implies

N(Ty) < 2F(My, Ma)N(0) for Ty small enough (depending on T" and 3 F (M, Ms)),
and iterating the estimate between [T1,2T4],..., [T — T1,T] implies Theorem 3.6.

Firstly, one symmetrize the equations (3.35).
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Lemma 3.11. Set I =[0,T] and

A=V (L+ [V P)[E? = (V- €)2,

and
U=~/ Mag, @ =T, V+aB), U:=T/;5C
Then
(338) (825 + TV1 . V)SO + Tg’ﬁ =91,
(339) (8t + TV2 . V)’lg — Tg(p = g9,
where

g1 92l 1 gyt o) < KM, M)N(T).

The previous result is proved following the proof of Lemma 5.6 in [3].

We then use the previous result and classical arguments to obtain a Sobolev estimate.

Lemma 3.12. Set

M(T) := Sup {19 g +lle@®Il 3 }-
We have
(3.40) M'(T) < K(My, M) (N(0) + T°N(T))
for some § > 0.

This follows by using mutatis mutandis the arguments used in the proof of Lemma 5.7
in [3].

Then the end of the proof of Theorem 3.6 is in two steps. Firstly, using (3.40), one
deduces a Sobolev estimate for the original unknown (7,4, V, B). Again, this follows
from the analysis in [3]. Secondly, one has to estimate the Hélder norms. To do
so, we use Theorem 1.6. To use this theorem, one has to reduce the analysis to a
scalar equation. Notice that System (3.38)—(3.39) involves two different transport
operators 0;+ V7 -V and 0; + V5 - V. This is used in the proof of Lemma 5.6 in [3] to
bound the commutator [T\/@, Oy + Vo - V] in terms of the L>°-norm of dias + Va2 - Vas.
However, once this symmetrization is done and Lemma 3.11 is proved, one can freely
replace 0y + Ty, - V by 0y + Ty, - V in the equation for . Indeed, this produces an
error Ty, _y, - VU that we estimate writing

Tiivy - VO = {Thiova - VTG | = {Tiaova - VTG

and we estimate separately the contribution of each term, writing

| v VT mar| g S 1= Vel V@Rl G,y
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together with a similar estimate for the other term. By so doing, it follows from
(3.39) that
(O + Ty, - V)OI = Top = G,

where G satisfies HGQH MERIEE N 5 < K(My, M2)N(T). Now we find that u =

¥ + i satisfies
ou+Ty, -Vu+iTju=g

with

191 gt g, < (M, Ma)N(T).

Since the LP(I; H®~ 3 x HS~ ) -norm of Tgiy v, is bounded by K(My, Ma)N(T), one
can further reduce the analysis to

ou + = (TV1 V+V. Tvl)u+zTgU—g

with

19l g8y < (M, Ma)N(T).

Then one is in position to apply Theorem 1.6 with s replaced by s —3/2 (notice that
s in any real number in Theorem 1.6) to obtain

HuHLp(,;Wr,%,OO)
< |

Le(rol 272
< F(IVallz + MW Maa2) {19/, g o3, + ll o 1)}

Then, proceeding as above, we recover an estimate for the original unknowns, that

is an estimate for ||(n,V, B)HLP (071" 32 X100 spr 1,00 This completes the

proof of Theorem 3.6.

3.3 Passing to the limit in the equations

Below we shall obtain rough solutions of the water waves system as limits of smoother
solutions. This requires to prove that one can pass to the limit in the equations.
Here we shall prove that it is possible to do so even under very mild assumptions.

Firstly, we prove a strong continuity property of the Dirichlet Neumann operator at
the minimal level of regularity required to prove that G(n)v is well-defined, that is
for any Lipschitz function n and any ¢ in H %(Rd), recalling that

(3.41) IGOI,-y < F(Illyres ) 1F1,,3 -

2

We have the following result which complements Proposition 3.8.
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Proposition 3.13. There exists a non decreasing function F: Ry — R4 such that,
for allp; € WLH°(RY), j = 1,2 and all f € H2(RY),

(342) [|(GOn) = G)) || -3 < F U0, m) lwree o) llm = mellwree 111, -

2
Proof. The proof follows the one of Proposition 3.8. In particular, we shall use the

variational formulation of the harmonic extension of f used in the last part of the
proof of Proposition 3.8.

Recall that, for j = 1,2, we introduce p;(z, z) defined by (B.4) (replacing of course
n by n;). Recall also (see the paragraph below (3.30)) that we have set
1

3.43 N=—29, AN=vV,—
( ) 1 azpj ’ 2

V:cpj
3sz

0.

and 5j(x, z) = ¢j(w, pj(z,2)) (Where Ay ¢; = 0in ), ¢j|s, = f). As already seen,
we then have

(3.44) Gnj)f =Ujl=o, Uj = Moj — Vaup; - Moy
We shall make repeated use of the bound

(3.45) [Va,2(p1 = p2)llLoe (1,000 RaY) < Clim = n2llwr.comey-
This implies that

(3.46) (1) Ar—A?=p0., with supp Sy C R? x I, where I = (—1,0),
' (@) 1Bl Lo (rxrey < F Um0, n2) oo xwroe)Im = n2lwrie.

Lemma 3.14. Set I = (—1,0), v = ¢1 — ¢, and AJ = (A{,Ag). There exists a non
decreasing function F : RT — R such that

(3.47) 1A ]| 212 meyy < F1, 1) lwroe o) lm = m2llwree £ 3

Let us show how this Lemma implies Theorem 3.13. According to (3.44) we have
Ui—Us=(1)+(2)+(3)+(4) + (5) where
(3.48) (1) =A1g,  (2) = (A] —AD)da,  (3) = —Valpr — p2)Asen
(4) = —(Vap2)Az0,  (5) = —(Vap2)(A3 — A3)¢2.
The L2(I, L*(R%)) norms of (1) and (4) are estimated using (3.47). Also, the
L2(I, L*(R%)) norms of (2) and (5) are estimated by the right hand side of (3.47)

using (3.46) and (3.23). Eventually the L?(I, L2(R%)) norm of (3) is also estimated
by the right hand side of (3.47) using (3.45) and (3.23). It follows that

(3.49) 1UL = Uallz2(z,e2) < F (10 m2) lwreoscwree)lm = mallwree £ g -
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Now according to (3.25) we have
(3.50)  9.(Uy — Un) = =V (82 (p1 — p2)Ab1 + (9:p2) (A — AD) 1 + (92p2)A30).

Therefore using the same estimates as above we see easily that

(3.51)  [|0=(U1 = U2)ll 2,1y < F (1 m2)llwrco oo )l — m2llwaee | £ 1

Then Theorem 3.13 follows from (3.49), (3.51) and Lemma 3.9. O

Proof of Lemma 3.1/. We proceed as in the end of the proof of Proposition 3.8.
Namely we use the inequality

/~ IA'G|?dX < C(AL + - + Ag)
Q

where A1, ..., Ag are given by (3.32), and we recall their expressions for the reader
convenience:
Ay = / [(A' — A?)a||A G| J1 dX, Ay = / [(A! = A®)||A%T,| J1dX,
Ag:/~\A2172||A2¢>||J1—J2|dX, A4_/| — A?)f||AYa] Jy dX,
As= [N =GN aX, As= [ INFIA 11 - Bl X,

where fand uj (u:= u; — up) are such that ggj = —I—EWith z: e#Da) f.
Using (3.46), (3.23), (3.45) we can write
[Av] < 1Bl oo (remey 11| oo (1 may 10502 | 2 ey [A 0 2 3y

(3.52) R
< F(ltn1, m2)lwrooscwrioe) I = mellwroe 113 1A O] L2 -

Since A]l — A? = B;0:p1A] the term Ay can be bounded by the right hand side of
(3.52).

Now we have ||J; — JQ”Loo(Ide) <C|m — 772HW1,0<>(Rd) and

1A% L2y < F U0, m2) lwoe w140l 2 3,

So using (3.23) we see that the term As can be also estimated by the right hand
side of (3. o2) To estimate the terms A4 to Ag we use the same arguments and also
Hi”Hl < ||f||H2 (R . This completes the proof. O

Notation 3.15. Given two functions 7, ¥ one writes

Gy + V-V
14+ [Vp2

B(n)y = V(n) =V — (B(n))Vn.
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Corollary 3.16. Fiz s > 3 + %. Consider two functions n and 1) in HS+%(Rd) as
well as two sequences (Ny)neN and (Yn)neN such that the following properties hold:

1. (Mn)nen and (Yp)nen are bounded sequences in HS+%(Rd);
2. (nn)neN converges to n in Wl,OO(Rd);
3. (Yn)nen converges to i in H%(Rd).

Then G(na )y (resp. B(na)n, resp. V(i)gn) converges in H=2(RY) to G(n)y
(resp. B(n)y, resp. V(n)y).

Proof. The proof is straightforward. Write

G ()t — G = (G (1) — G(0)¥n + G(0) (Y0 — ).

The inequality (3.41) (resp. (3.42)) then implies that the second (resp. first) term
in the right-hand side converges to 0 in H 7%(Rd).

To study the limit of B(n,)¢,, we first prove that Vn, - Vi, converges to Vi - Vi)

in H=3. To do s0, one makeslthe diff?rence and then use the fact that the product
is bounded from H* 2 x H™2 to H™ 2 to obtain

On the other hand

IV (i =) - VOl oy <AV =) - VIl e < nn = nllwree 191 o s -

ot Sl ey oo =13

This proves that Vn, - Vi, converges to Vn - V¢ in H -3,

Now set a, = (14 |Vn.|?)7Y, by = G(100)Un + Vi - Vb, We have proved that b,
converges to its limit b = G(n)Y + Vn - Vi in H™3. Tt is easily checked that a,
converges to a = (1+|Vn|?)~! in L™ and that a — 1 belongs to H5 3. So, as above,
one easily verify that B(n,)¢n = anb, converges to B(n)y = ab in H ~2. This in
turn easily implies that V' (n, )1, converges to V(n)y in H -3 O

3.4 Existence and uniqueness

We have already proved the uniqueness of solutions (which is a straightforward
consequence of Theorem 3.6) so, to complete the proof of Theorem 1.2, it remains
to prove the existence. This is done by means of standard arguments together with
a sharp blow up criterion proved by de Poyferré [30]. Namely, it follows from his
result that, if the lifespan T of a smooth solution of the water waves system is
finite, then

(3.53) Thj%* (My(T) + Z,(T)) = +o0,
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with notations as above (with the same assumptions on s and 7, see (3.7)).

We use this criterion to obtain solutions to the water waves system as limits of
smooth solutions. Namely, consider a family of initial data (¥§,7§) in H>(RY)?
converging to (1o, no). It follows that the Cauchy problem has a unique smooth
solution (¢*,7n°) defined on some time interval [0,7;) (this follows from the Cauchy
result in [3] (see also [64, 65] and [43]). The question is to prove that this family of
smooth solutions exists on a uniform time interval and that, in addition, it converges
to a solution of the water waves system. By applying our a priori estimate (3.8), it
follows that there exists a function F such that, for all € € (0,1] and all T' < T, we
have

(3.54) MZ(T) + ZZ(T) < F(F(Msp) +TF(M(T) + Z:(T))),
with obvious notations.

Then, by standard arguments and using the blow up criterion (3.53), we infer that
the lifespan is bounded from below by a positive time 7" independent of € and that
we have uniform estimates on [0,T] for MS(T') + Z5(T).

For o € R and a € [0, +00], set

HO o= HOF2 x HOV3 x HT x HO, W% = W3 5 WaH300 5 e s Joee,

Since (ne, e, Vz, Be) is uniformly bounded in X := L*°([0,T7; 1) N LP([0, T]; W")
and since X is the dual of a Banach space, it has (after extraction of a subsequence) a
weak limit (n,v,V, B) in X. Moreover, the contraction estimate (3.17) implies that
(e, e, Be, V2) is a Cauchy sequence in L ([0, T]; H5~1) N LP([0, T]; W"~!). There-
fore (nz,1e) converges to its limit (7, ) strongly in L>°([0, T7; H53 x H571). Since
(Me,1e) is uniformly bounded in L*°([0, T7; H5+3 x H?®), by interpolation, (7., )
converges also strongly in L>([0,T]; H S+3 x H ') for any § < s. In particular,
(e, 1b:) converges strongly to (n,%) in L>®([0, T]; W™ x H%) As a result (see
Corollary 3.16)

e + Vne - Vi),

G(7e)
G e)We, BE = )
e L VP

Ve = V). — BV,
converge, respectively, to
G(n)y +Vn -V

G(n)y, TV

This proves that the weak limits B,V of B, V. satisfy

g Gy +Vn-Vy

L+ |Vn)2 7
as well as the fact that one can pass to the limit in the equations. We thus obtain
a solution (n,) such that (n,,V,B) is in L*([0,T];H°) N LP([0,T]; W"). By
interpolation, (n,,V, B) is continuous in time with values in H5 for any 8’ < s. It
remains to prove that the solution is continuous in time with values in H°. This was
done in details in [1] for the case with surface tension. For the case without surface
tension, this is done by Nguyen [53] following the Bona-Smith’ strategy.

Vi — BV,

V = Vi — BV,
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Appendix A

Paradifferential calculus

A.1 Notations and classical results

For the reader convenience, we recall notations as well as estimates for Bony’s parad-
ifferential operators (following [16, 49, 51, 61]). We also gather various estimates in
Holder or Zygmund spaces.

For k € N, we denote by W*>°(R%) the usual Sobolev spaces. For p = k + o,
k € N,o € (0,1) denote by W»>(R%) the space of functions whose derivatives up
to order k are bounded and uniformly Hélder continuous with exponent o.

Definition A.1. Given p € [0,1] and m € R, F:,”(Rd) denotes the space of locally
bounded functions a(x, &) on R x (R%\ 0), which are C™ functions of & outside the
origin and such that, for any o € N and any € # 0, the function x — 8§‘a(m,§) 18

in WP (RY) and there exists a constant C,, such that,

Vielz 5. [l < Ca(1+ [yl

’ g) HWp,oo(Rd)

Given a symbol a in one such symbol class, one defines the paradifferential opera-
tor T, by

—_

(A1) Tou(e) = (2m)~¢ / X(€ = m,m)@(E — n,myb(n)a(n) dn,

where @(0,¢) = [ e %(x,¢)dx is the Fourier transform of a with respect to the
first variable; x and 1 are two fixed C*° functions such that:

(A.2) Y(n) =0 for [n| <1, () =1 for [y =2,

and x(0,n) satisfies, for some small enough positive numbers €1 < &g,
x(@n) =1 if [f<eilnl,  x(0,n)=0 if [0]=eznl,

and
VO |5ORx(0.m)| < Cap(1 + [nl)
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Given a symbol a € F?(Rd), we set

A3 MM (a) = sup sup 14 E)le=moga(., ¢ .
(4.3) P (a) || <142d+p |€]>1/2 H( <D ¢ ( )HW”*’O(RO‘)

Notice that the cut-off function y can be so chosen that the definition of T, coincides
with the usual one of a paraproduct (in terms of Littlewood-Paley decomposition)
when the symbol a depends on x only.

A.2 Symbolic calculus

We shall use quantitative results from [49] about operator norms estimates in sym-
bolic calculus. To do so, introduce the following semi-norms.

Definition A.2 (Zygmund spaces). Consider a dyadic decomposition of the identity:
I=A_, +Zgio Ay. If 5 is any real number, the Zygmund class C$(R?) is the space
of tempered distributions u such that

lullgs 1= 5up 2% [ Agul oo < +o0.
q

Remark A.3. It is known that C$(R%) is the usual Hélder space W= (R?) if s > 0
is not an integer.

Definition A.4. Letm € R. An operator T is said to be of order m if, for all u € R,
it is bounded from H* to H*~™ and from CY to CL™™.

The main features of symbolic calculus for paradifferential operators are given by
the following theorem.

Theorem A.5. Let m € R and p € [0,1].

(1) If a € TP(RY), then T, is of order m. Moreover, for all p € R there exists a
constant K such that

(A4) 1 Tall s pru—m < KMg*(a), | Tall e opm < KMy (a).

(1) If a € FZ‘(Rd), be le/ (RY) then T,Ty — Ty, is of order m +m/ — p. Moreover,
for all u € R there exists a constant K such that

NTaTs = Tabll s gy < KM (@) MG (b) + K Mg (a) My (D),

1T~ Tutll e gpmmmrtss < KM (@)D (b) + KM (@) M (b).

(A.5) ,
p

(131) Let a € F?(Rd). Denote by (T,)* the adjoint operator of T, and by @ the
complex conjugate of a. Then (T,)* — Ty is of order m — p. Moreover, for all j there
exists a constant K such that

I(Ta)" = Tall g pru—mso < KM (a),

A6
(4.6) (Ta)* = Tall gy g-ms < KM ().
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We also need in this article to consider paradifferential operators with negative
regularity. As a consequence, we need to extend our previous definition.

Definition A.6. For m € R and p € (—o0,0), F;”(Rd) denotes the space of distri-
butions a(z,€) on R x (R?\ 0), which are C° with respect to & and such that, for
all « € N? and all € # 0, the function x — 6?&(:5,5) belongs to CL(R?) and there
exists a constant C,, such that,

1 — |
(A7) gl 5, (|08l ©)llgp < Call+ ™.
For a € I']?, we define
m _ la|—m qa (.
(A8) M@= s s |(a+E)ogal,0 L,

laj<34pt1 [§]21/2

A.3 Paraproducts and product rules

We recall here some properties of paraproducts (a paraproduct is a paradifferential
operator T, whose symbol a = a(x) is a function of z only). For our purposes, a key
feature is that one can define paraproducts T, for rough functions a which do not
belong to L®(R%) but merely C;™(R%) with m > 0.

Definition A.7. Given two functions a,b defined on R* we define the remainder
R(a,u) = au — Tyu — Tya.

We record here various estimates about paraproducts (see chapter 2 in [12]).

Theorem A.8. i) Let a,f € R. Ifa+ >0 then

(A.9) 1B (@, Wl oro-g gay < K llallgoma) lull o gay -
(A~1O) HR(CL, u)Hcngﬁ(Rd) <K HaHC;X(Rd) ”u”(jf(Rd) )
(A.11) 1@, w)ll pra+s ray < K llallcomay lull mrogay -

it) Let m >0 and s € R. Then

(A.12) [Tatull gro-m < K flall¢-m 1wl s
(A.13) [Taullgs-m < Kllallgem lulle; -
(A.14) [Taulles < K llall e [[ullgs -

i11) Let sg, 81,52 be such that sy < s2 and sy < s1 + s2 — %l, then
(A.15) [Taull oo < K lJall oy [[ull ges -
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By combining the two previous points with the embedding H*(R%) C C¥ 4/ 2(Rd)
(for any p € R) we immediately obtain the following results.

Proposition A.9. Let r,u € R be such that v+ > 0. If v € R satisfies

d
v<r and ’y<r+u—§,

then there exists a constant K such that, for all a € H"(RY) and all u € H*(R?),
we have
law = Toull gy < K [lafl g llull o

Corollary A.10. i) If u; € H%(RY) (j = 1,2) with s1 + s2 > 0 then ujus €
H%*(RY) and

(A.16) [urug gso < K fJuall sy luzllgrss »

if

so <sj, j=12, and sy <si+s2—d/2.
it) (Tame estimate in Sobolev spaces) If s > 0 then
(A.17) luauall e < K ([luall s lluzll oo + lunll oo lluzll ).
iti) (Tame estimate in Zygmund spaces) If s > 0 then
(A.18) luruzlles < K ([lutlles lluall oo + lluall oo lluzlle)-
iv) Let p,m € R be such that n,m >0 and m ¢ N. Then
(A.19) luruzl| g < K (lunll oo luzll g + luzll gom lunllgoen)-

v) Let > a >0 . Then

(A.20) [urullgo < K fJua]] gs [Juallgo -

vi) Let s > d/2 and consider F € C*®(CN) such that F(0) = 0. Then there exists
a non-decreasing function F: Ry — Ry such that

(A.21) IE@) < FU o) 1T
for any U € HS(RH)N.

vii) Let s > 0 and consider F € C®°(CN) such that F(0) = 0. Then there exists a
non-decreasing function F: Ry — R4 such that

(A.22) IF@)lles < FIU o) 1Tl »
for any U € C3(RHN.
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Proof. The first three estimates are well-known, see Hérmander [38] or [12]. To
prove iv) and v) we write

urug = Ty ug + Ty,ur + R(ui, uz).
Then (A.19) follows from

Tzl g S lluall oo luzll gru (see (A.4)),
Tz utll g S Nuzlleom [l e (see (A.12)),

1R (ur, u2) || e S luzllgom l[wallgum  (see (A11)),

while similarly (A.20) follows from

[Turuzlleo S lluallpoo luzll oo S lluallos lluzlle

[Tupull oo S lluzllezo lurllce < luzllore llutll s

[R(ur, u2)l| oo < [[R(us, u)ll po-a S lluzllgoo lurllge -

(With regards to the last inequality, to apply (A.10) we do need 8 > « > 0.) Finally,
vi) and vii) are due to Meyer [51, Théoreme 2.5 and remarque], in the line of the
work by Bony [16]. O

Finally, we recall Prop. 2.12 in [3] which is a generalization of (A.12).

Proposition A.11. Let p < 0, m € R and a € f‘;”. Then the operator T, is of
order m — p:

| Tall sy prs—m-p) < C M (a),

A.23
(4.23) Il et < CMIa).

Cs—C;
We also need the following technical result.

Proposition A.12. Set (D,) = (I — A)Y/2.

i) Let s > %4— % and o € R be such that 0 < 5. Then there exists K > 0 such that
for all Ve WL*(RY) N H3(RY) and u € H‘P%(Rd) one has

H{D2)7 s Vil 2 ey < KAV Iy + 1V sy Hull oy -

i1) Let s > 1 +% and o € R be such that o < s. Then there exists K > 0 such that
for all V€ H*(RY) and u € H°~Y(R?) one has

(D)7 V]ullp2wey < K[Vl s mea 1l o1 ra)-
iti) Let s >3+ % and V € H(R?). Then
1
1{D2) 2%, V]ull peo (may < K|V || gsmay lull Loo (may-
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Proof. The first two statements are proved in [3]. To prove iii) we use (A.5)

Withm:%,m’zo,p:%—keto obtain

1
1(Dz)2 , Ty]ullce < ClV | asllullco < CIV ||ms|lul| Lo
On the other hand,
(Dy)2,V — Tylu = (D)2 (V — Ty )u — (V — Ty )(Dy) % .

Let%<r<s—%sothat
Vlier < ClIV | as.

According to (A.14) and (A.10), V =Ty is bounded from L*> to C} by K||V|cr and
_1 ro1
according to (A.13) and (A.10), from C; * to Cyx * by K||V||cr, which implies

1
(D)2, V = Tv] 1 < K|V |as[luf 2o

ul 4 <
C*
This completes the proof. O

We need elementary estimates on the solutions of transport equations that we recall
now.

Proposition A.13. Let I =[0,T] and consider the Cauchy problem

0, V-Vu=f, tel,
(A.24) {t“+ u=f

U|t:0 = Ug.

We have the following estimates
t
(A.25) [w(®) | oo (may < [l Lo (may +/0 £ (o, )|l Loo (maydoOr.
There exists a non decreasing function F : R™ — R™ such that
t
(A.26) [lu®)llL2@may < F(IVILmwroemay) (luoll L2y +/0 1F () L2 ey dt')-

If s > 1+ % and o < s there exists a non decreasing function F : RT — R such
that

t
(A27) u®)llgomay < FUIV 1 rmsmay) (uoll o may +/0 1F ) o ey dt').-
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Appendix B

Tame estimates for the
Dirichlet-Neumann operator

In this appendix we prove Theorem 1.4 on the paralinearization of the Dirichlet-
Neumann operator.

B.1 Scheme of the analysis

We shall revisit the approach given in [8, 1, 3] using tame estimates at each step. In
this section, we recall the scheme of the analysis and indicate the points at which
the argument must be adapted.

Hereafter, we consider a time-independent fluid domain €2 satisfying the assumptions
given in Section 1.1, which we recall here. We assume that

Q={(z,y) €0 : y<n(x)},

for some Lipschitz function 1 and a given open domain O. We denote by ¥ (resp.
I') the free surface (resp. the bottom). They are defined by

Y ={(z,y) eRIx R : y=1n(z)}, '=00\%.

We assume that the domain O contains a fixed strip separating the free surface and
the bottom. This implies that there exists h > 0 such that

(B.1) {(x,y)eRde : n(m)—h<y<n(t,m)}CQ.

We also assume that the domain O (and hence the domain 2) is connected. Without
loss of generality we assume below that h > 1.

The fact that the Dirichlet-Neumann operator G(7) is well-defined in such domains
is proved in [1, 3].
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In the analysis of free boundary problems it is classical to begin by reducing the
analysis to a domain with a fixed boundary. We flatten the free surface by using a
diffeomorphism introduced in [3] whose definition is here recalled. Set

0 ={(z,y) : x € R () —h <y < n(x)},
(B.2) Qo ={(z,y) € O:y <n(x)—h},
Q=0Q,UQ,,

Q1= {(z,2) ;xR zeI}, I=(-1,0),
(BS) 62 = {($7Z) € Rd X (_007 _1] : ($7Z +1+ 77($) - h) € QQ}?
ﬁ = Ql @] (22.
Guided by Lannes ([43]), we consider a Lipschitz diffeomorphism from €; to Q; of

the form (z, z) — (z, p(z, z)) where the map (z,z) — p(z, z) from €2 to R is defined
as follows

(B.4) p(z,2) = (1 + 2)e?#Pelp(z) — z{e_(Hz)(S(D“f —h} if (z,2) € Qi
‘ plz,z)=z+1+n()—h if (z,2) € Qy

for some small enough positive constant 9.

Lemma B.1. Assume n € Wh®°(R?).
1. There exists C > 0 such that for every (x,z) € Q we have

Vap(z, 2)| < Cllnllw.eoma)-

2. There exists K > 0 such that, if 8||nly1.00may < S we have

(B.5) min (1, g) < 0zp(x, z) < mazx (1, %), V(z,z) € Q.
3. The map (x,z) — (z,p(x, 2)) is a Lipschitz diffeomorphism from Qy to Q.

4. Let I = (—1,0) and s be a real number. There exists C > 0 such that for every
UES HSJF%(Rd) we have

(B.6) c
H $pHCO Hsfj(Rd))ng(I H*(Rd ) — \anHHs+7(Rd)

ot (R4)’

5. Assume that n € WTJF%’OO(Rd) with r > 1/2. Then, for any r' in [1/2,r],

(B7) HV%ZPHC +Hvx ZpHLZ([ 10] Wr oo) < C(]-‘l‘HT]HWNr%YOO)

—10pwr o)
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Proof. The first four statements are proved in [3]. The last one follows from the fact
that, for any g/ > p > 0, |z|* (Dg)*e*P+) is bounded from L™ to L™, uniformly in
z € [—1,0] and therefore

1256 P ] poo = 2|7 || (D) e* P (D) ™ Ajul| o

< Cl2| ™ |[(Dy) ™ Aju| o
which easily implies the desired result in view of Remark A.3. O
Flattening the free surface. In [1, 3] we proved that the problem

Ax,yqﬁ = 0, ¢|y:77 = f7 8n<b =0 on F7

has a unique variational solution. Then we introduce the following function
v(z,2) = ¢(x, p(, 2))

where (z, z) belongs to the ‘flattened’ domain € (notice that we flatten only the free
surface).

The equation satisfied by v in Q) can be written in three forms. Firstly,

(B.8) (02 + aly + B V20, —70:)v =0,
where

(9:p)° 0:pVap 1o
B.9 = =2 = —(0 A, -Vz0.p).
(B.9) « T V2 B8 v 8zp( 2p+alep+B-V.e0.p)
Secondly, one has
(B.10) (A2 4+ A3)v =0,
where

1 Vap

B.11 AN=—0., A=V, — 0.
( ) ! 0.p 2=V 0.p
Eventually,
(B.12)

> 1+ [Vapl?

Puv :=div(0:pVzv) — div(Vep0.v) — 0. (Vap - V) + 0. ( 9 d.v) =0,

as can be verified starting from (B.10) by a direct calculation. Moreover,

U|z:0 = ¢’y:n(:v) =/,
and

2
1+[Vol”

(Blg) G(??)f = ( a P U — v$p . V:C’U) | 2—0 = (AIU — V:Bp . AQ'U)’Z:O.

95



The analysis of the Dirichlet-Neumann operator is then divided into three steps.

First step. We paralinearize the equation. That is we write the equation for
v = ¢(x, p(x, z)) in the form

(B.14) 020 + ToAv + Tp - Vo,u = Fy + F,
where

Fy = ~0,v,
(B.15) LTy

Fy =Ty —a)Av+ (T — B) - VO,v.

We are going to estimate Fy by product rules in Sobolev spaces and Fy by using
results recalled in Appendix A.

Second step. We factor out the elliptic equation as the product of a forward and
a backward parabolic evolution equations. We write, for some symbols a, A and a
remainder F3,

(B.lﬁ) (0, —Ta)(az —TA)’U = F1 + F> + F3.

Namely

1, | 2 L. 2
(BAT) a= S (~ift-\Aale® ~ (5-92), A= (-if&+y/dale? - (5-6?).
The term Fj is estimated by means of the symbolic calculus rules recalled in §A.2.

Third step. Let us view z as a time variable. Then 0,u — T,u = F is a parabolic
equation (since Re(—a) > ¢|£]). On the other hand, d,u — Tqu = F'is a backward
parabolic evolution equation (by definition Re A > ¢|£|). We shall use parabolic
estimates twice to deduce from the previous step estimates for V, ;v and (0, —T4)v.

Previous results. Let I = [-1,0]. By using the approach explained above, we
proved in [3] that, for any s > 1/2 4 d/2,

(B18) Hvm’zv||CQ(I;HS_l(Rd))ﬂLg(I;HS_%(Rd)) S f(||77||H<+%) HfoIq .
Moreover, for any 0 < € < % such that e < s — % — %, we have

The key point to prove Theorem 1.4 will be to prove an estimate analogous to (B.19)
with e = 1/2 and s < 14+d/2, assuming an extra control of  and f in Holder spaces.

Actually, concerning elliptic regularity, in [3] we proved more general results than
(B.18) and we record here two statements for later references.

Proposition B.2. Letd > 1, s > % + % and % <o <s+ % Then there exists

a non-decreasing function F: Ry — Ry such that, for all n € HSJF%(Rd) and
all f € H°(RY), we have G(n)f € H*~1(R?), together with the estimate

(.20) GO o1ty < F (Il ey ggay) 1 1o ey
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Given 11 € R we define the spaces

XH(I) = CY(I; H*(RY) n L2(I; H** 3 (RY)),
YH(I) = LL(I; H*(RY) + L2(I; H*~ 3 (RY))

z

and we consider the problem

(B.21) 837} +alAv+ B -Vo,u—~v0,v = Fy+ 0,Gy, v|z=0 =T,

where f = f(z), Fy = Fo(x, z), Go = Go(z, z) are given functions. Then we have,
Proposition B.3. Let d > 1 and

1, d 1o
s> -+ — s— =
2 T =7=

2 2’
Consider f € H°TY(RY), Fy € Y?([-1,0]), Go € Y?T([~1,0]) and v a solution
to (B.21) such that Vv € X_%([—l,O]). Then for any zy € (—1,0), Vg v €
X7([20,0]), and

1Vl o oo < FU o)1 losr + [ Follyo .o + G0 llyos 10

+ va,szxf% ([7170]) }

for some non-decreasing function F: Ry — R4 depending only on o and d.

B.2 Parabolic evolution equation

As explained above, we need estimates for paradifferential parabolic equations of
the form
azw+pr = fa w|z:z0 = Wo,

where p is an elliptic symbol and z € R plays the role of a time variable.

Given J C R, 29 € J and ¢ = ¢(r, 2) defined on R? x J, we denote by ¢(z) the
function x — ¢(z, 20). When a and u are symbols and functions depending on z, we
still denote by Tyu the function defined by (T,u)(2) = T,(,)u(z) where z € J is seen
as a parameter. F;"(Rd x J) denotes the space of symbols a = a(z;x, &) such that
z +— a(z;-) is bounded from J into the space I'7"(R?) introduced in Definition A.1.
This space is equipped with the semi-norm

B.22 M™(a) =sup  sup sup  |[(1 4 [¢)I*mo%a(z; -, & )
B2 Mi@=sw o |a+lebogatz:- o), 0 e

The next proposition is a parabolic estimate in Zygmund spaces CT(R%) with r € R
(see Definition A.2 for the definition of these spaces). Recall that C7(R?) is the
usual Holder space W™°(R%) if r > 0 is not an integer (since we shall need to
consider various negative indexes, we shall often prefer to use the notation C7(R?)
instead of W"*°(R?) even when r > 0 is not an integer).
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Proposition B.4. Let p € (0,1), J = [20,21] C R, p € F})(Rd x J) with the
assumption that

Rep(z;x,8) > cl§],

for some positive constant c. Assume that w solves
O.w+Tyw=Fy + F, w|,—z = wo.
Then for any q € [1,+00], (ro,7) € R? with ro < 7, if

r—1+1468
w e LO(J;CT), Fy € LNJ;CT), Fyc LI(J;Ch 7 %) with 6 > 0,

and wy € CT(RY), we have w € C(J;CT) and

or T HFlHLl(J;C:) + HF2HLq(J.OT‘71+%+5) + ’wHLOO(J;C:O)} )

)~k

fulescreny < K { o
for some positive constant K depending only on rg,r, p,c,d,q and ./\/lllj(p).

Proof. We follow a classical strategy (see [62, 45, 8, 1]).

For this proof, we denote by K various constants which depend only on rg,r, p,c
and M;(p). Given y € J introduce the symbol e = e(y, z; z,€) defined by

Yy
e(y, z;,€) =exp(—/ p(s;z,€)ds) (2 € [20,9]).

This symbol satisfies 0.e = ep, so that
8Z(Tew) = (Tep — TeTp)w + T, F, F=F+F.

Integrating on [zg,y] the function %Te(y737x7§)w(2), we find

(B.23) Tiw(y) = Top—zwo + /y(TeF)(z) dz + /y(Tep —T.T,)w(z) dz.

20 20

(Notice that the paraproduct T; differs from the identity I only by a smoothing
operator.) Introduce G(y) = T¢j,—.,wo + fz% (T.F)(z) dz and the operator R defined

on functions u: J — CT*(R%) by
Y
ummnzmw—ﬂww+/Xn—ﬂuwmaw

so that w = G + Rw. Now, by a bootstrap argument, to complete the proof it is
enough to prove that the function G belongs to L>°(J; C}) and that R is a smooth-
ing operator of order —a for some a > 0, which means that R maps L>(J;C?)
to L>®(J; CL+4). Indeed, by writing

w=(+R+---RN)G - RN 1w,
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and choosing N large enough, we can estimate the second term in the right-hand
side in L*°(J; C}) by means of any L*(.J; C°)-norm of w.

In the analysis, we need to take into account how the semi-norms M, (e(z)) (see
Definition A.1) depend on z. Then the key estimates are stated in the following
lemma.

Lemma B.5. For any m > 0 there exists a positive constant K depending only on
sup; M, (p(-;2,€)) such that, for all y € (0,—z1] and all z € [0,y),

K

(B.24) M ™e(2) < o

p

This follows easily from the assumptions p € F[l,, Rep(s;x,&) > cl¢|, and the ele-
mentary inequalities (valid for any a > 0)
(y —2)" €]  exp((z —y) [¢]) S L.

By using the bound (B.24), applied with m = 0, it follows from the operator norm
estimate (A.5) that, for any z < y and any function f = f(x), we have

(B.25) | Te)fll oy < Mo (ely, 2) 1 flley < KN flley -

This implies that

’ Lo (J;C%)

On the other hand, by using the bound (B.24), applied with m = 1 — % — 0, we
obtain that

which implies by Hoélder inequality that

Y
Te\z:zowo + / (TeFl)(Z) dz

20

< K |lwoll oy + K |F1ll .oy -

1

ly — z|™

Yy
/ (TeF>)(2) dz

20

<K
L= (J;CT) 20

[1E2(2)] r-mdz,

G co( J-C'r <K T K F HOXA F a '
|G|, (icry < ||w0||c*+ | 1HL1(J7C*)+H 2||L‘1(J;C:_1+é+§)

It remains to show that R is a smoothing operator. To do that, we first use the
operator norm estimate (A.5) (applied with (m,m’, p) replaced with (—m,1,p)) to
obtain

[(Tep = TeTp) (D)l oy corm-—140 S My ™ (e(2)) M,y (p(2)).-
Taking m = 1 — p/2, it follows from the previous bound and Lemma B.5 that

K
[(Tep = TeTp)v(2) | o2 < - [o(2)llc -

Since 0 < m < 1 we have [J/(y —2)"™dz < 400 and hence

Yy
(B26) | Ruy)l e < /0 |(Tep =TT u( | goor < K o iy

which completes the proof. ]
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We shall also need the following estimate in Sobolev spaces. Given u € R, recall
that we define the spaces

1

XH(I) = CUL; H*(RT) N LE(1; H' 2 (RY)),
YH(I) = Ly(I; HY(RY)) + L(I; H'~ 2 (RY)).

(B.27)

[

Proposition B.6 (from [3]). Let r € R, p € (0,1), J = [20,21] C R and let
pE F},(Rd x J) satisfying
Rep(z;z,8) = cl¢],

for some positive constant c. Then for any f € Y"(J) and wy € H"(RY), there
exists w € X"(J) solution of the parabolic evolution equation

(B28) aZU) + pr = f7 w‘Z:ZO = wo,
satisfying
lollxery < B {lwollge + 1 lyr }

for some positive constant K depending only on r,p,c and ./\/l;(p). Furthermore,
this solution is unique in X5(J) for any s € R.

B.3 Paralinearization

We are now ready to prove Theorem 1.4. Recall that we consider the elliptic equation

(B.29) 331} +alAv+3-Vo,u—~0,v=0, v|,=0=F1,

where f = f(x) is a given function and the coefficients «, 3,~ are given by (B.9)
(these coefficients depend on the variable p which is given by (B.4)). In the sequel
we fix indexes d,s,7,¢ in R such that

1 d 1 1 't 1 d
(B-30)0<5<Z7 S>1+§—5, r>1, 1<5—§_5<m1n(§75—*—*).

It follows from (B.18) and the Sobolev embedding that we have
Va0l oy gz 1-272) < FCll i) 1

for some non-decreasing function F. Since we only assume that s > 3/4 4 d/2, this
is not enough to control the L*> norm of V, .v. The purpose of the next result is
to provide such control under the additional assumption that f belongs to C for
some 7 > 1.

Proposition B.7. Let r > 1 and s > 3/4+d/2. For any —1 < z; < 0, we have
Va0l conpeemaxizr,op < F U ars) ULF s + 1 Iyt

for some non-decreasing function F: Ry — Ry
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Remark B.8. i) Since v|,—o = f € L®(R%), we have also

[0l oo Raxzr,0) < I oo @ay + 121] 1020 oo (R 210

< F (Il o) {1+ 1 e | -

i1) Let p > 1+ d/2. Since

1+ IVpI2
=52 St Il s 102l S 1+ Il

it follows from the previous proposition and the definition of the Dirichlet-Neumann
operator that, for any > 1 and s > 3/4 + d/2, we have

(B.31) G fllpoe < F (Ul ory VLU es + 1l §-

Other estimates are known which involve only Holder norms (see Hu-Nicholls [36]),
but they did not apply directly to our case with arbitrary bottoms. The fact that
the previous bound involves a Sobolev estimate is harmless for our purposes.

Proof. Recall that the space X*(I) is defined by (B.27). Recall also that (see (B.18)
and (B.19))

(B.32) 1Vl s vy < Fnll ) 1
and
(B.33) 1020 = Tavll o1+ (1,01 < F UMM o s) 1F s -

Since v |.—o= f, writing v(z) = v(0) + f; d.v, this implies that
(B.34) follxeos v < Fnl o) 1

Introduce a cutoff function x such that
X(_l) = 07 X(Z) =1 forz > 21,

and set w := x(z)(0; — Ta)v. We shall use the fact that w is already estimated by
means of (B.33) together with the parabolic estimate in Hélder spaces established
above to deduce an estimate for v.

Since it is convenient to work with forward evolution equation, define the function v
by v(z, z) = v(z, —z), so that

0.0+ T;0=—w forz¢€ I == [0, —z].
We split v as v = v1 + v2 where 77 is the solution to the system

0 +Ty01 =0 forzely,  Uilsmo=0|sm0=f

101



given by Proposition B.6, while v9 = v — v; satisfies
0.2 + TA“F'JQ =—w forze fl, U2|z=0 = 0.
According to (B.19) we have
S e {17 S DY 3 %

which in turn implies, according to Proposition B.6,

(B.35) el goseqrsy < FCIl vy 1 e
Set m=s—1+¢— g. By the Sobolev embedding we have

1Vl e sy S VTl e o150y < 2l vy < FCll ey 1 e

Let us prove that 9,v, satisfies the same estimate. Using the equation for vy, we
obtain 9,v2 = —T;02 — w. Now, w is estimated by means of the bound (B.19).
Moving to the estimate of T';v2, recall that T'; is an operator of order 1 whose
operator norm is estimated by means of the first inequality in (A.4), to get

HTE@HLw(E;C;n) N HTZ%HXs—He(E)
< FUnll or ) 102l sese 7y < F UMM ep ) 1 s -

We conclude
1Vl ey < F ey
Now, by assumption s > 1+ d/2 — ¢ with 6 < 1/4 and e =1/2 — 0, so that

d 1 d 1
—s_1 ——=5s—-14=-=-8§—=>=-=26>0
m==s +e 5 s + 5 5 > 5 >0,
and hence
1920l e ooy < Fllooy) 1l
It remains to estimate v1. Using Proposition B.4 with r = 1,79 = —1, we obtain
(B‘36) “61|’co(f1;c;) < K(HfHC’I + Hijl”co('fl;c;l))'

To estimate the last term in the right-hand side above, write, according to (B.34)
and (B.35),

1Tl oogcoty < OBty + B2l eoggyesy) < FUmll o) F e

Since 9,01 = —T';v1, and since T'; is an operator of order 1 whose operator norm is
estimated by means of the second inequality in (A.4), the previous inequality (B.36)
implies also

IVa 01l o, ,0m-1y < FUM o 1) ALl + [ fller)-

This completes the proof of Proposition B.7. O
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Gathering (B.18) and the previous estimate, for any zp in (—1, 0], we have

(B37) ”vx?zv"CO([ZO,0];HS_1)OL2((2’0,0);H57%) S f(”””]_[b#»%) HfHIib )

192 20l oongoe oo < Fllyery) {1 Lsre + 1 fllc -

The end of the proof of Theorem 1.4 is in four steps.

Step 1. Tame estimates in Zygmund spaces. (See Definition A.2 for the
definition of Zygmund spaces.)

Recall the following bounds for the coefficients «, 3,7 defined in (B.9) (see [3,
Lemma 3.25)): for any s > 3 + %, we have

(B.38)  [|or—R?

+115l + 1l

ij%([—l,o]) X“'i?[ IOD (HnHH5+ )

X535 ([-1,0])
We need also estimates in Zygmund spaces.

Lemma B.9. There holds

(B39) 11, B)ll gy gy + IV z2orazoey < Fllgreeno) {1+ Il ey o

Proof. Recall that, according to Lemma B.1,

(B.40) 190l oy gyarsy + 1Voebllaqr ey S 1l ey

10:2p — S 1A+ Il

1 1
”00([—170};W§’°°) Wt

and (since s — 1/2 > d/2), by Sobolev embedding,
(B.41) V0ol gty S 1+ Il ey

We deduce the estimates for o — 1 and 8 from the composition rule (A.22) and the
equality W1/2° = Ch /2. The estimate for ~v follows from (B.41) and the estimate

Hvi,ZpHLQ([—l,O];LOO) S HTIHW7-+%,OO-

which follows from (B.40) and the equation satisfied by p (to estimate 92p). O

Step 2. Estimates for the source terms. We now estimate the source terms
Fy, Fy and F3 which appear in (B.15) and (B.16).

Lemma B.10. For any zp € (—1,0), and any j = 1,2,3 we have,
(B42)  IE Nz opstrey < F Ul sy 17 szs) {140l goe + 1 e
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Proof. By using the tame product rule (see (A.17))

luruall g1 S lluall g luall s + lluall poo lull s
we find that F} = v0,v satisfies
IELl 220,001y S 1920l co 1,0 200y 1V £2 (20,0051
+ 170 22((20,0);2.00) 190 Lo (20,00 1) -
The desired estimate for F; follows from Lemma B.9, (B.37) and (B.38).
Let us now study
Fy = (To—a)Av+ (Tg— B) - VO,v = — (Tave+ R, Av) + Ta,, - 8+ R(B, VO.v)).

According to (A.12), we obtain

| Tauy ()| goor S 1AV oo l(2) ] s
1Tv0.0(2) - B(2)|| aer SUVOz0() 1 1B(2) s

On the other hand, since s — 1 > 0 we can apply (A.11) to obtain
[1B(a, Av)(2)] g1 S 1Av(2)]| o1 [leu(2) [l s
I1R(B,VO:0)(2)| g1 S IVO0(2) [ o [18(2)] s -

Consequently we have proved

(BA43)  1F2ll 2z 0 ro-1) S 1A copag oty 10l 20,00 9)
IVl o (20 01001 18112120, 07, 59 -
Notice that

[Av[l -1 S IVllo S IVl s VOl S 1020l co S 1920l oo

and consequently, according to (B.37) and (B.38) we conclude the proof of the claim
(B.42) for j = 2.

It remains to estimate F3. In light of (B.37) it is enough to prove that
(B.44) 1Fsll oty < F Ol g V0l e

for some non-decreasing function. Directly from the definition of a and 3, by using
the tame estimates in Holder spaces (A.18), we verify that the symbols a, A (given

by (B.17)) belong to Fi/z(Rd x I) and that they satisfy

(B.45) M jp(a) + M o (A) < F ([0l ery) 1l

WT+%J>O °

(For later purpose, notice that we used here only s > % + %) Moreover,
M4 (@:4) < F(Inll o)l g
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By definition (B.17), a+ A= —if-§{ so T, + Ta = =T - V. It follows that
F3 = (TaTA — TQA)U — Ty, av.

Set

Ro(2) = To)Tae) — Tad,  Ri(2) = —Tp,
Since aA = —a|¢|?, we deduce, using Theorem A.5 (see (ii) applied with p = 1/2),
that for any p € R,

(B.46) 30 IR s < F gl

On the other hand, Proposition A.11 (applied with p = —1/2) implies that

(B.47) sup || R1(2)]]

< FUnll g Ml ey oo
ZE[—LO} ( H +2) wrta

3
HFF2 Hr —

Using these inequalities for p = s — 1, we obtain the desired result (B.44). This

completes the proof of Lemma B.10. O
Step 3 : elliptic estimates Introduce a cutoff function x = k(z),z € [—1,0],
such that x(z) = 1 near z = 0 and such that x(z;) = 0 (recall that I = [z, 0] for

some z1 € (—1,0)). Set

(B.48) W= k(2)(0, — Ta)v.

Now it follows from the paradifferential equation (B.16) for v that
LW —T,W =F',

where
F' = k(2)(F1 + Fo + F3) + £'(2)(0, — Ta)v.

Our goal is to prove that

(B49) W,y ety < F ey D 1ze) {1 Il e + 17 e -

We have already proved that

1By + B Follaqrymoty < Fll ooy 15100 {14 10l ey e+ 1 lhroe }-

We now turn to an estimate for (0, — T4)v. To do that we estimate separately 0,v
and Tqv. Clearly, by definition of the space X*~!, noting that I C Iy = [—1,0], we
have

|00 ) < llo=vl

) S HVLZ/UHXS*%[O) .

1 1
L2(I;;H*" 2 L2(Ig;H" 2

On the other hand, as in the previous step, since M}(A) < C’(HnHHSJr%), we have

ITavl g3y < F ey IVl s,

S }—(HnHHer%) vaﬂ,Z,UHXS_l(IU) :
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Now recall from (B.18) that HV%ZUHXS—l(IO) < }'(HnHHH%) | fIl z7s- Therefore,

1= = Tael ety < F Al gy 1 e

and we end up with

1P| arrreesy < F Ul ey 17 2) {14 10+ 1l }-

Since O,W — T,W = F" and W (x,z;) = 0 (by definition of the cutoff function x)
and since a € T'! satisfies Re(—a(z,¢)) > c|¢|, by using Proposition B.6 applied
with J =1;, p=¢ and r = s — 1/2, we have

Wl gy < F ) 1PNy

Now, by definition, ||F’|_ . 1
Y” 2([1)
the desired estimate (B.49).

< | F"ll 2(1y;p15-1), s0 we conclude that W satisfies

Step 4 : paralinearization of the Dirichlet-Neumann. We shall only use
the following obvious consequence of (B.49): ||| Z:()HH 1 is estimated by the

ST

right-hand side of (B.49) (we can take the trace on z = 0 since W belongs to

X7z C CS(HS_%) and not only to LgO(HS_%), as follows from Proposition B.6).
Since W|,—g = 0,v — TAv|,—0, we thus have proved that

(B.50) 1190 = Tavl=oll oy < F (Il yery 1) {1+ 1l g+ 1 e | -

Now, recall that
Gn)f =¢0v— (- Vol

with
1+ |Vpl?

0.p

As for the coefficients a, § (see Lemma B.9), we have

Cl : ’ C2 = vp

N R | S - PRIy e
@52 Ja-gl G < Flley)
Write
(100 — (2 - Vo =T 0.0 — T, Vo + R,
with
(B.53) R =Ty, ,¢1 — Tvy - G2 + R(C1, 0:v) — R(C2, V).
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Since a paraproduct by an L° function acts on any Sobolev spaces, according to
Proposition B.7 and (B.52), we obtain

Toot = Tow Gl gy S F Ul g 1 10e) €1+ e}
We estimate similarly the last two terms in the right-hand side of (B.53), so
1 ety < 0y 1 02) £ e}
Furthermore, (B.50) implies that
TClaZU —T¢, Vo | 2=0 Te, Tav — Tigycv | =0t R”a

where ||R” HHS* 1 satisfies

15|

ey S F ey 1) {14 1 g+ 1 e

Thanks to (A.5) we have

1Te,Ta = Ty a S 1IGll oo M1 o (A) + lIG1l] Mg(4)

< Fnll eyl g

1 1
Hs—H*"2 W2

where we used (B.45) and M}(A) < C’(HUHHSJF%). Therefore,

Gn)f =Ty av — Tiyev | o+ R(n)f

where
IBEAe g < FOIl ey D) {1 Il e + e}
Now by definition of A (see (B.17)) one has

GAv —iCy - €= /(1 +|VpD)IE)2 — (Vp - £)?

50 T, av — Tigy.cv | o = T f since, by definition of A,

A=V (1 +[Vn2)E]2 - (Vn-€)2.

This proves that G(n)f = Thf + R(n)f which concludes the proof of Theorem 1.4.
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Appendix C

Estimates for the Taylor
coeflicient

Here we prove several estimates for the Taylor coefficient.

Proposition C.1. Let d > 1 and consider s,r such that

3
-+ = 1.
s>4—|—2, r >

For any0 < e < min(r—1,s— % — %), there exists a non-decreasing function F such
that, for all t € [0,T],

(c.1) la(t) = gll oy < F (100 Vi BYO ety ety s o)

and
(C.2) Ma@ll}, 34e00 + 1O+ V- Va)(#)lype.0

< F(I. YO oy NV BY B 72) {1 F @l .00 + IV B)(t)llwmo} :

The estimate of ||a — g/| 1o Tollows directly from the arguments in [3]. The estimate
of the W&*-norm of d,a+V -Va is the easiest one. The main new difficulty here is to
prove a tame estimate for [|al| 1. .. Indeed, there are several further complications
which appear in the analysis in Holder spaces.

Hereafter, since the time variable is fixed, we shall skip it. To prove the above
estimates on a, we form an elliptic equation for P. As explained in Appendix B
we flatten the free surface by using the change of variables (z, z) — (z, p(x, 2)) (see
(B.4) and Lemma B.1). Set

’U(.I,Z) - d)(x,p(ac,z)), p(w,z) = P(;U,p(a:,z)) + gp(l‘,z),

and notice that



The first elementary step is to compute the equation satisfied by the new unknown
as well as the boundary conditions on {z = 0}. As in [3], one computes that

2o+ alp+ B-Vi.p —v0.p = Fo(x,z) for z <0,

(C.3)
=91 on z =0,

where «, 3,~ are as above (see (B.9)) and where

Vp

(C4)  Fo=—alA%’, A=(AnAs), A= azlpaz, 2o=V Lo,
Our first task is to estimate the source term Fy.
Lemma C.2. Let d > 1 and consider s €]1, +o0[ such that
s>34¢
4 2
Then there exists zg < 0 such that
HI[POHLl([zo,O];HS’%) * HFO”L2([zO,0};Ci+%—%) S F 00V B yorh o b proncins)-

Proof. The first part of this result follows from the proof of [3, Lemma 4.7] (although
this lemma is proved under the assumption that s > 1+ d/2, its proof shows that
the results (C.5)—(C.6) we quote below hold for any s > 1/2 4+ d/2). We proved in
[3] that

(C.5) [ Eoll < F(lltn,», V, B)|

1 1 1
L1([20,0;H*"2) — HS+§><HS+§><HS><HS)7

together with

(C6) 1AMl gorag o1y T 1A AV o 0 o3y

SF(I 00 VB vd o d e sre):

By interpolation, (C.6) also implies that

||AJAkaL4([ZO,0],H57%) S ‘F(H(n’ ¢, ‘/7 B)||H5+%XHS+%XHSXHS)‘

Since s > 3/4 4 d/2 by assumption, the Sobolev space Hs_%(Rd) is an algebra and
hence, according to (B.38),

Ha ]AjAka‘

S (1 + Ha - h2HLoo([

‘ 2
L2([20,0:H " 3) ™ \AJAkv]\L4([

3 3.
20,0];H® 4))‘ 20,0;H°" 1)

IR

3
The Sobolev embedding H s—% ¢ C. "2 then yields

< F(l(m. v, vV, B)|

1S9

©n IR, T

3
s—3 _
[207 ;U 4 7)

This completes the proof. ]
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The proof of the fact that |ja— g|| -4 is bounded by a constant depending only
on ||(n, w)”Hg +1 and [|(V, B)||ys then follows from elliptic regularity which implies
that

(C.8) Va2l < F(lltn, %, V, Bl

X*7 3 ([20,0)) H”%xHS*%stXHs)’

as can be proved using the arguments given above the statement of Proposition 4.8
in [3]. We shall now prove the estimate of ||al/;;1/2+e00. This estimate will follow
directly from the following result.

Proposition C.3. Let d > 1 and consider (s,r,7") € R3 such that

> 5 + + L_d >r>r' > 1
s>—-4+—-, S+-—=>r>r .
4 2’ 4 2
Then there exists zg < 0 such that
(C.9)
”vl‘ ZK‘)HC() [Z 0] wr 7% OO) < 'F(H(n7w7 V’ B)”Her%XHSJr%XHSXHS) {1 + HnHWTJr%,oo}

for some non-decreasing function F depending only on s,r,7’.

Proof. 1t follows from (C.8) and the Sobolev embedding H* 2 2(RY) C cwWrt *(RY)
that

(C.10) Va0l < F(lltn, ¢, V. B)l|

1 1 .
Lo ([20,0]; Wi ) HVZxH2 ><HS><HS)

The key point is that, since » — 3/4 > 0, we now have an L*°-estimate for V, .o
which does not depend on the hélder norms, which are the highest order norms for
s < 14 d/2 (compare with Proposition B.7).

To prove (C.9), let us revisit the proof of Theorem 1.4. With the notations of
Appendix B (see (B.48)), W = k(z)(0,—Ta)p satisfies a parabolic evolution equation
of the form

(Cll) 8ZW—TaW:F0+F1+F2+F3~|—F4,
where the symbols a and A are as defined in (B.17), Fj is given by (C.4) and

Fy =~0.p,

Fy = —(Tage + R(e, Ap) + oo, - B+ R(B,V0.p)),
Fy = (ToTa — ToA)p — To, 40,

Fy = K'(2)(0, — Ta)p.

Since (0, —Ta)p = W for z small enough (by definition of W), in light of (C.10) and
Proposition B.4 (applied with g = 1/4, ¢ = +00), one can reduce the proof of (C.9)
to proving that, for some § > 0, the L>([2o, 0]; C:l_%M) norm of W is bounded by
the right-hand side of (C.9). Again, since W|,—,, = 0, by using Proposition B.4
(with ¢ = 2), the former estimate for W will be deduced from the equation (C.11)
and the following lemma.
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Lemma C.4. There exists zo < 0 and € > 0 such that, fori € {0,...,4},
HFiHLQ([ZO,OLC:/iHE) - ‘F(H(n’w’ V’B)HHH%XH”%XHSXHS) {1 + H77HW’“+%’°°} ’

To prove Lemma C.4 we begin by recording the following easy refinement of previous
bounds on the coefficients «, 8,y. We shall use the following variant of Lemma B.9:

(C12) el po(zo.00:0m) + 1B L2 (tz0.00:0m) + 17l 2 ((z,01.07-1)
< ]:(||77||Hs+%)(”77|\cr+% +1).

As in the proof of Lemma B.9, such estimates follow from the definition of p (by

means of the Poisson kernel), the Sobolev embedding H st3 ¢ WL and tame
estimates in Holder spaces (A.22). We are now ready to conclude the proof of
Lemma C.4.

s—3/4—d/2

Estimate of Fy. Since C c Cr=1, (C.7) implies that

10l 2 g oport) S FU 00 VBN ey rid s o)

Estimate of Fy. Using (A.18), the term F} = v0,p is estimated by
1B 2 01021y < K N0l oo g, 0107-1) 1V 220 002 -

The desired estimate then follows from (C.10) and (C.12).
Estimate of Fy. According to (A.13) with m = 1,s = r, we obtain

[Tap0(2) || or1 S 120 e lle2) ey »
[Tv0.00) - B2)|| o1 S IVOp(2) [l o1 1B(2) |y -

On the other hand, since r > 1 we can apply (A.10) to obtain
[R(a, Ap)(2)lcr—1 S 1Ap() ot la2)ller S IVR() e la(2)lley
IR(B,VO:0)(2)l cr—1 S IVO-0(2) o1 1B(2)]lr S [10:0(2) || oo [18(2)

By using (C.10) and (C.12), we conclude the proof of the claim in Lemma C.4
for i = 2.

Estimate of F5. Using (B.46)—(B.47) with u = s — 1/2 we find
1E3(2) ]l cr—1 S 1F3(2)]

and hence

ey SF (Il )l s 192200 e

13l gz ty < FI ey Il sy e 192280 oy o

by definition of X*~1/2([z,0]). The desired estimate follows from (C.8).
Estimate of Fy. This follows from (C.10) and (A.4).
This completes the proof of Lemma C.4 and hence the proof of Proposition C.3. [
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Appendix D

Sobolev estimates

In this appendix, we prove sharp a priori estimates in Sobolev spaces.

D.1 Introduction

Our goal is to estimate, for 7" in (0, 7p], the norm

M(T) = H(w’77’B’V>HCO([0,T];HS+%><HS+%><HS><HS)’

in terms of the norm of the initial data

M, == [[(4(0),1(0), B(0), V(0))]]

1 1
H*V2 xH*T2 x HSx H*

and in terms of a quantity which involves Holder norms, that will be later estimated
by means of a Strichartz estimate, defined by

ZT(T) = HT]HLP([O,T],WT+%’OO) + H(B7 V)HLP([O,T};WT‘OOXWT’OO) ’

where p=4ifd=1and p =2 for d > 2.

Our goal in this chapter is to prove the following result.

Theorem D.1. Let Ty > 0, d > 1 and consider s,r €]|1,+oo| such that

L34 Lld o
STyTy STyt oo

There exists a non-decreasing function F: RY — R* such that, for all smooth solu-
tion (n,) of (1.5) defined on the time interval [0, Ty] and satisfying Assumption 2.1
on that time interval, for any T in [0, Ty, there holds

(D.1) M(T) < F(F(Mso) + TF(M(T) + Z(T))).
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If s > 1+ d/2 then one can apply the previous inequality with » = s — d/2. Then
Z(T) < Mg(T') and one deduces from (D.1) an estimate which involves only Mg (T).
Thus we recover the a priori estimate in Sobolev spaces proved in [3] for s > 14d/2.
The proof of Theorem D.1 follows closely the proof of [3, Prop. 4.1]. For the reader
convenience we shall recall the scheme of the analysis, but we shall only prove the
points which must be adapted. The main new difficulty is to prove sharp Holder
estimates for the Taylor coefficient.

Hereafter, F always refers to a non-decreasing function F: RT™ — R* depending
only on s, r, d and h,cy (being of course independent of the time 7" and the un-
knowns).

D.2 Symmetrization of the equations

As already used in the analysis of the Strichartz estimate, the key point is to sym-
metrize the equations. To ease the readability, we recall this result here. Recall that
we introduced the following notations

¢=Vn, Us:= <D;L’>S V+ TC<D35>S B, (s:= <D1’>SC7 q= \/Ea s = Tqu-

As already mentioned in Section 2.1, by combining the analysis done in [3] com-
bined with the improved tame estimates established in Appendix B, one obtains the
following result:

(D.2) OU, + Ty - VU, + T, 05 = Fy,
(D.3) 005 + Ty - VO, — T, Uy = Fy,

for some source terms I, F» satisfying

(D.4)  |[(F1(t), Fo ()| p2 2
< C (10Ol oy NV BY Ol ) {1+ 0Ol iy e+ 1V BYO e

for any real numbers s and r such that s > % + g, r> 1.

D.3 Sobolev estimates

We now explain how to deduce Theorem D.1 from (D.2)—(D.4).
Notice that, by definition of My(T") and Z,(T),

1(F1s F2) | £ o,y n2 ¢ 22)
< FOL@) T+ 1l o gy by + 1V Bl oy |
< VTF(M,(T)) Z:(T),

114



for T'< 1. Then it follows from the previous estimate and energy estimates (see §4.4
in [3]) that we have the following L°(L2) estimate for (Us, 65).

Lemma D.2. There exists a non-decreasing function F such that

(D.5)  NUsll oo o.73;22) + 105l oo (po,77,22) < F(Miso) + VTF(My(T))(1+ Z,(T)).

It remains to deduce from this lemma estimates for the Sobolev norms of 7, ¢, V, B.
Recall that the functions Us and 6 are obtained from (7, V, B) through:

Us := (D,)°V +T¢(D,)° B,
95 = Tm<Dm>s VT]

We begin with the following result. It gives the desired estimate for n but only
weaker estimates for (V, B) and the Taylor coefficient a.

Lemma D.3. There exists a non-decreasing function F such that for any r > 0,

(D.6) , BV

Lo ([0,T);H %)
< F(Myo) + VTF(Ms(T))(Z:(T) + 1),

||”7||L°°([O,T],Hq+%

and, for any 1 <1’ <r,

(D.7) lal M) + VTF(Ms(T))(Z:(T) +1).

Loy~ = F

We omit the proof since this lemma follows directly from the proof of Lemma 4.13
and Lemma 4.14 in [3].

Once 7 is estimated in L*([0, T7; HS+%), by using the estimate for Uy, we are going
to estimate (B,V) in L*°([0,T]; H®). Here we shall make an essential use of the
following result about the paralinearization of the Dirichlet-Neumann operator for
domains whose boundary is in H* for some p > 1+ d/2.

Proposition D.4 (from [3]). Letd > 1 and yu > 1+%. Forany 2 <o <pu—3% and
any

0<e<t cu_1_ 2
e< o, £ -1--,
) H 2

there exists a non-decreasing function F: RT — R such that R(n)f := G(n)f—T\f
satisfies

IR f Nl 4= may < F (10l prirey) £ 1| o ety -

Lemma D.5. There exists a non-decreasing function F such that
(D.8) IV, Bl e oy < F (F (M) + TF(Ms(T) + Z,(T))).
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Proof. STEP 1. Recall that U = V + Ty B. We begin by proving that there exists a
non-decreasing function F such that

(D.9) U] < F(F(Ms0) + TF(M(T) + Z,(T))).

Leo((0,T)H 1) =
Since Us = (Dy)° V + T¢(D,)® B by definition, we have

(D2)* 3 U = (Da) "% {Us + (Do), T) B}
Theorem A.5 implies that

(D.10) 1[(D2)* s T[]y st SN 40

SO
[[(D2)*, Te] B| -y S <l 3. 1B

Since s > 3/4 4 d/2, we have

H %

Sl e SUCH oy < Dl i

and hence

1Ol o-3 STUsH -1 + Dl o s 1B

Hg_ Hg_

The three terms in the right-hand side of the above inequalities have been already
estimated; indeed, Lemma D.2 gives an estimate for the L{°(L2)-norm of Us and a

fortiori for its Lg°(H, ) -norm, see also Lemma D.3 for B and Lemma D.3 for 7.
This proves (D.9).

_1
STEP 2. Recall that we have already estimated the L°(H, 2)-norms of B,V and
that we want to estimate their L{°(HS)-norms. As an intermediate step, we begin
by proving that

(D.11) |B|| < F(F(Mso) + TF(Ms(T) + Z,(T))).

Loo((0,THS 1) =

To do so, the two key points are the paralinearization estimate for R(n) := G(n) —T
(see Proposition D.4) and the relation (2.5) between V and B: for any s > 1 + %
one has G(n)B = —divV + 7 where

(D.12) 5,0y < FU@ VB s st

Taking the divergence in U = V + T B, we get according to Lemma D.3 and the
previous identity G(n)B = —divV +7,
divU =divV +divI;B =divV + Ty, ¢B + 1 - VB
=—-G()B + TiceraiveB +7
= —T\B — R(n)B + Ti¢.eqdaiveB+7
=TyB - R(n)B +Taiv¢B+7
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where, by notation,

qi=—\+iC €.
Now write
T,B = divU — Ty B + R(n)B — 7

and

B=T.T,B + (1- TéTq)B
to obtain
(D.13) B=TidivU ~T:7+ RB
where
(D.14) R:=T) (—Tdivc + R(n)) + (I - T%Tq).

We now claim that R is of order —1/4 together with the following estimate: for any
1/2 < o < s, we have

(D.15) IRBI ooy < F(lInll vy ) Bl -

Fix o0 € [1/2,s]. We begin by estimating R(7n). According to Proposition D.4
(applied with p = s+ % and ¢ = %), we have

go-3 < ]:(||77||Hs+%) 1Bl go -

On the other hand, since div { = An, the rule (A.12) implies that

[R(n) B

Tateclgo g SGVCH__g S Il ey -

*

Finally, ¢ = —A\+i(-€ € F%/Zl with M11/4(q) < C(HnHHH%) since s > 244, Moreover,

g~ ! is of order —1 and we have

1,1
M) < F(llly)-
Consequently, according to (A.4) and (A.5), we have

(D.16) ’ T,

q

)
q

3
H° 1H° 1

< F(lnl,..,).

1 =
He—H° "1

By combining the previous bound, we obtain the desired estimate (D.15). Now,
(D.15) applied with o = s — 1/2 implies the following estimate for the last term in
the right-hand side of (D.13),

IRBIl,._y < F(Inlluy) 1B,y

To estimate the two other terms in the right-hand side of (D.13), we use the operator
norm estimate (D.16) for T ,, to obtain

|7 divo—1a3|| | < F (Il ) TN oy + 171 -
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By combining the two previous estimates, it follows from (D.13) that
(D.17) 1Bl y < F(Inll o) LNUL .y + 1315 + 1B,y

Taking the L*°-norm in time, one obtains the claim (D.11) from the previous esti-
mates, see (D.9), (D.12) and (D.6).

STEP 3: Bootstrap. We now use the previous bound (D.11) for B to improve the
estimate (D.9) for U, namely to prove that

(D.18) U oo o111y < F(F(Mso) + TF (Ms(T) + Zo(T)))-
Firstly, writing (D)5 U = Us + [(D,)®,T¢] B and using (D.10), one has

10le < WUl + ] yovs 1By -

As above, the three terms in the right-hand side of the above inequalities have been
already estimated; indeed, Lemma D.2 gives an estimate for the L (L2)-norm of
Us, n is estimated by means of Lemma D.3 and we can now use (D.13) to estimate
HBHHS*% This proves (D.18).

We next use (D.18) to improve the estimate (D.13) for B. Firstly, by using the
estimate (D.15) with 0 = s — 1/4 instead of s — 1/2, we obtain as above

(019)  1Bllge < Fnl o) {00 e + 151 ey + 1By -

Taking the L®°-norm in time, it follows from the previous estimates (see (D.18),
(D.12) and (D.11)) that

(D.20) 1Bl o< (o 1310y < F (F(Mso) + TF(M(T) + Z,(T))).

STEP 4: Estimate for V. Writing V' = U — T¢ B, it easily follows from (D.18) and
(D.20) that [|V'[| oo (o 77;+) is bounded by the right-hand side of (D.8).

This completes the proof of the lemma. O
It remains to estimate the L*°([0,7T]; H S+%)—norm of ¢. This estimate is obtained

1

in two steps. Firstly, since Vi = V + BVrn and since the L*°([0,T]; H*™ 2)-norm
of (Vn,V, B) has been previously estimated, we obtain the desired estimate for the

1

L>([0,T]; H*2)-norm of V¢. It remains to estimate [|[| o0 (o 7};z2)- This in turn
follows from the identity

1 1
O+ V-V = —gn+ 5V + o B

and classical L? estimate for hyperbolic equations (see (A.26)).

118



Appendix E

Proof of a technical result

Here we prove Lemma 2.37 using an inequality proved in [6]. Let

1) = [ PO de

where ® € C°(R?) is a real phase, b € C*®°(R?) is a symbol with compact support.
We shall set K = supp b and let V' be a small open neighborhood of K. We shall
assume that

(i) M= Y supey|DER(E)] <400, 2<k<d+2,
2<|al<k
(E.1) (i) Nio= ) supeeg|DEb(E)] < 00, 1<d+1,
|l <1

(737) |det Hess ®(&)| > ag > 0,V€ €V,

where Hess @ denotes the Hessian matrix of ®. In [6], it is proved that, for all (®, b)
satisfying the above assumptions (see [6] for another technical assumption which is
easily checked for our purpose), there exists a constant C' such that, for all A > 1,

(E:2) ) <c
We begin by recalling the notations. First of all
K(t,z,yh) = (27T5)_d/€’%1(¢(t’z’§’ﬁ)_y'§)5(t, 2.9,&h)xa(€) dé,

where 0 < t < 1%, (0 = 2),x1 € C*(RY) b is given by (2.83). On the other hand
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(see (2.101))
o~ t ~ ~ ~
Otz E ) =2 € /0 p(0, 2, (03 k(0 2, €, 1), €, ), ) do,

1
- t/ p(ts, 2, ¢ (ts; k(ts; 2,6, ), €, h), ) ds,
0
=z € —t0(t,2,6,h),
and (see (2.105))
2

det (M(t,z,g,ﬁ))’ > My >0

(E.3) D605,

forall 0 < t < E‘S,z € R4, ¢ € suppx1,0 < h < 7L0. Recall that we want to prove
that

(E.4) K (t, 2,5, 0)| < F(IIV | o + N1 (7))o~

ol
ol

-

forall0 <t <hd, z,y e R? and 0 < h < ho.

Case 1. If 0 < ¢ < h then the estimate (E.4) follows imediately from the fact that
el < hoith,

Case 2. Let h <t < E‘;,(é = %) Set A = % € [1,E_%] and let Z = #,Y = ¥. Then
our kernel can be written as

K(t,z,y,h) = (2rh) ¢ / ALY EN (1 17 1Y, € h) 1 (€) dE
where N N
(I)(t,Z, Y,g,h) = (Z — Y) € — H(t,tZ,g,h).

Now Corollary 2.28, Proposition 2.30 and (E.3) allow us to apply Theorem 1 in [6]
where (¢, Z,Y, h) are considered as parameters. We obtain

~ d~
K (t,2,9,h)] < F(IIVIl gy + Naga(v) b2 b7 A7

[NIISW

which proves (E.4).

120



Bibliography

[1]

[10]

[11]

[12]

[13]

Thomas Alazard, Nicolas Burq and Claude Zuily. On the water-wave equations with
surface tension. Duke Math. J., 158(3):413-499, 2011.

Thomas Alz}zard, Nicolas Burq and Claude Zuily. Strichartz estimates for water waves.
Ann. Sci. Ec. Norm. Supér. (4), t.44, 855-903, 2011.

Thomas Alazard, Nicolas Burq and Claude Zuily. On the Cauchy problem for gravity
water waves. Invent. Math., 198, 71-163, 2014.

Thomas Alazard, Nicolas Burq and Claude Zuily. The water-waves equations: from Za-
kharov to Euler. Studies in Phase Space Analysis with Applications to PDEs. Progress
in Nonlinear Differential Equations and Their Applications Volume 84, 2013, pp 1-20.

Thomas Alazard, Nicolas Burq and Claude Zuily. Cauchy theory for the gravity water
waves system with non localized initial data. arXiv:1305.0457.

Thomas Alazard, Nicolas Burq and Claude Zuily. A stationary phase type estimate.
Preprint 2015.

Thomas Alazard and Jean-Marc Delort. Global solutions and asymptotic behavior for
two dimensional gravity water waves. Ann. Sci. Norm. Supér., to appear.

Thomas Alazard and Guy Métivier. Paralinearization of the Dirichlet to Neumann
operator, and regularity of three-dimensional water waves. Comm. Partial Differential
FEquations, 34(10-12):1632-1704, 2009.

Serge Alinhac. Paracomposition et opérateurs paradifférentiels. Comm. Partial Differ-
ential Equations, 11(1):87-121, 1986.

Serge Alinhac. Existence d’ondes de raréfaction pour des systémes quasi-linéaires hy-
perboliques multidimensionnels. Comm. Partial Differential Equations, 14(2):173-230,
1989.

Hajer Bahouri and Jean-Yves Chemin. Equations d’ondes quasilinéaires et estimations
de Strichartz. Amer. J. Math., 121(6):1337-1377, 1999.

Hajer Bahouri, Jean-Yves Chemin, and Raphaél Danchin. Fourier analysis and non-
linear partial differential equations, volume 343 of Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidel-
berg, 2011.

M.S Berger, Non linearity and functionnal analysis, Academic Press New York, 1977.

121



[14]

[15]

[16]

[17]

[26]

[27]

T. Brooke Benjamin and Peter J. Olver. Hamiltonian structure, symmetries and con-
servation laws for water waves. J. Fluid Mech., 125:137-185, 1982.

Matthew Blair. Strichartz estimates for wave equations with coefficients of Sobolev
regularity. Comm. Partial Differential Equations, 31(4-6):649-688, 2006.

Jean-Michel Bony. Calcul symbolique et propagation des singularités pour les équations
aux dérivées partielles non linéaires. Ann. Sci. Ecole Norm. Sup. (4), 14(2):209-246,
1981.

Nicolas Burq, Patrick Gérard, and Nikolay Tzvetkov. Strichartz inequalities and the
nonlinear Schrédinger equation on compact manifolds. Amer. J. Math., 126(3):569-605,
2004.

Angel Castro and David Lannes. Well-posedness and shallow-water stability for a new
Hamiltonian formulation of the water waves equations with vorticity. arXiv:1402.0464.

Rémi Carles. Geometric optics and instability for semi-classical Schrodinger equations.
Arch. Ration. Mech. Anal., 183(3):525-553, 2007.

Michael Christ, James Colliander, et Terence Tao. Asymptotics, frequency modulation,
and low regularity ill-posedness for canonical defocusing equations. Amer. J. Math.,
125(6):1235-1293, 2003.

Robin Ming Chen, Jeremy L. Marzuola, Daniel Spirn, and J. Douglas Wright. On
the regularity of the flow map for the gravity-capillary equations. J. Funct. Anal.,
264(3):752-782, 2013.

Hans Christianson, Vera Mikyoung Hur, and Gigliola Staffilani. Strichartz estimates for
the water-wave problem with surface tension. Comm. Partial Differential Equations,
35(12):2195-2252, 2010.

Demetrios Christodoulou and Hans Lindblad. On the motion of the free surface of a
liquid. Comm. Pure Appl. Math., 53(12):1536-1602, 2000.

Antonio Cérdoba, Diego Cérdoba, and Francisco Gancedo. Interface evolution: water
waves in 2-D. Adv. Math., 223(1):120173, 2010.

Daniel Coutand and Steve Shkoller. Well-posedness of the free-surface incompressible
Euler equations with or without surface tension. J. Amer. Math. Soc., 20(3):829-930
(electronic), 2007.

Walter Craig. An existence theory for water waves and the Boussinesq and Korteweg-
deVries scaling limits. Communications in Partial Differential Equations, 10(8):787—
1003, 1985.

Walter Craig, Ulrich Schanz, and Catherine Sulem. The modulational regime of three-
dimensional water waves and the Davey-Stewartson system. Ann. Inst. H. Poincaré
Anal. Non Linéaire, 14(5):615-667, 1997.

Walter Craig and Catherine Sulem. Numerical simulation of gravity waves. J. Comput.
Phys. 108(1):7383, 1993.

Bjorn E.J. Dahlberg and Carlos E. Kenig, Harmonic Analysis and PDE’s, 1985-1996,
http://www.math.chalmers.se/Math/Research/Geometry Analysis/Lecturenotes/

122



[30]
[31]

32]

[33]

[46]

[47]

Thibault de Poyferré Blow-up conditions for gravity water-waves. arXiv:1407.6881.

Thibault de Poyferré, Quang Huy Nguyen Strichartz estimates and local existence
for the capillary water waves with non-Lipschitz initial velocity. J. Diff. Eq., 261(1),
396-438, 2016.

Thibault de Poyferré, Quang Huy Nguyen A paradifferential reduction for the gravity-
capillary waves system at low regularity and applications. arXiv:1508.00326.

David, G. Ebin, The equations of motion of a perfect fluid with free boundary are not
well posed, Communications in Partial Differential Equations 10 (12): 1175-1201,1987.

Pierre Germain, Nader Masmoudi and Jalal Shatah. Global solutions for the gravity
water waves equation in dimension 3. Annals of Mathematics (2) 175, no. 2, 691-754,
2012.

Jean Ginibre and Giorgio Velo. Generalized Strichartz inequalities for the wave equa-
tion. J. Funct. Anal. 133:5068, 1995.

Bei Hu and David P. Nicholls. Analyticity of Dirichlet-Neumann operators on Hlder
and Lipschitz domains. SIAM J. Math. Anal., 37(1):302-320, 2005.

John Hunter, Mihaela Ifrim, Daniel Tataru. Two dimensional water waves in holomor-
phic coordinates. arXiv:1401.1252.

Lars Hormander. Lectures on linear hyperbolic differential equations, Mathématiques
& Applications (Berlin) [Mathematics & Applications/, volume 26. Springer-Verlag,
Berlin, 1997.

Alexandru Tonescu and Fabio Pusateri. Global solutions for the gravity water waves
system in 2d. Invent. Math., 199 (3), 653-804, 2015.

Markus Keel and Terence Tao. Endpoint Strichartz estimates. Amer. J. Math.
120(5):955980, 1998.

Sergiu Klainerman, Igor Rodnianski, Jeremie Szeftel. Overview of the proof of the
Bounded L? Curvature Conjecture. arXiv:1204.1772.

David Lannes. A stability criterion for two-fluid interfaces and applications. Arch.
Ration. Mech. Anal., 208(2):481-567, 2013.

David Lannes. Well-posedness of the water-waves equations. J. Amer. Math. Soc.,
18(3):605-654 (electronic), 2005.

Gilles Lebeau. Singularités des solutions d’équations d’ondes semi-linéaires. Ann. Sci.
Ecole Norm. Sup. (4), 25(2):201-231, 1992.

Gilles Lebeau. Régularité du probleme de Kelvin-Helmholtz pour 1’équation d’Euler
2d. ESAIM Control Optim. Calc. Var., 8:801-825 (electronic), 2002. A tribute to J.
L. Lions.

Gilles Lebeau. Controle de I'équation de Schrodinger. J. Math. Pures Appl., (9) 71
(1992), no. 3, 267291.

Hans Lindblad. Well-posedness for the motion of an incompressible liquid with free
surface boundary. Ann. of Math. (2), 162(1):109-194, 2005.

123



[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[60]

[61]

[62]

[63]

Nader Masmoudi and Frédéric Rousset. Uniform regularity and vanishing viscosity
limit for the free surface Navier-Stokes equations. arXiv:1202.0657.

Guy Métivier. Para-differential calculus and applications to the Cauchy problem for
nonlinear systems, volume 5 of Centro di Ricerca Matematica Ennio De Giorgi (CRM)
Series. Edizioni della Normale, Pisa, 2008.

Camil Muscalu and Wilhem Schlag. Classical and Multilinear Harmonic Analysis Vol
1, Cambridge Studies in Advanced Mathematics.

Yves Meyer. Remarques sur un théoreme de J.-M. Bony. In Proceedings of the Seminar
on Harmonic Analysis (Pisa, 1980), number suppl. 1, pages 1-20, 1981.

V. I. Nalimov. The Cauchy-Poisson problem. Dinamika Splosn. Sredy, (Vyp. 18 Di-
namika Zidkost. so Svobod. Granicami):104-210, 254, 1974.

Quang Huy Nguyen. Work in preparation.

Luc Robbiano and Claude Zuily. Strichartz estimates for Schrodinger equations with
variable coefficients. Mém. Soc. Math. Fr. (N.S.), (101-102):vi4208, 2005.

Mikhail V. Safonov. Boundary estimates for positive solutions to second order elliptic
equations. arXiv:0810.0522

Jalal Shatah and Chongchun Zeng. Geometry and a priori estimates for free boundary
problems of the Euler equation. Comm. Pure Appl. Math., 61(5):698-744, 2008.

Hart F. Smith. A parametrix construction for wave equations with C*! coefficients.
Ann. Inst. Fourier (Grenoble), 48(3):797-835, 1998.

Gigliola Staffilani and Daniel Tataru. Strichartz estimates for a Schrodinger operator
with nonsmooth coefficients. Comm. Partial Differential Equations, 27(7-8):1337-1372,
2002.

Daniel Tataru. Strichartz estimates for operators with nonsmooth coefficients and the
nonlinear wave equation. Amer. J. Math., 122(2):349-376, 2000.

Daniel Tataru. Strichartz estimates for second order hyperbolic operators with nons-
mooth coefficients. II. Amer. J. Math., 123(3):385-423, 2001.

Michael E. Taylor. pseudo-differential operators and nonlinear PDE, volume 100 of
Progress in Mathematics. Birkhduser Boston Inc., Boston, MA, 1991.

Monique Sablé-Tougeron. Régularité microlocale pour des problemes aux limites non
linéaires. Ann. Inst. Fourier (Grenoble), 36(1):39-82, 1986.

Chao Wang and Zhifei Zhang. Break-down criterion for the water-wave equation.
arXiv:1303.6029.

Sijue Wu. Well-posedness in Sobolev spaces of the full water wave problem in 2-D.
Invent. Math., 130(1):39-72, 1997.

Sijue Wu. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J.
Amer. Math. Soc., 12(2):445-495, 1999.

124



[66] Sijue Wu. Almost global wellposedness of the 2 — D full water wave problem . Invent.
Math., 177: 45-135, 2009.

[67] Hideaki Yosihara. Gravity waves on the free surface of an incompressible perfect fluid
of finite depth. Publ. Res. Inst. Math. Sci., 18(1):49-96, 1982.

[68] Vladimir E. Zakharov. Stability of periodic waves of finite amplitude on the surface of
a deep fluid. Journal of Applied Mechanics and Technical Physics, 9(2):190-194, 1968.

Thomas Alazard
DMA, Ecole normale supérieure et CNRS UMR 8553, 45 rue dUlm, 75005 Paris,

France

Nicolas Burq
Univiversité Paris-Sud, Département de Mathématiques, 91405 Orsay, France

Claude Zuily
Université Paris-Sud, Département de Mathématiques, 91405 Orsay, France

125



	Introduction
	Equations and assumptions on the fluid domain
	Regularity thresholds for the water waves
	Reformulation of the equations
	Main result
	Paradifferential reduction
	Strichartz estimates

	Strichartz estimates
	Symmetrization of the equations
	Smoothing the paradifferential symbol
	The pseudo-differential symbol
	Several reductions
	Straightening the vector field
	Reduction to a semi-classical form
	The parametrix
	The dispersion estimate
	The Strichartz estimates

	Cauchy problem
	A priori estimates
	Contraction estimates
	Passing to the limit in the equations
	Existence and uniqueness

	Paradifferential calculus
	Notations and classical results
	Symbolic calculus
	Paraproducts and product rules

	Tame estimates for the Dirichlet-Neumann operator
	Scheme of the analysis
	Parabolic evolution equation
	Paralinearization

	Estimates for the Taylor coefficient
	Sobolev estimates
	Introduction
	Symmetrization of the equations
	Sobolev estimates

	Proof of a technical result

