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bUniversité Paris Sud-Orsay
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The non linear Schrödinger equation in a smooth domain

Ω ⊂ Rdwith Dirichlet boundary conditions:

NLS



i∂tu + ∆u = F (u, u),

F (z, z) =
∂V

∂z
(x),

V = V (|z|) (gauge invariance)

u |t=0 = u0,

u |∂Ω = 0.

Question: How does the presence (and the geometry)

of the boundary influence the large time behaviour of

solutions of (NLS) (if these exist)?



Motivations:

1. Some models of Bose-Einstein condensates.

2. Gross Pitaevskii equation (models for the superfluid

Helium)= exterior of several balls.

3. Some models in fiber optics.

4. Natural mathematical question.



Conservation laws

1. Energy conservation

E(u)(t) =

∫
Ω
‖∇u‖2 + V (|u|) = E(u)(t = 0) (1)

2. Charge conservation

‖u‖L2(Ω)(t) = ‖u0‖L2(Ω) (2)

two cases for the long time dynamic

1. Defocusing case: The energy controls the
∫
Ω ‖∇u‖2

norm

2. Focusing case otherwise



Two partial answers

1. The case of a disk: Ω = B(0,1)

2. The case of non trapping exterior domains

A non trapping obstacle

Two trapping obstacles



A. The Schrödinger equation in a disk:
instability features
Theorem 1 (Subcritical instability).
Consider (NLS) in a disk D = B(0,1) with a
(focusing) cubic non linearity

F (u, u) = −|u|2u (3)

Then for any t > 0 and any s ∈ [0,1/3[, the
flow map

u0 ∈ Hs(D) 7→ u(t) ∈ Hs(D) (4)

is, on any ball of Hs, NOT uniformly
continuous



Remarks

1. If Ω = R2: stability for cubic (NLS) in Hs for any s ≥ 0

2. If Ω = T2: stability for cubic (NLS) in Hs for any s > 0

(Bourgain)

3. If Ω = R: instability for cubic (NLS) in Hs for any s < 0

(Kenig, Ponce and Vega for focusing case and Christ,

Colliander, Tao for defocusing)

4. If Ω = S2: instability for cubic (NLS) in Hs for any

s ∈ [0,1/4[ (Burq, Gerard, Tzvetkov)

5. Same result for

|u|2u → 〈u〉αu, 0 < α ≤ 2 (5)



6. Higher dimensions: For example if d = 5 we obtain

unstability in energy space H1
0 on the ball for non

linearities F = (1 + |u|2)αu, 0 < α < α0



B. The Schrödinger equation in a non
trapping domain: global well posedness
Theorem 2 (Well posedness in H1).
Ω ⊂ Rd non trapping

F (u, u) = |u|αu, α <
2

d− 2
(6)

(defocusing case) Then for any u0 ∈ H1
0(Ω),

the Cauchy problem (NLS) admits a
unique global (stable) solution u ∈ C(Rt;H1

0(Ω)

If d = 3 and α = 2 (cubic nonlinearity), small
initial data results.

Rk: Ω = Rd: αc = 4
d−2



Theorem 3 (Well posedness in L2).
Ω ⊂ Rd non trapping

F (u, u) = −|u|αu, α <
2

d
(7)

Then for any u0 ∈ L2(Ω), the Cauchy problem
(NLS) admits a unique global (stable)
solution u ∈ C(Rt;L2(Ω))

Rk: Ω = Rd: αc = 4
d



Ideas for the instability result:

Initial data concentrating on the boundary:

un,0 = κϕn,

ϕn(r, θ) = n
2
3−seinθJn(zn,1r)

(8)

where Jn is the n-th Bessel function and zn,1 its first

positive zero.

−∆ϕn = z2
n,1ϕn

‖ϕn‖Lp ∼ n
− 2

3p−
1
3 , ‖ϕn‖Hs ∼ 1

(9)

ϕn concentrates on the caracteristic manifold

%2 +
η2

r2
= %2 +

n2

r2
= z2

n,1 ∼ n2 ⇒ % = o(n), r ∼ 1. (10)



Ansatz for the solution of (NLS): The solution of (NLS)

with un,0 as initial data satisfies:

un(t, ·) =

κe
−itz2n,1eit(κ2ωn)ϕn +O(n−4s)Hs if 0 < s < 1/3

κe
−itz2n,1eit(κ2ωn+κ4θn)ϕn + o(1)Hs if s = 0

where

ωn =
‖ϕn‖4L4

‖ϕn‖2L2

∼ n2/3−2s →n→+∞ +∞

And θn has a limit when n → +∞.

Instability: Take κ1 and κ2 arbitrarily close from each other,

due to the phase shift (and ωn → +∞), the solutions un,1

and un,2 are not close from each other at t > 0



The Ansatz:

Eigenfunctions of −∆:

ϕp,k(r, θ) = eipθJn(zn,kr) (11)

zn,k is the k-th zero of the Bessel function Jn.

Eigenvalues are z2
p,k

Gauge invariance:

un(t, r, θ + ϕ) = un(t, r, θ)e
inϕ (12)

Spann un(t, r, θ) on the L2 eigenfunctions basis ϕp,k. due to

gauge invariance non null components only for p = nHence

frequencies involved are zn,k (greater than zn,1)



Conservation laws:

|un,1(t)|2‖ϕn‖2L2 + ‖q(t)‖2
L2 = ‖ϕn‖2L2 (13)

|un,1(t)|2‖∇ϕn‖2L2 + ‖∇q(t)‖2
L2 −

κ2

2
‖un,1(t)ϕn + q‖4

L4

= ‖∇ϕn‖2L2 −
κ2

2
‖ϕn‖4L4 (14)

Write

un(t, r, θ) = α(t)ϕn,1 +
∑
k≥2

αk(t)ϕn,k

= α(t)ϕn,1 + q(t)

(15)



The use of the conservation laws and the separation of

eigenvalues zn,1 − zn,2 gives a good control on ‖q‖Hs which

plugged into the differential equation satisfied by α proves

the ansatz



Ideas for the non trappingness result
Theorem 4 (Smoothing effect).

• Θ 6= ∅ ⊂ Rd non trapping and smooth (C3),

• Ω = Θc, χ ∈ C∞
0 (Rd),

Then, for any s ∈ R:

(i∂t + ∆D)u = 0, u |∂Ω= 0, u |t=0= 0

⇒ ‖χ(x)u‖
L2(Rt;H

1
2
D (Ω))

≤ C‖u0‖L2(Ω)

(i∂t + ∆D)v = χ(x)f(x, t), u |∂Ω= 0, u |t<<0= 0

⇒ ‖χ(x)v(t, x)‖L2(Rt;H
1
D(Ω)) ≤ C‖f‖L2(Rt;L2(Ω))



Proof: TT ∗ argument, Fourier transform
+ standard scattering estimates

T = χeit∆D : L2(Ω) → L2
t ;H

1/2
D (16)

⇔ T ∗ : f ∈ L2
t ;H

−1/2
D 7→

∫ +∞

−∞
e−is∆Dχ(·)χf(s, ·) ∈ L2(Ω)

⇔ TT ∗ : f ∈ L2
t ;H

−1/2
D

7→
∫ +∞

−∞
χ(x)ei(t−s)∆Dχ(·)f(s, ·) ∈ L2

t ;H
1/2
D (17)



but

TT ∗f =

∫ +∞

−∞
χ(x)ei(t−s)∆Dχ(·)f(s, ·)

=

∫ t

−∞
+

∫ +∞

t

(18)

Prove the result for
∫ t
−∞ ⇔ non-homogeneous result



u solution of

i∂tu + ∆Du = χf, u and f |t<<0= 0 (19)

Fourier transform (w. r. to t) are analytic in =mz < 0

(−(τ − iε) + ∆D)û(τ, ·) = χ(x)f̂(τ.·)

⇒ χ(x)û(τ − iε, x) = χ(x)(−(τ − iε) + ∆D)−1(χ(·)f̂(τ.·))
(20)

Take ε → 0, the estimate follows from

1. The Fourier transform is an isometry on L2(Rt;H) if H

is an Hilbert space

2. The resolvent χ(x)(−(τ − iε) + ∆D)−1χ(·) is uniformly

bounded from H
−1/2
D (Ω) to H

1/2
D (Ω)



Proposition 5. The cut-off resolvent
satisfies (uniformly with respect to ε > 0 and
τ ∈ R)

‖χ(x)(−(τ ± iε) + ∆D)−1χ(·)‖L2(Ω)→L2(Ω) ≤
C√

1 + |τ |
(21)

⇒ ‖χ(x)
(
− (τ ± iε) + ∆D

)−1
χ(·)‖

H
−1/2
D →H

1/2
D

≤ C (22)



1. Hight frequencies: non-trapping assumption,

a) Lax Phillips, Morawetz: multiplier methods,

b) Melrose, Sjöstrand: propagation of singularities,

c) Vasy-Zworski: semi-classicalMourre estimates,

d) Burq: semi-classical measures (low regularity)

2. Low frequencies: Θ 6= ∅ if d = 2:, Vainberg, Morawetz

for d = 2, Burq for d ≥ 3: no non-trapping assumption

Remark: For Neumann boundary conditions, Low frequency

estimates are open. The proof above gives Local in time

smoothing effect and the results on global wellposedness

are true in this case also



Strichartz estimates
Proposition 6. For any T > 0, χ ∈ C∞

0 (Rd),
s ∈ [0,1]

2

p
+

d

q
=

d

2
, p ≥ 2 (23)

‖eit∆Du0‖Lp([0,T ];Lq(Ω)) ≤ C‖u0‖
H

1
p
D (Ω)

(24)

Similarly we have nonhomogeneous
Strichartz estimates with losses of
derivatives



1. If Ω = Rd and ∆ = ∆0: Strichartz estimates with no

loss (Ginibre, Velo, Kato, Yajima, Cazenave Weissler)

2. If Ω = Rd and ∆ = ∆g, non trapping compactly

supported perturbation of the metric: Strichartz

estimates with no loss (Staffilani, Tataru)

3. If Ω = M compact riemanian manifold: loss of 1
p

derivatives (Burq, Gerard, Tzvetkov, + can be deduced

from the results in Staffilani, Tataru)

4. Here Strichartz estimates Lp
t ;Lq

x with loss of 1
p

derivatives



Two last results look the same but are completly different:

Gain in Strichartz with respect to Sobolev embedding:

H1(Rd) 7→ L
2d

d−2 (Rd) (25)

‖eit∆0u0‖
L2(Rt;L

2d
d−2 (Rd))

≤ C‖u0‖L2(Rd) (26)

Gain = 1 derivative

= 1/2 for the smoothing effect

+ 1/2 semi-classical Strichartz

(27)



Strichartz estimate: proof

1. Close to the obstacle: Sobolev embedding from the

smoothing effect

2. Far from the obstacle: Strichartz for eit∆0 +

smoothing effect gives usual Strichartz (with no loss

(Staffilani, Tataru))



Close to the obstacle (χ = 1 close to Θ)

‖χeit∆Du0‖L2([0,T ]);H1
D) ≤ ‖u0‖H1/2D

‖χeit∆Du0‖L∞([0,T ]);L2) ≤ ‖u0‖L2

(28)

Interpolate

‖χeit∆Du0‖
Lp([0,T ];H

2
p
D )

≤ ‖u0‖
H

1
p
D

(29)

Sobolev embedding:

H
1
p
D 7→ Lq(Ω),

2

p
+

d

q
=

d

2
(30)



Far from the obstacle (Staffilani Tataru)

(i∂t + ∆)(1− χ)u = [∆, χ]u = χ̃f bounded in L2
t ;H

−1/2
D

(1− χ)u = eit∆0(1− χ)u0 +

∫ t

0
ei(t−s)∆0 χ̃f

First term= OK. Imagine second term =∫ T

0
ei(t−s)∆0 χ̃f = eit∆0

∫ T

0
e−is∆0 χ̃f (31)

Dual of smoothing effect (for ∆0):∫ T

0
e−is∆0 χ̃ : L2

t ;H
−1/2
D 7→ L2 (32)

Usual Strichartz:

eit∆0 : L2(Ω) 7→ Lp
t ;Lq(Rd) (33)



replace
∫ t
0 by

∫ T
0 :

Theorem 7 (Christ Kiselev).

T : Lp(R;B1) → Lq(R;B2) (34)

locally integrable kernel K(t, s) with values
bounded operators from B1 to B2 Banach
spaces. Suppose that p < q.Then

T̃ f(t) =

∫
s<t

K(t, s)f(s)ds

is bounded from Lp(R;B1) to Lq(R;B2) and

‖T̃‖Lp(R;B1)→Lq(R;B2)

≤ (1− 2−(p−1−q−1))−1‖T‖Lp(R;B1)→Lq(R;B2)
. (35)



Well posedness in H1
0

1. d = 2: Fixed point in

XT = L∞(]0, T [;H1
0) ∩ Lp(]0, T [;W1−1/p,q), 1

p + 1
q = 1

2 ,

p > α

2. d = 3: Fixed point in

XT = L∞(]0, T [;H1
0) ∩ Lp(]0, T [;W1,18

7 )

3. d ≥ 4: “Fixed point” in

XT = L∞(]0, T [;H1
0)∩Lp(]0, T [;W1,q), 1

p + d
q = d

2 , p > 2,

p close to 2

Remark: for d ≥ 5, αc = 2
d−2 < 1 and stability unknown.



Well posedness in L2

Fixed point in XT = L∞(]0, T [;L2) ∩ Lp(]0, T [;Lq),
1
p + d

q = d
2 , p > 2, p close to 2



Comments

1. Any gain on the semi-classical Strichartz will improve

the results (the gains arising from Smoothing effect

and from semi-classical Strichartz cumulate)

2. The non trapping assumption is known to be necessary

for the H1/2 smoothing effect (Döı if ∂Ω = ∅, Burq for

boundary value problems)

3. If there exists an elliptic trapped trajectory then the

existence of quasimodes shows that no smoothing at all

is true

No smoothing effect



4. In some cases of hyperbolic trapped trajectories (not

too many convex obstacles sufficiently distant) The

method gives a H1/2 smoothing effect with a

logarithmic loss

Smoothing effect with a logarithmic loss


