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Control of waves

Consider the wave equation on a Riemanian manifold M,,
aeLl>*®M),a>0,T>0

(0F = A)u=Ff x 1) xa(x), (ult=o,0¢u|t=0) = (uo,u1)

Given (up, u1) € H* = HY(M) x L?(M) initial data and
(vo, v1) € H! target data in energy space, can we choose f in
suitable space such that

(U ‘t:Tyatu ‘t:T) = (V07 Vl)?

Natural space for f is L2((0, T) x M). If answer yes: exact
controlability



Stabilization for waves

(02 — A + a(x)d¢)u= 0,
(U |t=0, D¢t |t=0)= (uo, 1) € HY x 1% = !
The natural energy is decaying (a > 0)

E(u)(t / V0 + |9euPdx, jE(t)—/ — a(x)|0euPdx
M

Question: speed of decay of E(u)(t)?

e The energy of all solutions tend to 0 iff there exists no non
trivial stationary equilibrium, i.e.
—NAe=MXNeaxe=0=e=0.

e Semi-group property: If there exists a uniform rate f(t),

Y(ug, u1) € HY, E(u)(t) < F(t)E(u)(0), lim f(t) =0,

t—-+oo

then can choose f(t) = Ce™“ (uniform) stabilization.



Observation and HUM duality imply equivalence
e There exists a rate f(t) such that lim;_,~ f(t) = 0 and
V(uo, uy) € HY (M) x L2(M), E(u)(t) < f(t)E(u)(0).

(and then can choose f(t) = Ce™ )
e 3T > 0,c > 0;Y(uo, 1) € HY(M) x L2(M), if u is the
solution to the damped wave equation, then

!
E(u)(O)gc/O /MZa(x)atu2dxdt.

e 3T > 0,c > 0;Y(up, 1) € HY(M) x L2(M), if u is the
solution to the undamped wave equation then

T
E(u)(0) < C/O /MQa(x)Otuzdxdt.

e There exists T > 0 such that The wave equation is exactly
controlable in time T (and we can take the time given by
observation)



The geometric control assumption for waves

(a € CO(M), T) controls geometrically (M, g) if every geodesic
starting from any point xo € M in any direction £o, V(xy.0)(S)
encounters {a > 0} in time smaller that T

Theorem (Rauch-Taylor, Bardos-Lebeau-Rauch 88, N.B- P.G.)

a € CO(M) geometric control is equivalent to observability (and
hence control and stabilization) for wave equations. a € L>(M)
Strong Geometric Control is sufficient for observability which
implies Weak Geometric Control.

AT,c > 0;Vpp € S*M,3s € (0, T),36 > 0;
a> ca.e. on B(vy(s),9).

AT > 0;Vpo € S*M,3s € (0, T); vpo(s) € supp(a)  (WGCC)

(SGCC)

supp(a) is the support (in the distributional sense) of a,



The geometric control assumption

Yes No



Some examples on tori

Figure: Checkerboards: the damping a is equal to 1 in the blue region, 0
elsewhere. The geodesics are (periodized) straight lines. The first
example satisfies (SGCC) while all others satisfy (WGCC) but

not (SGCC)




Stabilization for wave equations: the result
Theorem (Does Stabilization holds? a = 1 in blue region 0

otherwise)
H .

YES 80’ YES NO
(Taylor-Rauch) (NB-PG 16) (NB-PG 16)

i

NO NO
(NB-PG 16) (NB e 16) (NB-PG 16)



Another geometric condition
When the manifold is a two dimensional torus and the damping a is
a linear combination of characteristic functions of rectangles, i.e.
there exists N rectangles (or polygons), R;,j = 1,... N (disjoint
and non necessarily vertical), and 0 < aj,j = 1,..., N such that

N
a(X) = Zajlxéij (1)
j=1

(piecewise smooth domains, no infinite contact with geodesics=
much easier)

Theorem (NB-P. Gérard 15-17)

Stabilization holds for the waves on T? iff there exists T > 0 such
that all geodesics (straight lines) of length T either encounters the
interior of one of the rectangles or follows for some time one of the
sides of a rectangle R;, on the left and for some time one of the
sides of another (possibly the same) rectangle R;, on the right.



Stabilization for wave equations: the result

YES

NO



A geometric control condition for control
When the manifold is a two dimensional surface and a is a linear
combination of characteristic functions of geodesic polygons, i.e.
there exists N polygons, R;,j =1,... N (disjoint and non
necessarily vertical), and 0 < aj,j =1,..., N such that

N
() =Y ajler, (2)
j=1

Theorem (NB 17)

Let T > 0. Then exact controlability holds for the waves on M? if
and only if a generalized geometric condition (defined in terms of
an ODE on a sphere bundle over S*M ) is satisfied. Roughly
speaking it says that all geodesics of length T either encounters the
interior of one of the polygons or follows for some time one of the
sides of a polygon Rj, and there exists s > 0 such all neighbour
geodesics spend an amount of time of order at least s in the
interior of one of the polygons



The result on the sphere and the torus

Theorem (NB 17)

Let T > 0. Then exact controlability holds for the waves on M? if

and only if There exists a > 0 such that for almost every
(x0,%0) € S*M,

)
| ot ro.)ds 2 a >0
0

here (x(s, x0,&0), &(s, X0, &0) is the bicharacteristic starting from
(x0,&0) at s =0).



Control for wave equations: the result on the sphere
On spheres, geodesics are great circles and the generalized
geometric condition reduces to checking
—The geodesic enters the interior of the control region
w = {a(x) > 0} or
— The geodesic follows (some) sides of (some) polygons and we
check the following algorithm. Write the whole oriented geodesic
circle

r=rvurduro,
(parts of I which encounter the side of a polygon on the upper
(lower) hemisphere—or not). Then any choice of oriented diameter
D separates any piece of geodesic (0, T) into three (possibly
empty) pieces

Y uyuAs,

corresponding to the part on the left (right) of the diameter or on
the diameter. Then we assume that we never have

(7’ cland~" C Fd).



Contradiction argument

Want to prove observation estimates for half wave solutions with
spectrally localized initial data (h small enough)

2
(3t —A)U = O7 up = 1a<7h2A<bu0’ uy = 1a<7h2A<bU1 a<l<b

T
w22 < C/o / lu(x, t)dxdt w = {a > 0}
w
Assume false then there exists sequences
an, bn — 1, u, € L2, 1an<_h%A<bnun = Up,

such that

]
ol =1, [ [ T vt = o)
0 w



First microlocalization

Scales: t,X ~ 1,7,= ~ h~!. Consider operators
a(t, X, hDy, hDx), a € C3°(T*M).
If a > 0 then (Gérding) a(t, X, hD¢, hDx) > —Ch.

Proposition

There exists a subsequence (now we drop all sub-indexes) and a
positive measure pv (on continuous functions on T*M ) such that

lim (a(t,X,h,,Dt,h,,Dx)u,,,u,,)L2 — (1, a).

n—--oco t.X

supp (:u) - {(t7 7-7X7E); 1=7°= ||EH§'(X) = p(X,E)
w(TO0,Y)x M)=T,  Owpp=Hpp,  plo,1)xw= 0

As a consequence, p is supported on bicharacteristics which do not
encounter w but hence graze dw on left or right



Second microlocalization

Understand at finer scales how the mass can concentrate on the
geodesic from left or right. Work in a geodesic coordinate system
(x,y) where

_ 2 2 2 3
—A = _8X - ay(l +x /i(y) + O(X ))7

where the geodesic is given by {x = 0} (and the bicharacteristic by
{(x=0,£ =0)}) and x(y) is the gauss curvature of the surface at

point y.
Scales: 2 different regimes

e Transversal HF
t,y ~1,7=n=1+0(1), " < x| = o(1)
e Transversal LF
ty~1r=n=1+0(1), [(x¢)l < Ch'/?

Describe concentration at these scales and conclude contradiction.



2-pseudodifferential operators

— Symbols: functions a(t, y,z,7,1,() € S the class of smooth
compactly supported in the (y,n) variables and polyhomogeneous
of degree 0 near infinity in the (z, () variables

98y 702003 < C(L+ 2|+ [¢))~0.
— Operators : x € (§° (R2) equal to 1 near 0,
Opx(a) = a(t, y, hDy, hDy, h™/?x, h'/2Dy)

Opp(a) = Op(a x x(ez, €C)),

Oph(a) = Op(a x (1 —x)(ez,€()),
— Bad pseudodifferential calculus for Op(a) and Op_(a)
L? boundedness but no symbolic calculus , no Gérding
— Good pseudodifferential calculus Op(a) (gain €?)
symbolic calculus, and Gérding
Approach inspired from works by Fermanian, Nier and
Anantharaman-Macia for Schrédinger on tori. Here 51 1 calculus,
Nier S1.1, A-M, Sg ¢ calculus ’

ty,mn-z



2-microlocal measure: transversal HF (for tori € — h)

t,y ~17=n=1+0(1),h? < |x,€| = o(1),
If a > 0 then (Garding) Op®(a) > —Ce.
Proposition
There exists a subsequence and a positive measure v (on

continuous functions on T*N x R? homogeneous of degree 0 at
infinity in (z,¢) ) such that

. . € o +
f i (Oph (e i), = ")
supp (v*) C{(t, 7.y, z,n,¢)i1 =7 =n}

The projection of v on the (t,y,T,n)variables is bounded by the
previous (1)-microlocal measure and additional propagation holds

(0r — 8, — €Oz + zr(y)O)vT =0



Proof of propagation
Key remark

— WA = —h*05(1 — x*k(y) — 0% + O(x*))
= Op(n?(1 + hz?k(y) + h¢% + O(hz?x)) (3)

Compute

ﬁ(#&—#AO@@ﬂ:
Op}, (—70¢(a) + 10y (a) +C02(a) — n*r(y)20c(a) + O(e*) + O(x)
implies

j

0= lim lim %<[(h28? — h?A, Opf,n(a)} Un, U”) 2

e—0 n——+oo fyx

= ((0r — 0y — €O, + K(y)z0¢)v, a)



Conclusion in the transversal HF regime

The measure v is invariant by the flow defined by previous
equation

It is supported on geodesics grazing dw

By contradiction assumption

/ /|u|2(t,x)dxdt:o(1),
(0,T) Jw

We deduce that if near points (t,y,x = 0) such that
(y,x =0) € Ow" then v is supported in {z < 0}
The geometric hypothesis implies that v, =0



2-microlocal measure: transversal LF

We are looking at (x. = x(e*))

lim tim (2% X)(&,y, haDe, haDy, b */?x, h,l,/2DX)u,,,un)L2

e—0 n—+o0

change variables in x, z = h=1/2x, v,(2) = h'/*u,(h*/2z) We are
now looking at

lim lim ((axXe)(t,y,h,,Dt,h,,Dy,z,Dz)v,,,v,,)L2

e—0 n—+o0

Due to the presence of the cut off . for any fixed ¢, the operators
(a X XG)(taYa hn D, hnDya Z, Dz)

are semi-classical operators in the (t, y) variable with values
compact operators on L)2< =H

The sequence v, is bounded in L%OC(R%’),; H).



2-microlocal measure: transversal LF
Proposition (P. Gérard 90°)

There exists a subsequence and a positive measure v~ on
continuous functions on T*R? with values trace class operators

lim <(a X XE)(t7y7 hnDta hnDy,Z7 Dz)Vna Vn)

n—-+o0o [2

= Tr{v™, (axe)(t,y, 7,1, 2z, D;)).
Radon-Nikodym: v— = A(t, y,,n)dp, where A is trace class
Proposition (Saut Scheurer?)

Consider the following classical one dimensional harmonic oscillator

K(—s)z? B
T)u =0.

Assume that u vanishes on (o, 3)s x RY. Then u = 0.

R
(/85— 7"‘

Theorem
As soon as ™ or T~ is non empty, the measure v~ is identically 0.



The harmonic oscillator

t,y~11t=n=1+0(1),|z| + |D;| <el

(ih,,at + \/ —h%A)Un = 0,

—hA = —h02(1 + hi(y)z%) — hd2 + O(h*/?)

. 92
V—hA = —/h8y\/(1 + hr(y)z2) — h—h282 + 0. (h%/?)

— v, + -2+ T oy @

(ihn(0: — ) + h (—7 L w2 Yo = oc(h).

2 2
t— t+ .
5= y7 r= 24 = (i0s + Hr—s)wp = oc(h)

2 2
< w, = 5,(5,0)(wy |s=0) + o(1). (5)




An elementary argument in infinite dimension

Conjugate (micro-locally) with the inverse of the evolution to
replace the equation (ids + H,—s)w, = 0 by idsw, = 0.

wn = S¢(0,s)w, = S,(s,0)" wp,
Let 7~ be the measure of the new sequence Ww,. Then
~ = 5,(0,s)vS,(0,s)"
is independent of the variable s. It writes
T =A(r)d\ ® ds ® 65— ® 0p—2,

Where A(r) is a family of hermician trace class operators and d, a
non negative measure. Let e,(r) € H a Hilbert Basis diagonalizing
A(r) (eigenvalues An). We get

ZA enr Henrd)\ ®ds®5o' 0®5p 2,

v =) An(~5(5,0)en)S(s,0)en rd\, ® ds ® G0 @ Sy—2,

n



Conclusion in the transversal LF regime

v = Z )\n<'7 5(57 O)en,r>H5(57 O)en,rd)\r ®ds ® 60:0 & 5/):27
If ((s,r) is supported in the region where the bicharacteristic
grazes a part of ['", then for any € > 0,

lim / x(s, r)/ \w,|2dzdrds = 0,
n—=+00 Jg r 2z€(0,6h—1/2)

We deduce that for any € > 0,
<V_7 C(Sa r)1X>0X(€(Za DZ))) =0

=0 —/ C(r,s)Tr( Z)\ S(s,0)enr)H1,505(s,0)en rd A, ds,

_ / () S A / I5(s.0)en s, (6)

(we used that S(s, 0)e, is a Hilbert basis of H). Hence implies
Vn,A\, =0and v~ = 0.



