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Control of waves

Consider the wave equation on a Riemanian manifold Mg ,
a ∈ L∞(M), a ≥ 0, T > 0

(∂2
t −∆)u = f × 1(0,T ) × a(x), (u |t=0, ∂tu |t=0) = (u0, u1)

Given (u0, u1) ∈ H1 = H1(M)× L2(M) initial data and
(v0, v1) ∈ H1 target data in energy space, can we choose f in
suitable space such that

(u |t=T , ∂tu |t=T ) = (v0, v1)?

Natural space for f is L2((0,T )×M). If answer yes: exact
controlability



Stabilization for waves

(∂2
t −∆ + a(x)∂t)u= 0,

(u |t=0, ∂tu |t=0)= (u0, u1) ∈ H1 × L2 = H1

The natural energy is decaying (a ≥ 0)

E (u)(t) =

∫
M
|∇xu|2 + |∂tu|2dx ,

d

dt
E (t) =

∫
M
−a(x)|∂tu|2dx

Question: speed of decay of E (u)(t)?
• The energy of all solutions tend to 0 iff there exists no non
trivial stationary equilibrium, i.e.
−∆e = λ2e, a× e = 0⇒ e = 0.

• Semi-group property: If there exists a uniform rate f (t),

∀(u0, u1) ∈ H1,E (u)(t) ≤ f (t)E (u)(0), lim
t→+∞

f (t) = 0,

then can choose f (t) = Ce−ct (uniform) stabilization.



Observation and HUM duality imply equivalence
• There exists a rate f (t) such that limt→+∞ f (t) = 0 and

∀(u0, u1) ∈ H1(M)× L2(M),E (u)(t) ≤ f (t)E (u)(0).

(and then can choose f (t) = Ce−ct)
• ∃T > 0, c > 0;∀(u0, u1) ∈ H1(M)× L2(M), if u is the
solution to the damped wave equation, then

E (u)(0) ≤ C

∫ T

0

∫
M
2a(x)|∂tu|2dxdt.

• ∃T > 0, c > 0;∀(u0, u1) ∈ H1(M)× L2(M), if u is the
solution to the undamped wave equation then

E (u)(0) ≤ C

∫ T

0

∫
M
2a(x)|∂tu|2dxdt.

• There exists T > 0 such that The wave equation is exactly
controlable in time T (and we can take the time given by
observation)



The geometric control assumption for waves

(a ∈ C 0(M),T ) controls geometrically (M, g) if every geodesic
starting from any point x0 ∈ M in any direction ξ0, γ(x0,ξ0)(s),
encounters {a > 0} in time smaller that T

Theorem (Rauch-Taylor, Bardos-Lebeau-Rauch 88’, N.B- P.G.)
a ∈ C 0(M) geometric control is equivalent to observability (and
hence control and stabilization) for wave equations. a ∈ L∞(M)
Strong Geometric Control is sufficient for observability which
implies Weak Geometric Control.

∃T , c > 0; ∀ρ0 ∈ S∗M,∃s ∈ (0,T ), ∃δ > 0;

a ≥ c a.e. on B(γρ0(s), δ).
(SGCC)

∃T > 0; ∀ρ0 ∈ S∗M,∃s ∈ (0,T ); γρ0(s) ∈ supp(a) (WGCC)

supp(a) is the support (in the distributional sense) of a,



The geometric control assumption

Yes No



Some examples on tori

Figure: Checkerboards: the damping a is equal to 1 in the blue region, 0
elsewhere. The geodesics are (periodized) straight lines. The first
example satisfies (SGCC) while all others satisfy (WGCC) but
not (SGCC)



Stabilization for wave equations: the result
Theorem (Does Stabilization holds? a = 1 in blue region 0
otherwise)

YES 80’
(Taylor-Rauch)

YES
(NB-PG 16)

NO
(NB-PG 16)

NO
(NB-PG 16)

YES
(NB-PG 16)

NO
(NB-PG 16)



Another geometric condition
When the manifold is a two dimensional torus and the damping a is
a linear combination of characteristic functions of rectangles, i.e.
there exists N rectangles (or polygons), Rj , j = 1, . . .N (disjoint
and non necessarily vertical), and 0 < aj , j = 1, . . . ,N such that

a(x) =
N∑
j=1

aj1x∈Rj
, (1)

(piecewise smooth domains, no infinite contact with geodesics=
much easier)

Theorem (NB–P. Gérard 15-17)
Stabilization holds for the waves on T2 iff there exists T > 0 such
that all geodesics (straight lines) of length T either encounters the
interior of one of the rectangles or follows for some time one of the
sides of a rectangle Rj1 on the left and for some time one of the
sides of another (possibly the same) rectangle Rj2 on the right.



Stabilization for wave equations: the result

YES YES NO

NO YES NO



A geometric control condition for control
When the manifold is a two dimensional surface and a is a linear
combination of characteristic functions of geodesic polygons, i.e.
there exists N polygons, Rj , j = 1, . . .N (disjoint and non
necessarily vertical), and 0 < aj , j = 1, . . . ,N such that

a(x) =
N∑
j=1

aj1x∈Rj
, (2)

Theorem (NB 17)
Let T > 0. Then exact controlability holds for the waves on M2 if
and only if a generalized geometric condition (defined in terms of
an ODE on a sphere bundle over S∗M) is satisfied. Roughly
speaking it says that all geodesics of length T either encounters the
interior of one of the polygons or follows for some time one of the
sides of a polygon Rj1 and there exists s > 0 such all neighbour
geodesics spend an amount of time of order at least s in the
interior of one of the polygons



The result on the sphere and the torus

Theorem (NB 17)
Let T > 0. Then exact controlability holds for the waves on M2 if
and only if There exists α > 0 such that for almost every
(x0, ξ0) ∈ S∗M, ∫ T

0
a(x(s, x0, ξ0))ds ≥ α > 0.

here (x(s, x0, ξ0), ξ(s, x0, ξ0) is the bicharacteristic starting from
(x0, ξ0) at s = 0).



Control for wave equations: the result on the sphere
On spheres, geodesics are great circles and the generalized
geometric condition reduces to checking
–The geodesic enters the interior of the control region
ω = {a(x) > 0} or
– The geodesic follows (some) sides of (some) polygons and we
check the following algorithm. Write the whole oriented geodesic
circle

Γ = Γu ∪ Γd ∪ Γ0,

(parts of Γ which encounter the side of a polygon on the upper
(lower) hemisphere–or not). Then any choice of oriented diameter
D separates any piece of geodesic γ(0,T ) into three (possibly
empty) pieces

γ l ∪ γr ∪ γc ,
corresponding to the part on the left (right) of the diameter or on
the diameter. Then we assume that we never have(

γ l ⊂ Γu and γr ⊂ Γd
)
.



Contradiction argument

Want to prove observation estimates for half wave solutions with
spectrally localized initial data (h small enough)

(∂2
t−∆)u = 0, u0 = 1a<−h2∆<bu0, u1 = 1a<−h2∆<bu1 a < 1 < b

‖u0‖2L2 ≤ C

∫ T

0

∫
ω
|u|2(x , t)dxdt ω = {a > 0}

Assume false then there exists sequences

an, bn → 1, un ∈ L2, 1an<−h2
n∆<bnun = un,

such that

‖un‖L2 = 1,
∫ T

0

∫
ω
|un|2(x , t)dxdt = o(1)



First microlocalization
Scales: t,X ∼ 1, τ,Ξ ∼ h−1. Consider operators

a(t,X , hDt , hDX ), a ∈ C∞0 (T ∗M).

If a ≥ 0 then (Gårding) a(t,X , hDt , hDX ) ≥ −Ch.

Proposition
There exists a subsequence (now we drop all sub-indexes) and a
positive measure µ (on continuous functions on T ∗M) such that

lim
n→+∞

(
a(t,X , hnDt , hnDX )un, un

)
L2
t,X

= 〈µ, a〉.

supp (µ) ⊂ {(t, τ,X ,Ξ); 1 = τ2 = ‖Ξ‖2g(x) = p(X ,Ξ)

µ(T ∗(0,Y )×M) = T , ∂tµ = Hpµ, µ |(0,T )×ω= 0.

As a consequence, µ is supported on bicharacteristics which do not
encounter ω but hence graze ∂ω on left or right



Second microlocalization
Understand at finer scales how the mass can concentrate on the
geodesic from left or right. Work in a geodesic coordinate system
(x , y) where

−∆ = −∂2
x − ∂2

y (1 + x2κ(y) + O(x3)),

where the geodesic is given by {x = 0} (and the bicharacteristic by
{(x = 0, ξ = 0)}) and κ(y) is the gauss curvature of the surface at
point y .
Scales: 2 different regimes
• Transversal HF

t, y ∼ 1, τ = η = 1 + o(1), h1/2 � ‖x , ξ‖ = o(1)

• Transversal LF

t, y ∼ 1, τ = η = 1 + o(1), ‖(x , ξ)‖ ≤ Ch1/2

Describe concentration at these scales and conclude contradiction.



2-pseudodifferential operators
– Symbols: functions a(t, y , z , τ, η, ζ) ∈ S the class of smooth
compactly supported in the (y , η) variables and polyhomogeneous
of degree 0 near infinity in the (z , ζ) variables

|∂αt,y ,τ,η∂γz ∂δζa| ≤ C (1 + |z |+ |ζ|)−(γ+δ).

– Operators : χ ∈ C∞0 (R2) equal to 1 near 0,

Oph(a) = a(t, y , hDt , hDy , h
−1/2x , h1/2Dx)

Oph,ε(a) = Op(a× χ(εz , εζ)),

Opεh(a) = Op(a× (1− χ)(εz , εζ)),

– Bad pseudodifferential calculus for Op(a) and Opε(a)
L2 boundedness but no symbolic calculus , no Gårding
– Good pseudodifferential calculus Opε(a) (gain ε2)
symbolic calculus, and Gårding
Approach inspired from works by Fermanian, Nier and
Anantharaman-Macia for Schrödinger on tori. Here S 1

2 ,
1
2
calculus,

Nier S1,1, A–M, S0,0 calculus



2-microlocal measure: transversal HF (for tori ε→ hε)

t, y ∼ 1, τ = η = 1 + o(1), h1/2 � ‖x , ξ‖ = o(1),

If a ≥ 0 then (Gårding) Opε(a) ≥ −Cε.
Proposition
There exists a subsequence and a positive measure ν+ (on
continuous functions on T ∗N × R2 homogeneous of degree 0 at
infinity in (z , ζ) ) such that

lim
ε→0

lim
n→+∞

(
Opεhn(a)un, un

)
L2
t,y,x

= 〈ν+, a〉.

supp (ν+) ⊂ {(t, τ, y , z , η, ζ); 1 = τ = η}

The projection of ν on the (t, y , τ, η)variables is bounded by the
previous (1)-microlocal measure and additional propagation holds(

∂t − ∂y − ζ∂z + zκ(y)∂ζ
)
ν+ = 0



Proof of propagation
Key remark

− h2∆ = −h2∂2
y (1− x2κ(y)− h2∂2

x + O(x3))

= Op(η2(1 + hz2κ(y) + hζ2 + O(hz2x)) (3)

Compute

i

2h

[
(h2∂2

t − h2∆,Opεhn(a)
]

=

Opεhn(−τ∂t(a) + η∂y (a) + ζ∂z(a)− η2κ(y)z∂ζ(a) +O(ε2) +O(x)

implies

0 = lim
ε→0

lim
n→+∞

i

2h

([
(h2∂2

t − h2∆,Opεhn(a)
]
un, un

)
L2
t,y,x

= 〈(∂t − ∂y − ζ∂z + κ(y)z∂ζ)ν, a〉



Conclusion in the transversal HF regime

• The measure ν+ is invariant by the flow defined by previous
equation

• It is supported on geodesics grazing ∂ω
• By contradiction assumption∫

(0,T )

∫
ω
|u|2(t, x)dxdt = o(1),

We deduce that if near points (t, y , x = 0) such that
(y , x = 0) ∈ ∂ωr then ν+ is supported in {z ≤ 0}

• The geometric hypothesis implies that ν+ ≡ 0



2-microlocal measure: transversal LF
We are looking at (χε = χ(ε·))

lim
ε→0

lim
n→+∞

(
(a× χε)(t, y , hnDt , hnDy , h

−1/2
n x , h

1/2
n Dx)un, un

)
L2

change variables in x , z = h−1/2x , vn(z) = h1/4un(h1/2z) We are
now looking at

lim
ε→0

lim
n→+∞

(
(a× χε)(t, y , hnDt , hnDy , z ,Dz)vn, vn

)
L2

Due to the presence of the cut off χε for any fixed ε, the operators

(a× χε)(t, y , hnDt , hnDy , z ,Dz)

are semi-classical operators in the (t, y) variable with values
compact operators on L2

x = H
The sequence vn is bounded in L2

loc(R2
t,y ;H).



2-microlocal measure: transversal LF
Proposition (P. Gérard 90’)
There exists a subsequence and a positive measure ν− on
continuous functions on T ∗R2 with values trace class operators

lim
n→+∞

(
(a× χε)(t, y , hnDt , hnDy , z ,Dz)vn, vn

)
L2

= Tr〈ν−, (aχε)(t, y , τ, η, z ,Dz)〉.

Radon-Nikodym: ν− = A(t, y , τ, η)dρ, where A is trace class

Proposition (Saut Scheurer?)
Consider the following classical one dimensional harmonic oscillator

(i∂s −
∂2
z

2
+
κ(−s)z2

2
)u = 0.

Assume that u vanishes on (α, β)s × R+
z . Then u ≡ 0.

Theorem
As soon as Γ+ or Γ− is non empty, the measure ν− is identically 0.



The harmonic oscillator

t, y ∼ 1, τ = η = 1 + o(1), |z |+ |Dz | ≤ ε−1,

(ihn∂t +
√
−h2

n∆)un = 0,

−h2∆ = −h2∂2
y (1 + hκ(y)z2)− h∂2

z + Oε(h
3/2)

√
−h2∆ = −ih∂y

√
(1 + hκ(y)z2)− h

∂2
z

−h2∂2
y

+ Oε(h
3/2)

= −ih∂y + h(−∂
2
z

2
+
κ(y)z2

2
) + oε(h) (4)

(ihn(∂t − ∂y ) + hn(−∂
2
z

2
+
κ(y)z2

2
)vn = oε(h).

s =
t − y

2
, r =

t + y

2
⇒ (i∂s + Hr−s)wn = oε(h)

⇔ wn = Sr (s, 0)(wn |s=0) + o(1). (5)



An elementary argument in infinite dimension
Conjugate (micro-locally) with the inverse of the evolution to
replace the equation (i∂s + Hr−s)wn = 0 by i∂sw̃n = 0.

w̃n = Sr (0, s)wn = Sr (s, 0)∗wn,

Let ν̃− be the measure of the new sequence w̃n. Then

ν̃− = Sr (0, s)νSr (0, s)∗

is independent of the variable s. It writes

ν̃− = A(r)dλr ⊗ ds ⊗ δσ=0 ⊗ δρ=2,

Where A(r) is a family of hermician trace class operators and dλr a
non negative measure. Let en(r) ∈ H a Hilbert Basis diagonalizing
A(r) (eigenvalues λn). We get

ν̃− =
∑
n

λn〈·, en,r 〉Hen,rdλr ⊗ ds ⊗ δσ=0 ⊗ δρ=2,

ν− =
∑
n

λn〈·, S(s, 0)en,r 〉HS(s, 0)en,rdλr ⊗ ds ⊗ δσ=0 ⊗ δρ=2,



Conclusion in the transversal LF regime

ν− =
∑
n

λn〈·,S(s, 0)en,r 〉HS(s, 0)en,rdλr ⊗ ds ⊗ δσ=0 ⊗ δρ=2,
If ζ(s, r) is supported in the region where the bicharacteristic
grazes a part of Γr , then for any ε > 0,

lim
n→+∞

∫
s,r
χ(s, r)

∫
z∈(0,δh−1/2)

|wn|2dzdrds = 0,

We deduce that for any ε > 0,

〈ν−, ζ(s, r)1x>0χ(ε(z ,Dz))〉 = 0

⇒ 0 =

∫
r ,s
ζ(r , s)Tr(

∑
n

λn〈·,S(s, 0)en,r 〉H1z>0S(s, 0)en,rdλrds,

=

∫
r ,s
ζ(r , s)

∑
n

λn

∫
z>0
|S(s, 0)en,r |2dsdλr (6)

(we used that S(s, o)en is a Hilbert basis of H). Hence implies
∀n, λn = 0 and ν− = 0.


