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Abstract. — We study the long time behavior of the subcritical (subcubic) defocussing non-
linear wave equation on the three dimensional ball, for random data of low regularity. We prove
that for a large set of radial initial data in ∩s<1/2H

s(B(0, 1)) the equation is (globally in time)
well posed and we construct an invariant measure.

Résumé. — On étudie le comportement en grand temps de l’équation des ondes non linéaire
souscritique (sous cubique) défocalisante dans la boule de dimension 3, pour des données initiales
aléatoires. On démontre que pour de nombreuses données initiales radiales dans ∩s<1/2H

s(B(0, 1))
le problème est globalement bien posé et on construit une mesure invariante par le flot

1. Introduction

Consider the wave equation with Dirichlet boundary condition

(1.1) (∂2
t −∆)w + |w|αw = 0, (w, ∂tw)|t=0 = (f1, f2), u |Rt×∂Θ= 0, α > 0

with radial real valued initial data (f1, f2) posed on the unit ball Θ of R3 defined by Θ ≡
(x ∈ R3 : |x| < 1). It is well-known that the functions

en(r) ≡
√

2 sin(πnr)
r

, n = 1, 2, 3, · · · ,

where r = |x| form an orthonormal bases of the Hilbert space of L2 radial functions on
Θ. Moreover en are the radial eigenfunctions of the Laplace operator −∆ with Dirichlet
boundary conditions, associated to eigenvalues z2

n = (πn)2. We have the following statement.
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Theorem 1. — Suppose that α < 2. Let us fix a real number σ such that

(1.2) max
(
0,

α− 1
α

)
< σ <

1
2

.

Let ((hn(ω), ln(ω))∞n=1 be a sequence of independent standard real gaussians on a probability
space (Ω,A, p). Consider (1.1) with initial data

f1(r, ω) =
∞∑

n=1

hn(ω)
zn

en(r), f2(r, ω) =
∞∑

n=1

ln(ω)en(r) .

Then almost surely in ω ∈ Ω the problem (1.1) has a unique global solution

u ∈ C(R,Hσ
rad(Θ)),

Hσ
rad(Θ) being the Sobolev space of index σ of radial functions on Θ. The uniqueness holds in

the following sense : for every T > 0 there exists a Banach space XT continuously embedded
in C([−T, T ],Hσ

rad(Θ)) such that the solution is unique in XT . Furthermore we have the
estimate ‖u(t)‖Hσ

rad(Θ) ≤ C(f1, f2) log(2 + |t|)1/2 .

Remark 1.1. — For every ε > 0, the functions (f1, f2)(r, ω) belong a.s. to H
1
2
−ε

rad (Θ) ×
H
− 1

2
−ε

rad (Θ) (see Lemma 3.2), but the probability of the event{
ω : (f1(r, ω), f2(r, ω)) ∈ H

1
2
rad(Θ)×H

− 1
2

rad(Θ)
}

is zero. Thus in the above statement, we obtain global solutions for data of low regularity.
Such a regularity seems to be out of reach of the present deterministic methods (see in the case
of a cubic non linearity on R3 the related works by Bourgain [5], Kenig, Ponce, Vega [10],
Gallagher, Planchon [8] and Bahouri, Chemin [2]).

The map ω 7→ (f1(r, ω), f2(r, ω)) induces a Wiener measure on any Sobolev space of ra-
dial functions of regularity < 1/2. It turns out that a measure absolutely continuous with
respect to this Wiener measure is invariant under the global flow established in Theorem 1
(see Theorem 2 below for a precise statement). This measure invariance implies recurrence
properties of the flow thanks to Poincaré’s recurrence theorem.

The proof of Theorem 1 and Theorem 2 uses the Hamiltonian structure of the wave equation
(1.1). We approximate (1.1) by Hamiltonian ODE’s and we obtain the solutions of (1.1) as
limits of the solutions of these ODE’s. We can ensure the passage to the limit thanks to a
local well-posedness result for (1.1) for data of low regularity and the Liouville theorem for
divergence free vector fields applied to the approximating ODE’s. In the local well-posedness
argument we need to establish a Strichartz inequality for the wave equation, posed on the disc
and radial initial data. We hope that our elementary proof may be of independent interest
(see [6] for Strichartz inequalities for the wave equation posed on a domain with boundary).
Our construction is inspired by the considerations in the works by Bourgain [3, 4], and the
second author [12, 13] in the context of the nonlinear Schrödinger equation (see also [11, 14]
for works on invariant measures for the nonlinear Schrödinger equation). A difficulty we had



WAVE EQUATION AND INVARIANT MEASURES 3

to overcome is that for the wave equation, in contrast with the nonlinear Schrödinger equation
the L2 norm is not conserved under the flow. This implies the failure of the construction
of the statistical ensemble of [12, 13] in the context of the wave equation. Here, we define
a statistical ensemble which is invariant under the flow but for reasons quite different from
[12, 13] (in [12, 13] the L2 norm conservation is important for the argument). Let us
also mention that the globalization argument presented here is simplified with respect to an
analogous consideration in [12, 13].

2. Reduction of the problem

For σ ∈ R, we define Hσ
rad(Θ) as

Hσ
rad(Θ) ≡

( ∞∑
n=1

cnen, cn ∈ C :
∞∑

n=1

z2σ
n |cn|2 < ∞

)
(the convergence of

∑∞
n=1 cnen being apriori understood in D′(Θ)). We can then equip

Hσ
rad(Θ) with the natural complex Hilbert space structure. In the case σ = 0, we denote

H0
rad(Θ) by L2

rad(Θ) and we have that the scalar product on L2
rad is defined by 〈f, g〉 =

∫
Θ fḡ.

Moreover Hσ
rad(Θ) and H−σ

rad(Θ) are in a natural duality and we we denote by 〈·, ·〉 their
pairing (in the case σ = 0 we simply have the L2

rad scalar product). For γ ∈ R, we define the
map

√
−∆γ acting as isometry from Hσ

rad(Θ) to Hσ−γ
rad (Θ) by

√
−∆

γ
( ∞∑

n=1

cnen

)
=

∞∑
n=1

zγ
ncnen .

Clearly
√
−∆γ1+γ2 =

√
−∆γ1 ◦

√
−∆γ2 and

√
−∆0 is the identity. For γ > 0 the map√

−∆γ is acting as “a differentiation” while for γ < 0, it is a smoothing operator. For
f ∈ L2

rad(Θ), we have
√
−∆2(f) = −∆(f), where ∆ is the Dirichlet self-adjoint realisation

of the Laplacian. Moreover, for f ∈ H1
rad(Θ), we have

〈∆(f), f〉 = −‖
√
−∆(f)‖2

L2(Θ) = −‖∇f‖2
L2(Θ) = −

∫ 1

0
|∂rf(r)|2r2dr,

where ∇ = (∂x1 , ∂x2 , ∂x3).
Let us make some algebraic manipulations on (1.1) allowing to write it as a first order in t

equation. Since wt is one derivative less regular than w it is natural to set v ≡
√
−∆−1(wt)

or equivalently wt =
√
−∆(v). If we set u ≡ w + iv then we have that u solves the equation

(2.1) (i∂t −
√
−∆)u−

√
−∆

−1(|Re(u)|αRe(u)
)

= 0, u|t=0 = u0, u|R×∂Θ = 0,

where u0 = f1 + i
√
−∆−1

f2. Therefore we have a correspondence between the solutions of
(1.1) with real valued data (f1, f2) ∈ Hσ

rad(Θ) × Hσ−1
rad (Θ) and (2.1) with data in Hσ

rad(Θ).
We are going to analyse (2.1) with data u0 in Hσ

rad(Θ). Then the real part of the solutions
of (2.1) solve (1.1) with f1 = Re(u0) and f2 =

√
−∆(Im(u0)).
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Let us next formally derive a conservation law for (2.1). We will actually not use this
conservation law directly for (2.1), we will only need it for a finite dimensional approximation
of it. In order to highlight the algebraic computation, we make a formal computation in the
context of (2.1). Let us write (2.1) in the form

(2.2) iut +
√
−∆

−1(
∆u− |Re(u)|αRe(u)

)
= 0 .

Since Im〈
√
−∆−1

f, f〉 = 0, taking the pairing of (2.2) with ∆u− |Re(u)|αRe(u) and taking
the imaginary part gives that

1
2
‖
√
−∆(u)‖2

L2(Θ) +
1

α + 2
‖Re(u)‖α+2

Lα+2(Θ)

is conserved by the flow of (2.2).
The free evolution associated to (2.2) is given by the linear map e−it

√
−∆ on Hσ

rad(Θ),
σ ∈ R, defined by

e−it
√
−∆

( ∞∑
n=1

cnen

)
=

∞∑
n=1

e−itzncnen .

Observe that e−it
√
−∆ acts as an isometry on Hσ

rad(Θ). Let us also notice that thanks to the
time oscillations for every σ ∈ R if f ∈ Hσ

rad(Θ) and r0 ∈ (0, 1] then e−it
√
−∆(f)|R×{r0} is

a well-defined distribution on R. In particular e−it
√
−∆(f)|R×∂Θ = 0 and e−it

√
−∆(f) is the

unique solution of (i∂t −
√
−∆)u = 0 subject to the boundary condition u|R×∂Θ = 0.

3. Approximating ODE and associated gaussian measures

Let us fix from now on a real number σ satisfying (1.2). Our analysis will be reduced to
the study of

(3.1) (i∂t −
√
−∆)u−

√
−∆

−1(|Re(u)|αRe(u)
)

= 0, u|t=0 = u0, u|R×∂Θ = 0,

where the initial data u0 belongs to Hσ
rad(Θ). In order to prove Theorem 1, we will need to

study (3.1) with initial data given by

u0(r, ω) =
∞∑

n=1

gn(ω)
zn

en(r),

where gn(ω) = hn(ω)+iln(ω) are independent normalized complex gaussian random variables.
For N ≥ 1, we denote by EN the N dimensional vector space on C spanned by (en)N

n=1.
Let us denote by SN the projection on EN defined on every Hσ

rad(Θ) by

SN

( ∞∑
n=1

cnen

)
≡

N∑
n=1

cnen .
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We denote by iN the canonical isomorphism of vector spaces map from R2N to EN defined
by

iN (((an, bn))N
n=1) ≡

N∑
n=1

(an + ibn)en .

The map iN equips EN with a canonical Borel sigma algebra and a canonical Lebesgue
measure.

We shall approximate the solutions of (3.1) by the solutions of the ODE

(3.2) (i∂t −
√
−∆)u− SN

(√
−∆

−1(|Re(u)|αRe(u)
))

= 0, u|t=0 = u0 ∈ EN , u|R×∂Θ = 0 .

Let us define the measure µN on EN as the image measure under the map from (Ω,A, p) to
EN (equipped with the Borel sigma algebra) defined by

(3.3) ω 7−→
N∑

n=1

hn(ω) + iln(ω)
zn

en ,

where hn(ω), ln(ω), n = 1, · · ·N is a sequence of independent standard real gaussians (hn, ln ∈
N (0, 1)). Observe that µN defines a probability measure on EN . We next define the measure
ρN as the image measure on EN by the map (3.3) of the measure

(3.4) exp
(
− 1

(α + 2)
‖

N∑
n=1

hn(ω)
zn

en‖α+2
Lα+2(Θ)

)
dp(ω).

It turns out that ρN is invariant under the flow of (3.2).

Proposition 3.1. — For every u0 ∈ EN the flow of (3.2) is defined globally in time. More-
over the measure ρN is invariant under this flow.

Proof. — The local existence and uniqueness for the ODE (3.2) follows from the Cauchy-
Lipschitz theorem. Let us notice that the time existence given by the Cauchy-Lipschitz
theorem is very short (depending on N). We can however extend globally in time the solutions
of (3.2) thanks to the energy conservation law associated to (3.2). Indeed if we multiply (3.2)
by ∆u − SN (|Re(u)|αRe(u)) (which is an element of EN , i.e. C∞(Θ) and vanishing on the
boundary) and integrate over Θ, we get that the solutions of (3.2) satisfy

d

dt

[1
2
‖
√
−∆(u)‖2

L2(Θ) +
1

α + 2
‖Re(u)‖α+2

Lα+2(Θ)

]
= 0 .

Thus there exists a constant C depending on sup1≤n≤N |〈u0, en〉| and N but independent of
t such that as far as the solution exists one has sup1≤n≤N |〈u(t), en〉| ≤ C. Therefore the
solutions of (3.2) are defined globally in time. Let us now turn to the proof of the measure
invariance. Let us decompose the solution of (3.2) as

u(t) =
N∑

n=1

(
an(t) + ibn(t)

)
en, an(t), bn(t) ∈ R .
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Then, if we set

H(a1, . . . , aN , b1, . . . , bN ) ≡ 1
2

N∑
n=1

z2
n(a2

n + b2
n) +

1
α + 2

∫
Θ

∣∣ N∑
n=1

anen

∣∣α+2

the problem (3.2) may be rewritten in the coordinates an, bn as

(3.5) ȧn = z−1
n

∂H

∂bn
, ḃn = −z−1

n

∂H

∂an
, n = 1, . . . , N .

Let us first observe that thanks to the structure of (3.5) the quantity H(a1, . . . , aN , b1, . . . , bN )
is conserved under the flow of (3.5). Let us also remark that

N∑
n=1

[ ∂

∂an

(
z−1
n

∂H

∂bn

)
+

∂

∂bn

(
− z−1

n

∂H

∂an

)]
= 0 .

Therefore we may apply Liouville’s theorem for divergence free vector fields to obtain that
the measure

N∏
n=1

dandbn

is conserved by the flow of (3.5). Since H(a1, . . . , aN , b1, . . . , bN ) is conserved under the flow
of (3.5) we obtain that the measure

exp
(
−H(a1, . . . , aN , b1, . . . , bN )

) N∏
n=1

dandbn

= exp
(
− 1

(α + 2)

∫
Θ

∣∣ N∑
n=1

anen

∣∣α+2
) N∏

n=1

e−(z2
n)(a2

n/2)dane−(z2
n/)(b2n/2)dbn

is also conserved by the flow of (3.5). We therefore have that the measure

(3.6) exp
(
− 1

(α + 2)

∫
Θ

∣∣ N∑
n=1

anen

∣∣α+2
)
dµ̃N ,

where

dµ̃N = (2π)−N
( N∏

n=1

z2
n

) N∏
n=1

e−(z2
n)(a2

n/2)dane−(z2
n)(b2n/2)dbn

is conserved by the flow of (3.5). Observe that dµ̃N is a probability measure on R2N . The
measure dµ̃N is the distributions of the R2N valued random variable defined by

(3.7) ω 7−→
(h1(ω)

z1
,
l1(ω)
z1

, · · · ,
hN (ω)

zN
,
lN (ω)
zN

)
,

where hn, ln, n = 1, · · ·N is again a system of independent standard real gaussians. Moreover,
the composition of the map (3.7) and iN induces a probability measure on EN . Next, coming
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back to (3.6), we obtain that the image measure, induced on R2N by the map (3.7), of the
measure

exp
(
− 1

(α + 2)

∫
Θ

∣∣ N∑
n=1

hn(ω)
zn

en

∣∣α+2
)
dp(ω)

is invariant under the flow of (3.5). This in turn implies that after applying iN we have a
measure on EN which is invariant under the flow of (3.2). Coming back to (3.3), (3.4), we
obtain that this measure is precisely ρN . This completes the proof of Proposition 3.1.

Let us define the measure µ on Hσ
rad(Θ) (recall that σ is fixed and obeys (1.2)) as the image

measure under the map from (Ω,A, p) to Hσ
rad(Θ) equipped with the Borel sigma algebra,

defined by

(3.8) ω 7−→
∞∑

n=1

hn(ω) + iln(ω)
zn

en ,

where ((hn, ln))∞n=1 is a sequence of independent standard real gaussians. Let us remark that
the quantity

∞∑
n=1

hn(ω) + iln(ω)
zn

en

is defined as the limit in L2(Ω; Hσ
rad(Θ)) of the Cauchy sequence

N∑
n=1

hn(ω) + iln(ω)
zn

en

and the mesurability of (3.8) follows from the fact that the minimal sigma algebra containing
the cylindrical sets of Hσ

rad(Θ) is the Borel sigma algebra.
Using [1, Theorem 4], we have that for α < 4 the quantity

‖
∞∑

n=1

hn(ω) + iln(ω)
zn

en‖Lα+2(Θ)

is finite almost surely. Therefore, we can define a nontrivial measure ρ on Hσ
rad(Θ) as the

image measure by the map (3.8) of the measure

exp
(
− 1

(α + 2)
‖
∞∑

n=1

hn(ω)
zn

en‖α+2
Lα+2(Θ)

)
dp(ω).

Observe that if a Borel set A ⊂ Hσ
rad(Θ) is of full ρ measure then A is also of full µ measure.

Therefore, we need to solve (3.1) globally in time for u0 in a set of full ρ measure.
We next turn to the limits of the measures ρN . As in [12, 13], we can show that if U is

an open set of Hs
rad(Θ), s ∈ [σ, 1/2[ (and thus a Borel set of Hσ

rad(Θ)) then

(3.9) ρ(U) ≤ lim inf
N→∞

ρN (U ∩ EN ) .
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Moreover, if F is a closed set of Hs
rad(Θ), s ∈ [σ, 1/2[ then

(3.10) ρ(F ) ≥ lim sup
N→∞

ρN (F ∩ EN ) .

Let us remark that we have the following standard gaussian estimate (see e.g. [12, 13]).

Lemma 3.2. — Let c be a positive constant satisfying c < π/2. Denote by B(0,Λ)s the open
ball of center 0 and radius Λ in Hs

rad(Θ). Then for every s ∈ [σ, 1/2[, there exists Cs > 0
such that for every N,Λ,

(3.11) ρN (B(0,Λ)c
s ∩ EN ) ≤ µN (B(0,Λ)c

s ∩ EN ) ≤ Cse
−cΛ2

.

On the other hand, for every s ≥ 1
2 and every N,Λ

(3.12) ρN (B(0,Λ)s ∩ EN ) ≤ µN (B(0,Λ)s ∩ EN ) ≤ o(1)N→+∞ .

As a consequence of (3.9), (3.10) and (3.11), (3.12) we obtain

(3.13)
ρ(B(0,Λ)c

s)) ≤ Cse
−cΛ2

, s <
1
2

ρ(B(0,Λ)s)) = 0 s ≥ 1
2

In particular for every s < 1/2 the space Hs
rad(Θ) is of full ρ measure but ρ(H1/2

rad(Θ)) = 0.

Proof. — The first inequality in (3.11) is straightforward. The second is a simple consequence
of the Bienaymé-Tchebichev inequality. More precisely, using the assumption on c (recall that
zn = πn) and the Bienaymé-Tchebichev inequality yield

ecΛ2
µN (B(0,Λ)c

s ∩ EN ) ≤
∫

EN

ec‖u‖2Hs dµN (u) =
N∏

n=1

∫
C

ecz2s
n |cn|2−

z2
n|cn|2

2
z2
ndcn

2π

=
N∏

n=1

∫
C

e
− |cn|2

2
(1− 2c

z2−2s
n

) dcn

2π
=

N∏
n=1

1
1− 2c

z2−2s
n

≤
∞∏

n=1

1
1− 2c

z2−2s
n

= Cs,

where in the last inequality we used that s < 1
2 .

To prove (3.12), we again use Bienaymé-Tchebichev inequality to write

e−cΛ2
µN (B(0,Λ)s ∩ EN ) ≤

∫
EN

e−c‖u‖2Hs dµN (u) =
N∏

n=1

1
1 + 2c

z2−2s
n

= os(1)N→+∞,

where in the last inequality we used that for s ≥ 1/2,
∞∏

n=1

1
1 + 2c

z2−2s
n

= 0 .

Finally, to prove the first part in (3.13) we choose δ < 1 such that c/δ2 < π/2 and remark
that if δ < 1, B(0,Λ)c ⊂ B(0,Λδ)

c
and apply (3.9) and (3.11)(with c replaced by c/δ2) and

to prove the second part, we apply directly (3.9) and (3.12).
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4. Strichartz estimates

In this section we prove that the usual 3-d Strichartz estimates are true for our boundary
value problem (and radial functions). Let us begin with a definition.

Definition 4.1. — A couple of real numbers (p, q), 2 < p ≤ +∞ is admissible if 1
p + 1

q = 1
2 .

For T > 0, 0 ≤ s < 1, we define the spaces

Xs
T = C0([−T, T ];Hs

rad(Θ)) ∩ Lp((−T, T );Lq
rad(Θ)), (p =

2
s
, q) admissible

and their dual spaces

Y s
T = L1([−T, T ];H−s

rad(Θ)) + Lp′((−T, T );Lq′

rad(Θ)), (p =
2
s
, q) admissible

equipped with their natural norms ((p′, q′) being the conjugate couple of (p, q)).

Proposition 4.2. — Let (p, q) be an admissible couple. Then there exists C > 0 such that

for every T ∈]0, 1], every f ∈ H
2
p

rad(Θ) one has

(4.1) ‖e−it
√
−∆(f)‖Lp([−T,T ];Lq(Θ)) ≤ C‖f‖

H
2
p
rad(Θ)

.

Corollary 4.3. — For every 0 < s < s1 < 1, every admissible couple (p, q), there exists
C > 0 such that for every T ∈]0, 1], every f ∈ Hs

rad(Θ), g ∈ Y 1−s
T , h ∈ Y 1−s1

T , one has

(4.2) ‖e−it
√
−∆(f)‖Xs

T
≤ C‖f‖Hs(Θ)

(4.3) ‖
∫ t

0

√
−∆

−1
e−i(t−τ)

√
−∆(g)(τ)dτ‖Xs

T
≤ C‖g‖Y 1−s

T

(4.4) ‖(1− SN )
∫ t

0

√
−∆

−1
e−i(t−τ)

√
−∆(h)(τ)dτ‖Xs

T
≤ CN s−s1‖h‖

Y
1−s1
T

.

Proof of Corollary 4.3. — Inequality (4.2) is obtained by using (4.1) and the conservation of
the Hs norm. In order to prove (4.3), we set K = e−it

√
−∆. According to (4.2), K is bounded

from Hs
rad to Xs

T . Consequently K∗ is bounded from Y s
T to H−s

rad. Using the last property
with s replaced by 1 − s (which remains in ]0, 1[ if s ∈]0, 1[) and the fact that

√
−∆−1 is

bounded from Hs−1
rad to Hs

rad, we obtain the following sequence of continuous mappings

(4.5) Y 1−s
T

K?

−→ Hs−1
rad (Θ)

√
−∆

−1

−→ Hs
rad(Θ) K−→ Xs

T .

On the other hand, it is easy to check that

K
√
−∆

−1
K∗(f) =

∫ T

−T

√
−∆

−1
e−i(t−τ)

√
−∆f(τ)dτ .
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An application of Christ-Kiselev Lemma [7] (in the more general setting of functions with
values in a Banach space) shows that the map

f 7−→
∫ t

0

√
−∆

−1
e−i(t−τ)

√
−∆f(τ)dτ

is bounded from L1([−T, T ];Hs1−σ
rad (Θ)) to

L∞([−T, T ];Hs
rad(Θ)) ∩ Lp((−T, T );Lq

rad(Θ)), (p =
2
s
, q) admissible

and from
Lep′((−T, T );Leq′

rad(Θ)), (p̃ =
2

1− s
, q̃) admissible

to
L∞([−T, T ];Hs

rad(Θ)) ∩ Lp((−T, T );Lq
rad(Θ)), (p =

2
s
, q) admissible

which (using a density argument to obtain the continuity in time) proves (4.3). Finally (4.4)
is obtained in a similar way replacing (4.5) by

Y 1−s1
T

K?

−→ Hs1−1
rad (Θ)

√
−∆

−1

−→ Hs1
rad(Θ) 1−SN−→ Hs

rad(Θ) K−→ Xs
T

and using that (1− SN ) is bounded from Hs1 to Hs with norm smaller than CN s−s1 .

Let us come back to the proof of Proposition 4.2. We first notice that it is enough to prove
a similar result for the solutions of wave equations.

Proposition 4.4. — Let (p, q) be an admissible couple. Then there exists C > 0 such that

for every T ∈]0, 1], every (u0, u1) ∈ H
2
p

rad(Θ)×H
2
p
−1

rad (Θ) and u solution to the following wave
equation

(4.6) (∂2
t −∆)u = 0, u |∂Θ= 0, u |t=0= u0, ∂tu |t=0= u1,

one has
‖u‖Lp([−T,T ];Lq(Θ)) ≤ C

(
‖u0‖

H
2
p
rad(Θ)

+ ‖u1‖
H

2
p−1

rad (Θ)

)
.

Indeed, as

u = cos(t
√
−∆)u0 +

sin(t
√
−∆)√

−∆
u1,

Proposition 4.2 follows from Proposition 4.4 and the fact that 1/
√
−∆ is an isometry from

H
2
p
−1

rad (Θ) to H
2
p

rad(Θ).

Proof of Proposition 4.4. — According to the finite speed of propagation for the solutions of
wave equations, Proposition 4.4 is a local result which is known near any point in the interior
of Θ. Consequently it suffices to prove it near the boundary, replacing in the left hand side
Lq(Θ) by Lq({x; |x| ∈ [1/2, 1]}). Remark also that the bound given in Proposition 4.4 for
p = +∞ is trivial. As a consequence, it suffices to prove the bound for p = 2 (and near the
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boundary). All other bounds following by interpolation. But the conservation of the energy
gives ∫ 1

r=0
|∂ru|2(t, r)r2dr ≤ ‖u0‖2

H1
rad(Θ) + ‖u1‖2

L2(Θ)

and, the r weight being irrelevant for r ∈ [1/2, 1], (one dimensional) Sobolev embedding gives

‖u‖L∞([−1,1]t×[1/2,1]) ≤ C
(
‖u0‖H1

rad(Θ) + ‖u1‖L2
rad(Θ)

)
which is stronger than the bounds given in Proposition 4.4 for p = 2.

Remark 4.5. — The proof of the Strichartz estimate is much simplified by the radial as-
sumption. However, the more general case of hyperbolic regime when one assume that the
singularities of the wave are transversal to the boundary would still be true (but with a more
technical proof involving parametrices constructed by reflections on the boundary).

5. Local well-posedness

If we set S(t) = e−it
√
−∆ then (2.1) is reduced to the integral equation

(5.1) u(t) = S(t)u0 − i

∫ t

0
S(t− τ)

√
−∆

−1(|Re(u(τ))|αRe(u(τ))
)
dτ .

The next statement provides bounds on the right hand-side of (5.1).

Proposition 5.1. — Let us fix s such that

(5.2) max
(
0,

α− 1
α

)
< s <

1
2

.

Set F (u) = |Re(u)|αu. Then there exist C > 0, δ > 0 such that for every T ∈]0, 1], every
u, v ∈ Xs

T , every u0 ∈ Hs
rad(Θ),

(5.3)
∥∥S(t)u0

∥∥
Xs

T
≤ C‖u0‖Hs

rad(Θ) ,

(5.4)
∥∥∥∫ t

0
S(t− τ)

√
−∆

−1
F (u(τ))dτ

∥∥∥
Xs

T

≤ CT δ‖u‖α+1
Xs

T
,

(5.5)
∥∥∥(1− SN )

∫ t

0
S(t− τ)

√
−∆

−1
F (u(τ))dτ

∥∥∥
Xs

T

≤ CT δN−δ‖u‖α+1
Xs

T
,

(5.6)
∥∥∥∫ t

0
S(t− τ)

√
−∆

−1
(
F (u(τ))−F (v(τ))

)
dτ

∥∥∥
Xs

T

≤ CT δ
(
‖u‖α

Xs
T

+ ‖v‖α
Xs

T

)
‖u− v‖Xs

T
,
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and

(5.7)
∥∥∥∫ t

0
S(t− τ)

√
−∆

−1
SN

(
F (u(τ))− F (v(τ))

)
dτ

∥∥∥
Xs

T

≤ CT δ
(
‖u‖α

Xs
T

+ ‖v‖α
Xs

T

)
‖u− v‖Xs

T
.

Proof. — Estimate (5.3) follows directly from Proposition 4.2. Let us next show (5.4). Ac-
cording to Corollary 4.3 the left hand side of (5.4) is bounded by

(5.8) C‖|Re(u)|αRe(u)‖Lep′ ((−T,T );Leq′ (Θ))

where (p̃ = 2
1−s , q̃) is an admissible couple. Let us fix (p = 2/s, q = 2/(1− s)) an admissible

couple. We have
α + 1

p
− 1

p̃′
=

(α + 1)s
2

− 1 + s

2
=

αs

2
− 1

2
and the conditions s < 1

2 and α < 2 ensure that
p

α + 1
> p̃′ .

On the other hand
α + 1

q
− 1

q̃′
= (α + 1)

(1− s)
2

− (1− s

2
) =

(α− 1)
2

− αs

2

and the condition α−1
α < s ensures that

q

α + 1
> q̃′ .

As a consequence, since Θ is compact, applying Hölder inequality to (5.8), we obtain (5.4).
To prove (5.5), we simply remark that for σ > s close enough to s, the admissible couple

(p̌ =
2

1− σ
, q̌)

still satisfies
p

α + 1
> p̌′,

q

α + 1
> q̌′

and the same proof (using (4.4) instead of (4.3)) gives (5.5). The proofs of (5.6) and (5.7) are
very similar to that of (5.4) and will be omitted. This completes the proof of Proposition 5.1.

As a consequence of Proposition 5.1, we infer the following well-posedness results for (3.1)
and (3.2).

Proposition 5.2. — Let us fix s satisfying (5.2). There exist C > 0, c ∈]0, 1], γ > 0
such that for every A > 0 if we set T = c(1 + A)−γ then for every u0 ∈ Hs

rad(Θ) satis-
fying ‖u0‖Hs

rad
≤ A there exists a unique solution u of (3.1) in Xs

T . Moreover ‖u‖Xs
T
≤
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C‖u0‖Hs
rad(Θ). Finally if u and v are two solutions with data u0, v0 respectively, satisfying

‖u0‖Hs
rad

≤ A and ‖v0‖Hs
rad

≤ A then ‖u− v‖Xs
T
≤ C‖u0 − v0‖Hs

rad(Θ).

Thanks to (5.7) we also have a well-posedness in the context of (3.2) with bounds inde-
pendent of N .

Proposition 5.3. — Let us fix s satisfying (5.2). There exist C > 0, c ∈]0, 1], γ > 0
such that for every A > 0 if we set T = c(1 + A)−γ then for every N ∈ N∗ and every
u0 ∈ Hs

rad(Θ)∩EN satisfying ‖u0‖Hs
rad

≤ A there exists a unique solution u = SN (u) of (3.2)
in Xs

T . Moreover ‖u‖Xs
T
≤ C‖u0‖Hs

rad(Θ). Finally if u and v are two solutions with data u0, v0

respectively, satisfying ‖u0‖Hs
rad

≤ A and ‖v0‖Hs
rad

≤ A then ‖u− v‖Xs
T
≤ C‖u0− v0‖Hs

rad(Θ).

6. Global existence for (3.1) on a set of full ρ measure

Recall that σ is a fixed number satisfying (1.2) and the dependence on σ of several numerical
constants and sets appearing in the sequel will not always be explicitly mentioned. Let us
denote by ΦN (t) : EN → EN , t ∈ R the flow of (3.2) defined in Proposition 3.1. In the
next proposition, we obtain a long time bound for the solutions of (3.2) in weak topologies.
Observe that bounds in terms of the H1 norm of the data are trivial by the Hamiltonian
conservation but insufficient for our purposes.

Proposition 6.1. — For every integer i ≥ 1, every integer N ≥ 1, there exists a ρN mea-
surable set Σi

N ⊂ EN such that ρN (EN\Σi
N ) ≤ 2−i and there exists a constant C such that

for every i ∈ N∗, every N ∈ N∗, every u0 ∈ Σi
N , every t ∈ R,

‖ΦN (t)(u0)‖Hσ
rad(Θ) ≤ C(i + log(1 + |t|))

1
2 .

Proof. — For i, j integers ≥ 1, we set

Bi,j
N (D) ≡

{
u ∈ EN : ‖u‖Hσ

rad(Θ) ≤ D(i + j)
1
2
}
,

where the number D � 1 (independent of i, j, N) will be fixed later. Thanks to Propo-
sition 5.3, there exist c > 0, C > 0, γ > 0 only depending on σ such that if we set
τ ≡ cD−γ(i + j)−γ/2 then for every t ∈ [−τ, τ ],

(6.1) ΦN (t)
(
Bi,j

N (D)
)
⊂

{
u ∈ EN : ‖u‖Hσ

rad(Θ) ≤ C D(i + j)
1
2 } .

Next, we set

Σi,j
N (D) ≡

[2j/τ ]⋂
k=−[2j/τ ]

ΦN (−kτ)(Bi,j
N (D)) ,

where [2j/τ ] stays for the integer part of 2j/τ . Using the invariance of the measure ρN by
the flow ΦN (Proposition 3.1), we can write

ρN (EN\Σi,j
N (D)) ≤ (2[2j/τ ] + 1)ρN (EN\Bi,j

N (D)) ≤ C2jDγ(i + j)γ/2ρN (EN\Bi,j
N (D)) .
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Using Lemma 3.2 we now deduce

(6.2) ρN (EN\Σi,j
N (D)) ≤ C2jDγ(i + j)γ/2e−cD2(i+j) ≤ 2−(i+j),

provided D � 1, independent of i, j, N . Thanks to (6.1), we obtain that for u0 ∈ Σi,j
N (D),

the solution of (3.2) with data u0 satisfies

(6.3) ‖ΦN (t)(u0)‖Hσ
rad(Θ) ≤ CD(i + j)

1
2 , |t| ≤ 2j .

Indeed, for |t| ≤ 2j , we may find an integer k ∈ [−[2j/τ ], [2j/τ ]] and τ1 ∈ [−τ, τ ] so that t =
kτ + τ1 and thus u(t) = ΦN (τ1)

(
ΦN (kτ)(u0)

)
. Since u0 ∈ Σi,j

N (D) implies that ΦN (kτ)(u0) ∈
Bi,j

N (D), we may apply (6.1) and arrive at (6.3). Next, we set

Σi
N =

∞⋂
j=1

Σi,j
N (D) .

Thanks to (6.2), ρN (EN\Σi
N ) ≤ 2−i . In addition, using (6.3), we get that there exists C such

that for every i, every N , every u0 ∈ Σi
N , every t ∈ R,

‖ΦN (t)(u0)‖Hσ
rad(Θ) ≤ C(i + log(1 + |t|))

1
2 .

Indeed for t ∈ R there exists j ∈ N∗ such that 2j−1 ≤ 1 + |t| ≤ 2j and we apply (6.3) with
this j. This completes the proof of Proposition 6.1.

For integers i ≥ 1 and N ≥ 1, we define the cylindrical sets

Σ̃i
N ≡

{
u ∈ Hσ

rad(Θ) : SN (u) ∈ Σi
N

}
.

Next, for an integer i ≥ 1, we set

Σi ≡
{
u ∈ Hσ

rad(Θ) : ∃Nk →∞, Nk ∈ N∗, ∃uNk
∈ Σi

Nk
, uNk

→ u inHσ
rad(Θ)

}
.

Then the set Σi is a closed set of Hσ
rad(Θ). Observe that we have the inclusion

lim sup
N→∞

Σ̃i
N ≡

∞⋂
N=1

∞⋃
N1=N

Σ̃i
N1
⊂ Σi.

Therefore

(6.4) ρ(Σi) ≥ ρ(lim sup
N→∞

Σ̃i
N ) .

Using Fatou’s lemma, we get

(6.5) ρ(lim sup
N→∞

Σ̃i
N ) ≥ lim sup

N→∞
ρ(Σ̃i

N ) .

Next, using Proposition 6.1 and (3.9) and (3.10), we obtain

(6.6) lim sup
N→∞

ρ(Σ̃i
N ) = lim sup

N→∞
ρN (Σi

N ) ≥ lim sup
N→∞

(
ρN (EN )− 2−i

)
= ρ

(
Hσ

rad(Θ)
)
− 2−i.
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Collecting (6.4), (6.5) and (6.6), we arrive at

ρ(Σi) ≥ ρ
(
Hσ

rad(Θ)
)
− 2−i.

Now, we set

Σ ≡
⋃
i≥1

Σi .

Thus Σ is of full ρ measure. It turns out that one has global existence for u0 ∈ Σ.

Proposition 6.2. — Let us fix i ∈ N∗. Then for every u0 ∈ Σi, the local solution u of (3.1)
given by Proposition 5.2 is globally defined. In addition there exists C > 0 such that for every
u0 ∈ Σi,

(6.7) ‖u(t)‖Hσ
rad(Θ) ≤ C(i + log(1 + |t|))

1
2 .

Moreover, if (u0,k)k∈N∗, u0,k ∈ Σi
Nk

, Nk →∞ converges to u0 as k →∞ in Hσ
rad(Θ) then for

every t ∈ R,

(6.8) lim
k→∞

‖u(t)− ΦNk
(t)(u0,k)‖Hσ

rad(Θ) = 0 .

Proof. — Let u0 ∈ Σi and u0,k ∈ Σi
Nk

, Nk →∞ a sequence tending to u0 in Hσ
rad(Θ). Let us

fix T > 0. Our aim so to extend the solution of (3.1) given by Proposition 5.2 to the interval
[−T, T ]. Using Proposition 6.1, we have that there exists a constant C such that for every
k ∈ N∗, every t ∈ R,

(6.9) ‖ΦNk
(t)(u0,k)‖Hσ

rad(Θ) ≤ C(i + log(1 + |t|))
1
2 .

Therefore, if we set uNk
(t) ≡ ΦNk

(t)(u0,k) and Λ ≡ C(i + log(1 + T ))
1
2 , we have the bound

(6.10) ‖uNk
(t)‖Hσ

rad(Θ) ≤ Λ, ∀ |t| ≤ T, ∀ k ∈ N∗.

In particular ‖u0‖Hσ
rad

≤ Λ (apply (6.10) with t = 0 and let k →∞). Let τ > 0 be the local
existence time for (3.1), provided by Proposition 5.2 for A = Λ. Recall that we can assume
τ = c(1 + Λ)−γ for some c > 0, γ > 0 depending only on the choice of σ. We can assume
that T > τ . Denote by u(t) the solution of (3.1) with data u0 on the time interval [−τ, τ ].
Then vNk

≡ u− uNk
solves the equation

(6.11) (i∂t −
√
−∆)vNk

=
√
−∆

−1
(
F (u)− SNk

(F (uNk
))

)
, vNk

|t=0 = u0 − u0,k ,

where F (u) = |Re(u)|αRe(u). Next, we write

F (u)− SNk
(F (uNk

)) = SNk

(
F (u)− F (uNk

)
)

+ (1− SNk
)F (u).
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Therefore

vNk
(t) = S(t)(u0 − u0,k)

− i

∫ t

0
S(t− τ)

√
−∆

−1
SNk

(
F (u(τ))− F (uNk

(τ))
)
dτ

− i

∫ t

0
S(t− τ)

√
−∆

−1
(1− SNk

)F (u(τ))dτ .

Using Proposition 5.1, we obtain that there exist C > 0 and θ, δ > 0 (depending only on σ)
such that one has the bound

‖(1− SN )
∫ t

0
S(t− τ)

√
−∆

−1
F (u(τ))dτ‖Xσ

τ
≤ Cτ θN−δ‖u‖Xσ

τ

(
1 + ‖u‖α

Xσ
τ

)
.

Another use of Proposition 5.1 yields

‖vNk
‖Xσ

τ
≤ C

(
‖u0 − u0,k‖Hσ

rad(Θ) + τ θ‖vNk
‖Xσ

τ

(
1 + ‖u‖α

Xσ
τ

+ ‖uNk
‖α

Xσ
τ

))
+ o(1)k→+∞ .

A use of Proposition 5.2 and Proposition 5.3 yields

‖vNk
‖Xσ

τ

≤ C‖u0 − u0,k‖Hσ
rad(Θ) + Cτ θ‖vNk

‖Xσ
τ

(
1 + C‖u0‖α

Hσ
rad(Θ) + C‖u0,k‖α

Hσ
rad(Θ)

)
+ o(1)k→+∞

≤ C‖u0 − u0,k‖Hσ
rad(Θ) + Cτ θ(1 + Λ)α‖vNk

‖Xσ
τ

+ o(1)k→+∞ .

Recall that τ = c(1 + Λ)−γ , where c > 0 and γ > 0 are depending only on σ. In the last
estimate the constants C and θ also depend only on σ. Therefore, if we assume that γ > α/θ
then the restriction on γ remains to depend only on σ. Similarly, if we assume that c is so
small that Cτ θ(1 + Λ)α ≤ Ccθ(1 + Λ)−γθ(1 + Λ)α ≤ Ccθ < 1/2 then the smallness restriction
on c remains to depend only on σ. Therefore, we have that after possibly slightly modifying
the values of c and γ (keeping c and γ only depending on σ and independent of Nk) in the
definition of τ that

‖vNk
‖Xσ

τ
≤ C‖vNk

(0)‖Hσ
rad(Θ) + o(1)k→+∞.(6.12)

and passing to the limit in (6.12), we obtain

lim
k→+∞

‖vNk
‖L∞([0,τ ];Hσ

rad(Θ)) = 0,

where τ = c(1 + Λ)−γ and the constants c and γ depend only on σ. Thus, via a use of the
triangle inequality,

(6.13) ‖u(t)‖Hσ
rad(Θ) ≤ lim sup

k→+∞
‖uNk

(t)‖Hσ
rad(Θ) ≤ Λ, |t| ≤ τ.

In particular, we deduce
‖u(τ)‖Hσ

rad(Θ) ≤ Λ.
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Now, the constant τ is fixed and we can repeat the argument for obtaining (6.13) on (τ, 2τ),
(2τ, 3τ), ...([T

τ ]τ, ([Tτ ] + 1)τ) (and similarly for negative times), giving (6.7) and (6.8). This
completes the proof of Proposition 6.2.

Therefore we solved globally in time, with a suitable uniqueness, the problem (3.1) on a set
of full ρ measure. This completes the proof of Theorem 1.

7. Invariance of the measure ρ

Set

Σi(M) ≡
{
u ∈ Hσ

rad(Θ) : ∃ τk ∈ R, |τk| ≤ M,

∃Nk →∞, Nk ∈ N∗, ∃uNk
∈ Σi

Nk
, ΦNk

(τk)uNk
→ u inHσ

rad(Θ)
}
.

The set Σi(M) is a closed set of Hσ
rad(Θ). Observe that Σi(0) is the set Σi used in the proof

of Theorem 1. Next, we set

Σi =
∞⋃

M=1

Σi(M).

The set Σi is ρ measurable and

(7.1) ρ(Σi) ≥ ρ(Σi(0)) ≥ ρ
(
Hσ

rad(Θ)
)
− 2−i.

Proposition 6.2 naturally extends to the set Σi.

Proposition 7.1. — Let us fix M, i ∈ N∗. Then for every u0 ∈ Σi(M), the local solution u
of (3.1) given by Proposition 5.2 is globally defined. In addition there exists C > 0 such that
for every u0 ∈ Σi(M),

(7.2) ‖u(t)‖Hσ(Θ) ≤ C(i + log(1 + M + |t|))
1
2 .

Moreover, if (u0,k)k∈N∗, u0,k ∈ Σi
Nk

, Nk →∞, |τk| ≤ M are such that ΦNk
(τk)(u0,k) converges

to u0 as k →∞ in Hσ
rad(Θ) then

(7.3) lim
k→∞

‖u(t)− ΦNk
(t + τk)(u0,k)‖Hσ

rad(Θ) = 0 .

Next, we set

Σ ≡
∞⋃
i=1

Σi .

Then, using (7.1) we obtain that the set Σ is of full ρ measure. Thanks to Proposition 7.1, we
can establish a well-defined dynamics of (3.1) for data in Σ. Let us denote by Φ the flow map
of (3.1) for data in Σ. We have the following corollary of Proposition 7.1 and Proposition 5.2.

Proposition 7.2. — For every t ∈ R, Φ(t)(Σ) = Σ. In addition Φ(t) is continuous with
respect to the induced by Hσ

rad(Θ) to Σ topology (in particular ρ measurable).

We now state the measure invariance result.
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Theorem 2. — For every A ⊂ Σ, a ρ measurable set, for every t ∈ R, ρ(A) = ρ(Φ(t)(A)).

Proof. — We first perform several reductions allowing to consider only sets A of a special type
and only short times t. Thanks to the invariance of Σ under Φ(t) and the time reversibility
of Φ(t), we obtain that it suffices to prove that for every ρ measurable set A ⊂ Σ, every
t ≥ 0 one has ρ(A) ≤ ρ(Φ(t)(A)). Next, we observe that every ρ measurable set A may
be approximated from the interior by closed sets of Hσ

rad(Θ), i.e. there exists a sequence of
closed sets Fn ⊂ A such that ρ(A) = limn ρ(Fn). Indeed, this approximation property is
equivalent to a similar approximation property from the exterior by open sets which may be
achieved by considering ε open neighborhoods of the set and passing to the limit ε → 0 via
the Lebesgue dominated convergence theorem. Therefore, we deduce that it suffices to prove
that for every closed set F ⊂ Σ of Hσ

rad(Θ) one has ρ(F ) ≤ ρ(Φ(t)(F )), t ≥ 0. Indeed, if we
have the last inequality then for an arbitrary measurable set A ⊂ Σ, we may write

ρ(A) = lim
n→∞

ρ(Fn) ≤ lim sup
n→∞

ρ(Φ(t)(Fn)) ≤ ρ(Φ(t)(A)),

where Fn ⊂ A is the corresponding approximating sequence of closed sets. Let F be a closed
set of Hσ

rad(Θ). Let us consider the set Kn ⊂ A defined as

Kn ≡ {u ∈ F : ‖u‖Hs
rad(Θ) ≤ n},

where σ < s < 1/2. Then Kn is a compact set of Hσ
rad(Θ) and thanks to Lemma 3.2 one

has ρ(F ) = limn ρ(Kn). Therefore, in order to prove Theorem 2, it suffices to prove that for
every set K ⊂ Σ which is a compact of Hσ

rad(Θ) one has ρ(K) ≤ ρ(Φ(t)(K)), t ≥ 0.
Let us now fix a compact K ⊂ Σ of Hσ

rad(Θ) and t ≥ 0. Let us observe that there exists
R > 0 such that

{Φ(τ)(K), 0 ≤ τ ≤ t} ⊂ {u ∈ Hσ
rad(Θ) : ‖u‖Hσ

rad(Θ) ≤ R} ≡ BR .

We next state a proposition which allows to compare Φ and ΦN for data in compacts contained
in BR.

Lemma 7.3. — There exist two constants c > 0 and γ > 0 (depending only on σ) such that
the following holds true. For every compact K ⊂ BR, every ε > 0 there exists N0 ≥ 1 such
that for every N ≥ N0, every u0 ∈ K, every τ ∈ [0, c(1 + R)−γ ],

‖Φ(τ)(u0)− ΦN (τ)(SN (u0))‖Hσ
rad(Θ) < ε .

Proof. — The argument is very similar to Proposition 6.2, the only additional point is the
uniformness with respect to the compact K, we will use below. Let K ⊂ BR be a compact set
For u0 ∈ K, we denote by u the solution of (3.1) with data u0 and by uN the solution of (3.2)
with data SN (u0), defined on [0, τ ], where thanks to Proposition 5.2 and Proposition 5.3,
τ = c0(1 + R)−γ0 with c0 > 0, γ0 > 0 depending only on σ. Next, we set vN ≡ u− uN . Then
vN solves

(7.4) (i∂t −
√
−∆)vN =

√
−∆

−1
(
F (u)− SN (F (uN ))

)
, vN (0) = (1− SN )u0 ,
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where F (u) = |Re(u)|αRe(u). By writing

F (u)− SN (F (uN )) = SN

(
F (u)− F (uN )

)
+ (1− SN )F (u),

and using Propositions 5.1 and 5.2, we obtain that there exist C > 0 and θ > 0 depending
only on σ such that

‖vN‖Xσ
τ
≤ C‖(1− SN )u0‖Hσ

rad(Θ) + Cτ θ‖vN‖Xσ
τ

(
1 + ‖u‖α

Xσ
τ

+ ‖uN‖α
Xσ

τ

)
+ o(1)N→+∞,

where o(1)N→+∞ is a quantity which tends to zero as N → +∞, uniformly with respect to
u0 ∈ K. Using Propositions 5.2 and Proposition 5.3, we get

‖vN‖Xσ
τ
≤ C‖(1− SN )u0‖Hσ

rad(Θ) + Cτ θ‖vN‖Xσ
τ

(
1 + ‖u0‖α

Hσ
rad(Θ)

)
+ o(1)N→+∞.

Coming back to the definition of τ we can choose c0 small enough and γ0 large enough, but
keeping their dependence only on σ, to infer that

‖vN‖Xσ
τ
≤ C‖(1− SN )u0‖Hσ

rad(Θ) .

The space Xσ
τ is continuously embedded in C([0, τ ];Hσ

rad(Θ)) and thus there exists C de-
pending only on σ such that

‖vN (t)‖Hσ(Θ) ≤ C‖(1− SN )u0‖Hσ
rad(Θ), t ∈ [0, τ ].

Since K is a compact of Hσ
rad(Θ), we have

∀ ε > 0, ∃N0 ≥ 1 : ∀N ≥ N0, ∀u0 ∈ K, ‖(1− SN )u0‖Hσ
rad(Θ) < ε .

This completes the proof of Lemma 7.3.

It suffices to prove that

(7.5) ρ(Φ(τ)(K)) ≥ ρ(K), τ ∈ [0, c(1 + R)−γ ],

where c and γ are fixed by Lemma 7.3. Indeed, it suffices to cover [0, t] by intervals of size
c(1 + R)−γ and apply (7.5) at each step. Such an iteration is possible since at each step the
image remains a compact of Hσ

rad(Θ) included in the ball BR. Let us now prove (7.5). Let
Bε be the open ball in Hσ

rad(Θ) centered at the origin and of radius ε. By the continuity
property of Φ(t), we have that Φ(τ)(K) is a closed set of Hσ

rad(Θ) contained in Σ. Therefore,
by (3.10), we can write

ρ
(
Φ(τ)(K) + B2ε

)
≥ lim sup

N→∞
ρN

((
Φ(τ)(K) + B2ε

)
∩ EN

)
,

where B2ε is the closed ball in Hσ
rad(Θ), centered at the origin and of radius 2ε. Using

Lemma 7.3, we obtain that for every ε > 0, if we take N large enough, we have(
ΦN (τ)(SN (K)) + Bε

)
∩ EN ⊂

(
Φ(τ)(K) + B2ε

)
∩ EN

and therefore

lim sup
N→∞

ρN

((
Φ(τ)(K) + B2ε

)
∩ EN

)
≥ lim sup

N→∞
ρN

((
ΦN (τ)(SN (K)) + Bε

)
∩ EN

)
.
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Next, using the uniform continuity property of the flow ΦN (see Proposition 5.3), we obtain
that there exists c ∈]0, 1[, independent of ε such that for N large enough, we have

ΦN (τ)
(
(K + Bcε) ∩ EN

)
⊂

(
ΦN (τ)(SN (K)) + Bε

)
∩ EN ,

where Bcε is the open ball in Hσ
rad(Θ) centered at the origin and of radius cε. Therefore

lim sup
N→∞

ρN

((
ΦN (τ)(SN (K)) + Bε

)
∩ EN

)
≥ lim sup

N→∞
ρN

(
ΦN (τ)

(
(K + Bcε) ∩ EN

))
,

Further, using Proposition 3.1, we obtain

ρN

(
ΦN (τ)

(
(K + Bcε) ∩ EN

))
= ρN

(
(K + Bcε) ∩ EN

)
and thus

lim sup
N→∞

ρN

(
ΦN (τ)

(
(K + Bcε) ∩ EN

))
≥ lim inf

N→∞
ρN

(
(K + Bcε) ∩ EN

)
.

Finally, using (3.9), we can write

lim inf
N→∞

ρN

(
(K + Bcε) ∩ EN

)
≥ ρ(K + Bcε) ≥ ρ(K).

Therefore, we have the inequality ρ
(
Φ(τ)(K)+B2ε

)
≥ ρ(K). By letting ε → 0, the dominated

convergence gives ρ(Φ(τ)(K)) ≥ ρ(K). This completes the proof of Theorem 2.
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