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Abstract. — We study the local existence of strong solutions for the cubic nonlinear wave
equation with data in Hs(M), s < 1/2, where M is a three dimensional compact riemannian
manifold. This problem is supercritical and can be shown to be strongly ill-posed (in the
Hadamard sense). However, after a suitable randomization, we are able to construct local
strong solution for a large set of initial data in Hs(M), where s ≥ 1/4 in the case of a
boundary less manifold and s ≥ 8/21 in the case of a manifold with boundary.

1. Introduction

In the study of the local well-posedness of a nonlinear evolutionary PDE, one often
encounters the presence of a critical threshold for the well-posedness theory. A typical sit-
uation is to have a method showing well-posedness in Sobolev spaces Hs where s is greater
than a critical index scr. This index is often related to a scale invariance (leading to solu-
tions concentrating at a point of the space-time) of the considered equation. In some cases
(but not all), a good local well-posedness theory is valid all the way down to the scaling
regularity. On the other hand, at least in the context of nonlinear dispersive equations,
no reasonable local well-posedness theory is known for any supercritical equation, i.e. for
data having less regularity than the scaling one. In fact, recently, several methods to show
ill-posedness, or high frequency instability, for s < scr emerged (see the works by Burq,
Gérard and Tzvetkov [6, 5], Lebeau [12] and Christ Colliander and Tao [10]). The goal
of this paper is to give a class of equations for which, using probabilistic arguments, one
can still obtain a suitable well-posedness theory below the critical threshold. Our model
will be the cubic nonlinear wave equation posed on a compact manifold.
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Let (M, g) be a three dimensional compact smooth riemannian manifold (without
boundary) and let ∆ be the Laplace-Beltrami operator associated to the smooth met-
ric g. For s ∈ R, we denote by Hs(M) the classical Sobolev space equipped with the norm
‖u‖Hs(M) = ‖(1−∆)s/2u‖L2(M). Consider the following cubic wave equation

(1.1) (∂2
t −∆)u+ u3 = 0, (u, ∂tu)|t=0 = (f1, f2)

with real valued initial data (f1, f2) ≡ f ∈ Hs(M)×Hs−1(M) ≡ Hs(M).
Using Strichartz estimates for the free evolution (see Section 2) one can show that for

s > 1/2 the Cauchy problem (1.1) is locally well-posed for data in Hs(M). This means
that for every f ∈ Hs(M) there exists T > 0 and a unique solution u of (1.1), in a suitable
class, such that (u, ut) ∈ C([0, T ];Hs(M)), i.e. the solution u represents a continuous
curve in Hs(M) (we call such a solution strong solution since the classical construction
of weak solutions does not yield the continuity in time). Moreover, we can show that the
time existence T may be chosen the same for all f belonging to a fixed bounded set B of
Hs(M) and the map f 7→ (u, ut) is continuous (and even Lipschitz continuous) from B to
C([0, T ];Hs(M)).

For s = 1/2 one can still construct local strong solution for f ∈ H1/2(M) but the
dependence of T on f is more complicated and the Sobolev space H1/2(M) is called
critical space for (1.1).

For s < 1/2, the argument to construct local solutions by Strichartz estimates breaks
down. Moreover one may show (see [10], [12] for the case of constant coefficient metrics
or the appendix of this paper for the case of non constant coefficient metrics ) that if
the initial data belong to Hs(M), s < 1/2, the Cauchy problem (1.1) is ill-posed in a
strong sense: there exists initial data (f1, f2) ∈ Hs(M) such that any reasonable solution
of (1.1), i.e. satisfying the finite speed of propagation ceases instantaneously to be in
Hs for positive times (by finite speed of propagation, we mean the fact that the value of
the solution at (x0, t0) depends only on the values of the initial data on the set of points
located at distance smaller that |t0|: {x : dg(x, x0) ≤ |t0|}). However, the functions for
which one can prove such a pathological behavior are highly non generic and a natural
question is whether despite this result one can still prove that the problem (1.1) possesses
local strong solutions for a “large class of functions” in Hs(M), s < 1/2. Our purpose in
this paper is precisely to give a positive answer to this question. Our main result reads as
follows.

Theorem 1. — Assume that ∂M = ∅. Let us fix s ≥ 1
4 and f = (f1, f2) ∈ Hs(M). Let

fω ∈ L2(Ω;Hs(M)) be the associated random function defined in Definition 1.1 below.
Then there exists σ ≥ 1

2 such that for almost all ω ∈ Ω there exist Tω > 0 and a unique
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solution to (1.1) with initial data fω in a space continuously embedded in

Xω =
(

cos(t
√
−∆)fω1 +

sin(t
√
−∆)fω2√
−∆

)
+ C([−Tω, Tω];Hσ(M)).

More precisely, there exist C > 0, δ ≥ 0 (δ > 0 if s > 1/4) and for every 0 < T ≤ 1, an
event ΩT such that

(1.2) p(ΩT ) ≥ 1− CT 1+δ

and such that for every ω ∈ ΩT there exists a unique solution u of (1.1) with data fω in
a space continuously embedded in C([−T, T ];Hs(M)).
Moreover, if s > 1/4 and if the random variables appearing in the definition of fω, hn, ln,
are standard real Gaussian or Bernoulli variables (1.2) can be improved to

(1.3) p(ΩT ) ≥ 1− Ce−c/T δ , c, δ > 0.

Let us now define precisely the randomization we use and what we mean by “a large
class of initial data in Hs(M)”.

Definition 1.1. — Let (en) ∈ C∞(M), n = 1, 2, . . . be an orthonormal basis of L2(M)
constructed from real eigenfunctions of the operator −∆ associated to eigenvalues λ2

n. Let
((hn(ω), ln(ω))∞n=1 be a sequence of independent, 0 mean value, real random variables on
a probability space (Ω,A, p) such that

(1.4) ∃C > 0 : ∀n ≥ 1,
∫

Ω
(|hn(ω)|4 + |ln(ω)|4)dp(ω) < C .

For f = (f1, f2) ∈ Hs(M) given by

f1(x) =
∞∑
n=1

αnen(x), f2(x) =
∞∑
n=1

βnen(x), αn, βn ∈ R,

we consider the map

(1.5) ω 7−→ fω = (fω1 (x) =
∞∑
n=1

hn(ω)αnen(x), fω2 (x) =
∞∑
n=1

ln(ω)βnen(x))

from (Ω,A) to Hs(M) equipped with the Borel sigma algebra. Using (1.4) one can check
that the map ω 7→ fω is measurable and fω ∈ L2(Ω;Hs(M)). Thus it defines a Hs(M)
valued random variable, which we call the random function associated to (f1, f2).

Remark 1.2. — A simple computation (see Appendix 2) shows that if hn, ln are identi-
cally distributed and different from zero, or more generally if there exists c > 0 such that
the distributions hn, ln satisfy

lim sup
n→+∞

p({|hn|+ |ln| ≤ c}) < 1,
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then, if f does not belong to Hs+ε(M), for almost all ω, fω does not belongs to Hs+ε(M).
Thus the randomization ω 7→ fω does not give a regularization in the scale of the Sobolev
spaces (but we shall crucially exploit Lp regularizations of this randomization).

Remark 1.3. — The result in Theorem 1 shows that in some sense the problem (1.1) is
well-posed for almost all initial data in H

1
4 (M), exhibiting a gain of 1/4 derivatives with

respect to the critical index 1/2.

Remark 1.4. — For any f ∈ Hs(M), 1/4 ≤ s, the map

ω ∈ Ω 7→ fω ∈ Hs(M)

endows naturally Hs(M) with a probability measure µf . It is straightforward to check
that the solutions given by Theorem 1 satisfy the finite speed of propagation. As a
consequence, Theorem 1 implies that the set of initial data exhibiting the same kind of
pathological behavior as the ones we constructed in the appendix have measure 0 for any
measure µf .

Remark 1.5. — Combining the ideas developed in this paper (and in particular (1.3))
with a global control on the flow given by invariant measures (which itself is related to
the Hamiltonian nature of our equation, see e.g. our previous work [8] or [2, 3, 16, 17])
leads to global well posedness results for a class of super critical wave equations (see our
forthcoming paper [9]). On the other hand, it would be interesting to decide whether the
local in time result of Theorem 1 may be successfully combined with other global controls
on the flow such as conservation laws.

Remark 1.6. — The method of proof consists in using the fact that though the initial
data have low regularity, their Lp properties are (almost surely) much better than expected,
allowing the use of a fixed point method after having singled out the linear evolution. Let
us note that such Lp regularization phenomena are well-known in the context of Fourier
series since the work of Paley-Zygmund [13]. Similar phenomena were recently studied by
Ayache and the second author in the context of sums of type (1.5) in [1].

Remark 1.7. — In the improved time existence statement of Theorem 1 one may replace
the assumption to deal with Gaussian or Bernoulli’s variables by the assumption (3.1)
below.

Remark 1.8. — For the sake of conciseness, we chose to focus on the cubic semi linear
wave equation. However, the strategy presented here applies to arbitrary non linearities
and allows to go beyond the usual critical threshold. In particular, at the energy level
(H1 × L2), the local well posedness result holds for the semilinear wave equation

�u+ |u|p−1u = 0
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for any exponent 1 ≤ p < +∞

Remark 1.9. — Let us observe that the possibility of a similar phenomenon as described
in Theorem 1, in the context of the nonlinear Schrödinger equation (NLS), is studied in
the last section of [17]. However, the situation in the context of NLS is much more
involved and it would be interesting to decide whether the main result of this paper has
an appropriate extension in the context of NLS (or other nonlinear PDE’s).

Finally let us notice that our results extend to Dirichlet or Neumann boundary condi-
tions. In this case, the deterministic Cauchy theory is much less well known.

Definition 1.10. — Let M be a smooth manifold with boundary and compact closure,
and let (en)∞n=1 be an L2-normalized basis consisting in eigenfunctions of the Laplace op-
erator with Dirichlet (resp Neumann) boundary conditions, associated to eigenvalues λ2

n.
The space Hs

D(M) (resp Hs
N (M)) is the space of functions f such there exists a sequence

(αn)∞n=1 such that

(1.6) f(x) =
∑
n

αnen(x)

with ∑
n

(1 + λn)2s|αn|2 <∞ .

We shall denote by HsD(M) = Hs
D(M)×Hs−1

D (M) (resp HsN = Hs
N (M)×Hs−1

N (M)).

Remark 1.11. — The space Hs
D(M) coincides with the usual Sobolev space of order s

if −1/2 < s < 1/2 whereas Hs
N (M) coincide with the usual Sobolev space of order s if

−3/2 < s < 3/2.

Consider now the wave equation

(1.7) (∂2
t −∆)u+ u3 = 0, (u, ∂tu)|t=0 = (f1, f2)

with real valued initial data (f1, f2) ≡ f ∈ Hs(M) × Hs−1(M) ≡ Hs(M), and Dirichlet
(u |Rt×∂M= 0) or Neumann (∂u∂n |Rt×∂M= 0) boundary conditions.

From the results by Lebeau, Planchon and the first author [7] (see also section 6), one
can show that the Cauchy problem is well posed in H2/3

D,N (M). Here we show that almost
surely, this result can be improved to s = 8/21 < 1/2).

Theorem 2. — Assume that ∂M 6= ∅, and that the random variables have sixth moments
uniformly bounded

(1.8) ∃C > 0 : ∀n ≥ 1,
∫

Ω
(|hn(ω)|6 + |ln(ω)|6)dp(ω) < C .
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Let us fix s ≥ 8
21 and f = (f1, f2) ∈ HsD,N (M). Let fω ∈ L2(Ω;HsD,N (M)) be defined by

the randomization (1.5). Then there exists σ ≥ 2
3 such that for almost all ω ∈ Ω there

exist Tω > 0 and a unique solution to (1.7) with initial data fω in a space continuously
embedded in

Xω =
(

cos(t
√
−∆D,N )fω1 +

sin(t
√
−∆D,N )fω2√
−∆D,N

)
+ C([−Tω, Tω];Hσ

D,N (M)).

More precisely, there exists C > 0, δ > 0 and for every 0 < T ≤ 1, an event ΩT such that

(1.9) p(ΩT ) ≥ 1− CT 1+δ

and such that for every ω ∈ ΩT there exists a unique solution u of (1.1) with data fω in
a space continuously embedded in C([0, T ];Hs(M)).

Moreover, if hn, ln are standard real Gaussian or Bernoulli variables one can im-
prove (1.9) to

(1.10) p(ΩT ) ≥ 1− Ce−c/T δ , c, δ > 0 .

The paper is organized as follows: in section 2 we recall Strichartz estimates for wave
equations and Sogge’s estimates for Lp norms of spectral projectors. In Section 3 we prove
a large deviation bound. In Section 4 we prove in some sense that “randomization beats
deterministic Strichartz estimates” in terms of Lp estimates. In Section 5 we perform a
fixed point argument in a suitable space to prove Theorem 1. Finally, in Section 6 we
indicate how the previous argument have to be adapted in the case of a boundary value
problem. In all the proof, we shall focus on positive times, the case of negative times being
similar due to time reversibility.

Acknowledgments: We thank H. Queffélec for providing us the reference [13].

2. Strichartz and Sogge estimates

We shall assume in this section that the boundary of M is empty and collect the
Strichartz estimates for the free evolution and the Sogge estimates for the eigenfunctions
en(x). These sets of estimates are actually in the same family, their proofs being a com-
bination of the Fourier integral operator approximation for hyperbolic problems and the
TT ? duality argument. Let us note that due to the finite speed of propagation for solutions
to the wave equation, Strichartz estimates on a compact manifold are equivalent to some
variable coefficient Strichartz estimates on R3. We refer to Kapitanskii [11, Theorem 2]
for the proof of the Strichartz estimate we state bellow and to Sogge [15, Theorem 2.1]
for the bound on en stated bellow.

The purpose of the next definition is to define the Strichartz spaces used for solving the
problem (1.1).
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Definition 2.1. — For 0 ≤ s < 1, a couple of real numbers (p, q), 2
s ≤ p ≤ +∞ is

s-admissible if
1
p

+
3
q

=
3
2
− s.

For T > 0, 0 ≤ s < 1, we define the spaces

(2.1) Xs
T = C0([0, T ];Hs(M))

⋂
(p,q) s- admissible

Lp((0, T );Lq(M))

and its “dual” space

(2.2) Y s
T = L1([0, T ];H−s(M)) +(p,q) s- admissible L

p′((0, T );Lq
′
(M))

(p′, q′) being the conjugate couple of (p, q), equipped with their natural norms (notice that
to define these spaces, we keep only the extremal couples corresponding to p = 2/s and
p = +∞ respectively).

We next state the Strichartz inequality for the wave equation, posed on a three dimen-
sional smooth compact (without boundary) riemannian manifold.

Proposition 2.2. — Let (p, q) be an s-admissible couple. Then there exists C > 0 such
that for every T ∈]0, 1], every f ∈ Hs(M) one has

(2.3) ‖e±it
√
−∆(f)‖Lp([−T,T ];Lq(M)) ≤ C‖f‖Hs(M) .

Let us now state a corollary of Proposition 2.2.

Corollary 2.3. — For every 0 < s < 1, every s-admissible couple (p, q), there exists
C > 0 such that for every T ∈]0, 1], every f ∈ Hs(M), g ∈ Y 1−s

T one has

(2.4) ‖ cos(t
√
−∆)(f1)‖Xs

T
+ ‖sin(t

√
−∆)√
−∆

(f2)‖Xs
T
≤ C‖f‖Hs(M),

(2.5) ‖
∫ t

0

sin((t− τ)
√
−∆)√

−∆
(g)(τ)dτ‖Xs

T
≤ C‖g‖Y 1−s

T
.

The proof of Corollary 2.3 can essentially be found in [8, Corollary 4.3]. Notice that
here we have to modify slightly the argument to take care of the 0 eigenvalue of the Laplace
operator. We next state the Sogge estimate which will be involved in our analysis.

Proposition 2.4. — There exists C > 0 such that for every n ≥ 1,

‖en‖L4(M) ≤ C(1 + λ2
n)

1
8 .



8 NICOLAS BURQ & NIKOLAY TZVETKOV

Let us note that the L4(M) norm can be replaced by other Lp(M), 2 ≤ p ≤ ∞ norms by
modifying appropriately the power of 1 +λ2

n according to an interpolation with the trivial
L2 bound or the L∞ Weyl bound. We also note that the estimate of Proposition 2.4 has
a natural extension to other dimensions, the index 4 being replaced by 2(d + 1)/(d − 1).
Finally, the estimate for en given by Proposition 2.4 also holds, with the appropriate
statement, for the spectral projection on

√
−∆ ∈ [λ, λ+ 1].

3. A large deviation bound

The purpose of this section is to prove the following statement.

Lemma 3.1. — Let (ln(ω))∞n=1 be a sequence of real, 0-mean, independent random vari-
ables with associated sequence of distributions (µn)∞n=1. Assume that µn satisfy the property

(3.1) ∃ c > 0 : ∀ γ ∈ R, ∀n ≥ 1,
∣∣∣ ∫ ∞
−∞

eγxdµn(x)
∣∣∣ ≤ ecγ2

.

Then there exists α > 0 such that for every λ > 0, every sequence (cn)∞n=1 ∈ l2 of real
numbers,

(3.2) p
(
ω :

∣∣ ∞∑
n=1

cnln(ω)
∣∣ > λ

)
≤ 2e

− αλ2P
n c

2
n .

As a consequence there exists C > 0 such that for every p ≥ 2, every (cn)∞n=1 ∈ l2,

(3.3)
∥∥ ∞∑
n=1

cnln(ω)
∥∥
Lp(Ω)

≤ C√p
( ∞∑
n=1

c2
n

)1/2
.

Remark 3.2. — Let us notice that (3.1) is readily satisfied if (ln(ω))∞n=1 are standard
real Gaussian or standard Bernoulli variables. Indeed in the case of Gaussian∫ ∞

−∞
eγxdµn(x) =

∫ ∞
−∞

eγx e−x
2/2 dx√

2π
= eγ

2/2 .

In the case of Bernoulli variables (or more generally any random variables having com-
pactly supported distribution) one can obtain that (3.1) is satisfied by invoking the in-
equality

eγ + e−γ

2
≤ eγ2/2, ∀ γ ∈ R.

Proof of Lemma 3.1.. — We give an argument similar to the proof of [18, Lemma 4.2].
In the case of Gaussian we can see Lemma 3.1 as a very particular case of a Lp smoothing
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properties of the Hartree-Foch heat flow (see e.g. [18, Section 3] for more details on this
issue). For t > 0 to be determined later, using the independence and (3.1), we obtain∫

Ω
et

P
n≥1 cnln(ω)dp(ω) =

∏
n≥1

∫
Ω
etcnln(ω)dp(ω)

=
∏
n≥1

∫ ∞
−∞

etcnx dµn(x) ≤
∏
n≥1

ec(tcn)2 = e(ct2)
P
n c

2
n .

Therefore

e(ct2)
P
n c

2
n ≥ etλ p (ω :

∑
n≥1

cnln(ω) > λ)

or equivalently,

p (ω :
∑
n≥1

cnln(ω) > λ) ≤ e(ct2)
P
n c

2
n e−tλ .

We choose t as

t ≡ λ

2c
∑

n c
2
n

.

Hence

p (ω :
∑
n≥1

cnln(ω) > λ) ≤ e
− λ2

4c
P
n c

2
n .

In the same way (replacing cn by −cn), we can show that

p (ω :
∑
n≥1

cnln(ω) < −λ) ≤ e
− λ2

4c
P
n c

2
n

which completes the proof of (3.2). To deduce (3.3), we write

‖
∞∑
n=1

cnln(ω)‖pLp(Ω) = p

∫ +∞

0
p(ω : |

∞∑
n=1

cnln(ω)| > λ)λp−1dλ

≤ Cp
∫ +∞

0
λp−1e

− cλ2P
n c

2
n dλ ≤ Cp(C

∑
n

c2
n)

p
2

∫ +∞

0
λp−1e−

λ2

2 dλ ≤ (Cp
∑
n

c2
n)

p
2

which completes the proof of Lemma 3.1.
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4. Averaging effects

In this section, we exploit the randomization to get two L4 estimates for the free evo-
lution. These estimates play a central role in the proof of Theorem 1.

Proposition 4.1. — Let s ≥ 1/4 and 0 < T ≤ 1. Under the assumptions of Theorem 1,
for f = (f1, f2) ∈ Hs(M), we consider the free evolution with data fω, given by

uωf (t, x) = cos(t
√
−∆)fω1 +

sin(t
√
−∆)√
−∆

fω2 .

Then there exists C > 0 such that for every f ∈ Hs(M),

(4.1) ‖(−∆ + 1)
s
2
− 1

8uωf ‖L4(Ωω×[0,T ]t×Mx) ≤ CT 1/4‖f‖Hs(M) .

In particular, thanks to the Bienaymé-Tchebichev inequality, if we set

Eλ,T,f =
{
ω ∈ Ω : ‖(−∆ + 1)

s
2
− 1

8uωf ‖L4([0,T ]t×Mx) ≥ λ
}

then there exists C > 0 such that for every λ > 0, every f ∈ Hs(M),

p(Eλ,T,f ) ≤ CTλ−4 ‖f‖4Hs(M) .

Proof. — By expanding the sines and cosines functions as sums of exponentials, we obtain
that we may only consider the contribution of (−∆+ 1)

s
2
− 1

8 eit
√
−∆fω1 , the other contribu-

tions being dealt with similarly (again the zero frequency should be treated separately).
Suppose that

f1(x) =
∑
n

αnen(x) ∈ Hs(M).

If we set α̃n = (λ2
n + 1)

s
2
− 1

8αn then

‖f1‖2Hs(M) =
∑
n

|α̃n|2(1 + λ2
n)

1
4 .

We shall use the following result.

Lemma 4.2. — Assume that (hn)∞n=1 is a sequence of independent, 0-mean value, com-
plex random variables satisfying for some k ∈ N∗

∃C > 0, ∀n ≥ 1,
∫

Ω
|hn(ω)|2kdp(ω) ≤ C

then

(4.2)
∀ 2 ≤ p ≤ 2k, ∃C > 0, ∀ (cn)n∈N∗ ∈ l2(N∗,C),

‖
∑
n

cnhn‖Lp(Ω) ≤ C(
∑
n

|cn|2)1/2 .
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Proof. — Using Hölder inequality, it suffices to prove the estimate for p = 2k. We have∫
Ω
|
∑
n

cnhn(ω)|2k =
∑

n1,··· ,n2k

∫
Ω
cn1 × · · · × cnkcnk+1

× · · · × cn2k

hn1(ω)× · · · × hnk(ω)hnk+1
(ω)× · · · × hn2k

(ω)dp(ω).

Using the independence and the fact that the random variables have 0 mean, we obtain
that for the contribution of n1, · · · , n2k not to vanish, each index have to be appear at
least twice. As a consequence (using that the 2k-th moment of the random variables are
uniformly bounded)∫

Ω
|
∑
n

cnhn(ω)|2k ≤ Ck
∑

n1,··· ,nk

∫
Ω
|cn1 · · · cnk |

2|hn1(ω) · · ·hnk(ω)|2dp(ω)

≤ Ck(
∑
n

|cn|2)k.

Let us come back to the proof of Proposition 4.1. Using Lemma 4.2, we obtain

‖(−∆ + 1)
s
2
− 1

8 eit
√
−∆fω1 ‖L4(Ωω×[0,T ]t×Mx) ≤ C

∥∥∥(∑
n

|α̃nen(x)|2
)1/2∥∥∥

L4((0,T )×M)

= C
∥∥∥∑

n

|α̃nen(x)|2
∥∥∥1/2

L2((0,T )×M)

≤ C
(∑

n

∥∥∥|α̃nen(x)|2
∥∥∥
L2((0,T )×M)

)1/2

≤ CT 1/4
(∑

n

‖α̃nen(x)‖2L4(M)

)1/2

which, according to Proposition 2.4 implies Proposition 4.1.

Remark 4.3. — For 1 < p < +∞, the norm ‖f‖W s,p(M) and ‖(−∆ + 1)
s
2 ‖Lp(M) are

equivalent. Indeed, for s ∈ 2N, this is a consequence of the Lp elliptic regularity theorem
and for general s it follows by interpolation and duality.

As a consequence of Lemma 3.1, under assumption (3.1), we can improve the averaging
effect estimate as follows.

Proposition 4.4. — Under the assumption of Proposition 4.1, if we suppose that in ad-
dition the randomization obeys the condition (3.1), then for p ≥ 4,

(4.3) ‖(−∆ + 1)
s
2
− 1

8uωf ‖Lp(Ω;L4([0,1]t×Mx)) ≤ Cp
1
2 ‖f‖Hs(M) .
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As a consequence, if we set

Eλ,f =
{
ω ∈ Ω : ‖(−∆ + 1)

s
2
− 1

8uωf ‖L4([0,1]t×Mx) ≥ λ
}

then there exist C > 0 and c > 0 such that for every λ > 0, every f ∈ Hs(M),

(4.4) p(Eλ,f ) ≤ C e−cλ
2/‖f‖2Hs(M) .

Proof. — As in the proof of Proposition 4.1, we may only consider the contribution of
(−∆ + 1)

s
2
− 1

8 eit
√
−∆fω1 . Writing f1 =

∑
n αnen and if we set α̃n = (λ2

n + 1)
s
2
− 1

8αn then

‖f1‖2Hs(M) =
∑
n

|α̃n|2(1 + λ2
n)

1
4 .

Set
vωf1(t, x) ≡ (−∆ + 1)

s
2
− 1

8 eit
√
−∆fω1 .

Thus the issue is to show that

‖vωf1(t, x)‖Lp(Ω;L4([0,1]t×Mx)) ≤ C
√
p‖f1‖Hs(M) .

By the Minkowski inequality, for p ≥ 4,

‖vωf1(t, x)‖Lp(Ω;L4([0,1]t×Mx)) ≤ ‖vωf1(t, x)‖L4([0,1]t×Mx;Lp(Ω)) .

Thanks to Lemma 3.1,

‖vωf1(t, x)‖Lp(Ω) = ‖
∑
n

α̃ne
itλnen(x)hn(ω)‖Lp(Ω) ≤ C

√
p
(∑

n

|α̃nen(x)|2
)1/2

.

Therefore, we get, thanks to Proposition 2.4,

‖vωf1(t, x)‖Lp(Ω;L4([0,1]t×Mx)) ≤ C
√
p
∥∥∥(∑

n

|α̃nen(x)|2
)1/2∥∥∥

L4([0,1]t×Mx)

≤ C
√
p
(∥∥∥∑

n

|α̃nen(x)|2
∥∥∥
L2(Mx)

)1/2

≤ C
√
p
(∑

n

∥∥∥|α̃nen(x)|2
∥∥∥
L2(Mx)

)1/2

≤ C
√
p
(∑

n

|α̃n|2
∥∥∥en(x)

∥∥∥2

L4(Mx)

)1/2

≤ C
√
p
(∑

n

|α̃n|2(1 + λ2
n)1/4

)1/2
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which completes the proof of (4.3). Let us now turn to the proof of (4.4). Thanks to
the Bienaymé-Tchebichev inequality, there exists α > 0 such that for every p ≥ 4, every
f ∈ Hs(M),

(4.5) p(Eλ,f ) ≤ λ−p
(
α
√
p‖f‖Hs(M)

)p
.

Inequality (4.4) easily holds, if λ is such that

(4.6)
λ

‖f‖Hs(M)
≤ 2αe .

If (4.6) does not hold, we set

p ≡
[ λ

α‖f‖Hs(M)e

]2
(≥ 4).

With this choice of p, we come back to (4.5) which yields (4.4). This completes the proof
of Proposition 4.4.

5. The fixed point

If we wish to solve

(∂2
t −∆)u+ u3 = 0, (u, ∂tu)|t=0 = (fω1 , f

ω
2 ) = fω

by writing u = uωf + v, where uωf denotes the free evolution associated to fω, we obtain
that v solves

(5.1) (∂2
t −∆)v = −(uωf + v)3, (v, ∂tv)|t=0 = (0, 0).

Write this equation as

v(t, ·) = −
∫ t

0

sin((t− τ)
√
−∆)√

−∆
((uωf + v)3)(τ, ·)dτ.

Define the map

Kω
f : v 7−→ −

∫ t

0

sin((t− τ)
√
−∆)√

−∆
((uωf + v)3)(τ, ·)dτ.
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5.1. The case s = 1/4. — In this case, the numerology is particularly simple

Proposition 5.1. — Let us fix s = 1/4. Then there exists C > 0 such that for every
T ∈ [0, 1], every f ∈ H1/4(M), every λ > 0 for ω ∈ Ecλ,f the map Kω

f satisfies

(5.2) ‖Kω
f (v)‖

X
1/2
T

≤ C
(
λ3 + ‖v‖3

X
1/2
T

)
,

(5.3) ‖Kω
f (v)−Kω

f (w)‖
X

1/2
T

≤ C‖v − w‖
X

1/2
T

(
λ2 + ‖v‖2

X
1/2
T

+ ‖w‖2
X

1/2
T

)
.

Proof. — Indeed, for ω ∈ Ecλ,f , we have

‖uωf ‖L4((0,T )×M) ≤ λ

and consequently, according to Corollary 2.3,

‖Kω
f (v)‖

X
1/2
T

≤ C‖(uωf + v)3‖L4/3([0,T ]×M) ≤ C
(
λ3 + ‖v‖3

X
1/2
T

)
and

‖Kω
f (v)−Kω

f (w)‖
X

1/2
T

≤ C‖(uωf + v)3 − (uωf + w)3‖L4/3([0,T ]×M) ≤ C‖v − w‖X1/2
T

(λ2 + ‖v‖2
X

1/2
T

+ ‖v‖2
X

1/2
T

)

5.2. The case s > 1/4. —

Proposition 5.2. — Let us fix s > 1/4. Then there exists σ > 1/2, C > 0 and κ > 0
such that for every T ∈ [0, 1], every f ∈ Hs(M), every λ > 0, ω ∈ Ecλ,f the map Kω

f

satisfies

(5.4) ‖Kω
f (v)‖Xσ

T
≤ C

(
λ3 + T κ‖v‖3Xσ

T

)
,

(5.5) ‖Kω
f (v)−Kω

f (w)‖Xσ
T
≤ CT κ‖v − w‖Xσ

T

(
λ2 + ‖v‖2Xσ

T
+ ‖w‖2Xσ

T

)
.

Proof. — Let us notice that, according to Corollary 2.3, for 1/2 < σ < 1 (to be fixed
later),

‖Kω
f (v)‖Xσ

T
≤ C‖(uf + v)3‖Lp′ ([0,T ];Lq′ (M)),

where
1
p

+
3
q

=
3
2
− (1− σ), p = 4.
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Notice that 4 > 2/σ and thus the choice p = 4 is allowed. Using the triangle inequality,
we obtain

(5.6) ‖Kω
f (v)‖Xσ

T
≤ C(‖uωf ‖3L4([0,T ];L3q′ (M))

+ ‖v‖3
L4([0,T ];L3q′ (M))

).

Let us first study the second term in the right hand-side of (5.6). This will be done by
invoking the Hσ, σ > 1/2 well-posedness argument. Observe that 1

q′ = 11
12 −

σ
3 . Let p be

such that (p, 3q′) is σ-admissible, i.e.

1
p

+
3

3q′
=

3
2
− σ, ⇒ 1

p
=

7
12
− 2σ

3
.

Observe that since σ > 1/2 we have that p > 4. Therefore thanks to the Hölder inequality
(in time) for σ > 1/2 there exists κ > 0 such that

‖v‖3
L4([0,T ];L3q′ (M))

≤ T κ‖v‖3Xσ
T
.

Let us next study the first term in the right hand-side of (5.6). We first consider the case
s ≥ 1. Using the Sobolev inequality, for ω ∈ Ecλ,f , we can write

‖uωf ‖L4([0,1]);L3q′ (M)) ≤ C‖u
ω
f ‖L4([0,1];W s− 1

4 ,4(M))
≤ Cλ .

This ends the proof of (5.4) for s ≥ 1 (σ being an arbitrary number in (1/2, 1)).
Let us next assume that s < 1. Then for ω ∈ Ecλ,f (and according to Sobolev embed-

ding), we have

‖uωf ‖L4([0,1]);Lq0 (M)) ≤ C‖uωf ‖L4([0,1];W s− 1
4 ,4(M))

≤ Cλ

where
1
q0

=
1
4
− (s− 1/4)

3
.

We choose

σ = min
( 9

10
,
1
2

+ 3(s− 1
4

)
)

which fixes the value of σ in the case s < 1. Then

1
4

+
3
q

=
3
2
− (1− σ)⇒ 1

q
=

1
4
− (1/2− σ)

3
⇒ 1

3q′
≥ 1

4
− (s− 1/4)

3
=

1
q0
.

As a consequence for ω ∈ Ecλ,f , using the Hölder inequality in space, we get that for s < 1,
we can bound the contribution of the first term in the right hand-side of (5.6) as follows

‖uωf ‖L4([0,1]);L3q′ (M)) ≤ ‖u
ω
f ‖L4([0,1]);Lq0 (M)) ≤ C‖uωf ‖L4([0,1];W s− 1

4 ,4(M))
≤ Cλ.
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This ends the proof of (5.4). The proof of (5.5) is similar. Indeed, it suffices to write

‖Kω
f (v)−Kω

f (w)‖Xσ
T
≤ ‖v − w‖L4([0,T ];L3q′ (M))

(
‖uωf ‖2L4([0,T ];L3q′ (M))

+ ‖v‖2
L4([0,T ];L3q′ (M))

+ ‖w‖2
L4([0,T ];L3q′ (M))

)
and to use the previous estimates. This completes the proof of Proposition 5.2.

Let us now complete the proof of Theorem 1. Let us first consider the case of a random-
ization induced by a general family of random variables satisfying (1.4). Fix 0 < T ≤ 1.
As a consequence of Propositions 5.1 and 5.2, if ω ∈ Ecλ,T,f and if

(5.7) Cλ3 + T κ(2Cλ3)3 ≤ 2Cλ3, and CT κ(λ2 + λ6) ≤ 1
2
, κ ≥ 0, (κ > 0 if s > 1/4),

then the map Kω
f is a contraction on the ball of radius 2Cλ3 of Xσ

T . Notice that the
condition (5.7) above is implied by the following

T κλ6 = ε6 � 1.

Let us fix such ε > 0. As a consequence, if we define, with δ = κ/6,

ΩT = Ecλ=εT−δ,T,f , Σ =
⋃
n∈N∗

Ω1/n,

then
p(ΩT ) ≥ 1− CT 1+4δ, p(Σ) = 1

and we obtain the first part in Theorem 1 in the case of general variables satisfying only
(1.4).

Let us finally consider the case of random variables satisfying in addition to (1.4) the
property (3.1). In this case λ = λ(T ) is chosen such that

T κλ6 = ε� 1

and according to Proposition 5.2, if ω ∈ Ecλ,T,f , then the map Kω
f is a contraction on the

ball of radius 2Cλ3 of Xσ
T . Now according to (4.4), we obtain that if we set

ΩT = Ecλ(T ),f , Σ =
⋃
n∈N∗

Ω1/n,

then
p(ΩT ) ≥ 1− Ce−c/T δ , δ, C, c > 0, p(Σ) = 1.

This completes the proof of Theorem 1.

Remark 5.3. — Let us observe that in Theorem 1, if s > 1/4 then σ > 1/2.
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6. Manifolds with boundary

In this section we consider the case of Dirichlet or Neumann boundary conditions. For
conciseness, we shall drop the subscript D,N .

6.1. Strichartz and spectral projector estimates. — The following spectral pro-
jector estimate is proved by Smith and Sogge [14, Theorem 7.1]

Proposition 6.1. — There exists C > 0 such that for every n ≥ 1,

‖en‖L5(M) ≤ C(1 + λ2
n)

1
5 .

This estimate implies (see [7, Theorem 2]) the following Strichartz inequality

Proposition 6.2. — There exists C > 0 such that for any f ∈ H
7
10 (M)

‖e±it
√
−∆f‖L5((0,1)×M) ≤ C‖f‖H 7

10 (M)
.

By interpolation and duality, we deduce that the Strichartz inequalities (2.4) and (2.5)
remain true provided we replace the definition of admissible couples by

Definition 6.3. — Let 0 ≤ s ≤ 1. A couple (p, q) is s-admissible if

1
p

+
3
q

=
3
2
− s

and

p ≥

{
7
2s if s ≤ 7

10 ,

5 if s ≥ 7
10 .

6.2. Averaging effects. —

Proposition 6.4. — Let s ≥ 2
5 . Under the assumptions of Theorem 2, for f = (f1, f2) ∈

Hs(M), we consider the free evolution with data fω, given by

uωf (t, x) = cos(t
√
−∆)fω1 +

sin(t
√
−∆)fω2√
−∆

.

Then there exists C > 0 such that for every f ∈ Hs(M),

(6.1) ‖(−∆ + 1)
s
2
− 1

5uωf ‖L5(Ωω×[0,T ]t×Mx) ≤ CT 1/5‖f‖Hs(M) .

In particular, thanks to the Bienaymé-Tchebichev inequality, if we set

Eλ,T,f =
{
ω ∈ Ω : ‖(−∆ + 1)

s
2
− 1

5uωf ‖L5([0,T ]t×Mx) ≥ λ
}
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then there exists C > 0 such that for every λ > 0, every f ∈ Hs(M),

p(Eλ,T,f ) ≤ CTλ−5 ‖f‖5Hs(M) .

Proof. — Using Lemma 4.2 we compute

‖(−∆ + 1)
s
2
− 1

5 eit
√
−∆fω1 ‖L5(Ωω×[0,T ]t×Mx)

= ‖
∑
n

eitλn(1 + λ2
n)

s
2
− 1

5αnen(x)hn(ω)‖L5(Ωω×[0,T ]t×Mx)

≤ C‖
(∑

n

|eitλn(1 + λ2
n)

s
2
− 1

5αnen(x)|2
)1/2
‖L5([0,T ]t×Mx)

≤ C‖
∑
n

|eitλ2
n(1 + λ2

n)
s
2
− 1

5αnen(x)|2‖1/2
L5/2([0,T ]t×Mx)

≤ C
(∑

n

‖|(1 + λ2
n)

s
2
− 1

5αnen(x)|2‖L5/2([0,T ]t×Mx)

)1/2

Finally, using Proposition 6.1, we obtain

‖(−∆ + 1)
s
2
− 1

5 eit
√
−∆fω1 ‖L5(Ωω×[0,T ]t×Mx)

≤ CT 1/5
(∑

n

|(1 + λ2
n)sαn|2

)1/2
≤ CT 1/5‖f1‖Hs(M) .

The contribution of f2 is dealt with similarly. This ends the proof of Proposition 6.4.

6.3. The fixed point. — In this section we shall prove only the case s = 8/21 in
Theorem 2. The case s > 8/21 and the improved estimate for Gaussian are proved mutatis
mutandi following the strategy developed in Section 5. Interpolating between (6.1) and
the trivial bound

‖uωf ‖L2(Ωω×[0,T ]t×Mx) ≤ CT 1/2‖f‖H0(M) .

gives

(6.2) ‖uωf ‖L14/3(Ωω×[0,T ]t×Mx) ≤ CT
3/14‖f‖H8/21(M) .

As in Section 5, we are looking for a fixed point of the map

Kω
f : v 7−→ −

∫ t

0

sin((t− τ)
√
−∆)√

−∆
((uωf + v)3)(τ, ·)dτ.

Using the Strichartz inequalities in Section 2 (with the new definition of admissible couples
and consequently of Xs

T and Y s
T spaces), we obtain

‖Kω
f ‖X2/3

T

≤ C‖(uωf + v)3‖
Y

1/3
T

.
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But (observe that (21/4, 14/3) is a 2/3-admissible couple)

‖g‖L∞((0,T );H2/3(M)) + ‖g‖L21/4((0,T );L14/3(M)) ≤ C‖g‖X2/3
T

and (observe that (21/2, 14/5) is a 1/3-admissible couple and that 21/4 > 63/19)

‖v3‖
Y

1/3
T

≤ C‖v3‖L21/19((0,T );L14/9(M)) ≤ C‖v‖
3
L63/19((0,T );L14/3(M))

≤ CT ‖v‖3
X

2/3
T

.

These a priori bounds combined with the estimate (6.2) (and the fact that 14/3 > 63/19)
allow to perform the fixed point in the space X2/3

T (for sufficiently small T depending on
ω), exactly as in the previous section. This ends the proof of Theorem 2.

A
Ill posedness on Hs(M), s < 1/2.

The goal of this appendix is to prove the ill-posedness statement claimed in the intro-
duction. For that purpose, we first prove the lack of continuity at 0 of the flow map on
Hs(M), s < 1/2. More precisely we have the following result.

Proposition A.1. — Let us fix s ∈]0, 1/2[. Then there exists δ > 0 and a sequence
(tn)∞n=1 of positive numbers tending to zero and a sequence (un(t))∞n=1 of C∞(M) functions
such that

(∂2
t −∆)un + u3

n = 0
with

‖un(0)‖Hs(M) ≤ C log(n)−δ →n→+∞ 0
but

‖un(tn)‖Hs(M) ≥ C log(n)δ →n→+∞ +∞.

Proof. — The proof is strongly inspired by the considerations in [10] where the Euclidean
space is considered instead of a riemannian manifold (M, g). The only advantage of our
argument with respect to [10] is that we avoid the scaling consideration of [10] and thus
we can keep the argument local in space and can be extended to the case of compact
manifolds. A similar discussion in the context of NLS may be found in [4, Appendix].

Working in a local coordinate system near a fixed point of M , we consider an initial data
concentrating at this fixed point. Namely, we consider (1.1) subject to initial conditions

(A.1) (f1,n(x), f2,n(x)) = (κnn
3
2
−sϕ(nx), 0), n� 1 ,

where ϕ is a nontrivial bump function on R3 and

κn ≡ [log(n)]−δ1 ,

with δ1 > 0 to be fixed later. The equation (1.1) being H1(M) sub critical (and defocus-
ing), we obtain that (1.1) with data given by (A.1) has a unique global smooth solution
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which we denote by un. We will consider the solution of (1.1) with data (1.1) only for
small times and thanks to the finite propagation speed of the wave equation the analysis
is local. Next, let us denote by V (t) the global solution of the ODE

(A.2) V ′′ + V 3 = 0, V (0) = 1, V ′(0) = 0.

Multiplying (A.2) by V ′, we deduce that V (t) is a periodic function. We next denote by
vn the solution of

(A.3) ∂2
t vn + v3

n = 0, (vn(0), ∂tvn(0)) = (κnn
3
2
−sϕ(nx), 0).

It is now clear that

vn(t, x) = κnn
3
2
−sϕ(nx)V

(
tκnn

3
2
−sϕ(nx)

)
.

We next consider the semi-classical energy

En(u) ≡ n−(1−s)(‖∂tu‖2L2(M) + ‖∇u‖2L2(M)

) 1
2 + n−(2−s)(‖∂tu‖2H1(M) + ‖∇u‖2H1(M)

) 1
2 .

We are going to show that for very small times un and vn are close with respect to En but
these small times are long enough to get the needed amplification of the Hs norm (this
amplification is a phenomenon only related to the solution of (A.3)). Here is the precise
statement.

Lemma A.2. — There exist ε > 0, δ2 > 0 and C > 0 such that, if we set

tn ≡ [log(n)]δ2n−( 3
2
−s)

then for every n� 1, every t ∈ [0, tn], En(un(t)− vn(t)) ≤ Cn−ε . Moreover,

(A.4) ‖un(t)− vn(t)‖Hs(M) ≤ Cn−ε .

Proof. — Set wn = un − vn. Then wn solves the equation

(∂2
t −∆)wn = ∆vn − 3v2

nwn − 3vnw2
n − w3

n, (wn(0, ·), ∂twn(0, ·)) = (0, 0) .

Set
F ≡∆vn − 3v2

nwn − 3vnw2
n − w3

n .

By the energy inequality inequality for the wave equation, we get
d

dt

(
En(wn(t))

)
≤ Cn−(2−s)‖F (t, ·)‖H1(M) + Cn−(1−s)‖F (t, ·)‖L2(M) .

We have for t ∈ [0, tn],

‖∆(vn)(t, ·)‖H1(M) ≤ C[log(n)]3δ2n3−s, ‖∆(vn)(t, ·)‖L2(M) ≤ C[log(n)]2δ2n2−s .

Therefore

(A.5)
d

dt

(
En(wn(t))

)
≤ C

(
[log(n)]3δ2n+n−(2−s)‖G(t, ·)‖H1(M)+n

−(1−s)‖G(t, ·)‖L2(M)

)
,
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where
G ≡ −3v2

nwn − 3vnw2
n − w3

n .

Writing for t ∈ [0, tn],

wn(t, x) =
∫ t

0
∂swn(s, x)ds,

we obtain

(A.6) ‖wn(t, ·)‖Hk(M) ≤ C[log(n)]δ2n−( 3
2
−s) sup

0≤τ≤t
‖∂twn(τ, ·)‖Hk(M) .

Moreover, we have that for t ∈ [0, tn],

(A.7) ‖∇kvn(t, ·)‖L∞(M) ≤ C[log(n)]kδ2n
3
2
−s+k

and thanks to the Gagliardo-Nirenberg inequality,

(A.8) ‖wn(t, ·)‖L∞(M) ≤ C‖wn(t, ·)‖
3
4

H2(M)
‖wn(t, ·)‖

1
4

L2(M)
≤ Cn

3
2
−sEn(wn(t)) .

Set
en(wn(t)) ≡ sup

0≤τ≤t
En(wn(τ)) .

Using (A.6), (A.7) and (A.8), we get that for l = 1, 2,

n−(l−s)‖G(t, ·)‖Hl−1(M) ≤ C[log(n)]lδ2n
3
2
−s(en(wn) + [en(wn)]3

)
.

Therefore, coming back to (A.5), we get

d

dt

(
En(wn(t))

)
≤ C[log(n)]3δ2n+ C[log(n)]lδ2n

3
2
−s(en(wn) + [en(wn)]3

)
.

We first suppose that en(wn(t)) ≤ 1 which holds for small values of t since wn(0) = 0.
Thanks to a Gronwall lemma argument for t ∈ [0, tn],

en(wn(t)) ≤ C[log(n)]δ2ns−
1
2 eCt[log(n)]2δ2n

3
2−s ≤ C[log(n)]δ2ns−

1
2 eC[log(n)]2δ2 .

(one should see δ2 as 3δ2 − 2δ2 and s − 1/2 as 1 − (3/2 − s)). Since s < 1/2, by taking
δ2 > 0 small enough, we obtain that there exists ε > 0 such that

En(wn(t)) ≤ Cn−ε

and in particular one has for t ∈ [0, tn],

(A.9) ‖∂twn(t, ·)‖L2(M) + ‖wn(t, ·)‖H1(M) ≤ Cn1−s−ε .

We next estimate ‖wn(t, ·)‖L2 . We may write for t ∈ [0, tn],

‖wn(t, ·)‖L2(M) = ‖
∫ t

0
∂twn(s, ·)‖L2(M) ≤ ctn sup

0≤τ≤t
‖∂twn(τ, ·)‖L2(M) .
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Thanks to (A.9) and the definition of tn, we get

‖wn(t, ·)‖L2(M) ≤ C[log(n)]δ2n−( 3
2
−s)n1−sn−ε .

Therefore, since s < 1/2,

(A.10) ‖wn(t, ·)‖L2(M) ≤ Cn−s−ε .
An interpolation between (A.9) and (A.10) yields (A.4). This completes the proof of
Lemma A.2.

Using Lemma A.2, we may write

‖un(tn, ·)‖Hs(M) ≥ ‖vn(tn, ·)‖Hs(M) − Cn−ε .
On the other hand from the representation of vn, we obtain for n large enough

(A.11) ‖vn(tn, ·)‖Hs(M) ≥ Cκn(tnκnn
3
2
−s)s = C[log(n)]−(s+1)δ1+sδ2 .

Indeed this estimate is the consequence of the following lemma.

Lemma A.3. — Consider a smooth non constant 2π periodic function V and two func-
tions ψ, φ ∈ C∞0 (Rd) such that φψ is not identically vanishing. Then there exists C > 0
such that for any λ > 1 and any s ≥ 0

‖ψ(x)V (λφ(x))‖Hs(Rd) ≥
λs

C
− C .

Proof. — The multiplication by a smooth function being continuous on Hs, it suffices to
prove the estimate with ψ replaced by any function χ×ψ with χ ∈ C∞0 . As a consequence
(and using that Hs is invariant by diffeomorphisms), we can assume that on the support
of the function ψ, we have φ(x) = x1. We develop

V (t) =
∑
n∈Z

vne
int, |vn| ≤ CN (1 + |n|)−N

and replacing the function V by V −v0 (which changes the Hs norm by at most a constant),
we can assume v0 = 0. Choose n1 6= 0 such that vn1 6= 0 (V is non constant). Then

‖ψ(x)V (λx1))‖2Hs(Rd) =
∫ ∣∣∣∑

n

vnψ̂(ξ1 − nλ, ξ′)
∣∣∣2(1 + |ξ|)2sdξ

≥
∫
|(ξ1−n1λ,ξ′)|≤1

∣∣∑
n

vnψ̂(ξ1 − nλ, ξ′)
∣∣2(1 + |ξ|)2sdξ

≥ 1
2

∫
|(ξ1−n1λ,ξ′)|≤1

∣∣vn1ψ̂(ξ1 − n1λ, ξ
′)
∣∣2(1 + |ξ|)2s

− 2
∣∣∣∑
n6=n1

vnψ̂(ξ1 − nλ, ξ′)
∣∣∣2(1 + |ξ|)2sdξ .
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The first term in the right hand side is bounded from below by
1
2

∫
|ξ|≤1

∣∣vn1ψ̂(ξ1, ξ
′)
∣∣2(1 + |ξ1 + n1λ|)2s ≥ 1

C
|n1λ|2s − C

whereas the second term is bounded (in absolute value) by

2
∫
|ξ|≤1

∣∣∣∑
n 6=n1

vnψ̂(ξ1 + (n1 − n)λ, ξ′)
∣∣∣2(1 + |ξ|+ |n1λ|)2sdξ

≤ C
(∑
n6=n1

|vn||(n1 − n)λ− 1|−N |n1λ|s
)2
≤ C

which ends the proof of Lemma A.3.

By choosing δ1 small enough (depending on δ2 fixed in Lemma A.2), we obtain that
limn→∞ ‖vn(tn, ·)‖Hs =∞ which implies that limn→∞ ‖un(tn, ·)‖Hs =∞. This completes
the proof of Proposition A.1.

We now can show that these solutions we just constructed can be glued together to give
the following statement.

Proposition A.4. — Let us fix s ∈]0, 1/2[. There exists an initial data f = (f1, f2) ∈
Hs(M) such there exists no solution of (1.1) in L∞((−T, T );Hs(M)), T > 0 with initial
data f satisfying in addition the finite speed of propagation.

Proof. — We use the notations introduced in the proof of the previous proposition and
consider solutions un as constructed above, but, working in local coordinates, with initial
data centered at points xn = (xn,1, x′n = 0) with a sequence xn,1 converging to 0 to be
specified later. As a consequence, the support of the initial data of un is included in the
set

{x = (x1, x
′) ∈ R3 : |x1 − xn,1|+ |x′| ≤

C

n
}.

Furthermore, the explicit form of vn (and the fact that tn � n−1) shows that if

Kn = {x : |x1 − xn,1| ≤
C

2n
− Ctn}

then
‖un(tn, ·)‖Hs(Kn) → +∞.

Remark also that we have

Lemma A.5. — For any 0 ≤ s < 1/2, there exists C > 0 such that

∀n, ∀u ∈ Hs(M), ‖u‖Hs(M) ≥ C‖u |Kn ‖Hs(Kn) .
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Proof. — Indeed, the multiplication by the Heaviside function is continuous on Hs(M)
(because −1/2 < s < 1/2 and

u |Kn= u× 1− C
2n

+Ctn<x1−xn,1< C
2n
−Ctn .

We now consider a sequence (nk)k∈N such that
– ‖unk(0, ·)‖Hs(M) ≤ 2−k,
– nk ≤ 2−k.

Remark also that all the estimates on the functions unk are independent of the choice of
the sequence xn,1 (because the bounds on un we have are independent of the choice of the
concentration point), and consequently, we can assume that xnk,1 = 1

k2 . Consider now as
initial data

f = (f1 =
∑
k≥k0

unk(0), f2 = 0),

where k0 ≥ 1 is a large constant. The support of the function f1 is included in the union
of the balls of radius C2−k centered at ( 1

k2 , 0, 0). If k0 is large enough, any solution u of
the non linear wave equation with initial data f , satisfying the finite speed of propagation
will consequently coincide with the solutions unk , k ≥ k0 we just constructed on the cone
Knk (notice that for k0 � 1, the cones Knk , k ≥ k0 are disjoint). As a consequence, these
solutions will satisfy (using Lemma A.5)

‖u(tnk , ·)‖Hs(M) ≥ C‖u(tnk , ·)‖Hs(Knk ) →k→+∞ +∞
and consequently

lim sup
t→0+

‖u(t, ·)‖Hs(M) = +∞ .

This ends the proof of Proposition A.4

B
Lack of Hs regularization under the considered randomization

The goal of this appendix is to give the proof of the following lemma.

Lemma B.1. — Let

f =
∞∑
n=1

αnen(x) ∈ Hs(M)

be such that for some ε > 0 one has that f does not belong to Hs+ε(M). Let (ln(ω))∞n=1

be a sequence of independent random variables such that there exists c > 0 satisfying

lim sup
n→+∞

p({|ln| ≤ c}) < 1,
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(notice that this assumption is fulfilled if the random variables are identically distributed
and non identically zero). If we set

fω =
∞∑
n=1

ln(ω)αnen(x),

then we have that fω belongs to Hs+ε(M) with probability zero.

Proof. — A similar argument is given in [8]. Denote by µn the distribution of (ln(ω))∞n=1.
By assumption there exists c, δ > 0 such that µn([−c, c]) ≤ (1 − δ). Then, we can write
(with ρn = e−c

2λ
2(s+ε)
n α2

n)∫
Ω
e
−‖fω‖2

Hs+ε(M)dp(ω) =
∞∏
n=1

∫
e−λ

2(s+ε)
n α2

nx
2
dµn(x)

=
∫ c

−c
e−λ

2(s+ε)
n α2

nx
2
dµn(x) +

∫
|x|≥c

e−λ
2(s+ε)
n α2

nx
2
dµn(x)

≤
∞∏
n=1

(
µn(−c, c) + ρn(1− µn(−c, c))

)
=
∞∏
n=1

(
µn(−c, c)(1− ρn) + ρn

)
≤
∞∏
n=1

(
(1− δ)(1− ρn) + ρn

)
≤
∞∏
n=1

(
1− δ(1− ρn)

)
.

Since by assumption
∑

n λ
2(s+ε)
n α2

n =∞, we obtain that
∑∞

n=1(1−e−c2λ
2(s+ε)
n α2

n) =∞ and
therefore

∞∏
n=1

(
1− δ(1− e−c2λ

2(s+ε)
n α2

n) = 0 ⇒
∫

Ω
e
−‖fω‖2

Hs+ε(M)dp(ω) = 0 .

This implies that ‖fω‖2Hs+ε(M) =∞ almost surely. This completes the proof of Lemma B.1.
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