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ON THE WATER-WAVE EQUATIONS WITH Q1

SURFACE TENSION

T. ALAZARD, N. BURQ, and C. ZUILY

Abstract

The purpose of this article is to clarify the Cauchy theory of the water-wave equations
as well in terms of regularity indexes for the initial conditions as for the smoothness
of the bottom of the domain. (Namely, no regularity assumption is assumed on the
bottom.) Our main result is that, following an approach developed earlier, after Q2

suitable paralinearizations, the system can be arranged into an explicit symmetric
system of Schrödinger type. We then show that the smoothing effect for the (one-
dimensional) surface-tension water waves is in fact a rather direct consequence of
this reduction, and following this approach, we are able to obtain a sharp result in
terms of regularity of the indexes of the initial data and weights in the estimates.
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1. Introduction

We consider a solution of the incompressible Euler equations for a potential flow in a
domain with free boundary of the form

Q3

{
(t, x, y) ∈ [0, T ] × Rd × R : (x, y) ∈ �t

}
,
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�t

Γt

y = η(t, x )
y = η(t, x ) − h

Figure 1. The domain

where �t is the domain located between a free surface

Q4

�t = {
(x, y) ∈ Rd × R : y = η(t, x)

}
and a given bottom denoted by � = ∂�t \ �t . The only assumption we shall make
on the domain is that the top boundary, �t , and the bottom boundary, �, are separated
by a “strip” of fixed length.

More precisely, we assume that the initial domain satisfies (for t = 0) the follow-
ing assumption.

ASSUMPTION Ht

The domain �t is the intersection of the half space, denoted by �1,t , located below
the free surface �t ,

�1,t = {
(x, y) ∈ Rd × R : y < η(t, x)

}
and an open set �2 ⊂ Rd+1 such that �2 contains a fixed strip around �t , which
means that there exists h > 0 such that{

(x, y) ∈ Rd × R : η(t, x) − h ≤ y ≤ η(t, x)
} ⊂ �2.

We shall also assume that the domain �2 (and hence the domain �t = �1,t ∩ �2) is
connected.

We emphasize that no regularity assumption is made on the domain (apart from the
regularity of the top boundary �t ). Notice that our setting contains both cases of
infinite depth and bounded depth bottoms (and all cases in between).

A key feature of the water-wave equations is that there are two boundary conditions
on the free surface �t = {y = η(t, x)}. Namely, we consider a potential flow so that the
velocity field is the gradient of a potential φ = φ(t, x, y) which is a harmonic function.
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The water-wave equations are then given by the Neumann boundary condition on the
bottom � and the classical kinematic and dynamic boundary conditions on the free
surface �t . The system reads⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�φ + ∂2
yφ = 0 in �t,

∂tη = ∂yφ − ∇η · ∇φ on �t,

∂tφ = −gη + κH (η) − 1

2
|∇φ|2 − 1

2
(∂yφ)2 on �t,

∂nφ = 0 on �,

(1.1)

where ∇ = (∂xi
)1≤i≤d , � = ∑d

i=1 ∂2
xi

, n is the normal to the boundary �, g > 0
denotes the acceleration of gravity, κ ≥ 0 is the coefficient of surface tension, and
H (η) is the mean curvature of the free surface,

H (η) = div
( ∇η√

1 + |∇η|2
)
.

We are concerned with the problem with surface tension, and then we set κ = 1. Since
we make no regularity assumption on the bottom, giving sense to the system (1.1)
requires some care (see Section 2).

Following Zakharov we shall reduce (1.1) to a system on the free surface �t =
{y = η(t, x)}. If ψ = ψ(t, x) ∈ R is defined by

ψ(t, x) = φ
(
t, x, η(t, x)

)
,

then φ(t, x, y) is the unique variational solution of

�φ = 0 in �t, φ
(
t, x, η(t, x)

) = ψ(t, x),

and the Dirichlet-Neumann operator is defined by(
G(η)ψ

)
(t, x) =

√
1 + |∇η|2 ∂nφ|y=η(t,x)

= (∂yφ)
(
t, x, η(t, x)

)− ∇η(t, x) · (∇φ)
(
t, x, η(t, x)

)
.

(We refer to Section 2 for a precise construction.) Now (η, ψ) solves{
∂tη − G(η)ψ = 0,

∂tψ + gη − H (η) + 1

2
|∇ψ |2 − 1

2

(∇η · ∇ψ + G(η)ψ
)2

1 + |∇η|2 = 0.
(1.2)

The study of the Cauchy problem was initiated by Kano and Nishida [19] and
Yosihara [37], [38]. In the framework of Sobolev spaces and without smallness
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assumptions on the data, the well-posedness of the Cauchy problem was first proved by
Beyer and Günther [7] in the case with surface tension and by Wu [36], [35] without
surface tension. Several extensions of their results have been obtained by different
proofs by Ambrose and Masmoudi [6], Schneider and Wayne [28], Schweizer [29],
Iguchi [17], Shatah and Zeng[30], Ming and Zhang [26], Coutand and Shkoller [13],
Rousset and Tzvetkov [27], and also Christianson, Hur, and Staffilani [12].

Using the paralinearization approach developed by Alazard and Métivier [1] we
first prove the well-posedness of the Cauchy problem (in any dimension) for rougher
data, without any assumption on the bottom. Previous results required the bottom to
be the graph of a smooth function (at least W 13,∞; see [17], [26]). Second, under the
same conditions, we prove the smoothing effect when d = 1 with the natural weights
in the estimate.

Our first result (Cauchy theory) is the following theorem.

THEOREM 1.1
Let d ≥ 1, s > 2 + d/2, and (η0, ψ0) ∈ H s+1/2(Rd) × H s(Rd) be such that the
assumption Ht=0 is satisfied. Then there exists T > 0 such that the Cauchy problem
for (1.2) with initial data (η0, ψ0) has a unique solution

(η, ψ) ∈ C0
(
[0, T ]; H s+1/2(Rd) × H s(Rd)

)
such that the assumption Ht is satisfied for t ∈ [0, T ].

Concerning the dependence of the solutions on the data, we have the following result.

THEOREM 1.2
Consider (η, ψ) ∈ C0([0, T ]; H s+1/2(Rd) × H s(Rd)) as a solution of (1.2), and con-
sider a sequence (ηn,0, ψn,0)n∈N∗ converging in H s+1/2(Rd) × H s(Rd) to (η, ψ) |t=0.
Then, for n sufficiently large, the solutions (ηn, ψn) ∈ C0([0, T ]; H s+1/2(Rd) ×
H s(Rd)) with data (ηn,0, ψn,0) are defined on the time interval [0, T ] and satisfy

lim
n→+∞

‖(ηn, ψn) − (η, ψ)‖C0([0,T ];H s+1/2×H s) = 0. (1.3)

Remark 1.3
Notice that our threshold of regularities appears to be the natural one (as long as
dispersive effects are not taken into account). Indeed, ψ ∈ H s(Rd) is equivalent to φ ∈
H s+1/2(�h); hence the velocity u = ∇xφ belongs to H s−1/2(�h) and therefore u ∈
Lip(�h) as soon as s − 1/2 − 1 > (d + 1)/2, that is, s > 2 + d/2. Consequently, our
assumption is the minimal one (in terms of L2 based Sobolev spaces) which ensures the
Lipschitz regularity of the initial velocity field. (The Lipschitz regularity assumption
is well known to be required for the local well-posedness of differential equations.)
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As a consequence, solving this quasilinear system without using further dispersion
properties requires working at least at this level of regularity. However, working with
such rough data gives rise to many technical difficulties, which would be avoided (to
a large extent) by choosing s > 3 + d/2. On the other hand, the dispersive properties
enjoyed by the solutions of the water-wave system (as the Strichartz estimates proved
in [2]) should precisely enable us to go below this threshold. This will be the purpose
of our forthcoming work [3].

Remark 1.4
Notice also that the natural assumption on the water-wave system would be to assume
that (η, ∇xψ) ∈ H s+1/2(Rd) × H s−1(Rd). The method we developed in this article
works for the case when assuming only that (η, ∇φ) ∈ H s+1/2 × H s−1. However,
treating this case requires more elaborate calculations. For simplicity, we are assuming
more, that is, (η, φ) ∈ H s+1/2 × H s .

Our second result is the following 1/4-smoothing effect for two-dimensional water
waves.

THEOREM 1.5
Assume that d = 1, let s > 5/2, and let T > 0. Consider a solution (η, ψ) of (1.2)
on the time interval [0, T ] such that �t satisfies the assumption Ht . If

(η, ψ) ∈ C0
(
[0, T ]; H s+1/2(R) × H s(R)

)
,

then for any δ > 0

〈x〉−1/2−δ(η, ψ) ∈ L2
(
0, T ; H s+3/4(R) × H s+1/4(R)

)
.

Notice that in [12], Christianson, Hur, and Staffilani initiated the study of the dispersive
properties of the solutions of the water-wave system and proved Strichartz type esti-
mates, for smooth enough initial data (in the semi-classical regime and consequently
with loss of derivatives).

Many variations are possible concerning the fluid domain. Our method would
apply to the case where the free surface is not a graph over the hyperplane Rd × {0},
but rather a graph over a fixed hypersurface. Notice also that our proof might apply to
the radial case in dimension 3. However, the nonradial case would certainly require
some nontrapping assumption on the initial geometry.

Remark 1.6
Notice that our method would apply to the case where the bottom is time-dependent,
under an additional Lipschitz regularity assumption on the bottom. In this case, the
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system reads⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�φ + ∂2
yφ = 0 in �t,

∂tη = ∂yφ − ∇η · ∇φ on �t,

∂tφ = −gη + κH (η) − 1

2
|∇φ|2 − 1

2
(∂yφ)2 on �t,

∂nφ(m) = dm

dt
· n(m) for m ∈ �t,

(1.4)

where here dm

dt
is the time derivative of the point m on the boundary �t .

As will appear clearly in the proof of Theorems 1.1 and 1.5, the only difference
between (1.1) and (1.4) is that the boundary condition at the bottom has an influence
which is negligible (in the high-frequency regime) as soon as the Dirichlet-Neumann
operator is well defined (which is the case by a variational approach as soon as the
bottom is Lipschitz).

To prove Theorem 1.5, we start in Section 2 by defining and proving regularity
properties of the Dirichlet-Neumann operator. Then in Section 3 we perform several
reductions to a paradifferential system on the boundary by means of the analysis in
[1]. The key technical lemma in this paper is a reduction of the system (1.2) to a simple
hyperbolic form. To perform this reduction, we prove in Section 4 the existence of
a paradifferential symmetrizer. We deduce Theorem 1.1 from this symmetrization in
Section 5. Theorem 1.5 is then proved in Section 7 by means of Doi’s approach (see
[14], [15]). Note that our strategy is based on a direct analysis in Eulerian coordinates.
In this direction it is influenced by the important paper by Lannes [21]. It can be
remarked that in [21], the Nash-Moser scheme is applied due to a loss of regularity
in the estimates obtained while symmetrizing the system. It happens very often that
in such situations, this scheme can be avoided by applying several derivatives to the
equation (see for example [7], [17], [27]). Here, the loss of derivatives encountered in
Lannes’s work is avoided by the systematic use of the paradifferential calculus which
enables a very precise analysis of the Dirichlet-Neumann operator and consequently
gives a better symmetrization method.

As was shown by Zakharov (see [39] and references therein), the system (1.2) is
a Hamiltonian one of the form

∂η

∂t
= δH

δψ
,

∂ψ

∂t
= −δH

δη
,

H = 1

2

∫
G(η)ψ · ψ dx + g

2

∫
η2 dx + κ

∫ |∇η|2
1 +

√
1 + |∇η|2 dx.
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Denoting by H0 the Hamiltonian associated to the linearized system at the origin (in
the case of an infinite bottom), we have

H0 = 1

2

∫ [|ξ | |ψ̂ |2 + (g + |ξ |2)|̂η|2] dξ,

where f̂ denotes the Fourier transform, f̂ (ξ ) = ∫
e−ix·ξf (x) dx. An important ob-

servation is that the canonical transformation (η, ψ) �→ a with

â = 1√
2

{(g + |ξ |2
|ξ |

)1/4
η̂ − i

( |ξ |
g + |ξ |2

)1/4
ψ̂
}

diagonalizes the Hamiltonian H0 and reduces the analysis of the linearized system to
one complex equation (see [39]). We shall show that there exists a similar diagonal-
ization for the nonlinear equation, by using paradifferential calculus instead of Fourier
transform. As already mentioned, this is the main technical result in this article. In
fact, we strongly believe that all dispersive estimates on the water-wave system with
surface tension could be obtained by using our reduction.

2. The Dirichlet-Neumann operator

2.1. Definition of the operator
The purpose of this section is to define the Dirichlet-Neumann operator and prove some
basic regularity properties. Let us recall that we assume that �t is the intersection of
the half space located below the free surface

�1,t = {
(x, y) ∈ Rd × R : y < η(t, x)

}
and an open set �2 ⊂ Rd+1 and that �2 contains a fixed strip around �t , which means
that there exists h > 0 such that{

(x, y) ∈ Rd × R : η(t, x) − h ≤ y ≤ η(t, x)
} ⊂ �2.

We shall also assume that the domain �2 (and hence the domain �t ) is connected. In
the remainder of this section, we will drop the time dependence of the domain, and
it will appear clearly from the proofs that all estimates are uniform as long as η(t, x)
remains bounded in the set of functions such that ‖η(t, ·)‖H s(Rd ) remains bounded.

Below we use the following notations:

∇ = (∂xi
)1≤i≤d, ∇x,y = (∇, ∂y), � =

∑
1≤i≤d

∂2
xi
, �x,y = � + ∂2

y .
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Notation 2.1
Denote by D the space of functions u ∈ C∞(�) such that ∇x,yu ∈ L2(�). We then
define D0 as the subspace of functions u ∈ D such that u is equal to 0 near the top
boundary �.

PROPOSITION 2.2
There exist a positive weight g ∈ L∞

loc(�) equal to 1 near the top boundary of �, and
a positive constant C such that for all u ∈ D0,∫

�

g(x, y)|u(x, y)|2 dx dy ≤ C

∫
�

|∇x,yu(x, y)|2 dx dy. (2.1)

Let us set

O1 = {
(x, y) ∈ Rd × R : η(x) − h < y < η(x)

}
,

O2 = {
(x, y) ∈ � : y < η(x) − h

}
.

(2.2)

To prove Proposition 2.2, the starting point is the following Poincaré inequality
on O1.

LEMMA 2.3
For all u ∈ D0 we have∫

O1

|u|2 dx dy ≤ h2

∫
�

|∇x,yu|2 dx dy.

Proof
For (x, y) ∈ O1 we can write u(x, y) = − ∫ η(x)

y
(∂yu)(x, z) dz, so using the Cauchy-

Schwarz inequality we obtain

|u(x, y)|2 ≤ h

∫ η(x)

η(x)−h

|(∂yu)(x, z)|2 dz.

Integrating on O1 we obtain the desired conclusion. �

LEMMA 2.4
Let m0 ∈ � and δ > 0 be such that

B(m0, 2δ) = {
m ∈ Rd × R : |m − m0| < 2δ

} ⊂ �.

Then for any m1 ∈ B(m0, δ) and any u ∈ D ,∫
B(m0,δ)

|u|2 dx dy ≤ 2
∫

B(m1,δ)
|u|2 dx dy + 2δ2

∫
B(m0,2δ)

|∇x,yu|2 dx dy. (2.3)
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Proof
Denote by v = m0 − m1, and write

u(m + v) = u(m) +
∫ 1

0
v · ∇x,yu(m + tv) dt.

As a consequence, we get

|u(m + v)|2 ≤ 2|u(m)|2 + 2|v|2
∫ 1

0
|∇x,yu(m + tv)|2dt,

and integrating this last inequality on B(m1, δ) ⊂B(m0, 2δ) ⊂�, we obtain (2.3). �

COROLLARY 2.5
For any compact K ⊂ O2, there exists a constant C(K) > 0 such that, for all u ∈ D0,
we have ∫

K

|u|2 dx dy ≤ C(K)
∫

�

|∇x,yu|2 dx dy.

Proof
Consider now an arbitrary point m0 ∈ O2. Since � is open and connected, there
exists a continuous map γ : [0, 1] → � such that γ (0) = m0 and γ (1) ∈ O1.
By compactness, there exists δ > 0 such that for any t ∈ [0, 1] B(γ (t), 2δ) ⊂ �.
Taking smaller δ if necessary, we can also assume that B(γ (1), δ) ⊂ O1, so that by
Lemma 2.3 ∫

B(γ (1),δ)
|u|2 dx dy ≤ C

∫
�

|∇x,yu|2 dx dy.

We now can find a sequence t0 = 0, t1, . . . , tN = 1 such that the points mn = γ (tn)
satisfy mn+1 ∈ B(mn, δ). Applying Lemma 2.4 successively, we obtain∫

B(m0,δ)
|u|2 dx dy ≤ C ′

∫
�

|∇x,yu|2 dx dy.

Then Corollary 2.5 follows by compactness. �

Proof of Proposition 2.2
Writing O2 = ⋃∞

n=1 Kn and taking a partition of unity (χn) such that 0 ≤ χn ≤ 1 and
supp χn ⊂ Kn, we can define the continuous function

g̃(x, y) =
∞∑

n=1

χn(x, y)

(1 + C(Kn))n2
,
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which is clearly positive. Then by Corollary 2.5,∫
O2

g̃(x, y) |u|2 dx dy ≤
∞∑

n=1

1

(1 + C(Kn))n2

∫
Kn

|u|2 dx dy

≤ 2
∫
O2

∣∣∇x,yu
∣∣2 dx dy.

(2.4)

Finally, let us set

g(x, y) = 1 for (x, y) ∈ O1, g(x, y) = g̃(x, y) for (x, y) ∈ O2.

Then Proposition 2.2 follows from Lemma 2.3 and (2.4). �

We now introduce the space in which we shall solve the variational formulation of our
Dirichlet problem.

Definition 2.6
Denote by H 1,0(�) the space of functions u on � such that there exists a sequence
(un) ∈ D0 such that,

∇x,yun → ∇x,yu in L2(�, dx dy), un → u in L2
(
�, g(x, y) dx dy

)
.

We endow the space H 1,0 with the norm

‖u‖ = ‖∇x,yu‖L2(�).

The key point is that the space H 1,0(�) is a Hilbert space. Indeed, passing to the limit
in (2.1), we obtain first that by definition, the norm on H 1,0(�) is equivalent to

‖∇x,yu‖L2(�,dx dy) + ‖u‖L2(�,g(x,y) dx dy).

As a consequence, if (un) is a Cauchy sequence in H 1,0(�), we obtain easily from
the completeness of L2 spaces that there exist u ∈ L2(�, g(x, y) dx dy) and v ∈
L2(�, dx dy) such that

un → u in L2(�, g(x, y) dx dy), ∇x,yun → v in L2(�, dx dy).

But the convergence in L2(�, g(x, y) dx dy) implies the convergence in D ′(�);
consequently, v = ∇x,yu in D ′(�), and it is easy to see that u ∈ H 1,0(�).
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We are now in position to define the Dirichlet-Neumann operator. Let ψ(x) ∈
H 1(Rd). For χ ∈ C∞

0 (] − 1, 1[) equal to 1 near 0, we first define

ψ̃(x, y) = χ
(y − η(x)

h

)
ψ(x) ∈ H 1(Rd+1),

which is the most simple lifting of ψ . Then the map

v �→ 〈�x,yψ̃, v〉 = −
∫

�

∇x,yψ̃ · ∇x,yv dx dy

is a bounded linear form on H 1,0(�). It follows from the Riesz theorem that there
exists a unique φ̃ ∈ H 1,0(�) such that

∀v ∈ H 1,0(�),
∫

�

∇x,yφ̃ · ∇x,yv dx dy = 〈�x,yψ̃, v〉. (2.5)

Then φ̃ is the variational solution to the problem

−�x,yφ̃ = �x,yψ̃ in D ′(�), φ̃ |�= 0, ∂nφ̃ |�= 0,

the latter condition being justified as soon as the bottom � is regular enough.
We now set φ = φ̃ + ψ̃ and define the Dirichlet-Neumann operator by

G(η)ψ(x) =
√

1 + |∇η|2 ∂nφ|y=η(x),

= (∂yφ)
(
x, η(x)

)− ∇η(x) · (∇φ)
(
x, η(x)

)
.

Notice that a simple calculation shows that this definition is independent of the choice
of the lifting function ψ̃ as long as it remains bounded in H 1(�) and vanishes near
the bottom.

2.2. Boundedness on Sobolev spaces
PROPOSITION 2.7
Let d ≥ 1, let s > 2 + d/2, and let 1 ≤ σ ≤ s. Consider η ∈ H s+1/2(Rd). Then
G(η) maps Hσ (Rd) to Hσ−1(Rd). Moreover, there exists a function C such that, for
all ψ ∈ Hσ (Rd) and η ∈ H s+1/2(Rd),

‖G(η)ψ‖Hσ−1(Rd ) ≤ C(‖η‖H s+1/2 ) ‖∇ψ‖Hσ−1 .

Proof
The proof is in two steps.
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First step: A localization argument. Let us define (by regularizing η), a smooth func-
tion η̃ ∈ H∞(Rd) such that ‖̃η − η‖L∞ ≤ h/100 and ‖̃η − η‖H s+1/2 ≤ h/100. We
now set η1 = η̃ − 9h/20. Then η1 satisfies

η(x) − h

4
< η1(x) ≤ η(x) − h

5
. (2.6)

LEMMA 2.8
Consider for −3h/4 < a < b < h/5 , the strip

Sa,b = {
(x, y) ∈ R

d+1; a < y − η1(x) < b
}
,

which is included in �. Let k ≥ 1 and assume that ‖φ‖Hk(Sa,b) < +∞. Then for any
a < a′ < b′ < b there exists C > 0 such that

‖φ‖Hk+1(Sa′ ,b′ ) ≤ C‖φ‖Hk(Sa,b).

Proof
Choose a function χ ∈ C∞

0 (a, b) equal to 1 on (a′, b′). The function w = χ(y −
η1(x))φ(x, y) is a solution to

�x,yw = [
�x,y, χ

(
y − η1(x)

)]
φ,

and since the assumption implies that the right hand side is bounded in Hk−1, the
result follows from the (explicit) elliptic regularity of the operator �x,y in Rd+1. �

LEMMA 2.9
Assume that −3h/4 < a < b < h/5. Then the strip Sa,b = {(x, y) ∈ Rd+1 : a <

y − η1(x) < b} is included in �, and for any k ≥ 1, there exists C > 0 such that

‖φ‖Hk(Sa,b) ≤ C‖ψ‖H 1(Rd ).

Proof
It follows from (2.5) and the definition of φ = φ̃ + ψ̃ that

‖∇x,yφ‖L2(�) ≤ c ‖ψ‖H 1(Rd ) .

Noticing that Sa,b ⊂ O1 (see (2.2)) and applying Lemma 2.3 we obtain the a priori
H 1 bound

‖φ‖H 1(Sa,b) ≤ ‖φ‖H 1(O1) ≤ (1 + h)‖∇x,yφ‖L2(�) ≤ c(1 + h) ‖ψ‖H 1(Rd ).
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Since it is always possible to chose a < a2 < · · · < ak = a′ < b′ = bk < · · · <

b2 < b, we deduce Lemma 2.9 from Lemma 2.8. �

We next introduce χ0 ∈ C∞(R) such that 0 ≤ χ0 ≤ 1,

χ0(z) = 1 for z ≥ 0, χ0(z) = 0 for z ≤ −1

4
.

Then the function

�(x, y) = χ0

(y − η1(x)

h

)
φ(x, y)

is a solution to

�x,y� = f :=
[
�x,y, χ0

(y − η1(x)

h

)]
φ.

In view of (2.6), notice that f is supported in a set where φ is H∞. According to Q5

Lemma 2.9. We find that

f ∈ H∞(O1) where O1 = {
(x, y) ∈ Rd × R : η(x) − h < y < η(x)

}
.

In addition, using that χ0(0) = 1 and that �(x, y) is identically equal to 0 near the set
{y = η − h}, we immediately verify that � satisfies the boundary conditions

� |y=η(x)= ψ(x), ∂y� |y=η(x)−h= 0, � |y=η(x)−h= 0.

The fact that the strip O1 depends on η and not on η1 is not a typographical error.
Indeed, with this choice, the strip O1 is made of two parallel curves. As a result, a
very simple (affine) change of variables will flatten both the top surface {y = η(x)}
and the bottom surface {y = η(x) − h}.

Second step: Elliptic estimates. To prove elliptic estimates, we shall first flatten the
boundary. To do so we shall consider the simplest change of variables. Namely,
introduce

ρ(x, z) = hz + η(x).

Then the map (x, z) �→ (x, ρ(x, z)) is a diffeomorphism from the strip Rd × [−1, 0]
to the set {

(x, y) ∈ Rd × R : η(x) − h ≤ y ≤ η(x)
}
.
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Let us define the function v : Rd × [−1, 0] → R by

v(x, z) = �
(
x, ρ(x, z)

)
. (2.7)

From �x,y� = f with f ∈ H∞(�η), we deduce that v satisfies the elliptic equation( 1

∂zρ
∂z

)2
v +

(
∇ − ∇ρ

∂zρ
∂z

)2
v = g, (2.8)

where g(x, z) = f (x, hz + η(x)) is in C2
z ([−1, 0]; H s+1/2(Rd

x)). This yields

α∂2
z v + �v + β · ∇∂zv − γ ∂zv = g, (2.9)

where

α:= 1 + |∇η|2
h2

, β := −2∇η

h
, γ := �η

h
. (2.10)

Also v satisfies the boundary conditions

v|z=0 = ψ, ∂zv|z=−1 = 0, v|z=−1 = 0. (2.11)

We are now in position to apply elliptic regularity results obtained by Alvarez-
Samaniego and Lannes in [5, Section 2.2] to deduce the following result.

LEMMA 2.10
Suppose that v satisfies the elliptic equation 2.9 with the boundary condtions 2.11 with
ψ ∈ Hσ (Rd) and η ∈ H s+1/2(Rd) where 1 ≤ σ ≤ s, s > 2 + d/2, dist(�, �) > 0.
Then

∇v, ∂zv ∈ L2
z

(
[−1, 0]; Hσ−1/2

x (Rd)
)
.

It follows from Lemma 2.10 and a classical interpolation argument that (∇v, ∂zv) are
continuous in z ∈ [−1, 0] with values in Hσ−1(Rd). Now note that, by definition,

G(η)ψ = 1 + |∇η|2
h

∂zv − ∇η · ∇v

⏐⏐⏐
z=0

.

Therefore, G(η)ψ ∈ Hσ−1(Rd) and we have the desired estimate.
This completes the proof of Proposition 2.7. �

2.3. Linearization of the Dirichlet-Neumann operator
The next proposition gives an explicit expression of the shape derivative of the
Dirichlet-Neumann operator, that is, of its derivative with respect to the surface
parametrization.
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PROPOSITION 2.11
Let ψ ∈ Hσ (Rd) and η ∈ H s+1/2(Rd) with 1 ≤ σ ≤ s, s > 2 + d/2 be such that
dist(�, �) > 0. Then there exists a neighborhood Uη ⊂ H s+1/2(Rd) of η such that
the mapping

σ ∈ Uη ⊂ H s+1/2(Rd) �→ G(σ )ψ ∈ Hσ−1(Rd)

is differentiable. Moreover, for all h ∈ H s+1/2(Rd), we have

dG(η)ψ · h := lim
ε→0

1

ε

{
G(η + εh)ψ − G(η)ψ

} = −G(η)(Bh) − div(V h),

where

B = ∇η · ∇ψ + G(η)ψ

1 + |∇η|2 , V = ∇ψ − B∇η.

The above result goes back to Zakharov [39]. Notice that in the previous section we
reduced the analysis to studying an elliptic equation in a flat strip Rd × [−1, 0]. As a
consequence, the proof of this result by Lannes [21] applies (see also [8], [18], [1]).

Let us mention a key cancellation in the previous formula, which is proved in [8,
Lemma 1] (see also [21]).

LEMMA 2.12
We have G(η)B = − div V + R where R ∈ H s−1(Rd).

Remark 2.13
As we shall see (and as can be easily derived from the definition) we have B, V ∈
H s−1(Rd) and hence G(η)B and div V belong to H s−2(Rd), The previous lemma
shows that up to a smoother remainder, these two terms are equal. In fact, the following
proof establishes that the equality G(η)B = − div V holds in the case without bottom
boundary (� = ∅).

Proof
Recalling that, by definition,

G(η)ψ = (∂yφ − ∇η · ∇φ)|y=η

and using the chain rule to write

∇ψ = ∇(φ|y=η) = (∇φ + ∂yφ∇η)|y=η,
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we obtain

B := ∇η · ∇ψ + G(η)ψ

1 + |∇η|2

=
{∇η · (∇φ + ∂yφ∇η) + ∂yφ − ∇η · ∇φ

}
1 + |∇η|2

⏐⏐⏐
y=η

= (∂yφ)
⏐⏐

y=η
.

Therefore the function � defined by �(x, y) = ∂yφ(x, y) satisfies

�x,y� = 0, �|y=η = B.

Now introduce the variational solution �̃ to the system where we add the bottom
boundary condition:

�x,y�̃ = 0, �̃|y=η = B, ∂n�̃|� = 0.

Then it follows from elliptic regularity (see Lemma 2.10) that � − �̃ belongs to
H s+1/2(�h). (Recall that �h is an h-neighborhood of the free surface.) Directly from
the definition of the Dirichlet-Neumann operator, we have

G(η)B = ∂y�̃ − ∇η · ∇�̃|y=η. = ∂y� − ∇η · ∇�|y=η + R,

where

R = ∂y(�̃ − �) − ∇η · ∇(�̃ − �)|y=η ∈ H s−1(Rd).

It remains to show that ∂y� − ∇η · ∇�|y=η = − div V . To do that we first write that
∂y� = ∂2

yφ = −�φ to obtain

∂y� − ∇η · ∇�|y=η = −�φ − ∇η · ∇�|y=η.

On the other hand, directly from the definition of V , we have

div V = div(∇ψ − B∇η) = �ψ − div(B∇η).

Using that ψ(x) = φ(x, η(x)), we check that

�ψ = div ∇ψ = div(∇φ|y=η + ∂yφ|y=η∇η)

= (�φ + ∇∂yφ · ∇η)|y=η + div(∂yφ|y=η∇η)

= (�φ + ∇∂yφ · ∇η)|y=η + div(B∇η)
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so that

div V = �ψ − div(B∇η) = (�φ + ∇∂yφ · ∇η)|y=η

= (�φ + ∇� · ∇η)|y=η = −G(η)B,

which is the desired identity. �

3. Paralinearization

3.1. Paradifferential calculus
In this paragraph we review notations and results about Bony’s paradifferential calcu-
lus. We refer to [10], [16], [22], [25], and [32] for the general theory. Here we follow
the presentation by Métivier in [22].

For ρ ∈ N, according to the usual definition, we denote by Wρ,∞(Rd) the Sobolev
spaces of L∞ function’s whose derivatives of order ρ are in L∞. For ρ ∈]0, +∞[\N,
we denote by Wρ,∞(Rd) the space of bounded functions whose derivatives of order
[ρ] are uniformly Hölder continuous with exponent ρ − [ρ]. Recall also that, for all
C∞ functions F , if u ∈ Wρ,∞(Rd) for some ρ ≥ 0, then F (u) ∈ Wρ,∞(Rd).

Definition 3.1
Given ρ ≥ 0 and m ∈ R, �m

ρ (Rd) denotes the space of locally bounded functions
a(x, ξ ) on Rd × (Rd \ 0), which are C∞ with respect to ξ for ξ �= 0 and such that,
for all α ∈ Nd and all ξ �= 0, the function x �→ ∂α

ξ a(x, ξ ) belongs to Wρ,∞(Rd) and
there exists a constant Cα such that

∀ |ξ | ≥ 1

2
, ‖∂α

ξ a(·, ξ )‖Wρ,∞ ≤ Cα(1 + |ξ |)m−|α|. (3.1)

We next introduce the spaces of (poly-)homogeneous symbols.

Definition 3.2
(i) �̇m

ρ (Rd) denotes the subspace of �m
ρ (Rd) which consists of symbols a(x, ξ )

which are homogeneous of degree m with respect to ξ .
(ii) If

a =
∑

0≤j<ρ

a(m−j ) (j ∈ N),

where a(m−j ) ∈ �̇
m−j

ρ−j (Rd), then we say that a(m) is the principal symbol of a.
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Given a symbol a, we define the paradifferential operator Ta by

T̂au(ξ ) = (2π)−d

∫
χ(ξ − η, η)̂a(ξ − η, η)ψ(η)̂u(η) dη, (3.2)

where â(θ, ξ ) = ∫
e−ix·θa(x, ξ ) dx is the Fourier transform of a with respect to the

first variable χ and ψ are two fixed C∞ functions such that

ψ(η) = 0 for |η| ≤ 1, ψ(η) = 1 for |η| ≥ 2,

and χ(θ, η) is homogeneous of degree 0 and satisfies, for 0 < ε1 < ε2 small enough,

χ(θ, η) = 1 if |θ | ≤ ε1 |η| , χ(θ, η) = 0 if |θ | ≥ ε2 |η| .

We shall use quantitative results from [22] about operator norm estimates in
symbolic calculus. To do so, we introduce the following semi-norms.

Definition 3.3
For m ∈ R, ρ ≥ 0, and a ∈ �m

ρ (Rd), we set

Mm
ρ (a) = sup

|α|≤d/2+1+ρ

sup
|ξ |≥1/2

∥∥(1 + |ξ |)|α|−m∂α
ξ a(·, ξ )

∥∥
Wρ,∞(Rd )

. (3.3)

Remark 3.4
If a is homogeneous of degree m in ξ , then

Mm
ρ (a) ≤ Kd,m sup

|α|≤d/2+1+ρ

sup
‖ξ‖=1

‖∂α
ξ a(·, ξ )‖Wρ,∞(Rd ).

The main features of symbolic calculus for paradifferential operators are given
by the following theorems.

Definition 3.5
Let m ∈ R. An operator T is said to be of order m if, for all μ ∈ R, it is bounded
from Hμ to Hμ−m.

THEOREM 3.6
Let m ∈ R. If a ∈ �m

0 (Rd), then Ta is of order m. Moreover, for all μ ∈ R there exists
a constant K such that

‖Ta‖Hμ→Hμ−m ≤ KMm
0 (a). (3.4)

THEOREM 3.7 (Composition)
Let m ∈ R, and let ρ > 0. If a ∈ �m

ρ (Rd), b ∈ �m′
ρ (Rd), then TaTb − Ta#b is of order
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m + m′ − ρ where

a#b =
∑
|α|<ρ

1

i |α|α!
∂α

ξ a∂α
x b.

Moreover, for all μ ∈ R there exists a constant K such that

‖TaTb − Ta#b‖Hμ→Hμ−m−m′+ρ ≤ KMm
ρ (a)Mm′

ρ (b). (3.5)

Remark 3.8
We have the following corollary for poly-homogeneous symbols: if

a =
∑

0≤j<ρ

a(m−j ) ∈
∑

0≤j<ρ

�
m−j

ρ−j (Rd), b =
∑

0≤k<ρ

b(m−k) ∈
∑

0≤k<ρ

�m′−k
ρ−k (Rd),

with m, m′ ∈ R and ρ > 0, then TaTb − Tc is of order m + m′ − ρ with

c =
∑

|α|+j+k<ρ

1

i |α|α!
∂α

ξ a(m−j )∂α
x b(m′−k).

Remark 3.9
Clearly, a paradifferential operator is not invertible (Tau = 0 for any function u whose
spectrum is included in the ball |ξ | ≤ 1/2.) However, the previous result implies that
there are left and right parametries for elliptic symbols. Namely, assume that a ∈ �m

ρ

is an elliptic symbol (such that |a| ≥ K |ξ |m for some K > 0), then there exists
b, b′ ∈ �−m

ρ such that

TbTa − I Ê and TaTb′ − I are of order − ρ.

Consequently, if u ∈ H s and Tau ∈ Hμ, then u ∈ Hr with r = min{μ + m, s + ρ}. Q6

THEOREM 3.10 (Adjoint)
Let m ∈ R, let ρ > 0, and let a ∈ �m

ρ (Rd). Denote by (Ta)∗ the adjoint operator of
Ta and by a the complex conjugate of a. Then (Ta)∗ − Ta∗ is of order m − ρ where

a∗ =
∑
|α|<ρ

1

i |α|α!
∂α

ξ ∂α
x a.

Moreover, for all μ there exists a constant K such that

‖(Ta)∗ − Ta∗‖Hμ→Hμ−m+ρ ≤ KMm
ρ (a). (3.6)

If a = a(x) is a function of x only, the paradifferential operator Ta is called a
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paraproduct. It follows from Theorem 3.7 and Theorem 3.10 that:
(1) If a ∈ Hα(Rd) and b ∈ Hβ(Rd) with α > d/2, β > d/2, then

TaTb − Tab is of order −
(

min{α, β} − d/2
)
. (3.7)

(2) If a ∈ Hα(Rd) with α > d/2, then

(Ta)∗ − Ta is of order −
(
α − d/2

)
. (3.8)

We also have operator norm estimates in terms of the Sobolev norms of the functions.
A first nice feature of paraproducts is that they are well defined for functions

a = a(x) which are not in L∞ but merely in some Sobolev spaces Hr with r < d/2.

LEMMA 3.11
Let m > 0. If a ∈ Hd/2−m(Rd) and u ∈ Hμ(Rd), then Tau ∈ Hμ−m(Rd). Moreover,

‖Tau‖Hμ−m ≤ K ‖a‖Hd/2−m ‖u‖Hμ ,

for some positive constant K independent of a and u.

On the other hand, a key feature of paraproducts is that one can replace nonlinearQ7

expressions by paradifferential expressions, to the price of error terms which are
smoother than the main terms.

THEOREM 3.12
Let α, β ∈ R be such that α > d/2, β > d/2, then
(i) For all C∞ function F , if a ∈ Hα(Rd), then

F (a) − F (0) − TF ′(a)a ∈ H 2α−d/2(Rd).

(ii) If a ∈ Hα(Rd) and b ∈ Hβ(Rd), then ab − Tab − Tba ∈ Hα+β−d/2(Rd).
Moreover,

‖ab − Tab − Tba‖Hα+β−d/2(Rd ) ≤ K ‖a‖Hα(Rd ) ‖b‖Hβ (Rd ) ,

for some positive constant K independent of a, b.

We also recall the usual nonlinear estimates in Sobolev spaces (see [16, Chapter 8]):
� If uj ∈ H sj (Rd), j = 1, 2, and s1 + s2 > 0, then u1u2 ∈ H s0 (Rd); and if

s0 ≤ sj , j = 1, 2, and s0 ≤ s1 + s2 − d/2, then

‖u1u2‖H s0 ≤ K ‖u1‖H s1 ‖u2‖H s2 , (3.9)
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where the last inequality is strict if s1 or s2 or −s0 is equal to d/2.
� For all C∞ functions F vanishing at the origin, if u ∈ H s(Rd) with s > d/2,

then

‖F (u)‖H s ≤ C (‖u‖H s ) , (3.10)

for some non-decreasing function C depending only on F .

3.2. Symbol of the Dirichlet-Neumann operator
Given η ∈ C∞(Rd), consider the domain (without bottom)

� = {
(x, y) ∈ Rd × R : y < η(x)

}
.

It is well-known that the Dirichlet-Neumann operator associated to � is a classical
elliptic pseudo-differential operator of order 1, whose symbol has an asymptotic
expansion of the form

λ(1)(x, ξ ) + λ(0)(x, ξ ) + λ(−1)(x, ξ ) + · · ·

where λ(k) are homogeneous of degree k in ξ , and the principal symbol λ(1) and the
sub-principal symbol λ(0) are given by (see [18])

λ(1) =
√

(1 + |∇η|2) |ξ |2 − (∇η · ξ )2,

λ(0) = 1 + |∇η|2
2λ(1)

{
div(α(1)∇η) + i∂ξλ

(1) · ∇α(1)
}
,

(3.11)

with

α(1) = 1

1 + |∇η|2 (λ(1) + i∇η · ξ ).

The symbols λ(−1), . . . are defined by induction and we can prove that λ(k) involves
only derivatives of η of order |k| + 2.

In our case the function η will not be C∞ but only at least C2, so we shall set

λ = λ(1) + λ(0), (3.12)

which will be well-defined in the C2 case.
The following observation contains one of the key dichotomies between two-

dimensional waves and three-dimensional waves which can be checked by a direct
computation using (3.11).
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PROPOSITION 3.13
If d = 1, then λ simplifies to λ(1)(x, ξ ) = |ξ | , λ(0)(x, ξ ) = 0.

Also, directly from (3.11), one can check the following formula (which holds for all
d ≥ 1)

Im λ(0) = −1

2
(∂ξ · ∂x)λ(1), (3.13)

which reflects the fact that the Dirichlet-Neumann operator is a symmetric operator.

3.3. Paralinearization of the Dirichlet-Neumann operator
Here is the main result of this section. Following the analysis in [1], we shall par-
alinearize the Dirichlet-Neumann operator. The main novelties are that we consider
the case of finite depth (with a general bottom) and that we lower the regularity
assumptions.

PROPOSITION 3.14
Let d ≥ 1, and let s > 2 + d/2. Assume that

(η, ψ) ∈ H s+1/2(Rd) × H s(Rd)

and that η is such that dist(�, �) > 0. Then

G(η)ψ = Tλ(ψ − TBη) − TV · ∇η + f (η, ψ), (3.14)

where λ is given by (3.11) and (3.12),

B := ∇η · ∇ψ + G(η)ψ

1 + |∇η|2 , V := ∇ψ − B∇η,

and f (η, ψ) ∈ H s+1/2(Rd). Moreover, we have the estimate

‖f (η, ψ)‖H s+1/2 ≤ C(‖η‖H s+1/2 ) ‖∇ψ‖H s−1 ,

for some non-decreasing function C depending only on dist(�, �) > 0.

Remark 3.15
(i) It is well known that B and V play a key role in the study of the water

waves. (These are simply the projections of the velocity field in the vertical
and horizontal directions.)

(ii) We would like to make a comment on the unknown ψ − TBη. This unknown
is related to the so-called good unknown of Alinhac, as it is explained in [1]
(see also [4], [21], [33]). It comes from the paracomposition theory of Alinhac
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which associates to a low regular diffeomorphism χ an operator denoted by
χ∗ acting on every Sobolev space. Starting with the equation �x,yφ = 0 and
making a low regular change of variables χ (which flattens the boundary) lead
to the equation 0 = χ∗�x,yφ = Tpχ∗φ (modulo a good remainder) where p

is a computable symbol. Then ψ − TBη is the trace of χ∗φ on the boundary.

3.4. Proof of Proposition 3.14
Let v be given by (2.7). According to (2.9), v solves

α∂2
z v + �v + β · ∇∂zv − γ ∂zv = g,

where g ∈ C2
z ([−1, 0]; H s+1/2(Rd)) is given by (2.8) and

α := 1 + |∇η|2
h2

, β := −2
∇η

h
, γ := �η

h
. (3.15)

Also v satisfies the boundary conditions

v|z=0 = ψ, v|z=−1 = 0, ∂zv|z=−1 = 0.

Henceforth we make intensive use of the following notation.

Notation 3.16
C0

z (Hr
x ) denotes the space of continuous functions in z ∈ [−1, 0] with values in

Hr (Rd).

It follows from Proposition 2.10 and a classical interpolation argument that

(∇v, ∂zv) ∈ C0
z (H s−1

x ).

In addition, directly from the equation (2.9) and the usual product rule in Sobolev
spaces (see (3.9)), we easily obtain

∂2
z v ∈ C0

z (H s−2
x ), ∂3

z v ∈ C0
z (H s−3

x ).

3.4.1. The good unknown of Alinhac
Below, we use the tangential paradifferential calculus, that is, the paradifferential
quantization Ta of symbols a(z; x, ξ ) depending on the phase space variables (x, ξ ) ∈
T ∗Rd and the parameter z ∈ [−1, 0]. In particular, denote by Tau the operator acting
on functions u = u(z; x) so that for each fixed z, (Tau)(z) = Ta(z)u(z).

Note that a simple computation shows

G(η)ψ = 1 + |∇ρ|2
h

∂zv − ∇η · ∇v

⏐⏐⏐
z=0

.
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Our purpose is to express ∂zv|z=0 in terms of tangential derivatives. To do this, the key
technical point is to obtain an equation for ψ − TBη.

Note that

ψ − TBη = v − T∂zv/hρ|z=0.

We thus introduce

b := ∂zv

h
and u := v − Tbρ = v − Tbη,

since Tb(hz) = 0, so that ψ − TBη = u|z=0.

LEMMA 3.17
Set

δ = min
{1

2
, s − 2 − d

2

}
> 0.

The good unknown u = v − Tbρ satisfies the paradifferential equation

Tα∂
2
z u + �u + Tβ · ∇∂zu − Tγ ∂zu = g + f, (3.16)

where α, β, γ are as defined in (3.15), g ∈ C1
z (H s+1/2

x ) is given by (2.8), and

f ∈ C0
z (H s−1/2+δ

x ).

Proof
We shall use the notation f1 ∼ f2 to say that f1 − f2 ∈ C0

z (H s−1/2+δ
x ).

We introduce the operators

E := α∂2
z + � + β · ∇∂z − γ ∂z,

P := Tα∂
2
z + � + Tβ · ∇∂z − Tγ ∂z.

We shall prove that Pu ∼ g1, where g1 ∈ C0
z (H s+1/2

x ). To do so, we begin with the
paralinearization formula for products. Recall that

η ∈ H s+1/2(Rd) and ∂k
z v ∈ C0

z (H s−k
x ) for k ∈ {1, 2}.

According to Theorem 3.12(ii), we have

Ev ∼ Pv + T∂2
z vα + T∇∂zv · β − T∂zvγ .

Since Ev = g ∈ C0
z (H s+1/2

x ) and since v = u + Tbη, this yields

Pu + PTbη + T∂2
z vα + T∇∂zv · β − T∂zvγ ∼ g ∼ 0.
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Hence, we need only prove that

PTbη + T∂2
z vα + T∇∂zv · β − T∂zvγ ∼ 0. (3.17)

By using the Leibniz rule we have

PTbη = TαT∂2
z bη + Tb�η + 2T∇b · ∇η + T�bη

+ Tβ · T∇∂zbη + Tβ · T∂zb∇η − Tγ T∂zbη.

We claim that

TαT∂2
z bη ∼ 0, T�bη ∼ 0, Tβ · T∇∂zbη ∼ 0, Tγ T∂zbη ∼ 0.

Since α, β, and γ are bounded functions, the operators Tα, Tβ , and Tγ are of order
zero and hence to prove this claim it is enough to prove that

T∂2
z bη ∼ 0, T�bη ∼ 0, T∇∂zbη ∼ 0, T∂zbη ∼ 0. (3.18)

To prove these results, we shall use the rule given in Lemma 3.11 for paraproducts
whose symbols belong to a Sobolev space of order less than d/2. Set m = 1 − δ.
Then by the definition of δ (and assumption on s) we have

m > 0, s − 1

2
+ δ = s + 1

2
− m and s − 3 ≥ d

2
− m.

Therefore Lemma 3.11 implies that

‖Tau‖H s−1/2+δ ≤ K ‖a‖H s−3 ‖u‖H s+1/2 . (3.19)

Since b = h−1∂zv and since ∂k
z v ∈ C0

z (H s−k
x ) for k = 1, 2, 3, we have

∂2
z b, �b, ∇∂zb, ∂zb ∈ C0

z (H s−3
x ).

By applying the estimate (3.19) we end up with the desired results (3.18).
We have proved that

PTbη ∼ 2T∇b · ∇η + Tβ∂zb · ∇η + Tb�η.
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On the other hand, according to (3.15), we have

T∂zvγ = Tb�η, T∇∂zvβ = −2T∇b∇η, Tβ∂zb∇η = − 2

h2
T∂2

z v∇η∇η ∼ −T∂2
z vα,

where the last equivalence is a consequence of Theorem 3.12(i) and (3.7).
Consequently, we end up with the key cancelation

T∂2
z vα + T∇∂zv · β − T∂zvγ + 2T∇b · ∇η + Tβ∂zb · ∇η + Tb�η ∼ 0.

This concludes the proof of (3.17) and hence of the lemma. �

3.4.2. Reduction to the boundary
Our next task is to perform a decoupling into forward and backward elliptic evolution
equations.

LEMMA 3.18
Assume that η ∈ H s+1/2(Rd), and recall that

δ = min
{1

2
, s − 2 − d

2

}
> 0.

There exist two symbols a = a(x, ξ ), A = A(x, ξ ) (independent of z) with

a = a(1) + a(0) ∈ �̇1
3/2+δ(R

d) + �̇0
1/2+δ(R

d),

A = A(1) + A(0) ∈ �̇1
3/2+δ(R

d) + �̇0
1/2+δ(R

d)

such that

Tα∂
2
z + � + Tβ · ∇∂z − Tγ ∂z = Tα(∂z − Ta)(∂z − TA)u + R0 + R1∂z, (3.20)

where R0 is of order 1/2 − δ and R1 is of order −1/2 − δ.

Proof
We seek a and A such that

a(1)A(1) + 1

i
∂ξa

(1) · ∂xA
(1) + a(1)A(0) + a(0)A(1) = −|ξ |2

α
,

a + A = 1

α
(−iβ · ξ + γ ) .

(3.21)

According to Theorem 3.7 and (3.7),

R0 := TαTaTA − � is of order 2 − 3

2
− δ = 1

2
− δ,
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while the second equation gives that

R1 := −Tα(Ta + TA) + (Tβ · ∇ − Tγ ) is of order 1 − 3

2
− δ = −1

2
− δ.

We thus obtain the desired result (3.20) from (3.16).
To solve (3.21), we first solve the principal system

a(1)A(1) = −|ξ |2
α

, a(1) + A(1) = − iβ · ξ

α
,

by setting

a(1)(x, ξ ) = 1

2α

(−iβ · ξ −
√

4α |ξ |2 − (β · ξ )2
)
,

A(1)(x, ξ ) = 1

2α

(−iβ · ξ +
√

4α |ξ |2 − (β · ξ )2
)
.

Directly from the definition of α and β note that√
4α |ξ |2 − (β · ξ )2 ≥ 2

h
|ξ | ,

so that the symbols a(1), A(1) belong to �̇1
3/2+δ(R

d). (Actually a(1), A(1) belong to
�̇1

s−(d+1)/2(Rd) provided that s − (d + 1)/2 is not an integer.)
We next solve the system

a(0)A(1) + a(1)A(0) + 1

i
∂ξa

(1)∂xA
(1) = 0, a(0) + A(0) = γ

α
.

It is found that

a(0) = 1

A(1) − a(1)

(
i∂ξa

(1) · ∂xA
(1) − γ

α
a(1)

)
,

A(0) = 1

a(1) − A(1)

(
i∂ξa

(1) · ∂xA
(1) − γ

α
A(1)

)
,

so that the symbols a(0), A(0) belong to �̇0
1/2+δ(R

d). �

We shall need the following elliptic regularity result.

PROPOSITION 3.19
Let a ∈ �1

1(Rd) and b ∈ �0
0(Rd), with the assumption that

Re a(x, ξ ) ≥ c |ξ | ,
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for some positive constant c. If w ∈ C1
z (H−∞

x ) solves the elliptic evolution equation

∂zw + Taw = Tbw + f,

with f ∈ C0
z (Hr

x ) for some r ∈ R, then for all ε > 0 we have

w(0) ∈ Hr+1−ε(Rd). (3.22)

Remark 3.20
This is a local result which means that the conclusion (3.22) remains true if we only
assume that, for some δ > 0,

f |−1≤z≤−δ ∈ C0
(
[−1, −δ]; H−∞(Rd)

)
, f |−δ≤z≤0 ∈ C0

(
[−δ, 0]; Hr (Rd)

)
.

In addition, the result still holds true for symbols a ∈ C0
z (�1

1) and b ∈ C0
z (�0

0), with
the assumption that Re a ≥ c |ξ |, for some positive constant c.

Proof
The following proof gives the stronger conclusion that w is continuous in z ∈] − 1, 0]
with values in Hr+1−ε(Rd). Therefore, by an elementary induction argument, we can
assume without loss of generality that b = 0 and w ∈ C0

z (Hr
x ). In addition, one can

assume that there exists δ > 0 such that w(x, z) = 0 for z ≤ −1/2.

For z ∈ [−1, 0], introduce the symbol

e(z; x, ξ ) := exp
(
za(x, ξ )

)
,

so that e|z=0 = 1 and ∂ze = ea. Since Re a ≥ c |ξ |, we have the simple estimates

(|z| |ξ |)me(z; x, ξ ) ≤ Cm.

Write

∂z (Tew) = Tef + (T∂ze − TeTa)w,

and integrate on [−1, 0] to obtain

T1w(0) =
∫ 0

−1
(T∂ze − TeTa)w(y) dy +

∫ 0

−1
(Tef )(y) dy.

Since w(0) − T1w(0) ∈ H+∞(Rd) it remains only to prove that the right-hand side
belongs to Hr+1−ε(Rd). Set

w1(0) =
∫ 0

−1
(T∂ze − TeTa)w(y) dy, w2(0) =

∫ 0

−1
(Tef )(y) dy.
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To prove that w2(0) belongs to Hr+1−ε(Rd), the key observation is that, since
Re a ≥ c |ξ |, the family{

(|y| |ξ |)1−εe(y; x, ξ ) : −1 ≤ y ≤ 0
}

is bounded in �0
1(Rd). According to the operator norm estimate (3.4), we thus obtain

that there is a constant K such that, for all −1 ≤ y ≤ 0 and all v ∈ Hr (Rd),∥∥(|y| |Dx |)1−ε(Tev)
∥∥

Hr ≤ K ‖v‖Hr .

Consequently, there is a constant K such that, for all y ∈ [−1, 0[,

‖(Tef )(y)‖Hr+1−ε ≤ K

|y|1−ε
‖f (y)‖Hr .

Since |y|−(1−ε) ∈ L1(] − 1, 0[), this implies that w2(0) ∈ Hr+1−ε(Rd).
With regards to the first term, we claim that, similarly,

‖(T∂ze − TeTa)(y)‖Hr→Hr+1−ε ≤ K

|y|1−ε
.

Indeed, since ∂ze = ea, this follows from (3.5) applied with (m, m′, r) = (−1 +
ε, 1, 1) and the fact that M−1+ε

1 (|y|1−ε e(y; ·, ·)) is uniformly bounded for −1 ≤ y ≤ 0. Q8

This yields the desired result. �

We are now in position to describe the boundary value of ∂zu up to an error in
H s+1/2(Rd).

COROLLARY 3.21
Let A be as given by Lemma 3.18. Then, on the boundary {z = 0}, it holds that

(∂zu − TAu)|z=0 ∈ H s+1/2(Rd).

Proof
Introduce w := (∂z − TA)u, and write

∂zw − Ta(1)w = Ta(0)w + f ′,

with f ′ ∈ C0
z (H s−1/2+δ

x ). Since Re a(1) < −c |ξ |, the previous proposition applied
with a = −a(1), b = a(0), and ε = δ > 0 implies that w|z=0 ∈ H s+1/2(Rd). �

By definition,

G(η)ψ = 1 + |∇η|2
h

∂zv − ∇η · ∇v

⏐⏐⏐
z=0

.
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As before, we find that

1 + |∇η|2
h

∂zv − ∇η · ∇v = T(1+|∇η|2)/h∂zv + 2Tb∇η · ∇η − Tb(1+|∇η|2)/hh

− (T∇η · ∇v + T∇v · ∇η) + R,

where R ∈ C0
z (H 2s−(3+d)/2

x ). We next replace ∂zv and ∇v by ∂z(u + Tbρ) and ∇(u +
Tbρ) on the right hand side to obtain, after a few computations,

1 + |∇η|2
h

∂zv−∇η·∇v = T(1+|∇η|2)/h∂zu−T∇η·∇u−T∇v−b∇η·∇ρ−Tdiv(∇v−b∇η)ρ+R′,

with R′ ∈ C0
z (H 2s−(3+d)/2

x ). Furthermore, Corollary 3.21 implies that

T(1+|∇η|2)/h∂zu − T∇η · ∇u|z=0 = TλU + r, (3.23)

with U = u|z=0 = v − Tbρ|z=0 = ψ − TBη, r ∈ H s+1/2(Rd) and

λ = 1 + |∇η|2
h

A − i∇η · ξ

⏐⏐⏐
z=0

. (3.24)

After a few computations, we check that λ is as given by (3.11)–(3.12).
This concludes the analysis of the Dirichlet-Neumann operator. Indeed, we have

obtained

G(η)ψ = TλU − T∇v−b∇η · ∇η − Tdiv(∇v−b∇η)ρ + f (η, ψ),

with f (η, ψ) ∈ H s+1/2(Rd). This yields the first equation in (3.14) since

V = ∇v − b∇η|z=0, ∇η|z=0 = ∇η

and since

Tdiv V η ∈ H s+1/2(Rd).

3.5. A simpler case
Let us remark that if (η, ψ) ∈ H s+1/2(Rd) × H s−1(Rd), the expressions above can be
simplified and we have the following result that we shall use in Section 6.2.

PROPOSITION 3.22
Let d ≥ 1, let s > 2 + d/2, and let 1 ≤ σ ≤ s − 1. Assume that

(η, ψ) ∈ H s+1/2(Rd) × Hσ (Rd),
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and assume that η is such that dist(�, �) > 0. Then

G(η)ψ = Tλ(1)ψ + F (η, ψ),

where F (η, ψ) ∈ Hσ (Rd). (Recall that λ(1) denotes the principal symbol of the
Dirichlet-Neumann operator.) Moreover,

‖F (η, ψ)‖Hσ ≤ C(‖η‖H s+1/2 ) ‖∇ψ‖Hσ−1 ,

for some non-decreasing function C depending only on dist(�, �) > 0.

Remark 3.23
Notice that the proof below would still work assuming only

η ∈ H s+ε(Rd), v ∈ C0
z (Hσ

x ),

with the same conclusion. A more involved proof (using regularized lifting for the
function η following Lannes [21]) would give the result assuming only

(η, ψ) ∈ H s(Rd) × Hσ (Rd).

Proof
We follow the proof of Proposition 3.14. Let v be as given by (2.7): v solves

α∂2
z v + �v + β · ∇∂zv − γ ∂zv = g,

where g ∈ C0([−1, 0]; H s+1/2(Rd)) is given by (2.8) and

α := (1 + |∇η|2)

h2
, β := −2

∇η

h
, γ := �η

h
.

Compared with the proof of Proposition 3.14, an important simplification is that in
this proof we need only to paralinearize with respect to v. In this direction, we claim
that

Tα∂
2
z v + �v + Tβ · ∇∂zv − Tγ ∂zv ∈ C0

z (Hσ−1/2
x ). (3.25)

To see this we first apply Theorem 3.12(ii) to obtain

α∂2
z v − Tα∂

2
z v − T∂2

z vα ∈ C0
z (H (s−1/2)+σ−2−d/2

x ) ⊂ C0
z (Hσ−1/2

x ),

and similarly

β · ∇∂zv − Tβ · ∇∂zv − T∇∂zv · β ∈ C0
z (Hσ−1/2

x ),

γ ∂zv − Tγ ∂zv − T∂zvγ ∈ C0
z (Hσ−1/2

x ).
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Moreover, writing σ − 2 = d/2 − (d/2 + 2 − σ ), using Lemma 3.11 with m =
d/2 + 2 − σ , we obtain

T∂2
z vα ∈ C0

z (H s−1/2−(d/2+2−σ )
x ) ⊂ C0

z (Hσ−1/2
x )

and

T∇∂zv · β ∈ C0
z (Hσ−1/2

x ).

Similarly, we have

T∂zvγ ∈ C0
z (Hσ−1/2

x ).

Therefore, summing up directly gives the desired result (3.25).
Now, by applying Lemma 3.18, we obtain that

Tα∂
2
z + �v + Tβ · ∇∂zv − Tγ ∂zv = Tα(∂z − Ta)(∂z − TA)v + f

with f = R0v + R1∂zv ∈ C0
z (Hσ−1+δ

x ) where δ = min {1/2, s − 2 − d/2} > 0.
Then, as in Corollary 3.21, we deduce that

(∂zv − TAv)|z=0 ∈ Hσ (Rd).

Since v(0) ∈ H s−1(Rd) we deduce that TA(0)v|z=0 ∈ H s−1(Rd) ⊂ Hσ (Rd) (A(0) is the
sub-principal symbol of A, which is of order 0) and hence

(∂zv − TA(1)v)|z=0 ∈ Hσ (Rd).

The rest of the proof is as in the proof of Proposition 3.14. �

3.6. Paralinearization of the full system
Consider a given solution (η, ψ) of system (1.2) on the time interval [0, T ] with
0 < T < +∞ such that

(η, ψ) ∈ C0
(
[0, T ]; H s+1/2(Rd) × H s(Rd)

)
,

for some s > 2 + d/2, with d ≥ 1.
In the sequel we consider functions of (t, x), considered as functions of t withQ9

values in various spaces of functions of x. In particular, denote by Tau the operator
acting on u so that for each fixed t , (Tau)(t) = Ta(t)u(t).

The main result of this section is a paralinearization of the water-wave system
(1.2).
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PROPOSITION 3.24
Introduce U := ψ − TBη. Then (η, U ) satisfies a system of the form{

∂tη + TV · ∇η − TλU = f1,

∂tU + TV · ∇U + T�η = f2,
(3.26)

with

f1 ∈ L∞(0, T ; H s+1/2(Rd)
)
, f2 ∈ L∞(0, T ; H s(Rd)

)
.

Moreover,

‖(f1, f2)‖L∞(0,T ;H s+1/2×H s) ≤ C
(‖(η, ψ)‖L∞(0,T ;H s+1/2×H s)

)
,

for some function C depending only on dist(�0, �).

At this point, we have already performed the paralinearization of the Dirichlet-
Neumann operator. We now paralinearize the nonlinear terms which appear in the
dynamic boundary condition. This step is much easier.

LEMMA 3.25
It holds that H (η) = −T�η + f , where � = �(2) + �(1) with

�(2) = (1 + |∇η|2)−1/2
(
|ξ |2 − (∇η · ξ )2

1 + |∇η|2
)
,

�(1) = − i

2
(∂x · ∂ξ )�(2),

(3.27)

and f ∈ L∞(0, T ; H 2s−2−d/2) is such that
‖f ‖L∞(0,T ;H 2s−2−d/2) ≤ C(‖η‖L∞(0,T ;H s+1/2)), (3.28)

for some nondecreasing function C.

Proof
Theorem 3.12 applied with α = s − 1/2 implies that

∇η√
1 + |∇η|2 = TM∇η + f̃ , M = 1√

1 + |∇η|2 I − ∇η ⊗ ∇η

(1 + |∇η|2)3/2
,

where f̃ ∈ L∞(0, T ; H 2s−1−d/2) is such that

‖f̃ ‖L∞(0,T ;H 2s−1−d/2) ≤ C(‖η‖L∞(0,T ;H s+1/2)),
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for some nondecreasing function C. Since

div(TM∇η) = T−Mξ ·ξ+i div Mξη,

we obtain the desired result with �(2) = Mξ · ξ , �(1) = −i div Mξ , and f =
div f̃ . �

Recall the notation

B = ∇η · ∇ψ + G(η)ψ

1 + |∇η|2 , V = ∇ψ − B∇η. (3.29)

LEMMA 3.26
We have that

1

2
|∇ψ |2 − 1

2

(∇η · ∇ψ + G(η)ψ)2

1 + |∇η|2 = TV · ∇ψ − TBTV · ∇η − TBG(η)ψ + f ′,

where f ′ ∈ L∞(0, T ; H 2s−2−d/2(Rd)) satisfies

‖f ′‖
L∞(0,T ;H 2s−2− d

2 )
≤ C

(‖(η, ψ)‖L∞(0,T ;H s+1/2×H s )

)
,

for some nondecreasing function C.

Proof
Again, we shall use the paralinearization lemma. Note that for

F (a, b, c) = 1

2

(a · b + c)2

1 + |a|2 (a ∈ Rd, b ∈ Rd, c ∈ R)

it holds that

∂aF = (a · b + c)

1 + |a|2
(
b − (a · b + c)

1 + |a|2 a
)
,

∂bF = (a · b + c)

1 + |a|2 a, ∂cF = (a · b + c)

1 + |a|2 .

Using these identities for a = ∇η, b = ∇ψ , and c = G(η)ψ , the paralinearization
lemma (see Theorem 3.12(i)) implies that

1

2

(∇η · ∇ψ + G(η)ψ)2

1 + |∇η|2 = {
TV B · ∇η + TB∇η∇ψ + TBG(η)ψ

}+ r
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with r ∈ L∞(0, T ; H 2s−2−d/2(Rd)) satisfies the desired estimate. Since V = ∇ψ −
B∇η, this yields

1

2
|∇ψ |2 − 1

2

(∇η · ∇ψ + G(η)ψ)2

1 + |∇η|2 = {
TV · ∇ψ − TV B · ∇η − TBG(η)ψ

}+ r ′

with r ′ ∈ L∞(0, T ; H 2s−2−d/2(Rd)). Since by (3.7)

TBV − TBTV is of order −
(
s − 1 − d

2

)
,

this completes the proof. �

LEMMA 3.27
There exists a function C such that

‖T∂tB
η‖H s ≤ C

(‖(η, ψ)‖H s+1/2×H s

)
.

Proof
(a) We claim that

‖∂tη‖H s−1 + ‖∂tψ‖H s−3/2 + ‖B‖H s−1 + ‖V ‖H s−1 ≤ C
(‖(η, ψ)‖H s+1/2×H s

)
. (3.30)

The proof of this claim is straightforward (using the definition of B (3.29)). It follows
from Proposition 2.7 that we have the estimate

‖G(η)ψ‖H s−1 ≤ C
(‖(η, ψ)‖H s+1/2×H s

)
.

Using that H s−1 is an algebra since s − 1 > d/2, we thus get the desired estimate
for B. This in turn implies that V = ∇ψ − B∇η satisfies the desired estimate. In
addition, since ∂tη = G(η)ψ , this gives the estimate of ‖∂tη‖H s−1 . To estimate ∂tψ

we simply write that

∂tψ = F (∇ψ, ∇η, ∇2η),

for some C∞ function F vanishing at the origin. Consequently, since s − 3/2 > d/2,
the usual nonlinear rule in Sobolev space implies that

‖∂tψ‖H s−3/2 ≤ C
(‖(∇ψ, ∇η, ∇2η)‖H s−3/2

) ≤ C
(‖(η, ψ)‖H s+1/2×H s

)
.

(b) We are now in position to estimate ∂tB. We claim that

‖∂tB‖H s−5/2 ≤ C
(‖(η, ψ)‖H s+1/2×H s

)
. (3.31)
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In view of (3.30) and the product rule (3.9), the only nontrivial point is to estimate
∂t [G(η)ψ]. To do so, we use the identity for the shape derivative of the Dirichlet-
Neumann (see Section 2.3) to obtain

∂t [G(η)ψ] = G(η) (∂tψ − B∂tη) − div(V ∂tη).

Therefore (3.30) and the boundedness of G(η) on Sobolev spaces (see Proposition 2.7)
imply that ∥∥∂t [G(η)ψ]

∥∥
H s−5/2 ≤ C

(‖(η, ψ)‖H s+1/2×H s

)
.

This proves (3.31).
(c) Next we use Lemma 3.11 with m = 1/2 (which asserts that if a ∈

Hd/2−1/2(Rd), then the paraproduct Ta is of order 1/2). Therefore, since by assumption
s − 5/2 > d/2 − 1/2 for all d ≥ 1, we conclude that

‖T∂tB
η‖H s ≤ ‖T∂tB‖H s+1/2→H s‖η‖H s+1/2 ≤ C

(‖(η, ψ)‖H s+1/2×H s

)
.

This completes the proof. �

End of the proof of Proposition 3.24
Using the equation satisfied by ψ and Lemmas 3.25–3.26, we obtain

∂tψ + T�η + TV · ∇ψ − TBTV · ∇η − TBG(η)ψ = F ∈ L∞(0, T ; H s(Rd)
)
.

Since U = ψ − TBη, we get

∂tU = ∂tψ − TB∂tη − T∂tBη.

Now we have G(η)ψ = ∂tη and

TV · ∇ψ − TBTV · ∇η − TV · ∇U ∈ L∞(0, T ; H s(Rd)
)
.

So using Lemma 3.27 we obtain the desired result. �

4. Symmetrization

Consider a solution (η, ψ) of (1.2) on the time interval [0, T ] with 0 < T < +∞
such that

(η, ψ) ∈ C0
(
[0, T ]; H s+1/2(Rd) × H s(Rd)

)
,
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for some s > 2 + d/2, with d ≥ 1. We proved in Proposition 3.24 that η and
U = ψ − TBη satisfy the system

(∂t + TV · ∇)

(
η

U

)
+
(

0 −Tλ

T� 0

)(
η

U

)
= f, (4.1)

where f ∈ L∞(0, T ; H s+1/2(Rd) × H s(Rd)). The main result of this section is that
there exists a symmetrizer S of the form

S =
(

Tp 0
0 Tq

)
,

which conjugates
(

0 −Tλ

T� 0

)
to a skew-symmetric operator. Indeed we shall prove that

there exists S such that, modulo admissible remainders,

S

(
0 −Tλ

T� 0

)
�
(

0 −Tγ

(Tγ )∗ 0

)
S.

In addition, we shall obtain that the new unknown

� = S

(
η

U

)
satisfies a system of the form

∂t� + TV · ∇� +
(

0 −Tγ

(Tγ )∗ 0

)
� = F, (4.2)

with F ∈ L∞(0, T ; H s(Rd) × H s(Rd)); moreover ‖(η, ψ)‖H s+1/2×H s is controlled by
means of ‖�‖H s .

This symmetrization has many consequences. In particular, in the following sec-
tions, we shall deduce our two main results from this symmetrization.

4.1. Symbolic calculus with low regularity
All the symbols which we consider below are of the form

a = a(m) + a(m−1),

where
(i) a(m) is a real-valued elliptic symbol, is homogenous of degree m in ξ , and

depends only on the first-order derivatives of η;
(ii) a(m−1) is homogenous of degree m−1 in ξ and depends also, but only linearly,

on the second-order derivatives of η.
Recall that in this section η ∈ C0([0, T ]; H s+1/2(Rd)) is a fixed given function.
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Definition 4.1
Given m ∈ R, �m denotes the class of symbols a of the form

a = a(m) + a(m−1)

with

a(m)(t, x, ξ ) = F
(∇η(t, x), ξ

)
,

a(m−1)(t, x, ξ ) =
∑
|α|=2

Gα

(∇η(t, x), ξ
)
∂α

x η(t, x)

such that
(1) Ta maps real-valued functions to real-valued functions;
(2) F is a C∞ real-valued function of (ζ, ξ ) ∈ Rd × (Rd \ 0), homogeneous of

order m in ξ , such that there exists a continuous function K = K(ζ ) > 0 such
that

F (ζ, ξ ) ≥ K(ζ ) |ξ |m ,

for all (ζ, ξ ) ∈ Rd × (Rd \ 0);
(3) Gα is a C∞ complex-valued function of (ζ, ξ ) ∈ Rd × (Rd \ 0), homogeneous

of order m − 1 in ξ .

Notice that, as we only assume that s > 2 + d/2, some technical difficulties appear.
To overcome these problems, the observation that for all our symbols, the subprincipal
terms have only a linear dependence on the second-order derivative of η will play a
crucial role.

Our first result contains the important observation that the previous class of
symbols is stable by the standard rules of symbolic calculus. (This explains why all
the symbols which we shall introduce below are of this form.) We shall state a symbolic
calculus result modulo admissible remainders. To clarify the meaning of admissible
remainder, we introduce the following notation.

Definition 4.2
Let m ∈ R, and consider two families of operators order m,{

A(t) : t ∈ [0, T ]
}
,

{
B(t) : t ∈ [0, T ]

}
.

We shall say that A ∼ B if A−B is of order m−3/2 (see Definition 3.5) and satisfies
the following estimate: for all μ ∈ R, there exists a continuous function C such that
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for all t ∈ [0, T ],

‖A(t) − B(t)‖Hμ→Hμ−m+3/2 ≤ C
(‖η(t)‖H s+1/2

)
.

PROPOSITION 4.3
Let m, m′ ∈ R. Then
(1) If a ∈ �m and b ∈ �m′

, then TaTb ∼ Ta�b where a�b ∈ �m+m′
is given by

a�b = a(m)b(m′) + a(m−1)b(m′) + a(m)b(m′−1) + 1

i
∂ξa

(m) · ∂xb
(m′).

(2) If a ∈ �m, then (Ta)∗ ∼ Tb where b ∈ �m is given by

b = a(m) + a(m−1) + 1

i
(∂x · ∂ξ )a(m).

Proof
It follows from (3.5) applied with ρ = 3/2 that

‖Ta(m)Tb(m′ ) − Ta(m)b(m′ )+(1/i)∂ξ a(m)·∂xb(m′ )‖Hμ→Hμ−m−m′+3/2 ≤ C(‖∇η‖W 3/2,∞).

On the other hand, (3.5) applied with ρ = 1/2 implies that

‖Ta(m)Tb(m′−1) − Ta(m)b(m′−1)‖Hμ→Hμ−m−m′+3/2 ≤ C(‖∇η‖W 3/2,∞),

‖Ta(m−1)Tb(m′ ) − Ta(m−1)b(m′ )‖Hμ→Hμ−m−m′+3/2 ≤ C(‖∇η‖W 3/2,∞).

Eventually (3.4) implies that

‖Ta(m−1)Tb(m′−1)‖Hμ→Hμ−m−m′+2 ≤ C(‖∇η‖W 1,∞).

The first point in the proposition then follows from the embedding H s+1/2(Rd) ⊂
W 5/2,∞(Rd). Furthermore, we easily verify that a�b ∈ �m+m′

.
Similarly, the second point is a straightforward consequence of Theorem 3.10 and

the fact that a(m) is, by assumption, a real-valued symbol. �

Given that a ∈ �m, since a(m−1) involves two derivatives of η, the usual boundedness
result for paradifferential operators and the embedding H s(Rd) ⊂ W 2,∞(Rd) implies
that we have estimates of the form

‖Ta(t)‖Hμ→Hμ−m � sup
|α|≤d/2+1

sup
|ξ |=1

|ξ ||α|−r ‖∂α
ξ a(t, ·, ξ )‖L∞ ≤ C

(‖η(t)‖H s

)
. (4.3)

Our second observation concerning the class �m is that one can prove a continuity
result which requires only an estimate of ‖η‖H s−1 .
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PROPOSITION 4.4
Let m ∈ R, and let μ ∈ R. Then there exists a function C such that for all symbols
a ∈ �m and all t ∈ [0, T ],

‖Ta(t)u‖Hμ−m ≤ C
(‖η(t)‖H s−1

) ‖u‖Hμ .

Remark 4.5
This result is obvious for s > 3 + d/2, since the L∞-norm of a(t, ·, ξ ) is controlled
by ‖η(t)‖H s−1 in this case. As alluded to above, this proposition solves the technical
difficulty which appears, since we only assume s > 2 + d/2.

Proof
By abuse of notation, we omit the dependence in time.

(a) Consider a symbol p = p(x, ξ ) homogeneous of degree r in ξ such that

x �→ ∂α
ξ p(·, ξ ) belongs to H s−3(Rd), ∀α ∈ Nd .

Let q be defined by

q̂(θ, ξ ) = χ1(θ, ξ )ψ1(ξ )

|ξ | p̂(θ, ξ )

where χ1 = 1 on supp χ , ψ1 = 1 on supp ψ (see (3.2)), ψ1(ξ ) = 0 for |ξ | ≤ 1/3,
χ1(θ, ξ ) = 0 for |θ | ≥ |ξ |, and f̂ (θ, ξ ) = ∫

e−ix·θf (x, ξ ) dx. Then

Tq |Dx | = Tp, (4.4)

and

|∂α
ξ q̂(θ, ξ )| � 〈θ〉−1

∑
β≤α

|∂β

ξ p̂(θ, ξ )|.

Therefore we have

‖∂α
ξ q(·, ξ )‖H s−2 �

∑
β≤α

‖∂β

ξ p(·, ξ )‖H s−3 . (4.5)

Now, it follows from the above estimate and the embedding H s−2(Rd) ⊂ L∞(Rd)
that q is L∞ in x and hence q ∈ �r−1

0 ⊂ �r
0. Then, according to (3.4) applied with

m = r (and not m = r − 1), we have for all σ ∈ R,

‖Tqv‖Hσ−r � sup
|α|≤d/2+1

sup
|ξ |≥1/2

|ξ ||α|−r ‖∂α
ξ q(·, ξ )‖L∞ ‖v‖Hσ .
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Applying this inequality with v = |Dx | u, σ = μ − 1 and using again the Sobolev
embedding, (4.4), and (4.5), we obtain

‖Tpu‖Hμ−r−1 � sup
|α|≤d/2+1

sup
|ξ |=1

‖∂α
ξ p(·, ξ )‖H s−3 ‖u‖Hμ . (4.6)

(b) Consider a symbol a ∈ �m of the form

a = a(m) + a(m−1) = F (∇η, ξ ) +
∑
|α|=2

Gα(∇η, ξ )∂α
x η. (4.7)

Up to subtracting the symbol of a Fourier multiplier of order m, we can assume without
loss of generality that F (0, ξ ) = 0.

It follows from the previous estimates that

‖Ta(m)u‖Hμ−m � sup
|ξ |=1

‖a(m)(·, ξ )‖H s−2 ‖u‖Hμ ,

‖Ta(m−1)u‖Hμ−m � sup
|ξ |=1

‖a(m−1)(·, ξ )‖H s−3 ‖u‖Hμ .

Now since s > 2 + d/2 it follows from the usual nonlinear estimates in Sobolev
spaces (see (3.10)) that

sup
|ξ |=1

‖a(m)(·, ξ )‖H s−2 = sup
|ξ |=1

‖F (∇η, ξ )‖H s−2 ≤ C(‖η‖H s−1 ).

On the other hand, by using the product rule (3.9) with (s0, s1, s2) = (s−3, s−2, s−3)
we obtain

‖a(m−1)(·, ξ )‖H s−3 ≤
∑
|α|=2

‖Gα(∇η, ξ )∂α
x η‖H s−3

�
(|Gα(0, ξ )| +

∑
|α|=2

‖Gα(∇η, ξ ) − Gα(0, ξ )‖H s−2

)‖∂α
x η‖H s−3,

for all |ξ | ≤ 1. Therefore, (3.10) implies that

‖a(m−1)(·, ξ )‖H s−3 ≤ C(‖η‖H s−1 ).

This completes the proof. �

Similarly we have the following result about elliptic regularity where one controls the
various constants by the H s−1-norm of η only.

PROPOSITION 4.6
Let m ∈ R, and let μ ∈ R. Then there exists a function C such that for all a ∈ �m
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and all t ∈ [0, T ], we have

‖u‖Hμ+m ≤ C
(‖η(t)‖H s−1

) {‖Ta(t)u‖Hμ + ‖u‖L2

}
.

Remark 4.7
As mentioned in Remark 3.9, the classical result is that, for all elliptic symbols
a ∈ �m

ρ (Rd) with ρ > 0, it holds that

‖f ‖Hm ≤ K
{‖Taf ‖L2 + ‖f ‖L2

}
,

where K depends only on Mm
ρ (a). Hence, if we use the natural estimate

Mm−1
ρ

(
a(m−1)(t)

) ≤ C
(‖η(t)‖W 2+ρ

) ≤ C
(‖η(t)‖H s

)
for ρ > 0 small enough, then we obtain an estimate which is worse than the one just
stated for 2 + d/2 < s < 3 + d/2.

Proof
Again, by abuse of notation, we omit the dependence in time.

Introduce b = 1/a(m), and consider ε such that

0 < ε < min{s − 2 − d/2, 1}.

By applying (3.5) with ρ = ε we find that TbTa(m) = I + r where r is of order −ε and
satisfies

‖ru‖Hμ+ε ≤ C(‖∇η‖Wε,∞) ‖u‖Hμ ≤ C(‖η‖H s−1 ) ‖u‖Hμ .

Then

u = TbTau − ru − TbTa(m−1) .

Denoting by R = −r − TbTa(m−1) , we have

(I − R)u = TbTau.

We claim that there exists a function C such that

‖Ta(m−1)u‖Hμ−m+ε ≤ C(‖η‖H s−1 ) ‖u‖Hμ .

To see this, notice that the previous proof applies with the decomposition Tp =
Tq |Dx |1−ε where

q̂(θ, ξ ) = χ1(θ, ξ )ψ1(ξ )

|ξ |1−ε
p̂(θ, ξ ).
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Once this claim is granted, since Tb is of order −m, we find that R satisfies

‖Ru‖Hμ+ε ≤ C(‖η‖H s−1 ) ‖u‖Hμ .

Writing

(I + R + · · · + RN )(I − R)u = (I + R + · · · + RN )TbTau

we get

u = (I + R + · · · + RN )TbTau + RN+1u.

The first term on the right-hand side is estimated by means of the obvious inequality

∥∥(I + R + · · · + RN )Tb

∥∥
Hμ→Hμ+m

≤ ∥∥(I + R + · · · + RN )
∥∥

Hμ+m→Hμ+m ‖Tb‖Hμ→Hμ+m ,

so that ∥∥(I + R + · · · + RN )TbTau
∥∥

Hμ+m ≤ C(‖η‖H s−1 ) ‖Tau‖Hμ .

Choosing N so large that (N + 1)ε > μ + m, we obtain that

‖RN+1‖Hμ→Hμ+m � ‖R‖Hμ+m−ε→Hμ+m · · · ‖R‖Hμ→Hμ+ε ≤ C(‖η‖H s−1 ),

which yields the desired estimate for the second term. �

4.2. Symmetrization
The main result of this section is that one can symmetrize the equations. Namely, we
shall prove that there exist three symbols p, q, γ such that

TpTλ ∼ Tγ Tq, TqT� ∼ Tγ Tp, Tγ ∼ (Tγ )∗, (4.8)

where we recall that the notation A ∼ B was introduced in Definition 4.2.
We want to explain how we find p, q, γ by a systematic method. We first observe

that if (4.8) holds true, then γ is of order 3/2. To be definite, we chose q of order 0,
and then necessarily p is of order 1/2. Therefore we seek p, q, γ under the form

p = p(1/2) + p(−1/2), q = q (0) + q (−1), γ = γ (3/2) + γ (1/2), (4.9)

where a(m) is a symbol homogeneous in ξ of order m ∈ R.
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Let us list some necessary constraints on these symbols. First, we seek real elliptic
symbols such that

p(1/2) ≥ K |ξ |1/2 , q (0) ≥ K, γ (3/2) ≥ K |ξ |3/2 ,

for some positive constant K . Second, in order for Tp, Tq, Tγ to map real-valued
functions to real-valued functions, we must have

p(t, x, ξ ) = p(t, x, −ξ ), q(t, x, ξ ) = q(t, x, −ξ ),

γ (t, x, ξ ) = γ (t, x, −ξ ). (4.10)

According to Proposition 4.3, in order for Tγ to satisfy the last identity in (4.8), γ (1/2)

must satisfy

Im γ (1/2) = −1

2
(∂ξ · ∂x)γ (3/2). (4.11)

Our strategy is then to seek q and γ such that

TqT�Tλ ∼ Tγ Tγ Tq. (4.12)

The idea is that if this identity is satisfied, then the first two equations in (4.8) are
compatible; this means that if any of these two equations is satisfied, then the second
one is automatically satisfied. Therefore, once q and γ are so chosen that (4.12) is
satisfied, then one can define p by solving either one of the first two equations. The
latter task being immediate.

Recall that the symbol λ = λ(1) + λ(0) (resp., � = �(2) + �(1)) is defined by (3.11)
(resp., (3.27)). In particular, by notation,

λ(1) =
√

(1 + |∇η|2) |ξ |2 − (∇η · ξ )2,

�(2) = (1 + |∇η|2)−1/2
(
|ξ |2 − (∇η · ξ )2

1 + |∇η|2
)
.

(4.13)

Introduce the notation

��λ = �(2)λ(1) + �(1)λ(1) + �(2)λ(0) + 1

i
∂ξ �

(2) · ∂xλ
(1),

γ �γ = (γ (3/2))2 + 2γ (1/2)γ (3/2) + 1

i
∂ξγ

(3/2) · ∂xγ
(3/2).



xxx dmj9330 April 13, 2011 21:59

ON THE WATER-WAVE EQUATIONS WITH SURFACE TENSION 45

By symbolic calculus, to solve (4.12), it is enough to find q and γ such that

q (0)(��λ) + q (−1)�(2)λ(1) + 1

i
∂ξq

(0) · ∂x(�(2)λ(1))

= (γ �γ )q (0) + (γ (3/2))2q (−1) + 1

i
∂ξ (γ (3/2)γ (3/2)) · ∂xq

(0). (4.14)

We set

γ (3/2) =
√

�(2)λ(1),

so that the leading symbols of both sides of (4.14) are equal. Then Im γ (1/2) has to be
fixed by means of (4.11). We set

Im γ (1/2) = −1

2
(∂x · ∂ξ )γ (3/2).

With these choices of γ (3/2) and Im γ (1/2), (4.14) is equivalent to the following equation
(where the unknowns are q (0), q (−1), and Re γ (1/2)),

q (0)(��λ − γ �γ ) = 1

i
∂ξ (�(2)λ(1)) · ∂xq

(0) − 1

i
∂ξq

(0) · ∂x(�(2)λ(1))

= 1

i
{�(2)λ(1), q (0)},

(4.15)

where

��λ − γ �γ := τ

= 1

i
∂ξ �

(2) · ∂xλ
(1) + �(1)λ(1) + �(2)λ(0) − 2γ (1/2)γ (3/2) + i∂ξγ

(3/2) · ∂xγ
(3/2). (4.16)

Since q (−1) does not appear in this equation, one can freely set q (−1) = 0. Since
�(2), λ(1) are real-valued symbols, we see easily that (4.15) will be satisfied (with q (0)

real) as soon as

Re τ = 0, q (0) Im τ = −{�(2)λ(1), q (0)}. (4.17)

The first condition is satisfied if Re γ (1/2) solves the equation

�(2) Re λ(0) = 2γ (3/2) Re γ (1/2),
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that is,

Re γ (1/2) = �(2) Re λ(0)

2γ (3/2)
=
√

�(2)

λ(1)

Re λ(0)

2
.

It remains to solve the second equation in (4.17). Let us first recall that

�(1) = − i

2
(∂x · ∂ξ )�(2), Im λ(0) = −1

2
(∂x · ∂ξ )λ(1),

Im γ (1/2) = −1

2
(∂x · ∂ξ )γ (3/2),

and consequently

Im τ = −∂ξ�
(2) · ∂xλ

(1) − 1

2
λ(1)(∂ξ · ∂x)�(2) − 1

2
�(2)(∂ξ · ∂x)λ(1)

+ γ (3/2)(∂ξ · ∂x)γ (3/2) + ∂ξγ
(3/2) · ∂xγ

(3/2).

Writing

γ (3/2)(∂ξ · ∂x)γ (3/2) + ∂ξγ
(3/2) · ∂xγ

(3/2) = 1

2
∂x · ∂ξ (γ (3/2))2 = 1

2
∂x · ∂ξ (�(2)λ(1)),

we thus obtain

Im τ = 1

2
∂ξλ

(1) · ∂x�
(2) − 1

2
∂ξ�

(2) · ∂xλ
(1),

and hence the second equation in (4.17) simplifies to

1

2
{�(2), λ(1)}q (0) + {�(2)λ(1), q (0)} = 0. (4.18)

The key observation is the following relation between �(2) and λ(1) (see (4.13)),

�(2) = (cλ(1))2 with c = (1 + |∇η|2)−3/4.

Consequently (4.18) reduces to

−q (0)(λ(1))2∂xc
2 · ∂ξλ

(1) + 3c2(λ(1))2∂ξλ
(1) · ∂xq

(0) − ∂ξq
(0) · ∂x

(
c2(λ(1))3

) = 0.

Seeking a solution q (0) which does not depend on ξ , we are led to solve

∂ξλ
(1) · ∂xq

(0)

q (0)
= 1

3

∂ξλ
(1) · ∂xc

c
.
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We find the following explicit solution,

q (0) = c1/3 = (1 + |∇η|2)−1/2.

Then, we define p by solving the equation

TqT� ∼ Tγ Tp.

By symbolic calculus, this yields

q�(2) + q�(1) = γ (3/2)p(1/2) + γ (1/2)p(1/2) + γ (3/2)p(−1/2) + 1

i
∂ξγ

(3/2) · ∂xp
(1/2).

Therefore, by identifying terms with the same homogeneity in ξ , we successively find
that

p(1/2) = q (0)�(2)

γ (3/2)
= q (0)

√
�(2)

λ(1)
= (1 + |∇η|2)−5/4

√
λ(1)

and

p(−1/2) = 1

γ (3/2)
{q (0)�(1) − γ (1/2)p(1/2) + i∂ξγ

(3/2) · ∂xp
(1/2)}. (4.19)

Note that the precise value of p(−1/2) is meaningless since we have freely imposed
q (−1) = 0.

Gathering the previous results and noting that γ (1/2) and p(−1/2) depend only
linearly on the second-order derivatives of η, we have proved the following result.

PROPOSITION 4.8
Let q ∈ �0, p ∈ �1/2, γ ∈ �3/2 be defined by

q = (1 + |∇η|2)−1/2,

p = (1 + |∇η|2)−5/4
√

λ(1) + p(−1/2),

γ =
√

�(2)λ(1) +
√

�(2)

λ(1)

Re λ(0)

2
− i

2
(∂ξ · ∂x)

√
�(2)λ(1),

where p(−1/2) is given by (4.19). Then

TpTλ ∼ Tγ Tq, TqT� ∼ Tγ Tp, Tγ ∼ (Tγ )∗.

By combining this symmetrization with the paralinearization, we thus obtain the
following symmetrization of the equations.
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COROLLARY 4.9
Introduce the new unknowns

�1 = Tpη and �2 = TqU.

Then �1, �2 ∈ C0([0, T ]; H s(Rd)) and{
∂t�1 + TV · ∇�1 − Tγ �2 = F1,

∂t�2 + TV · ∇�2 + Tγ �1 = F2,
(4.20)

where F1, F2 ∈ L∞(0, T ; H s(Rd)). Moreover,

‖(F1, F2)‖L∞(0,T ;H s×H s ) ≤ C
(‖(η, ψ)‖L∞(0,T ;H s+1/2×H s )

)
,

for some function C depending only on dist(�0, �).

To prove Corollary 4.9, we first note that it follows from Proposition 4.8 and
Proposition 3.24 that{

∂t�1 + TV · ∇�1 − Tγ �2 = B1η + f1,

∂t�2 + TV · ∇�2 + Tγ �1 = B2U + f2,

with f1, f2 ∈ L∞(0, T ; H s(Rd)),

‖(f1, f2)‖L∞(0,T ;H s(Rd )) ≤ C
(‖(η, ψ)‖L∞(0,T ;H s+1/2(Rd )×H s(Rd ))

)
,

and

B1 := [∂t , Tp] + [TV · ∇, Tp],

B2 := [∂t , Tq] + [TV · ∇, Tq].

Writing

‖B1η‖H s ≤ ‖B1‖H s+1/2→H s ‖η‖H s+1/2,

‖B2U‖H s ≤ ‖B2‖H s→H s ‖U‖H s ,

it remains only to estimate ‖B1‖H s+1/2→H s and ‖B2‖H s→H s . To do so, the only nontrivial
point is to prove the following lemma.

LEMMA 4.10
For all μ ∈ R there exists a non-decreasing function C such that, for all t ∈ [0, T ],

‖T∂tp(t)‖Hμ→Hμ−1/2 + ‖T∂tq(t)‖Hμ→Hμ ≤ C
(∥∥(η(t), ψ(t))

∥∥
H s+1/2×H s

)
.
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Proof
It follows from the Sobolev embedding and (3.30) that

‖∂tη‖W 1,∞ � ‖∂tη‖H s−1 ≤ C
(‖(η, ψ)‖H s+1/2×H s

)
.

This implies that

‖∂tq‖L∞ + M1
0 (∂tp

(1/2)) ≤ C
(‖(η, ψ)‖H s+1/2×H s

)
,

where the semi-norm M1
0 has been defined in (3.3). On applying Theorem 3.6, this

bound implies that

‖T∂tp(1/2)‖Hμ→Hμ−1/2 + ‖T∂tq‖Hμ→Hμ ≤ C
(‖(η, ψ)‖H s+1/2×H s

)
.

It remains only to estimate ‖T∂tp(−1/2)‖Hμ→Hμ−1/2 . Since we only assume that s >

2 + d/2, a technical difficulty appears. Indeed, since ∂t has the weight of 3/2 spatial
derivatives and since the explicit definition of p(−1/2) involves 2 spatial derivatives of
η, the symbol ∂tp

(−1/2) does not belong to L∞ in general. To overcome this technical
problem, write p(−1/2) under the form

p(−1/2) =
∑
|α|=2

Pα(∇η, ξ )∂α
x η,

where the Pα are smooth functions of their arguments for ξ �= 0, homogeneous of
degree −1/2 in ξ . Now write

T∂tp(−1/2) =
∑
|α|=2

T(∂tPα(∇η,ξ ))∂α
x η +

∑
|α|=2

TPα (∇η,ξ )∂t ∂α
x η. (4.21)

As above, we obtain

M1
0

(
∂tPα(∇η, ξ )

) ≤ C
(‖(η, ψ)‖H s+1/2×H s

)
.

On the other hand for |α| = 2 we have the estimate ‖∂α
x η‖L∞ � ‖η‖H s+1/2 . On applying

Theorem 3.6, these bounds imply that the first term on the right-hand side of (4.21) is
uniformly of order −1/2.

The analysis of the second term on the right-hand side of (4.21) is based on the
operator norm estimate (4.6). By applying this estimate with r = −1/2, we obtain

‖TPα(∇η,ξ )∂t ∂α
x η‖Hμ→Hμ−1/2 � ‖Pα(∇η, ξ )∂t∂

α
x η‖H s−3 .
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Now the product rule (3.9) implies that

‖Pα(∇η, ξ )∂t∂
α
x η‖H s−3

�
{|Pα(0, ξ )| + ‖Pα(∇η, ξ ) − Pα(0, ξ )‖H s−1

} ‖∂t∂
α
x η‖H s−3,

and hence

‖TPα(∇η,ξ )∂t ∂α
x η‖Hμ→Hμ−m ≤ C

(‖η‖H s

) ‖∂tη‖H s−1 ≤ C
(‖(η, ψ)‖H s+1/2×H s

)
.

This completes the proof. �

5. A priori estimates

Consider the Cauchy problem

∂tη − G(η)ψ = 0,

∂tψ + gη − H (η) + 1

2
|∇ψ |2 − 1

2

(∇η · ∇ψ + G(η)ψ)2

1 + |∇η|2 = 0,
(5.1)

with initial data

η|t=0 = η0, ψ |t=0 = ψ0.

In this section we prove a priori estimates for solutions to the system (5.1) and
approximate systems. These estimates are crucial in the proof of the existence and
uniqueness of solutions to (5.1).

5.1. Reformulation
The first step is the following reformulation, whose proof is an immediate computation.

LEMMA 5.1
(η, ψ) solves (5.1) if and only if(

I 0
−TB I

)
(∂t + TV · ∇)

(
η

ψ

)
+
(

0 −Tλ

T� 0

)(
I 0

−TB I

)(
η

ψ

)
=
(

f 1

f 2

)
,

where

f 1 = G(η)ψ − {
Tλ(ψ − TBη) − TV · ∇η

}
,

f 2 = −1

2
|∇ψ |2 + 1

2

(∇η · ∇ψ + G(η)ψ)2

1 + |∇η|2 + H (η)

+ TV ∇ψ − TBTV · ∇η − TBG(η)ψ + T�η − gη.

(5.2)
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Since (
I 0

TB I

)(
I 0

−TB I

)
=
(

I 0
0 I

)
,

we thus find that (η, ψ) solves (5.1) if and only if⎧⎪⎨⎪⎩
(∂t + TV · ∇ + L)

(
η

ψ

)
= f (η, ψ),

(η, ψ)|t=0 = (η0, ψ0),

(5.3)

with

L :=
(

I 0
TB I

)(
0 −Tλ

T� 0

)(
I 0

−TB I

)
, f (η, ψ) :=

(
I 0

TB I

)(
f 1

f 2

)
.

5.2. Approximate equations
We shall seek solutions of the Cauchy problem (5.3) as limits of solutions of ap-
proximating systems. The definition depends on two operators. The first one is a
well-chosen mollifier. The second one is an approximate right-parametrix for the

symmetrizer S =
(

Tp 0
0 Tq

)
defined in Section 4.

Mollifiers. To regularize the equations, we cannot use usual mollifiers of the form
χ(εDx). Instead we use the following variant. Given ε ∈ [0, 1], we define Jε as the
paradifferential operator with symbol jε = jε(t, x, ξ ) given by

jε = j (0)
ε + j (−1)

ε = exp(−εγ (3/2)) − i

2
(∂x · ∂ξ ) exp(−εγ (3/2)).

The important facts are that

jε ∈ C0
(
[0, T ]; �0

3/2(Rd)
)
, {j (0)

ε , γ (3/2)} = 0, Im j (−1)
ε = −1

2
(∂x · ∂ξ )j (0)

ε .

Of course, for any ε > 0, jε ∈ C0([0, T ]; �m
3/2(Rd)) for all m ≤ 0. However,

the important fact is that jε is uniformly bounded in C0([0, T ]; �0
3/2(Rd)) for all

ε ∈ [0, 1]. Therefore, we have the following uniform estimates,

‖JεTγ − Tγ Jε‖Hμ→Hμ ≤ C(‖∇η‖W 3/2,∞),

‖(Jε)∗ − Jε‖Hμ→Hμ+3/2 ≤ C(‖∇η‖W 3/2,∞),
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for some non-decreasing function C independent of ε ∈ [0, 1]. In other words, we
have

JεTγ ∼ Tγ Jε, (Jε)∗ ∼ Jε,

uniformly in ε.

Parametrix for the symmetrizer. Recall that the class of symbols �m have been defined
in Definition 4.1. We seek

℘ = ℘(−1/2) + ℘(−3/2) ∈ �−1/2

such that

p�℘ = p(1/2)℘(−1/2) + p(1/2)℘(−3/2) + p(−1/2)℘(−1/2) + 1

i
∂ξp

(1/2) · ∂x℘
(−1/2) = 1.

To solve this equation we explicitly set

℘(−1/2) = 1

p(1/2)
,

℘(−3/2) = − 1

p(1/2)

(
℘(−1/2)p(−1/2) + 1

i
∂ξ℘

(−1/2) · ∂xp
(1/2)

)
.

(5.4)

Therefore

TpT℘ ∼ I,

where we recall that the notation A ∼ B is as defined in Definition 4.2.
On the other hand, since q = (1 + |∇η|2)−1/2 does not depend on ξ , it follows

from (3.7) that we have

TqT1/q ∼ I.

Hence, with ℘ and q as defined above, we have(
Tp 0
0 Tq

)(
T℘ 0
0 T1/q

)
∼
(

I 0
0 I

)
.

Approximate system. We then define

Lε :=
(

I 0
TB I

)(
0 −Tλ

T� 0

)(
T℘JεTp 0

0 T1/qJεTq

)(
I 0

−TB I

)
.
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(At first one may not expect to have to introduce Jε and Lε. We explain the reason for
introducing these operators in Section 5.4 below.) We seek solutions (η, ψ) of (5.3)
as limits of solutions of the following Cauchy problems,⎧⎪⎨⎪⎩

(∂t + TV · ∇Jε + Lε)

(
η

ψ

)
= f (Jεη, Jεψ),

(η, ψ)|t=0 = (η0, ψ0).

(5.5)

5.3. Uniform estimates
Our main task will consist in proving uniform estimates for this system. Namely, we
shall prove the following proposition.

PROPOSITION 5.2
Let d ≥ 1, and let s > 2 + d/2. Then there exists a nondecreasing function C such
that, for all ε ∈ [0, 1], all T ∈]0, 1], and all solutions (η, ψ) of (5.5) such that

(η, ψ) ∈ C1
(
[0, T ]; H s+1/2(Rd) × H s(Rd)

)
,

the norm

M(T ) = ‖(η, ψ)‖L∞(0,T ;H s+1/2×H s )

satisfies the estimate

M(T ) ≤ C(M0) + T C
(
M(T )

)
,

with M0 := ‖(η0, ψ0)‖H s+1/2×H s .

Remark 5.3
Notice that the estimate holds for ε = 0. In particular, this proposition contains a
priori estimates for the water-wave system itself.

5.4. The key identities
To ease the reading, we explain the key identities in the proof of Proposition 5.2 here.

By the definition of Lε, using that
(

I 0
−TB I

) (
I 0

TB I

) = (
I 0
0 I

)
, we have(

Tp 0
0 Tq

)(
I 0

−TB I

)
Lε

=
(

Tp 0
0 Tq

)(
0 −Tλ

T� 0

)(
T℘JεTp 0

0 T1/qJεTq

)(
I 0

−TB I

)
.
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Now recall that (
Tp 0
0 Tq

)(
0 −Tλ

T� 0

)
∼
(

0 −Tγ

(Tγ )∗ 0

)(
Tp 0
0 Tq

)
,

so that (
Tp 0
0 Tq

)(
I 0

−TB I

)
Lε

∼
(

0 −Tγ

(Tγ )∗ 0

)(
Tp 0
0 Tq

)(
T℘JεTp 0

0 T1/qJεTq

)(
I 0

−TB I

)
uniformly in ε. (Notice that the remainders associated to the notation ∼ are uniformly
bounded.) We next use (

Tp 0
0 Tq

)(
T℘ 0
0 T1/q

)
∼
(

I 0
0 I

)
to obtain that, uniformly in ε, we have the key identity(

Tp 0
0 Tq

)(
I 0

−TB I

)
Lε ∼

(
0 −Tγ Jε

(Tγ )∗Jε 0

)(
Tp 0
0 Tq

)(
I 0

−TB I

)
.

In other words, the symmetrizer(
Tp 0
0 Tq

)(
I 0

−TB I

)
conjugates Lε to a simple operator which is skew symmetric in the following sense,(

0 −Tγ Jε

(Tγ )∗Jε 0

)∗
∼ −

(
0 −Tγ Jε

(Tγ )∗Jε 0

)
.

This is our second key identity, which comes from the fact that

(Tγ )∗ ∼ Tγ , J ∗
ε ∼ Jε, Tγ Jε ∼ JεTγ .

In particular, it is essential to chose a good mollifier so that the last two identities hold
true.

In the proof of Proposition 5.2 below, the main argument is that the term F2,ε

in (5.9) is uniformly bounded in L∞(0, T ; H s × H s). The other arguments are only
technical arguments. However, since we only assume that s > 2 + d/2, this requires
some care and we give a complete proof.
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5.5. Proof of Proposition 5.2
We now prove Proposition 5.2.

(a) Let us set

U = ψ − TBη, � =
(

Tpη

TqU

)
=
(

Tp 0
0 Tq

)(
I 0

−TB I

)(
η

ψ

)
. (5.6)

We claim that � satisfies an equation of the form

(∂t + TV · ∇Jε) � +
(

0 −Tγ Jε

Tγ Jε 0

)
� = Fε, (5.7)

where the remainder satisfies

‖Fε‖L∞(0,T ;H s×H s) ≤ C
(‖(η, ψ)‖L∞(0,T ;H s+1/2×H s)

)
, (5.8)

for some nondecreasing function C independent of ε. To prove this claim, we begin
by commuting the equation (5.5) with the matrix(

Tp 0
0 Tq

)(
I 0

−TB I

)
to obtain that � satisfies (5.7) with Fε = F1,ε + F2,ε + F3,ε where (see Section 5.4)

F1,ε =
(

Tpf 1(Jεη, Jεψ)
Tqf

2(Jεη, Jεψ)

)
,

F2,ε =
(

0 −(TpTλT1/qJε − Tγ Jε)
(TqT�T℘Jε − Tγ Jε) 0

)
�,

F3,ε =
[
∂t + TV · ∇Jε,

(
Tp 0
0 Tq

)(
I 0

−TB I

)](
η

ψ

)
.

(5.9)

The estimate of the first term follows from Proposition 3.14, Lemma 3.25, and
Lemma 3.26. (Clearly, these results apply with (η, ψ) replaced by (Jεη, Jεψ).) For
the second term we use that

TpTλ ∼ Tγ Tq, TqT� ∼ Tγ Tp, TpT℘ ∼ I, TqT1/q ∼ I

to obtain

TpTλT1/q ∼ Tγ , TqT�T℘ ∼ Tγ .

Eventually, we estimate the last term as in the proof of Corollary 4.9.
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(b) We next claim that

‖(η, ψ)‖L∞(0,T ;H s−1×H s−3/2) ≤ C(M0) + T C
(
M(T )

)
. (5.10)

We prove the desired estimate for ∂tη only. To do so, using the obvious inequality

‖η(t)‖H s−1 ≤ ‖η(0)‖H s−1 +
∫ t

0
‖∂tη‖H s−1

≤ M0 + T ‖∂tη‖L∞(0,T ;H s−1) ,

we see that it is enough to prove that

‖∂tη‖L∞(0,T ;H s−1) ≤ C
(
M(T )

)
. (5.11)

This in turn follows directly from the equation for η. Indeed, directly from (5.5), write

∂tη = −TV · ∇Jεη + TλT1/qJεTq(ψ − TBη) + f1(Jεη, Jεψ).

The last term is estimated by means of Proposition 3.14. Moving to the first two terms,
by the usual continuity estimate for paradifferential operators (3.4), we have

‖TV · ∇Jεη‖H s−1 ≤ ‖V ‖L∞ ‖Jεη‖H s

and

‖TλT1/qJεTq(ψ − TBη)‖H s−1

≤ ‖TλT1/qJεTq‖H s→H s−1

{‖ψ‖H s + ‖B‖L∞ ‖η‖H s

}
,

and hence, since H s−1(Rd) ⊂ L∞(Rd), the estimates for B and V in (3.30) imply
that ∂tη satisfies the desired estimate (5.11). The estimate of ‖ψ‖H s−3/2 is analogous.
This completes the proof of the claim.

(c) To obtain estimates in Sobolev space, we shall commute the equation withQ10

an elliptic operator of order s and then use an L2-energy estimate. Again, one has to
carefully choose the elliptic operator. The most natural choice consists in introducing
the paradifferential operator Tβ with the symbol

β := (γ (3/2))2s/3 ∈ �s. (5.12)

The key point is that, since β and j (0)
ε are (nonlinear) functions of γ (3/2), we have

∂ξβ · ∂xγ
(3/2) = ∂ξγ

(3/2) · ∂xβ,

∂ξβ · ∂xj
(0)
ε = ∂ξ j

(0)
ε · ∂xβ.
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Therefore, as above, we find that [Tβ, Tγ ] is of order s, while [Tβ, Jε] is of order
s − 3/2. Also the commutator [Tβ, TV · ∇Jε] is clearly of order s. With regards to the
commutator [Tβ, T∂t

] = −T∂tβ notice that there is no difficulty. Indeed, since β is of
the form β = B(∇η, ξ ), the most direct estimate shows that the L∞

x (Rd)-norm of ∂tβ

is estimated by the L∞
x (Rd)-norm of (∇η, ∂t∇η) and hence by C(M(T )) in view of

(5.11) and the Sobolev embedding H s−1(Rd) ⊂ W 1,∞(Rd). We thus end up with the
following uniform estimates

‖[Tβ, Tγ ]Jε‖H s→L2 + ‖[Tβ, ∂t ]‖H s→L2 + ‖Tγ [Tβ, Jε]‖H s→L2

+ ‖[Tβ, TV · ∇Jε]‖H s→L2 ≤ C
(
M(T )

)
,

for some non-decreasing function C independent of ε ∈ [0, 1]. Therefore, by com-
muting the equation (5.7) with Tβ , we find that the function ϕ := Tβ� satisfies

(∂t + TV · ∇Jε) ϕ +
(

0 −Tγ Jε

Tγ Jε 0

)
ϕ = F ′

ε, (5.13)

with

‖F ′
ε‖L∞(0,T ;L2×L2) ≤ C

(
M(T )

)
,

for some non-decreasing function C independent of ε ∈ [0, 1].
(d) Since by assumption (η, ψ) ∈ C1([0, T ]; H s+1/2(Rd) × H s(Rd)) we have Q11

ϕ ∈ C1
(
[0, T ]; L2(Rd) × L2(Rd)

)
,

and hence we can write

d

dt
〈ϕ, ϕ〉 = 2 Re 〈∂tϕ, ϕ〉 ,

where 〈·, ·〉 denotes the scalar product in L2(Rd) × L2(Rd). Therefore, (5.13) implies
that

d

dt
〈ϕ, ϕ〉 = 2 Re

〈
−TV · ∇Jεϕ −

(
0 −Tγ Jε

Tγ Jε 0

)
ϕ + F ′

ε, ϕ

〉
,

and hence

d

dt
〈ϕ, ϕ〉 = 〈Rεϕ, ϕ〉 + 2 Re〈F ′

ε, ϕ〉,

where Rε is the matrix-valued operator

Rε := −{(TV · ∇Jε)∗ + TV · ∇Jε

}
I +

(
0 −Tγ Jε

Tγ Jε 0

)
+
(

0 −Tγ Jε

Tγ Jε 0

)∗
.



xxx dmj9330 April 13, 2011 21:59

58 ALAZARD, BURQ, and ZUILY

Now recall that

(Tγ )∗ ∼ Tγ , (Jε)∗ ∼ Jε, Tγ Jε ∼ JεTγ .

Moreover, we easily verify that

sup
ε∈[0,1]

sup
t∈[0,T ]

‖Rε(t)‖L2×L2→L2×L2 ≤ C
(
M(T )

)
.

Therefore, integrating in time we conclude that for all t ∈ [0, T ],

‖ϕ(t)‖2
L2×L2 − ‖ϕ(0)‖2

L2×L2 ≤ C
(
M(T )

) ∫ T

0
(‖ϕ‖2

L2×L2 + ‖F ′
ε‖2

L2×L2 ) dt ′,

which immediately implies that

‖ϕ‖L∞(0,T ;L2×L2) ≤ C(M0) + T C
(
M(T )

)
.

By the definition of ϕ, this yields

‖TβTpη‖L∞(0,T :L2) + ‖TβTqU‖L∞(0,T ;L2) ≤ C(M0) + T C
(
M(T )

)
. (5.14)

First of all, we use Proposition 4.6 to obtain

‖η‖L∞(0,T ;H s+1/2) ≤ K
{‖TβTpη‖L∞(0,T ;L2) + ‖η‖L∞(0,T ;H 1/2)

}
, (5.15)

‖ψ‖L∞(0,T ;H s ) ≤ K
{‖TβTqψ‖L∞(0,T ;L2) + ‖ψ‖L∞(0,T ;L2)

}
, (5.16)

where K depends only on ‖η‖L∞(0,T ;H s−1).
Let us prove that the constant K satisfies an inequality of the form

K ≤ C(M0) + T C
(
M(T )

)
. (5.17)

To see this, notice that one can assume without loss of generality that

K ≤ F (‖η‖2
L∞(0,T ;H s−1))

for some non-decreasing function F ∈ C1(R). Set C (t) = F (‖η(t)‖2
H s−1 ). We then

obtain the desired bound (5.17) from (5.11) and the inequality

K ≤ C (0) +
∫ T

0
|C ′(t)| dt ≤ F (M0) +

∫ T

0
2F ′(‖η‖2

H s−1 ) ‖∂tη‖H s−1 ‖η‖H s−1 dt.

Consequently, (5.14) and (5.15) imply that we have

‖η‖L∞(0,T ;H s+1/2) ≤ C(M0) + T C
(
M(T )

)
.
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It remains to prove an estimate for ψ . To do this, we begin by noticing that, since
ψ = U + TBη, we have

‖TβTqψ‖L∞(0,T ;L2)

≤ ‖TβTqU‖L∞(0,T ;L2) + ‖TβTqTB‖L∞(0,T ;H s+1/2→L2) ‖η‖L∞(0,T ;H s+1/2).

Now we have by means of Lemma 3.11

‖TβTqTB‖L∞(0,T ;H s+1/2→L2)

≤ sup
t∈[0,T ]

sup
|ξ |=1

‖β(t, ·, ξ )‖L∞
x

‖q‖L∞(0,T ;L∞) ‖B‖L∞(0,T ;H (d−1)/2)

and hence

‖ψ‖H s ≤ K ′{‖TqU‖H s + ‖ψ‖L2 + ‖η‖H s+1/2

}
, (5.18)

where K ′ depends only on ‖(η, ψ)‖L∞(0,T ;H s−1×H s−3/2). By using the inequality (5.14)
for ‖TβU‖L2 , the estimate (5.10) for ‖ψ‖L2 , the previous estimate for η, and the fact
that K ′ satisfies the same estimate as K does, we conclude that

‖ψ‖L∞(0,T ;H s) ≤ C(M0) + T C
(
M(T )

)
.

We end up with M(T ) ≤ C(M0) + T C(M(T )). This completes the proof of Proposi-
tion 5.2.

5.6.
Consider (η, ψ) ∈ C0([0, T ]; H s+1/2(Rd) × H s(Rd)) as a solution to the system Q12{

(∂t + TV · ∇Jε + Lε)

(
η

ψ

)
= f (Jεη, Jεψ),

(η, ψ)|t=0 = (η0, ψ0).

We now prove uniform estimates for solutions (η̃, ψ̃) to the linear system{
(∂t + TV · ∇Jε + Lε)

(
η̃

ψ̃

)
= F,

(η̃, ψ̃)|t=0 = (η̃0, ψ̃0).
(5.19)

To clarify notation, write (5.5) in the compact form

E(ε, η, ψ)

(
η

ψ

)
= f (Jεη, Jεψ).
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Then, with this notation, we shall prove estimates for the system

E(ε, η, ψ)

(
η̃

ψ̃

)
= F.

We shall also use the following notation. Given r ≥ 0, T > 0, and two real-valued
functions u1, u2, we set

‖(u1, u2)‖Xr (T ) := ‖(u1, u2)‖L∞(0,T ;Hr+1/2×Hr ). (5.20)

We shall prove the following extension of Proposition 5.2.

PROPOSITION 5.4
Let d ≥ 1, let s > 2 + d/2, and let 0 ≤ σ ≤ s. Then there exists a non-decreasing
function C such that, for all ε ∈ [0, 1], all T ∈]0, 1], and all η̃, ψ̃, η, ψ, F such that

E(ε, η, ψ)

(
η

ψ

)
= f (Jεη, Jεψ), E(ε, η, ψ)

(
η̃

ψ̃

)
= F

and such that

(η, ψ) ∈ C0
(
[0, T ]; H s+1/2(Rd) × H s(Rd)

)
,

(η̃, ψ̃) ∈ C1
(
[0, T ]; Hσ+1/2(Rd) × Hσ (Rd)

)
,

F = (F1, F2) ∈ L∞([0, T ]; Hσ+1/2(Rd) × Hσ (Rd)
)
,

we have

‖(η̃, ψ̃)‖Xσ (T ) ≤ C̃‖(η̃0, ψ̃0)‖Hσ+1/2×Hσ

+ T C
(‖(η, ψ)‖Xs(T )

) {‖(η̃, ψ̃)‖Xσ (T ) + ‖F‖Xσ (T )

}
, (5.21)

where C̃ := C(‖(η0, ψ0)‖H s+1/2×H s ) + T C(‖(η, ψ)‖Xs(T )).

Remark 5.5
By applying this proposition with (η, ψ) = (η̃, ψ̃) we obtain Proposition 5.2.

Proof
We still denote by p, q, γ, ℘ the symbols already introduced above. They are functions
of η only. Similarly, B and V are functions of (η, ψ). We use tildes to indicate that
the new unknowns that we shall introduce depend linearly on (η̃, ψ̃), with some
coefficients depending on (η, ψ).
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(i) Let us set

Ũ = ψ̃ − TBη̃, �̃ =
(

Tpη̃

TqŨ

)
.

As above, we begin by computing that �̃ satisfies

(∂t + TV · ∇Jε) �̃ +
(

0 −Tγ Jε

Tγ Jε 0

)
�̃ = F̃ ,

with F̃ = F̃1 + F̃2 + F̃3 where

Q13

F̃1 =
(

TpF1

TqF2

)
,

F̃2 =
(

0 −(TpTλT1/qJε − Tγ Jε)
(TqT�T℘Jε − Tγ Jε) 0

)
�̃,

F̃3 =
[
∂t + TV · ∇Jε,

(
Tp 0
0 Tq

)(
I 0

−TB I

)](
η̃

ψ̃

)
.

Then we find that

‖F̃‖L∞(0,T ;Hσ ×Hσ ) ≤ C
(‖(η, ψ)‖Xs(T )

) {‖(η̃, ψ̃)‖Xσ (T ) + ‖F‖Xσ (T )

}
,

for some non-decreasing function C independent of ε.
(ii) Next, we introduce the symbol

β := (γ (3/2))2σ/3 ∈ �σ .

As above, we find that

‖[Tβ, Tγ ]Jε‖Hσ →L2 ≤ C(‖(η, ψ)‖Xs(T )),

‖Tγ [Tβ, Jε]‖Hσ →L2 ≤ C(‖(η, ψ)‖Xs(T )),

‖[Tβ, TV · ∇Jε]‖Hσ →L2 ≤ C(‖(η, ψ)‖Xs(T )),

‖[Tβ, ∂t ]‖Hσ →L2 ≤ C(‖(η, ψ)‖Xs(T )),

for some nondecreasing function C independent of ε ∈ [0, 1]. Therefore, by commut-
ing the equation (5.7) with Tβ , we find that

ϕ̃ := Tβ�̃
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satisfies

(∂t + TV · ∇Jε) ϕ̃ +
(

0 −Tγ Jε

Tγ Jε 0

)
ϕ̃ = F̃ ′,

with

‖F̃ ′‖L∞(0,T ;L2×L2) ≤ C
(‖(η, ψ)‖Xs(T )

) {‖(η̃, ψ̃)‖Xσ (T ) + ‖F‖Xσ (T )

}
,

for some non-decreasing function C independent of ε ∈ [0, 1].
(iii) Therefore, we obtain that for all t ∈ [0, T ], ‖ϕ̃(t)‖2

L2×L2 − ‖ϕ̃(0)‖2
L2×L2 is

bounded by

C
(‖(η, ψ)‖Xs(T )

) ∫ T

0

(‖ϕ̃(t ′)‖2
L2×L2 + ‖F̃ ′(t ′)‖2

L2×L2

)
dt ′

which immediately implies that ‖ϕ̃‖L∞(0,T ;L2×L2) is bounded by

‖ϕ̃(0)‖L2×L2 + T C
(‖(η, ψ)‖Xs(T )

) ‖ϕ̃‖L∞(0,T ;L2×L2) + T ‖F‖Xσ (T ) .

Once this is granted, we end the proof as above. �

6. Cauchy problem

In this section we conclude the proof of Theorem 1.1. We divide the proof into two
independent parts: (a) existence and (b) uniqueness. We shall prove the uniqueness
by an estimate for the difference of two solutions. With regards to the existence, as
mentioned above, we shall obtain solutions to the system (1.2) as limits of solutions
to the approximate systems (5.5) which were studied in the previous section. To do
that, we shall begin by proving that:
(1) For any ε > 0, the approximate systems (5.5) are well-posed locally in time

(ODE argument).
(2) The solutions (ηε, ψε) of the approximate system (5.5) are uniformly bounded

with respect to ε (by means of the uniform estimates in Proposition 5.2).
The next task is to show that the functions {(ηε, ψε)} converge to a limit (η, ψ) which
is a solution of the water-wave system (1.2). To do this, one cannot apply standard
compactness results since the Dirichlet-Neumann operator is not a local operator. To
overcome this difficulty we shall prove as in [21] that:
(3) The solutions (ηε, ψε) form a Cauchy sequence in an appropriate bigger space

(by an estimate of the difference of two solutions (ηε, ψε) and (ηε′, ψε′)).
(4) (η, ψ) is a solution to (1.2).
(5) (η, ψ) ∈ C0([0, T ]; H s+1/2(Rd) × H s(Rd)).
Notice that, as usual, once we know the uniqueness of the limit system, one can assert
that the whole family {(ηε, ψε)} converges to (η, ψ).



xxx dmj9330 April 13, 2011 21:59

ON THE WATER-WAVE EQUATIONS WITH SURFACE TENSION 63

Clearly, to achieve these various goals, the main part of the work was already
accomplished in the previous section.

6.1. Existence

LEMMA 6.1
For all (η0, ψ0) ∈ H s+1/2(Rd) × H s(R) and any ε > 0, the Cauchy problem⎧⎪⎨⎪⎩

(∂t + TV · ∇Jε + Lε)

(
η

ψ

)
= f (Jεη, Jεψ),

(η, ψ)|t=0 = (η0, ψ0)

has a unique maximal solution (ηε, ψε) ∈ C0([0, Tε[; H s+1/2(Rd) × H s(Rd)).

Proof
Write (5.5) in the compact form

∂tY = Fε(Y ), Y |t=0 = Y0. (6.1)

Since Jε is a smoothing operator, (6.1) is an ODE with values in a Banach space for any
ε > 0. Indeed, it is easily checked that the function Fε is C1 from H s+1/2(Rd)×H s(Rd)
to itself. (The only non trivial terms come from the Dirichlet-Neumann operator, whose
regularity follows from Proposition 2.11.) The Cauchy-Lipschitz theorem then implies
the desired result. �

LEMMA 6.2
There exists T0 > 0 such that Tε ≥ T0 for all ε ∈]0, 1] and such that {(ηε, ψε)}ε∈]0,1]

is bounded in C0([0, T0]; H s+1/2(Rd) × H s(Rd)).

Proof
The proof is standard. For ε ∈]0, 1] and T < Tε, set

Mε(T ) := ‖(ηε, ψε)‖L∞(0,T ;H s+1/2×H s) .

Notice that automatically (ηε, ψε) ∈ C1([0, Tε[; H s+1/2(Rd) × H s(Rd)), so that one
can apply Proposition 5.2 to obtain that there exists a continuous function C such that,
for all ε ∈]0, 1] and all T < Tε,

Mε(T ) ≤ C(M0) + T C
(
Mε(T )

)
, (6.2)
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where we recall that M0 = ‖(η0, ψ0)‖H s+1/2×H s . Let us set M1 = 2C(M0), and choose
0 < T0 ≤ 1 small enough such that C(M0) + T0C(M1) < M1. We claim that

Mε(T ) < M1, ∀T ∈ I := [0, min{T0, Tε}[.

Indeed, since Mε(0) = M0 < M1, assume that there exists T ∈ I such that Mε(T ) =
M1; then

M1 = Mε(T ) ≤ C(M0) + T C
(
Mε(T )

) ≤ C(M0) + T0C(M1) < M1,

hence the contradiction.
The continuation principle for ordinary differential equations then implies that

Tε ≥ T0 for all ε ∈]0, 1], and we have

sup
ε∈]0,1]

sup
T ∈[0,T0]

Mε(T ) ≤ M1.

This completes the proof. �

LEMMA 6.3
Let s′ < s −3/2. Then there exists 0 < T1 ≤ T0 such that {(ηε, ψε)}ε∈]0,1] is a Cauchy
sequence in C0([0, T1]; H s′+1/2(Rd) × H s′

(Rd)).

Proof
The proof is sketched in Section 6.3 below. �

Then, as explained in the introduction to this section, the existence of a classical
solution follows from standard arguments.

6.2. Uniqueness
To complete the proof of Theorem 1.1, it remains to prove the uniqueness.

PROPOSITION 6.4
Let T0 > 0, let d ≥ 1, and let s > 2 + d

2 . Let (ηj , ψj ), j = 1, 2, be two solutions
of system (1.2) in C0([0, T0]; H s+1/2(Rd) × H s(Rd)) such that the assumption Ht is
satisfied for all t ∈ [0, T0]. Then

‖(η1, ψ1) − (η2, ψ2)‖L∞([0,T0];H s−1(Rd )×H s−3/2(Rd ))

≤ C‖(η1, ψ1) − (η2, ψ2) |t=0 ‖H s−1(Rd )×H s−3/2(Rd )). (6.3)

As we shall see, the proof of Proposition 6.4 requires a lot of care.

Q14
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Recall (see Section 5.1) that (η, ψ) solves (1.2) if and only if

(∂t + TV · ∇ + L)

(
η

ψ

)
= f (η, ψ),

with

L :=
(

I 0
TB I

)(
0 −Tλ

T� 0

)(
I 0

−TB I

)
, f (η, ψ) :=

(
I 0

TB I

)(
f 1

f 2

)
, (6.4)

where

f 1 = G(η)ψ − {
Tλ(ψ − TBη) − TV · ∇η

}
,

f 2 = 1

2
|∇ψ |2 + 1

2

(∇η · ∇ψ + G(η)ψ)2

1 + |∇η|2 + H (η)

+ TV ∇ψ − TBTV · ∇η − TBG(η)ψ + T�η − gη.

Introduce the notation

Bj = ∇ηj · ∇ψj + G(ηj )ψj

1 + ∣∣∇ηj

∣∣2 , Vj = ∇ψj − Bj∇ηj , (6.5)

and denote by λj , �j the symbols obtained by replacing η by ηj in (3.11), (3.27),
respectively. Similarly, denote by L1 the operator obtained by replacing (B, λ, �)
with (B1, λ1, �1) in (6.4). To prove the uniqueness, the main technical lemma is the
following.

LEMMA 6.5
Let 0 < T ≤ T0. The differences δη := η1 − η2 and δψ := ψ1 − ψ2 satisfy a system
of the form

(∂t + TV1 · ∇ + L1)

(
δη

δψ

)
= f,

for some remainder term such that

‖f ‖L∞(0,T ;H s−1×H s−3/2) ≤ C(M1, M2)N,

where

Mj := ‖(ηj , ψj )‖L∞(0,T0;H s+1/2×H s ), N := ‖(δη, δψ)‖L∞(0,T ;H s−1×H s−3/2).

Assume this technical lemma for a moment, and let us deduce the desired result:
(η1, ψ1) = (η2, ψ2). To see this we use our previous analysis. Introducing
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δU := δψ − TB1δη = ψ1 − ψ2 − TB1 (η1 − η2)

and

δ� :=
(

Tp1δη

Tq1δU

)
,

we obtain that δ� solves a system of the form

∂tδ� + TV1 · ∇δ� +
(

0 −Tγ1

Tγ1 0

)
δ� = F

with

‖F‖L∞(0,T ;H s−3/2×H s−3/2) ≤ C(M1, M2)N.

Then it follows from the estimate (5.21) applied with

ε = 0, σ = s − 3

2
, η̃ = δη, ψ̃ = δψ,

that N satisfies an estimate of the form (with N0 = ‖(η, ψ) |t=0‖H s−1×H s−3/2 )

N ≤ T C(M1, M2)N + C(M1, M2)N0.

By choosing T small enough, this implies N ≤ 2N0 which is the desired result,
but possibly for a time interval [0, T ] smaller than [0, T0]. Now we can clearly iterate
this result (because the size of the time interval T here depends only on the a priori
bounds M1, M2) to get Proposition 6.4.

It remains to prove Lemma 6.5. To do this, we begin with the following lemma.

LEMMA 6.6
We have

‖V1 − V2‖H s−5/2 ≤ C ‖(δη, δψ)‖H s−1×H s−3/2,

‖B1 − B2‖H s−5/2 ≤ C ‖(δη, δψ)‖H s−1×H s−3/2,

1∑
k=0

sup
|ξ |=1

∥∥∂α
ξ

(
λ

(k)
1 (·, ξ ) − λ

(k)
2 (·, ξ )

)∥∥
H s−3+k ≤ C‖δη‖H s−1,

1∑
k=0

sup
|ξ |=1

∥∥∂α
ξ

(
�

(1+k)
1 (·, ξ ) − �

(1+k)
2 (·, ξ )

)∥∥
H s−3+k ≤ C ‖δη‖H s−1,

for all α ∈ Nd and some constant C depending only on M1, M2, and α.
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Proof
The last two estimates are obtained from the product rule in Sobolev spaces (using
similar arguments as in the end of the proof of Lemma 4.10). With regards to the first
two estimates, notice that, by the definitions of Bj, Vj (see (6.5)), to prove them the
only non trivial point is to prove that

‖G(η1)ψ1 − G(η2)ψ2‖H s−5/2 ≤ C ‖(δη, δψ)‖H s−1×H s−3/2 .

Indeed, setting ηt = tη1 + (1 − t)η2 we have

G(η1)ψ1 − G(η2)ψ2 = G(η1)δψ +
∫ 1

0
dG(ηt )ψ2 · δη dt =: A + B.

It follows from Proposition 2.7 that

‖A‖H s−5/2 ≤ C(M1) ‖δψ‖H s−3/2 .

Now thanks to Proposition 2.11 we can write

B = −
∫ 1

0
[G(ηt )(Bt δη) + div(Vtδη)] dt,

where Bt = B(ηt , ψ2), V = V (ηt , ψ2). Using again Proposition 2.7 we obtain

‖B‖H s−5/2 ≤ C(M1, M2) ‖δη‖H s−3/2, (6.6)

which completes the proof. �

COROLLARY 6.7
We have

‖TV1−V2 · ∇η2‖H s−1 ≤ C ‖(δη, δψ)‖H s−1×H s−3/2,

‖TV1−V2 · ∇ψ2‖H s−3/2 ≤ C ‖(δη, δψ)‖H s−1×H s−3/2,

‖Tλ1−λ2ψ2‖H s−1 ≤ C ‖(δη, δψ)‖H s−1×H s−3/2,

‖T�1−�2η2‖H s−3/2 ≤ C ‖(δη, δψ)‖H s−1×H s−3/2,

for some constant C depending only on M1 and M2.

Proof
According to Lemma 3.11, we have

‖Tau‖Hμ � ‖a‖Hd/2−1/2 ‖u‖Hμ+1/2,
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so using the previous lemma we obtain the first two estimates. The last two estimates
come from the bounds for λ1 − λ2 and �1 − �2 and Proposition 4.4. (Again, it suffices
to apply the usual operator norm estimate (3.4) for s > 3 + d/2.) �

Similarly, we obtain that, for any u ∈ H s+1/2,

‖TB1−B2u‖H s ≤ C ‖(δη, δψ)‖H s−1×H s−3/2 ‖u‖H s+1/2 .

Therefore, to prove Lemma 6.5, it remains only to estimate the difference

f (η1, ψ1) − f (η2, ψ2),

where f (η, ψ) is defined in (6.4). To do this, the most delicate part is to obtain an
estimate for

f 1(η1, ψ1) − f 1(η2, ψ2),

where we recall the notation

f 1(η, ψ) = G(η)ψ − {Tλ(ψ − TBη) − TV · ∇η}. (6.7)

We claim that

‖f 1(η1, ψ1) − f 1(η2, ψ2)‖H s−1 ≤ C(M1, M2) ‖(δη, δψ)‖H s−1×H s−3/2 .

To prove this claim, we shall prove an estimate for the partial derivative of f 1(η, ψ)
with respect to η. (Since f 1(η, ψ) is linear with respect to ψ , the corresponding result
for the partial derivative with respect to ψ is easy.) Let (η, ψ) ∈ H s+1/2(Rd)×H s(Rd).
(Again, we forget the time dependence.) Introduce the notation

dηf
1(η, ψ) · η̇ = lim

ε→0

1

ε

(
f (η + εη̇, ψ) − f (η, ψ)

)
.

Then, to complete the proof of the uniqueness, it remains only to prove the following
technical lemma.

LEMMA 6.8
Let s > 2 + d/2. Then, for all (η, ψ) ∈ H s+1/2(Rd) × H s(Rd) and for all η̇ ∈
H s+1/2(Rd),

‖dηf
1(η, ψ) · η̇‖H s−1 ≤ C ‖η̇‖H s−1,

for some constant C which depends only on the H s+1/2(Rd)×H s(Rd)-norm of (η, ψ).
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Remark 6.9
The assumption η̇ ∈ H s+1/2(Rd) ensures that dηf

1(η, ψ)η̇ is well defined. However,
of course, a key point is that we estimate the latter term in H s−1 by means of only the
H s−1 norm of η̇.

Proof
To prove this estimate we begin by computing dηf

1(η, ψ)η̇. Given a coefficient
c = c(η, ψ) we use the notation

ċ = lim
ε→0

1

ε

(
c(η + εη̇, ψ) − c(η, ψ)

)
.

Using this notation for λ̇, Ḃ, V̇ , we have

dηf
1(η, ψ) · η̇ = −G(η)(Bη̇) − div(V η̇)

− {Tλ̇(ψ − TBη) − TλTḂη − TλTBη̇ − TV̇ · ∇η − TV · ∇η̇},
(6.8)

We split the right-hand side into four terms. (Three of which are easy to estimate,
whereas the last one requires some care.) Set

I1 = V · ∇η̇ − TV · ∇η̇,

I2 = −Tλ̇(ψ − TBη),

I3 = −TλTḂη,

I4 = −G(η)(Bη̇) − (div V )η̇ + TλTBη̇.

To estimate I1, we use that, for all functions a ∈ H s0 (Rd) with s0 > 1+d/2, we have

‖au − Tau‖Hμ+1 ≤ K ‖a‖H s0 ‖u‖Hμ,

whenever u ∈ Hμ(Rd) for some 0 ≤ μ ≤ s0 − 1. By applying this estimate with
s0 = s − 1, we obtain

‖I1‖H s−1 = ‖(V − TV ) · ∇η̇‖H s−1 � ‖V ‖H s−1 ‖∇η̇‖H s−1−1 ≤ C ‖η̇‖H s−1 .

With regards to the second term, we use the arguments in the proof of Proposition 4.4.
(Notice that here, our symbol λ̇ does not exactly have the form (4.7), but rather

F (∇η, ξ )∇η̇ + G(∇η, ξ )∇2η̇ + K(∇η, ξ )∇η̇∇2η

and the proof of Proposition 4.4 applies.) We obtain

‖I2‖H s−1 ≤ C ‖η̇‖H s−1 .
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To estimate I3, notice that (3.4) implies that

‖I3‖H s−1 � M1
0 (λ) ‖TḂη‖H s−1+1 ≤ C ‖TḂη‖H s .

Next, using the general estimate

‖Tau‖Hμ ≤ K ‖a‖Hd/2−m ‖u‖Hμ+m,

we conclude that

‖I3‖H s−1 ≤ C
∥∥Ḃ∥∥

H s−5/2 ‖η‖H s+1/2 .

Therefore, the desired result for I3 will follow from the claim that

‖Ḃ‖H s−5/2 ≤ C ‖η̇‖H s−1 .

To see this, the only nontrivial point is to bound dG(η)ψ · η̇, which was precisely
done above (see (6.6)).

It remains to estimate I4, which is the most delicate part. Indeed, one cannot
estimate the terms separately, and we have to use a cancellation which comes from
the identity G(η)B = − div V (see Lemma 2.12).

It follows from Proposition 3.22 that

G(η)(Bη̇) = Tλ(1) (Bη̇) + F (η,Bη̇), G(η)B = Tλ(1)B + F (η,B),

where

‖F (η,Bη̇)‖H s−1 ≤ C ‖η̇‖H s−1 , ‖F (η,B)‖H s−1 ≤ C.

Therefore

I4 = −G(η)(Bη̇) − (div V )η̇ + TλTBη̇

= −Tλ(1) (Bη̇) − F (η,Bη̇) − η̇ div V + TλTBη̇

= −Tλ(1) (Bη̇) − F (η,Bη̇) − Tη̇ div V − (η̇ − Tη̇) div V + TλTBη̇,

and hence using div V = −G(η)B + R with R ∈ H s−1(Rd) (see Lemma 2.12) we
obtain that

I4 = −Tλ(1) (Bη̇) − F (η,Bη̇) + Tη̇(G(η)B − R) + (η̇ − Tη̇) div V + TλTBη̇.
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Paralinearizing G(η)B and gathering terms we conclude that

I4 = −Tλ(1) (Bη̇) − F (η,Bη̇) + Tη̇

(
Tλ(1)B + F (η,B)

)
+ (η̇ − Tη̇) div V + TλTBη̇ − Tη̇R.

Then commuting Tη̇ and Tλ(1) we conclude that

I4 = J1 + J2,

where

J1 = −Tλ(1) (Bη̇ − Tη̇B − TBη̇)

J2 = Tλ(0)TBη̇ + [Tη̇, Tλ(1) ]B + Tη̇F (η,B)

+ (η̇ − Tη̇) div V − F (η,Bη̇) − Tη̇R.

Now both terms J1 and J2 are estimated using symbolic calculus. (Namely, we estimate
J1 by means of Theorem 3.12(ii); and we estimate J2 by means of (3.4), (3.5), and
Theorem 3.12(ii).) �

6.3. Sketch of the proof of Lemma 6.3
Let 0 < ε1 < ε2, and consider two solutions (ηεj

, ψεj
) ∈ C0([0, T ]; H s+1/2(Rd) ×

H s(Rd)) of (5.5). Introduce the notation

Bεj
= ∇ηεj

· ∇ψεj
+ G(ηεj

)ψεj

1 + |∇ηεj
|2 , Vεj

= ∇ψεj
− Bj∇ηεj

, (6.9)

and denote by λj , �j the symbols obtained by replacing η by ηεj
in (3.11), (3.27),

respectively. Here, the main technical lemma is the following.

LEMMA 6.10
Let 0 < ε1 < ε2, consider s′ such that

1

2
+ d

2
< s′ < s − 3

2
,

and set

a = s − 3

2
− s′.

Then the differences δη := ηε1 −ηε2 and δψ := ψε1 −ψε2 satisfy a system of the form

(∂t + TVε1
· ∇Jε1 + Lε1 )

(
δη

δψ

)
= f, (6.10)
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for some remainder term such that

‖f ‖Xs′ (T ) ≤ C
{‖(δη, δψ)‖Xs′ (T ) + εa

2

}
,

for some constant C depending only on supε∈]0,1] ‖(ηε, ψε)‖Xs (T ).

To prove Lemma 6.10, we proceed as in the previous section. The only difference is
that we use the fact that

‖Jε2 − Jε1‖Hμ→Hμ−a ≤ Cεa
2 .

Now, since for t = 0 we have δη = 0 = δψ , it follows from Lemma 6.10 and
(5.21) applied with

σ = s′, ε = ε1, η̃ = δη, ψ̃ = δψ,

that N satisfies an estimate of the form

N ≤ T C{N + εa
2}.

By choosing T and ε2 small enough, this implies that N = O(εa
2 ). This proves

Lemma 6.3.

6.4. Continuity in time
We now prove that the solution (η, ψ) constructed in the previous sections is contin-
uous in time with values in H s+1/2 × H s . To do so, it is enough to prove that (η, U )
is continuous in time with values in H s+1/2 × H s , which in turn will be clear if we
prove that the complex-valued unknown � is continuous in time with values in H s .
Furthermore, by usual functional analysis arguments (following the scheme of proof
given for instance by Taylor in [32]; see [32, Proposition 5.1.D]), it is enough to prove
that the scalar function t �→ ‖�(t)‖H s is continuous. To prove this, we shall prove that
‖Jε(t)�(t)‖2

H s is (uniformly with respect to ε) a Lipschitz function of t ∈ [0, T ], so
that the desired continuity will be established, provided that we prove that Jε(t)�(t)
converges to �(t) in H s for all t ∈ [0, T ].

The fact that ‖Jε(t)�(t)‖2
H s is a Lipschitz function of t ∈ [0, T ] is a consequence

of previous estimates. Indeed, the above analysis established that ‖Jε�‖2
H s satisfies

an estimate of the form

d

dt
‖Jε(t)�(t)‖2

H s ≤ C
(∥∥(η, ψ)

∥∥
H s+1/2×H s

)
.

The only technical point which remains to check is that, for a fixed time t ∈ [0, T ],
Jε(t)�(t) converges to �(t) in H s(Rd). In the standard situation where the mollifiers
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Jε are Fourier multipliers, this is an immediate consequence of the dominated conver-
gence theorem. Here Jε is a paradifferential operator whose symbol depends on x and
this requires a verification.

LEMMA 6.11
For any t ∈ [0, T ] and any v ∈ H s(Rd) whose spectrum is included in |ξ | ≥ 2, Jε(t)v
converges to v in H s(Rd) when ε goes to 0.

Proof
To simplify notation, we omit the time dependence, denote by ‖·‖ the H s-norm, and
denote by 〈·, ·〉 the scalar product in H s . By symbolic calculus it is easy to prove that,
for δ > 0,

‖I − Jε‖H s→H s−δ = O(ε(2/3)δ), (6.11)

which implies that Jεv converges to v in H s−δ . Consequently, using classical argu-
ments, it is enough to prove that ‖Jεv‖ converges to ‖v‖. Recall that, by definition,

jε(x, ξ ) = j (0)
ε (x, ξ ) − − i

2
(∂x · ∂ξ )j (0)

ε (x, ξ ) with j (0)
ε = exp

(−εγ (3/2)(x, ξ )
)
.

Note that ε−2/3(∂x · ∂ξ )j (0)
ε (x, ξ ) is uniformly bounded in �0

0 and hence

‖T(∂x ·∂ξ )j (0)
ε

v‖ = O(ε2/3).

Consequently, it is enough to prove that ‖Tj
(0)
ε

v‖ converges to ‖v‖ when ε goes to 0.
To avoid confusion of notation, introduce pε(x, ξ ) = (j (0)

ε (x, ξ ))2. We have

‖Tj
(0)
ε

v‖2 = 〈Tpε
v, v〉 + 〈Rεv, v〉 with Rε = (Tj

(0)
ε

)∗Tj
(0)
ε

− Tpε
.

Since ε−aj (0)
ε is uniformly bounded in �

3a/2
1 for any a > 0, by symbolic calculus we

have

‖(Tj
(0)
ε

)∗ − Tj
(0)
ε

‖H s→H s−1 � M1
1 (j (0)

ε ) = O(ε2/3),

‖(Tj
(0)
ε

)∗Tj
(0)
ε

− Tpε
‖H s→H s � M

1/2
1 (j (0)

ε )2 = O(ε2/3),

and hence 〈Rεv, v〉 = O(ε2/3). Consequently, it is enough to prove that 〈Tpε
v, v〉

converges to ‖v‖2. To do that, we shall prove that

‖v‖2 ≥ lim sup〈Tpε
v, v〉 ≥ lim inf〈Tpε

v, v〉 ≥ ‖v‖2.



xxx dmj9330 April 13, 2011 21:59

74 ALAZARD, BURQ, and ZUILY

Note that there exist c, C > 0 such that c |ξ |3/2 ≤ γ (3/2)(x, ξ ) ≤ C |ξ |3/2 , and
introduce the Fourier multipliers

aε(ξ ) = exp(−2εC |ξ |3/2), bε(ξ ) = exp(−2εc |ξ |3/2),

so that aε ≤ pε ≤ bε. Introduce a positive constant δ > 0. Then

qε := (
pε(x, ξ ) − aε(ξ ) + δ

)1/2 ∈ �0
3/2(Rd).

We have

〈Tpε(x,ξ )−aε(ξ )+δv, v〉 = 〈Tqε
v, Tqε

v〉 + 〈Rδ,εv, v〉,

where, using sharp operator norm estimates for symbolic calculus (see [24, Theo-
rems 2.16 and 2.18]), we have that

〈Rδ,εv, v〉 = O(ε1/3).

The underlying constant depends on δ and blows up even more when δ goes to 0.
However, the trick is that we shall let ε goes to 0 and then δ goes to 0, so that this
large constant is harmless. Indeed, for fixed δ > 0, we have

lim inf
ε→0

〈Tpε(x,ξ )−aε(ξ )+δv, v〉 ≥ 0.

Since the spectrum of v lies in the exterior of the ball of center 0 and radius 2, we have
Taε

v = aε(Dx)v and similarly Tδv = δv (recall that we include a cut-off ψ in the
definition of paradifferential operators.) Now by the dominated convergence theorem,
we have

〈aε(Dx)v, v〉 → ‖v‖2 .

Therefore we find

lim inf
ε→0

〈Tpε(x,ξ )v, v〉 ≥ (1 − δ) ‖v‖2 .

Since this holds for any δ > 0, we obtain lim infε→0〈Tpε(x,ξ )v, v〉 ≥ ‖v‖2. Similarly
we show that lim supε→0〈Tpε(x,ξ )v, v〉 ≤ ‖v‖2. This completes the proof. �

6.5. Continuity with respect to initial data
Notice that from the a priori bound in L∞(0, T ; H s+1/2 × H s) and the Lipschitz
bound in L∞(0, T ; H s−1 × H s−3/2), for any σ < s, the flow map

(η0, ψ0) ∈ H s+1/2 × H s �→ (η, ψ) ∈ C0
(
[0, T ]; Hσ+1/2 × Hσ

)
(6.12)
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is uniformly continuous. In this section we are going to prove Theorem 1.2 whose
statement is recalled here.

THEOREM 6.12
Consider (η, ψ) ∈ C0([0, T ]; H s+1/2(Rd) × H s(Rd)) as a solution of (1.2) and con-
sider a sequence (ηn,0, ψn,0)n∈N∗ converging in H s+1/2(Rd) × H s(Rd) to (η, ψ) |t=0.
Then, for n sufficiently large, the solutions (ηn, ψn) ∈ C0([0, T ]; H s+1/2(Rd) ×
H s(Rd)) with data (ηn,0, ψn,0) are defined on the time interval [0, T ] and satisfy

lim
n→+∞

‖(ηn, ψn) − (η, ψ)‖C0([0,T ];H s+1/2×H s ) = 0. (6.13)

In the context of quasilinear equations, this kind of result is rather standard (see for
example [20]), and the methods used in this context can be (using the machinery we
previously developed) adapted to the water-wave system. As a consequence, we shall
only give the main steps. Here, we follow (an adaptation of) the Bona-Smith argument
(see [9], [34]). The first part in Theorem 6.12 is a straightforward consequence of the
proof we gave of the existence of solutions. To obtain the continuity, the main point
is the following.

LEMMA 6.13
Consider a sequence (ηn, ψn)n∈N∗ bounded in C0([0, T ]; H s+1/2(Rd) × H s(Rd)) sat-
isfying

lim
n→+∞

‖(ηn, ψn) |t=0 −(η0, ψ0) |t=0 ‖H s+1/2×H s = 0.

Then

lim
ε→0

sup
n∈N

‖(I − Jε,n)�n‖C0([0,T ];H s(Rd )) = 0,

where �n is the function associated to (ηn, ψn) by (5.6) and Jε,n is the mollifier from Q15

Section 5.2.

Let us first show how we can prove Theorem 6.12 from Lemma 6.13. Denote by

‖(η, ψ)‖Xs
T

= ‖(η, ψ)‖C0([0,T ];H s+1/2(Rd )×H s(Rd )).

We first deduce easily from Lemma 6.13 that

lim
ε→0

sup
n∈N

‖(I − Jε,n)(ηn, ψn)‖Xs
T

= 0.
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Then we have (where Jε is associated to (η, ψ))

‖(ηn, ψn) − (η, ψ)‖Xs
T

≤ ∥∥Jε

(
(ηn, ψn) − (η, ψ)

)∥∥
Xs

T

+ ∥∥(I − Jε)
(
(ηn, ψn) − (η, ψ)

)∥∥
Xs

T

. (6.14)

The second term on the right-hand side of (6.14) is bounded by

‖(I − Jε)(η, ψ)‖Xs
T
+ ‖(I − Jε,n)(ηn, ψn)‖Xs

T
+ ‖(Jε,n − Jε)(ηn, ψn)‖Xs

T

≤ o(1)ε→0 + sup
t∈[0,T ]

sup
σ=s+1/2,σ=s

‖Jε,n − Jε‖L(Hσ (Rd )). (6.15)

By symbolic calculus (notice that γ is expressed in terms of ∇xη, that the norm on
Hσ of a zeroth-order paradifferential operator is bounded by the L∞ norm of a finite
number of ξ derivatives of the symbol, and that the norm of a paradifferential operator
of order −1 on Hσ is bounded by a finite number of norms of ξ derivatives of the
coefficients in Hd/2−1, see Section 4.1), we can bound

‖Jε,n − Jε‖L(Hσ (Rd )) ≤ C‖(ηn, ψn) − (η, ψ)‖Xσ
T

= o(1)ε→+∞

as soon as σ − 1/2 > d/2. (We use here (6.13).) Now we can fix ε > 0 small enough
so that the second term in (6.14) is arbitrarily small (uniformly with respect to n). To
bound the first term in (6.14) we use that, similar to (6.11),

‖Jε‖X
s−3/2
T →Xs

T
≤ C

ε
,

and consequently, using again (6.13) (for σ = s − 3/2) this term gives a contribution
of o(1)n→+∞. (ε is fixed.)

Let us come back to the proof of Lemma 6.13. We already proved in Section 6.4
that for any n ∈ N,

lim
ε→0

‖(I − Jε,n)ψn |t=0 ‖H s(Rd ) = 0,

and consequently, as the family{
(ηn, ψn) |t=0, n ∈ N

} ∪ {(η, ψ) |t=0

}
is compact, we deduce that

lim
ε→0

sup
n∈N

‖(I − Jε,n)ψn |t=0 ‖H s(Rd ) = 0.

To conclude the proof of Lemma 6.13, it is enough to show that this estimate is
propagated by the flow. For the sake of conciseness, we shall only show how to
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prove this fact for fixed n. Now, the function (I − Jε)� satisfies the equation (with
ρ0 = 1/2 min(1, s − 2 − d/2) > 0)

(∂t + TV · ∇ + iTγ )(I − Jε)� = F ∈ C0
(
[0, T ]; H s+ρ0 (Rd)

)
.

Using that F is essentially of the form (I − Jε)G, we deduce that

‖F‖C0([0,T ];H s(Rd )) ≤ Cε(2/3)ρ0,

and the energy estimates in Section 5 allow us to conclude the proof of Lemma 6.13.

7. The smoothing effect

We consider a given solution (η, ψ) of (1.2) on the time interval [0, T ] with 0 < T <

+∞ such that the assumption Ht is satisfied for all t ∈ [0, T ] and such that

(η, ψ) ∈ C0
(
[0, T ]; H s+1/2(R) × H s(R)

)
,

for some s > 5/2. In this section we prove Theorem 1.5. Namely, we shall prove that

〈x〉−1/2−δ(η, ψ) ∈ L2
(
0, T ; H s+3/4(R) × H s+1/4(R)

)
,

for any δ > 0.

7.1. Reduction to an L2 estimate
Let �1, �2 be as defined in Corollary 4.9. Then the complex-valued unknown � =
�1 + i�2 satisfies a scalar equation of the form

∂t� + TV ∂x� + iTγ � = F, (7.1)

with F = F1 + iF2 ∈ L∞(0, T ; H s(Rd)). Recall from Proposition 3.13 and (3.27)
that, if d = 1, then

λ(1) = |ξ | , λ(0) = 0, �(2) = c2 |ξ |2 ,

with

c = (1 + |∂xη|2)−3/4.

Therefore, directly from the definition of γ (see Proposition 4.8), notice that if d = 1,
then γ simplifies to

γ = c |ξ |3/2 − 3i

4
ξ |ξ |−1/2 ∂xc,

and hence modulo an error term of order 0, Tγ is given by |Dx |3/4 Tc |Dx |3/4.
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In this section we shall prove that one can deduce Theorem 1.5 from the following
proposition.

PROPOSITION 7.1
Assume that ϕ ∈ C0([0, T ]; L2(R)) satisfies

∂tϕ + TV ∂xϕ + iTγ ϕ = f,

with f ∈ L1(0, T ; L2(R)). Then, for all δ > 0,

〈x〉−1/2−δϕ ∈ L2(0, T ; H 1/4(R)).

We postpone the proof of Proposition 7.1 to the next section.
The fact that one can deduce Theorem 1.5 from the above proposition, though

elementary, contains the idea that one simplify hardly all the nonlinear analysis byQ16

means of paradifferential calculus.

Proof of Theorem 1.5 given Proposition 7.1
Following the proof of Proposition 5.2 (see Section 5.5), with

β := c2/3s |ξ |s , (7.2)

we find that the commutators [Tβ, ∂t ], [Tβ, Tγ ], and [Tβ, TV ∂x] are of order s. Conse-
quently, (7.1) implies that

(∂t + TV ∂x + iTγ )Tβ� ∈ L∞(0, T ; L2(R)
)
,

and hence,

(∂t + TV ∂x + iTγ )Tβ� ∈ L1
(
0, T ; L2(R)

)
.

Therefore it follows from Proposition 7.1 that

〈x〉−1/2−δTβ� ∈ L2
(
0, T ; H 1/4(R)

)
.

Since, by definition, � = Tpη + iTqU where Tpη and TqU are real-valued functions,
this yields

〈x〉−1/2−δTβTpη ∈ L2
(
0, T ; H 1/4(R)

)
, 〈x〉−1/2−δTβTqU ∈ L2

(
0, T ; H 1/4(R)

)
,

and hence, since ψ = U + TBη,

〈x〉−1/2−δTβTpη ∈ L2
(
0, T ; H 1/4(R)

)
, 〈x〉−1/2−δTβTqψ ∈ L2

(
0, T ; H 1/4(R)

)
.

(7.3)
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Since 〈x〉−1/2−δ ∈ �0
ρ(Rd) for any ρ ≥ 0, Theorem 3.7 implies that the commutators

[〈x〉−1/2−δ, TβTp], [〈x〉−1/2−δ, TβTq]

are of order s − 1/2 and s − 1, respectively. Therefore, directly from (7.3) and the
assumption

η ∈ C0
(
[0, T ]; H s+1/2(R)

)
, ψ ∈ C0

(
[0, T ]; H s(R)

)
,

we obtain that

TβTp〈x〉−1/2−δη ∈ L2
(
0, T ; H 1/4(R)

)
, TβTq〈x〉−1/2−δψ ∈ L2

(
0, T ; H 1/4(R)

)
.

Now since β, p, q are elliptic symbols of order s, 1/2, 0, respectively, we conclude
that (see Remark 3.9 or Proposition 4.6)

〈x〉−1/2−δη ∈ L2
(
0, T ; H s+3/4(R)

)
, 〈x〉−1/2−δψ ∈ L2

(
0, T ; H s+1/4(R)

)
.

This proves Theorem 1.5. �

7.2. Proof of Proposition 7.1
To complete the proof of Theorem 1.5, it remains to prove Proposition 7.1. To do so,
following the Doi approach, we begin with the following lemma, which follows from
the observation that ∂ξ (ξ/|ξ |) = 0 for ξ ∈ R \ {0} (and the fact that c is uniformly
bounded from below).

LEMMA 7.2
Let δ > 0, and consider

a(x, ξ ) = ξ

|ξ |
∫ x

0

1

〈y〉1+δ
dy.

Then

a ∈ �̇0
∞(R) :=

⋂
ρ≥0

�̇0
ρ(R),

and there exists K > 0 such that{
c |ξ |3/2 , a

}
(t, x, ξ ) ≥ K〈x〉−1−δ |ξ |1/2,

for all t ∈ [0, T ], x ∈ R, ξ ∈ R \ {0}.

We are now in position to prove Proposition 7.1.
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Proof of Proposition 7.1
We begin by remarking that we can assume without loss of generality that ϕ ∈
C1(I ; L2(R)). (A word of caution: to do so, instead of using the usual Friedrichs
mollifiers, we need to use the operators Jε introduced in Section 5.2.) This allows us
to write

d

dt
〈Taϕ, ϕ〉 = 〈T∂taϕ, ϕ〉 + 〈Ta∂tϕ, ϕ〉 + 〈Taϕ, ∂tϕ〉

= 〈T∂taϕ, ϕ〉
− 〈TaTV ∂xϕ + TaiTγ ϕ − Taf, ϕ〉
− 〈Taϕ, +TV ∂xϕ + iTγ ϕ − f 〉,

where 〈·, ·〉 denotes the L2 scalar product. Introduce the commutator

Q17

C := [iTγ , Ta].

Since ∂ta = 0, the previous identity yields

d

dt
〈Taϕ, ϕ〉 = 〈Cϕ, ϕ〉 + 〈i(T ∗

γ − Tγ )Taϕ, ϕ〉
+〈∂x(TV Taϕ) − TaTV ∂xϕ, ϕ〉
+〈Taf, ϕ〉 + 〈Taϕ, f 〉. (7.4)

Since a ∈ �̇0
0 , it follows from the usual estimates for paradifferential operators that

|〈Taϕ, ϕ〉| � ‖ϕ‖2
L2 ,

and

|〈Taϕ, f 〉| + |〈Taf, ϕ〉| ≤ K ‖ϕ‖2
L2 + K ‖f ‖2

L2 ,

for some positive constant K . One easily obtains similar bounds for the second and
third terms on the right-hand side of (7.4). Indeed, by the definition of γ we know that
T ∗

γ −Tγ is of order 0. On the other hand, as already seen, it follows from Theorem 3.7
that ∂x(TV Ta·) − TaTV ∂x is of order 0. Therefore, integrating (7.4) in time, we end up
with ∫ T

0
〈Cϕ, ϕ〉 dt ≤ M

{
‖ϕ(0)‖2

L2 + ‖ϕ(T )‖2
L2 +

∫ T

0
(‖ϕ‖2

L2 + ‖f ‖2
L2 ) dt

}
,

where M depends only on the L∞(0, T ; H s+1/2(R) × H s(R))-norm of (η, ψ).
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Hence to complete the proof it remains only to obtain a lower bound for the
left-hand side. To do so, write

iTγ = iTc |Dx |3/2 + 3

4
T(ξ/|ξ |)∂xc |Dx |1/2 ,

and recall that, by the definition of a (see Lemma 7.2), there exists a constant K such
that {

c(t, x) |ξ |3/4 , a(x, ξ )
} ≥ K〈x〉−1−2δ |ξ |1/2 ,

for some positive constant K > 0. Since

[Ta, T(ξ/|ξ |)∂xc |Dx |1/2] is of order 0,

Proposition 7.3 below then implies that

〈Cϕ, ϕ〉 ≥ a‖〈x〉−1/2−δϕ‖2
H 1/4 − A ‖ϕ‖2

L2 ,

for some positive constants a, A. This completes the proof of Proposition 7.1 and
hence of Theorem 1.5. �

PROPOSITION 7.3
Let d ≥ 1, and let δ > 0. Assume that d ∈ �

1/2
1/2(Rd) is such that, for some positive

constant K , we have

d(x, ξ ) ≥ K〈x〉−1−2δ |ξ |1/2 ,

for all (x, ξ ) ∈ Rd × Rd \ {0}. Then there exist two positive constants 0 < a < A

such that

〈Tdu, u〉 ≥ a‖〈x〉−1/2−δu‖2
H 1/4 − A ‖u‖2

L2 .

Remark 7.4
This proposition has been used for d = 1. However, it might be useful for d ≥ 1.

Remark 7.5
Related results were previously proved by Bony [10] (see also [31]) in the much more
general setting of sharp Gårding or Fefferman-Phong inequalities. Notice however that
these results require much more regularity than Proposition 7.3 (where the symbol is
only assumed to be C1/2).
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Proof
Again, the difficulty comes from our low-regularity assumption. Indeed, with more
regularity (say, d ∈ �1/2

ρ (Rd) with ρ > 2) this follows from the sharp Gårding
inequality proved in [10].

Consider a partition of unity as a sum of squares such that

1 = θ2
0 (x) +

∞∑
j=1

θ2(2−j x) =
∞∑

j=0

θ2
j (x),

where θ0 ∈ C∞
0 (R) and θ ∈ C∞(R) is supported in the annulus {x ∈ R : 1 ≤

|x| ≤ 3}.
Then

I = 〈Tdu, u〉 =
∞∑

j=0

〈θ2
j Tdu, u〉.

The following result is an illustration of the pseudo-local property of paradifferential
operators (see [11, p. 435] for similar results in this direction).

LEMMA 7.6
Let θ̃ ∈ C∞

0 (]1/2, 4[) be equal to 1 on the support of θ , and set θ̃j (x) = θ̃ (2−j |x|)
for j ≥ 1. Also let θ̃0 ∈ C∞

0 (R) be equal to 1 on the support of θ0. Then for all μ ∈ R,
all j ∈ N, and all N ∈ N, the operator Rj = θjTd(1 − θ̃j ) is continuous from Hμ to
Hμ+N with norm bounded by CN2−jN .

Proof
Writing (see (3.2))

θjTd(1 − θ̃j )u(x) = 1

(2π)2

∫
ei(x·ξ−y·η)θj (x)

(
1 − θ̃j (y)

)
× d̂(ξ − η, η)ψ(η)χ(ξ − η, η)u(y) dy dη dξ,

we haveQ18

θjTd(1 − θ̃j )u(x) = 1

(2π)2

∫
ei(x−y)·ηeix·ζ θj (x)

(
1 − θ̃j (y)

)
× d̂(ζ, η)ψ(η)χ(ζ, η)u(y) dy dη dζ.

We then obtain the desired result from a non-stationary phase argument. Indeed, using
that on the support of this integral we have |x − y| > c2j . We can integrate by parts
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using the operator

L = (x − y) · ∂η

|x − y|2 .

Since χ(ζ, η) is homogeneous of degree 0 in (ζ, η), we obtain that N such integrations
by parts gain N powers of 2−j and of |η|−1. �

Now, write

θjTdu

= θjTd θ̃ju + θjTd(1 − θ̃j )u

= Tdθj θ̃j + [θj , Td ]̃θj + θjTd(1 − θ̃j )u

= TdTθ̃j
θj + Td (̃θj − Tθ̃j

)θj + [θj , Td ]̃θj + θjTd(1 − θ̃j )u

= Tθ̃j d
θj + (TdTθ̃j

− Tθ̃j d
)θj + Td (̃θj − Tθ̃j

)θj + [θj , Td ]̃θj + θjTd(1 − θ̃j )u.

The last term on the right-hand side is estimated by means of Lemma 7.6. With regards
to the second term on the right-hand side, we use (3.5) to obtain

sup
j∈N

‖Tθ̃j
Td − Tθ̃j d

‖L2→L2 � sup
j∈N

M0
1/2(̃θj )M1/2

1/2 (d) � 1.

The third term is estimated by means of the following inequality (see [22]),

‖̃θj − Tθ̃j
‖L2→H 1 � ‖θj‖W 1,∞(R) � 1.

Therefore, we conclude that

〈(θj )2Tdu, u〉 = 〈Tθ̃j d
θju, θju〉 + 〈Uj, θju〉

for some sequence (Uj ) such that

∞∑
j=0

‖Uj‖2
L2 �

∞∑
j=0

(‖̃θju‖L2‖θju‖L2 + 2−j ‖u‖L2 ‖θju‖L2 ) � ‖u‖2
L2 .

We want to prove that

∞∑
j=0

〈Tθ̃j d
θju, θju〉 ≥ a‖〈x〉−1/2−δu‖2

H 1/4 − A ‖u‖2
L2 .

To do this, it suffices to prove that

〈Tθ̃j d
θju, θju〉 ≥ a2−j (1+2δ)‖θju‖2

H 1/4 − A‖U ′′
j ‖2

L2
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for some U ′′
j such that

∞∑
j=0

‖U ′′
j ‖2

L2 ≤ A ‖u‖2
L2 .

Since (̃θjd)1/2 ∈ �
1/2
1/2(Rd), by applying Theorem 3.7 (with m = m′ = 1/2 and

ρ = 1/2), we have

〈Tθ̃j d
θju, θju〉 = ‖T(̃θj d)1/2θju‖2

L2 + 〈Rjθju, θju〉,

where Rj is uniformly bounded from L2 to L2. Now by assumption on d , we have(̃
θj (x)d(x, ξ )

)1/2 ≥ Kθ̃j (x)2−j (1/2+δ) |ξ |1/4 ,

where we used 0 ≤ θ̃j ≤ 1. Therefore the symbol ej defined by

ej (x, ξ ) := (̃
θj (x)d(x, ξ )

)1/2 + K2−j (1/2+δ)
(
1 − θ̃j (x)

) |ξ |1/4

satisfies the elliptic boundedness inequality

ej (x, ξ ) ≥ K2−j (1/2+δ) |ξ |1/4 .

As a result

2−j (1/2+δ)‖θju‖H 1/4 ≤ K‖Tej
θju‖L2 + K‖θju‖L2 .

The desired result then follows from the fact that (1 − θ̃j )θj = 0 which implies that

T(̃θj d)1/2θj − Tej
θj = 2−j (1/2+δ)T(1−θ̃j (x))|ξ |1/4θj = R′

j θ̃j ,

for some operator R′
j uniformly bounded from L2 to L2.

This completes the proof of Proposition 7.3. �
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Département de Mathématiques, Université Paris-Sud, CNRS, F-91405 Orsay, France;
thomas.alazard@math.u-psud.fr

Burq
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Q1: In the title, and elsewhere in the text, we changed the phrase “water waves equa-
tions” to “water-wave equation.” We also made similar changes, where “water”
and “waves” were used as compound adjectives.

Q2: Per the journal’s style, we have reworded the sentence to avoid having a citation
in the abstract. Is the new wording OK?

Q3: Thank you for providing Mathematics Subject Classification numbers. Could you
please confirm that these numbers are current for the 2010 version?

Q4: Please provide a reference for Figure 1 (The domain) in the main text.
Q5: Is it correct to put the period before “according” here?
Q6: Should the “Ê” in this display be set in math (i.e., italics)?
Q7: Is “the price of error terms” correct here?
Q8: We deleted the extra left parenthesis in $((\la y \raˆ{1-\eps} e(y;\cdot, \cdot))$.

OK?
Q9: Could you please specify what “the sequel” refers to here? If another paper, could

you please provide a reference?
Q10: OK to add “space” here after “Sobolev”
Q11: OK to add fences here, to match the next display?
Q12: If appropriate, could you please provide a section title for Section 5.6?
Q13: In this display, should the comma after \nabla J \varepsilon be deleted?
Q14: Should we delete the extra right parenthesis at the end of ${H {̂s-1}(\xR d̂)\times

Ĥ {s- \tdm}(\xR̂ d))}$?
Q15: OK to change this to “is the mollifier from Section 5.2”?
Q16: Would it be OK to change “contains the idea that one simplify hardly all the

nonlinear analysis by means of paradifferential calculus” to “means that one can
simplify nearly all the nonlinear analysis by paradifferential calculus”? If that
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phrasing

Q17: Should the extra plus sign be deleted in the last line of this display?
Q18: OK to add the \times symbols to the last lines in the displays in the proof of
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