Editing Distance in Trees

Sourav Chakraborty*
Chennait Mathematical Institute, Chennasi, India
sourav@cmi.ac.in

[Abstract: We will define the problem of editing distance in trees. But since it is known
that the problem of editing distance in unordered trees is NP-complete so it is unlikely
to find efficient algorithm for the problem. So we try to solve the problem by putting
various restrictions on the structure of the trees or on the kind of edit operations we are
allowed. We will give efficient polynomial type algorithms for this problem with various
restriction imposed on the trees and we will see some related problems. Finally we will
try to use new techniques to improve the algorithms and to generalize our algorithms
for bigger classes of graphs. |

1 Introduction

The problem of editing distance in strings is a very important problem mainly due to its appli-
cation to various other branches of study. The problem is as follows:-

Let S; and S5 be two strings over the alphabet 3. We are allowed to do three kinds of operations
on the first string. We can change a letter in the string to another letter or we can delete a letter
in the string or we can insert a letter at any point in the string. Using these three operations we
have to change the first string 57 to the second string S2. The problem is, what is the minimum
number of such operations required.

This problem, other than being very interesting by its own self, is very useful in various other
branches of study including molecular biology, chemistry, data handling and computer program-
ming. In fact polynomial time algorithms have been found for this problem. The best known
algorithm uses o(|S1| x |Sz|) time.

But more generalized version of this problem can be more useful and more interesting. In the
next few sections we will introduce the problem of editing distance in trees and try to solve it
efficiently. It is our goal to generalize this problems to planar graphs and then finally to graphs in
general.

*This is the study done by me when I visited Paris as a part of the exchange program between Chennai Mathe-
matical Institute, Chennai, India and Ecole Normale Supérieure, Paris, France.

2 Editing Distance in Trees

Just like the problem of editing distance in strings we are given two labeled trees T; and T» and
three kinds of operations that can be done on the first tree. A labelled tree is a tree in which there
is a label in each node of the tree.

The three operations that can be done on the first tree are as follows:-
(1) Change the label in a node to another label.
(2) Delete a node and all its children becomes the children of the parent of the deleted node.
(3) Imsert a node at any place and a (consecutive) sequence of siblings becomes its children.

Remark 1 The word “consecutive” in the third operation mentioned above only has meaning when
we are working with ordered trees, that is in trees in which the left to right ordering of the nodes
are important.

There is a cost associated to each of the above operations. And the problem is to change the
tree T} to T in minimum total cost possible. The cost is actually a metric. Even in case of editing
distance in strings often different costs are associated to different edit operations. And then the
problem is to change one string to other using total cost. Even this problem in strings has been
solved in polynomial time and best known algorithm for this also uses only o(|N1| x |Na|) time
complexity.

Actually this problem is NP — completel®) when no restriction on the structure of the trees
are imposed. So we will put appropriate restrictions on the structure of the trees so that we get
efficient algorithms to solve the problem.

Remark 2 Due to the fact that the problem of editing distance in unordered labeled trees is NP-
Complete, the problem of editing distance in general graphs or even in general planar graph also
becomes NP-hard.

First we will assume that the trees with which we will work are ordered (definition already
given in the remark above). Then we will put some restriction on the kind of operations we are
allowed. This gives us nice algorithms with better time complexity. Finally we will show that with
the constrained edit operations we can even give efficient algorithms for unordered tree.

But before we do our algorithms it is important to set our notations appropriately.

Notations

First of all we use «y as a cost function. y(a — b) is the cost of the operation of changing the
node a to node b. But if a is A then it means inserting node b and if the b is A then it means
deleting node a.

By abuse of notation we also define the cost of editing distance also as y. Thus (A, B) means
the minimum cost of editing A to B, where A and B are forests.

We will denote trees by 71 and T3 and the ith node by T1[i]. And we denote the set of nodes
in tree 17 by Nj.

The subtree of T} rooted at node ¢ is denoted by T'ree;[i] and the forest got by deleting the
root from the subtree rooted at i is denoted by Forest:[i].

Also for our help we denote y(T'ree;[i], Trees[j]) by Treedist(i, j).

We will be using post-ordering in numbering the nodes of the trees. So for i < j, F[i..j] will
denote the forest induced by the nodes numbered 7 to j. Ti[i] will denote the node with number .
And [(z) will denote the smallest numbered node in the tree T'ree; [i].

So after setting our notations correctly we can proceed to do our algorithms.

2.1 Editing Distance for Ordered Trees

This algorithm is from the paper “Simple fast algorithms for the editing distance between trees and
related problems”!") by Kaizhong Zhang and Dennis Shasha.

In this algorithm we assume that the trees are ordered, that is the left to right ordering of the
nodes are important.

First of all we will show a relation between the edit distance and a mapping. Given trees T
and Ty a mapping is a subset of N1 x Ny (where N; is the nodes of tree T;) with the following
properties:-

(1) The mapping is one-to-one.
(2) It preserves the left to right ordering.
(3) It preserves the ancestor ordering.

Now given a mapping M we can associate a cost to it by:-
V(M) = i pemy(Tili] = Tolj]) + Siemv(T1lt] = A) + Zjenyy(A = T2l])

Now we will see that a mapping is equivalent to an edit distance.

It is easy to see that by the metric property of the cost of edit operations the mapping also
becomes a metric.

First of all a mapping gives rise to a canonical edit distance and the cost of the edit distance is
the same as that of the edit mapping. Again since an individual edit operation is one-one and also
preserves left-right ordering and ancestor ordering so it becomes a mapping. Hence by induction
and using the property that the mapping is a metric we can see that given a edit distance there
is a mapping of cost less than or equal to the edit distance. Thus mapping and edit distance are
equivalent. So from now on we will work with mappings instead of edit distance.

Properties of the mappings on Ordered Trees The idea is to apply dynamical program-
ming to make the programming efficient. So we will try to find some properties so that dynamical
programming can be used.

Lemma 1 Let i1 be an ancestor of i and j1 be an ancestor of j. Then, y(l(i1)-.%,1(j1).-J) is the
minimum of the following:

(1) v(U(é1) -2 = L,1(j1)--4) + v(Ta[i] = A)

(2) y((i1)-4,L(j1)--5 — 1) + y(A = T3[j])

(3) y(U(i1) -1 (z) = 1,1(51)-4(5) = 1) + v(U(E)-i — 1,1(5)..g — 1) + y(T1[i] = T2lj])

Proof: Since the mapping preserves left-right ordering and ancestor ordering so in case of
v(1(i1).-2,1(41)..j) if both T1[i] and T»[j] are in the mapping then the only possibility is that T[]

is mapped to T»[j] that is the third case. Otherwise either T}[i] has to be deleted (the first case)
or T5[j] has to be inserted (the second case). O

A A ANWAN iy

From the above lemma it follows that if [(z) = (i1) and [(j) = I(j1) then
v(1(i1).-%,1(j1)..j) is the minimum of the following:

(1) v(1(21)-i = 1,1(51)-3) + v(Thli] = A)

(2) 7(1(21)--,1(51) -5 — 1) + 7(A = To[j])

(3) (1) = 1,1(j1)--4 = 1) + v(Tali] = Ta[j])
else
v(1(i1)..1,1(41)..j) is the minimum of the following:

) Ai0)-i — 1,1(G1)-4) + 7(T1li] - A)

(2) v(1(i1)-4,1(51)-5 — 1) + v(A = Ta[j])

(3) v(1(31)-.1(3) — 1,1(j1)--L(j) — 1) + Treedist(i,)

So we observe that to compute Treedist(i1,ji1) we need to know the Treedist(i,j) for all 4, j
such that 7 is in the subtree rooted at 7; and j is in the subtree rooted at 7;. In fact we have to find
the Treedist(i,§) in a bottom up fashion. Then computing T'reedis(i, j) for all 4, j takes constant
steps.

Also we can observe that Treedist(i, j) is got as a byproduct of Treedist(i1,71) if [(z) is same
as [(i1) and [(j) is same as [(j1).

So we can use the above lemma to get our algorithm. Let I be the set of nodes in 77 such that
no other node in the tree has the same leftmost child and similarly let J be the set of nodes in T5
such that no other node in the tree has the same leftmost child. Then in the algorithm we have to
compute Treedist(i,j) for all s € I and for all j € J.

Complexity Since we have to store the result of Treedist(i, j), we need o(|N1| x | Na|) space.

Now, for the case of time complexity since we find the Treedist(i,j) of all the i € I and j € J,
and the time complexity will be ¥;crX;c7(Size of tree rooted at i) x (Size of tree rooted at j).

This is actually o(|N1| x |N2| x min[depth(T}),leaves(T1)] x min|depth(T}),leaves(T})]).

So we have a pretty efficient algorithm for edit distance in ordered tree. But now we will try
to see if by putting some other constrained we can remove the constrained of left-right “order” in
the trees.

2.2 Constrained Editing Distance in Ordered Trees

After having got an efficient algorithm by putting the restriction of ordering in the trees we would
like to see if we can get a more efficient algorithm by putting some other restriction other than the
restriction of ordering. But for that we first put another constraint and in the next section we will
see that it would be possible to remove the restriction of ordering by keeping the new constraint.
This time the constraint is not on the structure of the tree but on the mapping.

The constraint we impose is that different subtrees will go to different subtrees and different
subtrees will come from different subtrees. The exact formal definition can be found in the paper
Algorithms for the Constrained Editing Distance between Ordered Labeled Trees and Related
Problems!? by Kaizhong Zhang.

With the above constraint we will find some important properties of mapping. First of all it is
trivially seen that the mapping gives a new definition for distance and it is clear that the distance
is also a metric.

Lemma 2 Let t1[i1],t1[i2), ..., t1[in] be the children of the node Ti[i] and ta[j1], taljel, ..., t2[im] be
the children of the node Ts[j] then y(Tree1[i], Trees[j]) is the minimum of the following three.

(1) (¢, Treealj]) + minicicm[y(Treeni], Treeslsi]) — v(p, Treezlsi])]

(2) V(Treeii],) + mini<s<nly(Treenlis), Treea[s]) — y(Treeilis], ¢)]

(8) y(Foresty[i], Foresta[j]) + v(T1[i] = T2[j])

Proof:- The lemma follows from the definition of constrained mapping. What the constrained
mapping says that either the T'ree;[i] is mapped to T'reey[j] by sending the Ti[i] to T5[j] and the
remaining forest in the first tree to the remaining forest in the second tree (which is the third case)
or T4 [i] will be mapped to a subtree rooted at a children of T5[j] and the remaining of the second
tree is created (which is the first case) or the vise versa (which is the second case). O

Now let SM be a Special Mapping from a forest to another forest in which the ordered of the
tree in the trees is maintained. So we can speak of the minimum cost of such a map.
Based on the same argument of the previous lemma we get the following lemma:-

Lemma 3 «y(Forset,[i], Forests[j]) is the minimum of the following.
(1) 1(¢, Forestylj]) + mimiznly(Foresti[i], Foresta[j)) — v(¢, Foresta[ju)
(2) v(Foresti[i], $) + mini<s<m|[y(Foresti[is], Forests[j]) — y(Foresti[is], p)]
(3) min[y[SM (Forest;[i], Forests[j])]

Using the above two lemmas we have got an algorithm if we can find out an efficient algorithm
to find out the SM. But that turns out to be identical to the editing distance in strings. Actually
we have two sequence of trees and we have to change the first sequence to the other. Here the cost
of changing a label is same as changing tree at that place to the other. So using the two lemmas
and the problem of editing distance in strings we have got a algorithm.

Complexity Since we have to store y(Tree1[i], Trees[j]) for all 4, j and also y(Forest [i], Foresta[j])
for all 4,5 so we need o(|N1| x |N2|) space.

For the time complexity we can see that for computing SM(Forest;[i], Forests[j] we need
o(n;,n;) time where n; is the number of children of T [i].

So the time complexity is Xie n, Xje n, (n; X ;) which by easy computation is seen to be o| N1 | x
| N2|) which is an improvement to our earlier algorithm that we did in the last section.

2.3 Constrained Editing Distance in Unordered Trees

In section we show that using the constrained editing distance it is possible to get efficient algorithms
even without the restriction of ordering on the trees. For this we just need to change our last section
a little bit. This algorithm is from the paper A constrained editing distance between unordered
labeled trees!® by Kaizhong Zhang.

The Lemma?2 of the last section holds good without the restriction of left-right ordering on the
trees. But the Lemma3 uses the fact that we are working with ordered trees and so we used the
Special Mapping among the forests. But when we are working with unordered trees let us give a
matching from tree T'ree;[i] to tree T'rees[j] and let us match T [i] to T5[j]. Then by the definition
of constrained editing distance we have to individual subtrees T'ree;[is] mapped to Treez[j:] for
some ¢ and j but ordered of the subtrees need not be preserved. Let us call this Restricted Special
Mapping RSM.

Lemma 4 +y(Forset[i], Forests[j]) is the minimum of the following.
(1) 7(9, Forestalj]) + minu<ial(Forest i, Forest[j]) — v(¢, Foresta i)
(2) y(Foresti[i],) + mini<s<m[y(Foresti[is], Foresta[j]) — y(Foresti[is], $)]
(8) min[y[RSM (Forest,[i], Forests[j])]

Now we have to give an efficient algorithm to calculate the RSM. It turns out that it is similar
to the Max flow problem.

Let A = {i1,...,im,e} and let B = {j1,..., jn, f}. We have to find a set of lines from A to B
with all 5 and j; using exactly once and e and f acting as empty trees. So we can make a network
using these and cost of a line form i, to j; is y(T'ree1[is], Trees[j:]) and a line from e to j; has cost
v(¢, Treez[jt]). Similarly the cost of a line from i, to f is y(T'ree;[is], $) and the cost of line from
e to fis 0.

So we have got a network and we have to find out the maximum flow using minimum cost. And
for this efficient algorithms are already known. So we have got an efficient algorithm to solve the
RSM.

So we have got an efficient algorithm to solve the constrained editing distance problem for
unordered trees.

This is a very important observation as it says that although the Editing Distance Problem in
trees is NP — Complete for unordered trees, the constrained editing problem for unordered trees
is in P. This gives us some hope of solving the problem for bigger classes of graphs using this
constrained edit operations.

3 Further Studies

Our main aim is to define properly the problem of Editing distance in Graphs. But before that
we would like to try the problem in trees from a different angle and see whether that gives us any
help to generalize the algorithm to graphs or even to planar graphs.

Instead of using dynamical programming we would like to try the problem from a different
angle. So for that a program was written implementing the algorithm for Editing Distance in
Ordered Trees. The program was then run on small inputs. That is the trees with number of
edges 3. The trees were ordered in a canonical way. Then the editing distance between all pairs of
trees with number of edges 3 was computed using the algorithm. It gave a matrix. Similar thing
was done for trees with number of edges 4. The idea was to observe the matrixes and see if the
matrixes can be produced by some other better way, if possible by some algebraic equation.

After some discussion certain progress was made as an algebraic expression was found for the
first row of the matrixes. This was done by using Murphy's Bases of Hecke Algebras.

The study is in progress and new results are expected and we hope to get a better algorithm.
In fact since we will be using the algebraic properties of the trees so it may also be possible to
generalize this idea to larger classes of graphs like the planar graph (but obviously with some kind
of restrictions on the structure of the graphs or on the edit operations).

4 Conclusion

As we see that due to the fact that the problem of editing distance in unordered trees is NP-
complete it is a very challenging and interesting problem to find out polynomial time algorithm of
this problem by imposing various restrictions. The problem on graphs or on planar graphs promises
to be more interesting. The recent idea of using algebra to solve the problem may be useful and
help us to solve it.

Since the actual problem is in NP-complete so it might be good to try out approrimation
algorithm to solve it. But unfortunately it is known that the problem is even Max SNP-hard[,
meaning no good approximation algorithm can be expected of it. But still by imposing certain
restrictions some approximation algorithm has been made even for the problem of approzimate
graph matching which is a problem very closely related to the problem of editing distance in
graphsl®l.

So this problem is a highly open problem with lots of scope of work on this problem.

5 Acknowledgment

I will like to thank Dr Anne Micheli for introducing me to this subject and helping me get a clear
idea of the subject by listening to my lectures carefully. I would also like to thank Dr Dominique
Rossin, Dr Dominique Poulalhon and Dr Daniel Krob and Dr Anne Micheli for the discussions we
had on this problem which helped me understand this subject in a much better way. 1 will like to
thank Stephane Fischler and other people of Ecole Normale Supérieure for helping me a lot during
my stay in Paris. Finally I thank my institute Chennai Mathematical Institute, Chennai, India
without whom I would not have got the opportunity to come to Paris and do this study.

References

[1] K.Zhang and D.Shasha, Simple fast algorithm for the editing distance between trees
and related problems, published in STAM J.Computing 18(6), 1245-1262(1989).

[2] K.Zhang, Algorithms for the Constrained Editing Distance Between Ordered Labeled
Trees and Related Problems, published in T'echnical Report No.361, Department of Computer

Science, University of Western Ontario, 1993.

[3] K.Zhang, A constrained editing distance between unordered labeled trees, published in
Algorithmica (1996) 15: 205-222..

[4] K.Zhang and Tao Jiang, Some Mazx SNP — hard results concerning unordered labeled
trees, published in Inform.Process.Lett., 49(1994), 249-254.

[5] K.Zhang, R.Statman and D.Shasha, On the editing distance between unorderd labeled
trees, published in I'nform.Process.Lett., 42(1992), 133-139.

[6] K. Zhang, Jason T.L.Wang and Gung-Wei Chirn, Algorithms for Approximate Graph
Matching published in Information Sciences 82, 45-74(1995).

