
Chapter 1 : Numerical Series.

1 Definition and first properties
Definition 1.1. Given a sequence of real or complex numbers a = (an)n≥1, we
define the sequence (sn(a)) of partial sums by

sn(a) =

n∑
k=1

ak.

The series associated to a is denoted by the symbol
∞∑
n=1

an,
∑
n≥1

an or just
∑

an,

and is said convergent if the sequence of partial sums converges to a limit S called
the sum of the series. In this case, it will be usefull to note (rn(a)) the sequence of
the remainders associated to the convergent series

∑
an, defined by

rn(a) = S − sn(a) =

∞∑
k=n+1

ak.

The series
∑
an is said divergent if the sequence (sn(a)) diverges.

Examples 1.2.
• Telescoping series : a sequence (an) and the telescoping series

∑
(an+1−an)

have the same behaviour.
• Geometric series : for a fixed real number x 6= ±1, we have

n∑
k=0

xk =
1− xn+1

1− x
⇒
(∑

xn converges ⇔ |x| < 1
)
.

Theorem 1.3. [Cauchy criterion] The series
∑
an converges if and only if

∀ε > 0 , ∃N ∈ N , ∀p ≥ q ≥ N ,

∣∣∣∣∣∣
p∑
k=q

ak

∣∣∣∣∣∣ ≤ ε.
Proof. Cauchy criterion on (sn(a)).

Corollary 1.4. A necessary condition for
∑
an to converge is the convergence of

an to 0.

Proof. Consider p = q in the previous proof.
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Example 1.5.
∑

(−1)n diverges.

Remark 1.6. The condition is not sufficient : we’ll see later that
∑

1
n diverges.

Notations 1.7. I will often note (∀n� 0) instead of (∃N ∈ N such that ∀n ≥ N).

Theorem 1.8. Suppose ∀n� 0, an ≥ 0. We have∑
an converges ⇔ (sn(a)) bounded.

Proof. ∃N such that (sn(a))n≥N is an increasing sequence.

2 Comparison tests
Notations 2.1. [Landau notations] Let (an) and (bn) be two sequences.

(Big O) We note an = O(bn) if ∃K ∈ R, ∀n� 0, |an| ≤ K|bn|.
(little o) We note an = o(bn) if ∀ε > 0, ∀n� 0, |an| ≤ ε|bn|.
(equivalence of sequences) We note an ∼ bn if an − bn = o(an).

Exercise 2.2. Check that an − bn = o(an)⇔ an − bn = o(bn).

Remark 2.3. – Suppose ∀n� 0, bn > 0. Then we have
an = O(bn)⇔ an

bn
bounded, an = o(bn)⇔ an

bn
→ 0, an ∼ bn ⇔

an
bn
→ 1.

– Be careful with the implication

(an ∼ αn, bn ∼ βn)⇒ an + bn ∼ αn + βn ,

it’s false if ∀n � 0, αn + βn = 0 : it would mean that ∀n � 0, an +
bn = 0, which is obviously not necessarily true. Consider an = 1/(n + 1),
bn = −1/(n + 2) and αn = −βn = 1/n : in fact we have an + bn =
1/((n + 1)(n + 2)) ∼ 1/n2. In such cases, it’s more safe to use equalities
instead of equivalences, for example with the o and O notations.

Example 2.4. If an → 0 we have |an| < 1
2 for n big enough, and we can write

(integration by parts)∫ 1+an

1

1 + an − t
t2

dt = an −
∫ 1+an

1

dt

t
= an − ln(1 + an),

thus

| ln(1 + an)− an| ≤
∫ 1+an

1

|1 + an − t|
t2

dt

≤ |an|
∫ 1+an

1

dt

t2
= |an|

|an|
1 + an

≤ 2|an|2,

hence
ln(1 + an) = an +O(a2n)

Theorem 2.5. Let (an) and (bn) be two sequences with ∀n� 0, bn ≥ 0.

1. If an = O(bn),
(i)
∑
bn converges ⇒

∑
an converges and rn(a) = O(rn(b)),

(ii)
∑
bn diverges ⇒ sn(a) = O(sn(b)).

2. Same statements with o.

3. If an ∼ bn,
∑
an and

∑
bn have the same behaviour and
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(i) rn(a) ∼ rn(b) in case of convergence,
(ii) sn(a) ∼ sn(b) in case of divergence.

Proof. (Partial) First, 3 directly follows from 1 and 2. Let’s prove 1(i) :

(∃K, ∀n� 0, |an| ≤ Kbn)⇒

(
∃K, ∀n� 0,∀p,

∣∣∣∣∣
n+p∑
k=n+1

ak

∣∣∣∣∣ ≤ K
n+p∑
k=n+1

bk

)
.

By Cauchy criterion,
∑
an converges and we can make p→∞ to obtain the result.

Let’s suppose an = o(bn) and
∑
bn divergent to prove 2(ii). We fix ε > 0 and

N such that for all n ≥ N , |an| ≤ εbn. Then

|sn(a)| ≤ |
N−1∑
k=1

ak|︸ ︷︷ ︸
constant K≥0

+ε

n∑
k=N

bk ≤

(
n∑
k=0

bk

)(
ε+

K∑n
k=0 bk

)
.

But
∑
bn diverges and bn ≥ 0 for n big enough, so

∑n
k=0 bk →∞ and there exists

N ′ ≥ N such that |sn(a)| ≤ 2ε|sn(b)|, which gives the expected result.

Remark 2.6. We can use the contraposition of these statements, for example∑
an diverges and an = O(bn) ⇒

∑
bn diverges.

Examples 2.7.

• an =
√

1 + n4 −
√
n4 − 1 =

2√
1 + n4 +

√
n4 − 1

∼ 1

n2
and we’ll see in the

next section that
∑
n−α converges iff α > 1, so

∑
an converges.

• an =

√
n+ 1−

√
n

n
≤

sup[n,n+1] |f ′|
n

where f(x) =
√
x, hence 0 ≤ an ≤

1

2n
√
n
, so

∑
an converges because an = O(n−3/2). Another way to treat

this kind of sequence where it appears something like f(a) − f(b), with f
differentiable, is to write (here f =

√
?)

an =
1

n
√
n

√
1 + (1/n)−

√
n

1/n
∼ 1

n
√
n
f ′(1) ∼ 1

2n
√
n

and we have a more precise result.

• By 2.4, we have
∑(

1

n
− ln

(
1 +

1

n

))
convergent, and we can note γ its

sum (the Euler-Mascheroni constant). We can rewrite it as

γ = lim
n∞

n∑
k=1

(
1

k
− (ln(k + 1)− ln(k)

)
= lim

n∞

{(
n∑
k=1

1

k

)
− ln(n+ 1)

}
and finally (cf. ln(n+ 1)− lnn = o(1))

n∑
k=1

1

k
= lnn+ γ + o(1)

Note that it implies
∑n
k=1

1
k ∼ lnn, which is a direct consequence of ln(1 +

(1/n)) ∼ 1/n and 2.5.3(ii).
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3 Integral test
Theorem 3.1. Let f : [a,+∞[→ R+ be a continuous decreasing function. Then
for all N ≥ a we have

∃ limx→+∞

∫ x

a

f(t)dt ⇔
∑
n≥N

f(n) converges.

Proof. We write
∀n ≥ N, f(n+ 1) ≤

∫ n+1

n

f(t)dt ≤ f(n). (1)

Hence if ∃ limx→+∞

∫ x

a

f(t)dt = S,

n∑
k=N

f(k) ≤ f(N) +

∫ n

N

f(t)dt ≤ S

and f(k) ≥ 0 so we can use 1.8 to obtain the convergence of
∑
f(n). Conversely, if∑

n≥N f(n) converges to S, because F : x 7→
∫ x
a
f(t)dt is an increasing function,

we just have to prove that F is bounded : but for all x ≥ a, there exists N ′ ≥
max{x,N + 1} and, using (1),

F (x) ≤ F (N)+

∫ x

N

f(t)dt ≤ F (N)+

∫ N ′

N

f(t)dt ≤ F (N)+

N ′−1∑
k=N

f(k) ≤ F (N)+S.

which gives the result.

Examples 3.2. 1. For α > 0, fα : x 7→ x−α is continuous and decreasing on

[1,+∞[ and Fα(x) =

∫ x

1

t−αdt =


x1−α − 1

1− α
if α 6= 1

lnx if α = 1

, which implies

that
∑
n−α converges iff α > 1 (cf. for α ≤ 0, an 9 0, which is a necessary

condition). Let’s use 2.5 to find an equivalent of rn,α =
∑∞
k=n+1 n

−α for
α > 1 : first we have to find an interesting equivalent for n−α, typically
something telescoping to obtain a nice remainder. We rewrite the formula (1)
for f = fα, which gives :

1

(n+ 1)α
≤ 1

α− 1

(
1

nα−1
− 1

(n+ 1)α−1

)
≤ 1

nα

Multiplying this line by nα, we remark

1

α− 1

(
1

nα−1
− 1

(n+ 1)α−1

)
∼ 1

nα
,

and using
∞∑

k=n+1

(
1

kα−1
− 1

(k + 1)α−1

)
=

1

(n+ 1)α−1
∼ 1

nα−1
,

we obtain (cf. 2.5.3(i))

rn,α ∼
1

α− 1

1

nα−1
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2. [Bertrand series] Let an = n−α ln−β n.
– if α < 1, ∃α′ ∈]α, 1[, and n−α

′
= o(an). But

∑
n−α

′
diverges so by 2.5,∑

an diverges.
– if α > 1, ∃α′ ∈]1, α[, and an = o(n−α

′
). Hence, this time,

∑
an converges.

– if α = 1, β ≤ 0, n−1 = O(an), so
∑
an diverges.

– if α = 1, β > 0, f

∣∣∣∣∣∣
[2,+∞[ → R

x 7→ 1

x lnβ x

is continuous, decreasing, and

∫ x

2

f(t)dt =
u=ln t

∫ ln x

ln 2

du

uβ
= Fβ(lnx)− Fβ(ln 2),

which has a finite limite iff β > 1 (cf. first example).

4 Ratio tests
Proposition 4.1. Let (an) be a sequence such that ∀n� 0, |an| > 0.

(i) If ∃α < 1 such that ∀n� 0, |an+1|
|an| < α, then

∑
an converges.

(ii) If ∀n� 0, |an+1|
|an| ≥ 1, then

∑
an diverges.

Proof. For (i), ∃N such that ∀n ≥ N , |an+1| ≤ α′|an| with α′ ∈]α, 1[. Thus
∀n ≥ N we have |an| ≤ α′n−N |aN | which implies an = O(α′n) and so the result.
For (ii), an 9 0.

Corollary 4.2. [De D’Alembert rule] With the same hypothesis,
(i) If ∃lim

n∞
|an+1|
|an| < 1, then

∑
an converges.

(ii) If ∃lim
n∞
|an+1|
|an| > 1, then

∑
an diverges.

Remark 4.3. This test is very exigent ! In most cases it will fail to solve your problem.
For example you can’t apply it to the Riemann series

∑
n−α.

Theorem 4.4. [Raabe-Duhamel test] We suppose ∀n� 0, an > 0.

1. If

∃α ∈ R,
an+1

an
= 1− α

n
+ o

(
1

n

)
,

then
(i) α > 1 ⇒

∑
an converges ;

(ii) α < 1 ⇒
∑
an diverges.

2. Same conclusions if

∃α ∈ R,
an+1

an
= 1− 1

n
− α

n lnn
+ o

(
1

n lnn

)
.

Proof. For 1. : if α > 1 (resp. < 1), consider α′ ∈]1, α[ (resp. ]α, 1[). To exploit
the hypothesis, it’s relevant to consider the sequence bn = ln(nα

′
an). One way to

study such a sequence, considering the ln and the ratio hypothesis, is to consider
the associated telescoping series un = bn+1 − bn :
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un = α′ ln

(
1 +

1

n

)
+ ln

an+1

an

= α′ ln

(
1 +

1

n

)
+ ln

(
1− α

n
+ o

(
1

n

))
=
2.4

α′

n
+O

(
1

n2

)
− α

n
+ o

(
1

n

)
+O

({
−α
n

+ o

(
1

n

)}2
)

but (cf. definition of the Landau notations), o(1/n)2 = o(1/n2), (1/n)o(1/n) =
o(1/n2) and of course o(1/n2) = O(1/n2), so (we also use the Minkowski inequa-
lity) {

−α
n

+ o

(
1

n

)}2

= O

(
1

n2

)
.

As we also have ∀an, O(O(an)) = O(an) and O(an/n) = o(an) (cf. 1/n→ 0), we
finally obtain

un =
α′ − α
n

+ o

(
1

n

)
∼ α′ − α

n
.

Thus for (i), α′ − α < 0 implies
∑
un → −∞, which means bn → −∞, which

means nα
′
an → 0, which means an = o(n−α

′
) which gives the result (α′ > 1). For

(ii), α′ −α > 0 gives us nα
′
an → +∞, so n−α = O(an), which leads to the result

(α′ < 1).
For 2. : same proof, using this time bn = ln(n lnα

′
(n)an).

Exercise 4.5. Considering an =

(
(2n)!

22n(n!)2

)2

, prove that the first Raabe test fails

(α = 1 in the hyporhesis of 1.), but not the second (α = 0 in the hypothesis of 2.).

5 Further results
Theorem 5.1. [Leibniz criterion] Suppose an = (−1)nbn with (bn)n≥1 a decreasing
sequence which tends to zero. Then

1.
∑
n≥1 an converges ;

2. if we note S its sum, S ≤ 0 ;

3. ∀n, |rn(a)| ≤ |an+1| = bn+1.

Proof. (s2n(a)) is decreasing, (s2n+1(a)) is increasing and s2n+1(a)− s2n(a)→ 0.

Hence there exists S such that s2n+1(a)
≤→ S

≤← s2n(a). As a consequence of these
inequalities, we have |rn(a)| = |S−sn(a)| ≤ |sn(a)−sn+1(a)| = bn+1. For 2., just
use S ≤ s2(a).

Example 5.2.
∑ (−1)n

n
converges. Lets’s calculate its limit : we write

n∑
k=1

(−1)k

k
=

n−1∑
k=0

∫ 1

0

(−t)kdt =

∫ 1

0

(
n−1∑
k=0

(−t)k
)
dt =

∫ 1

0

1− (−t)n

1 + t
dt = ln 2−αn

with

|αn| = |
∫ 1

0

(−t)n

1 + t
dt| ≤

∫ 1

0

tndt =
1

n+ 1
→ 0.
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Finally ∑
n≥1

(−1)n

n
= ln 2

Exercise 5.3. Prove that we can apply the Leibniz criterion to
∑
rn(a) with an =

(−1)n

lnn
.

Definition 5.4. Let (an)n≥0 and (bn)n≥0 two sequences. The Cauchy product of∑
an and

∑
bn, noted (

∑
an) ? (

∑
bn), is the series

∑
cn, with

cn =

n∑
k=0

akbn−k.

Theorem 5.5. Suppose
∑
|an| and

∑
bn converge and note A,B the sums of∑

an,
∑
bn. Then

∑
cn converge and its sum is AB.

Proof. We write

sn(c) =

n∑
k=0

k∑
i=0

aibk−i =

n∑
i=0

n∑
k=i

aibk−i

=
h=k−i

n∑
i=0

ai

n−i∑
h=0

bh =

n∑
i=0

aisn−i(b)

=

n∑
i=0

ai(B − rn−i(b)) = sn(a)B︸ ︷︷ ︸
→AB

−αn

.

Let’s prove αn =

n∑
i=0

airn−i(b)→ 0. For ε > 0, ∃N sucht that ∀n ≥ N , |rn(b)| ≤

0. We note A the sum of
∑
|an|. Then

|αn| ≤ |
N∑
i=0

airn− i︸ ︷︷ ︸
≥n−N

(b)|+ Aε.

But an → 0, so ∃N ′ sucht that ∀n ≥ N ′, |an| ≤ ε. Hence

∀n ≥ N +N ′, n−N ≥ N ′ ⇒ |αn| ≤ (K + A)ε

with K =

N∑
i=0

|ri(b)|.

Proposition 5.6. [Abel’s summation by parts formula] Given to sequences (an)
and (bn), we have the following formulas ∀p, q :

(i)
q∑

n=p+1

an(bn − bn−1) =

q∑
n=p+1

(an − an+1)bn + aq+1bq − ap+1bp

(ii)
q∑

n=p+1

anbn =

q∑
n=p+1

(an − an+1)sn(b) + aq+1sq(b)− ap+1sp(b)

Proof. First, (ii) is just (i) applied to sn(b) instead of bn. For (i) :

7



q∑
n=p+1

an(bn − bn−1) =

q∑
n=p+1

anbn −
q∑

n=p+1

anbn−1

=

q∑
n=p+1

anbn −
q−1∑
n=p

an+1bn

=

q∑
n=p+1

anbn −
q∑

n=p+1

an+1bn − ap+1bp + aq+1bq

=

q∑
n=p+1

(an − an+1)bn + aq+1bq − ap+1bp

.

Example 5.7. Let un =
cos(nθ)

nα
.

• If α > 1, un = O(n−α)⇒
∑
un converges.

• If α ≤ 0, un 9 0⇒
∑
un diverges.

• If α ∈]0, 1], we already know that
∑
un diverges if θ ≡ 0 (mod 2π), so we

may assume eiθ 6= 1. In order to apply Abel’s formula (ii), we note an = n−α

and bn = cos(nθ) and we have (cf. s0(b) = cos 0 = 1)

q∑
n=1

un =

q∑
n=1

(an − an+1)sn(b)︸ ︷︷ ︸
vn

+aq+1sq(b)− 1.

But

sn(b) = <

(
n∑
k=0

eikθ

)
=

eiθ 6=1
<
(

1− ei(n+1)θ

1− eiθ

)

= <
(
ei(n+1)θ/22i sin((n+ 1)θ/2)

eiθ/22i sin(θ/2)

)
=

sin((n+ 1)θ/2)

sin(θ/2)
<(einθ/2)

=
cos(nθ/2) sin((n+ 1)θ/2)

sin(θ/2)

⇒ |sn(b)| ≤ K =
1

sin(θ/2)

⇒ |vn| ≤ K
(

1

nα
− 1

(n+ 1)α

)
= K

1

nα

(
1−

(
1 +

1

n

)−α)
,

and (with fα : x 7→ x−α) :

1−
(

1 +
1

n

)−α
1

n

→ f ′α(1) = −α ⇒ 1−
(

1 +
1

n

)−α
= O

(
1

n

)

Finally vn = O(n−(α+1)) and
∑
vn converges (cf. α+1 > 1). But aq+1 → 0,

so the Abel’s formula proves the convergence of
∑
un.
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We finish with the Fubini’s theorem for double series :

Theorem 5.8. Suppose (am,n) ∈ CN×N is such that for all m,
∑
n |am,n| converges

to a limit noted σm and that
∑
σm converges to a limit noted Σ. Then

(i) for all n,
∑
m |am,n| converges to a limit noted σ′n,

(ii)
∑
σ′n converges,

(iii)
∑
m

∑
n am,n =

∑
n

∑
m an,m (noted

∑
m,n am,n).

Proof. (i) : For n0 ∈ N, we have for all M ∈ N∑M
m=0 |an0,m| ≤

∑M
m=0 σm ≤ Σ,

so we have the result.
(ii) : For all N ∈ N∑N

n=0 σ
′
n =

∑∞
m=0

∑N
n=0 |am,n| = limM→∞

∑M
m=0

∑N
n=0 |am,n|

and
∑N
n=0 |am,n| ≤ σm, so

∑M
m=0

∑N
n=0 |am,n| ≤ Σ, and thus

∑N
n=0 σ

′
n ≤ Σ

which is enough to conclude.
(iii) : First, both members of the equality exist : we note Sm =

∑
n am,n and

S′n =
∑
m am,n so that |Sm| ≤ σm and |S′n| ≤ σ′n imply the convergence of

∑
Sm

and
∑
S′n.

Let ε > 0. We have for all (M,N) ∈ N× N∑M
m=0 Sm =

∑M
m=0

∑
n≥0 am,n =

∑
n≥0

∑M
m=0 am,n =∑N

n=0

∑M
m=0 am,n +

∑
n≥N+1

∑M
m=0 am,n

where, because
∑
σ′n converges, there exists Nε ∈ N such that for all N ≥ Nε

|
∑
n≥N+1

∑J
m=0 am,n| ≤

∑
n≥N+1

∑M
m=0 |am,n| ≤

∑
n≥N+1 σ

′
n ≤ ε,

and where, because
∑
σm converges, there existsMε ∈ N such that for allM ≥Mε

|
∑N
n=0 Sn −

∑N
n=0

∑M
m=0 am,n| ≤

∑N
n=0

∑
m≥M+1 |am,n| =∑

m≥M+1

∑N
n=0 |am,n| ≤

∑
m≥M+1 σm ≤ ε.

Hence for all N ≥ Nε and M ≥Mε we have

|
∑N
n=0 Sn −

∑M
m=0 Sm| ≤ 2ε.

which leads to the result.

Remark 5.9.
• In fact (iii) is a particular case of the double-limit theorem you’ll see in ch2.
The trick is to consider E = {xi}i∈N∪{∞} ⊂ R with xi

n∞−−→ x∞ and to
define fm ∈ CE by fm(xi) =

∑i
n=0 am,n for all i ∈ N ∪ {∞}. We have

– ∀m, fm(xi)
xi→x∞−−−−−→ fm(x∞) =

∑
n am,n ;

– normal convergence : ∀x ∈ E, |fm(x)| ≤ σm.
Hence, setting g =

∑
m≥0 fm ∈ CE, ∃ limxi→x∞ g(xi) = g(x∞), which

exactly says that
∑
n S
′
n converges, and that the limit is

∑
m Sm.

• This theorem can be very usefull for the theory of power series - see ch3.
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