Chapter 1 : Numerical Series.

1 Definition and first properties

Definition 1.1. Given a sequence of real or complex numbers a = (ay)n>1, we
define the sequence (s, (a)) of partial sums by

n
a) = Z ag.
k=1

The series associated to a is denoted by the symbol

Zan, Zan or just Zan,

n>1

and is said convergent if the sequence of partial sums converges to a limit S called
the sum of the series. In this case, it will be usefull to note (r,(a)) the sequence of
the remainders associated to the convergent series > a,,, defined by

rn(a) =S — sp(a Z ay.

k=n-+1
The series Y a,, is said divergent if the sequence (s, (a)) diverges.

Examples 1.2.
o Telescoping series : a sequence (a,,) and the telescoping series Y (an4+1 —an)
have the same behaviour.

e Geometric series for a fixed real number x # +1, we have
1— xrb-{-l

Z:c o (Z x™ converges & |z| < 1).

Theorem 1.3. [Cauchy criterion] The series 3 a,, converges if and only if

p
Ve>0,3dNeN,Vp>qg>N, Zak <e.

Proof. Cauchy criterion on (sy,(a)). O
Corollary 1.4. A necessary condition for Y a,, to converge is the convergence of
an, to 0.

Proof. Consider p = q in the previous proof. O



Example 1.5. > (—1)" diverges.

Remark 1.6. The condition is not sufficient : we'll see later that 3 1 diverges.
Notations 1.7. | will often note (Vn > 0) instead of (3N € N such that ¥n > N).

Theorem 1.8. Suppose Vn > 0, a, > 0. We have
> ay,, converges < (sy(a)) bounded.

Proof. 3N such that (s,(a)),>n is an increasing sequence. O

2 Comparison tests

Notations 2.1. [Landau notations] Let (a,) and (by,) be two sequences.

(Big O) We note a, = O(by,) if IK € R, Yn > 0, |a,| < K|by,|.

(little o) We note a,, = o(b,,) if Ve > 0, Vn > 0, \an\ < ¢€|bp|-

(equivalence of sequences) We note a,, ~ by, if a, — b, = o(ay).
Exercise 2.2. Check that a,, — b,, = o(a,) < a, — b, = o(by,).
Remark 2.3. — Suppose Vn > 0, b, > 0. Then we have

an:O(bn)@)Z—" bounded, a,, = o(b, )@b——ﬂ) ap, ~ by @%—)1

— Be careful with the implication ! !

(anNan; bnNﬁn):an"f'bnNan'i_ﬁna

it's false if Vn > 0, o, + 8, = 0 : it would mean that Vn > 0, a, +
b, = 0, which is obviously not necessarily true. Consider a, = 1/(n + 1),
by = —1/(n+2) and o, = =B, = 1/n : in fact we have a, + b, =
1/((n +1)(n +2)) ~ 1/n2. In such cases, it's more safe to use equalities
instead of equivalences, for example with the o and O notations.

Example 2.4. If a, — 0 we have |a,| < % for n big enough, and we can write
(integration by parts)

14a, . 1+an
/ Mdt:an—/ @:an—ln(l—i—an),
. 1

t2 t
thus
[In(1+ ap) —a,| < o H—’—jfig_t'dt
ol [ « o< ala,
hence

‘ln(l +a,) = a, + O(a) \

Theorem 2.5. Let (a,,) and (b,,) be two sequences with ¥Yn >> 0, b, > 0.
1. Ifa, = O(by,),
(i) > by, converges = > a,, converges and ry,(a) = O(ry (b)),
(i) 3" by, diverges = s,(a) = O(s,(b)).
2. Same statements with o.
3. Ifa, ~ by, Y. a, and > b, have the same behaviour and



(i) rn(a) ~ () in case of convergence,
(i) sn(a) ~ s,(b) in case of divergence.

Proof. (Partial) First, 3 directly follows from 1 and 2. Let's prove 1(i) :

n+p n+p
(3K, Yn >0, |an| < Kby) = <3K, V> 0,9, | Y ap| <K Y bk> )
k=n+1 k=n-+1

By Cauchy criterion, > a,, converges and we can make p — oo to obtain the result.
Let's suppose a,, = o(b,) and 3 b, divergent to prove 2(ii). We fix ¢ > 0 and
N such that for all n > N, |a,| < €b,,. Then

N—-1 n n
K
|5n(a)|§ | E ak| +e€ E b, < (g bk> (€+w)
k=1 k=N k=0 -

constant K >0

But > b, diverges and b, > 0 for n big enough, so >} _, by — 00 and there exists
N’ > N such that |s,(a)| < 2€|s,,(b)|, which gives the expected result. O

Remark 2.6. We can use the contraposition of these statements, for example
> ay, diverges and a, = O(b,) = >_ b, diverges.
Examples 2.7.
2
e a,=vV1+nt—vnt—1=
VIitni+ynt—1

next section that Y n~% converges iff « > 1, so Y a,, converges.
_ VA T—Vn_ SWp L]
o n

n

1 , .
~ = and we'll see in the
n

where f(z) = /z, hence 0 < a,, <

1
2ny/n
this kind of sequence where it appears something like f(a) — f(b), with f
differentiable, is to write (here f = /%)

1L VI —va 1 (1)~ !
ny/n 1/n ny/n 2n+/n

and we have a more precise result.

, s0 3 a, converges because a, = O(n~3/2). Another way to treat

ap =

1 1
e By 2.4, we have ) < —In (1 + )) convergent, and we can note v its
n n
sum (the Euler-Mascheroni constant). We can rewrite it as

v= l%gz (llg —(In(k+1) — 1n(k)> = 1,12}{ <Z Ilg) —In(n + 1)}
k=1

k=1

and finally (cf. In(n + 1) — Inn = o(1))

n

1
ZE =Inn+~vy+o(1)
k=1

Note that it implies >’ _; + ~ Inn, which is a direct consequence of In(1 +
(1/n)) ~ 1/n and 2.5.3(ii).



3 Integral test

Theorem 3.1. Let f : [a,+oo[— RT be a continuous decreasing function. Then
for all N > a we have

Flimg 100 / fdt & Z f(n) converges.

n>N

Proof. We write ntl

Vnz N fnr )< [ < g (1)

n

Hence if Hlimgg_,Jroo/ fdt =S,

f) < f)+ [ fyde< s
> A

and f(k) > 0 so we can use 1.8 to obtain the convergence of > f(n). Conversely, if
> .o f(n) converges to S, because F : x + [ f(t)dt is an increasing function,
we just have to prove that F is bounded : but for all x > a, there exists N’ >
max{xz, N + 1} and, using (1),

N’'—1

F(z) < F(N)+ /N F()dt < F(N)+ /N F(t)dt < F(N)+ S f(k) < F(N)+S.
k=N

which gives the result. O
Examples 3.2. 1. Fora >0, fo : * — ™% is continuous and decreasing on
x E ifa#1
[1,+oo[ and F,(x) = / t~%dt = 1-a , which implies
' Inzx ifa=1

that >~ n~ converges iff « > 1 (cf. for &« <0, a,, - 0, which is a necessary
condition). Let's use 2.5 to find an equivalent of 7, o = D henpy* for
a > 1 : first we have to find an interesting equivalent for n=¢, typically
something telescoping to obtain a nice remainder. We rewrite the formula (1)
for f = f,, which gives :

1 < 1 1 1 < 1
(n+1)* ~a—-1\n*t (n+1)*=1) = no
Multiplying this line by n®, we remark

1 1 1 1
a—1\n>1 (n41)>1 ne’

i I 1 - 1 1
fa—1 (k+1)a—1 - (n_|_1)a—1 na—1’

k=n-+1

we obtain (cf. 2.5.3(i))

and using




2. [Bertrand series] Let a,, =n~*In"" n.
—ifa <1, 3 €a,1], and n=* = o(a,). But S n~*" diverges so by 2.5,
> a,, diverges.
- ifa>1,3d €]l,a[, and a, = o(n_a/). Hence, this time, > a,, converges.
—-ifa=1,8<0,n"1t=0(ay), so Y a, diverges.
2,400 — R

—ifa=1,>0,f R 1 is continuous, decreasing, and

zln’ 2

x Inx "
/ foyde = / d— = Fg(Inz) — F3(In2),
2 w 1

=Int n2 uﬂ

which has a finite limite iff 5 > 1 (cf. first example).

4 Ratio tests

Proposition 4.1. Let (a,,) be a sequence such that ¥n >> 0, |a,| > 0.
(i) If 3a < 1 such that ¥n > 0, % < «, then Y a, converges.

(ii) 1f¥n >0, % > 1, then " a,, diverges.

Proof. For (i), 3N such that Vn > N, |ant1] < &/|a,| with o €]a, 1[. Thus
Vn > N we have |a,| < o/* N|ay| which implies a,, = O(a'") and so the result.
For (ii), an — 0. O

Corollary 4.2. [De D’Alembert rule] With the same hypothesis,
(i) If ﬂlim% < 1, then " a, converges.

(i) If Hlim% > 1, then > a,, diverges.

Remark 4.3. This test is very exigent ! In most cases it will fail to solve your problem.

For example you can't apply it to the Riemann series Y n~°.

Theorem 4.4. [Raabe-Duhamel test] We suppose Vn >> 0, a,, > 0.
1.If

1
Jo € R, an+1—1—a+o(>,
n

an n

then
(i) «>1 = > a, converges;
(i) a <1 = > a, diverges.

2. Same conclusions if

n 1 1
Ja € R, aH:l—f a +0( )
n

an nlnn nlnn

Proof. For 1. : if @ > 1 (resp. < 1), consider o/ €]1, ] (resp. ]e, 1[). To exploit
the hypothesis, it's relevant to consider the sequence b, = In(n® a,,). One way to
study such a sequence, considering the In and the ratio hypothesis, is to consider
the associated telescoping series u,, = by y1 — by, :



Ap+1

1
U, = o'In{l+—)+In
n an
1 1
= oh(l1+-— +1n<1a+0()>
n n n
' 1 1 1\)?
24 n n n n n n

but (cf. definition of the Landau notations), o(1/n)? = o(1/n?), (1/n)o(1/n) =
o(1/n?) and of course o(1/n?) = O(1/n?), so (we also use the Minkowski inequa-

(o(t)f o ()

As we also have Va,,, O(O(a,)) = O(ay,) and O(a,/n) = o(ay) (cf. 1/n — 0), we

finally obtain
o —« (1) o —a
un = +0 —_ ~ .

n n

Thus for (i), o/ —a < 0 implies > u, — —oo, which means b, — —oo, which
means n® a,, — 0, which means a,, = o(n~") which gives the result (o/ > 1). For
(i), o' — a > 0 gives us n® a,, — 400, so n~* = O(ay,), which leads to the result
(o <1).

For 2. : same proof, using this time b,, = In(n In® (n)ay). O

o)\’ _
22(71(73)2) , prove that the first Raabe test fails

(o = 1 in the hyporhesis of 1.), but not the second (e = 0 in the hypothesis of 2.).

Exercise 4.5. Considering a,, = (

5 Further results
Theorem 5.1. [Leibniz criterion] Suppose a,, = (—1)"b,, with (b,),>1 a decreasing
sequence which tends to zero. Then
1. ).~ an converges;
2. if W; note S its sum, S <0;
3. Vn,

(@) < lant1] = bpy1.

Proof. (s2,(a)) is decreasing, (s2n+1(a)) is increasing and sgp41(a) — s2pn(a) — 0.

Hence there exists S such that so,11(a) 55& Son(a). As a consequence of these
inequalities, we have |r,(a)| = |S —sn(a)| < |sn(a) — spt1(a)| = bpi1. For 2., just

use S < s3(a). O
1)
Example 5.2. Z ( n) converges. Lets's calculate its limit : we write
n (_1)k n—1 1 . 1 /n—1 . 1 1— (—t)"
= —t)"dt = —t dt = ————dt =In2—qa,
S =Y [eta [ (et )a= [ e = we
k=1 k=0 k=0
with

1 1
\an|=|/ ( )dug/ rdi= o
o L+t 0 n+1



Finally

Exercise 5.3. Prove that we can apply the Leibniz criterion to > r,(a) with a,, =
(=n"

Inn

Definition 5.4. Let (a,),>0 and (b,)n>0 two sequences. The Cauchy product of

> an and > by, noted (3 an) * (O] by), is the series > ¢, with
Cn = Zakbn—k-
k=0

Theorem 5.5. Suppose > |a,| and > b, converge and note A, B the sums of
> an,> by. Then > ¢, converge and its sum is AB.

Proof. We write

n k n n
Z Z aiby_; = Z Z a;bg_;

sn(c) =
k=0 i=0 i=0 k=i
T T B WRRIC
i= O = =0
= Zal —7rp—i(b)) = sn(a)B —ay,
——
—AB
Let's prove o, = Zairn,i(b) rn(b)| <
i=0
0. We note A the sum of > |a,|. Then
|| < \Zazrn_l )| + Ae.
>n N
But a, — 0, so AN’ sucht that Vn > N’, |a,| < e. Hence
Vn>N+N', n—N>N'=|a,| <(K+Ae
N
with K =" |ri(b)]. O

Proposition 5.6. [Abel's summation by parts formula] Given to sequences (ay,)
and (by,), We have the following formu/as Vp, q

(’) Z an n — n 1) Z (an - an+1)bn + aq+1bq - aerlbp

n=p+1 n=p+1
q q
(ii) Z anbn = Z (@n — ant1)sn(b) + ag+184(b) — ap+15p(b)
n=p+1 n=p+1

Proof. First, (ii) is just (i) applied to s, (b) instead of b,. For (i) :



q

anbn_ Z anbnfl

1 n=p+1

q
anbn - E anJrlbn
n=p

q
anb, — g An41bn — apr1bp + ag41by
1 n=p+1

Z an(bn - bnfl)

n=p+1 n

M-d0-i09- -

n 1

n

(an = @ny1)bn + ag1bg — api1by
n=p+1

cos(nb)
n®

o fa>1, u,=0(Mn"% = > u, converges.

e If <0, up » 0= > u, diverges.

e If a €]0,1], we already know that > u,, diverges if § = 0 (mod 27), so we
may assume ¢ = 1. In order to apply Abel's formula (i), we note a,, = n=
and b, = cos(n#) and we have (cf. so(b) = cos0 = 1)

Example 5.7. Let u, =

q q
Z Up = Z (an - an+1)sn(b) +aq+1sq(b) -1
— —_—

n=1

But

n )
; 1— ez(n+1)6
sp(b) = (Z e k9> o (1 T )
k=0

!t D0/2255in((n 4+ 1)0/2)\ _ sin((n+1)6/2)
= ( €?/22isin(0/2) ) -~ sin(6/2)

cos(nd/2)sin((n + 1)0/2)
sin(0/2)

m(emom)

b
sin(6/2)

S = ):K;(l_(lg)“)
Dk

and (with fo : 2 — 2~

= |sp(b)| < K =

1_<1+711>—>f;(1)=—04 = 1—(1+i>_a20<r1z)

1
n

Finally v, = O(n=(@*1) and 3" v,, converges (cf. a+1 > 1). But ag41 — 0,
so the Abel's formula proves the convergence of > w,,.



We finish with the Fubini's theorem for double series :

Theorem 5.8. Suppose (a., ) € CV*N s such that for all m, 3", |am .| converges
to a limit noted o, and that o, converges to a limit noted 3. Then
(i) foralln, ", |amn| converges to a limit noted o,

(ii) > o), converges,

(i) 320 D0 Gmun = D20 D Gnym (nOted 32 G ).
Proof. (i) : For ng € N, we have for all M € N

M M
Emzo ‘ang,m| < Zm:() Om < X,

so we have the result.
(i) : Forall N e N

N N . M N
Zn:O J;L = Z'ro::O Zn:O |amv"| - hmJW—m‘O Zm:O n=0 ‘am»n|

N M N N
and Y o laman| < om,s0 > 0> o lamal < 3, and thus Y7 o), < X2
which is enough to conclude.

(iii) : First, both members of the equality exist : we note S,;, = >, am,» and
Sl =, Gm,n SO that |S,,| < 0., and |S]| < o7, imply the convergence of )~ Sy,
and Y S/

Let € > 0. We have for all (M,N) e Nx N

M M M
2 m=05m = 2 m=o ano Am,n = ano 2 m=0 Gm,n =
N M M
Zn:O Zm:O Om,n + Zn2N+1 Zm:() Am,n

where, because Y o/, converges, there exists N, € N such that for all N > N,
J M ’
|Zn2N+1 > m=0Amn| < Zn2N+1 > m=0|@mn| < anN-i-l o S €
and where, because > o, converges, there exists M, € N such that for all M > M,
N N M N
| ano Sp — ano Zm:O am=”| < Zn=0 ZmZM+1 |amv" =
N
Zszﬂ > =0 l@mnl < Eszﬂ Om < €.
Hence for all N > N, and M > M, we have
N M
| Zn:o Sn — Zm:o Sm| < 2e.
which leads to the result. O

Remark 5.9.

e In fact (iii) is a particular case of the double-limit theorem you'll see in ch2.
The trick is to consider E = {7;};enuiee} C R with ; % 2o and to
define f,, € CE by fo,(z;) = >0 _y @m,n for all i € NU {oc}. We have
- va fm(xz) m) fm(xoo) - Zn Am,n
— normal convergence : Va € E, |f,(z)| < om.-

Hence, setting ¢ = Y., <o fm € CE, 3lim,, . g(z;) = g(zs), which
exactly says that ) S] converges, and that the limitis > S,,.
e This theorem can be very usefull for the theory of power series - see ch3.



