Chapter 3 : Power Series.

1 Definitions and first properties

Definition 1.1. A power series is a series of functions > f,, where f,, : z — a,2",
(a,) being a sequence of complex numbers. Depending on the cases, we will consider
either the complex variable z, or the real variable x.

Notations 1.2. For r > 0, we will note A, = {z € C | |z|] < r}, K, = {z €
Cllz|<r}and Cr, ={z€C||z| =r}.

Lemma 1.3. [Abel’s lemma] Let ) a,z™ be a power series. We suppose that there
exists zy € C* such that the sequence (a,z§) is bounded. Then, for all r €]0, |z]|[,
>~ anz™ normally converges on the compact K.

Remark 1.4.
e Note that it implies the absolute convergenceon A, |, ie Vz € A, |, > an2"|
converges.
e Of course if we suppose > |a,|r™ convergent, we directly have the normal
convergence on K, (cf. Vz € K, |an2"| < |an|r™).

Proof. Let z be in K., we have

n n
lanz"| < |ap|r™ = |anzd LA - (0] I ,
|Zo\ |Zo|

which gives the result. O

Definition 1.5. We call the radius of convergence of the power series " a,,2" the
number

R =sup{r > 0| (a,r™) bounded} € R"=R+U {+00}.
It will sometimes be noted RCV (> anz™).

Theorem 1.6. Let R be the RCV of a power series Y an2™.
e Forallr <R, a,z™ normally converges on the compact K.
e For all z such that |z| > R, a,z" "% 0.

Remark 1.7. It implies the absolute convergence on Ag.

Proof. The Abel's lemma gives the first point : Vr € [0, R[, 31" €]r, R] such that
(anr'™) is bounded, which implies the normal convergence on K,.. For the second
point, it's the contraposition of a,,2™ — 0 = (a,2") bounded = |z| < R. O



Corollary 1.8. With the same hypothesis, R = sup{r > 0| >_ a,r™ converges} =
inf{r >0 > a,r™ diverges} € R".

Proof. Let's note R' = sup{r > 0 | > a,r™ converges} and R” = inf{r >
0] > an,r™ diverges}. First, R < R” : if not, R” < R’ and 3r €|R", R'] such
that > a,r™ converges, so we would have (a,,r™) bounded and convergence on A,
(cf. 1.4), and thus R” > r, absurd. By the first point of the theorem, R’ > R.
By the second point, R” < R. So we have R < R’ < R” < R, which gives the
result. O

Remark 1.9.
e With the same kind of proof, one can show that we also have R = sup{r >
0| apr™ — 0}.
e To sum up, if we note € the domain of convergence of a power series which
has a radius of convergence R, we have

and we have absolute convergence on Ag.
Definition 1.10. We call Ag = {z € C| |z| < R} the (open) disk of convergence.

Remark 1.11. We can't say anything a priori about the convergence of a power
series on the circle C'g, as we will see in the examples.

Examples 1.12.

e RCV (> z™) =1 since the constant sequence (1) is bounded (= RCV > 1)
and ) 1 diverges (== RC'V < 1). In fact there's no point in Cy where there
is oconvergence (|z] =1 = z" -» 0).

e RCV (> z"/n) = 1since (1/n) bounded (= RCV > 1) and }_ 1/n diverges
(= RCV < 1). Here, the only point of C; where the power series diverges
is 1:if 2z = e # 1, Y 2"/n converges iff R(>_2"/n) and I(>_ 2" /n)
converge, ie iff Y cos(nd)/n and > sin(nf)/n converge. But we've already
seen that the first one converges iff €/’ # 1, and the same proof shows that
it's the same for the second one.

Exercise 1.13. [Hadamard theorem] Prove that this definition of the radius of
convergence is equivalent to the first one :

R = (limsup |a, /™) ~!

2 Few methods to find the RCV

Proposition 2.1. Let > a,z" be a power series and zy € C. Then :
o If > ayz} converges but Y |anzy| diverges, then RCV = |z|.
e Same conclusion if )" a,z{ diverges but a,zj — 0.

Proof. For the first point, we have RC'V > |zg| (cf. 1.8), but we can't have RCV >
|z0| (cf. 1.6). The second point is a consequence of 1.8 and 1.9. O

Proposition 2.2. Let Y a,z™ and > b,z" be two power series, and R,, Ry their
RCV. We have a,, = O(b,,) = R, > Ry.



Proof. Let z € Ap,, we have a,z" = O(b,z") and Y |b,z"| converges (cf. 1.6),
so Y a,z™ converges. By 1.8 we conclude R, > Ry. O

Remark 2.3. We can't say that (a,, 2™ = O(b,2") and >_ b, 2™ converges) = > a,z"
converges because we're not in the case b,2" € RT for n big enough (b,2" € C).

Corollary 2.4. With the same notations, we have a,, ~ b, = R, = R;.

Proof. ~ = O. O
Proposition 2.5. Suppose a,, # 0 for n big enough. Then (with 1/0 = +o0o and
1/+00=0):
n = 1
mm“+1:mR+¢sz:7
(429

n+1
Proof. We have anﬂz‘ — 1|z|. By De D'Alembert rule, |z| < 1/l =Y an2"
a

nZ"
converges, and RCV > 1/ (cf. 1.8). Similarly, if |z| > 1/, > a,z™ diverges, and
RCV < 1/L. O

Proposition 2.6. Let Y a,z" a power series and R its RCV. Then for all o € R
the RCV R,, of the power series Y n“a,z" is also R.

Proof. Let r < R and p €]r, R[. We have

n
r ,
n“a,r" =n <> anp" = (n%a,r") bounded = R, > R.
P ~—~—
—0
=0
This is true for all }_ a, 2™, and for all «, so we also have, with § = —a,

R = ROV (X n’(n%an2")) = RCV (X n%anz") = Ra.

O
Examples 2.7.
e By 2.5 RCV (> 2z"/n!) = 4+o0.
e By 25, RCV (> nlz™) =0.
e By 2.6, RCV (Y. 2"/n?) =1 and we have normal convergence on K.
e We can abusively note " 22" /5" the power series defined by az,.1 = 0 and

asn, = 5" for all n. But we can’t apply directly 2.5. However, it's clear
that we have convergence on A 5 and divergence on its complementary, so

RCV = /5.

Proposition 2.8. Let R, and Ry, be the RCV of Y a,z™ and > b, 2"™. Then Ryp =
RCV (> (an + by)z™) > m = min{R,, Ry}, with equality if R, # Ry. Moreover,
on A, we have

San +bp)2" =3 anz™ + > bp2".

Proof. For all z € Ay, > anz™ and > b, 2" absolutely converges. Hence > (a, +
by)z™ also does : R,y > m and the additivity of limits of sequences gives the
additivity formula. If R, < Ry, for all z € Ag,\Kg, we have a,z" - 0 and
bpz™ — 0, thus (a, + b,)z" - 0, and Ryqp < R, = m. O



Example 2.9. Let > a,z" = > 2" and > b,z" = > ((1/2)" — 1)2", we have
R, =1 = Ry (use 2.5 for the second one). As a,, + b, = (1/2)", the domain of
convergence of the Y (a, + b,,)z" is clearly Ag, s0 Ryqp =2 > m.

The nest result is obvious :

Proposition 2.10. For all A € C*, > a,z™ and > Aa,z™ have the same RCV R.
Moreover, on Agr, we have

ST Aanz" = A anz".
Proposition 2.11. Let R, and Ry, be the RCV of >  a,z"™ and > b,z". Then
Rowo = RCV (> anz™) * (3 bn2™)) > m = min{R,, Ry}. Moreover, on Ay, we
have

(Z anzn) * (Z bnzn) = (Z anZ")(Z bnzn)-

Proof. For all z € Ap, > la,z™| and ) |b,2"| absolutely converges. Hence the
Cauchy product (3 |anz™]) * (3 |bn2™|) converges (cf. chl). But

n
E apz"b,_p2"F
k=0

Vn,

n
S Z |akzk”bn7kznik|a
k=0

so we get R,y > m and the result given about the Cauchy product in chapter 1
gives the formula. O

Examples 2.12.

e We don't have the same result as for the addition if R, # R} : Let > a,2"
and >_ b,2" be defined by ag = 1/2,bg = —2 and a,, = —1/2"*! b, = -3
forn > 1. Wehave Y a,2" =1-) o,2"/2" T, S b,2" =1-33,5,2",
so R, =2 # R, = 1. We also have

1/2 z—1
7 n:l— == V A,
2. n? 1-(z/2) =-2 ~€°%2
1 z—2
"=1-3— = A
and Y b,z 3172 271Vz€ 1

Hence by 2.11 (3" anz™) x (3. bn2™) = 1 on Ay, so if we note ¢, =
Y h—o@kbn—k, we have ¢ = 1 and ¢, = 0 for n > 1. Thus Rep =
RCV (3 cpz™) = 400 > m.
o Let R, R’ be the RCV of > a,z"™ and > s,(a)z". We have > s,(a)z" =
> anz™)x (3 2™), hence R’ > min{1, R}. We also have
3 002 = 55 ()27 — 3 sp1(@)2" = X s(@)2" — 25,01 sn(@)2",

which gives R > R’. Thus we have

’min{l,R} <R < R‘

which gives R=R'if 1 > R.

3 Properties of the sum
We've already seen :

Theorem 3.1. Let > a,2" be a power series and R its RCV. > anz™ normally
converges on every K., r < R, which leads to the continuity of the sum function
on AR.



Remark 3.2. If 3z9 € Cg such that Y a,z absolutely converges, then we have
normal convergence (and continuity) on Kg.

Theorem 3.3. [Radial continuity] Let's suppose that Y a,z{ converges for zy €
n4n

Cr. Then Y a,z™ uniformally converges on [0, zo], ie t — > anzit"™ uniformally
converges on [0, 1].

Proof. We note s,(t) = Y., _garz§t® for t € [0,1] and r, = 322, .4 axzi. By

Abel’s formula we obtain

n

sn(t) =S po(re—1 — i)t = Z(tk+1 —tMYrg —t" e, £y,

k=0
fn(t)
For € > 0, AN such that n > N = |r,| <, hence, foralln > N, p > 1, t € [0,1]
n+p
[frip(t) = Fa(B] < D0 Irel (8% = tFF) < et — 7P <,
k=n+1

and [t"Flr,| <,
so (s ) uniformally converges. O

Remark 3.4. The Leibniz criterion can also be used in the case of a decreasing
real sequence (a,) which converges to zero. Suppose R = 1, then for z € [-1,0],
>~ a,x" satisfies the hypothesis of the Leibliz criterion ; so we get | Y7, . | ana”| <
|anz™| < a, which proves the uniform convergence on [—1,0], and thus the conti-
nuity in —1.

We can deduce from the radial continuity a new result about the Cauchy product
- compare with the one obtained in ch.1 :

Corollary 3.5. Let > ¢, be the Cauchy product of Y_ a,, and _ b,,. We suppose
that > ap, > by and Y ¢, converge to A, B and C. Then C = AB.

Proof. The three power series f(z) = > apz™, g(z) = >, b,a™ and h(x) =
> cnz™ have a RCV> 1, hence absolutely converge for || < 1 so we can ap-
ply the theorem of chapter 1 and get f(x)g(x) = h(zx) for these x. But by the
radial continuity theorem we can apply the double limit theorem for z — 1 to
obtain the result. O

Definition 3.6. We call derivative series (resp. primitive series) of a power series
>~ anz™ the power series defined by > (n + 1)an12™ (resp. >, < (an—1/n)z").

Remark 3.7. We know that they have the same RCV than > a,2", thanks to 2.6
and 2.4 : Y (n + 1)ap412"™ converges iff 23 (n + 1)ap412" = >, o na,z"

converges; and - (an—1/n)2" = 23 (an/(n+1))2" with a,/(n+1) ~ ap/n.

Theorem 3.8. Let > a,x™ (real variable) be a power series, f its sum, g (resp. F')
the sum of its derivative (resp. primitive) series and R its RCV. Then, on | — R, R|,
f is Ct with f' = g, and F is the only primitive of f such that F(0) = 0.

Remark 3.9. This implies

Vo el - RR[, > n‘:”‘ T :/ <Z ant”> dt.
n=0 0 n=0



Proof. Replacing f by F', the first assertion immediately gives the second one.
But if we note f,(z) = a,x™, we have f,, C! with f/(z) = na,z""! for n > 1
(f{ =0). Hence >_ f! is the derivatives series of > a,, 2™ which normally converges
on each [-r,r] C] — R, R[ (cf. 3.7), and we know that it implies : }_ f,, C! on
[—r,r] and f' = (O fn) = > fl, = g. We conclude with the fact that | — R, R[=
UO<7‘<R[_ra 7’]. [

Corollary 3.10. The sum function [ of a power series > a,x™ with RCV= R is
C> on]— R, R[, and f) is the sum function of

|
PR L

n!

The RCV of these power series is also R.
Remark 3.11. This implies

f(p) (0)
p!

Corollary 3.12. If we have ), - ,anz™ = Y, ~,bna™ on | — R, R[ (both power
series converging on this interval), then a,, = b,, for all n.

Vp,

:ap

Proof. The difference of the sum functions is 0. Hence, all its derivatives at 0 are
0. O

4 RPS functions

Definition 4.1. Given a complex number 2y and a function f : &4 — C defined
on a neighborhood U C C of zy, we say that f is representable by a power series
(=RPS) or analytic at zy if 3r > 0 and a power series > a,,z"™ with RCV> 7 such
that A(zp,7) ={z€C ||z — 2| <r} CU and

Vz € A(zo,7), f(2) = an(z —20)™.

Remark 4.2.
e For f =R — C and zp = g, replace U by an interval I 5 zy and A(zg,7)
by A(zg,r) "R =] —r + g, 20 + r[= I(z0,7).
e Most results will be given relatively to zg = 0, but only for convenience. The

generalization is just the consequence of
f RPS at zp & f(zp+ @) is RPS at 0.

Definition 4.3. f: U Cc C — C is said to be analytic if f is RPS at any point of
Uu.

Proposition 4.4. Let f be representable by Y a,z™ at 0 on A(0,r). Then f is
analytic on A(0, 7).

Proof. Let zp € A(0,7) and p = r — |zg]|. For z € A(zp, p) we have

fz) = ni an((z = 20) + 20)"
£ (0)smar)

m=0

0 (72 o <:1> ng> (2 = 20)"

Il
o

I
M8

n

I
M8

3
Il



The last equality is a consequence of the Fubini theorem given in chl with a,, , =
an ()20 "™ (2 — 29)™ (with the convention (™) = 0 if m > n). We just have for
example to check that > >~ |an, .| is finite :

o0 o0
S0 S tmal = 3 lanl(z = 2ol + 20" = 3 lanlr™,
n=0 n=0

with 0 <7/ < p+|z9| = 7 hence >_ |a,|r"™ converges and we have the result. O

Remark 4.5. For zg € A(0, ), it's important to notice that f is RPS at zg on the
bigger disk centered at 2o and contained in A(0, ), which is A(zg, 7 — |20])-

From 3.10, we get a necessary condition for f to be RPS :

Proposition 4.6. If f : I — C is representable by > a,x™ at 0, then Ir > 0
such that 1(0,r) C I, with f C* on I(0,r). Moreover we necessarily have a,, =

F(0)/n!.
Example 4.7. of a function which is not RPS :

0 ifx <0

FiR=R, x»—){ exp(—1/2%) ifz >0

By induction, one can prove that f is C* on R with all derivatives = 0 for all z < 0
and f®)(x) = P,(1/x)exp(1/x?) for z > 0, P, being a polynomial. Hence if f
representable by 3" a,z", a, = f™(0)/n! =0 = f = 0 on I(0,r) for r > 0,
which is false.

Definition 4.8. For f : I C R — C C* we note for all a,z € T

(k) (g

T.(f,a,e):x+— Z
k=0
the Taylor polynomial of f at a,

"R (g
Ra(foa,e) 20 fla) = 30 L@ g

k!
k=0
the Taylor remainder of f at a, and
= ) (a
(o) e eyt
=0

the Taylor series of f at a.

Corollary 4.9. A function f : I — C is RPS at 0 iff 3r > 0 such that I(0,r) C I
such that f is C* on I(0,r) and

Vo € 1(0,7), R,(f,0,z) 2= 0.
In such a case, f is representable by its Taylor series at 0.

Remark 4.10.
e Of course we have the same result replacing 0 by a - just use f, = f(e + a).



e About the Taylor remainder : one can prove by induction, using integrations
by parts, that we have, for f C"*! :

n!

Ro(f,a,z) = /x Mf("ﬂ)(t)dt

This implies, for example, that
xr
mMaxX((q,z)] \f("+1)|/
a

[

because the sign of © — t is constant on [(a, )] (= [a,2] if a < x, = [z, 4q] if
not). Hence we have

(x—t

Ro(f,a,)] i \ O ()t

IN

n!

IN

M dt
n!

=  MaX[(q,z)] ‘f(n+1)|

|a _ t‘n-&-l

Rn < (’n,—‘rl)
|Rn(f,a,z)] < magilf | CE]

[(a,

This gives a sufficient condition for f C> to be RPS at a :
Ir>0,IM >0, Ve € [a—r,a+ 7], Vn, |f(”)(t)| < M.
(la —t|"*/(n + 1)! = 0 since ROV (> 2" /n!) = +0).

Proposition 4.11. Let Y a,z™ a power series with RCV= R > 0, sum function f.
We suppose ag # 0. Then 1/f is RPS at 0.

Proof. We can suppose ag = 1 (consider f + f/ag). Let's first prove
Lemma 4.12. RCV (> unz") >0 & Jg >0, |u,| < ¢™.

Proof. For =, we note r = RCV (D> u,2"™) > 0. Fix ' €]0,7] : we have (u,r"™)
bounded by some constant M > 1, and we get Vn, |u,| < M(1/r')"™ < ¢"™ with
g = M/r’. For the other implication we have u,, = O(q"), hence RCV (3 u,z") >
RCV (> q"z") =1/q > 0. O

If 1/fis RPS > b,2™ on A(0,R") C A(0, R), we get (cf. 2.11) on A(0, R')

O anz") x O _bnz") = O anz") (Y _bp2") =1 (1)
which implies (cf. 3.12)
b() =1and Vn > 1, bn = —albn,1 — = anbo.

Let ¢ > 0 such that |a,| < ¢™ and let’s prove by induction that |b,,| < ¢ with
q' = 2q. This is true for n = 0 and if [b,_1| < ¢!, we have

n

n n
B 1
bl <D larllbnr| <Y q"q" = :27;61’” <q™
k=1 k=1

k=1



Hence by the lemma we have RCV (" b,2") = R, > 0 and the formula 1 proves
that that the sum function of > b,2™ is equal to 1/f on A(0, min{R, Rp}). O

Remark 4.13. About the composition of two RPS functions : Suppose f(z) =
> anz™ on A(0,R) and g(z) = > b,z™ on A(0, R') with by = 0 = g(0) : then
dp < R’ such that z € A(0,p) = g(2) € A(0,R) by continuity of g, and for
z € A0, p), we have f(g(z)) = >, ang(2)". But, by Cauchy product, g" is RPS
on A(0, p), and we can note g(2)" = >_ by 2P for some complex numbers by, .
Hence,

f(g(z)) = Zn Zp anbnypzp = Zp(Zn a"bnyp)zp

if we can apply the Fubini theorem to the double series (a,by p).

5 Classical examples

Definition 5.1. We note exp(z) = €, cosz and sinz the sum functions of the
following power series :

prs —1)" . —1)" .
D Z((Qn;! 2 and (2(n+)1)!22 o

Remark 5.2.
e The three power series have RCV= oo : we already know that for the first
one. But if we note these series respectively > a,2™, > b,2" and 3 ¢, 2"
(an, = 1/n!) we remark that |b,| < a, and |c,| < ay,.
e Following this definition, we clearly have, for z € C,
cos(—z) = cosz and sin(—z) = —sin 2.
Proposition 5.3. We have the following facts :
1. The derivative series of exp, sin and cos are respectively exp, cos and — sin.
2 Forall z,z' € C, "™ = e%e?.
3. Forall z€ C, cosz+isinz = e**.
4. Forall z € C, e =lim(1 4+ £)™.
noo n

Proof. The first point is a consequence of 3.8. For 2, we use the Cauchy product
(and RCV (3 z™/nl) = oo, so we have absolute convergence everywhere) to get

! S —1)k -1 nk m— z+2)" 242’
ezez:Z(Z(m) Zk<(n_>k)!z k>zz< ) _ e

n>0 \k=0 n>0

With the notations of 5.2, b,, + ic,, = i"a, so we get 3. Let's prove 4 : we note
E =NCR and for all k € N (with the convention (}) = 0 if k > n),

E — C

QO n 1 E o

so we get for all n € F,



Let's try to apply the double-limit theorem for n — oo : we first have for all k£ > 0

Kk k=1 noo, Sk
Yn >k, ag(n k'H( ) o

But we also have
L k—1 .
z 1
K 11 (1 B n)

=0

Pl

Vn >k, jax(n)] = <o-

and this inequality is also true for n < k : we have the normal convergence (cf.
> |z|™/n! converges). The double-limit theorem gives the result. O
Remark 5.4. As a consequence of 5.2 and 3 we have

e’LZ _|_ e—lZ . 1z
cosz = ———— and sinz =

2 21 '
Lemma 5.5. We note £ = {x € RT | cos(z) = 0}. Then Jov = inf £ € R
Proof. We just have to prove that £ # @. If not, cosz > 0 for all x > 0 (cf.
cos0 = 1 and cos is continuous). This would imply the strict convexity of — cos

on R, which cannot happen since for all x € R, —cosz < 0 (the only negative
convex functions on R, are the constant functions). O

Definition 5.6. The constant 2« will be noted .

Corollary 5.7. We have the following facts :
1. Forallz €R, cos?z +sin’z = 1.
2. €™/2 =i, which impliesVz € R, cos(z+%) = —sinz and sin(z+%) = cos .
3. '™ = —1, which implies Vx € R, cos(rm—x) = — cosx and sin(r—x) = sin z.
4. €™ =1, which implies the 2m-periodicity of the functions of the real variable

T — sinx, cos .

Proof. Using the continuity and the algebraic properties of 7 : z — Z, we have for
all z € C,

n n_ sk
P =7 (EQZ k') ~ ( (Z kl» ~ (Z k') = e
k=0 " k=0 "

Hence for z = iz € iR, by 5.3.2, we have (¢/*)~! = e~ = ¢iz, which gives
le?| = 1 and then 1. But cos(7/2) = 0, so 5.3.3 implies ¢/™/2 = i. Then ™ =

(e/2)2 = —1 and €™ = (e™/2)* = 1. Just take the real and imaginary parts of
AT — U@+ for \ € {1/2,1,2} to obtain the complementary assertions in 2,
3 and 4. O

Remark 5.8.
e More generally for a,b € R, the classical trigonometric formulas
cos(a + b) = cosacosb — sinasinb
{ sin(a 4+ b) = cosasinb + sina cosb

are a consequence of e®e? = ¢iath),

10



e The hyperbolic sine and cosine are defined as follow for z € C :

2n+1 z _ ,—z
sinhz = —isin(iz) = (22 Y = ¢ 26
n !
2n z —z
coshz = cos(iz) = (; I = ¢ +26
n)!

generalizing the definition known for x € R.

Example 5.9. There's a classical way to calculate the sum of power series of the
form " P(n)z"/n! for a given polynomial P € C[X]. First the RCV is 400 by
De D’Alembert rule. Then the idea is to decompose P on the base {1, X, X (X —
1),...,X(X-1)...(X—=d+1)} if deg P = d. Practically, with H;:lO(X —i) =1,

d k—1
degP=d = 3ao,...,aq) € CH | P=> a [](X —i)
k=0

1=0

Zn

P(n) 56 n...(n—k+1)

n!

P(n d 7n...n—k’ 1
()anzakz (n! +)Zn

=
n!
n>0 k=0 n>k
d n d
P(n) n __ z _ k_z
= E z = ag E = E agze
n! (n—k)!
n>0 k=0 n>k k=0

Theorem 5.10. The function x € R — —1In(1 — z) is representable by the power
series Y, x™/n on|—1,1].

Proof. More precisely, we have : the primitive series of » 2™ (which has RCV= 1)
is Y~ 2" /n. Hence we have the result since In is defined on R*. as the primitive
F of 2+ 1/z such that F(1) = 0. O

Definition 5.11. We define the complex logarithm as the sum of the power series
=2 n>1(1 = 2)"/n, defined on A(1,1), and we note it In z.

Proposition 5.12. We have
o forall z € A(1,1), exp(Inz) = z;
o forall z € A(0,In2), In(exp z) = .

Proof. Following 4.13, we write, for z € Ay,
In"(1 - 2) = (=1)"(X 451 2/B)" = (=1)" Xps0 ak,n 2",

and we set by, = (—1)"ay 2" /n!. We have |b ,,| = ak.n|2|¥/n! because ay ,, > 0
(cf.an>0,8, > 0= > 1_5Bn_i > 0), hence the series >, < |bk,n| converges
to (—1)"In"(1 — |z|)/n!. Since the series > (—1In(1 — |z]))™/n! converges, we can
apply the Fubini's theorem, which gives (cf. 4.13) :

exp(ln(l — z)) = Z Z % PA chzk.

E>0 \n>0 k>0

The point is that we know that this quantity is 1 — z if z = 2 €] — 1,1[. Thus,
by 3.12, we have ¢y =1, ¢y = —1 and ¢, = 0 if k£ > 1. Finally we get the result
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exp(In(l —z2))=1-z.
For the other assumption, we first remark that the left member is well defined :
z€ A(0,In2) = [e* — 1| = |30, 5, 2"/l <37, 5, |27 /nl = el?l —1eo0,1].
Then we write
In(expz) =1In(l — (1 —¢€*)) = Zn21 Zkzo b,
with this time by , = (—1)"ak7nzk/n, where
(=1)" Yo arnz® = (1 =€) = (=1)"(L 5, 27/p))"

Again, by induction (and using the definition of the coefficients of the Cauchy
product), one can show that a_, > 0. This implies |by | = ak.n|2|¥/n and thus

>kz0 Dkl = Cpso annl2l*/n = (=1)"(1 = )" /n = (el —1)"/n

with el*l — 1 € [0,1[C] — 1,1[. Hence 3, -, (el — 1)"/n converges and we can,
here again, apply the Fubini's theorem. The end of the proof is the same as in the
first case, using the known results when z =z €] — 00, In2]. O

Proposition 5.13. Forallxz €] —1,1] :
1. arctan(z) = Z (=1) P2+l
n

>0 2n+1
2 1 14w
2. h -
arctanh(z) = Z il - 21—,
3VagN, (1+a)* =Y <Z>x" with (i) G 1)“7'1'(0‘_”“) and

n>0

o
- = ﬂxQH
4. ﬁ o g 22”(71!)2
5. arcsin(z) = ZM 220t

= 22”(71!)2 2n+1

n 2n
\/W Z 22n Tl' :C

) L (2n)l a2l
7. arcsinh(z) = Z(—l) P2n(nl)2 20 + 1
n>0
Proof. 1 and 2 follow from 3.8; 5 and 7 follow from 3.8 and 4 and 6, which follow
from 3. So, let's prove 3 : the only power series which can represent = — (1 4 z)®
is the one given, which is the Taylor series of ¢. The power series Z( )x has
RCV=1 by the ratio test and if we note S its sum function we have

S'(z) = n%% (n i 1) (n+ 1)z =" (Z‘) (a —n)z" = aS(z) — x5’ (z).

n>0

Hence, since S(0) =1, S(z) = (1 + z)* for all z €] — 1,1]. O
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