
Homological study of some Hilbert schemes

Tristan Bozec

February 10, 2010

Abstract

This lecture gives a brief historical survey of the Hilbert schemes of points on a surface
through cohomological considerations. If the first steps in the theory of Hilbert schemes
are based on techniques of pure algebraic geometry, the representation theory is widely
used thereafter to understand the cohomology groups : this is the idea of Nakajima, who
uses representations of Heisenberg-Clifford algebras.

We can then seek to generalize this method : to an object from algebraic geometry,
we try to give a structure of module over a certain type of algebra whose representations
can be studied separately. In this sense, Schiffmann and Vasserot studied the K-theory of
the Hilbert scheme of points on the plane using elliptic Hall algebras and Hecke algebras.
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1 Hilbert schemes of n points

We begin by defining the schemes which will interest us : the Hilbert schemes of
points. The idea is to start from a projective scheme X and use that for a coherent
sheaf F on X, there exists a polynomial, the Hilbert polynomial of F , with rational
coefficients, which coincides on the positive integers with the Euler characteristic
of F(n) :

χ(F(n)) =
∑

(−1)i dimCH
i(X,F(n)).

For a given polynomial with coefficients in Q, the pull-back then allows us to
introduce the following functor defined on locally Noetherian schemes :

hilbφX(T ) =

{
Z closed subscheme of X × T flat on T
with ∀ t ∈ T , φ Hilbert polynomial of OZt

}
.

Here Zt denotes the fiber of Z ↪→ X × T pr2−−→ T over t. We will look at the case
of constant Hilbert polynomials, and we can then reformulate the definition. For a
positive integer n, we note :
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hilbnX(T ) =

{
Z closed subscheme of X × T flat and proper on T
with ∀ t ∈ T , dimZt = 0 and h0(Zt,OZt

) = n

}
.

Practically, an element of hilbnX(T ) will be seen as a family (Zt) indexed by T of
closed subschemes of X. The following theorem is due to Grothendieck :

Theorem 1.1. With our hypotheses, hilbnX is representable by a quasi-projective C-
scheme, which means that there exists a quasi-projective C-scheme, noted HilbnX
or X [n], such that

MorC( • , X [n]) ' hilbnX .

An element Z ∈ hilbnX(SpecC) corresponds to a unique point, still noted Z, of
X [n], and morphisms T → X [n] are provided by families (Zt) ∈ hilbnX(T ).

Definition 1.2. The scheme X [n] is called Hilbert scheme of n points on X.

The non trivial existence of the Hilbert-Chow morphism from the Hilbert scheme
of n points to the symmetric power X(n) := Xn/Sn of X enables to evaluate the
difference there is between considering an element of X [n] and a n-tuple of points
of X, eventually counted with multiplicities :

Theorem 1.3. Let X be smooth and projective oover C. There exists a surjective
morphism ρ : X

[n]
red → X(n), called Hilbert-Chow morphism, and given on the points

by
Z 7→

∑
P∈supp(Z)

dimC(OZ,P )P .

2 The case of the plane

The theorems of the previous section being also true for quasi-projective schemes,
we can work on the Hilbert scheme of n points on the complex plane, which will be
noted (C2)[n]. As a set, we have

(C2)[n] = { I ideal in C[x, y] | dimC(C[x, y]/I) = n }.

The following fundamental result, due to Fogarty, demonstrates the importance
of (C2)[n] :

Theorem 2.1. (C2)[n] is nonsingular and irreducible of dimension 2n and ρ :
(C2)[n] → (C2)(n) is a resolution of singularities.

Hence, ρ is an isomorphism over the nonsingular locus of (C2)(n), consisting in
the set of n-tuples of distinct points.

The proof of this theorem imply some objects which are crucial in the sequel,
such as :

. the incidence variety, for a quasi-projective scheme X :

X [n,n+1] = {(Z,Z ′) ∈ X [n] ×X [n+1] | Z ⊂ Z ′} ;

. the tangent space of (C2)[n] at a closed point Z corresponding to an ideal I :

TZ(C2)[n] = HomC[x,y](I,C[x, y]/I) .

Ellingsrud and Strømme obtain a first result about the cohomology of (C2)[n] :
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Theorem 2.2. For 0 ≤ i ≤ n, we have dimH2i(X [n],Q) = #{λ ∈ Πn, l(λ) = n− i} ,

dimH2i+1(X [n],Q) = 0 ,

where Πn denotes the set of partitions of n and l(λ) the length λ.

They use a cellular decomposition provided by the action of the torus T =
(C∗)2 on C2, which prevents any generalization to arbitrary smooth quasi-projective
surfaces. The stratification presented hereafter enable to solve this difficulty.

3 Stratification

Once again, the theorem 2.1 can be generalized to the case of a quasi-projective
smooth surface S.

Definition 3.1. For all partition λ = (n1 ≥ . . . ≥ nr) ∈ Π(n), one can define the
locally closed stratum

S
(n)
λ = {

∑
niPi | Pi ∈ S distinct points }

of S(n). Denoting S[n]
λ = ρ−1(S

(n)
λ ), we obtain a stratification

S[n] =
∐
λ

S
[n]
λ

of S[n] into locally closed strata.

It’s quite simple to show that the strata are nonsingular, and have dimension
2l(λ), where l(λ) denotes the length of λ. The study of the fibers of the Hilbert-
Chow morphism on each stratum is closelly related to a new kind of Hilbert schemes :

Definition 3.2. Let Hn = Hilbn SpecC[[x, y]], parametrizing the ideals of codi-
mension n in C[[x, y]]. The Hn are called the punctual Hilbert schemes.

Proposition 3.3. Let λ = (n1 ≥ . . . ≥ nr) be a partition of n. Then, via the
Hilbert-Chow morphism, S[n]

λ is a locally trivial fiber bundle (in the analytic topology
and in the étale topology) with fiber Hn1 × . . .×Hnr over S(n)

λ .

The punctual Hilbert schemes have been quite extensively studied, especially by
Briançon who proved that Hn is irreducible of dimension n − 1. The strata S(n)

λ

being of codimension 2(n− l(λ)), the Hilbert-Chow morphism is strictly semismall
in the following sense :

Definition 3.4. Let f : X → Y be a projective morphisme of varieties over C, and
suppose that Y =

∐
λYλ has a stratification into nonsingular locally closed strata.

Assume that for all λ, f : f−1(Yλ) → Yλ is a locally trivial fiber bundle with fiber
Fλ in the analytic topology.

Then f is called strictly semismall (with respect to the stratification) if for all
λ

2 dimFλ = codimYλ.
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In our situation, we also have the irreducibility of the fibers.
This result has been used by Göttsche to compute the Betti numbers of the Hil-

bert schemes, using the properties of intersection cohomology and perverse sheaves.
We write bi(Y ) = dimHi(Y,Q) for the i-th Betti number, and p(Y ) =

∑
i bi(Y )zi

for the Poincaré polynomial :

Theorem 3.5. Let S be a smooth quasi-projective sur face over C. Then
∞∑
n=0

p(S[n])tn =
∏
k>0

(1 + z2k−1tk)b1(S)(1 + z2k+1tk)b3(S)

(1− z2k−2tk)b0(S)(1− z2ktk)b2(S)(1− z2k+2tk)b4(S)
.

4 The Heisenberg algebra

The previous formula suggests an interest in considering all of the cohomology
groups of S[n] at the same time. So we denote :

V =
⊕
n≥0

H∗(S[n],Q).

Definition 4.1. Let V be a Q-vector space with a nondegenerate bilinear form
< . , . >.

. Let T be the tensor algebra on V [t, t−1]. We give ti the degree i so that we
have a graduation T = ⊕i∈ZT i. The Heisenberg algebra H(V ) modelled on
V is obtained from T by imposing the relations

[uti, vtj ] = iδi,−j < u, v > e
where e denotes the neutral element of the tensor algebra corresponding to
the empty tensor product.

. The Fock space F (V ) is the subalgebra of H(V ) obtained by replacing
V [t, t−1] by tV [t]. F (V ) becomes a H(V )-module, by putting ut0.w = 0
for all w ∈ F (V ) and ut−i.e = 0 for all i > 0.

Proposition 4.2. The Fock space F (V ) is an irreducible H(V )-module, and if
F (V )d denotes its part of degree d (where t has degree 1), we have∑

d≥0

dim(F (V )d)td =
∏
k≥1

1

(1− tk)dimV
.

The interest for such algebras come from the fact that for a quasi-projective
surface S sucht that V = H∗(S,Q) = H0(S,Q) ⊕H2(S,Q) ⊕H4(S,Q), we get
the same formula as in 3.5 (with z = 1). Nakajima obtained the following result :

Theorem 4.3. Let S be a quasi-projective smooth surface over C, and V =
H∗(S,Q). Assuming H1 = H3 = 0, we have an isomorphism of H(V )-module
between F (V ) and V.

Remark 4.4. Here, < α, β >= p∗(α ∩ β) where p denotes the unique morphism
S → {pt}. If S is such that H1 = H3 = 0 (which will be the case in the sequel), this
form is symetric. If not (non trivial odd cohomology), one should consider Clifford
algebras.

To simplify, let’s consider the case of S = C2 (so we get V = Q) to construct of
the H(V )-module structure on V. To represent the action of tm, one has to create
applications H∗(S[n]) → H∗(S[n+m]). Let’s generalize the incidence varieties by
putting :
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Zn,m = {(Z,P,W ) ∈ S[n] × S × S[n+m] | ρ(W )− ρ(Z) = mP}.

We imposeW\Z to be concentrated in a point. Denoting pr and pr′ the projections
on S[n] to S[n+m], we define for m > 0

pm : H∗(S[n])→ H∗(S[n+m]), y 7→ DP (pr′∗(pr
∗(y) ∩ Zn,m))

where DP denotes the Poincaré duality. Intuitively, if y is represented as the coho-
mology class Poincaré dual to the fundamental class of a submanifold Y ⊂ S[n],
then pm(y) will be the class of the closure of {Z t P | Z ∈ Y, P ∈ S[m]

(m)}.
Still denoting pm the operator V → V obtained by direct sum, we have the

following weak version of the result of Nakajima, which says that all the cohomology
of the Hilbert schemes of points can be obtained by just applying the creation
operators to 1 :

Proposition 4.5. Let 1 be the unit of Q = H∗(S[0]). Then the set of

pn1 ◦ . . . ◦ pnr (1),
∑
nj = n

is a basis of Vn = H∗(S[n]) for all n ≥ 0.

Using the intersection pairing, one can similarly define operators p−m : Vn+m →
Vn : this time p−m(y) corresponds to the class of the closure of {Z ∈ S[n] | ZtP ∈
Y for some P ∈ S

[m]
(m)}, if y is the class of Y ⊂ S[n+m]. Then we get the main

result :

Proposition 4.6. For all n,m, [pn, pm] = nδn,−midV.

Then we have an H(V )-module morphism

F (V )→ V, ti 7→ pi(1).

As F (V ) is irreducible and both have the same Poincaré series, this is an isomor-
phism.

5 K-theory

The issue of defining similar operators on the Grothendieck groups instead of the
cohomology groups is raised by Nakajima. We recall that for a scheme X, K(X)
is defined as the free group generated by the isomorphism classes [F ] of coherent
sheaves on X, quotiented by the relations [A]+[C] = [B] each time we have a short
exact sequence

0→ A→ B → C → 0.

In fact we will use equivariant K-theory in the sequel, which means that, for an
algebraic linear group G, we’ll be interested in the group KG(X) of the category
of G-equivariant coherent sheaves on X. The operators which will be introduced in
the sequel come from convolution operators. In the following proposition, we call
G-variety a quasi-projective scheme endowed with a G-action :

Proposition 5.1. Let X1, X2 and X3 be smooth G-varieties admitting proper
maps to a G-variety Y . There is a natural map

? : KG(X1 ×Y X2)⊗KG(X2 ×Y X3)→ KG(X1 ×Y X3).
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If we note RG the complexified representation ring of G, the convolution map :
. endows KG(X×Y X) with a strucutre of an associative RG-algebra for X1 =
X2 = X3 = X (with unit [∆X ], ∆X ⊂ X ×Y X denoting the diagonal) ;

. endowsKG(X) with the structure of aKG(X×X)-module forX1 = X2 = X
and X3 = Y = {pt}.

We consider S = A2. The schemes S[n] being nonproper for n > 0, we use
again the action of the torus T = (C∗)2. It’s not hard to see that the fixed points
of S[n] under this action are in bijection with Π(n) via

λ = (λ1, . . . , λr) 7→ Iλ =< yλ1 , xyλ2 , . . . , xr−1yλr , xr >⊂ C[x, y].

In particulier, (S[n])T is finite. If we note

q : T → C∗, (z1, z2) 7→ z−1
1 , t : T → C∗, (z1, z2) 7→ z−1

2 ,

we have RT = C[q±1, t±1] and we then note K = C(q1/2, t1/2). A theorem of
Thomason gives us the following isomorphism, where ι is the embedding S[n],T ↪→
S[n] and where we denote MK for M ⊗RT

K if M is a RT -module :

ι∗ : KT (S[n],T )K = ⊕
λ`n

K[Iλ]
∼→ KT (S[n])K.

Denoting Iµ,λ = (Iµ, Iλ), we also have

KT (S[n] × S[m])K = ⊕
λ`n, µ`m

K[Iµ,λ].

Hence each element of KT (S[n])K or KT (S[n]×S[m])K is a linear combination of
classes of coherent sheaves with proper support. This allows us to define convolution
operations :

? : KT (S[n] × S[m])K ⊗KT (S[m] × S[k])K → KT (S[n] × S[k])K,

? : KT (S[n] × S[m])K ⊗KT (S[m])K → KT (S[n])K.

We consider the following associative K-algebra

EK =
⊕
k∈Z

∏
n
KT (S[n+k] × S[n])K,

where the product ranges over all integers n for which n ≥ max(0,−k). It acts on
the K-vector space

LK =
⊕
n≥0

KT (S[n])K.

In order to define a relevant subalgebra of EK, the incidence varieties will once
again be usefull :

. Let’s note Zn = {(x, Z) | x ∈ Z} ⊂ S × S[n] the universal family and
τn = p∗OZn

the tautological bundle of S[n], where p is the projection S ×
S[n] → S[n].

. Denoting p1 and p2 the projections of S[n] × S[n+1] to S[n] and S[n+1], we
also note τn,n+1 = ker(p∗2τn+1 → p∗1τn) the tautological bundle of S[n,n+1],
which specializes to C[x, y]/J → C[x, y]/I over a point (I, J) ∈ S[n,n+1].

. We can similarly construct τn+1,n ∈ KT (S[n+1] × S[n])K.

. Finally, the tautological bundle of S[n]×S[n] is τn,n = π∗τn where π is one
of the natural projections of S[n] × S[n] to S[n].
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The following result is then obtained by Schiffmann and Vasserot, which gives
an answer the question of Nakajima (with the convention τ−1

i,j = τ∗i,j) :

Theorem 5.2. Let HK be the subalgebra of EK spanned by∏
n[τ⊗ln,n+1],

∏
n[τ⊗ln+1,n], l ∈ Z,∏

n[∧lτn,n],
∏
n[∧lτ ∗n,n], l ∈ Z>0.

Then :

1. HK is isomorphic to a certain one-dimensional central extension of the sphe-
riacl Double Affine Hecke Algebra SḦ∞ of type Gl∞.

2. As an E-module, LK is isomorphic to K[x1, x2, . . .]
S∞ .

The definition of HK comes from the fact that the nested Hilbert schemes
S[n,n+k] = {(Z,Z ′) ∈ S[n] × S[k] | Z ⊂ Z ′} are smooth only if k = 0, 1.

It would be too long to define SḦ∞ here. However, this algebra is isomorphic to
K[x±1

1 , x±1
2 , . . . , y±1

1 , y±1
2 , . . .]S∞ as aK-vector space. Let’s give some informations

about the action of E on LK :
. First, the complexification of the Fock space F (Q) can be seen as C[p1, p2, . . .],
tm acting by m

∂

∂pm
(m > 0)

p−m (m < 0)
;

. We have a Z2-graduation on E, one of the axes acting, in a similar way as
the Heisenberg algebra, by

−m qm/2

1− tm
∂

∂pm
(m > 0)

t−m/2

1− q−m
p−m (m < 0)

,

with pm = (
∑n
i=0 x

m
i )n (cf. K[x1, x2, . . .]

S∞ is defined as the projective
limit of the K[x1, . . . , xn]Sn). The action of the other axis involve Macdonald
polynomials.

Here, we don’t know how such a result can be generalized to other surfaces. A
first step would be to consider toric surfaces, starting with P2.

6 Quiver varieties

For I ∈ (C2)[n], the multiplication by x and y give two endomorphisms B1 and
B2 of V = C[x, y]/I ' Cn such that if we note v = 1 mod I ∈ V , we have

(i) [B1, B2] = 0
(ii) v is cyclic for (B1, B2) .

The second condition means that if a subspace W ⊂ V contains v, (B1(W ) ⊂
W, B2(W ) ⊂ W ) ⇒ W = V . Nakajima has proved that we have an isomorphism
between (C2)[n] and {(B1, B2, v) ∈ End(Cn)2 × Cn | (i), (ii)}/G, where G =
Gln(C). Hence, the study of the Hilbert schemes of points on the plane is linked to
a particular quiver variety of Nakajima, the one associated to the loop A0 = ◦

zz
,

which we will define here.
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We first define Ē(n,1) = End(Cn)2 ⊕ Hom(C,Cn) ⊕ Hom(Cn,C) to be the
representation space of the double quiver associated to A0, noted Ā0 :

1◦B1

$$
B2

zz

j




◦
2

i

JJ

The canonical symplectic form ω is given by

ω((B1, B2, i, j), (B
′
1, B

′
2, i
′, j′)) = Tr(B1B

′
2 −B2B

′
1 + ij′ − i′j)

and the moment map relative to the action of G on Ē(n,1) :

µ

∣∣∣∣ Ē(n,1) → g
(B1, B2, i, j) 7→ [B1, B2] + ij

.

There are two ways to define the symplectic quotient of Ē(n,1) by G. One is
the classical "algebraico-geometrical" quotient, which will be noted µ−1(0)/G. The
second one comes from the geometric invariant theory : for χ = det−1, we will note
µ−1(0)/χG the algebraic quotient by G of the set of stable points, (B1, B2, i, j)
being stable if for all z ∈ C∗, the orbit

G.(B1, B2, i, j, z) = {(g.(B1, B2, i, j), χ(g)−1z) | g ∈ G}

is a closed subset of Ē(n,1) × C. Then :

Proposition 6.1. We have the following isomorphisms :

(C2)(n) ' µ−1(0)/G and (C2)[n] ' µ−1(0)/χG.

The Hilbert-Chow morphism is just the natural morphism µ−1(0)/χG� µ−1(0)/G.

This is a consequence of the following points :
. (C2)[n] ' {(B1, B2, v) ∈ End(Cn)2 × Cn | (i), (ii)}/G ;
. ((B1, B2, i, j) stable and [B1, B2] + ij = 0) ⇔ j = 0 ;
. ((B1, B2, i, 0) stable and [B1, B2] = 0) ⇔ condition (ii), where the homo-
morphism i is identified with any vector v such that < v >= Im(i).

Using crystal structures, Nakajima has established a link between the cohomo-
logy groups of Hilbert schemes of points and the lagrangian subvarieties of quiver
varieties. These results involve nontrivial finite groups Γ ⊂ Sl2(C) and the as-
sociated Hilbert schemes of fixed points ((C2)[n])Γ. But for such Γ 6= {id}, the
associated quiver variety do not contain any loop.

However, the study of the lagrangian variety Λn = ρ−1(D(n)), for D a fixed line
in C2, should lead to a better comprehension of the cohomology groups of (C2)[n].
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