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Abstract

In this note, we explain how the iterates of a typical point by a “good” map
behave in a certain sense exactly like a random sequence.

1 Probabilities: law of large number, central limit
theorem

1.1 The coin toss

The simplest example of a random event is certainly the coin toss, with a fair coin, that
gives head or tail with probability 1/2. We toss the coin an infinite number of times, and
at each time n we write X,, = 0 if we get head, and X,, = 1 if we get tail. Intuitively, we
should get almost the same number of heads and tails, i.e. %Z;:Ol X; should go to 1/2.

This can be formalized in the following way. We introduce = {0, 1}", i.e. this is all the
sequences of possible results of the experiment. The fact that the probability of getting
tail at the first toss is 1/2 can be expressed as the fact that the probability of the set
{(L,z1,...) | & € {0,1}Vi > 1} is 1/2. Thus, the function “probability” should be seen
as a function P assigning to a set A C © a number P(A) € [0,1]. For technical reasons,
P should in fact be a measure.

In our case, to construct P, we use the fact that € is almost [0, 1]. In fact, the application
7 : 0 — [0, 1], defined by assigning to a sequence the point whose dyadic expansion is this
sequence, is surjective, and injective outside of a countable set. Pulling Lebesgue measure
from [0, 1] to £ through 7, we obtain a measure on {2 which is reasonable: it assigns to
the set {(zo,...) | 2o = ao, - .. , Ty = ai} the measure 1/2k+1,

The observation X,, at time n can now be seen as a map X,, : Q@ — {0, 1} that assigns to
a sequence its n'® component. In this setting, we have the strong law of large numbers:
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Theorem 1.1. For almost all w € 2,

1 1
—ZXk(w) =3 when n — o0.

1.2 General probabilities

In this section, €2 will be a measurable space, endowed with a measure P of mass 1,
called a probability measure. We consider functions Xy, Xi,... from € to R, that will
correspond to the result at time n of the coin toss. They are called “random variables”.

We want these random variables to describe the same experiment, at different times. For
A C R, we can consider P({w € Q | Xo(w) € A}), also written P(X, € A). These
numbers, for A C R, describe the repartition of the random variable Xy — they are called
the law of Xy. This law can also be seen as a measure on R, it is just (Xo).(P). The
random variables Xy, X1,... are identically distributed if their laws are equal.

We also want these random variables to be independent. For example, we do not want
to have Xy = X; = Xy = ..., which would mean that there is no randomness at all.
The independence condition is the following: if i # j, VA,B C R, P(X; € A, X, € B) =

In this setting, the law of large numbers is:

Theorem 1.2. Let X, X1,... be a sequence of independent identically distributed (i.i.d.)
random variables on a probability space Q. Assume that Xy € L'(P). Then, for almost
all w € Q,

where E(Xy), the expectation of Xy, is simply [ Xo(w)dP(w).

1.3 The central limit theorem

We denote by N = N(0,0?) the law on R given by N(—o0,z) = \/;7 [f e B2 dt. T
is called the normal law (or Gaussian law) of 0 mean and o? variance (the variance of the
random variable X is F(X?) — E(X)?).

When E(Xy) = 0, the law of large numbers implies that * "~ X goes almost surely
to 0. Under stronger hypotheses on X, (namely X, € L?), it is possible to enhance this
result and to get further informations on the convergence: this is the following central
limit theorem.



Theorem 1.3. If Xy, X1,... are i.i.d. on Q with E(X,) =0 and E(X?) = 02 € (0,00),
then

n—1
%ZX,C — N(0,0?)
k=0

where the convergence is in distribution.

This means that P(ﬁ Z;é X, € (—00,z)) — \/2;7 f—moo e—t2/20% 4t

The surprising feature of this result is that the limit law is independent of the law of Xj:
it is a universal law. This is why the normal law is so important in physics. For example,
the error in a physical measurement can be seen as a sum of very small errors. Even
though the law of these very small errors is unknown, the central limit theorem implies
that the global error will be normal.

2 Iteration of maps

Let K be a space endowed with a measure i of mass 1, and T an application from K to
itself. If f : K — R, then the functions X; = foT" can be seen as random variables on the
space K, but they are of course not independent, nor identically distributed. Nevertheless,
it is sometimes possible to prove analogues of the strong law of large numbers or of the
central limit theorem for these functions.

2.1 Birkhoff’s Theorem

We would like to obtain a law of large numbers, that is %ZZ;& foT*x) — [ fdu for
p-almost every z, and for all function f € L!.

Changing variables in the sum and letting n go to infinity proves that, necessarily, [ foT =
J f. This means that VA, u(T-*A) = p(A): we say that the measure y is invariant by
T.

Moreover, if T(A) = A, then either p(A) = 0, or u(A) > 0. In the latter case, for f = 14,
there exists x € A such that %Zz;é oT*(z) — [ fdu = pu(A). But, on the left-hand
side, every term is equal to 1, whence p(A) = 1. We have proved that an invariant set
necessarily has measure 0 or 1. Such an application 7' is called ergodic.

Invariance and ergodicity are necessary conditions to obtain a law of large numbers.
Surprisingly, they are also sufficient:

Theorem 2.1 (Birkhoff’s Theorem, 1934). Let T be a measure-preserving, ergodic
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map of a probability space (K, p). If f: K — R is integrable, then for p-almost every x,
1 n—1
- > f(Tr) - /fdu.
k=0

Taking f = 14, we get that the proportion of time spent in A by the iterates of x is equal
to p(A). Thus, the iterates of x are very well equi-distributed in the space K, as if they
were points picked at random.

For example, take K = S' C C and T : z — 2%. It preserves Lebesgue measure, since the
preimage of a set A is two copies of A, but twice smaller. Moreover, it is ergodic: assume

A is invariant and Leb(A) > 0. Then A has points of density, i.e. there exists z such that
Leb(AN[z—e,z+¢])
Leb([z—e,z+€])
1/2™ such that the proportion of this interval covered by A is at least 1 — §. Iterating n
times, and since A is invariant, we get that A covers a proportion at least 1 —§ of S*, i.e.
pu(A) = 1—0. Thus, u(A) = 1. Birkhoff’s Theorem gives then a law of large numbers for

the iterates of almost all points of S*.

— 1 when € — 0. In particular, for any small d, there is an interval of size

Another example is given by the irrational rotations of the circle, i.e. rotations by an
irrational angle. They preserve Lebesgue measure and, using Fourier series, it is not hard
to show that they are ergodic.

However, this example seems to exhibit less randomness than the previous one: points
starting at a distance d will remain at a distance d after any number of iterations, while the
map z — 22 mixes everything. While the law of large numbers is true in both examples,
the central limit theorem will hold only in the latter.

2.2 Central limit theorem

The analogue of the central limit theorem in our dynamical setting is the fact that
w {a: | ﬁ S f(Tix) € (a, b)} — N(a,b) for any interval (a,b), where N = N(0,0?) is
a normal law for some parameter o2 > 0.

This kind of result is much harder to prove than laws of large numbers: while Birkhoft’s
Theorem dates back to the 30’s, the first deterministic central limit theorems were proved

in the 80’s! The required hypotheses are also much stronger, some kind of expansion is
needed. For example, a rotation on the circle never satisfies the central limit theorem.

Theorem 2.2. For T : z — 2% from S* to S!, the central limit theorem is satisfied for
any C'-function f with [ f =0.

The variance o2 is then [ f? + 2 2@1 [ f-foT" and an important part of the proof is
to prove that this sum is indeed finite.

The central limit theorem is in fact valid in a wider setting, that we precise in the following
theorem.



Theorem 2.3. Let T : S' — S' be C? with T' > X\ > 1. Then there exists a function
¢ € L'(dLeb) such that dp = ¢ dLeb is an invariant probability.

In fact, du is ergodic, whence T satisfies a law of large numbers for any f € L'(dp).

Moreover, any C* f with [ fdp = 0 also satisfies a central limit theorem, with o* =

ff2d/‘+22;.o=1ff'f°TndM-

There are mainly two methods of proof for the central limit theorem: the first one is to
prove first that Cor(f, foT™) := [ f- foT™ is summable, and then to use this information
to construct a reverse martingale: we bring back independence and use probabilistic
results.

The second method is a spectral method: instead of iterating forward, we iterate back-
ward, which corresponds to looking at an operator, called the transfer operator. This
operator has a regularizing effect, and nice spectral properties. The study of perturba-
tions of this operator gives the central limit theorem.
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