
ALGEBRAIC AND RATIONAL POINTS ON CUBIC SURFACES
(AFTER D F CORAY)

INTRODUCTION

We pose the following simple question.

Let q(x0, . . . , xn) be a homogeneous form of degree r with coefficients
in a field k. Let K be a finite extension of k of degree d prime to r. Then,
if q(x0, . . . , xn) has a non-trivial zero over K, does it have one over k too?

If we put r = 3, we get the following conjecture, which was apparently first
propounded by Cassels and Swinnerton-Dyer (possibly with n = 3, but we omit
that assumption here) and which is closely related to some problems mentioned by
B. Segre in [Seg51]

Cassels Swinnerton-Dyer Conjecture (CS):

Let q(x0, . . . , xn) be a homogeneous form of degree r = 3 with coefficients
in a field k. Then, if q(x0, . . . , xn) has a non-trivial zero over a finite
extension K of degree d prime to r, then so does it have over k.

D. F. Coray in his paper [Cor76] entitled Algebraic Points on Cubic Hypersur-
faces has dealt with this conjecture in some special cases and under some additional
hypotheses. In this brief article, we have chosen a part of that for discussion, which
involves some geometrical arguments. We build up all the machineries gradually in
3 sections and in the 4th section we prove the main result. Coray also discusses CS
when the field k is local and extends the result of Theorem 4.1 over to singular
surfaces, but we skip those topics here.

We want geometry to prevail in our discussions and so we reformulate the con-
jecture in the language of algebraic geometry as:

Let K/k be a finite extension of degree d prime to r and let V ⊂ Pn
k be

a hypersurface of degree r = 3 defined over k. Then V(K) 6= ∅ =⇒ V(k) 6= ∅.

§1. Some Background Material. In this section we deal with some special
cases and analogues of CS and also prove a few results, which will be used later
on. We call an extension simple if it is generated by only one element.

When r = 2, a lower level analogue of (CS) is true.

Theorem 1.1 (Springer):
Let q be a quadratic form with coefficients in k, and let K/k be a

finite extension of odd degree (that is prime to 2). Then if q admits a
non-trivial zero in K, then so does it in k.

Sketch of Proof:
We present an elementary proof here. We know that every finite extension of

odd degree can be split into a finite tower of simple extensions of odd degree. So,
by induction, it is enough to prove the theorem for simple extensions of odd degree.
Let us also assume that q(x1, . . . , xn) is in the diagonal form (assuming char(k) 6= 2,
of course). Now the proof is by induction on [K : k] = d, say. Let K = k(α) and let
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p(t) be the minimal polynomial of α over k. Since q has a non-trivial zero over K,
we write

q
(

g0(t), . . . , gn(t)
)

= p(t)h(t) ∈ k[t]

where at least one gj 6= 0 and let m = max {deg(gj) : j = 0, . . . , n} 6 d − 1. If
there is a non-constant polynomial f(t) ∈ k[t] that divides all the gj

′s then we can
pull that out and write it as

f2(t)q
(

g′0(t), . . . , g
′

n(t)
)

= p(t)h(t)

Now, k[t] is a PID and hence a UFD. f 2(t) divides the LHS, so it should divide the
RHS. Further, p(t) irreducible over k and deg(f) < deg(p) implies that f 2(t) | h(t)
over k[t]. Removing the f 2(t) factor from both sides we write the above equation
as

q
(

g′0(t), . . . , g
′

n(t)
)

= p(t)h′(t)

In this way we can remove all common non-constant polynomial factors. By
abuse of notation, we write it once again as

q
(

g0(t), . . . , gn(t)
)

= p(t)h(t) · · · · · · · · · · · (i)

with the assumption that the gj
′s have no non-constant common factor in k[t].

So the ideal generated by them in k[t] is the unit ideal and hence, they cannot have
a common zero in any algebraic closure of K. It is clear that h(t) should be non-zero,
using the fact that q is in the diagonal form, which we have already assumed. Now,
the degree of h(t) 6 2m − d 6 2(d − 1) − d = d − 2, which is odd (since d is).
Now, if h(t) were of even degree, q should be of odd degree. This would force some
cancellation of higher degree terms in q(g0(t), . . . , gn(t)) and so one could produce
a non-trivial zero of q over k using the coefficients of the leading terms of the gi

′s,
which get cancelled. So, assume that the degree of h(t) is odd. Hence, h(t) should
have an irreducible factor of odd degree 6 d − 2 as well, say z(t). Since its degree
is odd, it is non-constant. So reading equation (i) modulo z(t) we get a non-trivial

zero of q over an extension of odd degree w
k[t]

(

z(t)
) , its degree being 6 d− 2. Hence,

by the induction hypothesis we are through. �

� We shall only deal with projective varieties V ⊂ Pn
k̄
. It should be reminded that

a variety is a reduced scheme of finite type over k. Also, unless otherwise stated, a
form is always assumed to be homogeneous and by a point we mean a closed point.

A 0-cycle Z is a linear combination of closed points with coefficients in Z on a
k-variety V. Henceforth, by a cycle we mean a 0-cycle.

The ideas of the proofs of the results that follow in this section are borrowed from
Poincaré. [Poi01]

CS is true when r = 3, d = 2.

Lemma 1.2: If a cubic form q with coefficients in k has a non-trivial zero in a
quadratic extension K, then so does it have in k.

Sketch of Proof:
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Let P ∈ V be a non-trivial zero of q over K. Assume that K = k(η), where η has
degree 2 over k. We assume that P = (1, a1+b1η, . . . , an+bnη), where at least one bi

is non-zero (otherwise P is already a rational point). L(t) = (1, a1+b1t, . . . , an+bnt)
defines a parametrised k-line which passes through P when t = η. So, if L ⊂ V, we
have lots of rational points anyway; otherwise, q(L(t)) defines a non-zero polynomial
in t of degree 3. It has a solution P of degree 2. So there is a solution of degree 1,
which must be a rational point. �

P1
P2

Q

V

V

L

Lemma 1.3: Let P be a K-point in Pn
k , where [K : k] = d; then the family of k-

divisors F ⊂ Pn
k , of any given degree l, passing through the point P, is determined

by d linear conditions (not necessarily independent) on the coefficients of F.

Sketch of Proof:
We assume that P = (1, a1, . . . , an) over K. Then P ∈ F ⇐⇒ F(1, a1, . . . , an) = 0.

Let W be the vector space of all forms of degree l over k. Then, consider the k-linear
map,

ϕ : W −→ k(P)

F 7−→ F(1, a1, . . . , an)

The kernel of this map is precisely the linear space of forms passing through P.
Since [k(P) : k] = d the dimension of the kernel must be at least dimW− d. �

Proposition 1.4: CS holds good for cubic curves (i.e. when n = 2).

Sketch of Proof:
If V is k-reducible then it has a linear factor and hence a rational point. So we

may safely assume that V is irreducible. Let P be a point on the cubic curve V with
coordinates in K. Without loss of generality assume that k(P) = K. Let the degree
of P be d = 3r + s (s = 1 or 2). Now, the dimension of the vector space of forms Γl

of degree l in 3 variables is
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(

l + (3 − 1)

(3 − 1)

)

=

(

l + 2

2

)

We want them to pass through P and so by Lemma 1.3 we need to put d conditions.

We are forced to further subtract
(

(l−3)+2
2

)

=
(

l−1
2

)

dimensions as we do not want

the Γl
′s to contain V as a component. So we arrive at

(

l + 2

2

)

− d −

(

l − 1

2

)

and when l = r + 1, we get

(

(r + 1) + 2

2

)

− (3r + s) −

(

(r + 1) − 1

2

)

= 3 − s > 0

So there exists a form and hence a k-curve Γ of degree l which does not contain
V as a component. Then

Γ · V =
∑

P∈Γ∩V
P closed

len

(

OP2,P
/

(fΓ,fV)

)

P

where fΓ and fV are the local equations of Γ and V respectively and len

(

OP2,P
/

(fΓ,fV)

)

is its length as an OP2,P-module, is a cycle defined over k. The degree of Γ · V is

degk(Γ ·V) =
∑

len

(

OP2,P
/

(fΓ,fV)

)

[k(P) : k] = deg(Γ).deg(V) (Bézout). Since Γ has

degree l and V has degree 3, degree of Γ ·V = 3l = 3r +3 and it contains P of degree
3r + s. Then the residual k-cycle has degree 3 − s, s = 2 or 1. In the former case
we are through and in the latter we need to invoke Lemma 1.2. �



5

L

Descent 4−>2−>1
V

V

S2

S1

R

P4

P3

P2

P1

We recall that a field k is called C1 (or quasi-algebraically closed) if every form of
degree d in at least d+1 variables has a non-trivial zero in k. A well known theorem
due to Chevalley-Warning says that every finite field is C1. Hence we derive the
following corollaries:

Corollary 1.5: CS holds good for all C1 fields, in particular for finite fields.

Sketch of Proof:
Proposition 1.4 tells us that CS is true if n 6 2. When n > 2, there is nothing

to prove. �

Hence, the matter is settled over finite fields.

Corollary 1.6: Let V ⊂ Pn
k be a cubic hypersurface defined over k. If V contains a

k-divisor D of degree d prime to 3, then V(k) 6= ∅.

Sketch of Proof:
We can cut V by a generic k-plane Π passing through D. Then V ∩ Π is a cubic

curve with a k-cycle D of degree d. Since d is prime to 3 we can use Proposition
1.4 to prove the result. �

§2. A Descent Argument. In this section we shall confine our attention to the
case of cubic surfaces (that is n = 3). With the following proposition we make
inroads into the problem for the first time (with n = 3, of course).
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Proposition 2: (Cassels) Assume CS is true over k and its finite extensions for
all degrees d < 3r + 1 (3 - d). Then it is true for d1 = 3r + 1 if and only if it is so
for d2 = 3r + 2.

Sketch of Proof:
We assume that P = (1, α, β, δ) ∈ V(K), with [K : k] = d, (d = d1 or d2). At least

one of α, β or δ is not in k and let us assume that α 6∈ k. Without loss of generality,
we may assume that K = k(α). Otherwise, k(α) would be an intermediate field
extension and we could use induction hypothesis. Hence β = a0 + a1α + · · · +
ad−1α

d−1 and δ = b0 + b1α + · · · + bd−1α
d−1. This already shows that there is

a k-curve γ(θ) = (1, θ, p(θ), q(θ)) such that p(θ) = a0 + a1θ + · · · + ad−1θ
d−1 and

q(θ) = b0 + b1θ + · · ·+ bd−1θ
d−1, of degree 6 d− 1 that contains P; but, with some

foresight, we look for a curve of degree m 6 2r + 1.
In order to construct it, we multiply all the coordinate functions of the curve by

a polynomial A0(θ) = c0 + c1θ + · · ·+ c2rθ
2r, whose coefficients will be determined

later and call the new curve Γ(θ).

Γ(θ) =
(

A0(θ), A1(θ), A2(θ), A3(θ)
)

where,

A1(θ) = θA0(θ) = c0 + c1θ + · · · + c2r+1θ
2r+1

A2(θ) = p(θ)A0(θ) = c′0 + c′1θ + · · · + c′d−1θ
d−1

A3(θ) = q(θ)A0(θ) = c′′0 + c′′1θ + · · · + c′′d−1θ
d−1.

This defines two polynomials A2(θ) and A3(θ), whose coefficients depend linearly
and homogeneously on those of A0(θ). We, therefore, need to determine the co-
efficients ci ∀ i = 0 . . . 2r, in such a way that the degrees of A2(θ) and A3(θ)
do not exceed 2r + 1. This amounts to solving (non-trivially) a linear system of
2
(

(d− 1)− (2r + 1)
)

= 2d− 4r− 4 6 2r homogeneous equations in 2r + 1 variables
and this we know can be done.

Thus we have found a k-curve Γ which is the locus of
(

A0(θ), A1(θ), A2(θ), A3(θ)
)

of degree m 6 2r+1, passing through P. Γ is a parametrised curve with coefficients
in k. So we can safely assume that Γ 6⊂ V (otherwise we have lots of rational points).
We have a map of degree m,

A1 −→ P3

θ 7−→
(

A0(θ), A1, (θ), A2(θ), A3(θ)
)

Let F be the form of V of degree 3. Then F (θ) = F
(

A0(θ), A1(θ), A2(θ), A3(θ)
)

is a non-zero polynomial in θ of degree 3m = deg(V).deg(Γ). P is a solution of F (θ)
of degree d. Hence there is at least one solution of degree 6 3m − d over k and
prime to 3 (as 3m− d is). That defines a closed point of degree 6 3m− d on V over
k. Suppose that the degree of the point is equal to 3m − d (otherwise we can use
the induction hypothesis, which will be evident from the calculations to follow). If
d = d2 then δ = 3m − d2 6 3(2r + 1) − (3r + 2) = d1; and if d = d1 then
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δ = 3m − d1 =

{

d2 if m = 2r + 1,

3m − (3r + 1) < d1 if m 6 2r.

Since 3 - δ, we can also find a k-cycle of degree δ′ 6 δ not divisible by 3, and the
assertion once again follows from the induction hypothesis. �

§3. Curves and Divisors. In this section we shall prove a crucial theorem
and also estimate the maximum possible genus of a curve lying on a non-singular
surface embedded in a projective space. We denote the normalisation of a curve
Γ by Γ̃ [Har77]. For the convenience of the reader we recall the definition of a
perfect field. A field is said to be perfect if its algebraic extensions are all separable.
By absolutely irreducible (respectively integral) we mean geometrically irreducible
(respectively integral).

The theorem presented below will be used under various circumstances in the ar-
guments later on. That is why it is crucial !!

Theorem 3.1:
Let k be a perfect field. Let Γ ⊂ Pn

k be an absolutely integral k-curve

of degree m and let the genus of Γ̃ be g = dimkH
1(Γ̃,OΓ̃). Suppose that

Γ̃ contains a divisor E of degree e and let δ = gcd
(

m, e, 2(g − 1)
)

. Then Γ
also contains a effective k-cycle of degree θ = jδ, ∀j such that jδ = θ > g.

Sketch of Proof:
Since k is perfect, the normalised curve Γ̃ is smooth. The normalisation map

p : Γ̃ −→ Γ induces two maps at the level of zero-cycles as follows:

p? : Z0(Γ) −→ Z0(Γ̃) (pull back)

Q 7−→
∑

P∈p−1(Q)

vP (t) · P

where t ∈ OQ is the local parameter at Q i.e. t ∈ K(Γ) & vQ(t) = 1.

p? : Z0(Γ̃) −→ Z0(Γ) (push forward)

Q 7−→ [k(Q) : k(p(Q))]p(Q)

We know that, deg(p?(D)) = deg(p).deg(D). Degree of p is [K(Γ̃) : K(Γ)] and

since K(Γ̃) = K(Γ), p is a map of degree 1. So p? preserves the degree of cycles.
It is clear from the definition of p? that it also preserves the degree of cycles. We
take an absolutely integral complete intersection of Γ with a k-hyperplane and pull
it back to Γ̃ via the map p? to obtain a k-divisor M of degree m. It is known that
we can choose a k-divisor κ in the canonical class and its degree is 2g− 2. Now, we
write δ = pm+qe+r(2g−2) and set D = pM+qE+rκ. Then D is a k-divisor of degree
δ. Now by the Riemann-Roch on curves [Har77] [`(D) − `(K− D) = deg(D) + 1− pa]
we get,

`(jD) > jδ + 1 − g



8

So whenever jδ = θ > g, `(jD) > 0. Hence jD is linearly equivalent to an effective

k-divisor Θ of degree θ on Γ̃. This projects down onto an effective k-cycle of same
degree θ on Γ via p?. �

As a by-product we obtain the following beautiful result:

Corollary 3.2: Every smooth projective curve of genus 0 and odd (respectively
even) degree has a rational point (respectively a rational pair of points).

Estimate of genus. In this part we find an estimate of the maximum possible
value of the genera of curves on a cubic surface. This is needed because we shall be
using Theorem 3.1 quite often and there we need θ to be greater than the genus
of the curve to claim the existence of positive cycles.

Lemma 3.3: The arithmetic genus of an absolutely integral curve Γ of degree 3l,
lying on a non-singular cubic surface V does not exceed

3l(l−1)
2 + 1.

Sketch of Proof:
The proof becomes neat if we make use of the following formula,

pa(Γ) − dimkH
0(Γ,OΓ) = Γ·(Γ+K)

2

where K = −H is the canonical class of V, H being a plane section. Since Γ is
an absolutely integral projective curve dimkH

0(Γ,OΓ) = 1. Now, let Γ0 be an

absolutely integral complete intersection with degree 3l. Then Γ0
2 = (lH)

2
= 3l2.

So we get,

pa(Γ0) − 1 = Γ0
2+Γ0·(−H)

2 = 3l(l−1)
2

Therefore, we obtain pa(Γ0) = 3l(l−1)
2 + 1. So it is enough to show that for

a fixed degree 3l, genus of an absolutely integral curve is maximal on complete
intersections.

We recall the Hodge Index Theorem [Mum66] which says that if H is an ample
divisor on a surface and D another divisor such that D · H = 0, then D2 6 0. Now, H
is ample on V and (Γ − Γ0) · H = 0. So we have, (Γ − Γ0)

2 6 0

⇒ Γ2 6 2(Γ · Γ0) − Γ0
2

= 2.l.3l − 3l2 [Γ0 = lH]

= 3l2

= Γ0
2

This proves our assertion. �

This result can also be extended to singular surfaces of degree µ (µ = 3 here)
with finitely many singular points if we use a result of Max Noether [Noe82] which
says that for any given degree m = µl, the genus of curves of degree µl is maximal
on complete intersections. So, the first part of the proof, that is the calculation
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of the genus in case of complete intersections, goes through unchanged. For the
second part we need to use the result of Max Noether.

Hence we obtain the following lemma (we shall not use it anywhere).

Lemma 3.4: The geometric genus of an absolutely integral curve Γ of degree 3l,
lying on a cubic surface V, with only finitely many singular, points does not exceed

3l(l−1)
2 + 1.

§4. The Descent on Non-singular Cubic Surfaces. We are now ready to
prove the main result. (CS with n = 3, k perfect and V non-singular).

Theorem 4.1:
Let V ⊂ P3

k be a non-singular cubic surface defined over a perfect field
k and containing a point P with co-ordinates in an algebraic extension
K/k of degree d prime to 3. Then there is an extension L/k with degree
1 (that is, in k itself), 4 or 10, such that V(L) 6= ∅.

Proof:
In view of Corollary 1.5 we may assume that k is infinite. The argument is by

induction on the degree d of the extension. If d = 1, there is nothing to prove. So,
we may assume that d > 1 and also that k(P) = K [otherwise k $ k(P) $ K and each
intermediate extension is of degree strictly less than d and prime to 3. So we can
use induction hypothesis]. Since k is perfect P has d distinct conjugates. We shall
try to pass a surface Fl of degree l through P. Let Γ = Fl ∩ V. There is a unique
integer l such that

pa(Γ) 6
3l(l − 1)

2
+ 1 6 d <

3l(l + 1)

2
+ 1 =

(

l + 3

3

)

−

(

(l − 3) + 3

3

)

The last term above indicates, in some sense, the “degree of freedom” that we
have on the coefficients of Fl of degree l not containing V as a component. We
want Fl

′s to pass through P as well and so, this term better be strictly greater than

d. Let f = 3l(l+1)
2 − d. It is the extra degree of freedom, that is, the number of

extra conditions that we can further impose on the surfaces. By the above set of
inequalities we get f > 0. But 3 - d ⇒ 3 - f and so we have f > 1. The idea of the
proof is to apply Theorem 3.1 to the curve Γ cut out by Fl.

I. We first consider the case, where Γ is absolutely integral. The reducible
case will be dealt with later on. The proof is broken up into the following
cases:
A. d > 3l(l−1)

2 + 1

There is no harm in assuming P to be non-singular on Γ. If P were a
point with multiplicity greater than 1 then so would be its conjugates
and hence the geometric genus of Γ would drop at least by d, but

pa(Γ) 6
3l(l−1)

2 + 1 < d in this case. This says that all its conjugates
are also non-singular on Γ. So we have a Weil k-divisor of degree d
defined on Γ̃ by P.

(i) f > 3 (3 - f ⇒ f > 4)
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With some foresight, we try to produce a k-divisor of degree 3 on
Γ̃. Let Σ be the intersection of V with a k-line, such that Supp(Σ)
is {Q1, Q2, Q3}. We achieve our goal using the following claim.

Claim: There exists an Fl, whose intersection with V, is a non-
singular and absolutely integral k-curve on V that passes through
P and Σ.

A few words about the Claim: We request readers to refer
to a paper [KA79] by Kleiman and Altman which contains the
following theorem:

Let k be an infinite field. Let Z be a subscheme of Pn
k and X a

subscheme of Z. Let I denote the ideal in OP of the closure X̄
of X in P and fix a positive integer n such that I(n) is gener-
ated by its global sections. Assume that Y = Z − X̄ is smooth
(respectively that Z is absolutely integral). Then an intersection
of any number of (respectively of codim((X, Z)− 1)) sections of
Z by independent general hypersurfaces of P with degree n + 1
containing X is smooth off X̄ (respectively absolutely integral).
Granting this result, we are almost through. Of course, we need
to worry about small values of l, which we hope, can be resolved
“manually” !!

Using the claim, we conclude that we have a k-divisor defined
by P of degree d prime to 3 and another k-divisor Σ of degree
3 on Γ̃. So we have a k-divisor of degree 1 on Γ̃ and since the

genus of Γ̃ is at most 3l(l−1)
2 + 1, by Theorem 3.1 we have an

effective k-cycle of degree
∑

Q

nQ[k(Q) : k] = 3l(l−1)
2 + 1 < d on Γ

as well. Since 3 - 3l(l−1)
2 + 1 there is at least one Q such that

[k(Q) : k] is prime to 3 and so corresponding to that there is an
extension K′/k of degree d′ < d which contains the closed point
Q of degree d′ over k.

(ii) f < 3

The argument is similar to the previous case, except that we do
not need to introduce the additional set of 3 points. Set

δ = gcd(3l, d, 2g − 2) | l

We choose θ = jδ as in Theorem 3.1 such that θ ∈ [g, g − 1 +
2δ] ∩ Z. There are 2δ integers in this interval and two of them
are divisible by δ. Since δ and 3 are coprime, at least one of
the two integers divisible by δ is not divisible by 3. We choose
that multiple of δ. We land up with a non-trivial zero in the
corresponding field extension of k, the degree of which is also
strictly less than d because,

(g − 1) + 2δ 6 (g − 1) + 2l 6
3l(l − 1)

2
+ 2l =

3l(l + 1)

2
− l < d
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provided f < l, which is true if l > 3 (f < 3 in this case).
If l = 2, δ can only be 1 or 2 and d > 4. If d = 4, we cannot do

anything about it. So assume that d > 5. Now, g 6
3.2.(2−1)

2 +
1 = 4. So with δ = 1 or 2 we can always choose θ = jδ as in
Theorem 3.1 to be 4 and hence an effective cycle of degree 4
on Γ.

B. d = 3l(l−1)
2 + 1, f > 9 (3 - f ⇒ f > 10)

Since the geometric genus can be as large as d in this case, we need a
further trick. Once again we choose a k-set of 3 points {Q1, Q2, Q3}
and impose on Fl the further condition that it should meet V at Q1, Q2, Q3

with multiplicity at least 2. This can be done provided the extra de-
gree of freedom f > 9. [If mQ is the maximal ideal corresponding to a
closed point Q and if h is the form defining Fl, then we need, h ∈ m2Q.
This represents 3 conditions as we shall have to adjust the terms 1, x
and y in h. There are 3 points Q1, Q2, Q3. So we need 9 conditions
altogether]. The descent fails in the cases of d = 4 and d = 10 pre-
cisely because of this assumption on f . [f < 9 ⇒ l 6 3. l = 2 gives
d = 4, f = 5 and l = 3 gives d = 10, f = 8].
If we carry out the above mentioned construction, the curve Γ acquires
3 double points and so the geometric genus drops at least by 3. Thus
we have

g 6
3l(l − 1)

2
+ 1 − 3 =

3l(l − 1)

2
− 2.

Now as d = 3l(l−1)
2 + 1 we can explicitly compute δ,

δ = gcd

(

3l,
3l(l − 1)

2
+ 1, 2g − 2

)

=

{

1 if l 6≡ 2 (mod 4) ,

2 if l ≡ 2 (mod 4) .

The term 2g − 2 does not play any role as it is always even. So we
obtain a descent from d to d′, where

d′ = 3l(l−1)
2 − 2 or 3l(l−1)

2 − 1. d′ is clearly prime to 3.

That takes care of the proof when Γ is absolutely integral. Unfortunately,
this does not complete the proof as Γ need not necessarily be irreducible.

II. Now suppose that the cycle defined by P is contained in a k-irreducible
component C such that C ×k k̄ = C1 ∪ · · · ∪ Cr , with Cj integral over k̄,
j = 1, . . . , r. We have the following two subcases:

A. r = 1

In view of Corollary 1.6 we may assume that the degree m of C is
a multiple of 3, m = 3λ say, λ < l. Now the geometric genus g of C
satisfies

g 6
3λ(λ − 1)

2
+ 1 <

3l(l − 1)

2
+ 1 6 d
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and so we have reduced it to the case IA of the previous part of the
proof (C itself being absolutely integral now).

B. r > 2

It is clear that the action of the Galois group G is transitive on the set
{C1, . . . , Cr}. Hence each Cj contains an equal number ν of conjugates
of P. Let us suppose that P ∈ C1; we conclude that C1 is defined over
a field L, where L/k is an extension of degree r (C×k k̄ = C1∪· · ·∪Cr).
If C1 is the only component containing P, then none of the conjugates
of P belongs to more than one component of C and so we have νr = d.
Since 3 - d, both ν and r are prime to 3; and since P has exactly ν
conjugates on C1, P defines a point of degree ν over L. [The attached
diagram can be more illustrative]. A similar argument goes through if
P belongs to precisely two components of C, except that we now have
νr = 2d.

L

P of degree
over L

P1
Pk

k C

C1 Cr

P’1
P’

We may assume that the degree µ of C1 is a multiple of 3, say µ = 3λ,
in view of Corollary 1.6. Γ is a curve of degree 3l and C is a k-
irreducible component of Γ which further breaks down as C1 ∪ · · ·∪Cr
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with each Cj integral over k̄, and the degree of C1 being µ. Since
Galois automorphisms preserve dimension and degree of algebraic sets,
all Cj

′s have the same degree µ.

3l = deg(Γ) > deg(C) =
∑

j

deg(Cj) = rµ = 3rλ.

We combine all these data to obtain the following set of equalities and
inequalities.

[L : k] = r 6 rµ 6 3l 6
3l(l − 1)

2
< d.

except when l = 2, which is a trivial case. We have thus reduced
the problem to the previous case, that is IIA. On C1 we can use
Theorem 3.1 to find an L-cycle of degree θ1 = jδ1 > g1, where
δ1 = gcd(3λ, ν, 2g1 − 2) | λ, g1 being the geometric genus of C1. This
induces a k-cycle of degree θ = rθ1 on C. We need to check that θ < d
and 3 - θ. The argument now is in the same vein as I(A)ii. The chosen
j should be such that θ1 = jδ1 6 g1 − 1 + 2δ1. Thus, we get

θ = rθ1 < r(g1 − 1 + 2δ1) 6 r

(

3λ(λ − 1)

2
+ 2λ

)

=
rλ(3λ + 1)

2
6

3l(l − 1)

2
< d

[The last inequality but one is easy to see when λ > 2; λ = 1 ⇒ µ = 3
and so by Theorem 3.1 C1 has a rational point over L]. Observe that,
θ1 ∈ [g1, g1 − 1 + 2δ1]∩Z and [g1, g1 − 1 + 2δ1] contains 2 multiples of
δ1. As 3 - δ1 at least one of them is not divisible by 3. We choose that
value of θ1 and as 3 - r, θ = rθ1 is also prime to 3.

The following claim finishes the proof.

Claim: The point P cannot belong to more than 2 distinct components.

Proof of Claim:
Assume the contrary. Suppose P belongs to s > 2 distinct components.
Then each point accounts for at least s−1 intersections and hence the
total number of intersections, i =

∑

j<k

Cj · Ck > (s − 1)d

On the other hand we know that

i = pa(C) −
r
∑

j=1

pa(Cj) + (r − 1).

[just formally replacing pa(C) by C(C+K)
2 + 1 and using the fact that

C breaks up into Cj
′s, we can derive the above expression]. Therefore,

even if all the pa(Cj)
′s are zero, the maximum value that i can attain

is

pa(C) + (r − 1) 6
3l(l − 1)

2
+ 1 + (r − 1) =

3l(l − 1)

2
+ r

Remember that we have assumed s > 2. So we get the following set
of inequalities.
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2d 6 (s − 1)d 6 i 6
3l(l − 1)

2
+ r <

3l(l − 1)

2
+ d

So we find that d < 3l(l−1)
2 , which contradicts our hypothesis,

d >
3l(l−1)

2 + 1.

This finishes the proof of the claim and exhausts all possibilities in the proof of
Theorem 4.1. Hence, we have proved Theorem 4.1. Q.E.D.

CONCLUSION

The arguments here are clearly very tricky at some places and the magic does
not quite take place when r > 4, with n = 3. There do exist counter-examples
and for that interested readers are requested to refer to [Kol03]. Counter-examples
also exist in the case r < n [Sha72], a condition, under which an affirmative answer
would have been less surprising. At this point, I should put forward my apologies for
the sloppy language, not always conforming to the Grothendieck-style of algebraic
geometry. Finally, it should be mentioned that someone has claimed that we can
actually obtain a descent in the case d = 10 as well (in the proof of Theorem 4.1
we got stuck at d = 4 or 10 !!)
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