Feuille 7

Exercice 1 Soit K un corps complet pour une valuation discrète d'uniformisante π . Un polynôme $f(X) \in K[X]$ est dit polynôme d'Eisenstein si

$$f(X) = a_0 X^n + a_1 X^{n-1} + \dots + a_n$$

avec $|a_0| = 1, |a_i| < 1, |a_n| = |\pi|.$

- 1. Soit L une extension finie de K. Montrer que L/K est totalement ramifiée si et seulement si $L = K[\alpha]$ avec α racine d'un polynôme d'Eisenstein.
- 2. Supposons que L/K est totalement ramifiée. Soit A et B les anneaux de valuations discrètes de K et L. Soit Π un élément premier dans B. Montrer que $B = A[\Pi]$.

Exercice 2 Le groupe topologique $\mathbb{A}_{\mathbb{Q}}^{\times}$

- 1. En considérant les adèles x_p valant p à la place \mathbb{Q}_p et 1 à toutes les autres places, montrer que $\mathbb{A}_{\mathbb{Q}}^{\times}$ muni de la restriction de la topologie de $\mathbb{A}_{\mathbb{Q}}$ n'est pas un groupe topologique.
- 2. Soient K un corps de nombres et $i: \mathbb{A}_K^{\times} \hookrightarrow \mathbb{A}_K \times \mathbb{A}_K$, $x \mapsto (x, x^{-1})$. On munit $i(\mathbb{A}_K^{\times})$ de la topologie restreinte de celle sur $\mathbb{A}_K \times \mathbb{A}_K$ et on met sur \mathbb{A}_K^{\times} la topologie telle que i est un homéomorphisme sur son image. Montrer que muni de cette topologie, le groupe \mathbb{A}_K^{\times} est un groupe topologique et que l'application $j: \mathbb{A}_K^{\times} \hookrightarrow \mathbb{A}_K$ est continue.
- 3. En voyant \mathbb{A}_K^{\times} comme le produit restreint des K_v^{\times} relativement aux $\mathcal{O}_{K_v}^{\times}$ et en mettant sur \mathbb{A}_K^{\times} la topologie limite inductive qui en découle, montrer que cette topologie est la même que la précédente.

Exercice 3 Soit K un corps de nombres et \mathbb{I}_K le groupe des idèles sur K. En considérant l'application volume

vol:
$$\mathbb{I}_K \to \mathbb{R}_+^*$$
, $(x_v) \mapsto \prod_v |x_v|_v$,

montrer que \mathbb{I}_K/K^* n'est pas compact.

Exercice 4 (\mathbb{I}_K^1/K^* compact $\Rightarrow \operatorname{Cl}(\mathcal{O}_K)$ fini) Soit K un corps de nombres. On rappelle que l'on a un morphisme de groupes entres les idèles de K et les idéaux fractionnaires de K:

$$\varphi : \mathbb{I}_K \to \operatorname{Div}(\mathcal{O}_K), \quad x = (x_v) \mapsto \prod_{v \nmid \infty} \mathfrak{p}_v^{\operatorname{val}(x_v)}.$$

Montrer que si l'on munit $\operatorname{Div}(\mathcal{O}_K)$ de la topologie discrète, ce morphisme est continu et que $\varphi_{\parallel_K^1}$ est surjectif. En déduire la finitude du groupe des classes $\operatorname{Cl}(\mathcal{O}_K)$.

Exercice 5 (\mathbb{I}_K^1/K^* compact \Rightarrow Théorème des unités) Soient K un corps de nombres et S un ensemble fini de places, contenant les places à l'infini. On note

$$H_S = \{ x \in K \mid \forall v \notin S \mid |x|_v = 1 \}$$

le groupe des S-unités.

- 1. Vérifier que H_S est un sous-groupe de K^* .
- 2. Soient $0 < c \le C < +\infty$. Montrer que l'ensemble des S-unités x vérifiant $c \le |x|_v \le C$ pour tout $v \in S$ est fini.
- 3. Notons $\mu_{\infty}(K)$ le groupe des racines de l'unités dans K. Déduire de la question précédente que si $x \in K$, on a

$$|x|_v = 1 \ \forall v \iff x \in \mu_\infty(K).$$

4. On suppose désormais que $S=S_{\infty}$ est l'ensemble des places archimédiennes de K. On note $J_S=\{x\in\mathbb{I}_K\mid \forall v\notin S\ |x_v|_v=1\}$ et on pose $J_S^1=J_S\cap\mathbb{I}_K^1$. On introduit également le plongement logarithmique

$$\lambda: J_S \to (\mathbb{R})^s, \quad \alpha \mapsto (\log |\alpha_i|_i)_{1 \le i \le s} \quad \text{avec } s = \operatorname{Card}(S).$$

Montrer que λ est surjective, continue. Montrer que $\ker(\lambda_{|H_S})$ est cyclique et que $\lambda(H_S)$ est discret.

5. Considérant $\lambda(J_S^1)$ montrer que $\lambda(H_S)$ est libre de rang s-1.