ED2
Bon Travail
EX S
O Soit
$$C = \{ Ja, bL \mid 0, b \in \mathbb{R} \}$$
, alors $\sigma(C) = \mathcal{B}_{UR} \}$
Soit $A_n =] \rightarrow n \in CC$, $\bigcup A_n = \mathbb{R}$.
Prove tent $A \in C$, $f_n (A) = \lambda + f'(A) = \frac{1}{2} \lambda (A)$
alors. $f_n \lambda = \frac{1}{2} \lambda$ sur $\mathcal{B}_{UR} \}$ OK. Tu pourrais expliquer que, d'après le corollaire au Lemme de
classe monotone, l'ambda2 est la seule mesure de Borel donnant le
pods (b-a)2 à chaque intervalle ja.bj.
Soit $\pi \neq a$. $alors$, $Jx = eL \neq Jx = eL$
conve $f_n \mu = \mu$. $\forall n = \mu(Jx + eL) = \mu(Jx^2 - eaL)$, ∂k
denc $V a > 0$, $\mu(Je, xeL) = 0$ ok
 $V b > 0$, $\mu(Je, xeL) = 0$ ok
 $V b > 0$, $\mu(Je, xeL) = 0$ ok
 $V b > 0$, $\mu(Je, xeL) = 0$ is it prends bed ?
fixe a et b .
on $a = R \setminus \{e\} = (\coprod_{REZ} J^{2} a, z^{*} aL) \sqcup (\coprod_{L} J^{2m} b, z^{*} bL)$
denc $\mu(R \setminus \{r_{L}\}) = 0$. $\mu(\{e\}) = \mu(R) - \lambda < \infty$ car μ est finic
 $S = 0 \in A$, on a $0 \in A$ et $\mu(xA) = \lambda = \mu(A) = f_{e} \mu(2A)$.
denc $\mu(R \setminus \{r_{L}\}) = 0$. $\mu(\{e\}) = \lambda(Je, EL) = \lambda(Je, EL) = \frac{1}{2} a \cdot ER$. OK. On appelle cette mesure due Dirac en
xo0, normalisée par Vambda.
B Soit $T = \{\mu(r_{L}] \mid x \in E\}$
 $Ox un monturer gue $f_{e}\mu = \mu \iff f'(\{\pi \in E \mid \mu(r_{L}) : \tau_{L}\}) = \{\pi \in E \mid \mu(r_{L}) = t\}$
put tut $\tau \in T$.
'e: $V u \in E$. $\mu(r_{L}) = t \in T$. $alori. $\mu(f'(Eux)) = t$.
f: $\mu(r_{L}) = \mu(f'(r_{L})) = \mu(f(r_{L}) = t$.
f: $\mu(r_{L}) = \mu(f'(r_{L})) = \mu(r_{L})$
f: $f_{e}\mu(r_{L}) = \mu(f'(r_{L})) = \mu(r_{L})$
f: $\mu(r_{L}) = \mu(f'(r_{L})) = \mu(r_{L})$
f: $f_{e}\mu(r_{L}) = \mu(f'(r_{L})) = \mu(r_{L})$
f: $\mu(r_{L}) =$$$

Cela ne suffit pas à décrire les mesures \mu invariantes. Tu ne t'es pas servi de la décomposition en cycles.

Ex 6

$$\bigvee (x_n)_{n_1} \in \{0, 1, 2\}^{N_1} \text{ tabeque } S_n = \frac{2}{K_1} \cdot \frac{x_n}{3} \text{ tabeque } S_n + \frac{2}{K_1} \cdot \frac{x_n}$$

Soit
$$A_n \\leq \{v_{1}, v_{2}\}^{N} \cdot n \in \mathbb{N}$$
 $A_n = \{ (y_{1}, h_{2}), | \forall k > n . y_{k} = 0 \}$
Donc A_n set dénombrable et $\bigcup_{n \in \mathbb{N}} A_n$ est anssi dénombrable
Comme $(\pi_{n})_{n_{2}} \\leq A_{n}, (\chi_{n})_{n_{2}} \\leq A_{n}, \dots \\Donc \\Dest dénombrable.
 OK
 $\begin{aligned} \hline D \\ (\chi_{n})_{n_{2}} \\leq A_{n}, \dots \\Donc \\Dest dénombrable. \\ \hline OK \\end{aligned} \\end{aligned}$$