AN INTRODUCTION TO SEMICLASSICAL ANALYSIS

STEPHANE NONNENMACHER

Requirements: elementary functional analysis (Hilbert spaces), Fourier transform, theory of
distributions. Linear PDEs and semigroup theory. Spectral theory on Hilbert spaces (at

least for bounded operators).
Following Ch.Gérard’s course on Spectral Theory would help.

Bibliography on semiclassical analysis:

e M.Zworski, Semiclassical Analysis, AMS, 2012

e A.Martinez, An Introduction to Semiclassical and Microlocal Analysis, Springer, 2002

e M. Dimassi and J. Sjostrand, Spectral Asymptotics in the Semi-Classical Limit, Cam-
bridge U Press, 1999

Older books on microlocal analysis (that is, without the A parameter)

e A. Grigis and J. Sjostrand, Microlocal Analysis for Differential Operators, An Intro-
duction. Cambridge University Press, 1994

e L. Hormander, The Analysis of Linear Partial Dierential Operators, Volumes I-IV,
Springer, 1983-85 (a.k.a. “the Bible”).

1. INTRODUCTION TO THE COURSE

1.1. What is this all about? Objective: analyse qualitatively and quantitatively certain

types of linear differential operators appearing in mathematical physics.

1.1.1. Originally: understand the solutions to Schrédinger equation in quantum mechanics.
Originally, the semiclassical analysis was applied to the equations of quantum mechanics. The
dynamics of a massive, nonrelativistic quantum particle is governed by the time-dependent
Schrédinger eq. on Hilbert space u(t) € L*(R?),

(1.1) ihowu(z,t) = (—@

o T V(:z:)) u(x,t).

Here V(z) is the potential energy of the quantum particle. In these lectures we will gener-

ally assume that the function V' (z) is smooth, and make some extra assumptions about its
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behaviour at infinity. The differential operator P, = —f—nf + V() is called the quantum
Hamiltonian of the system. In physics, the parameter A ~ 1073*.J.s has the dimension of an
action, m is the mass of the particle (ex: Mejectron = 1073 kg). As is often done in theoretical

physics, will now get rid of these dimensioned parameters.

We will reduce the dimension of the Schrédinger equation by setting the mass m L We
will also fix a reference energy scale Fy typical of the values of V' we are interested in, and
set it to unity, so there remains only a single dimension (length=time), and we are lead to

study the operator

(1.2) P, = —hQTA + V(z)

around the energy ~ 1 (adimensional). We notice that now [h] = length = time, the unique
remaining dimension. We can then consider the typical length scale Ly set by V(x), and
remove the last dimension by setting Lo = 1. All quantities are now dimensionless, and
h takes a certain numerical value. Is it small? Large? Medium? Notice that the original
dimensional parameter / had the dimension of an action [h] = [ET]; given the 3 dimensional
quantities Ey, m, Ly, we see that the only action we can construct is Sy = Eé/ *mt/ 2Ly. We

should thus compare A = 10734.J.s to the value of the action Sj.

The assumptions we will make on V(z) will induce that the operator P is self-adjoint on
L*(RY), with a dense domain D(P;) C L?; its spectrum will therefore be real. One major
goal of quantum mechanics is to analyze quantitatively the spectra of such operators. In the
cases we will study, spectra will often have a discrete component made of isolated eigenvalues

of finite multiplicities
(13) Pﬁum = E}j’iumi, 1= 0, 1, 2, e

In this situation we will be interested in the following spectral data:

(1) the distribution of the eigenvalues {E; 1}, in some fixed interval (indep. of &)
(2) the spatial (and more generally, phase space, or microlocal) localization properties of

the eigenfunctions wu; .

1.1.2. Semiclassical limit = fast oscillatory functions. As often the case in analysis, one can
make effective computations only in presence of a small (or large) parameter, meaning in
some asymptotic limit. The semiclassical limit consists in analyzing the operator Pj in
the regime i < 1. This corresponds to wavefunctions u(x,t) which oscillate fast in position,

compared with the macroscopice scales (Ax ~ 1).
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FIGURE 1.1. 2 eigenfunctions of the Laplacian inside a stadium-shaped domain
(with Dirichlet boundary conditioins). The grey intensity is proportional to

[ui ()],

A local model to keep in mind is that of the pure Laplacian, which describes the free motion
of a quantum particle (V = 0). Then, the equation —A*Au = 1 can be solved locally by

linear combinations of plane waves with same wavelength 27h < 1:

u(z) = /Sd_l c(€) e /h e,

These waves oscillate on scales ~ A much smaller than the global scales of the problem

(Lo ~ 1). Here 4(§) is, up to normalization, the (semiclassical) Fourier transform of u(x).

Such oscillatory functions can be very complicated at the microscopic scale (cf. pictures of
eigenmodes of billiards). In general there are no explicit, or even approximate expressions

for the eigenmodes.

Furthermore, because £ is in front of the most singular term (in the PDE sense: the highest

derivative term), the limit & — 0 of the Schrédinger equation is singular.
What do we gain from studying this semiclassical regime?

Claim. in the semiclassical regime h < 1, we will be able to connect the Schréodinger equation
(a linear PDE) with the classical mechanics of point particles (a Hamiltonian Ordinary

Differential Equation), and thereby gain nontrivial informations on the eigenmodes w; ().

1.1.3. Applications of the semiclassical formalism to the wave equation. This section, which

establishes a connexion with the wave equation, may be read at a later stage.

Semiclassical analysis is closely connected with the microlocal analysis of linear PDEs, which
was introduced in the 1960s. The typical example of equation dealt with is the scalar wave

equation on R?. The original equation reads

(07 — A) u(z, t) =0,
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where ¢ > 0 is the speed of sound, which we assume homogeneous (position-independent)
and isotropic. We may then reduce the dimension of this PDE by setting ¢ = 1, thereby

obtaining a dimensionless wave equation (92 — A)u = 0.

What is the connection between the wave equation (with no small parameter

involved) and the semiclassical Schrodinger equation?

Firstly, the wave equation is a second order differential equation w.r.t. the time. Since —A

is a positive operator, we may factorize the wave equation into
(10 — V—=A)(i0; + V—A)u = 0,

that is the product of two first order equations which have the form of the Schrodinger
equation

(1.4) i0w = £Pv, with P =+v—-A.

Each of these equations (they are mapped to one another by a time reversal) is called the
half-wave equation. Solving the half-wave equation obviously provides a solution of the wave
equation.

Microlocal analysis starts when considering the high frequency components of the solution
v(z,t). To do so, we may split the Fourier space R? > 5 according to the value of ||, using
a dyadic decomposition (such a decomposition is called a Paley-Littlewood decomposition).

Namely, let us consider a smooth partition of unity on R,
1= X0 + Z Xn,
n>1

with supp x, C (271, 2") for all n > 1, supp xo C [0,2). Using this partition of unity, we
split the initial data v(z,0) = f(z) for the equation (1.4) in Fourier space. Namely, using
the operator P we define

The operators x,(P) are Fourier multipliers. Indeed, if we denote by

Ffn) = (2m) 02 / f(x) e du,

the Fourier transform of f, each f,(z) can be obtained by

fuler) = (2m) 92 / FF@) xalln]) €7 i,

We then have as initial data f = ) ., fn, with each component f,, being composed of Fourier
modes at scales |n| ~ 2. By the linearity of the equation, we may solve the equation for

each component independently. If we take f, as initial data, the solution v, (x,t) will also
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be composed of such Fourier modes for any ¢ € R. We may rescale this Fourier scale by

inserting an artificial parameter A = h,, o 27", and write the half-wave equation as

thoyw, = Pyv,, with P, = hP = v —A.

By doing so, we end up with a semiclassical Schrodinger equation (that is, with a small
effective parameter h), with the solution v, (z,t) having the property that, at each time ¢, its

semiclassical Fourier transform
[Fava] (€,1) < (2mh) =2 /Un(x, t)e e/ dy

is supported in the region {|¢| € (1/2,2)}. Equivalently if we consider II; = 1 /22)(FPp) the
spectral projector of Py associated with the interval (1/2,2), we have at each time (II, —
v, (t) = 0.

After this rescaling, the set of equations {(ih,0; — Ps,) vy = 0, v,(0) = f},,cy is viewed as
a subset of the family of semiclassical equations {(ihd;, — Py) vy = 0, v;(0) = fh}he[0,1)7 with
the functions f; assumed to be spectrally concentrated (w.r.t. P;) in some fixed interval
I C R,;. The high-frequency limit || — oo has been transformed into a semiclassical regime
h — 0. The setup is now similar to the preceding one, except that the Schrodinger operator
p,=—EA 4 V(z) has been replaced by the half-wave generator P, = /—h2A.

2

In the case of the wave equation, the corresponding classical dynamics is the geodesic flow (or
ray dynamics). This procedure can be adapted to the case of waves travelling on a smooth

Riemannian manifold, with or without (smooth) boundaries.
1.2. Quantum Mechanics in a nutshell.

1.2.1. Wavefunctions and probability distributions. Quantum Mechanics was developed, as a
(pretty strong) modification of classical mechanics, more precisely Hamilton’s formulation
of conservative (dissipationless) classical mechanics, which we will review in section
1.4 below.

In classical mechanics, the state of a particle at time ¢ is uniquely and precisely described by
the data of its position x(t) and its velocity #(t), or equivalently its momentum (“impulsion”)
£(t). Mathematically, a difference between the two points of view is that @(t) € TR? is a
tangent vector, while £(t) € T*R? is a cotangent vector. This difference is not really relevant
when working on R? and when the Hamiltonian is of the form p(z,&) = |£]2/2 4+ V(x). The

phase space of classical mechanics is the cotangent space T*R? ~ R{ x RY.

In quantum mechanics, the state of a particle (say, an electron) is described by a wavefunc-

tion u(w,t), which is a time-dependent, complex-valued function u(t) € L?(R?) with unit
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norm. The wavefunction u(t) represents the particle as a wave, which is hence intrinsically
delocalized. Alternatively, it describes a point particle, whose position (or momentum) can-
not be known deterministically, but only probabilistically. That is, if one performs a position
measurement on the particle at time ¢, one cannot in advance predict the outcome of the
measurement, but only provide a probability distribution of the outcome, given by
E

the function |u(t,z)|* (remind that we require ||u(t)||z2 = 1). The function u(zx,t) is called

the (position) probability amplitude.

The wavefunction u(x,t) simultaneouly describes the momentum of the particle, which is
associated with the Fourier variable, at the scale h~!. Namely, the De Broglie correspondence

states that a flux of particles of momentum &, € R? is described by the plane wave
.o
ug, () = Ce™n, zeR

that is, the momentum &, corresponds to a wavevector 1y = £/h. Any wavefunction u(z,t)

can be decomposed in such Fourier modes, using the semiclassical Fourier transform:
(1.5)
1 . 1 .
S —igx/h 7 — - = i&x/h
u(x,t) rh) /e u(é,t) dg, (&, t) = [Fru(t)] (&) rh) /e u(x,t)dx

Here £ — u(&, t) represents the momentum amplitude of the state u(t). If one proceeds with
a momentum measurement (what people actually do in particle accelerators), the outcome
is a random variable, following the momentum probability density |a(&,t)]?.

As a result, the same function u(x,t) allows to represent both the position and momentum
probability distributions. Clearly, changing the phase of u(x,t) won’t change |u(x,t)|?, but

it will generally impact the momentum density |a(&, ¢)[?.

1.2.2. Observables in classical and quantum mechanics. If the wavefunction u(x) is nice
enough, say in the Schwartz space u € .(R?), then the distributions of the position or
momentum variables can be described through their moments. Namely, for any multi-index"
a € N¢, the moment? of this variable, E,z%, is finite. This moment can be interpreted as a

“diagonal matrix element” of a corresponding multiplication operator

Op(z®) : u(x) — z%u(z).

Yo = (oq,ag,...,04) with a; € N, and we note z® = @yt

alel
SF1 A%
6.7:11"'8.7:(?7

2In physics such expectation values (“averages”) are usually denoted with brackets, E,z® = (z®). We will
try not to use this notation, to avoid any confusion with scalar products.

Similarly, we will note the multi-

derivative 0% = with |a| = a1 + - + ag.
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For a # 0 this operator is unbounded on L?, but it has a dense domain on which it is

selfadjoint. Any function u € .¥ belongs to this domain, and we have

E,z% = /da: u(x) [Pz = (u, Op(z®)u) 12(dz)-

Similarly, the moments of the momentum variables can be viewed as matrix elements of
corresponding momentum operators. Indeed, for any multi-index 5 € N9, the average of the

variable &7, for a particle in the state u(x) € ., is defined as

E.¢% = / € a(€) 26" = (6, £%0) 12 ae)

Now, we would like to express this matrix element in terms of the original wavefunction u(z).
A straightforward computation shows that the multiplication operator by £¢ is transformed,
through the A-Fourier transform, into the differential operator (%8)a o (hD)*: for any
u € S (RY),
1 ron ho\®
7 €a(e)] ) = | (30) o] @

7

Since w is obviously in the domain of the operator Op,(£%) = (hD,)*, we may write

Euéa = <U’7 Oph(éa)lo[/?(dx);

where the scalar product is in L*(z).
Here we have let correspond:

- to the position variable x; the operator of multiplication by x;, which we denote Op(z;) =
Opy,(z;) (this operator is independent of h).

- to the momentum variable ¢; the differential operator AD,, = %-2 = Op,(&;) (this “mo-
J

mentum operator” explicitly depends on h).

Position and momentum form a first set of variables describing the state of particle. Such
variables, which can be experimentally measured, are called observables in quantum mechan-

1CS.

More generally, one calls classical observable a smooth, real valued function on phase space
a € C*(R2%,R), while a quantum observable is a selfadjoint operator A : L*(R%) — L*(R})
(often unbounded, in which case we’ll assume its domain D(A) to be dense in L?). A classical
observable can be used to test the position of a classical particle, or of a distribution p(z, ) of
particles in phase space through classical averages [ p(z,&)a(z,&)dz d€. Similarly, quantum
observables can be seen as “test operators”, helping to grab the structure of the wavefunction

u through quantum averages (u, Au).
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Remark 1.1. What is the interpretation of such a quantum average? As a selfadjoint operator,
the operator A can be experimentally measured. For a general state u, the output of the
measurement cannot be predicted with certainty, but is described by a random variable,
which will take different values if we repeat the measurement many times (re-constructing
the same wavefunction u before each measurement). Assuming w is nice enough, that random
variable can be described in terms of its moments, which are given by the matrix elements
(u, A"u), n > 1.

In the case when A has pure point spectrum with orthonormal basis (¢, a;);en, the quantum
averages simply depend on the overlaps between u and the eigenmodes ¢;:
(u, A"u) =Y af [(u, ¢3) .
ieN

The measurement of the observable A will give the value a; with probability |{(u, ¢;)|*.

1.2.3. Quantization: from classical to quantum observables. Quantum mechanics establishes
a correspondence between classical and quantum observables, through a quantization pro-

cedure
(1.6) a € C°(R*) i+ A = Op,(a)

mapping a classical observable (a function on phase space) into a quantum observable (an
operator on L?). This quantization procedure lies at the heart of semiclassical analysis. Our
lectures will be devoted to a precise study of such a quantization procedure, and of its various

consequences.

We won’t give yet the precise definition of this quantization, but only a few relevant proper-

ties:

(1) the position monomials z* are quantized into the corresponding multiplication oper-
ators

(2) the momentum monomials £* are quantized into the above differential operators
(hD,)e

(3) quantization is a linear operation: Op,(aa+ b) = a Op,(a)+ S Opy(b) (here we don’t
pay attention to questions of domains).

(4) quantization should map real valued functions into (essentially) selfadjoint operators.

The last property is specific to quantum mechanics applications, and will lead to the so-called
Weyl quantization. In the study of linear PDEs is is often customary to introduce different

(yet related) forms of quantization, which do not necessarily satisfy requirement (4).



AN INTRODUCTION TO SEMICLASSICAL ANALYSIS 9

By taking linear combination of monomials we get polynomials, which are in some sense
“dense” in the set of smooth functions. Hence, it is reasonable to expect the following exten-

sion of the above properties:

(1’) a smooth function (which does not grow too fast at infinity) a(z) is quantized into the

multiplication by a(z).

(27) a smooth function b(&) is quantized into the Fourier multiplier b (hD, ), a first example

of pseudodifferential operator.

We will need to be more precise on the growth conditions we have to impose on the function
a,b. We will be lead to introduce various spaces of appropriate functions (which are called
symbols in this context). Such functions will be smooth, with controlled growth or decay at

infinity, and they may depend explicitly on the parameter A, still in a controlled way.

Problem 1.2. How to quantize a function (say, a polynomial) depending on both x and
&7 From the above properties we naturally end up with ordering questions. Indeed, the

operators Opy(z;) and Opy(§;) do not commute, but satisfy the commutation relations
[Opy(;), Opy(&k)] = ihdjp (where d;;, is the Kronecker symbol).

What should then be the quantization of the observable z;£;7 We easily check that neither
A Opy(z;) Opp(&;) nor A, o Opy(&;) Opy(z;) are symmetric operators, so they don’t

satisfy the requirement 4. A mixture of the two operators, namely %, will “do the job”.

Such ordering problems, coming from the noncommutation of operators, are also at the heart
of the
Proposition 1.3. [Heisenberg uncertainty principle/

For any state uw € (R), with ||ul|z = 1, the variances of the position and momentum

variables satisfy the constraint:
(Eu(2?) — E(2)?) (Eu(€?) — Eu(€)*) > h*/4.
This expresses the fact that the uncertainty in position and the uncertainty in momentum (or

h-Fourier variable) cannot be simultaneously arbitrarily small.

Exercise 1.4. Prove the uncertainty principle (in 1 dimension). For this aim, consider the
state vy = zu + iARD,u for A € R, and use the fact that ||vy|| > 0 for any A € R.

1.2.4. Mucrolocalization of semiclassical states: using observables as “quantum test functions”.
One role of quantized observables Opj,(a) will be to detect the concentration of a state u(z) (or

rather, of a family of h-dependent states (up)ne(o,1)) in some phase space region Q) C RZ x Rg.
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For a spatial region €, (assumed to be a domain of R?), one measures the weight of uy in Q,
by taking the matrix element (uj, lg,up) € [0,1]. One can also measure the weight of u; in
a Fourier region ()¢ by taking the matrix element (uy, lo,(hD,)us) € [0,1]. Notice that this
weight corresponds to wavevectors n = A~1¢ of moduli ~ A~!: we are measuring the weight

of large wavevectors, corresponding to oscillations of u,(z) at the scale ~ h.

The idea of microlocal analysis is to measure both types of concentration (space vs. Fourier)
simultaneously. For instance, the weight of u; in the product region 2, x €2¢ could be defined
by (up, 1o, (AD;)1q,us). However, this expression is not so nice: the operator lg, (AD,)1q, is
not selfadjoint, hence is not an observable. Besides, the properties of this operator suffer from
the discontinuity of the characteristic functions lg,, lo,, namely the fact that the Fourier

transform of a discontinuous function exhibits strong fluctuations (Stokes oscillations).

To avoid these problems, it is more reasonable to “cover” the characteristic functions by
smooth functions x, € C*(RE,[0,1]), xe € C=(RE,[0,1]), namely functions satisfying, for

some small € > 0,
(1.7) Xz = 1 on Q,, Xz 18 supported in the e — neighbourhood of €,

This property will be denoted by x, > 1g,. Similarly, we may use a smoothened characteristic

function x¢ > lg,.

This way, the operators Opy(x») = X and Opy,(xe) = xe(hD,) are better behaved upon com-
position, and we could take for the weight in 2, x ¢ the scalar product (un, Op;(Xz) Ops(xe)un),
or its symmetrized version. Another, somewhat more natural possibility would be to take for
the weight (us, Op,(XzXe)un), where the operator Opy(x.xe) will be selfadjoint if we choose

an appropriate (e.g. Weyl) quantization procedure.

From the latter expression, the definition of a phase space weight can be extended to an
arbitrary domain 2 C RY x RY, by smoothing the function lg(z,¢) into some smooth
cutoff xo € CF(RZ,[0,1]), xo > lgo, and defining the weight by the scalar product

(un, Opy(xa)un)-

Such a phase space weight is called microlocal. Here the prefix “micro” does not refer to
“microscopic”, but rather to “phase space”; or “simultaneously local in position and Fourier”.
There is some freedom in the definition of the weight, since the cutoff yq, satisfying the
analogue of 1.7, is not uniquely defined. Also, the operators Opy(x.) Opy(xe), its symmetric
version, and Op;(x.Xe) are not equal, so do they measure the same localization phenomenon?
These operators belong to the class of h-pseudodifferential operators; we will see in section 2
that the difference between these operators is of order O(h), hence becomes negligible in the

semiclassical limit.
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FIGURE 1.2. Microlocalization inside a domain € = €, x € and its e
neighbourhood ()., using smooth cutoff functions.

Another way to interpret a quantized cutoff such as Op;(xq) is as an approzimate phase
space projector. Namely, for an arbitrary function u,, we may view v, = Op,(xq)us as the
“approximate projection” of u; in the phase space region 2. The term “projection” has to
be understood with some care. The operator Op,(xq) is not a projector, since Opy;,(xa)? #
Op;(xa). In general, this operator is not even positive. Besides, the cutoff yq leaks away

from Q (by a margin < €), so v, could also have some components outside €.

Nevertheless, this method of “approximate phase space projection” (a more proper term would
be “microlocalization”) will be useful to analyze semiclassical families of states (up)p. It will
lead to the notions of semiclassical wavefront set WF(uy) and of semiclassical measures
tse associated with a sequence of functions (us)ne(o,1), Which are two ways to measure the
microlocalization of u;. Roughly speaking, WF(uy,) records the phase space points where u
is not microlocally residual® (O(h*)), while the semiclassical measure p . keeps track of the
points where u is not microlocally o(1). One of the outputs of semiclassical analysis is to give
informations on the wavefront sets and semiclassical measures associated with sequences of

eigenstates u; ; of some operator Fj.

1.3. Time evolution in quantum mechanics. One is naturally interested in the time
evolution of the wavefunction, to understand how the particle evolves. In quantum mechanics
this evolution is governed by a Schrodinger equation of the type (1.1), where V(x) is the
potential energy of the particle at point x. More generally, it will be given by a Schrédinger

equation of the form
(1.8) ihdyu(t) = Pyu(t), teR, wu(0) = uy,

3A quantity is Q(h) = O(h®) if, for any N > 1, there exists Cy > 0 such that |Q(k)] < CnhN for all
h e (0, hg.
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for some self-adjoint operator P, (usually a differential operator) called the quantum Hamil-

tonian.

In the next subsection on semigroups, we recall that the Schrodinger equation is globally
well-posed for any intial data uy € L?, and admits a unique solution u(t) expressed by the

action of the Schrodinger (semi)group

(19) u(t) = Uh(t)UO, teR.

which is formally represented by
Uﬁ(t) = exXp (—thf,/h) .
The group operators Uy(t) : L? — L?* are all unitary, which allows the normalization

|lu(t)||z = 1 at all times. The operator U,(t) is usually called the propagator associated

with the Hamiltonian Py (it propagates the quantum state ug to future times).

1.3.1. Reminder on semigroups. An strongly continuous group on L? is composed of a func-

tion S : R — L£(L? L?) taking values in bounded operators, such that

(1) S(0) =1Id
(2) For any t,t' € R, S(t +1t') = S(t) o S(t)
(3) The function S(t) is strongly continuous: for any u € L?, lim;_,q ||S(t)u — ul| = 0.

If the operators S(t) are all unitary, one speaks of a unitary group.

One can define the infinitesimal generator of a group S(t). It is a linear operator A on L2,
which may be unbounded. Its domain D(A) is defined as the space of vectors u € L? such

that % admits a limit when ¢ — 0; the limit is then defined to be Au. This shows that
t — u(t) is differentiable at ¢ = 0, with

dsS(t

S0,

By using the 2d property, we see that the function u(t) = S(t)ug satisfies, for any ¢t € R, the

evolution equation

du(t)
dt

The function u(t) = S(t)ue is solution of this evolution equation in two possible senses:

(1.10) i = Au.

o if ug € D(A), then u(t) € D(A) for all t € R, the function ¢ — u(t) is C'(R, L?), and

u(t) satisfies (1.10) in a strong sense.
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o if ug & L?\ D(F;), then u(t) is a solution of the equation (1.8) in a weak sense: for
any test function b € C1(R,), the state u, < Jg dt(t)u(t) is in the domain of Py,

and it satisfies Pruy = —ity.

For a unitary group, the generator (A, D(A)) is automatically selfadjoint.

1.3.2. Understanding time evolution: semiclassical propagation of singularities. A major goal
of quantum mechanics is to understand, as quantitatively as possible, the evolved state
u(t), depending on the quantum Hamiltonian P, and the initial state ug. In the present
semiclassical perspective, this evolution will be linked with another type of evolution, namely
a Hamiltonian flow on the phase space R? x ]Rg generated by some Hamilton function p(z, &),
called the principal symbol of the (family of ) operator(s) P,. We have already explained some

notion of microlocalization of a state (u;). The type of question one would like to address:

Assuming that the initial data (uj) is microlocalized in some set ) @ R??, can

we say something about the microlocalization of its evolution wu(t) = Up(t)up?

The formalism we develop below, in particular Egorov’s theorem, allows to answer to this
question. The locus of microlocalization (i.e. the wavefront set) of u,(t) is transported
according the Hamiltonian flow @ : R** — R*® generated by the function p(z,¢) (we recall
the elementary notions of Hamiltonian mechanics in the next subsection). For example, in
the case of the Schrédinger operator P, = —h*A/2 + V(z), the principal symbol (which
is, actually, its full symbol) is p(x, &) = % + V(z), the sum of the kinetic energy and the
potential energy. The Hamiltonian flow just integrates Newton’s equations in the case of
a conservative dynamics. Proving this connection between classical and quantum transport

(through Egorov’s theorem) is one of the goals of the present lectures.
1.4. A short reminder of Hamiltonian classical mechanics.

1.4.1. From Newton to Hamilton. A classical particle on R? is described by a trajectory
x(t) € R At each time t is occupies a single point x(t) € R? and has a velocity i(t) =

dfl—sf) € R?. The motion is determined by Newton’s law (1st principle of mechanics):
(1.11) mi(t) = F(z(t)),

where F': z — F(x) € R? is the force field at position z (here we assume this force field
to be time independent). Since this equation is of second order in time, ODE theory shows
that, provided F(z) is smooth near x(0), the intial data (x(0),#(0)) suffice to specify, at

least locally in time, the trajectory (x(t)),;-
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Remark 1.5. The trajectory may explode at finite time, e.g. one may have x(t) 2T 5o even
if F' is smooth everywhere. This cannot be the case under appropriate conditions on the

force field F' (e.g. if F(x) does not grow too fast at infinity).

In the following we will always assume that the trajectories remain finite for any real time,
so that (x(t)); is well-defined for all ¢ € R. One then says that the flow is complete.

The force field F'(x) is said to be conservative if it derives from a potential energy (which
we will call “potential” for short) V : z — V(z) € R:*

(1.12) F(z) = -VV(z).

In this case, the the total mechanical energy
L
2

is preserved during the evolution: £ E(z(t), (t)) = 0.

E(z,3) = En +V = 2000 4 y(a)

It is useful to slightly change variables, by defining the momentum of the particle, which
in this Euclidean setting reads’

E(t) = ma(t).
The dynamical variables specifying the motion of the particle are now (z(t), £(t)) € R? x R<.

The mechanical energy can now be cast into Hamilton’s function

i35
1.13 H =—=——+4V
(1.13) (6= "LSL v
a function over the phase space R?* = R? x Rg. We will sometimes denote by p = (z,&) a

phase space point.

After this change of variables, Newton’s law (2d order eq. on d variables) can be cast into

Hamilton’s equations over the phase space (1st order eqs. on 2d variables):

#(t) = GE(x(t),£(1))
() =5 (x(t),&(1)
The RHS defines the Hamiltonian vector field p € R* — Xy (p) € T,R* = R* which

generates the Hamiltonian flow associated with the hamilton function H:

Dl < p(0) = (2(0),£(0)) € B* s @ (p(0)) = plt) = (x(t), £(1)) € B>

4the negative sign implies that the particle “rolls down” the energy landscape: it is attracted by low values
of the potential.

"Beware that we will use PDE’s notation (z,&) for the position-momentum. In classical mechanics and
quantum mechanics, one rather uses the notations (x, p), or also (g, p), like in symplectic geometry. Similarly,
the notation p = (x, ) for a phase space point seems typical of PDEs, symplectic geometers prefer z = (g, p)!

(1.14) — () = Xulp)
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Being a flow means that (provided everything is well-defined),
O (p) = 1(®*(p)),
both for positive or negative times.
Remark 1.6. This Hamiltonian formalism is not restricted to functions of the form (1.13), but

can be generalized to arbitrary (smooth enough) functions H(z, ) on phase space. Most of

what we will say in this subsection applies in this higher generality, and defines a Hamiltonian

flow on R%,

Here again, the flow may not be defined for all time.

Remark 1.7. We will assume that H € C*°(R??), and that the flow ®%; is complete.

In this context, the conservation of energy now reads as follows:

Proposition 1.8. The Hamiltonian flow ®Y; leaves invariant the value of the Hamiltonian.

VteR,Vp e R™,  H(®Y(p) = H(p)

Proof. Explicit computation using Hamilton’s equations (1.14)

dH OH . OH .

As a consequence, the phase space R?*? is naturally foliated into energy layers

def

Yp = H'(E)={peR* H(p) = E},

and each layer X is invariant through the flow ®%,. Hence, one can study the property of

the flow @, on each energy layer independently of the other ones.

Definition 1.9. A fixed point for the flow ®%; is a point p. € R?? for which Xg(p.) = 0.

Such a point is called critical. The corresponding energy H(p,.) is called a critical energy.

The implicit function theorem shows that, if the energy E is noncritical, then ¥z C R?? is a

smooth embedded hypersurface.
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1.4.2. Symplectic structure. This formulation of conservative mechanics is equivalent with
Newton’s formulation. What we gain is a explicit new invariant structure, namely the sym-
plectic structure on T*R? = R{ x R{, which is explicitly given by the nondegenerate 2-form
on R24:
d

(1.15) w=Y d&Ndx;.

j=1
This notation means that for any two vectors V = ({2), W = (;1*) € T,R* ~ R*,

¢

Ve

def (0 [
WV, W)= Ve Wy, = Vo, We, = (JV,W),  where J = ( o ) .
J

This 2-form is obviously nondegenerate and closed. The Hamiltonian vector field can be

defined using the symplectic form, by the following equation:

(1.16) ixyw = —dH <= VYV € T,R* w(Xy,V)=—dH(V)

Definition 1.10. The symplectic form generates the Poisson bracket on R??, which is the
following bilinear operator on smooth observables. For any pair of functions f,g € C*(R??),
the bracket is the function on R?? defined by:

L 0f ag  8f dg

def
{f7 g} ;:1: 853 a$j axj 853 9 gf CU( f h)

If f = H is the Hamiltonian, we have
{H. g} = Xng = —dH(X,),

defines the infinitesimal change of the observable g evolved along the Hamiltonian flow ®%,:

d
(1'17> {Ha 9} = EQ © (I)jq [t=0 -

Proposition 1.11. The Hamiltonian flow ®%; preserves the symplectic form. In other words,

the pull-back of w through the flow is equal to w:

(@%)*w =w

®Most physics or mechanics books choose instead w = Z;l=1 dx; A d€;, this sign change is just a matter of
convention. We will use the present convention to conform with PDE convention.
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Proof. One can write down the explicit infinitesimal transformation of w under the vector

field X g, in a slightly sloppy way:
W= d& Adaj+ dé; A di;
= —d (0, H) Nda; +d&; Ad (D, H)
= > (02 Hdwg + 62 ¢ Hdy ) A day + d; A (02, Hday + 0. Sy )

The cross-terms d§;, A dx; cancel each other. We may now invoke the fact that (8:%]%]-[ ) and
(852]_ ¢, H) are symmetric matrices, while dzy A dx; and d€; A d§; are antisymmetric, to kill the

remaining terms, and get w = 0.
A faster (and more geometric proof) uses the Cartan formula:
w=Lx,w=d(x,w)+ tx,dw.

The closedness of w Kkills the second term. On the other hand, ¢x,w = —dH, so we get

Zero. L]

2. (SEMICLASSICAL) QUANTIZATIONS ON R2

We now present and investigate the quantization procedure mentioned in the introduction,
which maps a function a(z, ) (classical observable) to a linear operator Op,(a) acting on
L*(R?) (or a smaller functional spaces dense in L?, like the Schwartz space .%(R%)). We
will actually present a family of quantization procedures (indexed by a parameter ¢ € [0, 1]),
compare them, and show that the differences between these different quantizations become
small in the semiclassical limit. One particular choice (¢t = 1/2, or Weyl quantization) will

have one distinctive advantage, namely map a real-valued function to a symmetric operator.

Notation: Following the use in quantum mechanics, in our notes the scalar product on L?(R%)

will always be antilinear in the first argument, and linear in the second one:

Va, B € C, (au, fv) = af(u,v).

As a prerequisite, a quantization procedure should satisfy the following constraints (at this

stage we do not care about the regularity or growth of the function):

(1) a function a(x) is quantized into the multiplication operator by a(z).

(2) a polynomial p(£) is quantized into the differential operator p(hD,), where recall the
notation D, = 19,. (notice that D,, enjoys the property to be symmetric: (u, D,,v) =
(Dy,u,v)). More generally, a smooth function a(¢) is mapped to a Fourier multiplier
a(hD,).
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quantization is a linear operator.

What is the use of such a quantization? What form of operators are produced this way?

(1)
(2)

(3)

The quantum Hamiltonian (the generator of the Schrédinger flow) P, = —’#TA +V(z)
is obtained a quantization of a classical Hamiltonian p(x,§) = @ + V(x).

the class of operators we obtain contains differential operators, but also a larger
class of (semiclassical) pseudodifferential operators, or h-pseudodifferential op-
erators (A-¥DO for short). Eventhough the Hamiltonian is usually a differential
operator, the following derived operators are genuine pseudodifferential ops: its resol-
vent (P, — z)~", or its noninteger powers (P, — z)°, more generally functions f(F)
which are useful when analyzing its spectrum.

the class of pseudodifferential operators also contains phase space cutoff operators
Op,(x), x € C>*(R??), which are useful to analyze the microlocalization prop-
erties of wavefunctions, that is, their localization properties both in position and
momentum (Fourier) space.

Although the quantization can be defined for any value of & > 0 (e.g. h = 1), the
theory becomes quantitatively useful in the semiclassical limit 0 < A < 1, and this is
the asymptotic regime we’ll be considering. The reason is, the objects (wavefunctions
/ Schwartz kernels of operators) develop fast oscillatory phases in this limit, which
allows to use nonstationary vs. stationary phase estimates of relevant integrals, lead-
ing to expansions for these objects in terms of asymptotic series in powers of A. These
semiclassical expansions are at the heart of pseudodifferential calculus, and globally
of semiclassical analysis; the properties of operators Op,(a) can be directly read in
terms of their symbols a € C°°(R??)

Remark. Following the terminology of quantum mechanics, we have called the phase space

function a(z, ) a classical observable, and its quantization Op,(a) a quantum observable.

In the context of linear PDEs, the phase space function a(x,¢) is called the symbol of the

(family of) operator(s) Opy,(a). The symbol map is the inverse of the quantization map’.

This symbol map depends on the specific quantization procedure. We will sometimes speak

of right, left, Weyl symbol, in reference to these different quantizations.

2.1. Quantizations of symbols in the Schwartz space .7 (R%*).

2.1.1. Symbols depending on x or . In order to give a unifying framework for the quanti-

zations of function f(x) and ¢(&), we will write these operators in a similar form. For a

"We will see that the quantization is indeed an invertible procedure, at least formally.
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while we will let our operators act on wavefunctions u € .%(R?) only. Let us start with the

multiplication operator by f(z):

[Opy(f)ul (x) = f(x)u(z)

itz d
:/e iof(x) (Fru) (OW

2.) =[] st e

In the last line the integral is not absolutely convergent, but uses the representation of the

delta distribution as an oscillatory integral:

_ & dg
%(@) = /Rde @2k

This expression is a formal way to express the fact that the Fourier transform of the distri-

1

bution Jy is a constant function: Fpdo(§) = CEOLER

Exercise 2.1. Prove this integral representation by multiplying the integrand by the factor
e~ and letting ¢ N\, 0. Later we will alternatively “tame” such oscillatory integrals through

formal integration by parts.

The quantization of the momentum function g = g(£) can be represented similarly:
[Opi(g)u] (2) = [Fy* (9Fwu)] (2)
dg

_ /eigﬁzg(f) (Fru) (5)W

S Gt

Note that this double integral is absolutely convergent as long as g(£) decays fast enough
when [£] — o0, e.g. if g € S (RY).

2.1.2. General symbols a(z,§): Right and Left quantizations. The composition of these two
operators yields the expression:

(2.2) 0D (f) Opy(g)ul] () = / / 5 f () g € uly) LW

(27h)®’

Viewing this expression as a possible quantization of the function f(z)g(§), leads to the
following definition for the quantization of a general observable a(z,£). We will start by

considering very nice symbols, namely assume that a € .7(R??).
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Definition 2.2. (Standard = Kohn-Nirenberg = Right quantization) For any symbol a(x,§) €
< (R??), its standard (semiclassical) quantization is defined by

Opf(au] (=) % [ aw. &) (Fin) ©) s = [[ T alw ut) G

The integral is absolutely convergent if the wavefunction u € .%(R?). This operator Oth (a)
will also be denoted by a(z, hD).

This definition generalizes the product (2.2): for the product observable a(z,&) = f(x)g(§),

the right quantization corresponds to

Opy (f(2)g(€)) = Opy(f(2)) Opy(9(£))-

This ordering corresponds to applying the derivative operators (Fourier multipliers) on the
right and the multiplication operators on the left. This is the reason why this quantization

is called the right quantization.
Alternatively, ordering Op,(f) and Op,(g) in the opposite way to (2.2), we would obtain
s y) dfdy e
Op1(9) Opy(1)u] (2) = [ [ F)uto) g [OpH (€)@l

Viewing this as the quantization of a(x, &) = f(x)g(§), leads to an alternative quantization,

called the left quantization, where multiplication precedes differentiation:

Definition 2.3. (Left quantization) The left (semiclassical) quantization of a symbol a(z, ) €
7 (R??) is defined by

(Opf(au] (@) [ [ ¢ atw utn G50

Note that the integral is now absolutely convergent, provided u € L>®(R?), or even if u(y)

grows polynomially when |y| — oc.

The right and left quantizations are related to one another by duality.

Lemma 2.4. For any symbol a € . (R*?), and any wavefunctions u,v € % (R?), we have

the symmetry relation
(u, Opy (a)v) = (Opy(@)u, v).
As a consequence, the formal adjoint of Opfi(a) (viewed as acting on L*(R?)) is Opy(a).

We will see below that Opf(a) is bounded on L?, so the formal adjoint is the true adjoint.
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Proof. Easy exercise by integration by parts.

(u, Opfi(a uﬁymm st w@mwg%%

///dyv T, €>(d§d:;;
= (Opy; (@)u, v).

Here we applied the Fubini theorem, using the fact that the integral converges absolutely. [

Claim 2.5. For a generic, real-valued function a(z,¢), the operators Opt(a) and Opf (a) act
differently on . (R9).

This is the case in particular for symbols of the form a(z, &) = f(x)g(&), because the operators
Op;(f(x)) and Op,(g(&)) generally do not commute with each other. This is easy to verify
when we take for g(§) a polynomial of degree > 1 (such a polynomial is not in the Schwartz

space, but its action on .7 (R?) still makes sense).

Example 2.6. For instance, if g(§) = &, we get the commutator

[hD,,, f(z)] = ﬁ,ﬁxlf(x), a multiplication operator.
i

For g(§) = &1, it gives

hD, hD,, f(x) = hD,, (f(x)hDI2 + %&czf(x))

= [hD,,, f(x)| hD,, + f(x)hD, hD,, + g (WD, Oy, f(x)] + %c%zf(x)thl

— (WD, kD, ()] = 300, f (@)D + 50, F(2)RDs, — 0208, (),

now a first order differential operator, which can be written as the right quantization of the

symbol )
;amlf( )52 + aﬁmf( )51 h2a§112f( )

These examples are differential operators. If g(£) is a polynomial of degree n, then [g(hD,), f(x)]
will be a polynomial operator of degree n — 1, with the highest degree terms depending on
the first derivatives of f.

Remark 2.7. Any Fourier multiplier Op,(g) can be expressed as a convolution:

[g(hD)u] (z) = F;, (g Fnu) = (F, 'g) *u
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Hence, the two operators Op,(f) Op,(g) = Op;'(fg) and Op,(g) Op,(f) = Op;(fg) can be
expressed by:

[ @)g(hDayu] () = f(z) ((Fitg) = /f — yuly)dy,

9(hDg) f(z)u(z) = (F, 'g) * (fu)(z) = / (Fi'g) (= y) f(y)u(y)dy.

The Right and Left quantizations have interesting support properties, in situations where

a(x,§) is compactly supported in the z variable.

(1) Assume a(z,€) is supported inside 2 € K € R? Then for any u € .7, Opt(a)u is
supported in K.

(2) Assume a(z,§) is supported inside z € K €@ R?, and u(z) is supported inside R?\ K.
Then Opr (a)u = 0.

2.1.3. t- and Weyl quantizations. Quantum mechanics requires that a real valued observable
a(z, &) should be quantized into a selfadjoint (or at least, symmetric) operator. This reality
property is not satisfied by the Right and Left quantizations. For this reason, quantum

mechanics will rather use a more symmetric quantization, called the Weyl quantization.

To introduce the Weyl quantization, we notice that the only difference between the Left and
Right quantizations is that in the Schwartz kernel of the operators, the symbol a is evaluated
at the initial (y), resp. final (x) position. To symmetrize the problem, one may evaluate the
symbol at some convex combination of the two, namely at a point tz + (1 —t)y for some fixed
t € (0,1). This convention leads to a continuous family of quantizations Op, = Op, indexed
by some parameter ¢ € [0, 1]:

(2.3) Opi(ay) (a) & [[ 5

In particular we have the identifications Op;*(a) = Op,(a) and Opf(a) = Opy(a).

dg dy
(2mh)d

a(te+(1—1)y,&) uly)

Remark 2.8. For a € .7 (R*), the Schwartz kernel of A = Op,(a) is the function

balog) = [ ¢SFattat (1= 00.6) G

that is a sort of partial Fourier transform of a. This function is in & (R$ x RY).

Lemma 2.4 easily generalizes to the

Lemma 2.9. For any symbol a € .7 (R?*) and any t € [0,1], we have the formal adjoint
relation

(2.4) Op,(a)” = Op,_,(a).
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Proof. Same integration by parts for Lemma 2.4. O

def

The Weyl quantization consists in taking the midpoint ¢+ = 1/2, that is Op}’ (a) = Op, s2(a),

so that the same quantization appears in the two sides of (2.4).

Definition 2.10. (Weyl quantization) Take a symbol a(z,&) € .#(R?!). Then its Weyl

quantization is defined by
W def it (T +y d§ dy
(25) o' (@)a] ()2 [ (T3 ) utn) e

This expression does not seem very natural at first glance, but it leads to several nice proper-

ties. From Lemma 2.9 we straightforwardly derive the following crucial property of the Weyl

quantization.

Proposition 2.11. For any real-valued symbol a(z,&) € .7 (R??), the operator Op}) (a) is

symmetric.

We will see below that for such symbols the operator Op}’ (a) is bounded on L?*(R%), so that
it is actually selfadjoint on L?(IRY).

2.2. An alternative route to the Weyl quantization: using Weyl-Heisenberg oper-
ators. We will recover the Weyl quantization from a different strategy, namely by using the
phase space translation operators, also called Weyl-Heisenberg operators. These operators
form a family of unitary operators on L?*(R?), indexed by phase space translation vectors
Vo = (20,&) € R*. They depend on Planck’s parameter A, but this dependence will be
omitted in the formulas: we will call T{,, ¢ = Ty, the operator performing the translation
by the vector Vy = (zo, &o).

These operators form a unitary representation of the Heisenberg group. We will not dwell

too much into these algebraic considerations, but have a more pedestrian approach.

2.2.1. The (Weyl-Heisenberg) phase space translation operators. To define these operators,
we start by purely spatial translations, namely the subclass of operators T(,, ). Translating

a state u € L? by the space vector zy is the obvious operation:

(2.6) [T(xo,o)u] (x)

Similarly, since momentum and position are exchanged by F, we define as follows the pure

o u(z — ).

momentum translations:

Fin (Tiogoyu) (€) = Fru(€ — &)

;S0

(2.7) = T u(r) =e 7 u(x).
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Hence, T{q¢,) is simply the multiplication operator by the linear phase function corresponding
to a plane wave of wavevector £y/h, or momentum &,. Notice that this operator explicitly

depends on h.

On the phase space R? x RY, translating by the phase space vector V = (g, &) is simply the
combination of the translation by zy and by &, these translations forming the Galilean group.
It thus sounds reasonable to take for T(,,¢,) the product of the two preceding operators.
However, the operators (4, 0) and T{o¢,) do not commute, so one should (again) decide of a
“best” ordering to define T\, ¢).

Let us look at the commutation properties:

[T w00 T0.60)u] () = e u(z — zo),  while
€0
(T(0.60) Two.0)] w() = €7 u(a — ),
hence
;80:70
(2.8) Tw0.60)T(wo0) = € Tlwo,0)T(0,60)

Definition 2.12. We will show below that it is “natural” to define the joint translation

Tlz0.60) by selecting the “median point” between the two phases, namely take:

def ;8070 50‘;0

(2.9) Taoier) = € 2 Tap0)T(0.20) = € 2 T(0.60)T(0.0)-

This definition will be justified by the following expressions of the translation operators.

Lemma 2.13. The multiplication operator Ty ¢,y can be obtained by solving the Schridinger

equation with Hamiltonian Op, (=& - x), at time t = 1. Formally, we may write
7 1

Ti0,60) = €xp (h Opy (o - w)) = exp ( > Opp(—¢&o - w)) :

Similarly, the space translation operator T(, o) can be obtained as the time-1 propagator

generated by the quantum Hamiltonian Op,(zo - &) = xo - AD:
1
Tiaun = 0 (— Ony(an©)) = exp (02,

Proof. These facts are easily proved, since we are dealing with multiplication operators in

position or Fourier space. 0

Remark 2.14. The classical Hamiltonian p(z,£) = —&y -  generates the flow (z(t),{(t)) =
(x(0),£(0) + &), which at time 1 realizes a translation by (0, &). In turn, the flow generated
by p(x, &) = xo - & gives (z(t),£(t)) = (x(0) 4 tzo,£(0)), which at time 1 gives the translation
by ([Eo, O)
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Now, since the classical translation (zg,&y) is obtained by the time-1 flow generated by the
Hamiltonian p(x,§) = x¢ - £ — & - x, it sounds natural to define the corresponding quantum

translation as the propagator generated by the quantum Hamiltonian P, = Op,(zo-§ —&-x):

e l i
T wo.c0) def exp <_ﬁ Op;(zo-& =& - x)) = exp (—ﬁ(l’o -hD, — & - :U)> )

Lemma 2.15. This definition of T(y,¢,) evactly coincides with the “half phase” Ansatz (2.9).

Proof. Check, by an explicit computation, that the Schrédinger equation
Zh@tu(twr) = (ZL’O ' hD.t - 50 ' [E)U(t, IL‘), U(O) = Uy,

. _428020 €0 i1 §o-(z—tzq/2)
is solved by u(t,z) = e "2 "k ug(x — twg) = €47 ®

see that w(1) = T{z, ¢0)Uo- O

uo(z — txg). In particular, we

Proposition 2.16. (Algebra relations) The family of Weyl-Heisenberg operators satisfies the
following composition rules:
jf01—2081
(2.10) Tawo )Ty =€ 7 Tlagtar gotar)-
It will be useful to express the extra phase in terms of the symplectic form:

& - x1— 20 & =w(Vo, V1), where V; = (x;,&;) is the phase space translation vector.

So the above composition rule reads

§e(Y.v)
(211) TVOTV1 =e 2h TV0+V1-
Proof. A simple computation, using the formulas (2.8). OJ

Remark 2.17. The commutation rule (2.8) can be viewed as the “exponentiated version” of

the commutation formula

(2.12) [Op(zi), Opn(&;)] = ihéy;.

Both types are called the Heisenberg commutation relations. They show that the operators

T(z0.¢,) form a unitary projective representation of the Galilean group.

Claim 2.18. The operators {eis/ hT(xO,go)} represent the Heisenberg group, a noncommutative
extension of the Galilean group, which includes an extra dimension to take into account the

phase:

(2.13) (20, &0, S0) - (21,1, 81) = ($0 + 1,8 + &1, 80 + 81+ % (&0 - 21 — 20 - 51)) .
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or in a more compact form:
1
(%750) ’ (‘/17 81) = <VE) + ‘/17 S0 + S1 + éw(%a ‘/1)> .

2.2.2. Microscopic translations = quantized “phase space Fourier modes”. If we rescale the

translation vectors V by A, we get the operator

Ty = Tihaoneo) = exp (=1 Opy(wo - € — & - @) = exp (i(§o - & — w0 - hDy)) .

The right hand side suggests to consider the linear exponential function (phase space Fourier

mode)

(2.14) evy(,6) & exp (i(&o- v — 20 €)), Vo= (z0,&) € R*.

Since this function can be written as the product e ¢y (%)e(,0)(§), one easily obtains its

Right (resp. Left) quantizations:
Opri(evy) = Tho.g0) Thizo0)s  T5P.  OPf(evy) = Thiwo.0) Th(o,0)-

Lemma 2.19. The Weyl quantization of ey, (x,§) is given by the translation operator Ty, .
More generally, for any t € [0, 1] one has

(2.15) Op,(ey,) = et=1/D%owo
Proof. We compute the Weyl quantization of ey, using the formula (2.3):

Op,(ev,)u(z) = // eiwei(§o~(tw+(1—t)y)—wo~£) u(y) dg dy

(2rh)
__itéox Z‘ﬁ'(w;’iwo) _u(E=h(1=t)&q) d€ dy
= / / et ) g
_ itéox & @—hzg) df
= e'to /e 7 [J—"ﬁU] (5 — h(l — t)fO)W

oz (€01 -0)E0) (@ —hao) de'
=e t&o /6 R []:hu] (gl)W

— o th(1-t)€0 0 eiéo-xu<x _ hl’o)

Since the symbol a € . (R??) can be Fourier decomposed into the (nonsemiclassical) Fourier
modes ey, (z, &), we can define its Weyl quantization by linearity in terms of the translation

operators. 0

Let us denote as follows the Fourier decomposition of a € .7 (R??):
(2.16)

Vp=(z,8),  alp) = /exp (i(&o -z — $0'§))d(x07§0)_dx0d€0

(2m)4

_ / exp (iw(Vo, p) a(Vo)
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Remark 2.20. Compared with the standard definition of the Fourier transform, there is a
sign change: —x( is the Fourier parameter conjugate to &, while & is the Fourier parameter

conjugate to x.

With this convention, we gather the following property

Proposition 2.21. The Weyl quantization of a € .7 (R??) can be expressed in terms of the

(microscopic) translation operators as follows:

) dxod, .
(2.17) Op;" (a) = /Th(xo,go)a(ﬂio,fo) —(2;)30 :/ Ty, a(Vo)
R2d

dVo
(2m)®

This formula looks a bit less “arbitrary” than the original formula (2.5), since it originates

from the group of phase space translation operators.

Remark 2.22. This more algebraic definition provides the Weyl quantization specific inter-
twining properties with respect to the Heisenberg group, but also with respect to the meta-
plectic group, obtained by exponentiating the operators of the form in Op,(Q(z,§)), with

Q(z,€) a real-valued quadratic form.

2.2.3. Relations between various quantizations. Starting from the expression

def R dVo
AL opl (@) = [ 0plt (ev) Vo) 5
and using (2.15), for ¢t € [0, 1] we may compute the symbol a; such that the operator A =
Op,(a;). Namely, we want the establish the connection between the ¢-symbol of an operator

A and its Weyl (t = 1/2)-symbol. Take a € .(R??). Using the expression (2.15) we obtain
dVo
(2m)*

Since the Fourier decomposition is unique, this expression shows that the Fourier transforms

(2.18) A = Opy(a) = / Opj! (evy )e"0/270%0 0 G, (V)

of a and q; are related as follows:

a(Vp) = eft=1/D%0a0 4 (1Y
More generally, the symbols a; and a, satisfy
(2.19) (Vo) = ™78 4 (V).

This expression shows that if a, € ., then so does a;,. We also notice that, even if a;/, is
defined independently of A, the symbols a, will explicitly depend on A. We now express this

relation directly between a, and ay.
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Proposition 2.23. Assume A = Op,(a;) for t € [0,1], with a1 € S(R*). We get the
following expression between the symbols a; and a:
(2'2()) at(x’£> _ em(sft)az.ag as<x,£) — eih(tfs)Dz-Dg (IS(SU,£>.

ih(t—s) Dy

Here the operator e Pe qre be defined as a Fourier multiplier on R??,

Proof. In the integral equation (2.16) for a,(x,£), we express the extra factor e’(s=t)&-wo

through a derivative of the integrand:

© i(Eox—x0-&) A dﬂ? (i
(Zt(.CE, 5) def /6 (€o 0 g)at(afo, 50) (20 )EO
ih(s— zo il€n-m—x0-E) A dxod
(221) _ /6171(8 t)€o-zo e (éo 0-§) as(x[b SO) (20 )EZO

dzodéo
(2m)?

N /dﬁ(sﬂ{jz.a?E €i(50.x7x0{) ds<5[f07 50)
_ eih(s—t)az-ag as(xf)-

O

These exponentiated quadratic differentials will pop up regularly in the next sections. The

computations below should appear as a preparation for the computations on the composition

of YDOs.

2.3. Asymptotic expansions of symbols. In this section we study the behaviour of ex-
pressions like (2.20,2.21) in the semiclassical limit, and obtain asymptotic expansions in
powers of A.

What meaning should one give to an expression like (2.20), apart from its Fourier transform
version? To avoid too cumbersome notations, we will take t = 1, s = 0. A naive expansion

gives:

(ihD, - D,)’

(2.22) ar(z,€) = Y = ao(y, M) y=an=e;

- J-

j=0
which looks nice in the semiclassical regime, since terms are formally O(h*). The trouble
is that this series is generally divergent for all values of A, since we have no a priori control
on the growth of higher derivatives. For instance, the higher derivatives could grow much
faster than 5!°. Still, this formal series contains nontrivial information, as an asymptotic

expansion.

8To get such a control on high derivatives one needs some analyticity condition on a, or at least Gevrey type
regularity.
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2.3.1. Definition of asymptotic expansions.
Definition 2.24. (Asymptotic expansion) Let (a(h));c ) be a family of elements in some

Banach space B, and let (a;);eny be elements of the same Banach space. We say that the

family (a(h)) satisfies the asymptotic expansion

(2.23) a(h) ~ Z Wa; ash\0,

Jj=0

if for any N > 0, there exists Cy > 0 such that we have
N-1

a(h) — Z W a,
=0

A similar definition holds for a(h), a; elements of a Fréchet space F generated by a countable

< OnxhY, Vhe(0,1].
B

family of seminorms (||e]|,). Then for any N > 0 and for any «, there exists C, y > 0 such

that the corresponding inequality holds for the a-seminorm. We will write

N—1 N-—1
a(h) = Y Wa;+ O(h™)s, respectively a(h) = Y Wa; + O(hY)z
=0 7=0

when we wish to emphasize the topology in which the expansion holds.

The proposition below shows that one can always construct a family a(h)pe(,1) from the

knowledge of the elements (a;),en.

Proposition 2.25. (Borel’s summation Lemma) Given any sequence (a; € F), ., there ex-

ists a function a(h) : (0,1] — F satisfying the asymptotic expansion (2.23).

The function a(h) is not unique, however two such functions a(h), a(h) satisfy a(h) = a(h)+
O(h™) .

Proof. Let us first treat the case of a Banach space B, with norm || e ||. Choose a cutoff
function y € C2°[0,00) with x(¢) =1 on [0, 1] and x(¢) = 0 for ¢t > 2. We will select below a

sequence \; — oo, and consider the function
def - i
a(h) = > Wx(\h) a;.
5=0

Since \; — oo, for any h € (0,1] the above series contains finitely many nonzero terms, so
that a(h) is well-defined. We want some control on the decay of the terms. The idea is to

let \; grow sufficiently fast, such that the terms 4’ x(\;h) ||a;|| decay uniformly when i — 0.
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We just notice that

, , Aih
P OB) llagl] = xR 225 s |
J
2
< W= |

j
If we assume iteratively

Aj > max (27 [lagl|, Ay + 1)
we obtain the uniform bound

WX(\h) llagll < W7H/27, V) > 0.

For each given n > 0 we want to control

a(h) — Z W a,
=0
On the one hand, for i > A\, ! we may always find a constant C,, such that

a(h) — Z ha;
=0

On the other hand, for h < A-! the sequence in the RHS of (2.25) will start at the order

j=mn+1, and is equal to

(2.24)

<Y K (x(\h) = Li<a) llagll
=0

< C.h" he M),

> xR llagll < B lapgall + D W2 < (lana | + 1)
Jj=n+1 Jj=n+2

Putting together these two estimate, we find Ha(h) — Yo Ma;| < C.h™tt b e (0,1].

Let us now treat the case of a Fréchet space F, the topology of which is defined by the

countable set of seminorms (||e||,) To select the \; we proceed by a diagonal argument.

aeN"
Namely, we choose A; such as to ensure that the property

W x(Ah) |laj|l,, < B~'/27  holds for all seminorms with o < j.

This can be achieved by taking

A; > max (2j+1 max [la; |, Aj-1 + 1) .
ax]
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Now, given a seminorm « and an index n, let us first assume that the order n > «. Then, in

the case h < A, we have

(2.25) =) Wagl| <D W (x(\h) — 1<) g,
=0 o J=0
(2.26) < D xGh) gl
j=n+1
(2.27) < (langall, +1) -

As before, the case of i > A ! is easy, one just needs to take a large enough constant
Ca,n > (Han-i-l”a + 1)'

Let us finally treat the orders n < a.. For this we decompose

_ihja]’:a Zhja]—i— Z hJCL].
=0

Jj=n+1

Using the bound for the case n = «, this leads to

_ Zhjaj < Cpoh®™ + Z W |la;||, < max <Ca7a, Z \|aj\|a> p1 def Conh™t.

s

Attention ]

2.3.2. A first example of asymptotic expansion for a symbol. Let us now come back to the
expression (2.20) giving the ¢-symbol of an operator, in terms of its s-symbol, and let us
focus on the case s = 0,t = 1. We want to show that this expression satisfies an asymptotic
expansion similar to (2.22) in the topology of the Fréchet space .7 (R??), in the limit A \ 0.

For this aim, we use a Taylor expansion with integral remainder valid for any smooth
function f € C*((—1,1)):

90w
(2.28)  Vhe(-1,1), f(h)—;h 4! +(N

)/0(1—U)N_1f(N)(uh)du.

—1)!

ihDy-

The Fourier transform of the function a; =€ Dnay is given by

a1(zo, &) = €700 G(20,&0),  (20,&0) € R*
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If we apply the above Taylor expansion to the exponential A +— e=#%0%04(z¢, &), viewing
(z0,&0) as parameters, we obtain
(2.29)

e~ M0G0 (30, &o) =

2

1

]I

(—ih&o - xo)’ do(wo, &)+ %/0 (1—u)N =1 (=& - mo) ™ e 204 (4, &) du

Il
=)

J

Since ag € 7 (R??), the integrand on the RHS,

I(x0,&05u, h) = < (1—w)" (=& - $0)N e~ 0T g (20, o).

remains in a bounded set of .%(R?*?), uniformly in /i € (0,1] and u € [0,1] (this means that
any seminorm ||I(u, k)|, is bounded uniformly in u, i). Taking the inverse FT of (2.29), we

get the expression

(2.30)
pisty | )~ N
ihDy-D, 4 _ L AN-1 . iuhD,-D,,
e ag = ]ZOJ (ihD, - D)’ a0+(N—1)!/0 (1—w) " (Dy-Dy) e ap du
N-1y
(2.31) = — (thDy - D)’ CL0+<—1/ F ' (u,h)du
1 _
7=0

Since the Fourier transform is continuous . — ., the function F 1 (u, h) is also bounded in
< (R?%), uniformly in A, u. So, when integrating over u € [0, 1] we obtain a function bounded
in . (R?d), uniformly in A: this shows that the last term in (2.30) is of order O(A"Y) o

We have therefore proved that for any N > 1,
ihDy- —~ .1 ;
ar(h) = "y = 3 W (iD, - DY ao + O(h").

showing that once we have fixed the symbol ay € ., the corresponding symbol a; satisfies

the asymptotic expansion
N-1 '
ar(h) ~ 2% hjﬁ (iD, - D,) ag in & (R*).
]:

The proof works exactly the same for an arbitrary pair (¢,s), and leads to the following

rigorous version of the formal series (2.22):

Proposition 2.26. Consider any pair of indices (t,s) € [0,1]?. Choose a function a, €
' (R?%). Then the corresponding symbol a;(h) such that Op}(a;) = Op;(as) depends explicitly

on h, and satisfies the asymptotic expansion:
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(2.32) |
. (i(t — 5)Y .
ay(h) = M= P=Pe g N hju (D, D,) a; in Z(R*),  when i \,0.

|
>0 J:

Remark 2.27. The above proof of the asymptotic expansion combines several ingredients: an
exponentiated differential operator, the Fourier transform, and the Taylor expansion with

integral remainder.

2.3.3. Another route towards asymptotic expansions: (quadratic) stationary phase expan-
sions. We now give an alternative representation of a; as a function of ag, which will provide
an example of stationary phase expansion. Starting from (2.21), by expressing as(Vp) in
terms of a,(y,n), we get the following integral over R

(2.33) (,& 1) = // (s=t)éo-wo (€0 (z—y)—x0:(£~m)) as(y, n)dxoéff)cjg d77‘

The vector Vo = (x0, &) appears in a quadratic expression in the phase. We may integrate

this phase over Vj, using the following

Lemma 2.28. Let () be a nonsingular, symmetric n X n real valued matriz. Then, the
function x + ez which can be viewed as a distribution in S'(R™) admits the following
Fourier transform:

; eimsgn(Q)/4
2.34 Fi(e3@) () = T —n
( ) 1 (é) | det Q|1/2

Here sgn(Q) denotes the signature of Q), that is the difference between the numbers of positive

e 5(EQ76)

and negative eigenvalues of this matriz.

Proof. We first recall the case of the Fourier transform of a real Gaussian: for G a definite

positive n X n matrix, we have
_Lieag-1
/e—é@,Ga:) e—im{ dx — € 2 ¥ .
(27)n/2 (det G)1/2

If we deform G so that it acquires an imaginary part, still keeping a positive definite real

part, we get the same expression, where the square root of det G is obtained by analytic
continuation from its original positive value. When G = —iQ + €l and € ™\, 0, the expansion
of this determinant over the eigenvalues of Q gives (det(e —iQ))"* = [1; (e— ix) I
Aj > 0 this converges to e~™/4|\;|1/2, while for A; < 0 this goes to e™™/4|\;|*/2. Putting back
the phases in the numerator, we get (2.34). O
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Let us now apply this Lemma to compute the integral in (2.33). The quadratic form in

0 I
(x0,&o) is given by the matrix @ = k(s —t) I 0 ), which has signature 0, determinant

0

|det Q| = |h(s—1)|*%, and inverse Q' = (h(s —t))~" ( ;

1

0 ) The integral over dV;/(2m)?
thus produces the integral

(2.35)

1 dydn  ;0-8-(v—2) 1 dydn ;_nv
at(x’f;h):\s_ﬂd/ arma® “s(y’"):\s_ﬂd/ iy € T sz Y. E+)

where in the last equality we just shifted the integration variables. Since ay € ., this integral

converges absolutely. In the particular case t = 1, s = 0, this gives

dydiy
(2.36) ar(x, € 1) = / # e ao +y,E 4 7).

When A\, 0, the phase in the integral oscillates faster and faster. To estimate the integral,
one should identify the stationary points of the oscillatory phase, and expand the integral
around these points. Indeed, in the limit 4 N\ 0, the integral is dominated by the contributions
of these stationary points. We thus obtain the stationary phase expansion of this integral.
In the present case the phase is quadratic in its variables (y,7), and the unique stationary

point is the origin (0, 0).

Of course, the expansion we obtain by this method coincides with the asymptotic expansion
shown in the previous subsection. Actually, the proof of the quadratic stationary phase

expansion we give below exactly parallels the proof of the last subsection.

2.4. Stationary and nonstationary phase expansions. This gives us the opportunity
to introduce a crucial analytical tool of semiclassical analysis, namely nonstationary and

stationary phase estimates.
Generally speaking, the goal is to estimate integrals of the type
(2.37) I(h) = / a(x) e dy in the limit & N\, 0,

where a € C2°(Q2) for some bounded domain €2 C R”, and the phase function ¢ € C*(R", R)
(or C=(,R), since the values of ¢ outside  are irrelevant). This integral is strongly

oscillatory when A — 0, so we expect it to be small in this limit. The question is:

What is the asymptotic behaviour of (k) when i N\, 07
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The answer to this question will depend on the critical (or stationary) points of ¢, that is
the points z. € €2 such that Vp(z.) = 0. We will not give the most general result, but focus

on situations where the stationary points of ¢ are isolated and nondegenerate.

We will start from a situation directly generalizing integrals of the type (2.35), namely when

the phase function is a nondegenerate quadratic form.

2.4.1. Quadratic stationary phase expansion. We consider the case where the phase function
©(x) is a nondegenerate quadratic form ¢(x) = (x, Qz), so it has a single stationary point at

the origin.

Theorem 2.29. (Quadratic stationary phase) Take Q) a real symmetric nondegenerate n xn
matriz on R™, and a € CX(Q,C), for Q@ € R™ a bounded domain. Then the integral

(2.38) I(h):/a(x)e o dr

admits the following asymptotic expansion.

For any N > 0, there exists Cy (depending on the dimension n and on the form Q), such
that
(2.39)

I(h)

< ONRNTE N 0l

|| <2N4n+1

(27Th)"/2 6i71'sgnQ/4 N-1 R <D, Q71D> J
— PR - - - a r—
det Q[ = 4! 2i =

Remark 2.30. The L' norm on R™ can be controlled by a certain seminorm in .#:

(2.40) lallzr gy < Cosup [(z)"a(z)| = Cull(x)"al|

Proof. Again, we will make a little detour through the Fourier side. The integral I(h) can be
seen as the bracket between the distribution e 3 € .%' and the function a € .. Through
Parseval’s formula, this bracket is equal to the bracket between their Fourier transforms.
Using Lemma 2.28, this leads to

cimsen(Q)/4

10 =1 o [ RO R @ @ e

Now that A is in the numerator of the exponential, it makes sense to expand the latter in
powers of h. Instead of the exact Taylor formula like (2.29), it will be sufficient for us to

bound the remainder in the Taylor formula as:

LN (it)
y —Z( )

=

1t

- NI’
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SO as to get

1/2 N-1
—imsgn(Q)/4 ’ det Ql
€ hn/2 25:

h/2z

/ (€Q7)) Fi(a) () de| <

J=0

((6:07'9)"| 17 (@) (©)] de.

The right hand side can be estimated from above by
DY /\g Fa@©de <O S (loal,
lo|=2N || <2N+n+1
where we used the standard estimate
(2.41) |Fiallp < Co > 110l
la<n+1

Each term of order A’ reads:

[teae)y A= [ 7 ((0.0"D) )€

— (2m)"? ((D, Q7' D))’ a(0).
O

Remark 2.31. The terms of the expansion can be computed in a “direct” manner. We Taylor
expand a(x) around z = 0, to get the formal sum
{z*,0%a(0))
a(z) ~ Z a0
aEeNn
which is an asymptotic expansion in the limit |z| — 0. One then explicitly computes each

integral of the form [ z* "% dz. Odd monomials (|a] odd) lead to zero due to the parity of

the quadratic form, while even monomials lead to the appearance of the matrix !, through
a change of variables. The explicit result for the derivatives of order k = 2j is the j-term in
(2.39).

In subsection 2.4.3 we will generalize this stationary phase expansion to the case of more

general phase functions .

Before doing that, we may apply Thm 2.29 to the integral (2.36) expressing a;(x,&;h) in

terms of ag. This integral is indeed an oscillatory phase integral of the form (2.38) on

0 I
R" := R with symmetric matrix Q(y,n) = ﬁ ( I 0 > and symbol a(y, &) = ao(x +

y,& +n). The theorem provides a pointwise asymptotic expansion for a(z,&; h), that is,
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with no informations on the behaviour when changing (x,£). The derivatives of a(y, &) at
the origin are indeed equal to derivatives of aq at the point (x,&), so we indeed recover the

terms of the expansion (2.32).

Remark 2.32. The expansion of Thm 2.29 indicates that the integral I(h) is dominated by
the germ of a at the stationary point xg = 0: the behaviour of the function a away from this
point is, in some sense, negligible. As we will see in the next subsection, this is a general
feature: the nonstationary points of the phase lead to negligible contributions of oscillatory

integrals.

2.4.2. Nonstationary phase estimates. Let us now switch to a general phase function ¢(x) in
the definition (2.37) of I(h), and first consider the situation where this phase function admits
no stationary point on € (which contains the support of the symbol a). By the compactness

of 2, this means that |V¢| is bounded below by a positive number on .

Theorem 2.33. (Nonstationary phase) Assume that the phase function ¢ has no stationary
point on Q. Then, for any N > 0, there exists Cn o > 0 such that

[I(R)] < Onah™, VRe (0,1], or equivalently — I1(h) = O(h™).

A more precise estimate is the following: for any N > 0,

N

(2.42) I(h)] < CNRN Y

Jj=0

|0 al
|Vp|2N=i

)
Lt

where the prefactor Cy depends on the dimension n, the volume || and on upper bounds on

the derivatives’ ¢, p® . N+,

Proof. We apply integration by parts using the differential operator
hy'(z)-V
L= eV

v ' (2)]

I(h) = /a [Lkeiﬂ dr = / ['LFa] et da.
by integrating by parts k times. The transposed operator reads
PRSI AT

' @)) i)

. . - p(x) - p(x)
which satisfies Le' » =¢* &

We can then write

-V . -V,
i @) ’

where the commutator is a function
o, £ ] S, (et
¢’ ()] = |’ ()]

9To alleviate notations we write ¢’ = 9,0, ¢ = 92y ete.
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Since ¢’ = Vi never vanishes, we get the pointwise estimate

Lol (2 " @ L 5alz
0] 0 < € (15 o+ e o)
Applying this transposed operator again, we find
et ol < ope (((1E@F 0@ @) :
) ] < 0 (G55 + o) 101+ s oo+ s oo

The higher derivatives ¢”(z), ©®(z) are uniformly bounded on , we may absorb them in

the constant prefactor, keeping only the dependence in ¢’ explicit. We thus get the pointwise

estimate
]8 a(x
I['L%] ()| <On2¢,/h22 ‘4 .

An straightforward induction argument shows that for any N >0,

243 129t < oS- 8L

As a result, integrating over x € Q we get the result (2.42). O

This estimate will be very helpful in the following. For instance, when deriving stationary
phase estimates, it allows to take advantage of situations when ¢'(z) vanishes at some critical
point, but a(z) also vanishes up to some order at the same point. It will also allow to get

fast decay for states of the form Opj(a)u, away from the support of w.

This nonstationary phase estimate confirms our previous Remark 2.32. When considering
a general phase function ¢, it will be convenient to (smoothly) truncate the integral I(h)
in small neighbourhoods of stationary points, the remaining parts lying in nonstationary

regions, and therefore being of order O(h>).

2.4.3. Nongquadratic stationary phase estimates. We now go back the computation of I(h) in

(2.37) with a nonquadratic phase function .

Definition 2.34. We assume that all the stationary points of ¢ are nondegenerate: at each
stationary point x., that is such that ¢/(x.) = 0, the Hessian matrix ¢"(z.) = (0;,0,¢(x.)) is
nonsigular. This implies that x. is isolated from other stationary points, hence that stationary
points form a discrete set. On each precompact set €2 there are at most finitely many

stationary points.

Using a smooth finite partition and the nonstationary estimates of the previous section, we

may treat separately the neighbourhoods of each stationary point separately.
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Theorem 2.35. (Nongquadratic stationary phase) We want to estimate the integral (2.37).
We assume ¢ admits a single stationary point oy € supp a, and that this stationary point is

nondegenerate (©"(xq) is nonsingular).

Then there exists a sequence of differential operators (Agy(x, D))oy of orders < 2k, such
that for any N > 0,

N-1
(244)  |I(h) — e¥OMN " B0 [ Ay (, D)a(@)]jy_y, | < ONBNT2 " [[0%al|1
k=0 |a|] <2N+4n+1

The constant Cy depends on supp a and ¢, but not on h nor the seminorms of a.

The most straightforward way to prove this Theorem is through the Morse Lemma, which
allows to transform the phase function ¢ into a quadratic phase through a well-chosen change

of coordinates. This transformation will then allow us to use Thm 2.29.

Proposition 2.36. (Morse Lemma) Assume o(x) has a nondegenerate critical point at xo €
R™. Then there exists a change of coordinates r : neigh(0) — neigh(zg) defined in some
neighbourhood of 0, with k(0) = x, 0k(0) = Id, such that

p(x) =p2ow'(z),  x € neigh(0),

where a(y) = (o) + 3y, ¢"(20)y) in the corresponding neighbourhood of y = 0.

In other words, the diffeomorphism s “straightens out” the coordinates, such as to absorb

the nonquadratic part of ¢ at = = z,.

Proof. Let us assume that the stationary point xy = 0, so that the diffeomorphism x fixes
the origin. The Taylor expansion of ¢ at x = 0 can be written locally as
1
o(x) = ¢(0) + S {w, ¢"(0)x) + O(2?).

Due to the nondegeneracy of ¢”(0), we may write the RHS as

p(2) = 9(0) + 57, Qa)a),

where () is a symmetric nondegenerate matrix, smoothly dependent on x, such that Q(0) =
©"(0). The trick now is to construct a diffeomorphism x with the announced properties, such
that

(2, Q(x)z) = (k' (2), Q(0)x~" ().
We try to solve this equation by the Ansatz k~!(z) = A(z)z, with A(z) an invertible matrix,
smoothly dependent on z, with A(0) = Id. Hence, we need to solve (in A(z)) the problem

(2.45) "A()Q(0)A(z) = Q(z).
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This problem is solved by inverting the function F' : A — *AQ(0)A defined on the space of
n X n matrices, with images in the space of n x n symmetric matrices. To find a (right)
inverse to this function near A = Id, we linearize the equation at A = Id. Namely, we notice

that for an infinitesimal perturbation 0A,
F(I+64)=Q(0)+6Q+ O(5A*),  §Q ="'6AQ(0) + Q(0)JA.

The differential map DF : §A — 0Q is surjective, and admits as inverse 64 = $Q(0)~16Q).
The implicit function theorem implies the existence of a map G : Q — A with G(Q(0) +
6Q) = I+ 3Q(0)716Q + O(0Q?), such that F o G = Id. As a result, the problem (2.45) can
be solved by a matrix A(z) = G(Q(z)) depending smoothly on x. O

Let us now come back to the proof of the Thm 2.35. We may choose a cutoff xy € C°(R¢%, [0, 1])
supported inside the neighbourhood neigh(z), image of the coordinate change x in the Morse
Lemma 2.36, while x(z) = 1 in a smaller neighbourhood of xy. This way, we may decompose
I(h) into

- o(x)

o 1= [ (- @)ale) e do

:p(z)

I(h) = Io(h) + Li(h),  Io(h) = / x(@)a(z) e

The integral I;(h) is easy to treat: the phase ¢ is nonstationary on the support of (1 — x)a,
so from Thm (2.33) we find I;(h) = O(h™).

Applying the Morse Lemma allows, we may write Io(h) as an integral with a quadratic

stationary phase:

o(x) iL(y)
Iy(h) = /Xa(x) e h dr = /e no(xa) o k(y) |detds(y)| dy.

We may then apply the quadratic stationary phase expansion of Theorem 2.29, with the
variables @ := ¢”(xy) and a := ya o k(y) |det dk(y)|. This proves the expansion of Theorem
2.35, using the fact that all derivatives of xa(z) at the point zy are equal to the same

derivatives of a(z). O

Remark 2.37. Our proof of the stationary phase estimate (2.44) does not explicitly compute
the differential operators Ag,(x, D). One can actually compute these operators by a more
“formal” approach, bypassing the use of the Morse Lemma. The idea is to Taylor expand the

phase function around z:
p(z) = pa(a) +g(x),  g(z) = O ((z —20)*),
then naively expand the exponential

eig(z)/ha(x) _ Z (Zg($)/h)ka(x)7

k!
k>0
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and finally, for each k > 0, Taylor expand the product (g(z))* a(z) at 2 = 2. One thereby
obtains a sum of polynomials in (x — x), which can be explicitly integrated over the qua-
dratic phase e*2/". Some power counting shows that the “dangerous” factor A% do not ruin
the asymptotic expansion. Indeed, the k-term polynomial behaves like A=*O ((x — :L'O)?’k)
when x — xy. If k is even, integrating over the quadratic phase yields a result of order
hokpr 2R3k = pr/2HR2 T |k ois odd, the lowest order term will come from integrating
h*O ((z — 29)***!), and is therefore of order A= *p"/2pBk+1/2 = pn/2+(k+1)/2 " The polyno-
mials Ay;(z, D) will hence depend on the germs at x, of the functions W@(m) with the
condition k < j (k even), respectively k + 1 < j (k odd).
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3. COMPOSING h-PSEUDODIFFERENTIAL OPERATORS

Once we have decided how to quantize classical observables, we want to understand how these
operators are composed with each other. Namely, for a given choice of parameter ¢ € [0, 1]
and any two symbols a, b on R* what can we say about the operator Op},(a) o Op}(b)? Can
we bring it into the form Opj}(c) for some symbol c(x, £)?

3.0.1. Composing semiclassical differential operators. We have already come across this ques-

tion, when composing operators Op,(f(z)) and Op,(g(€)): depending on the choice of or-
dering, we obtained either OpZ (f(x)g(€)), or Opf (f(x)g(€)).

In the case of differential operators

Ay= ) ao(z)(hD)* = Opfi(a),  a(z,§) = > aa(x)E,
lo|<m la|<m
say with coefficients a,, € .7 (R?), the composition of the two operators still gives a differential
operator:

ApoBy= Y ) an(x)(hD)*bs(z)(hD)”

la|<m |B]<n

= Zaa )(hD)* +> " aa(x) [(hD), bs(x)] (hD)”.
a,B8
The first sum on the RHS is exactly Opf(ab). In the second sum, each commutator can be

written as:

(0D bs(@)u = D o g™ [y (hD)™

a<1)+a(2>:a
|a(1>\>0

_ Z Ca(1)7oé(2) h|a(1)| Oth ((Da(l)bﬁ> <x> fa(Q)) u,

o a®—q
laM|>0

where the c ) . are combinatorial coefficients. The above sum is therefore a differential

operator, quantization of a polynomial symbol of order O(h).

Summing over all the terms «, 5, we find that A, o By, is a differential operator of degree m.

Its symbol depends explicitly on h, and is composed of

(1) the function a(z, £)b(x, &), independent of h, called the principal symbol of A; o By,
(2) a remainder, which is a differential operator of degree < m — 1, whose coefficients
depend explicitly on h, and are of order O(h).
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3.1. Computating the symbol of Ao B for Schwartz symbols. In the case of symbols
a,b € .7 (R*), the Remark 2.8 showed that the Schwartz kernels of the operators A = Op(a),
B = Op}(b) both belong to .(R¢ x R?); as a result, the kernel k(x,y;h) = kaon(x,y;h)
of the composed operator A o B belongs to .7 (R? x R?) as well, as the convolution of two

Schwartz kernels.

Using the partial inverse Fourier transform y — £ we may write this kernel as

. . J
k(z,y;h) = /e—zg.y/h (]:h—; )(m 5)(27”‘f)d/2 d:f/ezg (x=y)/h,. Lz, &; ﬁ)( Wi)d,

where we introduced the function

or(z, & 1) € (2nh)¥2e €/t (L k) (2,€) € 7 (RY).

hiy—¢
In other words, Ao B = Opf(ci(h)). From Proposition 2.23, we may as well express A o B

as the t-quantization of a Schwartz symbol ¢ = ¢;(z, &; h).

Definition 3.1. For any choice of ¢ € [0, 1], to any linear operator C' with Schwartz kernel
ke € (R x RY) corresponds a unique function ¢; € .%(R??) such that C' = Op}(c;). The
function ¢, is called the (full) t-symbol of the operator C, and we note ¢ = o} (C). The map
C — ¢, = 0}(C) depends on both A and the choice of quantization (¢). In the case of the
Weyl quantization (t = 1/2), we write ¢1,5 = 0} (C).

Our main questions in this section is:

For C' = Op(a) o Opk(b), how does the symbol c;(h) depend on A? Can we

compute it more easily from a, b7

To answer these questions, we will first give an exact expression for ¢, using the expression of
Op;,(a) and Op},(b) in terms of translation operators. In a second step, we will show that the
expression for ¢;(x,&; h) admits an asymptotic series in powers of A. Our main asymptotic

tool will be the stationary phase expansions of the previous section.

3.1.1. Ezact expression of the composed symbols. Let us take a,b € .#(R?*?). For the moment
we will treat an arbitrary ¢-quantization. Using the expression

A= Opl(a /Oph ey,) a(Vo) (;Z:T/)d,
we get
dVo
(2m)

[ oviten) b0

AoB:mmwmﬁmzfommwa%>
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A direct computation, using (2.15), generalizes the composition rule for translation operators
(2.10):
Opt (e, ) Opl ey, ) = eM=O%0@=terzo) Opt (o .

From there we get

dVyd R
Ao B = // VodVy M(1=t)€0-z1— &1 -20) d(Vo)b(Vl) Op%(evﬁvl)

27T 2d

dV dV_ z “r1— ‘T0o) A
// gy e (V2 + VUV /2 = V) Opiev,)

where we used the change of variables
1
In these coordinates the phase reads

o= (L= 1) (€0 /24+€) (00 /2— 1) —H(E/2— ) (/242 )
==t ae/d—-& a2+ a2 -8 o) =t (€ A+ & a2 -8y 28 a)
=(1=2) (& 24 /226 -2 ) + (=6 oo+ & my) /2.

We can hence identity the Fourier transform of the t-symbol of C' = A o B:

~ dV_ ih ~ 7
(3].) Ct(V+; h) = / W € ﬁgpt(v+’V7)a(V+/2 + V_)b(V+/2 - V_)

Let us distinguish two cases:

(1) in the case of the Weyl quantization (¢ = 1/2), the phase reads 1 (§_ -y — &4 - 2_) =
sw(Vo, Vi) = sw(Vo, V).
(2) in the case of the right quantization (¢ = 1), the phase reads — (£, /2 — £ )-(z4 /2 +x_) =

—x0 - 1.

3.1.2. Computing the composed symbol in the case of the Weyl quantization. We will restrict
ourselves to the Weyl quantization, and omit to indicate the subscripts ;5. The expression
(3.1) simplifies to
(3.2)
dV_ i - dv_
c(Vish) = | —e2V=YDa(V /2 + VO)b(V, /2 — VL _/
(Vi) = [ G e Vv 2 - v = [

Can we get a decent expression of ¢ as a function of a,b? As we had already done in
w(Vo,V1)

ez G(V5)b(14).

is a Fourier multiplier on the space Rﬁg ¢ the prod-

uct a(Vp)b(V4) is the Fourier transform of a(po)b(p1), so e2<MYDa(Vy)b(V4) is the Fourier

transform of

Proposition 2.23, the phase e )

~ def in
&(po, p1) = e’z *(Pro: Do) a(po)b(p1).
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The inverse symbol ¢(p; k) hence reads

w(Vi,p) A dv+
= [ [ eoVin gt v, _ oy dVedvs
(3.3) // a(Vi/24+ VbV, /2 — V) e

- . dVdV;
4 = iw(Vot+Vi,p) , 2w(Vo,V1) 0V
(3.4) //e e A(Vo)b(Vi) o

= é(p()v pl) rpo=p1=p
i

(3.5) = 65W(Dp07Dp1)a<p0)b(p1) rP0=P1=P :

This last line directly connects the symbol ¢(h) with a, b.

Theorem 3.2. (composition of WDOs). Assume a,b € . (R*?). Then the operator Op}) (a)o
Op;’ (b) = Op)’ (c(R)), where for any h € (0,1] the symbol c(h) € .7 (R??) is given by the

eTpression

(3.6) c(p; h) = 2P0 LoD a(pYb(p1) Tgmpi=p
(3.7) = ei%(D%'Dzl_Dgl'Dmo)a(PO)b(Pl) [po=p1=p
(3.8) — a(p) ¢54P D) ().

We write ¢ = a#;b, where the #y s called the Moyal product of the symbols a and b. This
product can be defined on the Fourier side, namely by (3.2).

The arrows in the last line indicates that the derivative operator ﬁ acts on a(p) situated on
its left, while the operator B acts on b(p) on its right. One has to be a bit careful with these

notations, and come back to the more precise (3.6) in case of doubt.

Exercise 3.3. Show that in the case of the right quantization, the composition formula for
Opr(a) o Ops(b) reads

c1(p; h) = €™ P14 (po)ba (p1) 1po=pr=p
= a(p) " PP b(p)

3.1.3. The composed Weyl symbol as an “oscillatory convolution integral”. Like in §2.3.3, the

formal expression (3.6) can be expressed as an oscillatory convolution integral, and leads to

an asymptotic expansion in powers of h.

By expanding in (3.4) the Fourier transforms a, b, we obtain the oscillatory integral:

//// dVodVidpodp, o (VotVip) o BV, Vi) ¢ (po VO Fiwo1 V1) o (5 V().

27T 4d
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Notice that the Fourier variables V = (K?) € R* only appear in the phase, hence the integral
over V does not converge absolutely. The phase is of the form

- ;‘uvo, Vi) = Vo, J(p — po)) — (Vi J(p — p1))
=L vQV) -, 2),

with the 4d x 4d symmetric matrix and 4d-vector

o - (o)
Q‘z(J 0 ) 7= (=)

The integral over V thus gives the Fourier transform of this quadratic phase, which was
computed in Lemma 2.28. The matrix Q has signature 0, determinant | det Q| = (h/2)*¢ and

0 —J
inverse Q71 = 2 ( 70 >, so we get

>

1 { _
= Tder g exp <—§<Z, Q 1Z>)

_ (%) exp (<2070 =m0 1) ).

: ; ’ 4d .
Hence we get the “direct integral” over R 7 -

dpodp 2 _
/ / W(;i 5 ¢ T eme ) apg)b(py)

dphdp!
// W(;i L o) a(p+ p))b(p + p))

after the change of variables p, = p; — p.

Proposition 3.4. The Moyal product of two symbols a,b € S(R*?) can be expressed as the
following “oscillatory convolution” integral:

dpo d
(3.9) (attsd) / / PO DL —3lonot) 4 + po)b(p+ pr).

3.2. Asymptotic expansion of the composed Weyl symbol. Expanding the operator

¢13%(Doo:Do) t0 finite order and using the Taylor expansion with integral remainder, we find
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similarly as in (2.30):

atibl(p) = a(p) 3P D) p(p)
(3.10)

=

-1

(m/Q ( (D, D) ) LQ)]; /01 du (1 —u)N"a(p) (w(ﬁ, B)>N€mgw(5’3)b(0)'

J! (N—l!

Il
=)

j
From this exact expression, we will extract bounds on the integral term in the RHS, and show
that it is indeed a “remainder” smaller than the previous terms. On the Fourier side, the
integral over u € [0,1] is a linear combination of (w(Vp, V1))N e™2«(Vo:V) 4 (Vy)b(V4), which are
contained in a bounded set in . (R*) uniformly in wu, h; after integrating over u we are still
in a bounded set in ., uniformly in & € (0, 1]. To obtain the integral in (3.10) we take the
inverse Fourier transform Vj, Vi — pg, p1, which still gives a function contained in a bounded
set in . (R1). Its restriction on the diagonal {py = p;} is still in a bounded set in .(R??).

More explicitly, one can control the seminorms of a#;b in terms of those of a, b as follows:

Proposition 3.5. For a,b € Z(R?Y), the seminorms of c¢(h) = a#tzb are controlled as

follows™:

(3.11)
N—
Va,v € N Vp e R¥,  |8% (astnb) Z o [ ( (D, D) ) ”
j=0
+ ON’yahN H |7| D>N+\a|+2d+1aHLl H<D>N+|a|+|’y|+2d+leLl

The norms in the last term could be symmetrized between a and b. They can be replaced by

norms of the type ZIB\§N+\aI+2d+1 H(p>785a||L1.
For N = 0 this bound reads
Va,y € N*, 070" (a#tab) (p)| < Coa [[(p) (D)2 g [(D) D2

As a consequence, the symbol c(h) belongs to a bounded set in 7 (R?*®), when h € (0,1].

Proof. We only need to show that the integral term in (3.10), which we call hY Ry(z, &; h),

satisfies the bound on the second line of (3.11). For this we work on the Fourier side. Let us

OHere we use the “Japanese brackets” notation: (p) = (1 + |p|?)/2, which grows like |p| when p — co, but
is regular and nonvanishing with p — 0. This notation also applies to the differential operator D, obtaining
a Fourier multiplier.
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first take v = a = 0:

(w(Vo, Vi) e300 g(v4)b(1A)

< OV fa(V)l (A" [b(va)

= C|D)¥a(vo)| | (DY)

To pointwise estimate the N-th order component of (a#.b) (p) we remember that a function
in .(R") is pointwise bounded as follows:

n+1

VeeR /@) < Cllilun = Ca [ 171

<C, (D )”“f

| = |
< G KDY | oy -

In the case of the remainder term in ¢(p; h), the Fourier transform is realized in dimension

4d, so after factorizing in two integrals in dimension 2d, we get

YR |Rx(ei)] < w6, V) e a0 04)

LI(RALd)
< OV | | VB
< C{[(DYV 2 al| oy (DY s ) -

Now, differentiating Ry (p; h) o times amounts to multiply the Fourier transform by (i(J(Vp + V41))),
which can be bounded by an extra factor C,,(Vp)*l(V;)lel and finally extra factors (D)l in-
side each L' factor in (3.11).

Finally, multiplying Ry (p; /) by p? amounts to hit the phase ¢(Vo+V1#) by the derivative
D3y, in the Fourier integral (3.4). Integrating by parts || times, the derivative will hit

(w(Vo, V1)) €200 a(1)b(V7),

which will result in either decreasing the order of the polynomial (w(Vy,V;))Y, or bring-
ing down factors AV) from the exponential, or differentiating a(V;). The final integrand is

therefore bounded above by
(Vo) " (i) O (D)a (V)| fa(va)|

which leads to (3.11) by inverse Fourier transform. O

Remark 3.6. As usual, the L' norms as in (3.11) can be bounded by seminorms of .&:
LAl ey < IG2)™ oo ey

As a consequence, we obtain the following asymptotic expansion for the Moyal product.
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Theorem 3.7. The Moyal product of two symbols a,b € . (R?) satisfies the following as-

ymptotic expansion: We

(3.12)
atyb — > (Zhj/ ‘2 ( (D, D) ) )+ O,
— a(p)b(p) + Zzh (Dea - Dub — Dya - Deb) — %Qa(p (5 -, Dg) )+ O(F)

~ alpp) — 3 a0} = alo) ((Be- B2)'+ (B2 BY)' — 2B - BLB, - BL) i) + 00)..

Remark 3.8. This expansion exhibits the following features:

(1) The first term (RY term) is equal the classical pointwise product of the two symbols.
For this reason, the Moyal product can be considered as a noncommutative deforma-
tion of the (commutative) product of classical observables.

(2) The second term (h') is proportional to the Poisson bracket of the classical ob-
servables, which is antisymmetric w.r.t. exchanging a and 0.

(3) This antisymmetry will be the case for all odd-order terms h***1, while the even-order

terms (like the 4? term above) will be symmetric.
From point 1 we draw the following

Definition 3.9. If we consider initial symbols a,b independent of A, the function c¢(h) =
oV (Opy’ (a) Opy’ (b)) explicitly depends on &, but its main term (order %) does not. We call
this first term in the expansion (3.12) the principal symbol of the operator Op} (a) Op}’ (b),
denoted oo (Op;’ (a) Op;’ (b)).

The above property 1. can thus be expressed as
a5’ (Opy () Opy’ (b)) = ab.
Claim 3.10. All quantizations Op’, lead to the same principal symbol:

Opj,(a) Opy,(b) = Opj(ab) + O(h).

The points 2 will have important consequences concerning the dynamics generated by the

Schrodinger equation, as we analyze in the next subsection.

The expansion (3.12) of the product of two pseudodifferential operators embodies the symbol
calculus, or (semiclassical) pseudodifferential calculus, which is at the heart of semiclassi-
cal/microlocal analysis. This calculus allows to connect properties of the operators, with

properties of their symbols. For the moment our symbols are all in . (R??), but in the next
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section we will extend this calculus to more general symbol classes. Before that, we present

two interesting applications of this calculus:

e the quantum-classical correspondence, expressed through the evolution of observables
(Egorov theorem)
e the first notions of (semiclassical) microlocalization: essential supports and wavefront

sets.

3.3. Commutator vs. Poisson bracket: the quantum-classical correspondence. So
far we have described the quantum dynamics in terms of the evolution of wavefunctions w(t)
through the Schrédinger equation

ihOyu(x,t) = [Pyul (x,t), u(0,x) = ug(x).

If we want to test the wavefunction u(¢,z) through the observable Ay, it makes sense to
analyze the time evolution of the quantum average (u(t), Apu(t)). Calling Uy,(t) = e #/h

the propagator of the Schrodinger equation, this average can be expressed in two ways:
(u(t), Apu(t)) = (Un(t)uo, AnUn(t)uo)
(3.13) = (ug, Un(t)* ApUn(t)uo) < (g, An(t)uo).

In the last expression, we have used the evolution of the observable Ay, which is dual to that
of wavefunctions. This evolution is called the Heisenberg evolution in quantum mechanics.
Mathematically, it is just the adjoint action of the Schrédinger group on the observable
Ap. Notice that Ap(t) remains selfadjoint, and keeps the same eigenvalues throughout the
evolution. A simple computation shows (without paying attention to questions of domains)

that the infinitesimal evolution of an observable is given by:

d ?

(3.14) ZAN(E) = PR AW(E) + An(8) (=i Po/B) = =[P, An(t),

where we used the standard notation for the commutator between the two operators.

From the points 2 and 3 in Remark 3.8, we draw the following expansion of the commutator:

Corollary 3.11. (Commutator of WDOs). For a,b € .7, the commutator of the correspond-
ing Weyl quantizations satisfy

[0} (a), Op}Y ()] = OB} (a#tsd — bra)
(3.15) = Lol (fa.0)) + Op} (0().

This identity is at the heart of the semiclassical correspondence.
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Exercise 3.12. For a general parameter t € [0,1], the quantization Op}, satisfies the less
precise expansion property
h
[Op(a), Opi(b)] = = Op;, ({a, b}) + Opy” (O(h?)) .
A specificity of the Weyl quantization resides in the absence of a term O(h?) in the expansion

of the commutator.

The fact that the commutator of two operators is approximately represented by

the quantization of the Poisson bracket is an important property of quantization.
Why is this connection so important?

Because, in a Hamiltonian system generated by a Hamiltonian'' p(z,¢), we had found in

(1.17) that the infinitesimal evolution of an observable a is given by a Poisson bracket:

{p,a(t)} = %a(t), where a(t) = (a0 ®}).

On the other hand, we have seen above that the infinitesimal quantum evolution of an
observable A = Op," (a), through the dynamics generated by the quantum Hamiltonian
P = Op,” (p), is described the a commutator

i d

=[P, A(t)] = —=A(1).

FPA®) = 5 A)

Hence, the correspondence (3.15) connects the quantum and classical evolutions of observ-

ables, up to a small semiclassical remainder:
1

[P, A] = 7 [Op} (p), OB} (a)] = OB} ({p.a}) + O(F).

The following Egorov Theorem formulates this quantum-classical correspondence be-

(3.16)

tween the evolution of classical and quantum observables in an integrated form. We
will first express it with a remainder expressed in the L? — L? norm, hence we first need
to estimate this norm in terms of the symbol, anticipating on the more general Calderon-

Vaillancourt Theorem:

Proposition 3.13. Let a € . (R*?). Then there exists C(a) > 0 such that, for any h € (0, 1]
and any t € [0, 1],

vue S (RY), | Ophaulle < Collull 2.
As a result, the operator Opk(a) can be extended to a bounded operator on L?*(R%). The

constant C(a) can be estimated as follows: there exists Cy > 0 depending on the dimension,

At this stage, let us assume that the Hamiltonian p € .7(R?9).
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such that we can take

Cla)=Cyq Y l0%all, .

|a|<2d+1

Proof. The Fourier transform @ € .#. From the expression (2.17) of Op;” (a) and the unitarity

of the translation operators Tjy, on L?) we get:

08 @l < [ otV

From the relation (2.19) between the symbols of different quantizations, we find that the

= @2m)all <Ca D> 0%l

o] <2d+1

above bound works as well for all {-quantizations. O

Equipped with this L? — L? estimate, we can prove a (relatively basic) form of the quantum-

classical correspondence.

Theorem 3.14. (Egorov theorem - main order - Schwartz symbols). Take p,a € .7 (R%*)
for the classical Hamiltonian and observable, and their quantizations P, = Op‘,{v(p), Ay =
Opy,(a) for the corresponding quantum operators. Let a(t) (resp. Ap(t)) be the classical (resp.

quantum) evolution of the observable. Then for each fized time t € R,
(3.17) Ap(t) = Op)Y (a(t)) + O(R*) 22

For given T > 0, the remainder is bounded uniformly for t € [=T,T].

Proof. The proof will result from the integration of the infinitesimal correspondence (3.16).
To alleviate notations, we will call
e ~ d
Ao(t) = Op}Y (a(t), and  Ao(t) = — Ao(t) = Op)! ({p.a(t)}).
Our goal will be to compare Ap(t) with Ag(t). We notice that A,(0) = Ap(0). It is then
tempting to compte the time derivative of A, (t) — Ag(¢):

& (Anlt) — Ao(1)) = % [P, An()] ~ OB} ({pa(1)})

dt
7: *
= LU [P, A4 Un(r) — OplY (1.} (1),
but we cannot a priori compare both terms. We must use more cleverly the unitarity of
Un(t): we will apply Duhamel’s trick, which consists in interpolating between Agy(t) and
Ap(t) through the following family of operators:

(3.18) A(t: s) L U(s)* Ag(t — 8)Un(s), t,s €R.
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We notice that A(t;0) = Ag(t), while A(t;t) = Ap(t). For given t € [T, T], the derivative
of A(t;s) w.r.t. s gives:

d i -

%A(t; s) = Up(s)" (ﬁ [P, Ao(t — s)] — Ao(t — s)) Ui(s)

C R20,(s)* Ra(t — 8)Un(s).

What we gain with this trick is the full control on the operator Ay(t—s) and its time derivative

appearing on the right hand side. Indeed, the function a(t) = a o @Z belongs to a bounded

set in .7 (R?) for t € [—2T,2T]. As a result, we may apply the estimate (3.16) to Ag(t — s):
1
h

where the remainder term ro(t — s; /) is bounded in ., uniformly in ¢,s € [-7,7] and

h € (0,1]. By integrating over s € [0, ], we thus find:

[P, Ag(t — 8)] = Ao(t — s) = W*Ry(t — s; h), Rot — s; 1= Op),” (ra(t — s; h)),

A(t;t) — A(t;0) = Ap(t) — Ao(t) = B? /t Un(s)*Ra(t — s; R)Ur(s) ds.

Since r5(t — s;h) remains in a bounded set in ., applying Proposition 3.13 we obtain for

some constant C, 7 > 0:
[AR(E) = Ao(B)ll oy < Capltln?,  VH| < T, he(0,1].
O

Remark 3.15. The remainder O(h?) is due to our use of the Weyl quantization. A similar

Egorov estimate exists for any ¢-quantization, yet in general the error will be O(h).

3.4. A second application of the symbol calculus: essential support and wavefront
set. Let us describe a second important application of the asymptotic expansion (3.12) for
the Moyal product. We will describe the phase space regions were a semiclassical family of
operators (Ap)re(0,1], resp. a family of wavefunctions (u(h))ne(o,1], are essentially concentrated
in the limit A — 0.

3.4.1. Essential supports of symbols / Wavefront sets of operators. One simple application of
the expansion (3.12) concerns the case of symbols a,b € .(R??) with disjoint supports'?.
Proposition 3.16. Assume a,b € . (R*) have disjoint supports. Then the symbol a#tyb =

O(h*>®) . (one sometimes says that the symbol is residual ).

In the case a, b are compactly supported but suppa Nsuppb # (), we no longer have a#,b =
O(h*).o, yet the symbol a#,b will be very small away from suppa N suppb. On the other

12Most of what follows will later be generalized to symbols not belonging to ..
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hand, for each given h € (0, 1], the support of a#,;b will in general be the full space R??. This

leads us to replace the notion of support by that of essential support.

Definition 3.17. Assume that a family of symbols (a(h) € &(R*)), c(o.q] 18 uniformly

bounded in .#, and assume there exists a compact set K & R2?? such that, for any y €
C2°(R?*?) with supp x N K = ), one has ya(h) € h™®.7.

We then say that the symbol a(h) has a compact essential support, and its essential support

ess-supp a(h) is given by the smallest such set K.

Roughly speaking, the essential support describes the points near which a(p;h) is NOT
O(h*)ce. Although the definition of ess-suppa(h) is not easy to apprehend, for an h-
independent symbol we recover the usual definition:

Example 3.18. If a € C*(R??) is independent of A, one has ess-supp a = supp a.

In case our h-dependent symbol is obtained through the Moyal product of two symbols, the

following result can be seen as a generalization of Proposition 3.16:

Proposition 3.19. Assume two familes of symbols a(h),b(h) are uniformly bounded in
S (R?1), and both have compact essential supports. Then a#pb also has compact essential
support, and

ess-supp(a#,b) C ess-supp(a) N ess-supp(b).
For instance, if we take a,b € C%°(R??) independent of A, the above Proposition describes
the essential support of the symbol a#b.

The notion of essential support parallels that of wavefront set, which concerns the corre-

sponding operators.

Definition 3.20. The semiclassical wavefront set of a family of operators (A, = Op; (a(h)))re(o.1

is equal to the essential support of the family of symbols (a(h))se(o,1):
WF;(Op,(a)) & ess-supp a(h).

This notion means that the action of the operator A = (Ah)ﬁe(ojl] is negligible outside this

compact part of phase space.
Proposition 3.19 can be rephrased as:
WF,(Ao B) C WF,(A) N WF,(B),

provided the objects in the RHS are well-defined. This property of pseudodifferential oper-

ators is sometimes called quasi-locality, by analogy with the locality of differential operators
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(if two differential operators p(z, D) and gq(x, D) are such that the polynomials p(x,§) and
q(z, &) have disjoint supports, then P(x, D)o Q(z, D) = 0).

3.4.2. Wavefront set of a semiclassical family of states. Above we have defined the wavefront
set of a family of operators, corresponding to the phase space region where the symbol a(h)
of the operator is not negligible. We now define a notion of wavefront set (or of microlocal-
ization) associated with a family of wavefunctions (u(h))ne(o,1- This notion will describe the

regions of phase space where the wavefunctions u(h) are microlocalized.

In general our functions u(h) will be allowed to oscillate more and more as h N\, 0, so we
certainly cannot require them to be in a bounded set of .(R?) (see e.g the Example 3.23
below). For a moment we will assume that our states are L*-normalized: ||u(h)|p2 = 1,
uniformly in A € (0, 1].

Definition 3.21. (Wavefront set of u) Let (u(h)), ¢ be a family of normalized L? functions.
The semiclassical wavefront set of this family, WF;(u), is a subset of R?¢, which we define by
its complement. Namely, a point py = (9, &) belongs to C WEFy(u) iff there exists a symbol
a € . (R*) with a(po) # 0, such that'? [|Op,(a)u(h)|| = = O(h>).

From the continuity of the symbol a involved in the definition, we see that the property

po & WF;(u) is an open property. As a consequence, WFy(u) is necessarily a closed subset
of R?,

The definition could let believe that the symbol a has to be selected with a lot of care. We

actually have a large freedom to choose this symbol, as shown in the following

Proposition 3.22. Assume py ¢ WFy(u). Then for any b = b(h) € S(R*?) with ess-supp b

a sufficiently small neighbourhood of py, we have
1 Op;(D)u(h)| 2 = O(h™).

Proof. By assumption, there exists a € .7 (R??) such that a(py) # 0 and || Op,(a)ul: =
O(h>). There exists a small neighbourhood U, such that |a(p)| > ¢ > 0 for all p € U,,. Let
us construct a symbol ¢(h) € . such that the Moyal product

(3.19) c(h)#na =1+ O(h™)ce,,)

Such a symbol ¢(h) is then called a microlocal inverse of a.

The construction of ¢(h) proceeds order by order. We write formally the Ansatz ¢ ~ > R ¢;
and using the expansion of the Moyal product, we may solve, order by order in powers of h,
the equation (3.19).

13As we will see later, the condition can be strengthened to Opy,(a)u(h) = O(h™) .
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order h° : co(p)alp) =1 = colp) = a(p)

order h' : c1(p)a(p) — %{cg, a} (p) =0=c1(p) =0
order h? : ca(p)a(p) — %{017 a} (p) — éco(p) <5§ Dy — ﬁc : D£>2 a(p) =0

— alp) = g o (B B - Do) o o)

and so on. At any order j the term c¢;(p) is obtained by dividing by a(p) an explicit ex-
pression involving the functions a, ¢y, c1,---cj—;. We thus obtain a sequence of functions
(¢;)j>0 defined on U,,, which we may extend outside the neighbourhood, to obtain functions
¢; € 7. Using Borel’s Lemma, there existswe construct a function c¢(h) € . such that
c(h) ~ 32, W ¢;j, and hence satisfies (3.19).

Take a symbol b(h) € .7 (R??) satisfying b(h) ~ > h/b;, where all b; € C>°(U,,), and consider
the double product b(h)#,c(h)#na. The property (3.19) shows that
b(h)#nc(h)#na = b(h)#4l + O(h>)

in C*(U,,); but since b(h) is essentially supported inside U,, the above equality also holds
in .(R??). Quantizing these symbols and using Prop. 3.13, we find

1 0p,(b)ull 2 = [| Opy(b) Opy(c) Opy(a)ullr2 + O(R>) = O(R).

Let us now give some (characteristic) examples. Most of the time, the states u(h) we will
consider will belong to ., but with unbounded seminorms when A ™, 0. Our first example

is provided by truncated plane waves.

Example 3.23. Fix { € R? and a function x € C°(R?) such that ||x|/r2®e = 1, and

consider the family of states
(3.20) ee, (13 11) = x(x)e /M,

Its wavefront set WEy(eg,) = {(x,&), © € supp x}. In particular, for any function u €
C>(R%) independent of h, the wavefront set WF,(u) = supp x x {0}.

Another standard example is given by Gaussian wavepackets (also called coherent states).

These represent the strongest form of microlocalization.
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Example 3.24. Fix py = (z0,&) € R*, a > 0, and consider the family

|z — 20

€po,a(T; h) = (ﬂh)_d/4 exp (— T

Its semiclassical wavefront set WFy(e,,) = {po}. For this reason, those coherent states are

sometimes considered as “quantum phase space points”.

The wavefront sets of states (u(h)) and operators A = Op,(a) combine in a natural way:

Proposition 3.25. Consider a family (u(h)), and a symbol a = a(h) uniformly bounded in
S (R?1). Then

(1) WF,(Opy(a)u) C WFp(u).
(11) If a has a compact essential support, then WE;(Op,(a)u) C ess-supp a N WEy(u).

Proof. For the first statement, let us assume that py € WFj(u). We want to prove that
po € WF;(Opj,(a)u). Let us consider a function ¢ € C2°(R??) with a small support U, near
po. The expansion of the Moyal product shows that the symbol b(h) oo c#ra has essential
support inside U,,. From Proposition 3.22, provided we choose U,, small enough, we’ll have
| Op,(b(h))u|lL2 = O(R™). This just proves that || Op,(c) (Op,(a)u) ||z = O(h™), hence
po & WE4(Opy(a)u).

Let us now assume that ess-suppa is compact. For any py ¢ ess-suppa, we may consider
a symbol b supported in a small neighbourhood of pg, such that b(pg) # 0 and ess-supp b N
ess-suppa = (). From Propositions 3.16 and 3.13 we obtain || Op;,(b) Op;(a)ul|2 = O(R™),
hence py € WF;(Opj,(a)u), which proves that pg & WF(Opy(a)u). O

Example 3.26. (Microlocal partition of unity) Let us consider a smooth resolution of identity
1=>"Xn, where each x,, € C>°(R*"). We then obtain a decomposition of a state u € L*(R?)
into

U = Z Oph(Xn)u-

According to the above Proposition, each term Opy (X, )u is microlocalized in supp x, € R*,

that is WF,(Op;,(x»)u) supp xn.

4. EXTENDING THE QUANTIZATION TO NONDECAYING SYMBOLS

So far we have defined the quantization of symbols of the form f(x), g(£), with f, g € .7 (R%),
or a € .7 (R*). As we have just seen, such fast decaying functions are useful to analyze the
microlocalization of quantum states (we will often use cutoff functions x € C°(R??)). How-

ever, we also want to be able to quantize unbounded symbols, like the standard Hamiltonian
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p(z,€) = \EI + V(x), which is unbounded in &, but can also be unbounded in z, depending
on the potentlal V. We will indeed show that our quantization procedures can be naturally

extended to certain classes of symbols with appropriate growth properties at infinity.

4.1. The class of uniformly bounded symbols S(R??). One useful class of symbols is
the class S(R??) of smooth functions, with all derivatives uniformly bounded over R??. In
general we will consider fi-dependent symbols a = (a(h)) he(o.1} an important property of this

class is that all bounds on derivatives are uniform w.r.t. i € (0, 1]:

pERZd

S(R*) = aof {a = a(h) € C*°(R*), sup 8“85 (p; )‘ < Cap, Yh € (0, 1]} .

For a moment, we will not investigate the limit 2~ — 0, but freeze the value
of h > 0.

For a symbol a € S(R??), and for a wavefunction u € .%(R?), the integral

I0)() = Opy(a)u(w) = [[ &5 dy dt

(2mh)d

is absolutely convergent in the y variable, but not in the ¢ variable. Still the presence of

a(tr + (1 —1t)y, &) uly)

an oscillatory phase will help us to give a meaning to such an oscillatory integral. The
strategy will be to apply sufficiently many integrations by parts in the variable y, in order
to recover an absolutely convergent integral in both variables y, £. To proceed, for each £ we

insert the differential operator

of 1+ 1ih& -0, . ) . (o
Le¢ def +Z—Sy, which satisfies  Lee' B et 5 y).
1+ [

Since we assume that u € .#(R%), the integrand decays fast when |y| — oco. We are then

allowed to integrate by parts w.r.t. the variables y = (y1,...,y4), which amouts to applying

the transposed of this operator *L¢ = Ti?gi?y to the rest of the integrand:
&(z—y) dy df
=[] (1) attz+ (0 =0 ut)

= // N ‘Lefa(tz + (1 —t)e, &) u(e)] (y) (2rh)d’

The action of " L¢ on au differentiates the symbol a and the state u, but the resulting product

(@]¢3)
1+[¢)2-

to use the “Japanese brackets” notation'* (¢) = = (1+ [£)? ) , and say that our integration by

is still fast decaying in y. In the £ variable we have gained a factor Here it is handy

parts has produced an extra decaying factor O({£)71).

14The Japanese bracket behaves like |€] when |£] — oo, but it avoids the problem of singularity and the
vanishing of |¢] at £ = 0.
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Definition 4.1. (Kernels defined by oscillatory integrals) Applying this integration by parts
d + 1 times, we obtain an integrand of order O({y)~>°(£)~¢"!), which makes the integral
absolutely convergent in all directions. This converging integral can be taken as the definition
for the oscillatory integral I(u), and therefore as the definition for the action of the operator
Opt(a) on u € S(RY).

Let us for a while set A = 1 to alleviate our notations. The above manipulation are natural
if we consider the large class of operators with Schwartz kernels K (x,y) given by tempered
distributions on R? x R?%. To simplify the notations, we will restrict ourselves to the Weyl
quantization. When the symbol a € .(R?), the Schwartz kernel

(4.1) Ka(z,y) = /eie(r—y)a <$+ng) (dé

2 2m)d

is a well-defined Schwartz function, and can be easily expressed in terms of the partial Fourier

transform of the symbol a w.r.t. its second variable:

_ rT+y
Kor,y) = (2) [Feordl ( ) .

2

Proposition 4.2. The above formula can be extended to symbols a € Y’(Riflé), and defines a
kernel K, € '(R2%). The latter defines a continuous operator Opy’ (a) : (R?) — " (R%).

Proof. For a function a € .7 (R??), the formula (4.1) for the kernel K,(x,y) implies that for
any u,v € . (R?), we have:

(u, Opgv(a)v>=7’(Rd),,5/’(Rd) = (K,, U(ﬂf)v(y)M/(RQd),y(RM)
= (2m) V([ Ferea] (5, 2) , uls + 2/2)0(s — 2/2) gy (a2

Since the function (s,z) — u(s + z/2)v(s — 2/2) defines an element of .%(R?*?); the latter
bracket still makes sense when a € .#”/(R*?), it defines a distribution K, € .'(R2%). The
identification on the first line defines a continuous operator Op}’ (a) : . (R%) — .#/(R%). This
interpretation of the integral (4.1) as a distribution allows to use standard regularization tools
in the theory of distribution. Namely, the distribution K, can be obtained as the limit of a
family K, (z,y) € (R4 xR?) obtained by inserting the factors e~ <(WP+16P) iy the integrand,
and taking € — 0. O

This breadth of Proposition 4.2 has a disadvantage that two operators A, B : %% — .’
cannot in general be composed with one another. The important fact about taking a symbol
a € S(1) lies in the fact that the resulting operator Op}’ (a) maps the space .7 (R%) to itself

Theorem 4.3. For any a € S(R*?) and any h € (0, 1], the operator Op,(a) act continuously
S (RY) — S (RY).
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Remark 4.4. We do not try to control the behaviour of the seminorms when & — 0. However,
by inspecting the occurrences of the factors h, one finds that if the derivatives 9* involved
in the seminorms of .7 (R%) are replaced by (hd)?, then the implied constants are uniform
when 2 N\ 0.

Proof. To alleviate notations we will take A = 1. We need to control the seminorms of the
function defined by the integral I(u), in terms of the seminorms of u. Again, we will restrict
ourselves to the case of Weyl quantization. The action of the differential operator (*L¢)" on
the product au provides an expression of the type

1 n
W (au+*§~8y(au) + -k <§ay) (au>>

(here * just indicates a numerical factor). Since a € S(R??), the integrand will be bounded
above by ) (max|a‘§n H( k@“u”) hence, if we take k = n = d + 1, the convergence of

[[ dydély 1(§>_d_1 shows that that
[[(u) ()] < Co max ||(y)*"1 0|,

lo|<d+1
Here the constant C, depends on a certain number of S-seminorms of a. Below this constant
will vary from line to line. Differentiating 5 times I(u) w.r.t. = produces extra factors in the

integrand:

02 (a3 ) = e (ig) o a2 )
a<p
so that the integrand now may grow like (¢)I?l . As a result, we need to integrate by parts
|8] +d + 1 times with the operator Lg, to let the integrand decay like (€)~4~1. In view of the

above computation, this will give

D 1(w)(@)] < o max ()0

Finally, to show that 9°I(u)(z) decays fast when |z| — oo, we need to apply integration by

parts in the variable &, using a differential operator “dual” to L¢, namely

7 def 1+ ih(x —y) - O
’ 1+ [z —y|?

Y

which also satisfies L,e’ e T\ apply an integration by parts w.r.t. & after

applying the || +d+ 1 integrations by parts over y, so that we already have enough decay as
|€] — oo. We will apply m integrations by parts with L,; the operator (*L,)™ acts on a sum

of terms of the form & ay;f dP~a(e,&)u, with k < n, a < 3. The derivatives J; will either

hit the rational prefactor (€ <5)2n£a (which will improve its decay at infinity), or the symbol
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0*a(e, &) (which leads to a bounded factor). The worst term thus correspond to hitting the

symbol a,

(£-0y)"€ . Ca -
()™ =gyt GEEERIEEE

Taking the worst case k = n, this gives an upper bound

Su(y)| <

WW maX|7|§n |8WU(y)| TO

let appear the seminorms of u, we insert a factor (y)!, take n = |3| +d + 1 as above, and get:

Oa l Ca !
&7 e ) B O S T e |60

We can now consider the integral over the RHS. The integral over £ converges. If [+m > d+1

071 (u)(2)] <

the integral over y converges as well. Lemma 4.5 shows that if we take | = d + 1 (as above),

the integral over y is bounded by C'(z)~™. We have thus proved that:

C,
PIOW] < w60

where C, depends on a certain number of seminorms of a € S(R?*?). O
Lemma 4.5. For any m > 0, the integral 14,,(z) o Jpalz —y) ™™ (y) "V dy is bounded by

Tim(z) < Camp(x)™ ™, Vo € RY

Proof. Denote B, = B(x,|x|/2). Then

Iym(z) = /Rd\B (z — )" (y) @y —i—/B )~(+D gy
<[ a2 dmw+/ (ol /2)" 4 dy
R\ B, Ba
< Cala) ™+ Gl al/2)
S Cd,m<x) m.
U

Example 4.6. If we take a(z, &) = 1, we obtain a representation of the identity, by recovering

the fact that the delta function can be written as 6(z —y) = [ e . Equivalently we

(2nhyd ;
recover the fact that F,0 = W

Example 4.7. Any function f € C°(RY), leading to the multiplication operator Op,(f), is
also in the class S(R*?). Any g € C3°(R{), leading to the Fourier multiplier Op,(g) = g(hD),

is also in the class S(R??).
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4.2. Symbols with polynomial growth: order functions. Beyond the class S(R??), we
want to extend the quantization map to symbols a(z, &) which may grow as |z|, |{] — oo.

We have seen that formal integration by parts allow to gain factors (£)™"

or (z —y) ™ in
the integrals. For this reason, we will need to assume that the symbols a(x,§), and their

derivatives, grow at most polynomially.

A convenient way to describe such a polynomial growth in phase space is through the notion

of order function. This notion will allow some flexibility.

Definition 4.8. A function m : R* — R?* is called an order function if there exists Cy >
0, N € R such that
Vo,pl € R, m(p) < Colp— )" m(p).

Example 4.9. Typical order functions will be m(p) = (£)VV for some N € R, when we only
want to allow a growth/decay in momentum: this includes symbols of the type [£]? + V (z)
with a bounded potential. More generally we can use m(p) = ()M (x)™2, or m(p) = (p)? if

we want to allow growth/decay both in £ and x.

To an order function we associate a symbol class.

Definition 4.10. Let m(p) be an order function. Then we define the symbol class S(R?*?, m) =
S(m) as follows:

S(m) € {a = a(h) € C*(R¥), Ya € N*, 3C, > 0, Vp € R, Vh € (0,1] [8%ca(p; h)| < Cam(p)} .
The space of operators {Op;(a), a € S(m)} make up the class ¥j(m) of pseudodifferential
operators. We have not specified which quantization we are using, but the Corollary 4.16

below will show that this choice is irrelevant.

Under this notation, the space S(R??) will be denoted S(1) from now on. The following
seminorms generate the topology of S(m):

0%a(p; h
||lal], = max sup supM

, n € N.
al<nncoq] »  m(p)

The polynomial growth of a € S(m) implies that S(m) C &'(R??): these symbols are tem-
pered distributions. As a result, they define operators Op,(a) : § — S’ . However, the
controlled smoothness of a € S(m) allows to show, like in the case of S(1), that Op,(a)

preserves the Schwartz space.

Theorem 4.11. Let m(p) be an order function on R*?. Then for any a € S(m) and any
h € (0,1], the operator Opy(a) acts continuously ¥ — . Like in Remark j.J, the estimates

are uniform if one uses the h-seminorms on ..
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Proof. Again we take h = 1 in our computations. There is an N > 0 such that our order
function m(p) < C(p)". On the other hand, (p) < (z) + (&) < 2(x){£), hence (p)N <
Cn(z)N(€)N. Compared with the proof of Thm 4.3, we need to perform extra integration
by parts to cancel the growth of the symbol a(*$%,¢) in the integral I(u). Indeed, applying
(d+ 1+ N) times the operator *L¢, we get an extra factor (€)= =1 5o that the integral
over ¢ is absolutely convergent. If we want to consider &°I(u), we need to apply the same

operator || more times to cancel the extra growth in &.

To control the decay of 9°I(u)(x) in || — oo, we need to integrate n times with the operator
L,, thereby producing a factor {(x — y)~". Inserting a factor (y)*, the function 9°I(u)(x) is
bounded above by

Oa<x+y>N<£>N k o
/ g max [|(y)*0ul|

N+ (z — y)™(y)F lal<N+]3[+d+1
where C, will (as usual) depend on a certain number of seminorms of a € S(m). Since the
numerator (z+y)" < Cy ((z)™ + (y)"), we see by using Lemma 4.5 that taking k = N+d+1
and any n > N, produces an upper bound

6] < N—-n k qa .
O 1(w)(@)] < Cxapar(a) @)™ max ) 9%ulls

O

Example 4.12. Any monimial a(z,£) = £%, o € N? belongs to the class S((¢)le). The
corresponding operator is the differential operator Op,(£%) = (hD,)®. Through the integral
defining the Schwartz kernel, we recover the representation of derivatives of the ¢ distribution

through its Fourier transform:

ey o dE A\
Ka , = TR @ = (= %5 . '
) = [ et = (4) prale -y
Once we know that if a € S(m), the operator Opj,(a) preserves . (R?) it makes sense to
compose these operators with each other. Like we did with symbols a € .7 (R??) in section 3,
we are interested in the algebra property of these symbol classes. Let us start by the simple

product of two symbols.

Lemma 4.13. For any two order functions my, my, and symbols a; € S(m;), the symbol

a; X ay € S(myms). In particular, the symbol class S(1) is stable by simple product.
Proof. Obvious application of the Leibnitz rule. O

Considering all symbol classes S(m) together allows to relate them with the Schwartz space.

Indeed, the latter is dense in the classes S(m), in a slightly weak sense:
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Lemma 4.14. For any ¢ > 0, the space . (R??) is dense in S(m) for the topology of
S((p)m).

Proof. This slight weakening is necessary: we know that S is not dense in the space S(1),
since the constant function a = 1 cannot be approached by Schwartz functions in the
continuous norm: ||1 — a|lp~ > 1 for any a € .. On the other hand, the sequence

n— o0

an(p) = exp (—|p|?/n) € 7 satisfies, for any o € N?? |[{p)=<0%(1 — a,)||z= — O. O

This density of . inside S(m) suggests that the algebra governing the composition of opera-
tors should look the same as in Thm 3.2. We thus need to extend the action of the operator

¢'3%(Do0-Do1) on symbols in S(m).

4.3. Action of exponentiated quadratic differentials on S(m). For symbols a € S(m),
we want to manipulate operators Op,(a), for instance compose two operators, or compare
operators corresponding to different quantizations. As we’ve seen above (see Prop.2.23 and
eq.(3.6)), these procedures can be represented by acting on symbols with operators of the
type e i3(D.Q7'D) for some symmetric nondegenerate matrix @ (of dimension 2d or 4d). The
action of this operator on .#, (and hence also on .’ by duality), had been first defined as
a Fourier multiplier. We also expressd this operator on the “direct side” by a convolution

operator as in Proposition 3.4.

Before going back to symbols a defined on R?, we will consider m(x) an order function on R?
(the definition is the same as in Def. ), and study the action of such exponential quadratic

derivatives on symbols a € S(m). (Later we will take x — (z,£) or x — (x¢, &0, 21,&1)).

Proposition 4.15. Let m(x) be an order function on R". Take a € S(m,RY}), and Q anxn

symmetric nondegenerate matrixz. Then the distribution e i3(D,Q7'D)

D,Q~'D)

‘a also belongs to S(m).

More precisely, the operator e i3 acts continuously S(m) — S(m). Moreover, if a is

(D,Q~1D)

independent of h, the symbol €’ 3 'a admits the asymptotic expansion

(4.2) 2{DQ7ID) g Z (z— (D, Q" 1D>) Aa, in S(m).

]>0

Proof. Since the symbol classes S(m) do not have nice properties w.r.t. the Fourier transform,

5(D,Q7'D)

we will study the operator e’z through its convolution representation (generalizing

the expression (2.35)):
\det Q‘1/2€i7rsgnQ/4
(2mh)n/?

ei%<D7Q*1D>a(x) — C'Q/ exp (—z%) a(z+y)dy, with the prefactor Cgp =
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Fixing the point z, we will analyze the oscillatory integral
I(x,h) = / e a(w +y) dy.

Since a is not decaying, we split the integral between a compactly supported part, containing
the stationary point y = 0, and a noncompact part where the phase oscillates, and where we
will be able to gain decay using integrations by parts. Let x € C°(R"), x(y) = 1 for |y| < 1,
X(y) = 0 for |y| > 2. We write

I(z,h) = I(z,h) + I(x, h), with

(y,Qy)

e = [ @ e s pdy B = [ 0 xw) ae+ o)y

n

The (quadratic) stationary phase estimate applies to [;(h), and we get an expansion

j
B ~ 03 Y % (150,070 ) ate -+ )
j=0
(notice that the terms of the expansion do not depend on Y, since y = 1 near y = 0).
As a function of x, each term in the expansion is bounded above by Ch"?m(x). If we
truncate the expansion at the order NV, the remainder is bounded by 2N + n + 1 derivatives
of a(x 4 y) in the region {|y| < 2}, so the remainder is bounded above by CnxhN*"/2m(z).
Hence |I,(x, h)| < CA"?m(x). If we differentiate I; w.r.t. z, we get the same expressions,

with a(z) replaced by 0%a(x). As a result, we also get
(4.3) 10°T,(x, )| < Coli"*m(z).

We now want to give a sense to the oscillatory integral I(x, k), and show that it is very
small. Since the integrand (1 — x(y)) a(z + y) may diverge when |y| — oo, we will proceed

by formal integration by parts in the variables y, using the operator

__(Qy,hD,)
ETa e

which is well-defined on the support of (1 — x). An important remark is the fact that the

-1

denominator satisfies c|y| < |Qy| < Cly|, which will allow us to “gain” factors (y)~' at each

integration by parts. The k-th i.b.p. of Iy(z, k) thus gives

Bie.h) = [ e E (1) (1 (@) alo o) () dy
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The function (‘L*) [(1 — x(e)) a(z + e)] can be estimated by using the nonstationary phase
estimate (2.43):

(?;2) a(z +y)]| SCkh—lm(:Hy).
|y |2k~ Y|

(44) ('L)"[(1 = x(v)) a(z +y)] < Cp ¥ Z %10

Since m(x + y) < C{y)¥m(z) for some N, we see that for k > N + n + 1 the integral be-
comes absolutely convergent, defining I5(z) rigorously; it also satisfies | Iy (x, h)| < Ch*m(z).
Differentiating I5(z) w.r.t. x amounts to replacing a with 0“a, which has the same growth
properties, so we also get |0%Iy(z, h)| < Ch*m(z).

To summarize, we found |0“I(z, h)| = O(h*)m(z), which is smaller than any term in the
expansion. Together with (4.3), this shows that I(e,h) = ¢'2(PQ"'Dlq € B"/28(m), and
satisfies the expansion (4.2). O

4.4. Composition of operators with symbols in S(m). As a first application of Proposi-

tion 4.15, we obtain the fact that the symbol class is independent of the chosen quantization.

Corollary 4.16. Take t,s € [0, 1], and assume as € S(m) for some order function m. Then
the symbol a; such that Op}(a;) = Opi(as) also belongs to S(m).

Proof. The explicit formula (2.20) is exactly of the type €’ i3(D.Q™'D)g O

A more interesting corollary concerns the composition of operators. For two symbols a; €
S(m;), the symbol a;(p;)az(ps) may be seen as an element of S(m; ® my, R1). We may
then use the expression (3.6) and Prop. 4.15 to define the Moyal product between these two

symbols, and obtain the following

Theorem 4.17. Take two order functions my, my and a; € S(m;), i = 1,2. Then the symbol
a1#pas € S(mims). If the a; are independent of h € (0,1], then the symbol a1#pas satisfies

the asymptotic expansion

a1#nas = Z Zhj/Q ( 5 B) az + O(A™) s(mima)

7=0

The analysis of the integral I5(x, /) in the proof of Proposition 4.15 allows to generalize and

strengthen the quasi-locality property of Prop. 3.19.

Lemma 4.18. Consider a € C>°(R??) independent of h, and b € S(m). Then the symbol
a#pb € L (R*) with seminorms uniform w.r.t. h € (0,1]. More precisely, for any a € N*?

and any point p &€ supp a one has the estimate
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Remark 4.19. Being in . (R??) with uniform seminorms w.r.t. h is equivalent with being in

S({p)™) = Nyso S(p) ™).

Proof. We use the integral expression

(45) ) = [ [ (—%w@o,pl)) alp+ p)blp + 1)

The integrand is supported in the domain {(pg, p1) € (suppa — p) x (suppb—p)}. If p &

supp a this domain does not contain the stationary point (0,0) but is situated at a dis-

tance |(po, p1)| > dist (p, supp a) from the stationary point'®. As a result, we can perform k

k
integrations by parts in the above integral, leading to factors (W) .

[(po,p1)

k
If both a,b € C°, the integral is bounded above by Ch~2 <L‘> |al|cx||bllcx. Besides,
it is compactly supported in pg, p1, and we get the bound

_ bllcn
4.6 a#tnb < C R lalcl , supp a U supp b.
(4.6)  [(a#nb) (p)| < (st (p snppa) + dist(psuppb)” ¢ supp pp

In the case b € S(m), the integrand is bounded above by

~2d,, h ’ k—2d,, (o)™ k—2d,, 1
ottt o () < RO < O

The integrand is compactly supported in py. For k& > N +2d-+1 the integral over p; converges
absolutely, and is bounded above by

< k—2d m(p) '
|(a#hb) (P)| <Ch dist(p, supp a)k—N—Qd

The same estimate holds if we differentiate w.r.t. p, which produces the announced estimate.

O

In general the symbol ¢ = a#;b is not compactly supported, but its essential support is

contained in supp a. This generalizes the result of Prop. 3.19.

Remark 4.20. A slight modification of the proof of the Lemma shows that if a = a(h) €
S({p)~°°) has its essential support contained in some bounded open set 2 (such that a(p) =
@ ((ﬁ) ) for p outside ), then the same result applies to the symbol a#;b with

be S(m).
Let us now consider the Moyal product a#b between two symbols a, b € C>°(R??), such that

the supports of these two symbols are of diameters O(1), and distant from each other. To

5Here we are in performing an integration by parts in R%%, so the denominator ly|* in 2.43 should be replace
by [(po, p1)|*, where |(po, p1)| is the distance from the origin of the point (pg, p1).
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fix ideas, assume these supports have diameters < 2, and are centered on points zy, z; € R??
with |29 — 21| > 10. We already know from Prop. 3.16 that a#,b = O(h*)s. For future use,

let us obtain a more precise estimate.

Lemma 4.21. Two points 2, 21 € R*® at distance |20— 2| > 10. Consider ag, a; € C>(R??),
such that suppa; C {p ER¥ |p—z| < 2}. Then the Moyal product ag#ray satisfies the
estimates

1

Va € N* vk >0, 0% (ao#nar) (p)] < Coph* 2 NE2
(Jo1 = =0l + o — 252 ")

Proof. We analyze the integral (4.5). The integrand is supported on points (pg,p1) €
{120 — pol <2, |21 — p1| < 2}. Hence, using the estimate on the operator (*L)" as in (4.4),
one can easily show (through some elementary plane geometry) that

1 1

k/2
(Ie1 = 20l + [ — 252°)

As before, the same type of estimate holds for derivatives w.r.t. p. O

|a0#ha1(p)’ < Chk_Qd S Clhk—Qd

(120 — pI* + 21 — o)™

4.5. Action of pseudodifferential operators on L?. So far we have considered the action
of operators Op,(a) on u € .#(R?%). However, in quantum mechanics the natural functional
space is the Hilbert space L*(R?), or its Sobolev descendents H*(R%).

4.5.1. Symbols in the Schwartz space. Let us start with nice symbols a € .(R??). We have
seen in Proposition 3.13 that Op,(a) acts on L? as a bounded operator, with an operator
norm uniformly bounded w.r.t. & € (0,1]. An alternative proof of the boundedness of Op;(a)
uses the fact that the Schwartz kernel K, (x,y) € S(R?xR?), and the use of Schur’s inequality
(see the Lemma below). We will see below that we can get a sharper estimate on this bound

in terms of the symbol a.

Lemma 4.22. (Schur’s inequality) Assume that the Schwartz kernel K(z,y) of an operator

A — S is a continuous function on R? x RY, and satisfies
Sup/dy|K(x,y)| < Cf, sup/dx|K(x,y)| < Cs.
T Y

Then A can be extended to a bounded operator L*(R?) — L2(R%), and its norm ||A] 2,2 <

Vi Cs.
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Proof. We compute, for u € % :
2

|Au@»P::L/1¥u»wu@»dy
< / K ()] () dy / K (x,y)| dy

< / 1K (2, )] [u(y) ? dy

Integrating over =, we find

| Auls < C, / K (2, )] |u(y)? dy da

< [yl [ 1K)l ds

< C1Calullzz

4.5.2. Symbols in the class S(1). Let us now attack a less elementary task, which is to show
that for any symbol a in the class S(1), the operators Op,(a) are bounded on L?  and their
norms are uniformly bounded w.r.t. hA. We already know that this is the case for bounded
symbols of the form f(x) or g(£), since the corresponding operators act by multiplication on

L2, resp. on L7. The proof for a general symbols a € S(1) is more involved.

The idea is to split the symbol a into countably many symbols a,, each of them being
supported in an O(1) neighbourhood of the lattice point n € Z?? (as explained at the end of
subsection 3.4.2).

Lemma 4.23. (Partition of unity on R?). There exists a cutoff function x € C(R?*?) sucht

that
d xlp—m)=1.

nez2d

Proof. Consider a cutoff function y € C>°(R?*?), supported in {|p| < Ry}, strictly positive in
{|p| < R4/2}. If Ry > +/d , the function
Sp)=Y_ x(p—n)
nez2d

is everywhere positive. It is also periodic. Hence, if we take x(p) def %, it defines a smooth

partition of unity as stated. ([l
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We then set a,(p) o a(p)x(p —mn), which is compactly supported in the ball B(n, R,). The
S(1) seminorms of a,, are controlled by those of x and a. By linearity, we can formally write

Opp(a) = Z Opp(an).
nez2d
Can we give a meaning to the sum on the RHS? In particular, how does it acts on L*(R?).
Prop. 3.13 implies that all operators Opj,(a,,) are bounded on L?, uniformly w.r.t. i and n.
But all terms may have comparable norms, so we cannot apply the triangle inequality to the

suin.

Yet, Lemma 4.21 shows that if n, n/ are distant from one another, the two operators Op;,(as),

Op;(an/) are “quasi-orthogonal” to each other. Translating this Lemma in the present no-

tations, it implies that, for [n — n/| > 1, the norm ||Opy(an) Opy(ans)|| 2,2 is of order
oo

(@) ((#) ) (see eq. (4.11) for a more precise statement). Grossly speaking, this means

that the image of Op,(ay) is essentially in the kernel of Op,(a, ), and vice-versa.

Remark 4.24. A simplified model for this quasi-orthogonality would be a (strictly) orthogonal
decomposition L? = @,, Hn, such that ker H;; C ker (Opj,(ay)) and Ran (Opj(an)) C Ha.
In that case, Pythagoras’s thm would give, for any v = €,, Vn, vn € Han:

10pu(@ell? = 3 1| Opplan)oall < 3 | Opp(an)|Pllenll? < (sup H Oph<an>u2) ol

To take into account the fact that the operators Opy(ay,) are only quasi-orthogonal, we will

use the Cotlar-Stein Theorem, an abstract operator theoretic result.

Theorem 4.25. (Cotlar-Stein Theorem) Let (A;),., be a family of bounded operators on

some Hilbert space H, and assume that the following bounds hold:

(4.7) supZ HA;A;CHI/Q <C and supZ ||AjA,“;||1/2 <C.
Tk Tk

Then the series Zj A; converges, in the strong operator topology™®, to an operator A, which
satisfies | Al < C.

Notice that the sum ) i A; certainly does not converge in the operator norm topology, since

the norms || Ag|| are not supposed to decay when k — oo (they are only uniformly bounded).

16A family of bounded operators (Bp),, converges to a bounded operator B in the strong operator topology
if, for any v € H, lim,,_, o, Bpv = Bu.
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Proof. We truncate the sum to A = AY) = Z}]=1 Aj, so that the sum is well-defined. A is a

bounded operator, so A*A is a positive selfadjoint operator, which satisfies
* m * m 2m
(A A)™ ]| = [[AA[™ = [|AII™ .

We want to estimate the norm of (A*A)™ in a clever way. From the decomposition of A, we
write
J J
* * def
(A A)m = Z AleJZAJS T Aj2m = Z Ajl"'j?n'
J1.J2-92m J1.J2-92m

The trick is to find two bounds for the norm of A;

1 j2n

A o || < AT A | A5 Ase ]| 1A A |

J2m—1

HAjl"'anH < HA;” ||AJ2A;3|| U HAjzmH .

Taking the geometric mean of these two bounds (and noticing that all ||A;|| < C from our
assumptions), we get

A A 1A, A

J2m—1

1A g || < C || AL AL |72 | AR AL

Through the triangular inequality, this gives:

AL A A A

J2m—1

J
lAaami<c 3o 454" 14s45
J1.d2-jom
If we first sum over j; using the assumption, we produce a factor C'. Then we sum over js,
etc. In the end we sum over jy,, which produces a factor J. This gives finally ||(A*A)™| <
C C?m=1], and therefore ||A|| < C J/?™. Since this estimate holds for any m > 1, we get

1AV < ¢,

a bound which is independent of the truncation order J. Let us now prove the strong

convergence when J — oo. Take 1 € H, and consider ¢ = Aj . Then we may write

Z AJQO = Z AjAZO¢>

Jj21 j=21

formally
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and this series converges abolutely, since

pI RRE Iy R
J J

1/2

< SN AAL 1 1A AL 2 1
J

< STAAL Y Ay A3 1 1
7,3

< C?|ly).

Hence the limit Ap = lim;_,,, AY)p converges for any ¢ € span{A%(H), k> 1}. On the
other hand, we have proved that ||AY)|| < C uniformly for all J. We thus deduce that
| Ap|| < Cllg|| for any ¢ € span {A;(H), k> 1}. It is then possible to extend A to any ¢ in
the closure of this subspace, keeping the same bound || Ap|| < C||¢||. What is the orthogonal
complement of that closure? It is the subspace [, ker A;. For states in this subspace, we
naturally take Ap = 0. Finally we have defined Ay for all states ¢ € H, and showed that it

satisfies the announced bound. O

With this Cotlar-Stein theorem, we are now equipped to prove the L? continuity of pseudo-

differential operators with symbols in S(1), namely the following

Theorem 4.26. (Calderdn-Vaillancourt Theorem) Let a = a(h) € S(1,R??). Then the
operator Op;’ (a) can be extended as a bounded operator on L*(RY), with a bound uniform
w.r.t. h € (0,1].

More precisely, there exists a constant Cy > 0 such that
(48) [P @)oo < Ca 3 HEV2[0%] ey
|| <6d+2

The same estimate holds if we replace the Weyl quantization by any t-quantization.

Proof. As suggested above, we split the operator Op,(a) = >, Ops(an). If we call A4,, =
Op;(ay,) the Cotlar-Stein theorem requires to compute the norms of the operators Opy,(an)* Opy,(an/) =

Opy, (@n#nan) and Opy(an') Opy(an)* = Opy, (an #rln).

1) For |n — n/| < 10R; we apply the bounds of Lemma 3.5 for the seminorms of a,#nan .

For p close to n we have

|aa (dn#han’) (,0)| < C%a H <D>\o¢|—|—2d—|—1anHLoo ||<D>|a|+2d+1an’HLoo 7
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where we used the fact that the symbols a,, are compactly supported near n. For p away

from the support of a,, or a,s, the Lemma 4.18 implies that

- - HanH k+|a ||aan kit
0% (an#nan) (p)| < C pF—2d ¢ ¢ )
19%( nmt) (0)] (dist(p, supp an,) + dist(p, supp an/))k

We may apply Prop. 3.13 by taking all |a| < 2d + 1, and k = 2d + 1 to have integrability in
p € R??, We hence get the estimate

(4.9) 145 Awll 22 < Callanl|gasse lan llgsare < Callaligaase -

2) When |n —n/| > 10R,, we use the Lemma 4.21 to show that the product symbol satisfies

(4.10) 0% (an#nan) (p)] < ol lanllgrsial llanllrrial o
n4n’ |2
n =+ |p - 242])

(where the constants implicitly depend on the cutoff x). Again, Prop. 3.13 used for all
la] < 2d+ 1 and some k > 2d + 1 leads to
(4.11)

2
ko lan || grrzars ||an || grs2as ]| e
| Ay Al 22 < Crh u n = nj;k < Cryh —(n v k>2d+1.

The same bound holds for the norms ||A, A%|. By taking & > 4d + 1, we see that the

expressions » | A% A |2, o || A A% ||'/* converge, and are bounded uniformly w.r.t. A

and n':

sup > AR Aw|['? < Cayllallgosa . sup > [|Aw ALY < Cayllall cons -
n n/ n n/

We may thus apply the Cotlar-Stein Theorem. It shows that Op,(a) is well-defined as a

bounded operator on L?, with a norm

(412) [|Op)¥ ()] 12, .2 < Cullallconre = Ca D> [10%allp~,  uniformly for & € (0,1].

o] <6d+2

We notice that the RHS does not depend on A, in particular the above estimate holds in the
case h = 1. To improve this bound into the one stated in the Theorem when h < 1, we use

a simple scaling argument. Namely, the unitary rescaling operator
(4.13) Upu(z) € ¥ u(h ),
intertwines the quantization for “A = A" and “hA = 1":

U, Opy (a)u = Opy” (ap)Upu,
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where a, is the rescaled symbol ay(p) = a(h'/?p). Indeed:

B TOPY (a)u] (hY/22) = / (;iyr;g T (Mg) u(y)

:/de_ LW/RE(n22)h2Y) W—hwy’hl/?z R u(RY2Y)
(2m) 2

71'

= [Op‘fv(ah)Uhu] (l’) .

This shows that the operators Op}’ (a), Op! (a;,) are unitarily conjugate, thus they have the

same L? — L? norm. Now, we can apply the estimate (4.12) to Op}"(as), and notice that
10%an]| o = B2 (|0%al| o 0

Remark 4.27. We will show below that the bound (4.8) can be slightly improved, namely the

constant in front of the term ||al/z~ can be taken to be unity.

The Calderén-Vaillancourt theorem is very important. It allows to transform remainder
terms expressed in the topology of S(1), into remainder terms in the topology of operators
on L2, which is more natural when we study spectral questions or time evolution on L?. A

first example is a direct corollary of the composition theorem 4.17:

Corollary 4.28. (Pseudodifferential calculus on L?) Take two symbols a,b € S(1,R??). The
first statement from Thm /.17 indicates that a#zb € S(1). The asymptotic expansion of the
same theorem translates into an expansion in L?:

Op, (a Z m/z Opy” (a (w(ﬁ B))j b> + OB 20 12,

7=0

where the implied constant depends on a certain number of derivatives of a,b.

The two first terms:
ih
Opy' (a) Opy’ (b) = Oy (ab) — - Opyy ({a,b}) + O(h*) 212,
are a manifestation of the quantum-classical correspondence, now in the L* framework.

For instance, for two symbols a,b € S(1) with disjoint supports, the above expansion shows
that

Op?/(a) Opg/(b) = O(hOO)LZHLZ.

The symmetry of the Weyl quantization, stated in Prop. 2.11 for symbols a € ., can be
generalized to all a € S(1).
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Theorem 4.29. For any real-valued symbol a € S(1), the operator Op} (a) : L? — L? is
selfadjoint.

4.6. Going in the reverse direction: from L? properties of the operator to those
of its symbol. The Calderén-Vaillancourt theorem has a sort of “inverse”, namely we can
deduce properties of the symbol a € .%/(R??) from the properties of the action of operator

Opp(a) on L?. We first state a result concerning the case h = 1.

Proposition 4.30. Let a € '(R?*!). We assume that the right quantization operators
Opf(8°a) are bounded L? — L? for all derivatives of order || < 2d+1. Then a € L®(R?*?),

and we have the estimate

lall e < Ca D [JOPF(O°a)]| 1oy e

o] <2d+1

Using the h'/?-rescaling which connects Opy(a) with Op, (ay), we obtain a more precise result

wn case of the h-quantization:
(4.14) lalye <Ca Y BV [[Op(0%)]| 2 e
la|<2d+1

Corollary 4.31. Then there exists an integer My > 0 such that the following holds. For a
given t € [0, 1], we assume that operators Op'(9“a) are bounded L? — L? for all derivatives
of order |a| < My. Then a € L®(R?*®), and we have the estimate

lall . < Ca > [|Opi(0*a)]|,2, 1
|| <My

as well as the corresponding h-estimate.

From this estimate we deduce Beals’s Theorem, which allows to characterize symbols in S(1)
from the properties of their quantization. This characterization uses the commutators of
A = Op}(a) with the quantizations of linear symbols ¢(z,£) = & - — o - £&. The adjoint

action of Op,(¢) on some operator A is defined by the commutator
adop,(n A = [Opy(£), 4]

Theorem 4.32. (Beals’s Theorem) Let a € .'(R??), possibly depending on h € (0,1], and

for some t € [0,1] take A = Op'(a). Then the two followings statements are equivalent:
1) a e S(1).

2) for every N > 0 and every sequence £y, . .., Ly of linear symbols, the operator adop, () © - - -0

adop, (¢,) A 1s bounded on L?, with norm

(4.15) Hadoph(gN) ©---0 adoph(f1) AHL2—>L2 = ON(hN)
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Proof. We simply notice that adop, ¢,) A involves derivatives of a(p). The commutation with
linear symbols is covariant with quantization, in the sense that the first-order expansion of

the Moyal product is exact:

[Opy(€), Opy(a)] = —ih Opy, ({£, a})

so the assumption implies that ||Op, (0a)|| = O(1). Proceding by iterations, we find that
that ||Opj, (0%a)|| = O4(1) for all @ € N??. Injecting these estimates in (4.14) we get, for any
B e N*,
al/2 a
|0%all, < Ca 3 V2 [ OPUOT )| a0 = O5(1),

la|<2d+1
which shows that a € S(1). O

4.7. Compact, Hilbert-Schmidt, Trace class pseudodifferential operators. We now
study in more detail the pseudodifferential Op,(a) on L?(RY), with a view on their spectral

properties.

One of our objectives is to find critera for our operators to have discrete spectra. For this
we will use a caracterization of compact operators, since one way to prove discreteness of the
spectrum of a symmetric operator A is to show that its resolvent (A —7)~! is compact. In a
second step, we will be interested in counting the eigenvalues of A, and for this we will use

the functional calculus of pseudodifferential operators.

We recall a few definitions relative to bounded operators A : L? — L? |

Definition 4.33. An operator A : L? — L? is said to be compact if it maps any bounded
subset of L? into a precompact set of L2. Equivalently, for any sequence (wj)j bounded in

L? one can extract from the sequence (Av;) a subsequence converging in L,

Proposition 4.34. The spectrum of a compact operator A is made of eigenvalues p; # 0

with finite multiplicities, which only possible accumulation point being the origin.

If A is compact, then A*A and AA* are compact and selfadjoint, their nonzero eigenvalues

can be called (s?)

in decreasing order). The (s;),., are called the singular values of A.

jor >1

Definition 4.35. A compact operator A is said to be Hilbert-Schmidt if 2321 s? < o0. This
condition defines the Hilbert-Schmidt norm || Al[7, o =157 of the operator A.

As we will see below, the space of H-S operators (also called the 2d Schatten class) admits a

natural Hilbert structure.
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Definition 4.36. A compact operator A is said to be trace class if Zj s; < oo. This

condition defines a Banach norm |[|A]|,, = >_; s; on the space of trace class operators. This

norm can be defined through a variational principle:

(4.16) Al = S )Re2<ej, Afy),
€3),\J3j g

where the supremum is taken over all pairs of orthonormal bases.

The space of trace class operators (also called the 1st Schatten class) admits a linear func-
def

1> by trA =

>_j>1(ej, Ae;). This linear functional is continuous w.r.t. the trace norm: [trA| < |[A[l,.

tional, called the trace. It can be defined, for any orthonormal basis (ej)

Proposition 4.37. i) A trace class = A Hilbert-Schmidt.

it) For any A trace class (resp. HS) and B bounded, then AB and BA is trace class (resp.
HS). '". The ideal of compact operators is closed for the operator norm: if (A). are compact
and || A, — Al = 0, then A is compact.

iti) If A, B are HS, then AB is trace-class, and ||BAl|+w < ||Bllas||A||lns. The HS scalar
product is defined by (A, Byys = trAB*.

iv) The trace enjoys the cyclic property tr(AB) = tr(BA) (ifA is trace-class and B bounded,
or if A, B are HS).

On L?(RY), an operator A is Hilbert-Schmidt iff its Schwartz kernel K4 € L?(R¢ x R?), and
one has

(4.17) Al s = 1K1 2

Corollary 4.38. Take a € ' (R*!). Then the operator Op;’ (a) (which, a priori, acts
S — ") can be extended to a Hilbert Schmidt operator L* — L? iff its symbol a € L*(R?).
One then has the identity

dr d 1
|Opy (a HHS /| )| ’ fd (QWh)dHa”LQRQd)

Proof. Let us start with symbols a € .(R??). Start from the characterization (4.17), and

recall the relationship between kernel and symbol:

T+y i€ g 1 _ r+y
K(x,y)Z/a< 5 ,5)6 @rh)d ~ (2xh)in <]:h§_>z)( 5 ,Z—x—y).

1"More formally, trace-class (resp. HS) operators forms a ideal of the space of bounded operators
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Using the fact that the change of variables (z,y) — (5%, 2 — y) has Jacobian unity, and the

Parseval identity, we get

[t sy = s [[(Filo ) ()

2

1
dey dr_ = W/|a(x+,§)|2dm+ dg.

O

This identity can now be extended by density: K € L*(R? x R?) iff a € L?(R?*?). We notice
that symbols a € L?(R?*¥) are not necessarily in S(1); nevertheless, we will mostly use the
above characterization in cases where a € S(1)NL?. since HS C compact, this corollary gives

us a simple criterion to show the compactness of a PDO.

Corollary 4.39. Assume the order function m(p) belongs to L*(R??). Then for any symbol
a € S(m), the operator Op,’ (a) is HS, hence compact. Besides, the HS norm of Op;’ (a) is
bounded by O(h~?).

If the Schwartz kernel K € . (R% x RY), it is known that the operator Ay : L? — L? is trace
class, and its trace is given by
(4.18) trAx = /K(x, x)dz.

(this formula is the continuous analogue of the discrete sum trM = ). M;; for matrices).
The relation between the symbol and the kernel of Opl(a) allows to prove the following

Proposition.

Proposition 4.40. Assume a € ./ (R?*?). Then for any t € [0,1] and any h € (0,1] the

operator Op(a) is trace class, and its trace is given by

ﬁ /a(x,f) dx d€.

Proof. The relation between symbol and kernel is given in (2.3):

tr Opy(a) =

K(x,y) = (27r)_d/2 [Feza)(tz+ (1 —t)y,z=2—y).

Inserting this expression in the integral (4.18), we get

tr Opl(a) = (%—;LW / (Fesea) (2,0) d dé = ﬁ / 0 (2,€) d dt.

Here is a more general criterion for a PDO to be compact on L?(R?).
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(G =0, then for any a € S(m) and

any h € (0,1], t € [0, 1], the operator Op}(a) is a compact operator on L?(RY).

Theorem 4.41. If an order function m satisfies m(p)

Proof. We use the decomposition of a(p) used in the proof of the Calderon-Vaillancourt
Theorem, namely we split it into compactly supported symbols a = Y ;24 a,,. We know that
each Opy(ay) (we skip the superscript t) is H-S hence compact, therefore Ay, o > nj<nr An
is compact for any M > 0. The ideal of compact operators is closed w.r.t. the operator
norm, so we only need to show that

M—o0

(419) HA AM||L2—>L2 e O
To prove this limit we use the Cotlar-Stein Lemma, applied to the operator
By=A-Ay= Y A,
|n|>M

Indeed, for a € S(m) the estimates (4.9,4.10) are easily modified into

145 Awll o2 < Coamln)m(n') | —n| < 10R,,

m(n)m(n’)

k—2d
||A* n/||L2—>L2<C kh (n n>k )

In —n'| > 10Ry, k> 2d+ 1.

Hence, for any n € Z*? we may write

> MaAwl < Ca Y YR M) o min),

n n/)k/?
[n/|>M |n/|>M

where we used the defining property of an order function, and took k large enough to have
the sum converge. As a result we get

sup > A Aw | < Cly sup min) 250,

|n|>M [n/|>M |n|>M
The same convergence holds for the sums ), | Ap A% ||M2. Applying the Cotlar-Stein The-

orem proves the limit (4.19), hence the theorem. O

4.7.1. Criteria for trace class operators. Let us now investigate criterions for a PDO to be
trace-class. Let us first consider the case of an operator A with Schwartz kernel K (z,y) €
C>®(R? x RY). If we consider a cutoff function 1 € C>(R?) such that ¥ (x)y(y) = 1 on the

support of K, we have

K(z,y) = ¢Y(x)(y) K (z,y) = /f((&U)ei(g'ﬂy'n)w(x)iﬁ(y)%, with the notation K = F, K.
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For each &7, the kernel e!€=+¥ My (x)1)(y) represents the rank-1 operator u — g (1, u),
where ¢¢(z) = €1 (x). The formula (4.16) shows that this operator has trace norm |[1)[|2,,
and a trace tr (e (¢, 8)) = [ &M y(z)2dx, so we get

- déd
(4.20) 4l < 12 [ [Rte] ot = Loy
(4.21) trA = //f((f,n) e M@ (1) dmdf’dn /K T, x)

A more general kernel K may be split using a partition of unity of R, 1 =%, x(e — n),
where x € C*(R?, [0, 1]) is supported in the box [—1,1]%:

def
(4.22) = Y Knw(@y),  Knw(zy) < Ky)x@—n)x(y —n).
n,n'€Z4
We may apply to each truncated kernel K, , the estimate (4.20), using the Ztranslates of
a fixed function 1 equal to unity in [—1,1]¢ (note that all the translates share the same L2
norm). If the ||l?n\n/|| 1 decay sufficiently fast so that >

inequality we deduce that A is trace class, with norm

l?m\n/ |Lr < oo, then by triangle

n,n’ ||

1%
(2m)®

1Al < Cy Y 1Kl < oo, with Oy =

n,n’
By the standard Fourier transform estimate we have
”Kn,n’HLl < C’d Z HaaKn,n’HLl-
|| <2d+1

Taking into accound the partition of unity (4.22) and the fact that the derivatives of ¢ are
bounded, we find that

Ale <C 3" SN0 Kl <C° > 102, K11 ds ay)-
la|<2d+1 n,n/ |a|<2d+1

If the RHS is finite, the function z — K(x,z) is then automatically continuous, bounded

and integrable, and we have by linearity

trA = /K(x,x) dx

Proposition 4.42. Assume that Schwartz kernel K(x,y) of an operator A : L?*(RY) —
L*(RY) satisfies

We have showed the following

Z Hag,yKHLI(dxdy) < 00.

o] <2d+1
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Then this operator is trace class on L?*(R?), and its trace-norm is bounded by
(4.23) 1Allr < Ca Y 102, Kl dway) -
|| <2d+1

Furthermore, the restriction of the kernel on the diagonal is integrable, and

mm:/K@mw.

Let us now search a criterion for a PDO Op,(a) to be trace-class. For simplicity we start

using the right quantization Op?(a), which we may write as

Opy'(a)u(z) = /6£ a(z,§) flu(f)W‘
Hence, Op?(a) is the composition of the (unitary) Fourier transform, with the operator of
kernel K(z,¢) = e a(x,£) (viewing £ as the initial variable). These two operators share

the same singular values, hence Op’(a) is trace class iff A is so.

It is not possible to directly use the estimate (4.23) for the kernel K(z,¢), since we get a
(bad) factor £ each time we differentiate it w.r.t. z, and vice-versa. As we did before, we

split this kernel using the smooth partition of unity > . x(e —n), to get elements

Kn.n’(m7 g) = X(ZL‘ - 'I’L)X(£ - n/)ei&ma(l" €>

We then decompose the phase £ -2 =(§—n') - (zr—n)+&-n+n' -z —n-n', so that the
derivatives of the first term remainds uniformly bounded in supp K, . The terms {-n+n’-z

produce a shift in the Fourier transform:

Ko (2*,8) = e ™™ G (z° =/ & —m),  where  ap(2,6) 2 y(@—n)y(E—n)eE ™) Cmg(z ¢

We thus get a trace class operator provided
= —_—
Z ||Kn7n’||L1 = Z ||an,n’”L1 < o0
n'n’ n'n’

The advantage of this phase decomposition is that the derivatives of a, ., are bounded
uniformly in terms of those of the derivatives of a(x, ) near (n,n’), because the factors

(¢ —n’), (x —n) in the phase remain bounded. Hence, the above RHS is bounded above by
CY > Nl <C > 0%l
nn’ |a|<2d+1 laf<2d+1
We have thus proved that
H OpR(a)Htr < Cd Z H@O‘aHLl(Rgd).

o] <2d+1
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We may now restore the factors A, using the unitary rescaling (4.13): Opi(a) = Uy Op¥(as)U;
imply that the two conjugate operators have same trace norm and trace. Analyzing the L!

norms of 0%ay,, we obtain the following criteria for trace-class property:

Theorem 4.43. Assume that the symbol a € S(1) satisfies 3, <oq41 [10%al 21 < C uniformly
for b€ (0,1]. Then the operator Opr(a) is trace class, with the bound

1O (@ler < Cal™® Y R )10%] 13 g2

lo|<2d+1

Its trace is explicitly given by

tr Opi(a) = W/a(x,ﬁ;h) dx d§.



AN INTRODUCTION TO SEMICLASSICAL ANALYSIS 83

5. QUANTITATIVE STUDY OF SEMICLASSICAL PDOS

We now want to use the ~-PDO toolbox to get informations on the spectral properties of
Opy(a) in terms of the properties of its symbol a(z,£). We'll see that in some cases we can

have access to a rather precise description of that spectrum.
5.1. Invertibility of elliptic PDOs and Garding inequalities.

5.1.1. Ellipticity and invertibility. The first question is that of the invertibility of the operator

Op;(a), when the symbol a is invertible (that is, nonvanishing) on R%.

Definition 5.1. A symbol a € S(1) is said to be (semiclassically) elliptic (in S(1)) if
la(p; B)| >~ > 0 for all p € R* and h € (0, 1].

In that case, the pseudodifferential calculus of Cor. 4.28 will allow us to construct a
parametriz for Op;’ (a) (that is, a quasi-inverse), which is then easily transformed into a

true inverse.

Theorem 5.2. Assume that a € S(1) is h-independent and elliptic. Then for h > 0 small
enough, Opy,(a) is invertible, and its inverse is a PDO with symbol b = b(h) € S(1) admitting

an asymptotic expansion

, 1
b~ Z b, with principal symbol by = =

J

Proof. The construction is similar with the one in the proof of Proposition 3.22.We start by
the trial function (Ansatz) by = 1/a. From the ellipticity of a, one easily checks that this
symbol is in S(1). Then, the symbol calculus shows that

(l#hbo =1+ r, T1€ hS(l)

From the Calderon-Vaillancourt theorem, for /& small enough we’ll have ||Opy(r1)|| 272 <

1/2, so we can invert 1 + Op;,(r;) by Neumann series'®, to get

Opy,(@) Opy(bo) (I + Opy(r1)) ™" = 1.

This produces a right inverse Bf for Opj,(a), with operator norm HBRHLQ_)L2 < C. On may
similarly construct a left inverse of the form BY = (I + Op,(r3))”" Op,(bo). The existence of

these two inverses shows that Opj,(a) is invertible, and that B* = BL Op,,(a)B" = B B,

18The Neumann series is the expression (I + R)™" = > nso(=1)"R", with norm H(I + R)ilH <(1-|R),

valid as soon as | R|| < 1.
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To prove that B = Op,(b) with b € S(1), one may use Beals’s Theorem 4.32, and the

following algebraic trick. For any linear symbols ¢y, ..., ¢y, the commutator
(51) adoph(gl) B=-B (adopﬁ(gl) Oph(a)) B = O(ﬁ)LzﬁLQ.

Applying the Leibniz rule to this expression, one shows by iteration that

N
H adopﬁ(gj) B= O(hN)L2_,L2.

j=1
Beals’s Lemma then states that b € S(1).

To get more information on the symbol b, we notice that r; € hS(1), so we may partially
cancel it by taking by = —ry/a, so that a#b; = —r1 + O(h*)s@). Continuing this way, we
construct by, bs, ... by with b; € A/ S(1), such that a#(by + -+ + by) = I + O(RN 1) gy. An

equivalent way to obtain the expansion of b is to write:

b~ bo#n (1 — 1+ rifFnr — ri#Fari#F#er + -+ -)

O

This inversion property can be generalized to to elliptic symbols in classes S(m) for an

arbitrary order function m(p).

Definition 5.3. A symbol a € S(m) is said to be elliptic (in that class) if there exists v > 0
such that |a(p)| > ym(p) for all p € R* and h € (0, 1].

Theorem 5.4. If a € S(m) is elliptic, then for h < hy small enough, there exists b € S(m™!)
such that a#t,b = b#pa = 1.

Proof. From the symbol by = a=! € S(m™!), we have a#,by = 1 + r1(h), with the symbol
calculus showing that r1(h) € hS(1). We can then use the preceding theorem in order (when
h < hg) to invert Op,(1 + 71) into a PDO with symbol ~ 1 — r; 4+ ri#,r — - -+, and finally
apply the Moyal product with a=! € S(m™!) to get the exact inverse b € S(m™1). O

5.2. Domains of operators in V;(m): semiclassical Sobolev spaces. Now that we
know that symbols a € S(1) lead to bounded operators on L? — L? what can be said of
operators issued from symbols a € S(m) for a general order function m? We will mostly
consider the case when m > 1 and m(p) — oo when |p| — o0, at least along certain directions

in phase space.

Example 5.5. The semiclassical Laplacian P = —h?A is the quantization of p(z, &) = |£/*.
This symbol belongs to the class m(p) = (£)?, which diverges in the limit || — oo. Tt is well-

known that the Laplacian is unbounded on L?, and admits as natural domain the Sobolev
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space H?(R?*) = {u € L?, Awu € L*}. This Sobolev space can be constructed as the image
of L? by the resolvent (1 — A)~! but also as the image of L? by the resolvent (1 — h?A)~!:

H*(RY) = (1 — R2A) ' L*(RY).

For a given h > 0, we can equip this Sobolev space by the norm resulting from this construc-
tion, that is take, for any v = (1 — h2A) 1w € H?,

def
[ulliz = Ivllzz = [[(1 = B2 A)u|| 2.

Of course, this norm is equivalent with the one constructed with A = 1. Still, to emphasize

the h-dependence of the norm, we denote the space H* equipped with this norm by H?.

In the above construction, the crucial object was the operator 1 — h2A = Op,(1 + |£]?).
The symbol (1 + [£]?) belongs to the class S(m) for m(z,&) = (£)?, and also satisfies also
(1+ [£]*) = m(p), so according to Definition 5.3, that symbol is elliptic in S(m).

More generally, for an order function m, we may use an elliptic symbol in S(m) to define a

norm on ., and then a functional space by completion.

Definition 5.6. Let m be an order function, and g,, be an elliptic symbol in S(m). We then
define the following norm on . (R%):

def
Vue SRY, |l = | Opp(gm)ull 2.

The completion of .%(RY) w.r.t. this norm is denoted by Hy(m), it is called a generalized

(semiclassical) Sobolev space.

Lemma 5.7. If we choose another elliptic symbol g’ in S(m), then for h < hy small enough
the corresponding norm is equivalent with the one above, with implied constants uniform w.r.t.

h e (0, hy).

Proof. Let us call [|ully, ., o | Opy,(¢')ul|z2- From the ellipticity of g € S(m), for h small

enough Op,(g) is invertible and Op,(g)~' € ¥u(m™1), so that Op,(¢') Opu(g)~! € Tu(1).

Hence
]|, my = | OP1(9") Opn(g) ™! Opyp(g)ull L2
< || Opy(9") Opi(g) 2= 2]l Opy(g)ull L2,

80 [|ully, my < Cllullm,(m), with €' > 0 uniform w.r.t. A. Since g and ¢’ play symmetric roles,

we obtain the uniform norm equivalence for A < hy. 0

Similarly, we may compare two generalized Sobolev spaces if the corresponding order func-

tions are ordered:
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Proposition 5.8. Assume two order functions satisfy m < m’. Then the inclusion S(m’) C
S(m) implies Hy(m') C Hyp(m). More quantitatively, there exists C' > 0 such that, for any
u € Hy(m') and any h < hg,

lull e, omy < Cllull -

This bound generalizes the well-known estimates between Sobolev spaces of varying orders.

Proposition 5.9. For any order function m, any symbol a € S(m) and h < hy, the operator
Op,(a) : & — % can be extended to a bounded operator Hp(m) — L2.

Proof. Let g € S(m) be an elliptic symbol, so u € Hy(m) <= Op,(g)u € L*. For h < hy we
have Op,(g)~! € U;(m™') and Op,(a) Op,(g)~" € u(1). For any u € Hy(m), the action of
Op;(a) on u reads:

Opj (a)u = Op,(a) Op,(9) ™" Opy(g)u.

In particular,

10ps(a)ullz2 < || Opy(a) Opy(g) " llz2—r2 OPs(g)ull 2 = || Opi(a) Opy(g) a2 llull g, (o -
O

Assume m > 1 so that Hy(m) C L? (see Prop.5.8). If a € S(m) is real valued, we already
know that A & Opy (a) : ¥ — . is symmetric w.r.t. the L? scalar product. In the case
m =1, A: L?> — L? is bounded and selfadjoint. If m > 1, we have just seen that we can
take Hy(m) as the domain of A. Is A essentially selfadjoint on this domain? We recall that
one criterion for A : D(A) — L? to be selfadjoint is that Ran(A +4) = Ran(A — i) = L. So

we deduce the following

Proposition 5.10. Assume m > 1. Assume a € S(m) is real-valued, and is such that a + i
(which automatically belongs to S(m)) is elliptic in S(m). Then for h small enough, the
operator Op;’ (a) : Hy(m) C L? — L? is selfadjoint.

Proof. From the reality of a, we already know that Opgv(a) is symmetric. The ellipticity
assumption implies that, for & small enough, Op," (a) &1 : Hy(m) — L? are bijections, which

is a necessary and sufficient criterion for self-adjointness. O

Another direct application of the calculus on S(m) is a characterization of unbounded oper-

ators with discrete spectra.

Theorem 5.11. Consider an order function m(p) P2 . If a € S(m) is elliptic, then for
i > 0 small enough, the operator Opy(a) is unbounded on L? with domain Hp(m), and it has

a purely discrete spectrum.
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Proof. The ellipticity of a implies that Op,(a)~" € ¥;(m™'). From Theorem 4.41, the op-
erator Op,(a)™' : L?* — L? is compact, hence its spectrum consists in eigenvalues of finite
multiplicities {p; € C, |p;| < C} accumulating at zero. The spectrum of Op(a) is composed
of the eigenvalues {,uj_l} such that p1; — oo as j — oo. 0

Example 5.12. (Schrodinger operator with confining potential) If a potential function sat-
isfies V' (x)
on R? with m(x) — oo and is elliptic), then the function m(p) o (€)?+m(x) is an order func-
tion which satisfies m(p) — co. For C' > 0 large enough the symbol a(z, &) = |£[*+V (z) +C
is obviously elliptic in S(m). As a result, for A small enough the Schréodinger operator
Op,(a) = —h*A + V has discrete (and unbounded) spectrum.

w500 +00 with polynomial growth (more precisely, V' belongs to some class S(m)

5.3. Resolvent operator and Garding inequality.

5.3.1. Weak Garding inequality. A major application of this invertibility will concern the
study and manipulation of the resolvent of an operator Op;(a) € ¥j(m), namely the family

of bounded operators
Ri(2) = (Opy(a) —2) 7,
for z in the resolvent set of Op,(a), namely the subset of C where Opj,(a) — 2z : D(Op(a)) —

L? is invertible.

This family of operators is used to analyze the spectrum of Op,(a), and to construct a

functional calculus (at least when Op,(a) is selfadjoint).

Corollary 5.13. Take an order function m > 1, a € S(m), and z € C is such that the
symbol (a — z) is elliptic in S(m). Then for h > 0 small enough, z belongs to the resolvent
set of Opy(a), and (Op,(a) — 2)~" admits a symbol

r(z;h) = (a—2)" 4+ O(R*) € S(m™").
Proof. The Moyal product
(5.2) (a—2)#n(a—2)"" =140+ry(zh)
with ry € h2S(1). O

A first use of the resolvent concerns the quasi-positivity of an operator Weyl-quantizing a

positive symbol.

Proposition 5.14. (Weak Gdarding inequality) Assume that the symbol a € S(1) satisfies
a > 0. Then for any € > 0, there exists he > 0 such that, for any 0 < h < h,, the self-adjoint



88 STEPHANE NONNENMACHER

operator Op} (a) satisfies
Op,’ (a) > —el.

Proof. For any fixed z < €, (a — z) is elliptic in S(1), so according to the above Corollary we
may invert (Op;(a) — z) for i > 0 small enough. We want to show that this “small enough A’
can be chosen uniformly for all z < —e. For this we need to show that the seminorms for the
second-order symbol ro(z; i) appearing in (5.2) are bounded uniformly w.r.t. z < —e. These
seminorms involve a certain number of derivatives (w.r.t. p) of (a — z) and (a — z)~'. The
derivatives of (a(p) — z) are obviously independent of z; on the other hand, the derivatives
of (a(p) — z)~" are schematically of the form:

o k |
(5.3) Fla-"=0a-2"Y Y o]l ((a—zyl a%),

k=1 pgl4tfri=a  j=1

R -
T uniformly for all z < —e.

so the RHS is bounded above by (L‘aj:)'z + ‘iﬁ'gﬁf‘ LA
As a result, ||Opgv(r2(z;h))||L2%L2 < Ch? for all 2 < —¢ and all h € (0,1]. Hence, there
exists A, > 0 such that I + Op;’ (ry(2; h)) is invertible, of uniformly bounded inverse for all
z < —eand h € (0,h). As a consequence, for any h € (0, %) and all z < —e, the operators
Op;’ (a) — z admit inverses of the form

(5.4) (Op}(a) = =) = Op} ((a = 2)7") o (1 + Op} (ra(=:)))

showing that the half-line (—oco, —¢] is in the resolvent set of Op} (a). O

5.3.2. Exotic symbol classes. In Prop. 5.14 the symbol r(e; h) € S(1) depended explicitly on
h, even if a did not. By working harder, we may allow this symbol to become singular when
h ¢ 0, yet in a controlled manner: we are thus lead to consider classes of semiclassically
singular symbols, also called classes of exotic symbols. This singularity will already be present

in the principal symbol (a — z)~!, if the parameter z is allowed to approach the origin when
h 0.

Let us introduce these classes of exotic symbols.

Definition 5.15. Take § € (0,1/2) and an order function m(p). We define the following

exotic symbol class:

Ss(m) o {a(h) € C=(R*), Yo € N*! 3C,, Vh € (0, 1] sup |0%a(p)| < Cam(p) h"al‘s} :
p

This class obviously extends the class S(m), it contains symbols a(p; i) explicitly depending

on h, in a way which may be more and more singular as ~ — 0. For instance, this class
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contains functions of the type a(p;h) = x (&£ ), with y € C2°(R*!) independent of %: such

symbols are microlocalized in a precise microscopic neighbourhood of py when A ™\ 0.

Proposition 5.16. In the case m = 1, the symbol calculus of Thm 4.17 and the Calderon-
Vaillancourt Thm /.26 naturally extend to the class Ss(1), with the effective expansion pa-

rameter being h'=2° instead of h.

Proof. 1f a € Ss(1), it is obvious that the rescaled function a(p) o a(h’p) belongs to S(1). A
simple computation shows that the A’-rescaling of the Moyal product a;#as is exactly equal
to a1#m-20a9. Hence, applying Thm 4.17 to the latter product, we obtain an expansion for

a1#as, with expansion parameter h'=2°.

Concerning the L?-boundedness, a slight modification of the scaling operator of eq.(4.13)
shows that Uys Op;’ (a) = Oppy—2s(@)Uys, so we may apply the Calderén-Vaillancourt Thm
4.26 to the operator Op}y_»;(a@), and translate it back to Op}’ (a) by unitarity. OJ

A more “pedestrian” way to understand the appearance of this modified parameter A'~2 is
the following: each term in the expansion of a;#sas is of order A 97ad’b < CH A °h 70 =
CRi0-20),

We notice that the value § = 1/2 is critical: for general symbols a; € S/2(1), eventhough the
symbol ai#pas is well defined, it cannot be expanded in an asymptotic expansion of a small
parameter. There is nevertheless a way to consider symbols whose derivatives grow almost
as fast as h=7/2, but for which we can maintain some form of asymptotic calculus. It consists

of introducing a second small parameter (called ﬁ), independent of A, and to rescale symbols

by (h/h)"/2.

Definition 5.17. [Critical symbol class| Consider the usual small parameter # € (0, 1], and
an independent small parameter hoe (0, 1], which we see as the inverse of a large constant.

We may consider a symbol class depending on these two parameters:

) . ) \ —lal/2
(1) {a(h, f) € C*(R*), Yo € N, ||0%al|,. < C, <h/h) } .

One may straightforwardly adapt Prop. 5.16 to this critical class:

Proposition 5.18. The symbol calculus of Thm /.17 and the Calderon-Vaillancourt Thm
4.26 naturally extend to the class 5’1/2(1), with the effective expansion parameter being h. On
the other hand, if a; € Si/5(1) and ay € S(1), then a;#pas € Sy /»(1) satisfies an expansion

~\J/2
in the parameter <hh> .
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Proof. The first statement is obtained through the rescaling a(p) o a((h/h)/?p) € S(1). Tt

satisfies

G%Q = @iffpaz, and Uy gy Opy (a) = OP%V(d)U(n/ﬁ)l/%
from where the proof proceeds as in Prop.5.16. The second and third statements can be
obtained by applying the asymptotic expansion for the Moyal product a#,b, and estimating
the size of each term. Alternatively, for the second statement we may rescale as above, and

use the expansion of the Moyal product a;#;a. in powers of . O

Claim 5.19. The semiclassical calculus of Thm 4.17 can also be extended to the classes Ss(m)

for any order function m, with the effective expansion parameter h'=%.

5.3.3. Sharp Garding inequality. The first application of these exotic symbol calculi will be

to improve the Garding inequality:

Theorem 5.20. (Sharp Garding inequality) Assume that a € S(1) satisfies a > 0. Then
there exists Cy > 0 and hy > 0 such that, for any h < hy, the self-adjoint operator Op} (a)

satisfies, for h small enough:
Op; (a) > —Coh.

Proof. To obtain this inequality we will construct an inverse of Op,’ (a — 2) with z < —Ch
with C' > 0 a large enough constant; equivalently, we will take z < —h/ h , Where h> 0 will
be a small parameter, independent of A. This second notation is a hint that we will be using

the critical exotic class of Def. 5.17.

As in the proof of the weak Garding inequality, we need to study the trial function (a — z)f1
and its derivatives. Since a > 0, the first bound is ||(a — z)leLoo < |z|7!. To estimate the

derivatives we use the expansion (5.3). The simple bounds

(5.5) (a—2)"" ‘85a(x)‘ < Oplz™
leads to
(5.6) |0 (a—z)_l‘ < Oy (a—2)" 27l

However, we can take advantage of the positivity of a to improve this bound on the derivatives.

Indeed, let us write the Taylor expansion up to second order:
1
ofa +y) = o) + (. dale)) + [ (1= 0)@Pale + ty)y.o),
0
and take y = —A\da(x) for some A\ > 0. The positivity a(x + y) > 0 leads to

)\2
AMda(x)|” < a(z) + o 0%l |Da(x)|”.
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Selecting \ = ||0%al| %, we obtain
0a(z)] < (2 ||82aHLOO a(m))l/2 :
This leads to
2|2 0a(z)| < C|z|Y?a(x)Y? < C(a — 2), and then (a — z)7"|da(x)| < C' ||~

which improves (5.5) for |5| = 1. For the terms with |3| > 2 we keep the bounds (5.5).
Injecting these two estimates in the expansion (5.3) we see that the “worst term” is the term
with all |37] = 1, which gives the bound

0 (a = 2)7!| < Ca(a—2)7" 2712,

which is sharper than (5.6). From this estimate, we check that if the spectral parameter
z < —% the function |z| (a — z)~" belongs to the exotic symbol class Sy /(1) of Def. 5.17.

Equipped with the corresponding calculus, we get

_ a—=z _ ~
(a—@#mm—Z)1=£Tgl#ﬂ4m—z)1=1+0+mxzmhy
1 ~ o~ o~
with o € m(ﬁh)sl/g C h251/2.

As a result, applying the C-V theorem to the symbol ro(%, fi), we see that as long as B < ho
and h < Ho, the operator I +Op}’ (ro(2; A, h)) is invertible with a uniformly bounded inverse.
Like in the proof of Prop. 5.14, this leads to the proof that Op}’ (a — z) is invertible. One
can also check that the bound on Op,(ra(2; k) is uniform w.r.t. z € (—oo, —h/k], which
shows that SpecOp;’ (a) C (—h/fi, oo). Calling Cy = 1/hy, we have thus shown that
Op;’ (a) > —Cyh for h < hy. O

Remark 5.21. The Weyl quantization maps a real symbol into a selfadjoint operator, but
not a positive symbol to a positive operator. However, the above result shows that in the
semiclassical limit, Op}’ (a) is “almost positive”. There exists and alternative quantization,
called the anti-Wick quantization, which automatically satisfies a strict positivity property:

the quantization of a positive symbol is automatically a positive operator.

Corollary 5.22. (Improved norm bound) For a € S(1) real-valued, there exists C, > 0 and
ho > 0 such that, for any h < hy, the operator Op)’ (a) satisfies

inf a(p) — Cyh < Op) (a) < supa(p) + C,h.
p P

In particular,
|OpY (a)|| < [|a]l joo + Cah.
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Notice that this estimate is sharper than then bound we had obtained in the Calderon-
Vaillancourt Thm 4.26.

Proof. The symbol a_(p) aof a(p) —infa > 0, so the sharp Garding inequality implies that

Op;"(a_) > —Ch, proving the lower bound on Op}'(a). In turn, the symbol ay(p) =
supa — a(p) > 0, so Op}) (ay) > —Ch, proving the upper bound. O

5.4. Functional calculus on PDOs. In the previous section we have made use of the
resolvent of a selfadjoint operator, namely the operator valued function z — (z — Op,‘iv(a)),
for z outside the spectrum of Op;" (a). The holomorphy of this operator-valued function will
allow us to manipulate it quite conveniently. In particular, through the resolvent one is able
to adapt standard tools of complex analysis to the framework of operators. One such tool is

the Cauchy formula, which allows to recover functions of the operator, from its resolvent.

We will especially consider selfadjoint operators A = Op} (a), with a € S(m) a real valued
symbol, not necessarily bounded. In this framework, the functions of A can be defined using
the spectral theorem, as explained in the Appendix (see Corollaries A.2 and A.5). For a
continuous, bounded function f : R — R, the operator f(A) is then a bounded selfadjoint
operator on L?(R%), with norm ||f(A)||z2—z2 < ||f||z=. More precisely,

1f(A)lr2sr2 = sup | f(2)].

tESpec A

We want to investigate the operator f(A) when A = Op}"(a) and f : R — R is a smooth,
compactly supported function. We will show that f(A) is a PDO in the class ¥j(1), and

compute the asymptotic expansion of its symbol in terms of the symbol a and the function

f.

5.4.1. A Cauchy formula for f(A). For this aim we will use a Cauchy formula (sometimes
called the Helffer-Sjostrand formula) to define the operator f(A). This formula uses an

auxiliary function f, which is an almost analytic extension of the function f.

Definition 5.23. Consider f € C®°(R;C). An almost analytic extension of f is a function
fe C>(C, C) which coincides with f on R, and is “almost analytic” on R, in the sense that'’

VN >0, Vz € C, Af(2)| < Oy [tm 2|V

A short way to write this almost analyticity is df(z) = O (] Im 2|>°). We will actually need
this property only up to some fixed order N.

9We remind the notation of holomorphic and anti-holomorphic derivatives. For z = z+iy, 8. = % (0 — 10y),

9. = 3 (0y + 10,).
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There are several ways to define such analytic extensions. One way uses the Fourier transform
f = F1f and two cutoff functions ¢, x € C°(R) with ¢ = 1 near supp f, x = 1 near 0: the
extension is then defined as

Fr+iy) < x(y)la) / ¢S (ye) f(€) =2

(27T)1/2'

Exercise 5.24. Check that this expression is an analytic extension of f (to infinite order).

Since we only need a finite order analytic extension, we may use a simpler definition, and

take: . (Zf ) <%>

where 7 € C2°((—2,2)), 7(s) =1 on [—1,1].
Exercise 5.25. Check that the above function f is almost analytic of f of order N.

We now use this almost analytic extension to state our Cauchy formula:

Proposition 5.26. Let f € C®°(R;C) and f € C>°(C) an almost analytic extension™ of f.

Then for any t € R,
L ([ .
(5.7) () = ——/ GF(2) (= — )" 2.

T

(Notice that the integrand is smooth when y — 0).

As a result, for any selfadjoint operator A, the function f(A) can be written as

(5.8) £(A) = —%/ OF(2) (= — A" 2z,

Proof. To prove the scalar formula we integrate by parts to get - 1 If f d(z—1t)" "d2z, and
we use the distributional formula?! Oi = 71d(z) to conclude. To prove the operator expression,

we may write A using the projection valued decomposition

A= /)\dPA,

where P is the spectral projector of A on the interval (—oo, A], so that for z ¢ R we have
— A" = [(2—)\)"" dP,. We can then define

_%/ 0f(z) (z — A~ & :——/ of (= / NPz,

20Actually it is sufficient to require that df(z + iy) = O(|y|).
2Here §(z) is the delta distribution at 0 € C.
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noticing that the integrand of the LHS is well-defined in the limit y — 0 thanks to the

estimate

59 (RN

and the fact that f is almost analytic. We may apply Fubini’s theorem and for all A € R
apply the expression (5.7) to recover [ f(\)dPy = f(A). O

When A = Op}¥ (a), this expression for f(A) will allow us to use our semiclassical analysis

of the resolvent (z — A)~" to gather informations on the operator f(A).

5.4.2. Refined estimates for the resolvent. Let us consider a real-valued symbol a € S(m),
with the assumption m > 1, and assume that (a + ) is elliptic in S(m), that is, |a(p) +i| >
ym(p) for some v > 0 and all p € R??. In that case, the function (a +i)~' € S(m™1).
According to Thm 5.2 and the following Claim, for any given value of z away from the range
of a, in particular for Im 2 > 0 fixed, the symbol b(z) of the resolvent (= — Op;" (a)) - belongs
to the class S(m™"), and its principal symbol is the function (z —a)". Yet, we will need to
integrate the resolvent over z € supp f which contains the real axis, so we need to understand

how the estimates on b(z) depend on z, in particular when Im z — 0.

Lemma 5.27. Under the above conditions, the symbol b(p;z,h) of the resolvent B(z) =
(= — Op‘,év(a))_1 satisfies the following bounds, uniformly for h € (0,1], z € {|Rez| < R, Imz > 0}
and p € R?:

1/2 N 20+1
(5.10) 10%0(p; 2; 1)| < Cp o max ( Tim |) Tm 2|71

Proof. We first treat the case of the order function m = 1. We use the inverse-CV result of
Eq.(4.14) applied to the symbols b(z) of B(z) = (z — Opgv(a))_1 , slightly refining the proof
of Beals’s Theorem. An easy computation, obtained by generalizing the trick (5.1), shows
that

hN
(5.11) [adop,ex) 0+ adop, e Bz HLMLQ:O(HszNH)’

which implies Op,, (85b(p; z; h)) =0 (W) Applying the inverse C-V theorem (4.14)
we find that for any a € N2¢,
10°b(2) | e < Co > HA2|Im z| 11817l

|B|<2d+1

Depending on the ratio - |, this sum is dominated either by the term |3| = 0, or by the

\1
terms |B| = 2d 4+ 1, which gives the required result.
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Now, let us assume that a € S(m) with m(p) — oo and (a + i) is elliptic in S(m). As above
we call B(z) = (z — A)~", A= 0Op}(a). We expand the commutator between (% = Op}’ (/)
and B(z) in Beals’s Theorem as:
0%, B(2)] = =B(2) [(", A] B(=)
= —B(2)[(", A] B(i) (i — A) B(2)
= —B(2) [(", A] B(i)P(z),

where the operator P(z) = (i — A) B(z) = (i — A) (z — A)™" satisfies ||P(2)|| = (Hmz‘)
On the other hand, [(*, A] B(i) € h¥(1), so that ||[¢“, A] B(i)|| = O(h). Using also the
a priori bound ||B(z)| = O( ) we obtain [|[¢*, B(2)]|| = O <\Imz|2>' Proceeding by

iterations we prove the estimate (5.11) for this case as well, which leads to the result. U

[Im z|

We notice that if |Im z| is too small, b(p; z; i) does not belong to a “good” symbol class.
However, in the Cauchy integral we are interested in, this symbol is multiplied by 0 f (2),

which “tames” its singularity.

Corollary 5.28. Form > 1, a € S(m) with (a+1) elliptic, and f € C*(R,C), the operator
f(Op}Y (a)) is a PDO with symbol c € S(m~>).

Proof. If we apply the Cauchy formula (5.8) at the level of symbols, we get the explicit

formula:
(5.12) = ——/ 8f b(p; z; h)

The estimates on df(z) and (5.10) show that df(z ) 950 (p; 23 k) = O(|Im 2|>°), uniformly
w.r.t. p € R so that the symbol ¢(h) € S(1). Another way to express this is to notice that
the symbols 0f(z) b (z; h) belong to S(1), uniformly w.r.t. z € supp f.

For any k > 0 we may apply the above result to the function fi(t) = (i — t)* f(t), so that
f(A) = (i — A)7" f(A). Since fr(A) belongs to ¥,(1), and (a — i) is elliptic in S(m), f(A)
belongs to W, (m=*). O

5.4.3. Computation of the symbol of f(A). We now want to compute more explicitly the
symbol ¢(p;h) of f(A). For this aim, we will split the integral (5.12) between two re-
gions. Fix some parameter 6 € (0,1/2). The region “close to the real axis” is defined by
{z € C, [Imz| < k°}. Using the estimates (5.10) on the resolvent symbol and the almost an-
alyticity of f, one sees that the contribution of this region to the integral (5.12) is O(h>) S(1)-

We are then lead to estimate the integral over the region “distant” from the real axis”,

def

{z€C, Imz| >} Nn{|z] < Ro},
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where R, will be taken large enough such that the disk {|z| < Ry} contains the support of
f. We call this truncated integral

=——/ 0f(2)b(p; 2 h) &*

and we have just shown that

(5.13) ¢ =cr + O(R™)sq)

In the region R, using the expression (5.3) for the derivatives of (z —a)™"', we get the simple
bounds

(5.14) 95 (2= a(p)) ™" < Coam(p) ™" Tmz| 7,

valid uniformly for p € R* and z € R. Hence, for z in the region R, the function (z —a) ™"

belongs to the symbol class A7°Ss(m 1), where we use the exotic symbol class defined in Def.
5.15.

Lemma 5.29. For h small enough and uniformly in z € R, the symbols (z — a)fl and b(z; h)
both belong to the class h=°Ss(m™1).

Proof. The first part is contained in the estimate (5.14). The estimates (5.10) on derivatives
of b(z) show that b(z) € A9S5(1). We can easily adapt the proof of Corollary 5.4 to the
setting of the exotic classe Ss(m), namely by considering the expansion

(z—a)#n(z—a) " =1+ry(h2).

The symbol calculus in S(m) x Ss(m ™) shows that r, € h2739S55(1). The Calderén-Vaillancourt
theorem for the class S;(1) implies that for 4 small enough Op;’ (1473 is invertible, of inverse
in Ss5(1), so if we multiply that symbol on the left by by(z) = (z — a)"" we get the symbol
b(z) € h9Ss(m™1). O

This proof also provides a way to compute the expansion for b(z). From the identity
-1

OplY (= — ) OplY (bo(2)) (I + Op}Y (ra(2)) ™' = 1.

we get

(5.15) b(2) = bo(2)# (1 —ra(2) + ra(2)#ra(z) — -+ ).
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We want to keep track of the z-dependence in the expansion for the remainder ro(h, z). This

expansion takes the following schematic form:

TQ(Z)N_Z (ih/2)" ( %B) (z—a)

1|
j>2 J:
k
DI S o | (C0F
Jj=2 Jit+ig=y i=1

where we factorized by (z — a) 7 50 as to exhibit in the numerator polynomials g;_1(z, p) in

the variable z, of degrees < j — 1:

2~ STOW (2 —a) g (2).

j=2

The Moyal product by#rs then expands into

Z hZDZ IDZT o Z héDK )—1DZ (i ﬁj (Z o a)—l—j Qj—l(z)>

>0 >0
=Y B —a) T Qea(2) ) (2= a) T T T Qu(2)
>0 j>2
_ Z h”j(z _ a)7(26+j+2)Q§»’1£)(2>,
£>0,5>2

with deg Q1 < ¢ —1,degQ;e(z) < j+ ¢ —1, so that deg Qg}g(z) < 20+ j — 2. If we group
the terms of same order k = ¢+ j, the denominators have orders 2420+ 5 = 2+ 2k —j < 2k,

so we may write

bo#ry ~ Z B (2 2"7@% 4(2), deg Qé?_él < 2k —4.

k>2

In the region R, this term is of order h?~%0 = p2(1-29),

The next order bo#rs# 1o has the form
Z Z RO — a)f172(k+e)ijk’j’(Z(z)7
(>0 k>2,j>2

with deg Q. ;e(2) < 2(k+¢) +j — 5. So at a given order m = ¢ + k + j, the maximal power
of the denominator is 1 +2(k+¢)+j=1+2m — j < 2m — 1, with m > 4:

bo#(r2)* Z R (2 2’““@5?,7(2), deg Qéi)q <2k-—T.

k>4
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This term is of order h*~7 = p*(1-20+3  Continuing the derivation by taking the Moyal

product with ry, we find similarly
bo#ry ~ > Rz —a) QN i(2),  deg QY < 2k — 10.
k>6
By induction, one can show that the higher powers satisfy the expansion
bo#rd™ ~ Z R (2 — a)’%*”’ng?_gn_l(z), deg Qg,?_%_l <2k —3n-—1.
k>2n

We see that for a given power k, there will be finitely many terms n > 1 involved (the ones

such that 2n < k), which can be grouped into a single asymptotic series for b(z):
(5.16) b(z) ~(z—a)” by Z RF(z — a) " Qop_4(2), deg Qop—yg < 2k — 4.
k>2

This expression will be of order A%, uniformly for z € R.

The derivatives 0“b(z) can be analyzed similarly, they satisfy asymptotic expansions obtained
by differentiating the above one. For z € R one can check that the derivative 0%b(z) is
dominated by the term 9%by(z) = O(h~°(+leD). This leads to the following

Lemma 5.30. For h small enough and z € R, the symbol b(z) € h=°Ss(m™"') admits the

expansion (5.16), uniformly w.r.t. z € R.

By injecting the expansion for b(z) in the Cauchy formula (5.12), we obtain the following

expansion of cg:

CRN—%/Réf@ [z—a P R = a) Qw2 )]

k>2

Since 8f(z) = O(h™) when |Im z| < h°, we may extend the integral to z € C, up to a term
O(h>)sq). From (5.13), this full integral is also the expansion of the full symbol c:

e~ [[ o7 [(z—a X >]

Fixing p € R??, each term of the expansion can be computed by using the Cauchy formula.

The first term provides the principal symbol:

1 / 0f(2) (= —al(p) ™" d®z = f(a(p)),

™
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by applying (5.7) with t = a(p). The term of order h¥, k > 2, can also be computed after

some integration by parts in the variables z, z:
1

‘%/ 8f<z>czk<z><z—a>‘2’“d2zz‘m/ 0f(2) Qu(2) (=0)* " [(z —a) '] &’z

= m // okt [f(z) Qk(z)] I[(z—a) "] d?=
1

— m@fk_l [f(8) Qe(®)] Te=a(p) -

In the second line we integrated by parts 9 and O separately, and used that Q. (z) is holo-
morphic, while in the last we used the fact that 87 f(z) |.—= 9/ f(t). We finally obtain the
following

Theorem 5.31. The symbol c(h) of the operator f (Op;’ (a)) admits an expansion in S(1),
c o~ thck(p), co = f(a), 1 = 0.
k>0

Each ci(p) € S(1), and is supported in the set

supp f(a) = {p € R*, a(p) € supp [} .

5.5. Application of the functional calculus: Semiclassical Weyl’s Law.

5.5.1. Trace-class property of the operatorf(A). We will now work under the following alter-
native assumptions on the order function m and the real-valued symbol a € S(m):

(1) m — oo as |p| — oo, and (a + 1) is elliptic in S(m);
(2) m = 1 and there exists an interval I € R a compact set Q2 € R* and C' > 0 such
that,
VYhe (0,1], VpeR¥™\Q,  dist(a(p;h),I) > C.

In this case we will assume that f € C°([).

In these two situations, the functions cx(p) appearing in the Thm 5.31 are all supported in a

common compact set. Actually, the full symbol ¢(%) has a compact essential support:

Proposition 5.32. If either of the above assumptions on m,a is satisfied, the symbol ¢ of
f(Op}Y (a)) belongs to S({p)~>). Besides, c(h) is essentially supported in supp f(a), with
estimates

a . . h - .
0%(p;h) = O ((dist B suppf(a))) ) . for any p such that dist (p,supp f(a)) > C.
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Proof. Our general assumption is that there exists some bounded neighbourhood € of supp f(a)
and a constant C' > 0, such that dist(a(p),supp f) > C for all p £ 2. Up to a trivial change

of sign, we may assume that
a(p) > maxsupp f +C, Vp & Q.

By smoothly modifying a(p) inside €2, we may construct an auxiliary symbol a € S(m), such
that

a(p) = a(p), p &,

a(p) > maxsupp f +C/2, pe R¥.
We then use the following resolvent identity, valid for any z ¢ R:

(5.17) (== Opf(a)) " = (= — OpY (@) "+ (= — Op} (a)) " Op} (a—a) (= — Op¥ (a)) .

We can now inject this decomposition into the Cauchy formula (5.8). Let us consider the
first term on the RHS. Due to the range of a, we see that (z — Opgv(d)) is invertible if
Re z < maxsupp f + C/4, in particular we may assume that this is the case for z € supp 1,
with uniform estimates. Besides, (z — Opgv(d))f1 is a bounded operator, depending holo-
morphically on z in supp f , so that

-1

d(z— Op};v(&)) =0, Vzesuppf.

By integration by parts in the Cauchy formula, this shows that f (Opg/(&)) = 0. We are

now interested in integrating the second term over z in (5.17). Using the notation b(z), b(z)

for the symbols of the resolvents, the symbol ¢ of the second term is given by
1 [ o
S Of (2) b(2)#n (a — @) #ab(2) d°z.

Since (a — a) is compactly supported, we know from the Quasilocality Lemma 4.18 that the
symbol b?(2) o (a — @) #5b(2) is in . (R??) uniformly for z € supp f, and admits estimates

(@] ((W}m)OO)y for p outside Q. The Moyal product with the symbol 0f(2)b(z), which is

uniformly in S(1), gives a symbol in .7 (R??) with the same estimates. Finally, integrating =

over supp f gives the Proposition. O

Using Prop. 4.40 we obtain the following trace-class property of the operator f(A):

Corollary 5.33. Assume that either of the two assumptions on m,a are satisfied. Then, for
any function f € CX(R) (resp. for any f € CX(1)) and for h small enough, the operator
f(Opy/(a)) is trace class on L*(R*®). Besides, one has

(5.18) tef (001 (0)) = g [ o)~ Gz S [ el

k>0




AN INTRODUCTION TO SEMICLASSICAL ANALYSIS 101

In particular, the principal order term is m | fla(p)) dp.

This corollary shows that for A > 0 small enough, the spectrum of the selfadjoint operator
Op}’ (a) inside supp f is purely discrete, composed of eigenstates/values (;(h), )\j(h))j ey In
our semiclassical setting, we may try to estimate the density of these eigenvalues.

5.5.2. Semiclassical Weyl’s Law. We now assume that the symbol ¢ admits an expansion
an~ Z W a, a; € S(m) independent of .
J=0

We are then able to prove the following bounds on the counting function.

Theorem 5.34. (Semiclassical Weyl’s law) Fixz some compact interval [Ey, E1| € I, and call
N ([Eo, E1]; h) the number of eigenvalues of Op} (a) in [Eo, E1], counted with multiplicities.
Then we have the following estimates as h — 0:
1 1
— (V_ (| By, 1)) < Ey, E1];h) <
i (V- (B0 Bi]) 4 0(0)) < A ([0, B1h) €

where we define the phase space volumes

(Vi ([Eo, £1]) + 0(1)),

Vi ([Eo, Ey]) = li\lz%\/ol{agl ([EoFe Erte))}.

Proof. For any € > 0, one can construct two smooth functions fy € C2°(R), such that
Nggtemi—g < f- < Nigye) < [+ < Ngy—e,Bi44-
The standard functional calculus of selfadjoint operators shows the following inequalities:
trf_(A) <N ([Eo, Er]; h) < trfi(A).

We can apply the trace estimate (5.18) on both bounds, leading to

/ £ (ao(p)) dp — Oy () < (2mh)N ((Eo, i) ; ) < / £+ (ao(p)) dp + Oy, (h).
Volaa1 ([Eo+€ Er—¢€])—Op (h) < (27rh)dN([E0, Ei];h) < Volaa1 ([Eo — €, E1 +€]) + Of+<h>.

We can take a sequence € = e, \, 0 slowly enough so that the remainders Oy, (k) still decay,
and get the result. U

Corollary 5.35. If Ey and E; are regular energies (meaning that dao(p) does not vanish on
the energy shells ay ' (E;)), then we have the asymptotics

1
(2mh)?

(5.19) N ([Ey, E1]; h) = (Volay ' ([Eo, E1]) + 0(1)), R\, 0.

Notice that from Sard’s theorem, almost all values £ € R are regular values of ag.
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Remark 5.36. This semiclassical Weyl’s law is often interpreted in physics as the fact that
each eigenstate “occupies” a volume (27h)? in phase space. More generally, that a region
U € R?? can “host” about (27h)~¢VolU orthogonal quantum states, or corresponds to a
subspace of L?(R%) of dimension ~ (27h)~¢ Vol U.

This counting is related with the idea of the uncertainty principle: the latter tells that a
maximally localized quantum state occupies a “box” of volume ~ Ch?. If we pave U with
disjoint boxes of volumes ~ Ch?, we can accomodate about C~*h~? Vol U maximally localized

states (which can be hoped to generate a subspace of the same dimension).

Several improvements of Weyl’s law are possible. We may want to let the interval [Ey, F1]
depend explicitly on A, for instance have it shrink at a certain speed when A \, 0. The
adaptation of the above method would consist in using h-dependent cutoff functions fi(h),
making sure that they belong to a good class Ss(R) for some ¢ € (0,1/2); one then will need
to extend the functional calculus presented above, to such h-dependent functions f € Ss(R).
This method allows to take e = A in the above proof, which, for regular energies F;, allows
to get a remainder O(R°) instead of o(1) in (5.19). If Ej is regular, this also shows that for
any Cy > 0 large enough,
N ([Eo, Eo + Col] ;1) = ﬁ (Volay" ([Eo, Bo + Coli’]) + O(1)) |

where the implied constant on the RHS does not depend on the choice of the parameter Cj.

In particular, if Cy > 0 is chosen large enough, then the above RHS is = A%~

Exercise 5.37. Take some 0 € (0,1/2). Show that the semiclassical functional calculus we
have constructed above extends to compactly-supported functions f € Ss(R), and leads to a
full symbol ¢ € Ss(R??) for the operator f(A).

Remark 5.38. Stronger improvements of the remainder estimate in (5.19) are possible, for
instance replacing o(1) by O(h), but this requires to make stronger assumptions on the symbol
ag , in particular dynamical assumptions on the Hamiltonian flow CIDZO. The proofs involve
different semiclassical techniques, typically one needs to use the propagator e~itOp (a)/ h
which is not a PDO but a different type of semiclassical beast (a semiclassical Fourier Integral

Operator).

To connect this result with the usual Weyl’s law for the Laplacian on a smooth compact
Riemannian manifold, we would need to extend the semiclassical calculus to this manifold

setting. This is feasible, but we will not do it in these notes (see e.g. Zworski’s book).

Remark 5.39. In dimension d = 1 there are methods to get approximate values for the

individual eigenvalues of Op;" (a), in the limit # — 0. On the other hand, in higher dimension
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we have no such approximate expression for the eigenvalues. The above expression for the
counting function is therefore very valuable. It gives global quantitative information on the

spectrum, without any knowledge about individual eigenvalues.
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6. MICROLOCAL PROPERTIES OF THE EIGENSTATES OF A PDO

We switch name for our real-valued symbol, and call it p ~ > >0 Wp; € S(m). We suppose
that p satisfies either of the two assumption of section 5.5.1, ensuring that the spectrum of

P, = Op} (p) is discrete in some interval I € R, for & > 0 small enough.

Let us choose an energy Ey € I, such that Vol [py" ([Eo — €, Ey + €])] > 0 for any e > 0.
According to Weyl’s law (5.19), each such interval [Ey — €, Ey + €] contains many eigenvalues
of P, in the semiclassical limit. We are thus allowed to consider a sequence of eigenstates
(¢n, An), so that

(61) (Ph — /\h) ©r = 0, /\h — Ey when h — 0.

For a general symbol P, we have no explicit, or even approximate expression for ;. What can
we learn about these eigenstates ¢y, from semiclassical methods? (we will always normalize

our eigenstates as ||¢n| 2 = 1).

Remark 6.1. From the assumptions on p, we have |po(p) — Eo| < m(p) for p outside a bounded
region ).

6.1. Wavefront set properties.

Theorem 6.2. The wavefront set of the family (pn), ., s contained in py ' (Ep).

Proof. The eigenstates satisfy (P, — Ap)pn = 0. Let a € S(1) be supported away from
Py "(Ep). There exists some e > 0 such that supp a is also disjoint from py* ([Ey — €, Ep + €]).
We want to show that HOp;ViV(a)gth = O(h*). For this, we will construct a bounded operator
By, = Op,” (b) such that

(6.2) Bi(Pr — M) = Ap + O(F) 2, 1.
Once this is done, we will have
0= Bi(Pr — \n)en
= Apgpn + O(F) 12,
which will prove that supp a is not in WFy(pp).

How to construct the operator B;? We will enlarge a bit the scope, and construct a family
By () of operators, indexed by ki and also by A € [Ey — €, Ey + ¢]. We want them to solve

(63) Bﬁ()\) (Ph - )\) = A, + O(hoo)Lz_le,

with implied constants uniform w.r.t. A\ € [Ey — ¢, Ey + ¢]. It is impossible to take B;(\) =

Ap(Py — X\)71, since (P, — M) is not invertible for many such X’s (for instance for A = \).
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However, the obstruction from being invertible comes from the phase space region surround-
ing py([Eo — €, Eg + €]), which is away from WF,(A;) = suppa. At the principal symbol
level, the equation by(A)(po — A) = a can be solved by

e — A ! ) €S8 )
bo(p: \) & (po(p) — A)"ta(p), p € suppa
0, p & suppa.

which makes perfectly sense since (py — A) does not vanish on suppa. Using the elliptic-
ity assumptions of p (see Remark 6.1), the symbol by(\) belongs to S(m™!), with uniform
estimates w.r.t. A, We will solve (6.3) by constructing the symbol b(\) of Bj(\) start-
ing from the Ansatz b(\;h) ~ Y hb;(\), and solving, order by order, the symbol equation

b(A; ) #n(p — A) = a.
At order h° we have already found the unique solution bg(\).

At order A' the equation reads

1
0= % {bo, po} + bop1 + b1 (po — A)

_ 1
= 00 = =0 (B + 3 o))
The expression on the RHS is well-defined, since by(\) is supported in suppa, away from
Pt (A). bi(A) is in the class S(m™1).

At any order 1/, j > 2, the equation for b;(\) will be of the form

b] (pO - )\) + F(bOa b17 e 7bj—1;p07p17 s 7p]) = 07
where the function F' € S(1) is supported in suppa. It is solved by b; = (py — )\)_1 F €
S(m~'). By Borel summation, we obtain a symbol b(\; i) € S(m™1), satisfying b(\)#n(p —
A) = a+ O(h®)gqy. Its quantization Bj(\) = Op;’ (by) therefore satisfies (6.3). Since all

estimates are uniform w.r.t. A € [Ey — €, Ey + €], we may particularize its values and take
By, = By(Ap), which solves (6.2). O

Proposition 6.3. The wavefront set WFy(pp) is not empty.

Proof. We show it by reasoning ab absurdo. If each point p € py*(Ey) were outside WF; (),
there would exist functions y, € C2° with x,(p) = 1, and such that

(6.4) Opy (xp)en = O(h).

Notice that for each p, x,(p') > 1/2 in some ball B(p,r,). By compactness of py(Ejp),
one can extract a finite set of poins S C py'(Fp) such that y o > pes Xp = 1/2 in some
neighbourhood of py*(Ep). By a slight modification of the Xp, We may assume that y =1
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near p; ' (Ep). As aresult, a = 1— y satisfies the properties in the proof of the above theorem,
so that Op} (x)en = Op;’ (1 — a)pn = on + O(A™). This obviously contradicts (6.4). O

6.2. Semiclassical measures. There is a more precise way to describe the microlocaliza-
tion properties of the sequence of normalized states (¢s), o, by constructing semiclassical

measures (sometimes called semiclassical defect measures) associated with that sequence.

Definition 6.4. Let (up)—0 be a sequence of normalized states. A semiclassical measure
associated with this sequence is a nonnegative Radon measure p on R?? such that, after
extracting a subsequence (h; — 0), we have, for any observable a € C>°(R??),

lim (ur, Opy (a)ur,;) = / a(p) du(p).
If this limit holds without extracting a subsequence, we say that p is the semiclassical measure

associated with the sequence (uy).

The semiclassical measure indicates the region of phase space where the states (u;) are
microlocally significant (in the sense that they carry a positive L? weight in this region) in
the semiclassical limit. It gives a more quantitative information than the wavefront set of

the sequence.

Proposition 6.5. Any semiclassical measure p associated with (uy) is necessarily supported
m WFh(uh)

Proof. It p & WFy(uy), then there is x, € C(R*,[0,1]) with x,(p) = 1, and such that
Op;” (xp)un = O(h*°). This implies that for any subsequence (%), lim;_,o (up,, Op?j(xp)uﬁj> =
0. Hence, for any semiclassical measure u associated with the sequence, [ x,du = 0, which

shows that p & supp pu. O

Do semiclassical measures always exist?

Theorem 6.6. Any sequence (up)no of normalized states admits at least one semiclassical

measure fi.
Proof. Let us first fix an observable a € C*°(R?,R). By the improved Calderon-Vaillancourt
Thm (Cor. 5.22), we have

| (un, Opy (a)un)| < [|Opy (a)]| < llallz + Oa(h).

As a consequence, we may extract a subsequence (h; — 0) s.t. lim;_.o(up,, Opth(a)uhj> = q,
with the limit |o| < [|a||pe.
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To obtain a limit for any observable, we need to use the fact that the functional space
C>(R*?) is separable. Hence there is a sequence (ay)p>; of functions in C*°(R?*?), which is

dense in that space.

Let us consider the observable a;. From the above, we can extract a subsequence (ﬁ} — 0)
such that

lim <uh1,0pg‘f(a1)uh1) = a1, with |a| < ||laq]|pe-
J—00 J J J

Let us now consider the observable a;. We may extract from (%) a subsequence (A7 — 0)
such that

lim <uﬁz,0p¥(a2)uﬁz) =g, with |as| < |laz||re.
J—00 J J J

By induction, when considering the observable a;, we may extract from the sequence (h?’l —
0) a subsequence (h¥ — 0) such that

lim <uhk,0p‘r%(ak)uhk) = g, with |ag| < ||ag| L.
J—00 J J J

Notice that the subsequence (h;“) also “works” for the observables aq, as, - - - a,_1. We cannot
take for h; the “k — oo limit” of the subsequences (hf), because we may have limy_,, i} = 0,
in which case this limiting sequence would be trivial. Instead, we proceed by a diagonal

def

extraction argument. Namely, we take h; = h; One easily checks (from this diagonal

extraction) that for any k£ > 1, this sequence satisfies

jliglo(uh]., Opg(ak)uhj) = Q.
The mapping ® : a;, — ay, is obviously linear, and it is bounded as: |®(ay)| < ||ax| L. This
mapping is defined on a dense subset of C>°(R??); so it can be extended continuously to the
full space C>°(R??). Now, if ay, — a in C%°, we have in particular ||ag, — al|z~ — 0. Hence,
for any € > 0, if n > n(e) such that ||a — ay, ||z~ < €, we have
lim sup |{un,, OpfY (@)un,) — (un,, ODIY (a, Jun,)| < lla = ag, o= < €
j—00
= lim sup | (uy,, Opg(a)uhj> — Q)(a)‘ < 2e.
Jj—00

We conclude that lim;_,o (us,, Opg‘;(a)uhj> = ®(a).

By the Riesz representation theorem, this bounded linear mapping defines a unique Radon

measure on R??, which we denote by p:

Vae CXRY),  B(a) = / a(p) dpu(p).
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Since the scalar products (us, Op}) (a)uy) are real, so are the limits ®(a), so the measure p

is real valued. If a > 0, the sharp Garding inequality (Thm 5.20) implies that
®(a) = lim (uy,, Op;’ (a)up,) > liminf(—C,h;) > 0,
j—o0 7 J j
which shows that the measure p is nonnegative. 0J

The bound ‘ Ik adu’ < |la]| L=~ immediately translates into the following property:

Proposition 6.7. Any semiclassical measure p associated with a family of normalized states
(un)nso satisfies p(R??) < 1.

Remark 6.8. For a general sequence (uy), the associated semiclassical measures can be strict
subprobability measures, or even be trivial. For instance, if f € L? is normalized and
0 # vy € R?, the sequence (u; = f(e — h 'vg)) has a zero semiclassical measure, because the

full mass of uy escapes to || — oc.

Similarly, if 0 # & € R%, the sequence (uy(x) = €0/ f(x)) has zero semiclassical measure,

because the mass of uy, escapes to || — oo.

6.3. Semiclassical measures of eigenstates of P;. Let us now specialize to the sequence
of eigenstates (pp, A\y) we had considered before. How do their semiclassical mesures look

like? By combining Thm 6.2 and Prop. 6.5 we obtain the following

Corollary 6.9. Assume (pp, A\p) are eigenstates of Py so that A\, — FEo as h — 0. Then any

associated semiclassical measure is a probability measure supported in py*(Ep).

Proof. The Thm and Prop. directly imply that supp i C py*(Ep). There remains to prove
that any measure uis a probability measure. From Prop. 6.7 p is a subprobability measure,
namely p(R??) < 1. Let us show the converse inequality. Using the proof of Thm 6.2 we find
that for any x € C°(R?%,[0,1]) such that x = 1 in some neighbourhood U of p,*(Ep), we
have Op}Y (x)gn = wn + O(h>®). As a result,

p(supp x) > / xdp = }LTO (ur,, Opy, (X)un,) = 1.

O

These properties of the semiclassical measures can actually be generalized to quasimodes of

Py, that is approximate eigenstates.

Proposition 6.10. Assume that a sequence of normalized states (up)n—o Satisfies the quasi-
mode property
|(Py — Eo)up||z2 = o(1) as h — 0.
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Then any semiclassical measure associated with (uy) is a probability measure supported on
Py (Eo).

Proof. Let us go back to the proof of Thm 6.2. For a € S(1) supported away from p,*(Ep),
we construct a bounded operator By, satisfying (6.2), where \; has been replaced by E,. We

then have
Bh(Pﬁ — Eo)uh = AﬁUﬁ + O(hoo)
= [(un, Apun)| < || Bnll o(1) + O(R*)

— lim(uh, Ahuh> =0,
h—0

so we find p(a) = 0.

For y € C%° equal to unity near py*(Ep), we find for the same reason Op;’ (1 — x)us = o(1),

hence Op;” (x)un = up + o(1), and hence for any semiclassical measure associated with (up),
pu(x) = 1. O

Our last result is a refinement of this Proposition. For the first time it involves the Hamil-

tonian dynamics generated by py.

Theorem 6.11. Assume that a sequence of normalized states (uy)n—o satisfies the sharper
quasimode property

|(Pr — Ap)up||z = o(h) as h — 0,
with A\, — Ey. Then any semiclassical measure associated with (uy) is a probability measure

supported on pgl(Eo), which is invariant w.r.t. the flow @;O.

The invariance property of the measure is equivalent with the fact that for any a € C°(R??),
(6.5) Vt € R, p(ao @ ) = p(a).

Proof. We will use the relation between commutator and Poisson bracket, mentioned in
section 3.3, which can be easily extended to symbols p € S(m): for any a € C°(R?*@) and
Ay = Op)Y (a), we have
1
h
Injecting the commutator in the scalar product, we get (using the self-adjointness of P, and
Ap:

[Py, Al = Op}” ({po, a}) + O(h) 2, pe.

(un, [Pn — Any Anl un) = ((Pn — An) wn, Apun) — (Apun, (Pr — M) up) = o(h).
Using the above identity, this gives

(un, Opy” ({p, a}) un) = o(1),
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which implies that any semiclassical measure u satisfies p ({po,a}) = 0. This infinitesimal
equation is actually equivalent with the invariance (6.5): since we may replace a by a o (ID;)O

in the above identity, we get:

vt € [0,T], Ozu({po,aoq)fgo}):u(iao@éo):i (ao®! )

—u(ao @) — p(ao®))=0.

APPENDIX A. APPENDIX: REMINDER ON OPERATOR AND SPECTRAL THEORY (ON
HILBERT SPACE)

Below we describe a few properties of spectral theory on H a separable Hilbert space (we’ll
be mostly interested in the case H = L*(R%)).

A.1. Reminder: spectral theory of bounded operators. Let A :H — H be a bounded
operator. Its resolvent set

p(A) ={z€ C : (A - z)is invertible on H, with bounded inverse} .

Its spectrum Spec(A) = C\ p(A). The spectrum can be composed of isolated eigenvalues of
finite multiplicities (discrete spectrum) and essential spectrum (all the rest).

A bounded operator A admits an adjoint A*, which is also bounded. A is selfadjoint iff
A= A~

Theorem A.1l. (Spectral theorem) For A a bounded selfadjoint operator, there ezists a
probability space (X, M, u), a unitary operator U : H — L*(X,u) and a function f €
L>®(X, ) such that

(A.1) A =U"M;U, where My is the multiplication by f.

Note that the pure point spectrum corresponds to the countable set { f(z;), x; an atom of u}.

Corollary A.2. (Functional calculus of bounded selfadjoint operators) Take 0 : R — R a
continuous function. Then, for A a bounded selfadjoint operator on H, if we represent A as
in (A.1), then the function 0o f € L>(u). We may then define the operator 0(A) as follows:

0(A) = U* Myos U.

One can easily check that this definition is compatible with more obvious one, in the case

where 6 is a polynomial.
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We remind that an operator A : H — H is compact iff it maps the unit ball {||u|| < 1} into
a precompact set of H (that is, a set with compact closure). Compact operators are rather
similar with operators of finite rank. In particular, their nonzero spectrum is exclusively

made of eigenvalues of finite multiplicities, which may accumulate only at zero.

A.2. Reminder: unbounded selfadjoint operators. An unbounded operator P is de-
fined by its domain D(P) C H, which is assumed to be dense in H. This operator is closable
if there exists a closed operator P which contains P (meaning that D(P) C D(P) and they
coincide on D(P)).

The adjoint P* (and its domain D(P*) is defined by duality: v € D(P*) if
|(v, Pu)| < C'(v)]||ul], for all u € D(P).

Then, one may define P*v by duality and density of D(P): due to the above inequality, there
exists a unique state P*v € H such that (v, Pu) = (P*v,u) for all w € D(P). This operator
is always closed.

If P* is densely defined, then P is closable, and its closure can be obtained as P = (P*)*.
P is symmetric if P C P*: for all u,v € D(P), (v, Pu) = (Pv,u).

P is essentially selfadjoint if P = P*.

P is selfadjoint if P = P*.

Theorem A.3. (Spectral theorem for unbounded selfadjoint operators) Let (A, Dom(A)) be
an unbounded selfadjoint operator on H, with dense domain. There exists a measure space

(X, M, 1), a unitary operator U : H — L*(X, ) and a real valued measurable function f
such that

- ¢ € Dom(A) iff Uy € Dom(M;), meaning that M;Uy € L*(X, )
- if this is the case, then Ay = U*M;U.

(A.2) A=U*M,U.

The domain Dom(A) corresponds through U to the domain of the multiplication operator M;
on L*(X, ).

The easiest example is that where A is already a multiplication operator. For instance,
the operator of multiplication by x;, acting on L?*(R?), admits as domain the subspace
{ue L*(R?), zyu € L*(R?)}. We can take X = R?
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Example A.4. Consider the Schrodinger operator of a free particle on R¢, P, = —h2A.
This operator is unbounded, its domain is the Sobolev space H?(IR?). Through the (unitary)
Fourier transform J}, it is mapped into the multiplication operator by |£|? acting on the space
L*(R%,d¢). So we may write

—R*A = Ty Mg2 F.

Corollary A.5. (Functional calculus of unbounded selfadjoint operators) Take 6 : R — C a
continuous bounded function®.
represent A as in (A.2), then the function @ o f € L*>(u). We may then define the operator

0(A) as:

Then, for A an unbounded selfadjoint operator on H, if we

6(A) = U MposU.
This operator can be extended to H, where it is bounded, with ||0(A)||lu-n < [|0|lcow) =
Supe [0()]-

Theorem A.6. (Stone’s theorem) Suppose (A, Dom(A) C H) is a selfadjoint (possibly un-
bounded) operator. Then the function t — U(t) = e~ forms a strongly continuous unitary
group on H.:

Ut)U(s) =U(t+s), U(t) =U(-t),

t—0

e, U — ] =50
Furthermore, for any vy € Dom(A), the family of states 1(t) = U(t)1qy solves the Schridinger
equation

10pp(t) = A(t),  $(0) = tho,

and one has
U)o — o 10,
t

i Anby.

E-mail address: stephane.nonnenmacher@universite-paris-saclay.fr

221 Reed-Simon this calculus is extended to bounded Borel functions, which are functions (i.e. everywhere
defined on R ) §(¢) such that for any open interval I the set §~1(I) is a Borel set.
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