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Requirements: elementary functional analysis (Hilbert spaces), Fourier transform, theory of
distributions. Linear PDEs and semigroup theory. Spectral theory on Hilbert spaces (at
least for bounded operators).

Following Ch.Gérard’s course on Spectral Theory would help.

Bibliography on semiclassical analysis:

• M.Zworski, Semiclassical Analysis, AMS, 2012
• A.Martinez, An Introduction to Semiclassical and Microlocal Analysis, Springer, 2002
• M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, Cam-
bridge U Press, 1999

Older books on microlocal analysis (that is, without the ~ parameter)

• A. Grigis and J. Sjöstrand, Microlocal Analysis for Differential Operators, An Intro-
duction. Cambridge University Press, 1994
• L. Hörmander, The Analysis of Linear Partial Dierential Operators, Volumes I-IV,
Springer, 1983-85 (a.k.a. “the Bible”).

1. Introduction to the course

1.1. What is this all about? Objective: analyse qualitatively and quantitatively certain
types of linear differential operators appearing in mathematical physics.

1.1.1. Originally: understand the solutions to Schrödinger equation in quantum mechanics.
Originally, the semiclassical analysis was applied to the equations of quantum mechanics. The
dynamics of a massive, nonrelativistic quantum particle is governed by the time-dependent
Schrödinger eq. on Hilbert space u(t) ∈ L2(Rd),

(1.1) i~∂tu(x, t) =

(
−~2∆

2m
+ V (x)

)
u(x, t).

Here V (x) is the potential energy of the quantum particle. In these lectures we will gener-
ally assume that the function V (x) is smooth, and make some extra assumptions about its
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behaviour at infinity. The differential operator P~ = −~2∆
2m

+ V (x) is called the quantum
Hamiltonian of the system. In physics, the parameter ~ ≈ 10−34J.s has the dimension of an
action, m is the mass of the particle (ex: melectron ≈ 10−31kg). As is often done in theoretical
physics, will now get rid of these dimensioned parameters.

We will reduce the dimension of the Schrödinger equation by setting the mass m def
= 1. We

will also fix a reference energy scale E0 typical of the values of V we are interested in, and
set it to unity, so there remains only a single dimension (length=time), and we are lead to
study the operator

(1.2) P~ = −~2∆

2
+ V (x)

around the energy ∼ 1 (adimensional). We notice that now [~] = length = time, the unique
remaining dimension. We can then consider the typical length scale L0 set by V (x), and
remove the last dimension by setting L0 = 1. All quantities are now dimensionless, and
~ takes a certain numerical value. Is it small? Large? Medium? Notice that the original
dimensional parameter ~ had the dimension of an action [~] = [ET ]; given the 3 dimensional
quantities E0,m, L0, we see that the only action we can construct is S0 = E

1/2
0 m1/2L0. We

should thus compare ~ = 10−34J.s to the value of the action S0.

The assumptions we will make on V (x) will induce that the operator P~ is self-adjoint on
L2(Rd), with a dense domain D(P~) ⊂ L2; its spectrum will therefore be real. One major
goal of quantum mechanics is to analyze quantitatively the spectra of such operators. In the
cases we will study, spectra will often have a discrete component made of isolated eigenvalues
of finite multiplicities

(1.3) P~u~,i = E~,iu~,i, i = 0, 1, 2, . . .

In this situation we will be interested in the following spectral data:

(1) the distribution of the eigenvalues {Ei,~}, in some fixed interval (indep. of ~)
(2) the spatial (and more generally, phase space, or microlocal) localization properties of

the eigenfunctions ui,~.

1.1.2. Semiclassical limit = fast oscillatory functions. As often the case in analysis, one can
make effective computations only in presence of a small (or large) parameter, meaning in
some asymptotic limit. The semiclassical limit consists in analyzing the operator P~ in
the regime ~� 1. This corresponds to wavefunctions u(x, t) which oscillate fast in position,
compared with the macroscopice scales (∆x ∼ 1).
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Figure 1.1. 2 eigenfunctions of the Laplacian inside a stadium-shaped domain
(with Dirichlet boundary conditioins). The grey intensity is proportional to
|ui(x)|2.

A local model to keep in mind is that of the pure Laplacian, which describes the free motion
of a quantum particle (V ≡ 0). Then, the equation −~2∆u = 1 can be solved locally by
linear combinations of plane waves with same wavelength 2π~� 1:

u(x) =

∫
Sd−1

c(ξ) eiξ·x/~dξ.

These waves oscillate on scales ∼ ~ much smaller than the global scales of the problem
(L0 ∼ 1). Here û(ξ) is, up to normalization, the (semiclassical) Fourier transform of u(x).

Such oscillatory functions can be very complicated at the microscopic scale (cf. pictures of
eigenmodes of billiards). In general there are no explicit, or even approximate expressions
for the eigenmodes.

Furthermore, because ~ is in front of the most singular term (in the PDE sense: the highest
derivative term), the limit ~→ 0 of the Schrödinger equation is singular.

What do we gain from studying this semiclassical regime?

Claim. in the semiclassical regime ~� 1, we will be able to connect the Schrödinger equation
(a linear PDE) with the classical mechanics of point particles (a Hamiltonian Ordinary
Differential Equation), and thereby gain nontrivial informations on the eigenmodes ui,~(x).

1.1.3. Applications of the semiclassical formalism to the wave equation. This section, which
establishes a connexion with the wave equation, may be read at a later stage.

Semiclassical analysis is closely connected with the microlocal analysis of linear PDEs, which
was introduced in the 1960s. The typical example of equation dealt with is the scalar wave
equation on Rd. The original equation reads(

∂2
t − c2∆

)
u(x, t) = 0,
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where c > 0 is the speed of sound, which we assume homogeneous (position-independent)
and isotropic. We may then reduce the dimension of this PDE by setting c = 1, thereby
obtaining a dimensionless wave equation (∂2

t −∆)u = 0.

What is the connection between the wave equation (with no small parameter
involved) and the semiclassical Schrödinger equation?

Firstly, the wave equation is a second order differential equation w.r.t. the time. Since −∆

is a positive operator, we may factorize the wave equation into

(i∂t −
√
−∆)(i∂t +

√
−∆)u = 0,

that is the product of two first order equations which have the form of the Schrödinger
equation

(1.4) i∂tv = ±Pv, with P =
√
−∆.

Each of these equations (they are mapped to one another by a time reversal) is called the
half-wave equation. Solving the half-wave equation obviously provides a solution of the wave
equation.

Microlocal analysis starts when considering the high frequency components of the solution
v(x, t). To do so, we may split the Fourier space Rd 3 η according to the value of |η|, using
a dyadic decomposition (such a decomposition is called a Paley-Littlewood decomposition).
Namely, let us consider a smooth partition of unity on R+

1 = χ0 +
∑
n≥1

χn,

with suppχn ⊂ (2n−1, 2n+1) for all n ≥ 1, suppχ0 ⊂ [0, 2). Using this partition of unity, we
split the initial data v(x, 0) = f(x) for the equation (1.4) in Fourier space. Namely, using
the operator P we define

fn = χn(P )f, ∀n ≥ 0.

The operators χn(P ) are Fourier multipliers. Indeed, if we denote by

Ff(η) = (2π)−d/2
∫
f(x) e−iη·x dx,

the Fourier transform of f , each fn(x) can be obtained by

fn(x) = (2π)−d/2
∫
Ff(η)χn(|η|) eiη·x dη.

We then have as initial data f =
∑

n≥0 fn, with each component fn being composed of Fourier
modes at scales |η| ∼ 2n. By the linearity of the equation, we may solve the equation for
each component independently. If we take fn as initial data, the solution vn(x, t) will also
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be composed of such Fourier modes for any t ∈ R. We may rescale this Fourier scale by
inserting an artificial parameter ~ = ~n

def
= 2−n, and write the half-wave equation as

i~∂tvn = P~vn, with P~ = ~P = ~
√
−∆.

By doing so, we end up with a semiclassical Schrödinger equation (that is, with a small
effective parameter ~), with the solution vn(x, t) having the property that, at each time t, its
semiclassical Fourier transform

[F~vn] (ξ, t)
def
= (2π~)−d/2

∫
vn(x, t) e−iη·x/~ dx

is supported in the region {|ξ| ∈ (1/2, 2)}. Equivalently if we consider Π~ = 1l(1/2,2)(P~) the
spectral projector of P~ associated with the interval (1/2, 2), we have at each time (Π~ −
1)vn(t) = 0.

After this rescaling, the set of equations {(i~n∂t − P~n) vn = 0, vn(0) = fn}n∈N is viewed as
a subset of the family of semiclassical equations {(i~∂t − P~) v~ = 0, v~(0) = f~}~∈[0,1), with
the functions f~ assumed to be spectrally concentrated (w.r.t. P~) in some fixed interval
I ⊂ R+. The high-frequency limit |η| → ∞ has been transformed into a semiclassical regime
~→ 0. The setup is now similar to the preceding one, except that the Schrödinger operator
P~ = −~2∆

2
+ V (x) has been replaced by the half-wave generator P~ =

√
−~2∆.

In the case of the wave equation, the corresponding classical dynamics is the geodesic flow (or
ray dynamics). This procedure can be adapted to the case of waves travelling on a smooth
Riemannian manifold, with or without (smooth) boundaries.

1.2. Quantum Mechanics in a nutshell.

1.2.1. Wavefunctions and probability distributions. Quantum Mechanics was developed, as a
(pretty strong) modification of classical mechanics, more preciselyHamilton’s formulation
of conservative (dissipationless) classical mechanics, which we will review in section
1.4 below.

In classical mechanics, the state of a particle at time t is uniquely and precisely described by
the data of its position x(t) and its velocity ẋ(t), or equivalently its momentum (“impulsion”)
ξ(t). Mathematically, a difference between the two points of view is that ẋ(t) ∈ TRd is a
tangent vector, while ξ(t) ∈ T ∗Rd is a cotangent vector. This difference is not really relevant
when working on Rd, and when the Hamiltonian is of the form p(x, ξ) = |ξ|2/2 + V (x). The
phase space of classical mechanics is the cotangent space T ∗Rd ' Rd

ξ × Rd
x.

In quantum mechanics, the state of a particle (say, an electron) is described by a wavefunc-
tion u(x, t), which is a time-dependent, complex-valued function u(t) ∈ L2(Rd) with unit
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norm. The wavefunction u(t) represents the particle as a wave, which is hence intrinsically
delocalized. Alternatively, it describes a point particle, whose position (or momentum) can-
not be known deterministically, but only probabilistically. That is, if one performs a position
measurement on the particle at time t, one cannot in advance predict the outcome of the
measurement, but only provide a probability distribution of the outcome, given by
the function |u(t, x)|2 (remind that we require ‖u(t)‖L2 = 1). The function u(x, t) is called
the (position) probability amplitude.

The wavefunction u(x, t) simultaneouly describes the momentum of the particle, which is
associated with the Fourier variable, at the scale ~−1. Namely, the De Broglie correspondence
states that a flux of particles of momentum ξ0 ∈ Rd is described by the plane wave

uξ0(x) = C ei
ξ0·x
~ , x ∈ Rd,

that is, the momentum ξ0 corresponds to a wavevector η0 = ξ0/~. Any wavefunction u(x, t)

can be decomposed in such Fourier modes, using the semiclassical Fourier transform:
(1.5)

u(x, t) =
1

(2π~)d/2

∫
e−iξ·x/~û(ξ, t) dξ, û(ξ, t) = [Fhu(t)] (ξ) =

1

(2π~)d/2

∫
eiξ·x/~u(x, t) dx

Here ξ 7→ û(ξ, t) represents the momentum amplitude of the state u(t). If one proceeds with
a momentum measurement (what people actually do in particle accelerators), the outcome
is a random variable, following the momentum probability density |û(ξ, t)|2.

As a result, the same function u(x, t) allows to represent both the position and momentum
probability distributions. Clearly, changing the phase of u(x, t) won’t change |u(x, t)|2, but
it will generally impact the momentum density |û(ξ, t)|2.

1.2.2. Observables in classical and quantum mechanics. If the wavefunction u(x) is nice
enough, say in the Schwartz space u ∈ S (Rd), then the distributions of the position or
momentum variables can be described through their moments. Namely, for any multi-index1

α ∈ Nd, the moment2 of this variable, Euxα, is finite. This moment can be interpreted as a
“diagonal matrix element” of a corresponding multiplication operator

Op(xα) : u(x) 7→ xαu(x).

1α = (α1, α2, . . . , αd) with αi ∈ N, and we note xα = xα1
1 xα2

2 · · ·x
αd
d . Similarly, we will note the multi-

derivative ∂α = ∂|α|

∂
α1
x1
···∂αdxd

, with |α| = α1 + · · ·+ αd.
2In physics such expectation values (“averages”) are usually denoted with brackets, Euxα = 〈xα〉. We will
try not to use this notation, to avoid any confusion with scalar products.
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For α 6= 0 this operator is unbounded on L2, but it has a dense domain on which it is
selfadjoint. Any function u ∈ S belongs to this domain, and we have

Euxα =

∫
dx |u(x)|2xα = 〈u,Op(xα)u〉L2(dx).

Similarly, the moments of the momentum variables can be viewed as matrix elements of
corresponding momentum operators. Indeed, for any multi-index β ∈ Nd, the average of the
variable ξβ, for a particle in the state u(x) ∈ S , is defined as

Euξβ =

∫
dξ |û(ξ)|2ξα = 〈û, ξαû〉L2(dξ).

Now, we would like to express this matrix element in terms of the original wavefunction u(x).
A straightforward computation shows that the multiplication operator by ξα is transformed,
through the ~-Fourier transform, into the differential operator

(~
i
∂
)α def

= (~D)α: for any
u ∈ S (Rd), [

F−1
~ (ξαû(ξ))

]
(x) =

[(
~
i
∂

)α
u

]
(x).

Since u is obviously in the domain of the operator Op~(ξ
α)

def
= (~Dx)

α, we may write

Euξα = 〈u,Op~(ξ
α)u〉L2(dx),

where the scalar product is in L2(x).

Here we have let correspond:

- to the position variable xj the operator of multiplication by xj, which we denote Op(xj) =

Op~(xj) (this operator is independent of ~).

- to the momentum variable ξj the differential operator ~Dxj = ~
i
∂
∂xj

= Op~(ξj) (this “mo-
mentum operator” explicitly depends on ~).

Position and momentum form a first set of variables describing the state of particle. Such
variables, which can be experimentally measured, are called observables in quantum mechan-
ics.

More generally, one calls classical observable a smooth, real valued function on phase space
a ∈ C∞(R2d

x,ξ,R), while a quantum observable is a selfadjoint operator A : L2(Rd
x)→ L2(Rd

x)

(often unbounded, in which case we’ll assume its domain D(A) to be dense in L2). A classical
observable can be used to test the position of a classical particle, or of a distribution ρ(x, ξ) of
particles in phase space through classical averages

∫
ρ(x, ξ)a(x, ξ)dx dξ. Similarly, quantum

observables can be seen as “test operators”, helping to grab the structure of the wavefunction
u through quantum averages 〈u,Au〉.
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Remark 1.1. What is the interpretation of such a quantum average? As a selfadjoint operator,
the operator A can be experimentally measured. For a general state u, the output of the
measurement cannot be predicted with certainty, but is described by a random variable,
which will take different values if we repeat the measurement many times (re-constructing
the same wavefunction u before each measurement). Assuming u is nice enough, that random
variable can be described in terms of its moments, which are given by the matrix elements
〈u,Anu〉, n ≥ 1.

In the case when A has pure point spectrum with orthonormal basis (φi, ai)i∈N, the quantum
averages simply depend on the overlaps between u and the eigenmodes φi:

〈u,Anu〉 =
∑
i∈N

ani |〈u, φi〉|2.

The measurement of the observable A will give the value ai with probability |〈u, φi〉|2.

1.2.3. Quantization: from classical to quantum observables. Quantum mechanics establishes
a correspondence between classical and quantum observables, through a quantization pro-
cedure

(1.6) a ∈ C∞(R2d) 7→ A = Op~(a)

mapping a classical observable (a function on phase space) into a quantum observable (an
operator on L2). This quantization procedure lies at the heart of semiclassical analysis. Our
lectures will be devoted to a precise study of such a quantization procedure, and of its various
consequences.

We won’t give yet the precise definition of this quantization, but only a few relevant proper-
ties:

(1) the position monomials xα are quantized into the corresponding multiplication oper-
ators

(2) the momentum monomials ξα are quantized into the above differential operators
(~Dx)

α

(3) quantization is a linear operation: Op~(αa+βb) = αOp~(a)+βOp~(b) (here we don’t
pay attention to questions of domains).

(4) quantization should map real valued functions into (essentially) selfadjoint operators.

The last property is specific to quantum mechanics applications, and will lead to the so-called
Weyl quantization. In the study of linear PDEs is is often customary to introduce different
(yet related) forms of quantization, which do not necessarily satisfy requirement (4).
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By taking linear combination of monomials we get polynomials, which are in some sense
“dense” in the set of smooth functions. Hence, it is reasonable to expect the following exten-
sion of the above properties:

(1’) a smooth function (which does not grow too fast at infinity) a(x) is quantized into the
multiplication by a(x).

(2’) a smooth function b(ξ) is quantized into the Fourier multiplier b (~Dx), a first example
of pseudodifferential operator.

We will need to be more precise on the growth conditions we have to impose on the function
a, b. We will be lead to introduce various spaces of appropriate functions (which are called
symbols in this context). Such functions will be smooth, with controlled growth or decay at
infinity, and they may depend explicitly on the parameter ~, still in a controlled way.

Problem 1.2. How to quantize a function (say, a polynomial) depending on both x and
ξ? From the above properties we naturally end up with ordering questions. Indeed, the
operators Op~(xj) and Op~(ξj) do not commute, but satisfy the commutation relations

[Op~(xj),Op~(ξk)] = i~ δjk (where δjk is the Kronecker symbol).

What should then be the quantization of the observable xjξj? We easily check that neither
A1

def
= Op~(xj) Op~(ξj) nor A2

def
= Op~(ξj) Op~(xj) are symmetric operators, so they don’t

satisfy the requirement 4. A mixture of the two operators, namely A1+A2

2
, will “do the job”.

Such ordering problems, coming from the noncommutation of operators, are also at the heart
of the

Proposition 1.3. [Heisenberg uncertainty principle]

For any state u ∈ S (R), with ‖u‖L2 = 1 , the variances of the position and momentum
variables satisfy the constraint:(

Eu(x2)− E(x)2
) (

Eu(ξ2)− Eu(ξ)2
)
≥ ~2/4.

This expresses the fact that the uncertainty in position and the uncertainty in momentum (or
~-Fourier variable) cannot be simultaneously arbitrarily small.

Exercise 1.4. Prove the uncertainty principle (in 1 dimension). For this aim, consider the
state vλ = xu+ iλ~Dxu for λ ∈ R, and use the fact that ‖vλ‖ ≥ 0 for any λ ∈ R.

1.2.4. Microlocalization of semiclassical states: using observables as “quantum test functions”.
One role of quantized observables Op~(a) will be to detect the concentration of a state u(x) (or
rather, of a family of ~-dependent states (u~)~∈(0,1]) in some phase space region Ω ⊂ Rd

x×Rd
ξ .
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For a spatial region Ωx (assumed to be a domain of Rd), one measures the weight of u~ in Ωx

by taking the matrix element 〈u~, 1lΩxu~〉 ∈ [0, 1]. One can also measure the weight of u~ in
a Fourier region Ωξ by taking the matrix element 〈u~, 1lΩξ(~Dx)u~〉 ∈ [0, 1]. Notice that this
weight corresponds to wavevectors η = ~−1ξ of moduli ∼ ~−1: we are measuring the weight
of large wavevectors, corresponding to oscillations of u~(x) at the scale ∼ ~.

The idea of microlocal analysis is to measure both types of concentration (space vs. Fourier)
simultaneously. For instance, the weight of u~ in the product region Ωx×Ωξ could be defined
by 〈u~, 1lΩξ(~Dx)1lΩxu~〉. However, this expression is not so nice: the operator 1lΩξ(~Dx)1lΩx is
not selfadjoint, hence is not an observable. Besides, the properties of this operator suffer from
the discontinuity of the characteristic functions 1lΩx , 1lΩξ , namely the fact that the Fourier
transform of a discontinuous function exhibits strong fluctuations (Stokes oscillations).

To avoid these problems, it is more reasonable to “cover” the characteristic functions by
smooth functions χx ∈ C∞c (Rd

x, [0, 1]), χξ ∈ C∞c (Rd
ξ , [0, 1]), namely functions satisfying, for

some small ε > 0,

(1.7) χx = 1 on Ωx, χx is supported in the ε− neighbourhood of Ωx

This property will be denoted by χx � 1lΩx . Similarly, we may use a smoothened characteristic
function χξ � 1lΩξ .

This way, the operators Op~(χx) = χx and Op~(χξ) = χξ(~Dx) are better behaved upon com-
position, and we could take for the weight in Ωx×Ωξ the scalar product 〈u~,Op~(χx) Op~(χξ)u~〉,
or its symmetrized version. Another, somewhat more natural possibility would be to take for
the weight 〈u~,Op~(χxχξ)u~〉, where the operator Op~(χxχξ) will be selfadjoint if we choose
an appropriate (e.g. Weyl) quantization procedure.

From the latter expression, the definition of a phase space weight can be extended to an
arbitrary domain Ω ⊂ Rd × Rd, by smoothing the function 1lΩ(x, ξ) into some smooth
cutoff χΩ ∈ C∞c (R2d

x,ξ, [0, 1]), χΩ � 1lΩ, and defining the weight by the scalar product
〈u~,Op~(χΩ)u~〉.

Such a phase space weight is called microlocal. Here the prefix “micro” does not refer to
“microscopic”, but rather to “phase space”, or “simultaneously local in position and Fourier”.
There is some freedom in the definition of the weight, since the cutoff χΩ, satisfying the
analogue of 1.7, is not uniquely defined. Also, the operators Op~(χx) Op~(χξ), its symmetric
version, and Op~(χxχξ) are not equal, so do they measure the same localization phenomenon?
These operators belong to the class of ~-pseudodifferential operators; we will see in section 2
that the difference between these operators is of order O(~), hence becomes negligible in the
semiclassical limit.



AN INTRODUCTION TO SEMICLASSICAL ANALYSIS 11

x
χ( )x

x

χ( )
ξ
ξ

Ωx

Ωξ Ωε

x

Ω

ξ

Figure 1.2. Microlocalization inside a domain Ω = Ωx × Ωξ and its ε-
neighbourhood Ωε, using smooth cutoff functions.

Another way to interpret a quantized cutoff such as Op~(χΩ) is as an approximate phase
space projector. Namely, for an arbitrary function u~, we may view v~ = Op~(χΩ)u~ as the
“approximate projection” of u~ in the phase space region Ω. The term “projection” has to
be understood with some care. The operator Op~(χΩ) is not a projector, since Op~(χΩ)2 6=
Op~(χΩ). In general, this operator is not even positive. Besides, the cutoff χΩ leaks away
from Ω (by a margin ≤ ε), so v~ could also have some components outside Ω.

Nevertheless, this method of “approximate phase space projection” (a more proper term would
be “microlocalization”) will be useful to analyze semiclassical families of states (u~)~. It will
lead to the notions of semiclassical wavefront set WF~(u~) and of semiclassical measures
µsc associated with a sequence of functions (u~)~∈(0,1], which are two ways to measure the
microlocalization of u~. Roughly speaking, WF~(u~) records the phase space points where u
is not microlocally residual3 (O(~∞)), while the semiclassical measure µsc keeps track of the
points where u is not microlocally o(1). One of the outputs of semiclassical analysis is to give
informations on the wavefront sets and semiclassical measures associated with sequences of
eigenstates ui,~ of some operator P~.

1.3. Time evolution in quantum mechanics. One is naturally interested in the time
evolution of the wavefunction, to understand how the particle evolves. In quantum mechanics
this evolution is governed by a Schrödinger equation of the type (1.1), where V (x) is the
potential energy of the particle at point x. More generally, it will be given by a Schrödinger
equation of the form

(1.8) i~∂tu(t) = P~u(t), t ∈ R, u(0) = u0,

3A quantity is Q(~) = O(~∞) if, for any N ≥ 1, there exists CN > 0 such that |Q(~)| ≤ CN~N for all
~ ∈ (0, ~0].
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for some self-adjoint operator P~ (usually a differential operator) called the quantum Hamil-
tonian.

In the next subsection on semigroups, we recall that the Schrödinger equation is globally
well-posed for any intial data u0 ∈ L2, and admits a unique solution u(t) expressed by the
action of the Schrödinger (semi)group

(1.9) u(t) = U~(t)u0, t ∈ R.

which is formally represented by

U~(t) = exp (−itP~/~) .

The group operators U~(t) : L2 → L2 are all unitary, which allows the normalization
‖u(t)‖L2 = 1 at all times. The operator U~(t) is usually called the propagator associated
with the Hamiltonian P~ (it propagates the quantum state u0 to future times).

1.3.1. Reminder on semigroups. An strongly continuous group on L2 is composed of a func-
tion S : R→ L(L2, L2) taking values in bounded operators, such that

(1) S(0) = Id

(2) For any t, t′ ∈ R, S(t+ t′) = S(t) ◦ S(t′)

(3) The function S(t) is strongly continuous: for any u ∈ L2, limt→0 ‖S(t)u− u‖ = 0.

If the operators S(t) are all unitary, one speaks of a unitary group.

One can define the infinitesimal generator of a group S(t). It is a linear operator A on L2,
which may be unbounded. Its domain D(A) is defined as the space of vectors u ∈ L2 such
that u−S(t)u

it
admits a limit when t→ 0; the limit is then defined to be Au. This shows that

t 7→ u(t) is differentiable at t = 0, with

dS(t)u

dt
|t=0 = −iAu.

By using the 2d property, we see that the function u(t) = S(t)u0 satisfies, for any t ∈ R, the
evolution equation

(1.10) i
du(t)

dt
= Au.

The function u(t) = S(t)u0 is solution of this evolution equation in two possible senses:

• if u0 ∈ D(A), then u(t) ∈ D(A) for all t ∈ R, the function t 7→ u(t) is C1(R, L2), and
u(t) satisfies (1.10) in a strong sense.
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• if u0 6∈ L2 \ D(P~), then u(t) is a solution of the equation (1.8) in a weak sense: for
any test function ψ ∈ C1

c (Rt), the state uψ
def
=
∫
R dt ψ(t)u(t) is in the domain of P~,

and it satisfies P~uψ = −iuψ′ .

For a unitary group, the generator (A,D(A)) is automatically selfadjoint.

1.3.2. Understanding time evolution: semiclassical propagation of singularities. A major goal
of quantum mechanics is to understand, as quantitatively as possible, the evolved state
u(t), depending on the quantum Hamiltonian P~ and the initial state u0. In the present
semiclassical perspective, this evolution will be linked with another type of evolution, namely
a Hamiltonian flow on the phase space Rd

x×Rd
ξ generated by some Hamilton function p(x, ξ),

called the principal symbol of the (family of) operator(s) P~. We have already explained some
notion of microlocalization of a state (u~). The type of question one would like to address:

Assuming that the initial data (u~) is microlocalized in some set Ω b R2d, can
we say something about the microlocalization of its evolution u~(t) = U~(t)u~?

The formalism we develop below, in particular Egorov’s theorem, allows to answer to this
question. The locus of microlocalization (i.e. the wavefront set) of u~(t) is transported
according the Hamiltonian flow Φt

p : R2d → R2d generated by the function p(x, ξ) (we recall
the elementary notions of Hamiltonian mechanics in the next subsection). For example, in
the case of the Schrödinger operator P~ = −~2∆/2 + V (x), the principal symbol (which
is, actually, its full symbol) is p(x, ξ) = |ξ|2

2
+ V (x), the sum of the kinetic energy and the

potential energy. The Hamiltonian flow just integrates Newton’s equations in the case of
a conservative dynamics. Proving this connection between classical and quantum transport
(through Egorov’s theorem) is one of the goals of the present lectures.

1.4. A short reminder of Hamiltonian classical mechanics.

1.4.1. From Newton to Hamilton. A classical particle on Rd is described by a trajectory
x(t) ∈ Rd. At each time t is occupies a single point x(t) ∈ Rd, and has a velocity ẋ(t) =
dx(t)
dt
∈ Rd. The motion is determined by Newton’s law (1st principle of mechanics):

(1.11) mẍ(t) = F (x(t)),

where F : x 7→ F (x) ∈ Rd is the force field at position x (here we assume this force field
to be time independent). Since this equation is of second order in time, ODE theory shows
that, provided F (x) is smooth near x(0), the intial data (x(0), ẋ(0)) suffice to specify, at
least locally in time, the trajectory (x(t))t∈I .
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Remark 1.5. The trajectory may explode at finite time, e.g. one may have x(t)
t→T−−→∞ even

if F is smooth everywhere. This cannot be the case under appropriate conditions on the
force field F (e.g. if F (x) does not grow too fast at infinity).

In the following we will always assume that the trajectories remain finite for any real time,
so that (x(t))t is well-defined for all t ∈ R. One then says that the flow is complete.

The force field F (x) is said to be conservative if it derives from a potential energy (which
we will call “potential” for short) V : x 7→ V (x) ∈ R:4

(1.12) F (x) = −∇V (x).

In this case, the the total mechanical energy

E(x, ẋ) = Ekin + V =
m|ẋ|2

2
+ V (x)

is preserved during the evolution: d
dt
E(x(t), ẋ(t)) = 0.

It is useful to slightly change variables, by defining the momentum of the particle, which
in this Euclidean setting reads5

ξ(t) = mẋ(t).

The dynamical variables specifying the motion of the particle are now (x(t), ξ(t)) ∈ Rd×Rd.
The mechanical energy can now be cast into Hamilton’s function

(1.13) H(x, ξ) =
|ξ|2

2m
+ V (x),

a function over the phase space R2d = Rd
x × Rd

ξ . We will sometimes denote by ρ = (x, ξ) a
phase space point.

After this change of variables, Newton’s law (2d order eq. on d variables) can be cast into
Hamilton’s equations over the phase space (1st order eqs. on 2d variables):

(1.14)

ẋ(t) = ∂H
∂ξ

(x(t), ξ(t))

ξ̇(t) = −∂H
∂x

(x(t), ξ(t))
⇐⇒ ρ̇(t) = XH(ρ)

The RHS defines the Hamiltonian vector field ρ ∈ R2d 7→ XH(ρ) ∈ TρR2d ≡ R2d, which
generates the Hamiltonian flow associated with the hamilton function H:

Φt
H : ρ(0) = (x(0), ξ(0)) ∈ R2d 7→ Φt

H(ρ(0)) = ρ(t) = (x(t), ξ(t)) ∈ R2d.

4the negative sign implies that the particle “rolls down” the energy landscape: it is attracted by low values
of the potential.
5Beware that we will use PDE’s notation (x, ξ) for the position-momentum. In classical mechanics and
quantum mechanics, one rather uses the notations (x, p), or also (q, p), like in symplectic geometry. Similarly,
the notation ρ = (x, ξ) for a phase space point seems typical of PDEs, symplectic geometers prefer x = (q, p)!
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Being a flow means that (provided everything is well-defined),

Φt+s(ρ) = Φt(Φs(ρ)),

both for positive or negative times.

Remark 1.6. This Hamiltonian formalism is not restricted to functions of the form (1.13), but
can be generalized to arbitrary (smooth enough) functions H(x, ξ) on phase space. Most of
what we will say in this subsection applies in this higher generality, and defines a Hamiltonian
flow on R2d.

Here again, the flow may not be defined for all time.

Remark 1.7. We will assume that H ∈ C∞(R2d), and that the flow Φt
H is complete.

In this context, the conservation of energy now reads as follows:

Proposition 1.8. The Hamiltonian flow Φt
H leaves invariant the value of the Hamiltonian.

∀t ∈ R,∀ρ ∈ R2d, H(Φt
H(ρ)) = H(ρ)

Proof. Explicit computation using Hamilton’s equations (1.14)

dH

dt
(x, ξ) =

∂H

∂x
ẋ+

∂H

∂ξ
ξ̇ = 0.

�

As a consequence, the phase space R2d is naturally foliated into energy layers

ΣE
def
= H−1(E) =

{
ρ ∈ R2d, H(ρ) = E

}
,

and each layer ΣE is invariant through the flow Φt
H . Hence, one can study the property of

the flow Φt
H on each energy layer independently of the other ones.

Definition 1.9. A fixed point for the flow Φt
H is a point ρc ∈ R2d for which XH(ρc) = 0.

Such a point is called critical. The corresponding energy H(ρc) is called a critical energy.

The implicit function theorem shows that, if the energy E is noncritical, then ΣE ⊂ R2d is a
smooth embedded hypersurface.
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1.4.2. Symplectic structure. This formulation of conservative mechanics is equivalent with
Newton’s formulation. What we gain is a explicit new invariant structure, namely the sym-
plectic structure on T ∗Rd = Rd

ξ×Rd
x, which is explicitly given by the nondegenerate 2-form

on R2d6:

(1.15) ω =
d∑
j=1

dξj ∧ dxj.

This notation means that for any two vectors V =
(
Vx
Vξ

)
, W =

(
Wx

Wξ

)
∈ TρR2d ' R2d,

ω(V,W ) =
∑
j

VξjWxj − VxjWξj = 〈JV,W 〉, where J def
=

(
0 I

−I 0

)
.

This 2-form is obviously nondegenerate and closed. The Hamiltonian vector field can be
defined using the symplectic form, by the following equation:

(1.16) ιXHω = −dH ⇐⇒ ∀V ∈ TρR2d, ω(XH , V ) = −dH(V )

Definition 1.10. The symplectic form generates the Poisson bracket on R2d, which is the
following bilinear operator on smooth observables. For any pair of functions f, g ∈ C1(R2d),
the bracket is the function on R2d defined by:

{f, g} def
=

d∑
j=1

∂f

∂ξj

∂g

∂xj
− ∂f

∂xj

∂g

∂ξj
= Xfg = −Xgf = ω(Xf , Xh)

If f = H is the Hamiltonian, we have

{H, g} = XHg = −dH(Xg),

defines the infinitesimal change of the observable g evolved along the Hamiltonian flow Φt
H :

(1.17) {H, g} =
d

dt
g ◦ Φt

H �t=0 .

Proposition 1.11. The Hamiltonian flow Φt
H preserves the symplectic form. In other words,

the pull-back of ω through the flow is equal to ω:(
Φt
H

)∗
ω = ω

6Most physics or mechanics books choose instead ω =
∑d
j=1 dxj ∧ dξj , this sign change is just a matter of

convention. We will use the present convention to conform with PDE convention.
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Proof. One can write down the explicit infinitesimal transformation of ω under the vector
field XH , in a slightly sloppy way:

ω̇ =
∑

dξ̇j ∧ dxj + dξj ∧ dẋj

=
∑
−d
(
∂xjH

)
∧ dxj + dξj ∧ d

(
∂ξjH

)
=
∑
−
(
∂2
xjxk

Hdxk + ∂2
xjξk

Hdξk

)
∧ dxj + dξj ∧

(
∂2
ξjxk

Hdxk + ∂2
ξjξk

dξk

)
The cross-terms dξk ∧ dxj cancel each other. We may now invoke the fact that (∂2

xjxk
H) and

(∂2
ξjξk

H) are symmetric matrices, while dxk ∧ dxj and dξj ∧ dξk are antisymmetric, to kill the
remaining terms, and get ω̇ = 0.

A faster (and more geometric proof) uses the Cartan formula:

ω̇ = LXHω = d (ιXHω) + ιXHdω.

The closedness of ω kills the second term. On the other hand, ιXHω = −dH, so we get
zero. �

2. (Semiclassical) quantizations on R2d

We now present and investigate the quantization procedure mentioned in the introduction,
which maps a function a(x, ξ) (classical observable) to a linear operator Op~(a) acting on
L2(Rd) (or a smaller functional spaces dense in L2, like the Schwartz space S (Rd)). We
will actually present a family of quantization procedures (indexed by a parameter t ∈ [0, 1]),
compare them, and show that the differences between these different quantizations become
small in the semiclassical limit. One particular choice (t = 1/2, or Weyl quantization) will
have one distinctive advantage, namely map a real-valued function to a symmetric operator.

Notation: Following the use in quantum mechanics, in our notes the scalar product on L2(Rd)

will always be antilinear in the first argument, and linear in the second one:

∀α, β ∈ C, 〈αu, βv〉 = ᾱβ〈u, v〉.

As a prerequisite, a quantization procedure should satisfy the following constraints (at this
stage we do not care about the regularity or growth of the function):

(1) a function a(x) is quantized into the multiplication operator by a(x).
(2) a polynomial p(ξ) is quantized into the differential operator p(~Dx), where recall the

notationDx = 1
i
∂x. (notice thatDxj enjoys the property to be symmetric: 〈u,Dxjv〉 =

〈Dxju, v〉). More generally, a smooth function a(ξ) is mapped to a Fourier multiplier
a(hDx).
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(3) quantization is a linear operator.

What is the use of such a quantization? What form of operators are produced this way?

(1) The quantum Hamiltonian (the generator of the Schrödinger flow) P~ = −~2∆
2

+V (x)

is obtained a quantization of a classical Hamiltonian p(x, ξ) = |ξ|2
2

+ V (x).
(2) the class of operators we obtain contains differential operators, but also a larger

class of (semiclassical) pseudodifferential operators, or ~-pseudodifferential op-
erators (~-ΨDO for short). Eventhough the Hamiltonian is usually a differential
operator, the following derived operators are genuine pseudodifferential ops: its resol-
vent (Ph − z)−1, or its noninteger powers (Ph − z)s, more generally functions f(P~)

which are useful when analyzing its spectrum.
(3) the class of pseudodifferential operators also contains phase space cutoff operators

Op~(χ), χ ∈ C∞c (R2d), which are useful to analyze the microlocalization prop-
erties of wavefunctions, that is, their localization properties both in position and
momentum (Fourier) space.

(4) Although the quantization can be defined for any value of ~ > 0 (e.g. ~ = 1), the
theory becomes quantitatively useful in the semiclassical limit 0 < ~� 1, and this is
the asymptotic regime we’ll be considering. The reason is, the objects (wavefunctions
/ Schwartz kernels of operators) develop fast oscillatory phases in this limit, which
allows to use nonstationary vs. stationary phase estimates of relevant integrals, lead-
ing to expansions for these objects in terms of asymptotic series in powers of ~. These
semiclassical expansions are at the heart of pseudodifferential calculus, and globally
of semiclassical analysis; the properties of operators Op~(a) can be directly read in
terms of their symbols a ∈ C∞(R2d)

Remark. Following the terminology of quantum mechanics, we have called the phase space
function a(x, ξ) a classical observable, and its quantization Op~(a) a quantum observable.
In the context of linear PDEs, the phase space function a(x, ξ) is called the symbol of the
(family of) operator(s) Op~(a). The symbol map is the inverse of the quantization map7.
This symbol map depends on the specific quantization procedure. We will sometimes speak
of right, left, Weyl symbol, in reference to these different quantizations.

2.1. Quantizations of symbols in the Schwartz space S (R2d).

2.1.1. Symbols depending on x or ξ. In order to give a unifying framework for the quanti-
zations of function f(x) and g(ξ), we will write these operators in a similar form. For a

7We will see that the quantization is indeed an invertible procedure, at least formally.
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while we will let our operators act on wavefunctions u ∈ S (Rd) only. Let us start with the
multiplication operator by f(x):

[Op~(f)u] (x) = f(x)u(x)

=

∫
ei
ξ·x
~ f(x) (F~u) (ξ)

dξ

(2π~)d/2

=

∫∫
ei
ξ·(x−y)

~ f(x)u(y)
dξ dy

(2π~)d
.(2.1)

In the last line the integral is not absolutely convergent, but uses the representation of the
delta distribution as an oscillatory integral:

δ0(x) =

∫
Rd
ei
ξ·x
~

dξ

(2π~)d
.

This expression is a formal way to express the fact that the Fourier transform of the distri-
bution δ0 is a constant function: Fhδ0(ξ) = 1

(2π~)d/2
.

Exercise 2.1. Prove this integral representation by multiplying the integrand by the factor
e−εξ

2 , and letting ε↘ 0. Later we will alternatively “tame” such oscillatory integrals through
formal integration by parts.

The quantization of the momentum function g = g(ξ) can be represented similarly:

[Op~(g)u] (x) =
[
F−1

~ (gF~u)
]

(x)

=

∫
ei
ξ·x
~ g(ξ) (F~u) (ξ)

dξ

(2π~)d/2

=

∫∫
ei
ξ·(x−y)

~ g(ξ)u(y)
dξ dy

(2π~)d
.

Note that this double integral is absolutely convergent as long as g(ξ) decays fast enough
when |ξ| → ∞, e.g. if g ∈ S (Rd).

2.1.2. General symbols a(x, ξ): Right and Left quantizations. The composition of these two
operators yields the expression:

(2.2) [Op~(f) Op~(g)u] (x) =

∫∫
ei
ξ·(x−y)

~ f(x)g(ξ)u(y)
dξ dy

(2π~)d
,

Viewing this expression as a possible quantization of the function f(x)g(ξ), leads to the
following definition for the quantization of a general observable a(x, ξ). We will start by
considering very nice symbols, namely assume that a ∈ S (R2d).
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Definition 2.2. (Standard = Kohn-Nirenberg = Right quantization) For any symbol a(x, ξ) ∈
S (R2d), its standard (semiclassical) quantization is defined by[

OpR~ (a)u
]

(x)
def
=

∫
ei
ξ·x
~ a(x, ξ) (F~u) (ξ)

dξ

(2π~)d/2
=

∫∫
ei
ξ·(x−y)

~ a(x, ξ)u(y)
dξ dy

(2π~)d
.

The integral is absolutely convergent if the wavefunction u ∈ S (Rd). This operator OpR~ (a)

will also be denoted by a(x, hD).

This definition generalizes the product (2.2): for the product observable a(x, ξ) = f(x)g(ξ),
the right quantization corresponds to

OpR~ (f(x)g(ξ)) = Op~(f(x)) Op~(g(ξ)).

This ordering corresponds to applying the derivative operators (Fourier multipliers) on the
right and the multiplication operators on the left. This is the reason why this quantization
is called the right quantization.

Alternatively, ordering Op~(f) and Op~(g) in the opposite way to (2.2), we would obtain

[Op~(g) Op~(f)u] (x) =

∫∫
ei
ξ·(x−y)

~ g(ξ)f(y)u(y)
dξ dy

(2π~)d
def
=
[
OpL~ (g(ξ)f(x))

]
u(x)

Viewing this as the quantization of a(x, ξ) = f(x)g(ξ), leads to an alternative quantization,
called the left quantization, where multiplication precedes differentiation:

Definition 2.3. (Left quantization) The left (semiclassical) quantization of a symbol a(x, ξ) ∈
S (R2d) is defined by [

OpL~ (a)u
]

(x)
def
=

∫∫
ei
ξ·(x−y)

~ a(y, ξ)u(y)
dξ dy

(2π~)d
.

Note that the integral is now absolutely convergent, provided u ∈ L∞(Rd), or even if u(y)

grows polynomially when |y| → ∞.

The right and left quantizations are related to one another by duality.

Lemma 2.4. For any symbol a ∈ S (R2d), and any wavefunctions u, v ∈ S (Rd), we have
the symmetry relation

〈u,OpR~ (a)v〉 = 〈OpL~ (ā)u, v〉.

As a consequence, the formal adjoint of OpR~ (a) (viewed as acting on L2(Rd)) is OpL~ (ā).

We will see below that OpR~ (a) is bounded on L2, so the formal adjoint is the true adjoint.
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Proof. Easy exercise by integration by parts.

〈u,OpR~ (a)v〉 =

∫∫∫
dx ū(x)ei

ξ·(x−y)
~ a(x, ξ)v(y)

dξ dy

(2π~)d

=

∫∫∫
dy v(y)u(x)ei

ξ·(y−x)
~ ā(x, ξ)

dξ dx

(2π~)d

= 〈OpL~ (ā)u, v〉.

Here we applied the Fubini theorem, using the fact that the integral converges absolutely. �

Claim 2.5. For a generic, real-valued function a(x, ξ), the operators OpR~ (a) and OpL~ (a) act
differently on S (Rd).

This is the case in particular for symbols of the form a(x, ξ) = f(x)g(ξ), because the operators
Op~(f(x)) and Op~(g(ξ)) generally do not commute with each other. This is easy to verify
when we take for g(ξ) a polynomial of degree ≥ 1 (such a polynomial is not in the Schwartz
space, but its action on S (Rd) still makes sense).

Example 2.6. For instance, if g(ξ) = ξ1, we get the commutator

[hDx1 , f(x)] =
h

i
∂x1f(x), a multiplication operator.

For g(ξ) = ξ1ξ2, it gives

hDx1hDx2f(x) = hDx1

(
f(x)hDx2 +

h

i
∂x2f(x)

)
= [hDx1 , f(x)]hDx2 + f(x)hDx1hDx2 +

h

i
[hDx1 , ∂x2f(x)] +

h

i
∂x2f(x)hDx1

=⇒ [hDx1hDx2 , f(x)] =
h

i
∂x1f(x)hDx2 +

h

i
∂x2f(x)hDx1 − h2∂2

x1x2
f(x),

now a first order differential operator, which can be written as the right quantization of the
symbol

h

i
∂x1f(x)ξ2 +

h

i
∂x2f(x)ξ1 − h2∂2

x1x2
f(x).

These examples are differential operators. If g(ξ) is a polynomial of degree n, then [g(hDx), f(x)]

will be a polynomial operator of degree n − 1, with the highest degree terms depending on
the first derivatives of f .

Remark 2.7. Any Fourier multiplier Op~(g) can be expressed as a convolution:

[g(hD)u] (x) = F−1
h (gFhu) = (F−1

h g) ∗ u.



22 STÉPHANE NONNENMACHER

Hence, the two operators Op~(f) Op~(g) = OpR~ (fg) and Op~(g) Op~(f) = OpL~ (fg) can be
expressed by:

[f(x)g(hDx)u] (x) = f(x)
((
F−1
h g
)
∗ u
)

(x) =

∫
f(x)(F−1

h g)(x− y)u(y)dy,

g(hDx)f(x)u(x) =
(
F−1
h g
)
∗ (fu)(x) =

∫ (
F−1
h g
)

(x− y)f(y)u(y)dy.

The Right and Left quantizations have interesting support properties, in situations where
a(x, ξ) is compactly supported in the x variable.

(1) Assume a(x, ξ) is supported inside x ∈ K b Rd. Then for any u ∈ S , OpR~ (a)u is
supported in K.

(2) Assume a(x, ξ) is supported inside x ∈ K b Rd, and u(x) is supported inside Rd \K.
Then OpL~ (a)u = 0.

2.1.3. t- and Weyl quantizations. Quantum mechanics requires that a real valued observable
a(x, ξ) should be quantized into a selfadjoint (or at least, symmetric) operator. This reality
property is not satisfied by the Right and Left quantizations. For this reason, quantum
mechanics will rather use a more symmetric quantization, called the Weyl quantization.

To introduce the Weyl quantization, we notice that the only difference between the Left and
Right quantizations is that in the Schwartz kernel of the operators, the symbol a is evaluated
at the initial (y), resp. final (x) position. To symmetrize the problem, one may evaluate the
symbol at some convex combination of the two, namely at a point tx+ (1− t)y for some fixed
t ∈ (0, 1). This convention leads to a continuous family of quantizations Opt = Opt~, indexed
by some parameter t ∈ [0, 1]:

(2.3) [Opt(a)u] (x)
def
=

∫∫
ei
ξ·(x−y)

~ a (tx+ (1− t)y, ξ)u(y)
dξ dy

(2π~)d
.

In particular we have the identifications OpR~ (a) = Op1(a) and OpL~ (a) = Op0(a).

Remark 2.8. For a ∈ S (R2d), the Schwartz kernel of A = Opt(a) is the function

kA(x, y) =

∫
ei
ξ·(x−y)

~ a (tx+ (1− t)y, ξ) dξ

(2π~)d
,

that is a sort of partial Fourier transform of a. This function is in S (Rd
x × Rd

y).

Lemma 2.4 easily generalizes to the

Lemma 2.9. For any symbol a ∈ S (R2d) and any t ∈ [0, 1], we have the formal adjoint
relation

(2.4) Opt(a)∗ = Op1−t(ā).
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Proof. Same integration by parts for Lemma 2.4. �

The Weyl quantization consists in taking the midpoint t = 1/2, that is OpW~ (a)
def
= Op1/2(a),

so that the same quantization appears in the two sides of (2.4).

Definition 2.10. (Weyl quantization) Take a symbol a(x, ξ) ∈ S (R2d). Then its Weyl
quantization is defined by

(2.5)
[
OpW~ (a)u

]
(x)

def
=

∫∫
ei
ξ·(x−y)

~ a

(
x+ y

2
, ξ

)
u(y)

dξ dy

(2π~)d
.

This expression does not seem very natural at first glance, but it leads to several nice proper-
ties. From Lemma 2.9 we straightforwardly derive the following crucial property of the Weyl
quantization.

Proposition 2.11. For any real-valued symbol a(x, ξ) ∈ S (R2d), the operator OpW~ (a) is
symmetric.

We will see below that for such symbols the operator OpW~ (a) is bounded on L2(Rd), so that
it is actually selfadjoint on L2(Rd).

2.2. An alternative route to the Weyl quantization: using Weyl-Heisenberg oper-
ators. We will recover the Weyl quantization from a different strategy, namely by using the
phase space translation operators, also called Weyl-Heisenberg operators. These operators
form a family of unitary operators on L2(Rd), indexed by phase space translation vectors
V0 = (x0, ξ0) ∈ R2d. They depend on Planck’s parameter ~, but this dependence will be
omitted in the formulas: we will call T(x0,ξ0) = TV0 the operator performing the translation
by the vector V0 = (x0, ξ0).

These operators form a unitary representation of the Heisenberg group. We will not dwell
too much into these algebraic considerations, but have a more pedestrian approach.

2.2.1. The (Weyl-Heisenberg) phase space translation operators. To define these operators,
we start by purely spatial translations, namely the subclass of operators T(x0,0). Translating
a state u ∈ L2 by the space vector x0 is the obvious operation:

(2.6)
[
T(x0,0)u

]
(x)

def
= u(x− x0).

Similarly, since momentum and position are exchanged by F~, we define as follows the pure
momentum translations:

F~
(
T(0,ξ0)u

)
(ξ) = F~u(ξ − ξ0)

=⇒ T(0,ξ0)u(x) = ei
ξ0·x
~ u(x) .(2.7)
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Hence, T(0,ξ0) is simply the multiplication operator by the linear phase function corresponding
to a plane wave of wavevector ξ0/~, or momentum ξ0. Notice that this operator explicitly
depends on ~.

On the phase space Rd×Rd, translating by the phase space vector V0 = (x0, ξ0) is simply the
combination of the translation by x0 and by ξ0, these translations forming the Galilean group.
It thus sounds reasonable to take for T(x0,ξ0) the product of the two preceding operators.
However, the operators T(x0,0) and T(0,ξ0) do not commute, so one should (again) decide of a
“best” ordering to define T(x0,ξ0).

Let us look at the commutation properties:[
T(x0,0)T(0,ξ0)u

]
(x) = ei

ξ0·(x−x0)
~ u(x− x0) , while[

T(0,ξ0)T(x0,0)

]
u(x) = ei

ξ0·x
~ u(x− x0),

hence

(2.8) T(0,ξ0)T(x0,0) = ei
ξ0·x0

~ T(x0,0)T(0,ξ0)

Definition 2.12. We will show below that it is “natural” to define the joint translation
T(x0,ξ0) by selecting the “median point” between the two phases, namely take:

(2.9) T(x0,ξ0)
def
= ei

ξ0·x0
2~ T(x0,0)T(0,ξ0) = e−i

ξ0·x0
2~ T(0,ξ0)T(x0,0).

This definition will be justified by the following expressions of the translation operators.

Lemma 2.13. The multiplication operator T(0,ξ0) can be obtained by solving the Schrödinger
equation with Hamiltonian Op~(−ξ0 · x), at time t = 1. Formally, we may write

T(0,ξ0) = exp

(
i

~
Op~(ξ0 · x)

)
= exp

(
− i
~

Op~(−ξ0 · x)

)
.

Similarly, the space translation operator T(x0,0) can be obtained as the time-1 propagator
generated by the quantum Hamiltonian Op~(x0 · ξ) = x0 · ~D:

T(x0,0) = exp

(
− i
~

Op~(x0 · ξ)
)

= exp (−x0 · ∂x) .

Proof. These facts are easily proved, since we are dealing with multiplication operators in
position or Fourier space. �

Remark 2.14. The classical Hamiltonian p(x, ξ) = −ξ0 · x generates the flow (x(t), ξ(t)) =

(x(0), ξ(0)+ tξ0), which at time 1 realizes a translation by (0, ξ0). In turn, the flow generated
by p(x, ξ) = x0 · ξ gives (x(t), ξ(t)) = (x(0) + tx0, ξ(0)), which at time 1 gives the translation
by (x0, 0).
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Now, since the classical translation (x0, ξ0) is obtained by the time-1 flow generated by the
Hamiltonian p(x, ξ) = x0 · ξ − ξ0 · x, it sounds natural to define the corresponding quantum
translation as the propagator generated by the quantum Hamiltonian P~ = Op~(x0 ·ξ−ξ0 ·x):

T(x0,ξ0)
def
= exp

(
− i
~

Op~(x0 · ξ − ξ0 · x)

)
= exp

(
− i
~

(x0 · hDx − ξ0 · x)

)
.

Lemma 2.15. This definition of T(x0,ξ0) exactly coincides with the “half phase” Ansatz (2.9).

Proof. Check, by an explicit computation, that the Schrödinger equation

i~∂tu(t, x) = (x0 · hDx − ξ0 · x)u(t, x), u(0) = u0,

is solved by u(t, x) = e−it
2 ξ0·x0

2~ eit
ξ0·x
~ u0(x − tx0) = eit

ξ0·(x−tx0/2)
~ u0(x − tx0). In particular, we

see that u(1) = T(x0,ξ0)u0. �

Proposition 2.16. (Algebra relations) The family of Weyl-Heisenberg operators satisfies the
following composition rules:

(2.10) T(x0,ξ0)T(x1,ξ1) = ei
ξ0·x1−x0·ξ1

2~ T(x0+x1,ξ0+ξ1).

It will be useful to express the extra phase in terms of the symplectic form:

ξ0 · x1 − x0 · ξ1 = ω(V0, V1), where Vi = (xi, ξi) is the phase space translation vector.

So the above composition rule reads

(2.11) TV0TV1 = ei
ω(V0,V1)

2~ TV0+V1 .

Proof. A simple computation, using the formulas (2.8). �

Remark 2.17. The commutation rule (2.8) can be viewed as the “exponentiated version” of
the commutation formula

(2.12) [Op(xi),Op~(ξj)] = i~δij.

Both types are called the Heisenberg commutation relations. They show that the operators
T(x0,ξ0) form a unitary projective representation of the Galilean group.

Claim 2.18. The operators
{
eis/~T(x0,ξ0)

}
represent the Heisenberg group, a noncommutative

extension of the Galilean group, which includes an extra dimension to take into account the
phase:

(2.13) (x0, ξ0, s0) · (x1, ξ1, s1) =

(
x0 + x1, ξ0 + ξ1, s0 + s1 +

1

2
(ξ0 · x1 − x0 · ξ1)

)
.
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or in a more compact form:

(V0, s0) · (V1, s1) =

(
V0 + V1, s0 + s1 +

1

2
ω(V0, V1)

)
.

2.2.2. Microscopic translations = quantized “phase space Fourier modes”. If we rescale the
translation vectors V0 by ~, we get the operator

T~V0 = T(~x0,~ξ0) = exp (−iOp~(x0 · ξ − ξ0 · x)) = exp (i(ξ0 · x− x0 · hDx)) .

The right hand side suggests to consider the linear exponential function (phase space Fourier
mode)

(2.14) eV0(x, ξ)
def
= exp (i(ξ0 · x− x0 · ξ)) , V0 = (x0, ξ0) ∈ R2d.

Since this function can be written as the product e(0,ξ0)(x)e(x0,0)(ξ), one easily obtains its
Right (resp. Left) quantizations:

OpR~ (eV0) = T~(0,ξ0)T~(x0,0), resp. OpL~ (eV0) = T~(x0,0)T~(0,ξ0).

Lemma 2.19. The Weyl quantization of eV0(x, ξ) is given by the translation operator T~V0.
More generally, for any t ∈ [0, 1] one has

(2.15) Opt(eV0) = ei~(t−1/2)ξ0·x0 T~V0 .

Proof. We compute the Weyl quantization of eV0 , using the formula (2.3):

Opt(eV0)u(x) =

∫∫
ei
ξ·(x−y)

~ ei(ξ0·(tx+(1−t)y)−x0·ξ) u(y)
dξ dy

(2π~)d

= eitξ0·x
∫∫

ei
ξ·(x−~x0)

~ e−i
y·(ξ−~(1−t)ξ0)

~ u(y)
dξ dy

(2π~)d

= eitξ0·x
∫
ei
ξ·(x−~x0)

~ [F~u] (ξ − ~(1− t)ξ0)
dξ

(2π~)d/2

= eitξ0·x
∫
ei

(ξ′+~(1−t)ξ0)·(x−~x0)
~ [F~u] (ξ′)

dξ′

(2π~)d/2

= e−i~(1−t)ξ0·x0 eiξ0·xu(x− ~x0).

Since the symbol a ∈ S (R2d) can be Fourier decomposed into the (nonsemiclassical) Fourier
modes eV0(x, ξ), we can define its Weyl quantization by linearity in terms of the translation
operators. �

Let us denote as follows the Fourier decomposition of a ∈ S (R2d):
(2.16)

∀ρ = (x, ξ), a(ρ) =

∫
exp (i(ξ0 · x− x0 · ξ)) â(x0, ξ0)

dx0dξ0

(2π)d
=

∫
exp (iω(V0, ρ)) â(V0)

dV0

(2π)d
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Remark 2.20. Compared with the standard definition of the Fourier transform, there is a
sign change: −x0 is the Fourier parameter conjugate to ξ, while ξ0 is the Fourier parameter
conjugate to x.

With this convention, we gather the following property

Proposition 2.21. The Weyl quantization of a ∈ S (R2d) can be expressed in terms of the
(microscopic) translation operators as follows:

(2.17) OpW~ (a) =

∫
T~(x0,ξ0) â(x0, ξ0)

dx0dξ0

(2π)d
=

∫
R2d

T~V0 â(V0)
dV0

(2π)d
.

This formula looks a bit less “arbitrary” than the original formula (2.5), since it originates
from the group of phase space translation operators.

Remark 2.22. This more algebraic definition provides the Weyl quantization specific inter-
twining properties with respect to the Heisenberg group, but also with respect to the meta-
plectic group, obtained by exponentiating the operators of the form in Op~(Q(x, ξ)), with
Q(x, ξ) a real-valued quadratic form.

2.2.3. Relations between various quantizations. Starting from the expression

A
def
= OpW~ (a) =

∫
OpW~ (eV0) â(V0)

dV0

(2π)d
,

and using (2.15), for t ∈ [0, 1] we may compute the symbol at such that the operator A =

Opt(at). Namely, we want the establish the connection between the t-symbol of an operator
A and its Weyl (t = 1/2)-symbol. Take a ∈ S (R2d). Using the expression (2.15) we obtain

(2.18) A = Opt(at) =

∫
OpW~ (eV0)e

−i~(1/2−t)ξ0·x0 ât(V0)
dV0

(2π)d
.

Since the Fourier decomposition is unique, this expression shows that the Fourier transforms
of a and at are related as follows:

â(V0) = ei~(t−1/2)ξ0·x0 ât(V0) .

More generally, the symbols at and as satisfy

(2.19) ât(V0) = ei~(s−t)ξ0·x0 âs(V0) .

This expression shows that if as ∈ S , then so does at. We also notice that, even if a1/2 is
defined independently of ~, the symbols as will explicitly depend on ~. We now express this
relation directly between as and at.
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Proposition 2.23. Assume A = Opt(at) for t ∈ [0, 1], with a1/2 ∈ S(R2d). We get the
following expression between the symbols at and as:

(2.20) at(x, ξ) = ei~(s−t)∂x·∂ξ as(x, ξ) = ei~(t−s)Dx·Dξ as(x, ξ).

Here the operator ei~(t−s)Dx·Dξ are be defined as a Fourier multiplier on R2d.

Proof. In the integral equation (2.16) for at(x, ξ), we express the extra factor ei~(s−t)ξ0·x0

through a derivative of the integrand:

at(x, ξ)
def
=

∫
ei(ξ0·x−x0·ξ)ât(x0, ξ0)

dx0dξ0

(2π)d

=

∫
ei~(s−t)ξ0·x0 ei(ξ0·x−x0·ξ) âs(x0, ξ0)

dx0dξ0

(2π)d
(2.21)

=

∫
ei~(s−t)∂x·∂ξ ei(ξ0·x−x0·ξ) âs(x0, ξ0)

dx0dξ0

(2π)d

= ei~(s−t)∂x·∂ξ as(xξ).

�

These exponentiated quadratic differentials will pop up regularly in the next sections. The
computations below should appear as a preparation for the computations on the composition
of ΨDOs.

2.3. Asymptotic expansions of symbols. In this section we study the behaviour of ex-
pressions like (2.20,2.21) in the semiclassical limit, and obtain asymptotic expansions in
powers of ~.

What meaning should one give to an expression like (2.20), apart from its Fourier transform
version? To avoid too cumbersome notations, we will take t = 1, s = 0. A naive expansion
gives:

(2.22) a1(x, ξ) =
∑
j≥0

(i~Dy ·Dη)
j

j!
a0(y, η)�y=x,η=ξ,

which looks nice in the semiclassical regime, since terms are formally O(~k). The trouble
is that this series is generally divergent for all values of ~, since we have no a priori control
on the growth of higher derivatives. For instance, the higher derivatives could grow much
faster than j!8. Still, this formal series contains nontrivial information, as an asymptotic
expansion.

8To get such a control on high derivatives one needs some analyticity condition on a, or at least Gevrey type
regularity.
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2.3.1. Definition of asymptotic expansions.

Definition 2.24. (Asymptotic expansion) Let (a(~))~∈(0,1] be a family of elements in some
Banach space B, and let (aj)j∈N be elements of the same Banach space. We say that the
family (a(~)) satisfies the asymptotic expansion

(2.23) a(~) ∼
∑
j≥0

~jaj as ~↘ 0,

if for any N ≥ 0, there exists CN > 0 such that we have∥∥∥∥∥a(~)−
N−1∑
j=0

~jaj

∥∥∥∥∥
B

≤ CN~N , ∀~ ∈ (0, 1].

A similar definition holds for a(~), aj elements of a Fréchet space F generated by a countable
family of seminorms (‖•‖α). Then for any N ≥ 0 and for any α, there exists Cα,N > 0 such
that the corresponding inequality holds for the α-seminorm. We will write

a(~) =
N−1∑
j=0

~jaj +O(~N)B, respectively a(~) =
N−1∑
j=0

~jaj +O(~N)F

when we wish to emphasize the topology in which the expansion holds.

The proposition below shows that one can always construct a family a(~)~∈(0,1] from the
knowledge of the elements (aj)j∈N.

Proposition 2.25. (Borel’s summation Lemma) Given any sequence (aj ∈ F)j∈N, there ex-
ists a function a(~) : (0, 1]→ F satisfying the asymptotic expansion (2.23).

The function a(~) is not unique, however two such functions a(~), ã(~) satisfy a(~) = ã(~) +

O(~∞)F .

Proof. Let us first treat the case of a Banach space B, with norm ‖ • ‖. Choose a cutoff
function χ ∈ C∞c [0,∞) with χ(t) = 1 on [0, 1] and χ(t) = 0 for t ≥ 2. We will select below a
sequence λj →∞, and consider the function

a(~)
def
=

∞∑
j=0

~jχ(λj~) aj.

Since λj → ∞, for any ~ ∈ (0, 1] the above series contains finitely many nonzero terms, so
that a(~) is well-defined. We want some control on the decay of the terms. The idea is to
let λj grow sufficiently fast, such that the terms ~jχ(λj~) ‖aj‖ decay uniformly when ~→ 0.
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We just notice that

~jχ(λj~) ‖aj‖ = ~jχ(λj~)
λj~
λj~
‖aj‖

≤ ~j−1 2

λj
‖aj‖ .

If we assume iteratively
λj > max

(
2j+1 ‖aj‖ , λj−1 + 1

)
,

we obtain the uniform bound

~jχ(λj~) ‖aj‖ ≤ ~j−1/2j, ∀j ≥ 0.

For each given n > 0 we want to control

(2.24)

∥∥∥∥∥a(~)−
n∑
j=0

~jaj

∥∥∥∥∥ ≤
∞∑
j=0

~j (χ(λj~)− 1j≤n) ‖aj‖ ,

On the one hand, for ~ > λ−1
n we may always find a constant Cn such that∥∥∥∥∥a(h)−

n∑
j=0

hjaj

∥∥∥∥∥ ≤ Cnh
n+1 h ∈ [λ−1

n , 1].

On the other hand, for ~ < λ−1
n the sequence in the RHS of (2.25) will start at the order

j = n+ 1, and is equal to
∞∑

j=n+1

~jχ(λj~) ‖aj‖ ≤ ~n+1 ‖an+1‖+
∞∑

j=n+2

~j−1/2j ≤ ~n+1 (‖an+1‖+ 1) .

Putting together these two estimate, we find
∥∥∥a(h)−

∑n
j=0 h

jaj

∥∥∥ ≤ C̃nh
n+1 h ∈ (0, 1].

Let us now treat the case of a Fréchet space F , the topology of which is defined by the
countable set of seminorms (‖•‖α)α∈N. To select the λj we proceed by a diagonal argument.
Namely, we choose λj such as to ensure that the property

~jχ(λj~) ‖aj‖α ≤ ~j−1/2j holds for all seminorms with α ≤ j.

This can be achieved by taking

λj > max

(
2j+1 max

α≤j
‖aj‖α , λj−1 + 1

)
.
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Now, given a seminorm α and an index n, let us first assume that the order n ≥ α. Then, in
the case ~ < λ−1

n we have∥∥∥∥∥a(~)−
n∑
j=0

~jaj

∥∥∥∥∥
α

≤
∞∑
j=0

~j (χ(λj~)− 1j≤n) ‖aj‖α(2.25)

≤
∞∑

j=n+1

~jχ(λj~) ‖aj‖α(2.26)

≤ ~n+1 (‖an+1‖α + 1) .(2.27)

As before, the case of ~ > λ−1
n is easy, one just needs to take a large enough constant

Cα,n ≥ (‖an+1‖α + 1).

Let us finally treat the orders n < α. For this we decompose

a(~)−
n∑
j=0

~jaj = a(~)−
α∑
j=0

~jaj +
α∑

j=n+1

~jaj.

Using the bound for the case n = α, this leads to∥∥∥∥∥a(~)−
n∑
j=0

~jaj

∥∥∥∥∥
s

≤ Cα,α~s+1 +
α∑

j=n+1

~j ‖aj‖s ≤ max

(
Cα,α,

α∑
j=n+1

‖aj‖α

)
~n+1 def

= Cα,n~n+1.

Attention �

2.3.2. A first example of asymptotic expansion for a symbol. Let us now come back to the
expression (2.20) giving the t-symbol of an operator, in terms of its s-symbol, and let us
focus on the case s = 0, t = 1. We want to show that this expression satisfies an asymptotic
expansion similar to (2.22) in the topology of the Fréchet space S (R2d), in the limit h↘ 0.

For this aim, we use a Taylor expansion with integral remainder valid for any smooth
function f ∈ C∞((−1, 1)):

(2.28) ∀h ∈ (−1, 1), f(h) =
N−1∑
j=0

hj
f (j)(0)

j!
+

hN

(N − 1)!

∫ 1

0

(1− u)N−1f (N)(uh) du.

The Fourier transform of the function a1 = ei~Dy ·Dηa0 is given by

â1(x0, ξ0) = e−i~ξ0·x0 â0(x0, ξ0), (x0, ξ0) ∈ R2d.
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If we apply the above Taylor expansion to the exponential ~ 7→ e−i~ξ0·x0 â0(x0, ξ0), viewing
(x0, ξ0) as parameters, we obtain
(2.29)

e−i~ξ0·x0 â0(x0, ξ0) =
N−1∑
j=0

1

j!
(−i~ξ0 · x0)j â0(x0, ξ0)+

(i~)N

(N − 1)!

∫ 1

0

(1−u)N−1 (−ξ0 · x0)N e−iu~ξ0·x0 â0(x0, ξ0) du

Since â0 ∈ S (R2d), the integrand on the RHS,

I(x0, ξ0;u, ~)
def
= (1− u)N−1 (−ξ0 · x0)N e−iu~ξ0·x0 â0(x0, ξ0).

remains in a bounded set of S (R2d), uniformly in ~ ∈ (0, 1] and u ∈ [0, 1] (this means that
any seminorm ‖I(u, ~)‖α is bounded uniformly in u, ~). Taking the inverse FT of (2.29), we
get the expression

ei~Dy ·Dηa0 =
N−1∑
j=0

1

j!
(i~Dy ·Dη)

j a0 +
(i~)N

(N − 1)!

∫ 1

0

(1− u)N−1 (Dy ·Dη)
N eiu~Dy ·Dηa0 du

(2.30)

=
N−1∑
j=0

1

j!
(i~Dy ·Dη)

j a0 +
(i~)N

(N − 1)!

∫ 1

0

F−1I(u, ~) du(2.31)

Since the Fourier transform is continuous S → S , the function F−1I(u, ~) is also bounded in
S (R2d), uniformly in ~, u. So, when integrating over u ∈ [0, 1] we obtain a function bounded
in S (R2d), uniformly in ~: this shows that the last term in (2.30) is of order O(~N)S .

We have therefore proved that for any N ≥ 1,

a1(~) = ei~Dy ·Dηa0 =
N−1∑
j=0

~j
1

j!
(iDy ·Dη)

j a0 +O(~N)S ,

showing that once we have fixed the symbol a0 ∈ S , the corresponding symbol a1 satisfies
the asymptotic expansion

a1(~) ∼
N−1∑
j=0

~j
1

j!
(iDy ·Dη)

j a0 in S (R2d).

The proof works exactly the same for an arbitrary pair (t, s), and leads to the following
rigorous version of the formal series (2.22):

Proposition 2.26. Consider any pair of indices (t, s) ∈ [0, 1]2. Choose a function as ∈
S (R2d). Then the corresponding symbol at(~) such that Opt~(at) = Ops~(as) depends explicitly
on ~, and satisfies the asymptotic expansion:
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(2.32)

at(~) = ei~(t−s)Dx·Dξ as ∼
∑
j≥0

~j
(i(t− s))j

j!
(Dy ·Dη)

j as in S (R2d), when ~↘ 0.

Remark 2.27. The above proof of the asymptotic expansion combines several ingredients: an
exponentiated differential operator, the Fourier transform, and the Taylor expansion with
integral remainder.

2.3.3. Another route towards asymptotic expansions: (quadratic) stationary phase expan-
sions. We now give an alternative representation of at as a function of as, which will provide
an example of stationary phase expansion. Starting from (2.21), by expressing âs(V0) in
terms of as(y, η), we get the following integral over R4d:

(2.33) at(x, ξ; ~) =

∫∫
ei~(s−t)ξ0·x0 ei(ξ0·(x−y)−x0·(ξ−η)) as(y, η)

dx0 dξ0 dy dη

(2π)2d
.

The vector V0 = (x0, ξ0) appears in a quadratic expression in the phase. We may integrate
this phase over V0, using the following

Lemma 2.28. Let Q be a nonsingular, symmetric n × n real valued matrix. Then, the
function x 7→ e

i
2
〈x,Qx〉, which can be viewed as a distribution in S ′(Rn) admits the following

Fourier transform:

(2.34) F1

(
e
i
2
〈x,Qx〉

)
(ξ) =

eiπ sgn(Q)/4

| detQ|1/2
e−

i
2
〈ξ,Q−1ξ〉 .

Here sgn(Q) denotes the signature of Q, that is the difference between the numbers of positive
and negative eigenvalues of this matrix.

Proof. We first recall the case of the Fourier transform of a real Gaussian: for G a definite
positive n× n matrix, we have∫

e−
1
2
〈x,Gx〉 e−ix·ξ

dx

(2π)n/2
=
e−

1
2
〈ξ,G−1ξ〉

(detG)1/2
.

If we deform G so that it acquires an imaginary part, still keeping a positive definite real
part, we get the same expression, where the square root of detG is obtained by analytic
continuation from its original positive value. When G = −iQ+ εI and ε↘ 0, the expansion
of this determinant over the eigenvalues of Q gives (det(ε− iQ))1/2 =

∏
j (ε− iλj)1/2. If

λj > 0 this converges to e−iπ/4|λj|1/2, while for λj < 0 this goes to e+iπ/4|λj|1/2. Putting back
the phases in the numerator, we get (2.34). �
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Let us now apply this Lemma to compute the integral in (2.33). The quadratic form in

(x0, ξ0) is given by the matrix Q = ~(s − t)

(
0 I

I 0

)
, which has signature 0, determinant

| detQ| = |~(s− t)|2d, and inverse Q−1 = (~(s− t))−1

(
0 I

I 0

)
. The integral over dV0/(2π)d

thus produces the integral
(2.35)

at(x, ξ; ~) =
1

|s− t|d

∫
dydη

(2π~)d
ei

(η−ξ)·(y−x)
2~(s−t) as(y, η) =

1

|s− t|d

∫
dydη

(2π~)d
ei

η·y
2~(s−t) as(x+y, ξ+η),

where in the last equality we just shifted the integration variables. Since a0 ∈ S , this integral
converges absolutely. In the particular case t = 1, s = 0, this gives

(2.36) a1(x, ξ; ~) =

∫
dydη

(2π~)d
e−i

η·y
2~ a0(x+ y, ξ + η).

When ~↘ 0, the phase in the integral oscillates faster and faster. To estimate the integral,
one should identify the stationary points of the oscillatory phase, and expand the integral
around these points. Indeed, in the limit ~↘ 0, the integral is dominated by the contributions
of these stationary points. We thus obtain the stationary phase expansion of this integral.
In the present case the phase is quadratic in its variables (y, η), and the unique stationary
point is the origin (0, 0).

Of course, the expansion we obtain by this method coincides with the asymptotic expansion
shown in the previous subsection. Actually, the proof of the quadratic stationary phase
expansion we give below exactly parallels the proof of the last subsection.

2.4. Stationary and nonstationary phase expansions. This gives us the opportunity
to introduce a crucial analytical tool of semiclassical analysis, namely nonstationary and
stationary phase estimates.

Generally speaking, the goal is to estimate integrals of the type

(2.37) I(~) =

∫
Rn
a(x) ei

ϕ(x)
~ dx in the limit ~↘ 0,

where a ∈ C∞c (Ω) for some bounded domain Ω ⊂ Rn, and the phase function ϕ ∈ C∞(Rn,R)

(or C∞(Ω,R), since the values of ϕ outside Ω are irrelevant). This integral is strongly
oscillatory when ~→ 0, so we expect it to be small in this limit. The question is:

What is the asymptotic behaviour of I(~) when ~↘ 0?
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The answer to this question will depend on the critical (or stationary) points of ϕ, that is
the points xc ∈ Ω such that ∇ϕ(xc) = 0. We will not give the most general result, but focus
on situations where the stationary points of ϕ are isolated and nondegenerate.

We will start from a situation directly generalizing integrals of the type (2.35), namely when
the phase function is a nondegenerate quadratic form.

2.4.1. Quadratic stationary phase expansion. We consider the case where the phase function
ϕ(x) is a nondegenerate quadratic form ϕ(x) = 〈x,Qx〉, so it has a single stationary point at
the origin.

Theorem 2.29. (Quadratic stationary phase) Take Q a real symmetric nondegenerate n×n
matrix on Rn, and a ∈ C∞c (Ω,C), for Ω b Rn a bounded domain. Then the integral

(2.38) I(~) =

∫
a(x) e

i〈x,Qx〉
2~ dx

admits the following asymptotic expansion.

For any N ≥ 0, there exists CN (depending on the dimension n and on the form Q), such
that
(2.39)∣∣∣∣∣I(~)− (2π~)n/2 eiπ sgnQ/4

|detQ|1/2
N−1∑
j=0

~j

j!

(
〈D,Q−1D〉

2i

)j
a�x=0

∣∣∣∣∣ ≤ CN ~N+n/2
∑

|α|≤2N+n+1

||∂αa‖L1 .

Remark 2.30. The L1 norm on Rn can be controlled by a certain seminorm in S :

(2.40) ‖a‖L1(Rn) ≤ Cn sup
x

∣∣〈x〉n+1a(x)
∣∣ = Cn‖〈x〉n+1a‖L∞

Proof. Again, we will make a little detour through the Fourier side. The integral I(~) can be
seen as the bracket between the distribution e

i〈x,Qx〉
2~ ∈ S ′ and the function a ∈ S . Through

Parseval’s formula, this bracket is equal to the bracket between their Fourier transforms.
Using Lemma 2.28, this leads to

I(~) = ~n/2
eiπ sgn(Q)/4

| detQ|1/2

∫
e−

i~
2
〈ξ,Q−1ξ〉F1 (a) (ξ) dξ.

Now that ~ is in the numerator of the exponential, it makes sense to expand the latter in
powers of ~. Instead of the exact Taylor formula like (2.29), it will be sufficient for us to
bound the remainder in the Taylor formula as:∣∣∣∣∣eit −

N−1∑
j=0

(it)j

j!

∣∣∣∣∣ ≤ |t|NN !
,



36 STÉPHANE NONNENMACHER

so as to get∣∣∣∣∣e−iπ sgn(Q)/4 | detQ|1/2

~n/2
I(~)−

N−1∑
j=0

(~/2i)j

j!

∫ (
〈ξ,Q−1ξ〉

)j F1 (a) (ξ) dξ

∣∣∣∣∣ ≤
≤ (~/2)N

N !

∫ ∣∣∣(〈ξ,Q−1ξ〉
)N ∣∣∣ |F1 (a) (ξ)| dξ.

The right hand side can be estimated from above by

CN~N
∑
|α|=2N

∫
|ξαF1a(ξ)| dξ ≤ C ′N~N

∑
|α|≤2N+n+1

||∂αa‖L1 ,

where we used the standard estimate

(2.41) ‖F1a‖L1 ≤ Cn
∑
|α|≤n+1

||∂αa‖L1 .

Each term of order ~j reads:∫ (
〈ξ,Q−1ξ〉

)j F1 (a) (ξ) dξ =

∫
F1

((
〈D,Q−1D〉

)j
a
)

(ξ) dξ

= (2π)n/2
(
〈D,Q−1D〉

)j
a(0).

�

Remark 2.31. The terms of the expansion can be computed in a “direct” manner. We Taylor
expand a(x) around x = 0, to get the formal sum

a(x) ∼
∑
α∈Nn

〈xα, ∂αa(0)〉
α!

,

which is an asymptotic expansion in the limit |x| → 0. One then explicitly computes each
integral of the form

∫
xα e

i〈x,Qx〉
2~ dx. Odd monomials (|α| odd) lead to zero due to the parity of

the quadratic form, while even monomials lead to the appearance of the matrix Q−1, through
a change of variables. The explicit result for the derivatives of order k = 2j is the j-term in
(2.39).

In subsection 2.4.3 we will generalize this stationary phase expansion to the case of more
general phase functions ϕ.

Before doing that, we may apply Thm 2.29 to the integral (2.36) expressing a1(x, ξ; ~) in
terms of a0. This integral is indeed an oscillatory phase integral of the form (2.38) on

Rn := R2d
y,η, with symmetric matrix Q(y, η) = 1

2|s−t|

(
0 I

I 0

)
and symbol ã(y, ξ) = a0(x +

y, ξ + η). The theorem provides a pointwise asymptotic expansion for a1(x, ξ; ~), that is,
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with no informations on the behaviour when changing (x, ξ). The derivatives of ã(y, ξ) at
the origin are indeed equal to derivatives of a0 at the point (x, ξ), so we indeed recover the
terms of the expansion (2.32).

Remark 2.32. The expansion of Thm 2.29 indicates that the integral I(~) is dominated by
the germ of a at the stationary point x0 = 0: the behaviour of the function a away from this
point is, in some sense, negligible. As we will see in the next subsection, this is a general
feature: the nonstationary points of the phase lead to negligible contributions of oscillatory
integrals.

2.4.2. Nonstationary phase estimates. Let us now switch to a general phase function ϕ(x) in
the definition (2.37) of I(~), and first consider the situation where this phase function admits
no stationary point on Ω (which contains the support of the symbol a). By the compactness
of Ω, this means that |∇ϕ| is bounded below by a positive number on Ω.

Theorem 2.33. (Nonstationary phase) Assume that the phase function ϕ has no stationary
point on Ω. Then, for any N ≥ 0, there exists CN,ϕ,a > 0 such that

|I(~)| ≤ CN,ϕ,a~N , ∀~ ∈ (0, 1], or equivalently I(~) = O(~∞).

A more precise estimate is the following: for any N ≥ 0,

(2.42) |I(~)| ≤ CN~N
N∑
j=0

∥∥∥∥ |∂ja|
|∇ϕ|2N−j

∥∥∥∥
L1

,

where the prefactor CN depends on the dimension n, the volume |Ω| and on upper bounds on
the derivatives9 ϕ′′, ϕ(3), . . . ϕ(N+1).

Proof. We apply integration by parts using the differential operator

L =
~
i

ϕ′(x) · ∇
|ϕ′(x)|2

, which satisfies Lei
ϕ(x)
~ = ei

ϕ(x)
~ .

We can then write
I(~) =

∫
a
[
Lkei

ϕ
~

]
dx =

∫ [
tLka

]
ei
ϕ
~ dx.

by integrating by parts k times. The transposed operator reads

tL = −~
i
∇ · ϕ′(x)

|ϕ′(x)|2
= −~

i

[
∇, ϕ′(x)

|ϕ′(x)|2

]
− ~
i

ϕ′(x)

|ϕ′(x)|2
· ∇,

where the commutator is a function[
∇, ϕ′(x)

|ϕ′(x)|2

]
=

n∑
j=1

∂j

(
∂jϕ(x)

|ϕ′(x)|2

)
.

9To alleviate notations we write ϕ′ = ∂xϕ, ϕ′′ = ∂2xϕ etc.
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Since ϕ′ = ∇ϕ never vanishes, we get the pointwise estimate∣∣[tLa] (x)
∣∣ ≤ C~

(
|ϕ′′(x)|
|ϕ′(x)|2

|a(x)|+ 1

|ϕ′(x)|
|∂a(x)|

)
Applying this transposed operator again, we find∣∣[tL2a

]
(x)
∣∣ ≤ C~2

((
|ϕ′′(x)|2

|ϕ′(x)|4
+
|ϕ(3)(x)|
|ϕ′(x)|3

)
|a(x)|+ |ϕ

′′(x)|
|ϕ′(x)|3

|∂a(x)|+ 1

|ϕ′(x)|2
∣∣∂2a(x)

∣∣) .
The higher derivatives ϕ′′(x), ϕ(3)(x) are uniformly bounded on Ω, we may absorb them in
the constant prefactor, keeping only the dependence in ϕ′ explicit. We thus get the pointwise
estimate ∣∣[tL2a

]
(x)
∣∣ ≤ Cn,2,ϕ′′~2

2∑
j=0

|∂ja(x)|
|ϕ′(x)|4−j

.

An straightforward induction argument shows that for any N ≥ 0,

(2.43)
∣∣[tLN] a(x)

∣∣ ≤ Cn,N,ϕ′′~N
N∑
j=0

|∂ja(x)|
|ϕ′(x)|2N−j

.

As a result, integrating over x ∈ Ω we get the result (2.42). �

This estimate will be very helpful in the following. For instance, when deriving stationary
phase estimates, it allows to take advantage of situations when ϕ′(x) vanishes at some critical
point, but a(x) also vanishes up to some order at the same point. It will also allow to get
fast decay for states of the form Op~(a)u, away from the support of u.

This nonstationary phase estimate confirms our previous Remark 2.32. When considering
a general phase function ϕ, it will be convenient to (smoothly) truncate the integral I(~)

in small neighbourhoods of stationary points, the remaining parts lying in nonstationary
regions, and therefore being of order O(~∞).

2.4.3. Nonquadratic stationary phase estimates. We now go back the computation of I(~) in
(2.37) with a nonquadratic phase function ϕ.

Definition 2.34. We assume that all the stationary points of ϕ are nondegenerate: at each
stationary point xc, that is such that ϕ′(xc) = 0, the Hessian matrix ϕ′′(xc) = (∂i∂jϕ(xc)) is
nonsigular. This implies that xc is isolated from other stationary points, hence that stationary
points form a discrete set. On each precompact set Ω there are at most finitely many
stationary points.

Using a smooth finite partition and the nonstationary estimates of the previous section, we
may treat separately the neighbourhoods of each stationary point separately.
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Theorem 2.35. (Nonquadratic stationary phase) We want to estimate the integral (2.37).
We assume ϕ admits a single stationary point x0 ∈ supp a, and that this stationary point is
nondegenerate (ϕ′′(x0) is nonsingular).

Then there exists a sequence of differential operators (A2k(x,D))k∈N of orders ≤ 2k, such
that for any N ≥ 0,

(2.44)

∣∣∣∣∣I(~)− eiϕ(x0)/~
N−1∑
k=0

~n/2+k [A2k(x,D)a(x)]�x=x0

∣∣∣∣∣ ≤ CN~N+n/2
∑

|α|≤2N+n+1

||∂αa‖L1 .

The constant CN depends on supp a and ϕ, but not on ~ nor the seminorms of a.

The most straightforward way to prove this Theorem is through the Morse Lemma, which
allows to transform the phase function ϕ into a quadratic phase through a well-chosen change
of coordinates. This transformation will then allow us to use Thm 2.29.

Proposition 2.36. (Morse Lemma) Assume ϕ(x) has a nondegenerate critical point at x0 ∈
Rn. Then there exists a change of coordinates κ : neigh(0) → neigh(x0) defined in some
neighbourhood of 0, with κ(0) = x0, ∂κ(0) = Id, such that

ϕ(x) = ϕ2 ◦ κ−1(x) , x ∈ neigh(0),

where ϕ2(y) = ϕ(x0) + 1
2
〈y, ϕ′′(x0)y〉 in the corresponding neighbourhood of y = 0.

In other words, the diffeomorphism κ “straightens out” the coordinates, such as to absorb
the nonquadratic part of ϕ at x = x0.

Proof. Let us assume that the stationary point x0 = 0, so that the diffeomorphism κ fixes
the origin. The Taylor expansion of ϕ at x = 0 can be written locally as

ϕ(x) = ϕ(0) +
1

2
〈x, ϕ′′(0)x〉+O(x3).

Due to the nondegeneracy of ϕ′′(0), we may write the RHS as

ϕ(x) = ϕ(0) +
1

2
〈x,Q(x)x〉,

whereQ(x) is a symmetric nondegenerate matrix, smoothly dependent on x, such thatQ(0) =

ϕ′′(0). The trick now is to construct a diffeomorphism κ with the announced properties, such
that

〈x,Q(x)x〉 = 〈κ−1(x), Q(0)κ−1(x)〉.

We try to solve this equation by the Ansatz κ−1(x) = A(x)x, with A(x) an invertible matrix,
smoothly dependent on x, with A(0) = Id. Hence, we need to solve (in A(x)) the problem

(2.45) tA(x)Q(0)A(x) = Q(x).
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This problem is solved by inverting the function F : A 7→ tAQ(0)A defined on the space of
n × n matrices, with images in the space of n × n symmetric matrices. To find a (right)
inverse to this function near A = Id, we linearize the equation at A = Id. Namely, we notice
that for an infinitesimal perturbation δA,

F (I + δA) = Q(0) + δQ+O(δA2), δQ = tδAQ(0) +Q(0)δA.

The differential map DF : δA 7→ δQ is surjective, and admits as inverse δA = 1
2
Q(0)−1δQ.

The implicit function theorem implies the existence of a map G : Q 7→ A with G(Q(0) +

δQ) = I + 1
2
Q(0)−1δQ+O(δQ2), such that F ◦G = Id. As a result, the problem (2.45) can

be solved by a matrix A(x) = G(Q(x)) depending smoothly on x. �

Let us now come back to the proof of the Thm 2.35. We may choose a cutoff χ ∈ C∞c (Rd, [0, 1])

supported inside the neighbourhood neigh(x0), image of the coordinate change κ in the Morse
Lemma 2.36, while χ(x) = 1 in a smaller neighbourhood of x0. This way, we may decompose
I(~) into

I(~) = I0(~) + I1(~), I0(~) =

∫
χ(x)a(x) ei

ϕ(x)
~ dx, I1(~) =

∫
(1− χ(x))a(x) ei

ϕ(x)
~ dx.

The integral I1(~) is easy to treat: the phase ϕ is nonstationary on the support of (1− χ)a,
so from Thm (2.33) we find I1(~) = O(~∞).

Applying the Morse Lemma allows, we may write I0(~) as an integral with a quadratic
stationary phase:

I0(~) =

∫
χa(x) ei

ϕ(x)
~ dx =

∫
ei
ϕ2(y)

~ (χa) ◦ κ(y) |det dκ(y)| dy.

We may then apply the quadratic stationary phase expansion of Theorem 2.29, with the
variables Q := ϕ′′(x0) and a := χa ◦ κ(y) |det dκ(y)|. This proves the expansion of Theorem
2.35, using the fact that all derivatives of χa(x) at the point x0 are equal to the same
derivatives of a(x). �

Remark 2.37. Our proof of the stationary phase estimate (2.44) does not explicitly compute
the differential operators A2k(x,D). One can actually compute these operators by a more
“formal” approach, bypassing the use of the Morse Lemma. The idea is to Taylor expand the
phase function around x0:

ϕ(x) = ϕ2(x) + g(x), g(x) = O
(
(x− x0)3

)
,

then naively expand the exponential

eig(x)/~a(x) =
∑
k≥0

(ig(x)/~)k

k!
a(x),
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and finally, for each k ≥ 0, Taylor expand the product (g(x))k a(x) at x = x0. One thereby
obtains a sum of polynomials in (x − x0), which can be explicitly integrated over the qua-
dratic phase eiϕ2/~. Some power counting shows that the “dangerous” factor ~−k do not ruin
the asymptotic expansion. Indeed, the k-term polynomial behaves like ~−kO

(
(x− x0)3k

)
when x → x0. If k is even, integrating over the quadratic phase yields a result of order
~−k~n/2~3k/2 = ~n/2+k/2. If k is odd, the lowest order term will come from integrating
~−kO

(
(x− x0)3k+1

)
, and is therefore of order ~−k~n/2~(3k+1)/2 = ~n/2+(k+1)/2. The polyno-

mials A2j(x,D) will hence depend on the germs at x0 of the functions (ig(x)/~)k

k!
a(x) with the

condition k ≤ j (k even), respectively k + 1 ≤ j (k odd).
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3. Composing ~-pseudodifferential operators

Once we have decided how to quantize classical observables, we want to understand how these
operators are composed with each other. Namely, for a given choice of parameter t ∈ [0, 1]

and any two symbols a, b on R2d, what can we say about the operator Opt~(a) ◦Opt~(b)? Can
we bring it into the form Opt~(c) for some symbol c(x, ξ)?

3.0.1. Composing semiclassical differential operators. We have already come across this ques-
tion, when composing operators Op~(f(x)) and Op~(g(ξ)): depending on the choice of or-
dering, we obtained either OpR~ (f(x)g(ξ)), or OpL~ (f(x)g(ξ)).

In the case of differential operators

A~ =
∑
|α|≤m

aα(x)(hD)α = OpR~ (a), a(x, ξ) =
∑
|α|≤m

aα(x)ξα,

say with coefficients aα ∈ S (Rd), the composition of the two operators still gives a differential
operator:

Ah ◦Bh =
∑
|α|≤m

∑
|β|≤n

aα(x)(hD)αbβ(x)(hD)β

=
∑
α,β

aα(x)bβ(x)(hD)α+β +
∑
α,β

aα(x) [(hD)α, bβ(x)] (hD)β.

The first sum on the RHS is exactly OpR~ (ab). In the second sum, each commutator can be
written as:

[(hD)α, bβ(x)]u =
∑

α(1)+α(2)=α
|α(1)|>0

cα(1),α(2)h|α
(1)|
[
Dα(1)

bβ

]
(hD)α

(2)

u

=
∑

α(1)+α(2)=α
|α(1)|>0

cα(1),α(2)h|α
(1)|OpR~

((
Dα(1)

bβ

)
(x) ξα

(2)
)
u,

where the cα(1),α(2) are combinatorial coefficients. The above sum is therefore a differential
operator, quantization of a polynomial symbol of order O(h).

Summing over all the terms α, β, we find that Ah ◦Bh is a differential operator of degree m.
Its symbol depends explicitly on h, and is composed of

(1) the function a(x, ξ)b(x, ξ), independent of h, called the principal symbol of A~ ◦Bh,
(2) a remainder, which is a differential operator of degree ≤ m − 1, whose coefficients

depend explicitly on h, and are of order O(h).
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3.1. Computating the symbol of A ◦B for Schwartz symbols. In the case of symbols
a, b ∈ S (R2d), the Remark 2.8 showed that the Schwartz kernels of the operators A = Opt~(a),
B = Opt~(b) both belong to S (Rd × Rd); as a result, the kernel k(x, y; ~) = kA◦B(x, y; ~)

of the composed operator A ◦ B belongs to S (Rd × Rd) as well, as the convolution of two
Schwartz kernels.

Using the partial inverse Fourier transform y → ξ we may write this kernel as

k(x, y; ~) =

∫
e−iξ·y/~

(
F−1
h;y→ξk

)
(x, ξ)

dξ

(2π~)d/2
def
=

∫
eiξ·(x−y)/~c1(x, ξ; ~)

dξ

(2π~)d
,

where we introduced the function

c1(x, ξ; ~)
def
= (2π~)d/2e−iξ·x/~

(
F−1
h;y→ξk

)
(x, ξ) ∈ S (R2d).

In other words, A ◦ B = OpR~ (c1(~)). From Proposition 2.23, we may as well express A ◦ B
as the t-quantization of a Schwartz symbol c = ct(x, ξ; ~).

Definition 3.1. For any choice of t ∈ [0, 1], to any linear operator C with Schwartz kernel
kC ∈ S (Rd × Rd) corresponds a unique function ct ∈ S (R2d) such that C = Opt~(ct). The
function ct is called the (full) t-symbol of the operator C, and we note c = σt~(C). The map
C 7→ ct = σt~(C) depends on both ~ and the choice of quantization (t). In the case of the
Weyl quantization (t = 1/2), we write c1/2 = σW~ (C).

Our main questions in this section is:

For C = Opt~(a) ◦ Opt~(b), how does the symbol ct(~) depend on ~? Can we
compute it more easily from a, b?

To answer these questions, we will first give an exact expression for c, using the expression of
Opt~(a) and Opt~(b) in terms of translation operators. In a second step, we will show that the
expression for ct(x, ξ; ~) admits an asymptotic series in powers of ~. Our main asymptotic
tool will be the stationary phase expansions of the previous section.

3.1.1. Exact expression of the composed symbols. Let us take a, b ∈ S (R2d). For the moment
we will treat an arbitrary t-quantization. Using the expression

A = Opt~(a) =

∫
Opt~(eV0) â(V0)

dV0

(2π)d
,

we get

A ◦B = Opt~(a) Opt~(b) =

∫
Opt~(eV0) â(V0)

dV0

(2π)d

∫
Opt~(eV1) b̂(V1)

dV1

(2π)d
.



44 STÉPHANE NONNENMACHER

A direct computation, using (2.15), generalizes the composition rule for translation operators
(2.10):

Opt~(eV0) Opt~(eV1) = ei~((1−t)ξ0·x1−tξ1·x0) Opt~(eV0+V1).

From there we get

A ◦B =

∫∫
dV0dV1

(2π)2d
ei~((1−t)ξ0·x1−tξ1·x0) â(V0)b̂(V1) Opt~(eV0+V1)

=

∫∫
dV+dV−
(2π)2d

ei~((1−t)ξ0·x1−tξ1·x0)â(V+/2 + V−)b̂(V+/2− V−) Opt~(eV+),

where we used the change of variables

(V0, V1) 7→ (V+ = V0 + V1, V− =
1

2
(V0 − V1)).

In these coordinates the phase reads

ϕt = (1− t) (ξ+/2 + ξ−) · (x+/2− x−)− t (ξ+/2− ξ−) · (x+/2 + x−)

= (1− t) (ξ+ · x+/4− ξ+ · x−/2 + ξ− · x+/2− ξ− · x−)− t (ξ+ · x+/4 + ξ+ · x−/2− ξ− · x+/2− ξ− · x−)

= (1− 2t) (ξ+ · x+/2− 2ξ− · x−) + (−ξ+ · x− + ξ− · x+) /2.

We can hence identity the Fourier transform of the t-symbol of C = A ◦B:

(3.1) ĉt(V+; ~) =

∫
dV−

(2π)d
ei~ϕt(V+,V−)â(V+/2 + V−)b̂(V+/2− V−).

Let us distinguish two cases:

(1) in the case of the Weyl quantization (t = 1/2), the phase reads 1
2

(ξ− · x+ − ξ+ · x−) =
1
2
ω(V−, V+) = 1

2
ω(V0, V1).

(2) in the case of the right quantization (t = 1), the phase reads− (ξ+/2− ξ−)·(x+/2 + x−) =

−x0 · ξ1.

3.1.2. Computing the composed symbol in the case of the Weyl quantization. We will restrict
ourselves to the Weyl quantization, and omit to indicate the subscripts •1/2. The expression
(3.1) simplifies to
(3.2)

ĉ(V+; ~) =

∫
dV−

(2π)d
e
i~
2
ω(V−,V+)â(V+/2 + V−)b̂(V+/2− V−) =

∫
dV−

(2π)d
e
i~
2
ω(V0,V1)â(V0)b̂(V1).

Can we get a decent expression of c as a function of a, b? As we had already done in
Proposition 2.23, the phase e

i~
2
ω(V0,V1) is a Fourier multiplier on the space R4d

ρ0,ρ1
: the prod-

uct â(V0)b̂(V1) is the Fourier transform of a(ρ0)b(ρ1), so e
i~
2
ω(V0,V1)â(V0)b̂(V1) is the Fourier

transform of
c̃(ρ0, ρ1)

def
= e

i~
2
ω(Dρ0 ,Dρ1 )a(ρ0)b(ρ1).



AN INTRODUCTION TO SEMICLASSICAL ANALYSIS 45

The inverse symbol c(ρ; ~) hence reads

c(ρ; ~) =

∫
eiω(V+,ρ)ĉ(V+)

dV+

(2π)d

=

∫∫
eiω(V+,ρ)e

i~
2
ω(V−,V+)â(V+/2 + V−)b̂(V+/2− V−)

dV+dV−
(2π)2d

(3.3)

=

∫∫
eiω(V0+V1,ρ) e

i~
2
ω(V0,V1)â(V0)b̂(V1)

dV0dV1

(2π)2d
(3.4)

= c̃(ρ0, ρ1) �ρ0=ρ1=ρ

= e
i~
2
ω(Dρ0 ,Dρ1 )a(ρ0)b(ρ1) �ρ0=ρ1=ρ .(3.5)

This last line directly connects the symbol c(~) with a, b.

Theorem 3.2. (composition of ΨDOs). Assume a, b ∈ S (R2d). Then the operator OpW~ (a)◦
OpW~ (b) = OpW~ (c(~)), where for any ~ ∈ (0, 1] the symbol c(~) ∈ S (R2d) is given by the
expression

c(ρ; ~) = ei
~
2
ω(Dρ0 ,Dρ1 )a(ρ0)b(ρ1) �ρ0=ρ1=ρ(3.6)

= ei
~
2

(Dξ0 ·Dx1−Dξ1 ·Dx0 )a(ρ0)b(ρ1) �ρ0=ρ1=ρ(3.7)

= a(ρ) ei
~
2
ω(
←−
D,
−→
D) b(ρ).(3.8)

We write c = a#~b, where the #~ is called the Moyal product of the symbols a and b. This
product can be defined on the Fourier side, namely by (3.2).

The arrows in the last line indicates that the derivative operator
←−
D acts on a(ρ) situated on

its left, while the operator
−→
D acts on b(ρ) on its right. One has to be a bit careful with these

notations, and come back to the more precise (3.6) in case of doubt.

Exercise 3.3. Show that in the case of the right quantization, the composition formula for
OpR~ (a) ◦OpR~ (b) reads

c1(ρ; ~) = ei~Dξ0 ·Dx1a1(ρ0)b1(ρ1)�ρ0=ρ1=ρ

= a(ρ) ei~
←−
Dξ·
−→
Dx b(ρ).

3.1.3. The composed Weyl symbol as an “oscillatory convolution integral”. Like in §2.3.3, the
formal expression (3.6) can be expressed as an oscillatory convolution integral, and leads to
an asymptotic expansion in powers of ~.

By expanding in (3.4) the Fourier transforms â, b̂, we obtain the oscillatory integral:

c(ρ; ~) =

∫∫∫∫
dV0dV1dρ0dρ1

(2π)4d
eiω(V0+V1,ρ) e

i~
2
ω(V0,V1)eiω(ρ0,V0)+iω(ρ1,V1)a(ρ0)b(ρ1).



46 STÉPHANE NONNENMACHER

Notice that the Fourier variables V =
(
V0
V1

)
∈ R4d only appear in the phase, hence the integral

over V does not converge absolutely. The phase is of the form

ϕ =
~
2
〈JV0, V1〉 − 〈V0, J(ρ− ρ0)〉 − 〈V1, J(ρ− ρ1)〉

=
1

2
〈V ,QV〉 − 〈V , Z〉,

with the 4d× 4d symmetric matrix and 4d-vector

Q =
~
2

(
0 −J
J 0

)
, Z =

(
J(ρ− ρ0)

J(ρ− ρ1)

)
.

The integral over V thus gives the Fourier transform of this quadratic phase, which was
computed in Lemma 2.28. The matrix Q has signature 0, determinant | detQ| = (~/2)4d and

inverse Q−1 = 2
~

(
0 −J
J 0

)
, so we get

∫∫
dV

(2π)2d
ei(

1
2
〈V,QV〉−〈V,Z〉) = F1

(
e
i
2
〈V,QV〉

)
(Z) ,

=
1

| detQ|1/2
exp

(
− i

2
〈Z,Q−1Z〉

)
=

(
2

~

)2d

exp

(
−2i

~
〈J(ρ− ρ0), (ρ− ρ1)〉

)
.

Hence we get the “direct integral” over R4d
ρ0,ρ1

:

c(ρ; ~) =

∫∫
dρ0dρ1

(π~)2d
e−

2i
~ 〈J(ρ−ρ0),(ρ−ρ1)〉 a(ρ0)b(ρ1)

=

∫∫
dρ′0dρ

′
1

(π~)2d
e−

2i
~ ω(ρ′0,ρ

′
1) a(ρ+ ρ′0)b(ρ+ ρ′1)

after the change of variables ρ′i = ρi − ρ.

Proposition 3.4. The Moyal product of two symbols a, b ∈ S(R2d) can be expressed as the
following “oscillatory convolution” integral:

(3.9) (a#~b) (ρ) =

∫∫
dρ0 dρ1

(π~)2d
e−

2i
~ ω(ρ0,ρ1) a(ρ+ ρ0)b(ρ+ ρ1).

3.2. Asymptotic expansion of the composed Weyl symbol. Expanding the operator
ei

~
2
ω(Dρ0 ,Dρ1 ) to finite order and using the Taylor expansion with integral remainder, we find
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similarly as in (2.30):

a#~b(ρ) = a(ρ) ei
~
2
ω(
←−
D,
−→
D) b(ρ)

=
N−1∑
j=0

(i~/2)j

j!
a(ρ)

(
ω(
←−
D,
−→
D)
)j
b(ρ) +

(i~/2)N

(N − 1)!

∫ 1

0

du (1− u)N−1a(ρ)
(
ω(
←−
D,
−→
D)
)N

eiu
~
2
ω(
←−
D,
−→
D)b(ρ).

(3.10)

From this exact expression, we will extract bounds on the integral term in the RHS, and show
that it is indeed a “remainder” smaller than the previous terms. On the Fourier side, the
integral over u ∈ [0, 1] is a linear combination of (ω(V0, V1))N eiu

~
2
ω(V0,V1)â(V0)b̂(V1), which are

contained in a bounded set in S (R4d) uniformly in u, ~; after integrating over u we are still
in a bounded set in S , uniformly in ~ ∈ (0, 1]. To obtain the integral in (3.10) we take the
inverse Fourier transform V0, V1 → ρ0, ρ1, which still gives a function contained in a bounded
set in S (R4d). Its restriction on the diagonal {ρ0 = ρ1} is still in a bounded set in S (R2d).

More explicitly, one can control the seminorms of a#~b in terms of those of a, b as follows:

Proposition 3.5. For a, b ∈ S (R2d), the seminorms of c(~) = a#~b are controlled as
follows10:

∀α, γ ∈ N2d,∀ρ ∈ R2d, |ργ∂α (a#~b) (ρ)| ≤
N−1∑
j=0

(~/2)j

j!

∣∣∣∣ργ∂α [a(ρ)
(
ω(
←−
D,
−→
D)
)j
b(ρ)

]∣∣∣∣
(3.11)

+ CN,γ,α~N
∥∥〈ρ〉|γ|〈D〉N+|α|+2d+1a

∥∥
L1

∥∥〈D〉N+|α|+|γ|+2d+1b
∥∥
L1 .

The norms in the last term could be symmetrized between a and b. They can be replaced by
norms of the type

∑
|β|≤N+|α|+2d+1

∥∥〈ρ〉γ∂βa∥∥
L1.

For N = 0 this bound reads

∀α, γ ∈ N2d, |ργ∂α (a#~b) (ρ)| ≤ Cγ,α
∥∥〈ρ〉|γ|〈D〉|α|+2d+1a

∥∥
L1

∥∥〈D〉|α|+|γ|+2d+1b
∥∥
L1 .

As a consequence, the symbol c(~) belongs to a bounded set in S (R2d), when ~ ∈ (0, 1].

Proof. We only need to show that the integral term in (3.10), which we call ~NRN(x, ξ; ~),
satisfies the bound on the second line of (3.11). For this we work on the Fourier side. Let us

10Here we use the “Japanese brackets” notation: 〈ρ〉 = (1 + |ρ|2)1/2, which grows like |ρ| when ρ → ∞, but
is regular and nonvanishing with ρ→ 0. This notation also applies to the differential operator D, obtaining
a Fourier multiplier.
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first take γ = α = 0:∣∣∣(ω(V0, V1))N eiu
~
2
ω(V0,V1)â(V0)b̂(V1)

∣∣∣ ≤ C〈V0〉N |â(V0)| 〈V1〉N
∣∣∣b̂(V1)

∣∣∣
= C

∣∣∣〈̂D〉Na(V0)
∣∣∣ ∣∣∣〈̂D〉Nb(V1)

∣∣∣ .
To pointwise estimate the N -th order component of (a#~b) (ρ) we remember that a function
in S (Rn) is pointwise bounded as follows:

∀x ∈ Rn |f(x)| ≤ Cn‖f̂‖L1(Rn) = Cn

∫
|f̂(ξ)|〈ξ〉

n+1

〈ξ〉

≤ C ′n

∥∥∥〈ξ〉n+1f̂
∥∥∥
L∞

= C ′n

∥∥∥ ̂〈D〉n+1f
∥∥∥
L∞

≤ C ′n
∥∥〈D〉n+1f

∥∥
L1(Rn)

.

In the case of the remainder term in c(ρ; ~), the Fourier transform is realized in dimension
4d, so after factorizing in two integrals in dimension 2d, we get

∀ρ ∈ R2d, |RN(ρ; ~)| ≤ C
∥∥∥(ω(V0, V1))N eiu

~
2
ω(V0,V1)â(V0)b̂(V1)

∥∥∥
L1(R4d)

≤ C
∥∥〈V0〉N â(V0)

∥∥
L1(R2d)

∥∥∥〈V1〉N b̂(V1)
∥∥∥
L1(R2d)

≤ C ′
∥∥〈D〉N+2d+1a

∥∥
L1(R2d)

∥∥〈D〉N+2d+1b
∥∥
L1(R2d)

.

Now, differentiatingRN(ρ; ~) α times amounts to multiply the Fourier transform by (i(J(V0 + V1)))α,
which can be bounded by an extra factor Cα〈V0〉|α|〈V1〉|α|, and finally extra factors 〈D〉|α| in-
side each L1 factor in (3.11).

Finally, multiplying RN(ρ; ~) by ργ amounts to hit the phase eiω(V0+V1,ρ) by the derivative
Dγ
JV0

in the Fourier integral (3.4). Integrating by parts |γ| times, the derivative will hit

(ω(V0, V1))N eiu
~
2
ω(V0,V1)â(V0)b̂(V1),

which will result in either decreasing the order of the polynomial (ω(V0, V1))N , or bring-
ing down factors ~V1 from the exponential, or differentiating â(V0). The final integrand is
therefore bounded above by

〈V0〉N〈V1〉N+|γ| ∣∣〈D〉|γ|â(V0)
∣∣ |â(V1)| ,

which leads to (3.11) by inverse Fourier transform. �

Remark 3.6. As usual, the L1 norms as in (3.11) can be bounded by seminorms of S :
‖f‖L1(Rn) ≤ ‖〈x〉n+1f‖L∞(Rn).

As a consequence, we obtain the following asymptotic expansion for the Moyal product.
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Theorem 3.7. The Moyal product of two symbols a, b ∈ S (Rd) satisfies the following as-
ymptotic expansion:We

a#~b =
N−1∑
j=0

(i~/2)j

j!
a(ρ)

(
ω(
←−
D,
−→
D)
)j
b(ρ) +O(~N)S

(3.12)

= a(ρ)b(ρ) +
i~
2

(Dξa ·Dxb−Dxa ·Dξb)−
~2

8
a(ρ)

(←−
Dξ ·
−→
Dx −

←−
Dx ·
−→
Dξ

)2

b(ρ) +O(~3)S

= a(ρ)b(ρ)− i~
2
{a, b} − ~2

8
a(ρ)

((←−
Dξ ·
−→
Dx

)2

+
(←−
Dx ·
−→
Dξ

)2

− 2
←−
Dξ ·
−→
Dx
←−
Dx ·
−→
Dξ

)
b(ρ) +O(~3)S .

Remark 3.8. This expansion exhibits the following features:

(1) The first term (~0 term) is equal the classical pointwise product of the two symbols.
For this reason, the Moyal product can be considered as a noncommutative deforma-
tion of the (commutative) product of classical observables.

(2) The second term (~1) is proportional to the Poisson bracket of the classical ob-
servables, which is antisymmetric w.r.t. exchanging a and b.

(3) This antisymmetry will be the case for all odd-order terms ~2k+1, while the even-order
terms (like the ~2 term above) will be symmetric.

From point 1 we draw the following

Definition 3.9. If we consider initial symbols a, b independent of ~, the function c(~) =

σW~
(
OpW~ (a) OpW~ (b)

)
explicitly depends on ~, but its main term (order ~0) does not. We call

this first term in the expansion (3.12) the principal symbol of the operator OpW~ (a) OpW~ (b),
denoted σ0

(
OpW~ (a) OpW~ (b)

)
.

The above property 1. can thus be expressed as

σW0
(
OpW~ (a) OpW~ (b)

)
= ab.

Claim 3.10. All quantizations Opt~ lead to the same principal symbol:

Opt~(a) Opt~(b) = Opt~(ab) +O(~).

The points 2 will have important consequences concerning the dynamics generated by the
Schrödinger equation, as we analyze in the next subsection.

The expansion (3.12) of the product of two pseudodifferential operators embodies the symbol
calculus, or (semiclassical) pseudodifferential calculus, which is at the heart of semiclassi-
cal/microlocal analysis. This calculus allows to connect properties of the operators, with
properties of their symbols. For the moment our symbols are all in S (R2d), but in the next
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section we will extend this calculus to more general symbol classes. Before that, we present
two interesting applications of this calculus:

• the quantum-classical correspondence, expressed through the evolution of observables
(Egorov theorem)
• the first notions of (semiclassical) microlocalization: essential supports and wavefront
sets.

3.3. Commutator vs. Poisson bracket: the quantum-classical correspondence. So
far we have described the quantum dynamics in terms of the evolution of wavefunctions u(t)

through the Schrödinger equation

i~∂tu(x, t) = [P~u] (x, t), u(0, x) = u0(x).

If we want to test the wavefunction u(t, x) through the observable A~, it makes sense to
analyze the time evolution of the quantum average 〈u(t), A~u(t)〉. Calling U~(t) = e−itP~/~

the propagator of the Schrödinger equation, this average can be expressed in two ways:

〈u(t), A~u(t)〉 = 〈U~(t)u0, A~U~(t)u0〉

= 〈u0, U~(t)
∗A~U~(t)u0〉

def
= 〈u0, A~(t)u0〉.(3.13)

In the last expression, we have used the evolution of the observable A~, which is dual to that
of wavefunctions. This evolution is called the Heisenberg evolution in quantum mechanics.
Mathematically, it is just the adjoint action of the Schrödinger group on the observable
A~. Notice that A~(t) remains selfadjoint, and keeps the same eigenvalues throughout the
evolution. A simple computation shows (without paying attention to questions of domains)
that the infinitesimal evolution of an observable is given by:

(3.14)
d

dt
A~(t) = (iP~/~)A~(t) + A~(t)(−iP~/~) =

i

~
[P~, A~(t)],

where we used the standard notation for the commutator between the two operators.

From the points 2 and 3 in Remark 3.8, we draw the following expansion of the commutator:

Corollary 3.11. (Commutator of ΨDOs). For a, b ∈ S , the commutator of the correspond-
ing Weyl quantizations satisfy[

OpW~ (a),OpW~ (b)
]

= OpW~ (a#~b− b#~a)

=
~
i

OpW~ ({a, b}) + OpW~
(
O(~3)

)
.(3.15)

This identity is at the heart of the semiclassical correspondence.
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Exercise 3.12. For a general parameter t ∈ [0, 1], the quantization Opt~ satisfies the less
precise expansion property[

Opt~(a),Opt~(b)
]

=
~
i

Opt~ ({a, b}) + OpW~
(
O(~2)

)
.

A specificity of the Weyl quantization resides in the absence of a term O(~2) in the expansion
of the commutator.

The fact that the commutator of two operators is approximately represented by
the quantization of the Poisson bracket is an important property of quantization.

Why is this connection so important?

Because, in a Hamiltonian system generated by a Hamiltonian11 p(x, ξ), we had found in
(1.17) that the infinitesimal evolution of an observable a is given by a Poisson bracket:

{p, a(t)} =
d

dt
a(t), where a(t) =

(
a ◦ Φt

H

)
.

On the other hand, we have seen above that the infinitesimal quantum evolution of an
observable A = OpW~ (a), through the dynamics generated by the quantum Hamiltonian
P = OpW~ (p), is described the a commutator

i

~
[P,A(t)] =

d

dt
A(t).

Hence, the correspondence (3.15) connects the quantum and classical evolutions of observ-
ables, up to a small semiclassical remainder:

(3.16)
i

~
[P,A] =

i

~
[
OpW~ (p),OpW~ (a)

]
= OpW~ ({p, a}) +O(~2).

The following Egorov Theorem formulates this quantum-classical correspondence be-
tween the evolution of classical and quantum observables in an integrated form. We
will first express it with a remainder expressed in the L2 → L2 norm, hence we first need
to estimate this norm in terms of the symbol, anticipating on the more general Calderon-
Vaillancourt Theorem:

Proposition 3.13. Let a ∈ S (R2d). Then there exists C(a) > 0 such that, for any h ∈ (0, 1]

and any t ∈ [0, 1],
∀u ∈ S (Rd), ‖Opt~(a)u‖L2 ≤ Ca‖u‖L2 .

As a result, the operator Opt~(a) can be extended to a bounded operator on L2(Rd). The
constant C(a) can be estimated as follows: there exists Cd > 0 depending on the dimension,

11At this stage, let us assume that the Hamiltonian p ∈ S (R2d).



52 STÉPHANE NONNENMACHER

such that we can take
C(a) = Cd

∑
|α|≤2d+1

‖∂αa‖L1 .

Proof. The Fourier transform â ∈ S . From the expression (2.17) of OpW~ (a) and the unitarity
of the translation operators T~V0 on L2, we get:

‖OpW~ (a)‖L2→L2 ≤
∫
|â(V )| dV

(2π)d
= (2π)−d‖â‖L1 ≤ Cd

∑
|α|≤2d+1

‖∂αa‖L1 .

From the relation (2.19) between the symbols of different quantizations, we find that the
above bound works as well for all t-quantizations. �

Equipped with this L2 → L2 estimate, we can prove a (relatively basic) form of the quantum-
classical correspondence.

Theorem 3.14. (Egorov theorem - main order - Schwartz symbols). Take p, a ∈ S (R2d)

for the classical Hamiltonian and observable, and their quantizations P~ = OpW~ (p), A~ =

Op~(a) for the corresponding quantum operators. Let a(t) (resp. A~(t)) be the classical (resp.
quantum) evolution of the observable. Then for each fixed time t ∈ R,

(3.17) A~(t) = OpW~ (a(t)) +O(~2)L2→L2 .

For given T > 0, the remainder is bounded uniformly for t ∈ [−T, T ].

Proof. The proof will result from the integration of the infinitesimal correspondence (3.16).
To alleviate notations, we will call

A0(t)
def
= OpW~ (a(t)), and Ȧ0(t) =

d

dt
A0(t) = OpW~ ({p, a(t)}) .

Our goal will be to compare Ah(t) with A0(t). We notice that Ah(0) = A0(0). It is then
tempting to compte the time derivative of Ah(t)− A0(t):

d

dt
(Ah(t)− A0(t)) =

i

~
[P,Ah(t)]−OpW~ ({p, a(t)})

=
i

~
U~(t)

∗ [P,Ah]U~(t)−OpW~ ({p, a} (t)) ,

but we cannot a priori compare both terms. We must use more cleverly the unitarity of
U~(t): we will apply Duhamel’s trick, which consists in interpolating between A0(t) and
Ah(t) through the following family of operators:

(3.18) A(t; s)
def
= U~(s)

∗A0(t− s)U~(s), t, s ∈ R.
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We notice that A(t; 0) = A0(t), while A(t; t) = A~(t). For given t ∈ [−T, T ], the derivative
of A(t; s) w.r.t. s gives:

d

ds
A(t; s) = U~(s)

∗
(
i

~
[P,A0(t− s)]− Ȧ0(t− s)

)
U~(s)

def
= ~2U~(s)

∗R2(t− s)U~(s).

What we gain with this trick is the full control on the operator A0(t−s) and its time derivative
appearing on the right hand side. Indeed, the function a(t) = a ◦ Φt

p belongs to a bounded
set in S (R2d) for t ∈ [−2T, 2T ]. As a result, we may apply the estimate (3.16) to A0(t− s):

i

~
[P,A0(t− s)]− Ȧ0(t− s) = ~2R2(t− s; ~), R2t− s; ~ = OpW~ (r2(t− s; ~)),

where the remainder term r2(t − s; ~) is bounded in S , uniformly in t, s ∈ [−T, T ] and
~ ∈ (0, 1]. By integrating over s ∈ [0, t], we thus find:

A(t; t)− A(t; 0) = A~(t)− A0(t) = ~2

∫ t

0

U~(s)
∗R2(t− s; ~)U~(s) ds.

Since r2(t − s; ~) remains in a bounded set in S , applying Proposition 3.13 we obtain for
some constant Ca,T > 0:

‖A~(t)− A0(t)‖L2→L2 ≤ Ca,T |t|~2 , ∀|t| ≤ T, ~ ∈ (0, 1].

�

Remark 3.15. The remainder O(~2) is due to our use of the Weyl quantization. A similar
Egorov estimate exists for any t-quantization, yet in general the error will be O(~).

3.4. A second application of the symbol calculus: essential support and wavefront
set. Let us describe a second important application of the asymptotic expansion (3.12) for
the Moyal product. We will describe the phase space regions were a semiclassical family of
operators (A~)~∈(0,1], resp. a family of wavefunctions (u(~))~∈(0,1], are essentially concentrated
in the limit ~→ 0.

3.4.1. Essential supports of symbols / Wavefront sets of operators. One simple application of
the expansion (3.12) concerns the case of symbols a, b ∈ S (R2d) with disjoint supports12.

Proposition 3.16. Assume a, b ∈ S (R2d) have disjoint supports. Then the symbol a#~b =

O(~∞)S (one sometimes says that the symbol is residual).

In the case a, b are compactly supported but supp a ∩ supp b 6= ∅, we no longer have a#~b =

O(~∞)S , yet the symbol a#~b will be very small away from supp a ∩ supp b. On the other
12Most of what follows will later be generalized to symbols not belonging to S .
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hand, for each given ~ ∈ (0, 1], the support of a#~b will in general be the full space R2d. This
leads us to replace the notion of support by that of essential support.

Definition 3.17. Assume that a family of symbols
(
a(h) ∈ S (R2d)

)
h∈(0,1]

is uniformly
bounded in S , and assume there exists a compact set K b R2d such that, for any χ ∈
C∞b (R2d) with suppχ ∩K = ∅, one has χa(h) ∈ h∞S .

We then say that the symbol a(h) has a compact essential support, and its essential support
ess-supp a(h) is given by the smallest such set K.

Roughly speaking, the essential support describes the points near which a(ρ; ~) is NOT
O(~∞)C∞ . Although the definition of ess-supp a(h) is not easy to apprehend, for an ~-
independent symbol we recover the usual definition:

Example 3.18. If a ∈ C∞c (R2d) is independent of ~, one has ess-supp a = supp a.

In case our ~-dependent symbol is obtained through the Moyal product of two symbols, the
following result can be seen as a generalization of Proposition 3.16:

Proposition 3.19. Assume two familes of symbols a(h), b(h) are uniformly bounded in
S (R2d), and both have compact essential supports. Then a#~b also has compact essential
support, and

ess-supp(a#~b) ⊂ ess-supp(a) ∩ ess-supp(b).

For instance, if we take a, b ∈ C∞c (R2d) independent of ~, the above Proposition describes
the essential support of the symbol a#~b.

The notion of essential support parallels that of wavefront set, which concerns the corre-
sponding operators.

Definition 3.20. The semiclassical wavefront set of a family of operators (A~ = OpW~ (a(~)))~∈(0,1]

is equal to the essential support of the family of symbols (a(~))~∈(0,1]:

WF~(Op~(a))
def
= ess-supp a(h).

This notion means that the action of the operator A = (A~)~∈(0,1] is negligible outside this
compact part of phase space.

Proposition 3.19 can be rephrased as:

WF~(A ◦B) ⊂WF~(A) ∩WF~(B),

provided the objects in the RHS are well-defined. This property of pseudodifferential oper-
ators is sometimes called quasi-locality, by analogy with the locality of differential operators
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(if two differential operators p(x,D) and q(x,D) are such that the polynomials p(x, ξ) and
q(x, ξ) have disjoint supports, then P (x,D) ◦Q(x,D) = 0).

3.4.2. Wavefront set of a semiclassical family of states. Above we have defined the wavefront
set of a family of operators, corresponding to the phase space region where the symbol a(h)

of the operator is not negligible. We now define a notion of wavefront set (or of microlocal-
ization) associated with a family of wavefunctions (u(h))h∈(0,1]. This notion will describe the
regions of phase space where the wavefunctions u(h) are microlocalized.

In general our functions u(h) will be allowed to oscillate more and more as h ↘ 0, so we
certainly cannot require them to be in a bounded set of S (Rd) (see e.g the Example 3.23
below). For a moment we will assume that our states are L2-normalized: ‖u(h)‖L2 = 1,
uniformly in h ∈ (0, 1].

Definition 3.21. (Wavefront set of u) Let (u(h))h∈(0,1] be a family of normalized L2 functions.
The semiclassical wavefront set of this family, WF~(u), is a subset of R2d, which we define by
its complement. Namely, a point ρ0 = (x0, ξ0) belongs to {WF~(u) iff there exists a symbol
a ∈ S (R2d) with a(ρ0) 6= 0, such that13 ‖Op~(a)u(h)‖L2 = O(~∞).

From the continuity of the symbol a involved in the definition, we see that the property
ρ0 6∈ WF~(u) is an open property. As a consequence, WF~(u) is necessarily a closed subset
of R2d.

The definition could let believe that the symbol a has to be selected with a lot of care. We
actually have a large freedom to choose this symbol, as shown in the following

Proposition 3.22. Assume ρ0 6∈ WF~(u). Then for any b = b(h) ∈ S(R2d) with ess-supp b

a sufficiently small neighbourhood of ρ0, we have

‖Op~(b)u(h)‖L2 = O(h∞).

Proof. By assumption, there exists a ∈ S (R2d) such that a(ρ0) 6= 0 and ‖Op~(a)u‖L2 =

O(h∞). There exists a small neighbourhood Uρ0 such that |a(ρ)| ≥ c > 0 for all ρ ∈ Uρ0 . Let
us construct a symbol c(h) ∈ S such that the Moyal product

(3.19) c(h)#ha = 1 +O(h∞)C∞(Uρ0 )

Such a symbol c(h) is then called a microlocal inverse of a.

The construction of c(h) proceeds order by order. We write formally the Ansatz c ∼
∑

~jcj
and using the expansion of the Moyal product, we may solve, order by order in powers of ~,
the equation (3.19).
13As we will see later, the condition can be strengthened to Op~(a)u(h) = O(~∞)S .
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order h0 : c0(ρ)a(ρ) = 1 =⇒ c0(ρ) =
1

a(ρ)

order h1 : c1(ρ)a(ρ)− i

2
{c0, a} (ρ) = 0 =⇒ c1(ρ) = 0

order h2 : c2(ρ)a(ρ)− i

2
{c1, a} (ρ)− 1

8
c0(ρ)

(←−
Dξ ·
−→
Dx −

←−
Dx ·
−→
Dξ

)2

a(ρ) = 0

=⇒ c2(ρ) =
1

8a(ρ)

[
c0

(←−
Dξ ·
−→
Dx −

←−
Dx ·
−→
Dξ

)2

a

]
(ρ),

and so on. At any order j the term cj(ρ) is obtained by dividing by a(ρ) an explicit ex-
pression involving the functions a, c0, c1, · · · cj−1. We thus obtain a sequence of functions
(cj)j≥0 defined on Uρ0 , which we may extend outside the neighbourhood, to obtain functions
cj ∈ S . Using Borel’s Lemma, there existswe construct a function c(h) ∈ S such that
c(h) ∼

∑
j h

jcj, and hence satisfies (3.19).

Take a symbol b(h) ∈ S (R2d) satisfying b(h) ∼
∑

~jbj, where all bj ∈ C∞c (Uρ0), and consider
the double product b(h)#~c(h)#ha. The property (3.19) shows that

b(h)#hc(h)#ha = b(h)#~1 +O(~∞)

in C∞(Uρ0); but since b(h) is essentially supported inside Uρ0 the above equality also holds
in S (R2d). Quantizing these symbols and using Prop. 3.13, we find

‖Op~(b)u‖L2 = ‖Op~(b) Op~(c) Op~(a)u‖L2 +O(~∞) = O(~∞).

�

Let us now give some (characteristic) examples. Most of the time, the states u(h) we will
consider will belong to S , but with unbounded seminorms when h ↘ 0. Our first example
is provided by truncated plane waves.

Example 3.23. Fix ξ0 ∈ Rd and a function χ ∈ C∞c (Rd) such that ‖χ‖L2(Rd) = 1, and
consider the family of states

(3.20) eξ0(x; ~) = χ(x)eiξ0·x/~.

Its wavefront set WF~(eξ0) = {(x, ξ0), x ∈ suppχ}. In particular, for any function u ∈
C∞c (Rd) independent of ~, the wavefront set WF~(u) = suppχ× {0}.

Another standard example is given by Gaussian wavepackets (also called coherent states).
These represent the strongest form of microlocalization.
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Example 3.24. Fix ρ0 = (x0, ξ0) ∈ R2d, α > 0, and consider the family

eρ0,α(x;h) = (π~)−d/4 exp

(
−|x− x0|2

2~α2
+ iξ0 · x

)
.

Its semiclassical wavefront set WF~(eρ0) = {ρ0}. For this reason, those coherent states are
sometimes considered as “quantum phase space points”.

The wavefront sets of states (u(h)) and operators A = Op~(a) combine in a natural way:

Proposition 3.25. Consider a family (u(h)), and a symbol a = a(h) uniformly bounded in
S (R2d). Then

(i) WF~(Op~(a)u) ⊂WF~(u).

(ii) If a has a compact essential support, then WF~(Op~(a)u) ⊂ ess-supp a ∩WF~(u).

Proof. For the first statement, let us assume that ρ0 6∈ WF~(u). We want to prove that
ρ0 6∈WF~(Op~(a)u). Let us consider a function c ∈ C∞c (R2d) with a small support Uρ0 near
ρ0. The expansion of the Moyal product shows that the symbol b(h)

def
= c#~a has essential

support inside Uρ0 . From Proposition 3.22, provided we choose Uρ0 small enough, we’ll have
‖Op~(b(h))u‖L2 = O(~∞). This just proves that ‖Op~(c) (Op~(a)u) ‖L2 = O(~∞), hence
ρ0 6∈WF~(Op~(a)u).

Let us now assume that ess-supp a is compact. For any ρ0 6∈ ess-supp a, we may consider
a symbol b supported in a small neighbourhood of ρ0, such that b(ρ0) 6= 0 and ess-supp b ∩
ess-supp a = ∅. From Propositions 3.16 and 3.13 we obtain ‖Op~(b) Op~(a)u‖L2 = O(~∞),
hence ρ0 6∈WF~(Op~(a)u), which proves that ρ0 6∈WF~(Op~(a)u). �

Example 3.26. (Microlocal partition of unity) Let us consider a smooth resolution of identity
1 =

∑
n χn, where each χn ∈ C∞c (R2d). We then obtain a decomposition of a state u ∈ L2(Rd)

into
u =

∑
n

Op~(χn)u.

According to the above Proposition, each term Op~(χn)u is microlocalized in suppχn b R2d,
that is WF~(Op~(χn)u) suppχn.

4. Extending the quantization to nondecaying symbols

So far we have defined the quantization of symbols of the form f(x), g(ξ), with f, g ∈ S (Rd),
or a ∈ S (R2d). As we have just seen, such fast decaying functions are useful to analyze the
microlocalization of quantum states (we will often use cutoff functions χ ∈ C∞c (R2d)). How-
ever, we also want to be able to quantize unbounded symbols, like the standard Hamiltonian
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p(x, ξ) = |ξ|2
2

+ V (x), which is unbounded in ξ, but can also be unbounded in x, depending
on the potential V . We will indeed show that our quantization procedures can be naturally
extended to certain classes of symbols with appropriate growth properties at infinity.

4.1. The class of uniformly bounded symbols S(R2d). One useful class of symbols is
the class S(R2d) of smooth functions, with all derivatives uniformly bounded over R2d. In
general we will consider ~-dependent symbols a = (a(~))~∈(0,1]; an important property of this
class is that all bounds on derivatives are uniform w.r.t. ~ ∈ (0, 1]:

S(R2d)
def
=

{
a = a(~) ∈ C∞(R2d), sup

ρ∈R2d

∣∣∣∂αx∂βξ a(ρ; ~)
∣∣∣ ≤ Cα,β, ∀~ ∈ (0, 1]

}
.

For a moment, we will not investigate the limit ~ → 0, but freeze the value
of ~ > 0.

For a symbol a ∈ S(R2d), and for a wavefunction u ∈ S (Rd), the integral

I(u)(x) = Op~(a)u(x) =

∫∫
ei
ξ·(x−y)

~ a (tx+ (1− t)y, ξ)u(y)
dy dξ

(2π~)d

is absolutely convergent in the y variable, but not in the ξ variable. Still the presence of
an oscillatory phase will help us to give a meaning to such an oscillatory integral. The
strategy will be to apply sufficiently many integrations by parts in the variable y, in order
to recover an absolutely convergent integral in both variables y, ξ. To proceed, for each ξ we
insert the differential operator

Lξ
def
=

1 + i~ξ · ∂y
1 + |ξ|2

, which satisfies Lξe
i
ξ·(x−y)

~ = ei
ξ·(x−y)

~ .

Since we assume that u ∈ S (Rd), the integrand decays fast when |y| → ∞. We are then
allowed to integrate by parts w.r.t. the variables y = (y1, . . . , yd), which amouts to applying
the transposed of this operator tLξ = 1−i~ξ·∂y

1+|ξ|2 to the rest of the integrand:

I(u) =

∫∫ (
Lξe

i
ξ·(x−y)

~

)
a (tx+ (1− t)y, ξ)u(y)

dy dξ

(2π~)d

=

∫∫
ei
ξ·(x−y)

~ tLξ [a (tx+ (1− t)•, ξ)u(•)] (y)
dy dξ

(2π~)d
.

The action of tLξ on au differentiates the symbol a and the state u, but the resulting product
is still fast decaying in y. In the ξ variable we have gained a factor O(ξ)

1+|ξ|2 . Here it is handy

to use the “Japanese brackets” notation14 〈ξ〉 def
= (1 + |ξ|2)

1/2, and say that our integration by
parts has produced an extra decaying factor O(〈ξ〉−1).

14The Japanese bracket behaves like |ξ| when |ξ| → ∞, but it avoids the problem of singularity and the
vanishing of |ξ| at ξ = 0.
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Definition 4.1. (Kernels defined by oscillatory integrals) Applying this integration by parts
d + 1 times, we obtain an integrand of order O(〈y〉−∞〈ξ〉−d−1), which makes the integral
absolutely convergent in all directions. This converging integral can be taken as the definition
for the oscillatory integral I(u), and therefore as the definition for the action of the operator
Opt~(a) on u ∈ S(Rd).

Let us for a while set ~ = 1 to alleviate our notations. The above manipulation are natural
if we consider the large class of operators with Schwartz kernels K(x, y) given by tempered
distributions on Rd × Rd. To simplify the notations, we will restrict ourselves to the Weyl
quantization. When the symbol a ∈ S (Rd), the Schwartz kernel

(4.1) Ka(x, y) =

∫
eiξ·(x−y)a

(
x+ y

2
, ξ

)
dξ

(2π)d

is a well-defined Schwartz function, and can be easily expressed in terms of the partial Fourier
transform of the symbol a w.r.t. its second variable:

Ka(x, y) = (2π)−d/2 [Fξ→za]

(
x+ y

2
, z

)
�z=x−y.

Proposition 4.2. The above formula can be extended to symbols a ∈ S ′(R2d
x,ξ), and defines a

kernel Ka ∈ S ′(R2d
x,y). The latter defines a continuous operator OpW~ (a) : S (Rd)→ S ′(Rd).

Proof. For a function a ∈ S (R2d), the formula (4.1) for the kernel Ka(x, y) implies that for
any u, v ∈ S (Rd), we have:

〈u,OpW~ (a)v〉S ′(Rd),S (Rd) = 〈Ka, u(x)v(y)〉S ′(R2d),S (R2d)

= (2π)−d/2〈[Fξ→za] (s, z) , u(s+ z/2)v(s− z/2)〉S ′(R2d),S (R2d).

Since the function (s, z) 7→ u(s + z/2)v(s − z/2) defines an element of S (R2d), the latter
bracket still makes sense when a ∈ S ′(R2d), it defines a distribution Ka ∈ S ′(R2d

x,y). The
identification on the first line defines a continuous operator OpW~ (a) : S (Rd)→ S ′(Rd). This
interpretation of the integral (4.1) as a distribution allows to use standard regularization tools
in the theory of distribution. Namely, the distribution Ka can be obtained as the limit of a
familyKa,ε(x, y) ∈ S (Rd×Rd) obtained by inserting the factors e−ε(|y|

2+|ξ|2) in the integrand,
and taking ε→ 0. �

This breadth of Proposition 4.2 has a disadvantage that two operators A,B : S → S ′

cannot in general be composed with one another. The important fact about taking a symbol
a ∈ S(1) lies in the fact that the resulting operator OpW~ (a) maps the space S (Rd) to itself.

Theorem 4.3. For any a ∈ S(R2d) and any ~ ∈ (0, 1], the operator Op~(a) act continuously
S (Rd)→ S (Rd).
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Remark 4.4. We do not try to control the behaviour of the seminorms when ~→ 0. However,
by inspecting the occurrences of the factors ~, one finds that if the derivatives ∂α involved
in the seminorms of S (Rd) are replaced by (~∂)α, then the implied constants are uniform
when ~↘ 0.

Proof. To alleviate notations we will take ~ = 1. We need to control the seminorms of the
function defined by the integral I(u), in terms of the seminorms of u. Again, we will restrict
ourselves to the case of Weyl quantization. The action of the differential operator (tLξ)

n on
the product au provides an expression of the type

1

〈ξ〉2n
(au+ ∗ξ · ∂y(au) + · · · ∗ (ξ · ∂y)n(au)) .

(here ∗ just indicates a numerical factor). Since a ∈ S(R2d), the integrand will be bounded
above by Ca

〈ξ〉n〈y〉k
(
max|α|≤n

∥∥〈y〉k∂αu∥∥); hence, if we take k = n = d + 1, the convergence of∫∫
dy dξ〈y〉−d−1〈ξ〉−d−1 shows that that

|I(u)(x)| ≤ Ca max
|α|≤d+1

∥∥〈y〉d+1∂αu
∥∥
L∞

.

Here the constant Ca depends on a certain number of S-seminorms of a. Below this constant
will vary from line to line. Differentiating β times I(u) w.r.t. x produces extra factors in the
integrand:

∂βx

(
eiξ·(x−y)a(

x+ y

2
, ξ)u

)
=
∑
α≤β

eiξ·(x−y) (iξ)α ∂β−αx a(
x+ y

2
, ξ)u,

so that the integrand now may grow like 〈ξ〉|β| . As a result, we need to integrate by parts
|β|+ d+ 1 times with the operator Lξ, to let the integrand decay like 〈ξ〉−d−1. In view of the
above computation, this will give∣∣∂βI(u)(x)

∣∣ ≤ Ca max
|α|≤|β|+d+1

∥∥〈y〉d+1∂αu
∥∥
L∞

.

Finally, to show that ∂βI(u)(x) decays fast when |x| → ∞, we need to apply integration by
parts in the variable ξ, using a differential operator “dual” to Lξ, namely

Lx
def
=

1 + i~(x− y) · ∂ξ
1 + |x− y|2

,

which also satisfies Lxei
ξ·(x−y)

~ = ei
ξ·(x−y)

~ . We apply an integration by parts w.r.t. ξ after
applying the |β|+d+1 integrations by parts over y, so that we already have enough decay as
|ξ| → ∞. We will apply m integrations by parts with Lx; the operator (tLx)

m acts on a sum
of terms of the form (ξ·∂y)kξα

〈ξ〉2n ∂β−αx a(•, ξ)u, with k ≤ n, α ≤ β. The derivatives ∂ξ will either

hit the rational prefactor (ξ·∂y)kξα

〈ξ〉2n (which will improve its decay at infinity), or the symbol
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∂∗a(•, ξ) (which leads to a bounded factor). The worst term thus correspond to hitting the
symbol a, ∣∣∣∣(tLx)m (ξ · ∂y)kξα

〈ξ〉2n
∂∗a(•, ξ)u(y)

∣∣∣∣ ≤ Ca
〈ξ〉2n−k−|α|〈x− y〉m

max
|γ|≤k
|∂γu(y)|.

Taking the worst case k = n, this gives an upper bound Ca
〈ξ〉n−|α|〈x−y〉m max|γ|≤n |∂γu(y)|. To

let appear the seminorms of u, we insert a factor 〈y〉l, take n = |β|+ d+ 1 as above, and get:∣∣∂βI(u)(x)
∣∣ ≤ Ca
〈ξ〉d+1〈x− y〉m〈y〉l

〈y〉l max
|γ|≤|β|+d+1

|∂γu(y)| ≤ Ca
〈ξ〉d+1〈x− y〉m〈y〉l

max
|γ|≤|β|+d+1

∥∥〈y〉l∂γu∥∥
L∞

.

We can now consider the integral over the RHS. The integral over ξ converges. If l+m ≥ d+1

the integral over y converges as well. Lemma 4.5 shows that if we take l = d+ 1 (as above),
the integral over y is bounded by C〈x〉−m. We have thus proved that:∣∣∂βI(u)(x)

∣∣ ≤ Ca
〈x〉m

max
|γ|≤|β|+d+1

∥∥〈y〉k∂γu∥∥
L∞

,

where Ca depends on a certain number of seminorms of a ∈ S(R2d). �

Lemma 4.5. For any m ≥ 0, the integral Id,m(x)
def
=
∫
Rd〈x− y〉

−m〈y〉−(d+1)dy is bounded by

Id,m(x) ≤ Cd,m,k〈x〉−m, ∀x ∈ Rd.

Proof. Denote Bx = B(x, |x|/2). Then

Id,m(x) =

∫
Rd\Bx

〈x− y〉−m〈y〉−(d+1)dy +

∫
Bx

〈x− y〉−m〈y〉−(d+1)dy

≤
∫
Rd\Bx

〈|x|/2〉−m〈y〉−(d+1)dy +

∫
Bx

〈x− y〉−m〈|x|/2〉−(d+1)dy

≤ Cd〈x〉−m + C ′d,m〈x〉d−m〈|x|/2〉−(d+1)

≤ Cd,m〈x〉−m.

�

Example 4.6. If we take a(x, ξ) ≡ 1, we obtain a representation of the identity, by recovering
the fact that the delta function can be written as δ(x− y) =

∫
ei
ξ·(x−y)

~ dξ
(2π~)d

; Equivalently we
recover the fact that F~δ = 1

(2π~)d/2
.

Example 4.7. Any function f ∈ C∞b (Rd
x), leading to the multiplication operator Op~(f), is

also in the class S(R2d). Any g ∈ C∞b (Rd
ξ), leading to the Fourier multiplier Op~(g) = g(hD),

is also in the class S(R2d).
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4.2. Symbols with polynomial growth: order functions. Beyond the class S(R2d), we
want to extend the quantization map to symbols a(x, ξ) which may grow as |x|, |ξ| → ∞.
We have seen that formal integration by parts allow to gain factors 〈ξ〉−n or 〈x − y〉−m in
the integrals. For this reason, we will need to assume that the symbols a(x, ξ), and their
derivatives, grow at most polynomially.

A convenient way to describe such a polynomial growth in phase space is through the notion
of order function. This notion will allow some flexibility.

Definition 4.8. A function m : R2d → R∗+ is called an order function if there exists C0 >

0, N ∈ R such that
∀ρ, ρ′ ∈ R2d, m(ρ) ≤ C0〈ρ− ρ′〉N m(ρ′).

Example 4.9. Typical order functions will be m(ρ) = 〈ξ〉N for some N ∈ R, when we only
want to allow a growth/decay in momentum: this includes symbols of the type |ξ|2 + V (x)

with a bounded potential. More generally we can use m(ρ) = 〈ξ〉N1〈x〉N2 , or m(ρ) = 〈ρ〉N if
we want to allow growth/decay both in ξ and x.

To an order function we associate a symbol class.

Definition 4.10. Letm(ρ) be an order function. Then we define the symbol class S(R2d,m) =

S(m) as follows:

S(m)
def
=
{
a = a(~) ∈ C∞(R2d), ∀α ∈ N2d, ∃Cα > 0, ∀ρ ∈ R2d, ∀~ ∈ (0, 1] |∂αx,ξa(ρ; ~)| ≤ Cαm(ρ)

}
.

The space of operators {Op~(a), a ∈ S(m)} make up the class Ψ~(m) of pseudodifferential
operators. We have not specified which quantization we are using, but the Corollary 4.16
below will show that this choice is irrelevant.

Under this notation, the space S(R2d) will be denoted S(1) from now on. The following
seminorms generate the topology of S(m):

‖a‖n = max
|α|≤n

sup
~∈(0,1]

sup
ρ

|∂αa(ρ; ~)|
m(ρ)

, n ∈ N.

The polynomial growth of a ∈ S(m) implies that S(m) ⊂ S ′(R2d): these symbols are tem-
pered distributions. As a result, they define operators Op~(a) : S → S ′ . However, the
controlled smoothness of a ∈ S(m) allows to show, like in the case of S(1), that Op~(a)

preserves the Schwartz space.

Theorem 4.11. Let m(ρ) be an order function on R2d. Then for any a ∈ S(m) and any
~ ∈ (0, 1], the operator Op~(a) acts continuously S → S . Like in Remark 4.4, the estimates
are uniform if one uses the ~-seminorms on S .
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Proof. Again we take ~ = 1 in our computations. There is an N ≥ 0 such that our order
function m(ρ) ≤ C〈ρ〉N . On the other hand, 〈ρ〉 ≤ 〈x〉 + 〈ξ〉 ≤ 2〈x〉〈ξ〉, hence 〈ρ〉N ≤
CN〈x〉N〈ξ〉N . Compared with the proof of Thm 4.3, we need to perform extra integration
by parts to cancel the growth of the symbol a(x+y

2
, ξ) in the integral I(u). Indeed, applying

(d + 1 + N) times the operator tLξ, we get an extra factor 〈ξ〉−N−(d+1), so that the integral
over ξ is absolutely convergent. If we want to consider ∂βI(u), we need to apply the same
operator |β| more times to cancel the extra growth in ξ.

To control the decay of ∂βI(u)(x) in |x| → ∞, we need to integrate n times with the operator
Lx, thereby producing a factor 〈x − y〉−n. Inserting a factor 〈y〉k, the function ∂βI(u)(x) is
bounded above by ∫

dy
Ca〈x+ y〉N〈ξ〉N

〈ξ〉N+d+1〈x− y〉n〈y〉k
max

|α|≤N+|β|+d+1
‖〈y〉k∂αu‖L∞ ,

where Ca will (as usual) depend on a certain number of seminorms of a ∈ S(m). Since the
numerator 〈x+y〉N ≤ CN

(
〈x〉N + 〈y〉N

)
, we see by using Lemma 4.5 that taking k = N+d+1

and any n ≥ N , produces an upper bound∣∣∂βI(u)(x)
∣∣ ≤ CN,n,|β|(a) 〈x〉N−n max

|α|≤N+|β|+d+1
‖〈y〉k∂αu‖L∞ .

�

Example 4.12. Any monimial a(x, ξ) = ξα, α ∈ Nd, belongs to the class S(〈ξ〉|α|). The
corresponding operator is the differential operator Op~(ξ

α) = (hDx)
α. Through the integral

defining the Schwartz kernel, we recover the representation of derivatives of the δ distribution
through its Fourier transform:

Ka(x, y) =

∫
ei
ξ·(x−y)

~ ξα
dξ

(2π~)d
=

(
~
i

)|α|
[∂αδ] (x− y).

Once we know that if a ∈ S(m), the operator Op~(a) preserves S (Rd) it makes sense to
compose these operators with each other. Like we did with symbols a ∈ S (R2d) in section 3,
we are interested in the algebra property of these symbol classes. Let us start by the simple
product of two symbols.

Lemma 4.13. For any two order functions m1,m2, and symbols ai ∈ S(mi), the symbol
a1 × a2 ∈ S(m1m2). In particular, the symbol class S(1) is stable by simple product.

Proof. Obvious application of the Leibnitz rule. �

Considering all symbol classes S(m) together allows to relate them with the Schwartz space.
Indeed, the latter is dense in the classes S(m), in a slightly weak sense:
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Lemma 4.14. For any ε > 0, the space S (R2d) is dense in S(m) for the topology of
S(〈ρ〉εm).

Proof. This slight weakening is necessary: we know that S is not dense in the space S(1),
since the constant function a ≡ 1 cannot be approached by Schwartz functions in the
continuous norm: ‖1 − a‖L∞ ≥ 1 for any a ∈ S . On the other hand, the sequence
an(ρ) = exp (−|ρ|2/n) ∈ S satisfies, for any α ∈ N2d, ‖〈ρ〉−ε∂α(1− an)‖L∞

n→∞→ 0. �

This density of S inside S(m) suggests that the algebra governing the composition of opera-
tors should look the same as in Thm 3.2. We thus need to extend the action of the operator
ei

~
2
ω(Dρ0 ,Dρ1 ) on symbols in S(m).

4.3. Action of exponentiated quadratic differentials on S(m). For symbols a ∈ S(m),
we want to manipulate operators Op~(a), for instance compose two operators, or compare
operators corresponding to different quantizations. As we’ve seen above (see Prop.2.23 and
eq.(3.6)), these procedures can be represented by acting on symbols with operators of the
type ei

~
2
〈D,Q−1D〉 for some symmetric nondegenerate matrix Q (of dimension 2d or 4d). The

action of this operator on S , (and hence also on S ′ by duality), had been first defined as
a Fourier multiplier. We also expressd this operator on the “direct side” by a convolution
operator as in Proposition 3.4.

Before going back to symbols a defined on Rd, we will consider m(x) an order function on Rn
x

(the definition is the same as in Def. ), and study the action of such exponential quadratic
derivatives on symbols a ∈ S(m). (Later we will take x→ (x, ξ) or x→ (x0, ξ0, x1, ξ1)).

Proposition 4.15. Let m(x) be an order function on Rn. Take a ∈ S(m,Rn
x), and Q a n×n

symmetric nondegenerate matrix. Then the distribution ei
~
2
〈D,Q−1D〉a also belongs to S(m).

More precisely, the operator ei
~
2
〈D,Q−1D〉 acts continuously S(m) → S(m). Moreover, if a is

independent of ~, the symbol ei
~
2
〈D,Q−1D〉a admits the asymptotic expansion

(4.2) ei
~
2
〈D,Q−1D〉a ∼

∑
j≥0

1

j!

(
i
~
2
〈D,Q−1D〉

)j
a, in S(m).

Proof. Since the symbol classes S(m) do not have nice properties w.r.t. the Fourier transform,
we will study the operator ei

~
2
〈D,Q−1D〉 through its convolution representation (generalizing

the expression (2.35)):

ei
~
2
〈D,Q−1D〉a(x) = CQ

∫
Rn

exp

(
−i〈y,Qy〉

2~

)
a(x+y) dy, with the prefactor CQ =

| detQ|1/2eiπ sgnQ/4

(2π~)n/2
.
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Fixing the point x, we will analyze the oscillatory integral

I(x, ~) =

∫
Rn
e−i

〈y,Qy〉
2~ a(x+ y) dy.

Since a is not decaying, we split the integral between a compactly supported part, containing
the stationary point y = 0, and a noncompact part where the phase oscillates, and where we
will be able to gain decay using integrations by parts. Let χ ∈ C∞c (Rn), χ(y) = 1 for |y| ≤ 1,
χ(y) = 0 for |y| ≥ 2. We write

I(x, ~) = I1(x, ~) + I2(x, ~), with

I1(x, ~) =

∫
Rn
e−i

〈y,Qy〉
2~ χ(y) a(x+ y) dy, I2(x, ~) =

∫
Rn
e−i

〈y,Qy〉
2~ (1− χ(y)) a(x+ y) dy.

The (quadratic) stationary phase estimate applies to I1(~), and we get an expansion

I1(x, ~) ∼ C−1
Q

∑
j≥0

1

j!

(
i
~
2
〈Dy, Q

−1Dy〉
)j
a(x+ y)�y=0.

(notice that the terms of the expansion do not depend on χ, since χ = 1 near y = 0).
As a function of x, each term in the expansion is bounded above by C~n/2m(x). If we
truncate the expansion at the order N , the remainder is bounded by 2N + n+ 1 derivatives
of a(x + y) in the region {|y| ≤ 2}, so the remainder is bounded above by CN~N+n/2m(x).
Hence |I1(x, ~)| ≤ C~n/2m(x). If we differentiate I1 w.r.t. x, we get the same expressions,
with a(x) replaced by ∂αa(x). As a result, we also get

(4.3) |∂αI1(x, ~)| ≤ Cα~n/2m(x).

We now want to give a sense to the oscillatory integral I2(x, ~), and show that it is very
small. Since the integrand (1− χ(y)) a(x + y) may diverge when |y| → ∞, we will proceed
by formal integration by parts in the variables y, using the operator

L = −〈Qy, hDy〉
|Qy|2

,

which is well-defined on the support of (1 − χ). An important remark is the fact that the
denominator satisfies c|y| ≤ |Qy| ≤ C|y|, which will allow us to “gain” factors 〈y〉−1 at each
integration by parts. The k-th i.b.p. of I2(x, ~) thus gives

I2(x, ~) =

∫
Rn
e−i

〈y,Qy〉
2~

(
tL
)k

[(1− χ(•)) a(x+ •)] (y) dy.
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The function
(
tLk
)

[(1− χ(•)) a(x+ •)] can be estimated by using the nonstationary phase
estimate (2.43):

(4.4)
(
tL
)k

[(1− χ(y)) a(x+ y)] ≤ Ck ~k
k∑
j=0

∣∣∂jy [(1− χ(y)) a(x+ y)]
∣∣

|y|2k−j
≤ Ck

~k

|y|k
m(x+ y) .

Since m(x + y) ≤ C〈y〉Nm(x) for some N , we see that for k ≥ N + n + 1 the integral be-
comes absolutely convergent, defining I2(x) rigorously; it also satisfies |I2(x, ~)| ≤ C~km(x).
Differentiating I2(x) w.r.t. x amounts to replacing a with ∂αa, which has the same growth
properties, so we also get |∂αI2(x, ~)| ≤ C~km(x).

To summarize, we found |∂αI2(x, ~)| = O(~∞)m(x), which is smaller than any term in the
expansion. Together with (4.3), this shows that I(•, ~) = ei

~
2
〈D,Q−1D〉a ∈ ~n/2S(m), and

satisfies the expansion (4.2). �

4.4. Composition of operators with symbols in S(m). As a first application of Proposi-
tion 4.15, we obtain the fact that the symbol class is independent of the chosen quantization.

Corollary 4.16. Take t, s ∈ [0, 1], and assume as ∈ S(m) for some order function m. Then
the symbol at such that Opt~(at) = Ops~(as) also belongs to S(m).

Proof. The explicit formula (2.20) is exactly of the type ei
~
2
〈D,Q−1D〉as. �

A more interesting corollary concerns the composition of operators. For two symbols ai ∈
S(mi), the symbol a1(ρ1)a2(ρ2) may be seen as an element of S(m1 ⊗ m2,R4d). We may
then use the expression (3.6) and Prop. 4.15 to define the Moyal product between these two
symbols, and obtain the following

Theorem 4.17. Take two order functions m1,m2 and ai ∈ S(mi), i = 1, 2. Then the symbol
a1#~a2 ∈ S(m1m2). If the ai are independent of ~ ∈ (0, 1], then the symbol a1#~a2 satisfies
the asymptotic expansion

a1#~a2 =
N−1∑
j=0

(i~/2)j

j!
a1

(
ω(
←−
D,
−→
D)
)j
a2 +O(~N)S(m1m2)

The analysis of the integral I2(x, ~) in the proof of Proposition 4.15 allows to generalize and
strengthen the quasi-locality property of Prop. 3.19.

Lemma 4.18. Consider a ∈ C∞c (R2d) independent of h, and b ∈ S(m). Then the symbol
a#~b ∈ S (R2d) with seminorms uniform w.r.t. ~ ∈ (0, 1]. More precisely, for any α ∈ N2d

and any point ρ 6∈ supp a one has the estimate

∂α (a#~b) (ρ) = O
((

~
dist(ρ, supp a)

)∞)
.
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Remark 4.19. Being in S (R2d) with uniform seminorms w.r.t. ~ is equivalent with being in
S(〈ρ〉−∞)

def
=
⋂
N≥0 S(〈ρ〉−N).

Proof. We use the integral expression

(4.5) a#~b(ρ) =

∫∫
dρ0 dρ1

(π~)2d
exp

(
−2i

~
ω(ρ0, ρ1)

)
a(ρ+ ρ0)b(ρ+ ρ1).

The integrand is supported in the domain {(ρ0, ρ1) ∈ (supp a− ρ)× (supp b− ρ)}. If ρ 6∈
supp a this domain does not contain the stationary point (0, 0) but is situated at a dis-
tance |(ρ0, ρ1)| ≥ dist (ρ, supp a) from the stationary point15. As a result, we can perform k

integrations by parts in the above integral, leading to factors
(

~
|(ρ0,ρ1)|

)k
.

If both a, b ∈ C∞c , the integral is bounded above by C~−2d
(

~
|(ρ0,ρ1)|

)k
‖a‖Ck‖b‖Ck . Besides,

it is compactly supported in ρ0, ρ1, and we get the bound

(4.6) |(a#~b) (ρ)| ≤ C ~k−2d ‖a‖Ck‖b‖Ck
(dist(ρ, supp a) + dist(ρ, supp b))k

, ρ 6∈ supp a ∪ supp b.

In the case b ∈ S(m), the integrand is bounded above by

C~−2dm(ρ+ ρ1)

(
~

|(ρ0, ρ1)|

)k
≤ C~k−2dm(ρ)

〈ρ1〉N

|(ρ0, ρ1)|k
≤ C~k−2dm(ρ)

1

|(ρ0, ρ1)|k−N
.

The integrand is compactly supported in ρ0. For k ≥ N+2d+1 the integral over ρ1 converges
absolutely, and is bounded above by

|(a#~b) (ρ)| ≤ C ~k−2d m(ρ)

dist(ρ, supp a)k−N−2d
.

The same estimate holds if we differentiate w.r.t. ρ, which produces the announced estimate.
�

In general the symbol c = a#~b is not compactly supported, but its essential support is
contained in supp a. This generalizes the result of Prop. 3.19.

Remark 4.20. A slight modification of the proof of the Lemma shows that if a = a(h) ∈
S(〈ρ〉−∞) has its essential support contained in some bounded open set Ω (such that a(ρ) =

O
((

~
dist(ρ,Ω)

)∞)
for ρ outside Ω), then the same result applies to the symbol a#~b with

b ∈ S(m).

Let us now consider the Moyal product a#~b between two symbols a, b ∈ C∞c (R2d), such that
the supports of these two symbols are of diameters O(1), and distant from each other. To
15Here we are in performing an integration by parts in R4d, so the denominator |y|k in 2.43 should be replace
by |(ρ0, ρ1)|k, where |(ρ0, ρ1)| is the distance from the origin of the point (ρ0, ρ1).
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fix ideas, assume these supports have diameters ≤ 2, and are centered on points z0, z1 ∈ R2d

with |z0− z1| ≥ 10. We already know from Prop. 3.16 that a#~b = O(~∞)S . For future use,
let us obtain a more precise estimate.

Lemma 4.21. Two points z0, z1 ∈ R2d at distance |z0−z1| ≥ 10. Consider a0, a1 ∈ C∞c (R2d),
such that supp ai ⊂

{
ρ ∈ R2d, |ρ− zi| ≤ 2

}
. Then the Moyal product a0#~a1 satisfies the

estimates

∀α ∈ N2d,∀k ≥ 0, |∂α (a0#~a1) (ρ)| ≤ Cα,k~k−2d 1(
|z1 − z0|2 +

∣∣ρ− z1+z0
2

∣∣2)k/2 .

Proof. We analyze the integral (4.5). The integrand is supported on points (ρ0, ρ1) ∈
{|z0 − ρ0| ≤ 2, |z1 − ρ1| ≤ 2}. Hence, using the estimate on the operator (tL)

k as in (4.4),
one can easily show (through some elementary plane geometry) that

|a0#~a1(ρ)| ≤ C~k−2d 1(
|z0 − ρ|2 + |z1 − ρ|2

)k/2 ≤ C ′~k−2d 1(
|z1 − z0|2 +

∣∣ρ− z1+z0
2

∣∣2)k/2 .
As before, the same type of estimate holds for derivatives w.r.t. ρ. �

4.5. Action of pseudodifferential operators on L2. So far we have considered the action
of operators Op~(a) on u ∈ S (Rd). However, in quantum mechanics the natural functional
space is the Hilbert space L2(Rd), or its Sobolev descendents Hs(Rd).

4.5.1. Symbols in the Schwartz space. Let us start with nice symbols a ∈ S (R2d). We have
seen in Proposition 3.13 that Op~(a) acts on L2 as a bounded operator, with an operator
norm uniformly bounded w.r.t. ~ ∈ (0, 1]. An alternative proof of the boundedness of Op~(a)

uses the fact that the Schwartz kernelKa(x, y) ∈ S(Rd×Rd), and the use of Schur’s inequality
(see the Lemma below). We will see below that we can get a sharper estimate on this bound
in terms of the symbol a.

Lemma 4.22. (Schur’s inequality) Assume that the Schwartz kernel K(x, y) of an operator
A : S → S ′ is a continuous function on Rd × Rd, and satisfies

sup
x

∫
dy |K(x, y)| < C1, sup

y

∫
dx |K(x, y)| < C2.

Then A can be extended to a bounded operator L2(Rd)→ L2(Rd), and its norm ‖A‖L2→L2 ≤√
C1C2.
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Proof. We compute, for u ∈ S :

|Au(x)|2 =

∣∣∣∣∫ K(x, y)u(y) dy

∣∣∣∣2
≤
∫
|K(x, y)| |u(y)|2 dy

∫
|K(x, y)| dy

≤ C1

∫
|K(x, y)| |u(y)|2 dy

Integrating over x, we find

‖Au‖2
L2 ≤ C1

∫∫
|K(x, y)| |u(y)|2 dy dx

≤ C1

∫
dy |u(y)|2

∫
|K(x, y)| dx

≤ C1C2‖u‖2
L2 .

�

4.5.2. Symbols in the class S(1). Let us now attack a less elementary task, which is to show
that for any symbol a in the class S(1), the operators Op~(a) are bounded on L2, and their
norms are uniformly bounded w.r.t. ~. We already know that this is the case for bounded
symbols of the form f(x) or g(ξ), since the corresponding operators act by multiplication on
L2
x, resp. on L2

ξ . The proof for a general symbols a ∈ S(1) is more involved.

The idea is to split the symbol a into countably many symbols an, each of them being
supported in an O(1) neighbourhood of the lattice point n ∈ Z2d (as explained at the end of
subsection 3.4.2).

Lemma 4.23. (Partition of unity on Rd). There exists a cutoff function χ ∈ C∞c (R2d) sucht
that ∑

n∈Z2d

χ(ρ− n) ≡ 1.

Proof. Consider a cutoff function χ̃ ∈ C∞c (R2d), supported in {|ρ| ≤ Rd}, strictly positive in
{|ρ| ≤ Rd/2}. If Rd ≥

√
d , the function

S(ρ) =
∑
n∈Z2d

χ̃(ρ− n)

is everywhere positive. It is also periodic. Hence, if we take χ(ρ)
def
= χ̃(ρ)

S(ρ)
, it defines a smooth

partition of unity as stated. �
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We then set an(ρ)
def
= a(ρ)χ(ρ−n), which is compactly supported in the ball B(n, Rd). The

S(1) seminorms of an are controlled by those of χ and a. By linearity, we can formally write

Op~(a) =
∑
n∈Z2d

Op~(an).

Can we give a meaning to the sum on the RHS? In particular, how does it acts on L2(Rd).
Prop. 3.13 implies that all operators Op~(an) are bounded on L2, uniformly w.r.t. ~ and n.
But all terms may have comparable norms, so we cannot apply the triangle inequality to the
sum.

Yet, Lemma 4.21 shows that if n,n′ are distant from one another, the two operators Op~(an),
Op~(an′) are “quasi-orthogonal” to each other. Translating this Lemma in the present no-
tations, it implies that, for |n − n′| � 1, the norm ‖Op~(an) Op~(an′)‖L2→L2 is of order
O
((

~
|n−n′|

)∞)
(see eq. (4.11) for a more precise statement). Grossly speaking, this means

that the image of Op~(an′) is essentially in the kernel of Op~(an), and vice-versa.

Remark 4.24. A simplified model for this quasi-orthogonality would be a (strictly) orthogonal
decomposition L2 =

⊕
nHn, such that ker H⊥n ⊂ ker (Op~(an)) and Ran (Op~(an)) ⊂ Hn.

In that case, Pythagoras’s thm would give, for any v =
⊕

n vn, vn ∈ Hn:

‖Op~(a)v‖2 =
∑
n

‖Op~(an)vn‖2 ≤
∑
n

‖Op~(an)‖2‖vn‖2 ≤
(

sup
n
‖Op~(an)‖2

)
‖v‖2.

To take into account the fact that the operators Op~(an) are only quasi-orthogonal, we will
use the Cotlar-Stein Theorem, an abstract operator theoretic result.

Theorem 4.25. (Cotlar-Stein Theorem) Let (Aj)j≥1 be a family of bounded operators on
some Hilbert space H, and assume that the following bounds hold:

(4.7) sup
j

∑
k

∥∥A∗jAk∥∥1/2 ≤ C and sup
j

∑
k

‖AjA∗k‖
1/2 ≤ C .

Then the series
∑

j Aj converges, in the strong operator topology16, to an operator A, which
satisfies ‖A‖ ≤ C.

Notice that the sum
∑

j Aj certainly does not converge in the operator norm topology, since
the norms ‖Ak‖ are not supposed to decay when k →∞ (they are only uniformly bounded).

16A family of bounded operators (Bn)n converges to a bounded operator B in the strong operator topology
if, for any v ∈ H, limn→∞Bnv = Bv.
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Proof. We truncate the sum to A = A(J) =
∑J

j=1Aj, so that the sum is well-defined. A is a
bounded operator, so A∗A is a positive selfadjoint operator, which satisfies

‖(A∗A)m‖ = ‖A∗A‖m = ‖A‖2m .

We want to estimate the norm of (A∗A)m in a clever way. From the decomposition of A, we
write

(A∗A)m =
J∑

j1,j2·j2m

A∗j1Aj2A
∗
j3
· · ·Aj2m

def
=

J∑
j1,j2·j2m

Aj1···j2n .

The trick is to find two bounds for the norm of Aj1···j2n :

‖Aj1···j2n‖ ≤
∥∥A∗j1Aj2∥∥∥∥A∗j3Aj4∥∥ · · · ∥∥A∗j2m−1

Aj2m
∥∥

‖Aj1···j2n‖ ≤
∥∥A∗j1∥∥∥∥Aj2A∗j3∥∥ · · · ‖Aj2m‖ .

Taking the geometric mean of these two bounds (and noticing that all ‖Aj‖ ≤ C from our
assumptions), we get

‖Aj1···j2n‖ ≤ C
∥∥A∗j1Aj2∥∥1/2 ∥∥Aj2A∗j3∥∥1/2 ∥∥A∗j3Aj4∥∥1/2 · · ·

∥∥A∗j2m−1
Aj2m

∥∥1/2
.

Through the triangular inequality, this gives:

‖(A∗A)m‖ ≤ C
J∑

j1,j2·j2m

∥∥A∗j1Aj2∥∥1/2 ∥∥Aj2A∗j3∥∥1/2 ∥∥A∗j3Aj4∥∥1/2 · · ·
∥∥A∗j2m−1

Aj2m
∥∥1/2

.

If we first sum over j1 using the assumption, we produce a factor C. Then we sum over j2,
etc. In the end we sum over j2n, which produces a factor J . This gives finally ‖(A∗A)m‖ ≤
C C2m−1J , and therefore ‖A‖ ≤ C J1/2m. Since this estimate holds for any m ≥ 1, we get

‖A(J)‖ ≤ C,

a bound which is independent of the truncation order J . Let us now prove the strong
convergence when J → ∞. Take ψ ∈ H, and consider ϕ = A∗k0ψ. Then we may write
formally ∑

j≥1

Ajϕ =
∑
j≥1

AjA
∗
k0
ψ,
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and this series converges abolutely, since∑
j

∥∥AjA∗k0ψ∥∥ ≤∑
j

∥∥AjA∗k0∥∥ ‖ψ‖
≤
∑
j

∥∥AjA∗k0∥∥1/2 ∥∥AjA∗k0∥∥1/2 ‖ψ‖

≤
∑
j,j′

∥∥AjA∗k0∥∥1/2 ∥∥Aj′A∗k0∥∥1/2 ‖ψ‖

≤ C2‖ψ‖.

Hence the limit Aϕ = limJ→∞A
(J)ϕ converges for any ϕ ∈ span {A∗k(H), k ≥ 1}. On the

other hand, we have proved that ‖A(J)‖ ≤ C uniformly for all J . We thus deduce that
‖Aϕ‖ ≤ C‖ϕ‖ for any ϕ ∈ span {A∗k(H), k ≥ 1}. It is then possible to extend A to any ϕ in
the closure of this subspace, keeping the same bound ‖Aϕ‖ ≤ C‖ϕ‖. What is the orthogonal
complement of that closure? It is the subspace

⋂
k kerAk. For states in this subspace, we

naturally take Aϕ = 0. Finally we have defined Aϕ for all states ϕ ∈ H, and showed that it
satisfies the announced bound. �

With this Cotlar-Stein theorem, we are now equipped to prove the L2 continuity of pseudo-
differential operators with symbols in S(1), namely the following

Theorem 4.26. (Calderón-Vaillancourt Theorem) Let a = a(~) ∈ S(1,R2d). Then the
operator OpW~ (a) can be extended as a bounded operator on L2(Rd), with a bound uniform
w.r.t. ~ ∈ (0, 1].

More precisely, there exists a constant Cd > 0 such that

(4.8)
∥∥OpW~ (a)

∥∥
L2→L2 ≤ Cd

∑
|α|≤6d+2

~|α|/2‖∂αa‖L∞(R2d).

The same estimate holds if we replace the Weyl quantization by any t-quantization.

Proof. As suggested above, we split the operator Op~(a) =
∑

n Op~(an). If we call An =

Op~(an) the Cotlar-Stein theorem requires to compute the norms of the operators Op~(an)∗Op~(an′) =

Op~ (ān#~an′) and Op~(an′) Op~(an)∗ = Op~ (an′#~ān).

1) For |n − n′| ≤ 10Rd we apply the bounds of Lemma 3.5 for the seminorms of ān#~an′ .
For ρ close to n we have

|∂α (ān#~an′) (ρ)| ≤ Cγ,α
∥∥〈D〉|α|+2d+1an

∥∥
L∞

∥∥〈D〉|α|+2d+1an′
∥∥
L∞

,
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where we used the fact that the symbols an are compactly supported near n. For ρ away
from the support of an or an′ , the Lemma 4.18 implies that

|∂α (ān#~an′) (ρ)| ≤ C ~k−2d ‖an‖Ck+|α| ‖an′‖Ck+|α|
(dist(ρ, supp an) + dist(ρ, supp an′))

k
.

We may apply Prop. 3.13 by taking all |α| ≤ 2d+ 1, and k = 2d+ 1 to have integrability in
ρ ∈ R2d. We hence get the estimate

‖A∗nAn′‖L2→L2 ≤ Cd ‖an‖C4d+2 ‖an′‖C4d+2 ≤ Cd ‖a‖2
C4d+2 .(4.9)

2) When |n−n′| > 10Rd, we use the Lemma 4.21 to show that the product symbol satisfies

(4.10) |∂α (ān#~an′) (ρ)| ≤ Ck~k−2d ‖an‖Ck+|α| ‖an′‖Ck+|α|(
|n− n′|2 +

∣∣ρ− n+n′

2

∣∣2)k/2
(where the constants implicitly depend on the cutoff χ). Again, Prop. 3.13 used for all
|α| ≤ 2d+ 1 and some k ≥ 2d+ 1 leads to
(4.11)

‖A∗nAn′‖L2→L2 ≤ Ck~k−2d‖an‖Ck+2d+1 ‖an′‖Ck+2d+1

〈n− n′〉k
≤ Ck,χ~k−2d‖a‖

2
Ck+2d+1

〈n− n′〉k
, k ≥ 2d+ 1.

The same bound holds for the norms ‖An′A
∗
n‖. By taking k ≥ 4d + 1, we see that the

expressions
∑

n′ ‖A∗nAn′‖1/2,
∑

n′ ‖An′A
∗
n‖

1/2 converge, and are bounded uniformly w.r.t. ~
and n′:

sup
n

∑
n′

‖A∗nAn′‖1/2 ≤ Cd,χ ‖a‖C6d+2 , sup
n

∑
n′

‖An′A
∗
n‖

1/2 ≤ Cd,χ ‖a‖C6d+2 .

We may thus apply the Cotlar-Stein Theorem. It shows that Op~(a) is well-defined as a
bounded operator on L2, with a norm

(4.12)
∥∥OpW~ (a)

∥∥
L2→L2 ≤ Cd ‖a‖C6d+2 = Cd

∑
|α|≤6d+2

‖∂αa‖L∞ , uniformly for ~ ∈ (0, 1].

We notice that the RHS does not depend on ~, in particular the above estimate holds in the
case ~ = 1. To improve this bound into the one stated in the Theorem when ~ < 1, we use
a simple scaling argument. Namely, the unitary rescaling operator

(4.13) U~u(x)
def
= ~d/4u(~1/2x),

intertwines the quantization for “~ = ~” and “~ = 1”:

U~ OpW~ (a)u = OpW1 (ah)U~u,
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where ah is the rescaled symbol ah(ρ) = a(~1/2ρ). Indeed:

~d/4
[
OpW~ (a)u

]
(~1/2x) = ~d/4

∫
dydξ

(2π~)d
e
i
~ ξ·(~

1/2x−y)a

(
~1/2x+ y

2
, ξ

)
u(y)

=

∫
dY dΞ

(2π)d
e
i
~~

1/2Ξ·(~1/2x)−~1/2Y )a

(
~1/2x+ ~1/2Y

2
, ~1/2Ξ

)
~d/4u(~1/2Y )

=

∫
dY dΞ

(2π)d
e
i
~Ξ·(x−Y )ah

(
x+ Y

2
,Ξ

)
~d/4u(~1/2Y )

=
[
OpW1 (ah)U~u

]
(x).

This shows that the operators OpW~ (a), OpW1 (ah) are unitarily conjugate, thus they have the
same L2 → L2 norm. Now, we can apply the estimate (4.12) to OpW1 (ah), and notice that
‖∂αah‖L∞ = ~|α|/2 ‖∂αa‖L∞ . �

Remark 4.27. We will show below that the bound (4.8) can be slightly improved, namely the
constant in front of the term ‖a‖L∞ can be taken to be unity.

The Calderón-Vaillancourt theorem is very important. It allows to transform remainder
terms expressed in the topology of S(1), into remainder terms in the topology of operators
on L2, which is more natural when we study spectral questions or time evolution on L2. A
first example is a direct corollary of the composition theorem 4.17:

Corollary 4.28. (Pseudodifferential calculus on L2) Take two symbols a, b ∈ S(1,R2d). The
first statement from Thm 4.17 indicates that a#~b ∈ S(1). The asymptotic expansion of the
same theorem translates into an expansion in L2:

OpW~ (a) OpW~ (b) =
N−1∑
j=0

(i~/2)j

j!
OpW~

(
a
(
ω(
←−
D,
−→
D)
)j
b

)
+O(~N)L2→L2 ,

where the implied constant depends on a certain number of derivatives of a, b.

The two first terms:

OpW~ (a) OpW~ (b) = OpW~ (ab)− i~
2

OpW~ ({a, b}) +O(~2)L2→L2 ,

are a manifestation of the quantum-classical correspondence, now in the L2 framework.

For instance, for two symbols a, b ∈ S(1) with disjoint supports, the above expansion shows
that

OpW~ (a) OpW~ (b) = O(~∞)L2→L2 .

The symmetry of the Weyl quantization, stated in Prop. 2.11 for symbols a ∈ S , can be
generalized to all a ∈ S(1).
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Theorem 4.29. For any real-valued symbol a ∈ S(1), the operator OpW~ (a) : L2 → L2 is
selfadjoint.

4.6. Going in the reverse direction: from L2 properties of the operator to those
of its symbol. The Calderón-Vaillancourt theorem has a sort of “inverse”, namely we can
deduce properties of the symbol a ∈ S ′(R2d) from the properties of the action of operator
Op~(a) on L2. We first state a result concerning the case ~ = 1.

Proposition 4.30. Let a ∈ S ′(R2d). We assume that the right quantization operators
OpR1 (∂αa) are bounded L2 → L2 for all derivatives of order |α| ≤ 2d+ 1. Then a ∈ L∞(R2d),
and we have the estimate

‖a‖L∞ ≤ Cd
∑

|α|≤2d+1

∥∥OpR1 (∂αa)
∥∥
L2→L2 .

Using the ~1/2-rescaling which connects Op~(a) with Op1(ah), we obtain a more precise result
in case of the ~-quantization:

(4.14) ‖a‖L∞ ≤ Cd
∑

|α|≤2d+1

~|α|/2
∥∥OpR~ (∂αa)

∥∥
L2→L2 .

Corollary 4.31. Then there exists an integer Md > 0 such that the following holds. For a
given t ∈ [0, 1], we assume that operators Opt1(∂αa) are bounded L2 → L2 for all derivatives
of order |α| ≤Md. Then a ∈ L∞(R2d), and we have the estimate

‖a‖L∞ ≤ Cd
∑
|α|≤Md

∥∥Opt1(∂αa)
∥∥
L2→L2 ,

as well as the corresponding ~-estimate.

From this estimate we deduce Beals’s Theorem, which allows to characterize symbols in S(1)

from the properties of their quantization. This characterization uses the commutators of
A = Opt~(a) with the quantizations of linear symbols `(x, ξ) = ξ0 · x − x0 · ξ. The adjoint
action of Op~(`) on some operator A is defined by the commutator

adOp~(`) A = [Op~(`), A] .

Theorem 4.32. (Beals’s Theorem) Let a ∈ S ′(R2d), possibly depending on ~ ∈ (0, 1], and
for some t ∈ [0, 1] take A = Opt~(a). Then the two followings statements are equivalent:

1) a ∈ S(1).

2) for every N ≥ 0 and every sequence `1, . . . , `N of linear symbols, the operator adOp~(`N ) ◦ · · ·◦
adOp~(`1) A is bounded on L2, with norm

(4.15)
∥∥adOp~(`N ) ◦ · · · ◦ adOp~(`1) A

∥∥
L2→L2 = ON(~N).
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Proof. We simply notice that adOp~(`1) A involves derivatives of a(ρ). The commutation with
linear symbols is covariant with quantization, in the sense that the first-order expansion of
the Moyal product is exact:

[Op~(`),Op~(a)] = −i~Op~ ({`, a})

so the assumption implies that ‖Op~ (∂a)‖ = O(1). Proceding by iterations, we find that
that ‖Op~ (∂αa)‖ = Oα(1) for all α ∈ N2d. Injecting these estimates in (4.14) we get, for any
β ∈ N2d, ∥∥∂βa∥∥

L∞
≤ Cd

∑
|α|≤2d+1

~|α|/2
∥∥Op~(∂

β+αa)
∥∥
L2→L2 = Oβ(1) ,

which shows that a ∈ S(1). �

4.7. Compact, Hilbert-Schmidt, Trace class pseudodifferential operators. We now
study in more detail the pseudodifferential Op~(a) on L2(Rd), with a view on their spectral
properties.

One of our objectives is to find critera for our operators to have discrete spectra. For this
we will use a caracterization of compact operators, since one way to prove discreteness of the
spectrum of a symmetric operator A is to show that its resolvent (A− i)−1 is compact. In a
second step, we will be interested in counting the eigenvalues of A, and for this we will use
the functional calculus of pseudodifferential operators.

We recall a few definitions relative to bounded operators A : L2 → L2 .

Definition 4.33. An operator A : L2 → L2 is said to be compact if it maps any bounded
subset of L2 into a precompact set of L2. Equivalently, for any sequence (ψj)j bounded in
L2, one can extract from the sequence (Aψj) a subsequence converging in L2.

Proposition 4.34. The spectrum of a compact operator A is made of eigenvalues µi 6= 0

with finite multiplicities, which only possible accumulation point being the origin.

If A is compact, then A∗A and AA∗ are compact and selfadjoint, their nonzero eigenvalues
can be called

(
s2
j

)
j≥1

(in decreasing order). The (sj)j≥1 are called the singular values of A.

Definition 4.35. A compact operator A is said to be Hilbert-Schmidt if
∑

j≥1 s
2
j <∞. This

condition defines the Hilbert-Schmidt norm ‖A‖2
HS

def
=
∑

j≥1 s
2
j of the operator A.

As we will see below, the space of H-S operators (also called the 2d Schatten class) admits a
natural Hilbert structure.
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Definition 4.36. A compact operator A is said to be trace class if
∑

j sj < ∞. This

condition defines a Banach norm ‖A‖tr
def
=
∑

j sj on the space of trace class operators. This
norm can be defined through a variational principle:

(4.16) ‖A‖tr = sup
(ej),(fj)

Re
∑
j

〈ej, Afj〉,

where the supremum is taken over all pairs of orthonormal bases.

The space of trace class operators (also called the 1st Schatten class) admits a linear func-
tional, called the trace. It can be defined, for any orthonormal basis (ej)j≥1, by trA

def
=∑

j≥1〈ej, Aej〉.This linear functional is continuous w.r.t. the trace norm: |trA| ≤ ‖A‖tr.

Proposition 4.37. i) A trace class ⇒ A Hilbert-Schmidt.

ii) For any A trace class (resp. HS) and B bounded, then AB and BA is trace class (resp.
HS). 17. The ideal of compact operators is closed for the operator norm: if (An)n are compact
and ‖An − A‖ → 0, then A is compact.

iii) If A,B are HS, then AB is trace-class, and ‖BA‖tr ≤ ‖B‖HS‖A‖HS. The HS scalar
product is defined by 〈A,B〉HS = trAB∗.

iv) The trace enjoys the cyclic property tr(AB) = tr(BA) (ifA is trace-class and B bounded,
or if A,B are HS).

On L2(Rd), an operator A is Hilbert-Schmidt iff its Schwartz kernel KA ∈ L2(Rd ×Rd), and
one has

(4.17) ‖A‖HS = ‖K‖L2 .

Corollary 4.38. Take a ∈ S ′(R2d). Then the operator OpW~ (a) (which, a priori, acts
S → S ′) can be extended to a Hilbert Schmidt operator L2 → L2 iff its symbol a ∈ L2(R2d).
One then has the identity∥∥OpW~ (a)

∥∥2

HS
=

∫
|a(x, ξ)|2 dx dξ

(2π~)d
=

1

(2π~)d
‖a‖2

L2(R2d).

Proof. Let us start with symbols a ∈ S (R2d). Start from the characterization (4.17), and
recall the relationship between kernel and symbol:

K(x, y) =

∫
a

(
x+ y

2
, ξ

)
ei
ξ·(x−y)

~
dξ

(2π~)d
=

1

(2π~)d/2

(
F−1

~|ξ→za
)(x+ y

2
, z = x− y

)
.

17More formally, trace-class (resp. HS) operators forms a ideal of the space of bounded operators
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Using the fact that the change of variables (x, y) 7→
(
x+y

2
, x− y

)
has Jacobian unity, and the

Parseval identity, we get∫
|K(x, y)|2 dxdy =

1

(2π~)d

∫ ∣∣∣(F−1
~|ξ→x−a

)
(x+, x−)

∣∣∣2 dx+ dx− =
1

(2π~)d

∫
|a (x+, ξ)|2 dx+ dξ.

�

This identity can now be extended by density: K ∈ L2(Rd × Rd) iff a ∈ L2(R2d). We notice
that symbols a ∈ L2(R2d) are not necessarily in S(1); nevertheless, we will mostly use the
above characterization in cases where a ∈ S(1)∩L2. since HS ⊂ compact, this corollary gives
us a simple criterion to show the compactness of a PDO.

Corollary 4.39. Assume the order function m(ρ) belongs to L2(R2d). Then for any symbol
a ∈ S(m), the operator OpW~ (a) is HS, hence compact. Besides, the HS norm of OpW~ (a) is
bounded by O(~−d).

If the Schwartz kernel K ∈ S (Rd×Rd), it is known that the operator AK : L2 → L2 is trace
class, and its trace is given by

(4.18) trAK =

∫
K(x, x) dx.

(this formula is the continuous analogue of the discrete sum trM =
∑

iMii for matrices).
The relation between the symbol and the kernel of Opt~(a) allows to prove the following
Proposition.

Proposition 4.40. Assume a ∈ S (R2d). Then for any t ∈ [0, 1] and any ~ ∈ (0, 1] the
operator Opt~(a) is trace class, and its trace is given by

tr Opt~(a) =
1

(2π~)d

∫
a(x, ξ) dx dξ.

Proof. The relation between symbol and kernel is given in (2.3):

K(x, y) = (2π)−d/2 [Fξ→za] (tx+ (1− t)y, z = x− y) .

Inserting this expression in the integral (4.18), we get

tr Opt~(a) =
1

(2π~)d/2

∫
[Fξ→za] (x, 0) dx dξ =

1

(2π~)d

∫
a (x, ξ) dx dξ.

�

Here is a more general criterion for a PDO to be compact on L2(Rd).
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Theorem 4.41. If an order function m satisfies m(ρ)
|ρ|→∞→ 0, then for any a ∈ S(m) and

any ~ ∈ (0, 1], t ∈ [0, 1], the operator Opt~(a) is a compact operator on L2(Rd).

Proof. We use the decomposition of a(ρ) used in the proof of the Calderon-Vaillancourt
Theorem, namely we split it into compactly supported symbols a =

∑
n∈Z2d an. We know that

each Op~(an) (we skip the superscript t) is H-S hence compact, therefore AM
def
=
∑
|n|≤M An

is compact for any M > 0. The ideal of compact operators is closed w.r.t. the operator
norm, so we only need to show that

(4.19) ‖A− AM‖L2→L2
M→∞−−−−→ 0.

To prove this limit we use the Cotlar-Stein Lemma, applied to the operator

BM = A− AM =
∑
|n|>M

An.

Indeed, for a ∈ S(m) the estimates (4.9,4.10) are easily modified into

‖A∗nAn′‖L2→L2 ≤ Ca,dm(n)m(n′) |n− n′| ≤ 10Rd,

‖A∗nAn′‖L2→L2 ≤ Ca,k~k−2dm(n)m(n′)

〈n− n′〉k
, |n− n′| > 10Rd, k ≥ 2d+ 1.

Hence, for any n ∈ Z2d we may write∑
|n′|>M

‖A∗nAn′‖1/2 ≤ Ca,d
∑
|n′|>M

√
m(n)m(n′)

〈n− n′〉k/2
≤ C ′a,dm(n),

where we used the defining property of an order function, and took k large enough to have
the sum converge. As a result we get

sup
|n|>M

∑
|n′|>M

‖A∗nAn′‖1/2 ≤ C ′a,d sup
|n|>M

m(n)
M→∞−−−−→ 0,

The same convergence holds for the sums
∑

n′ ‖An′A
∗
n‖

1/2. Applying the Cotlar-Stein The-
orem proves the limit (4.19), hence the theorem. �

4.7.1. Criteria for trace class operators. Let us now investigate criterions for a PDO to be
trace-class. Let us first consider the case of an operator A with Schwartz kernel K(x, y) ∈
C∞c (Rd × Rd). If we consider a cutoff function ψ ∈ C∞c (Rd) such that ψ(x)ψ(y) ≡ 1 on the
support of K, we have

K(x, y) = ψ(x)ψ(y)K(x, y) =

∫
K̂(ξ, η)ei(ξ·x+y·η)ψ(x)ψ(y)

dξdη

(2π)d
, with the notation K̂ = F1K.
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For each ξ, η, the kernel ei(ξ·x+y·η)ψ(x)ψ(y) represents the rank-1 operator u 7→ ψξ〈ψ−η, u〉,
where ψξ(x) = eiξ·xψ(x). The formula (4.16) shows that this operator has trace norm ‖ψ‖2

L2 ,
and a trace tr (ψξ〈ψ−η, •〉) =

∫
ei(ξ+η)·xψ(x)2dx, so we get

‖A‖tr ≤ ‖ψ‖2
L2

∫ ∣∣∣K̂(ξ, η)
∣∣∣ dξdη

(2π)d
=
‖ψ‖2

L2

(2π)d
‖K̂‖L1 ,(4.20)

trA =

∫ ∫
K̂(ξ, η) ei(ξ+η)·xψ(x)2dxdξdη

(2π)d
=

∫
K(x, x) dx.(4.21)

A more general kernel K may be split using a partition of unity of Rd, 1 =
∑

n∈Zd χ(• −n),
where χ ∈ C∞(Rd, [0, 1]) is supported in the box [−1, 1]d:

(4.22) K(x, y) =
∑

n,n′∈Zd
Kn,n′(x, y), Kn,n′(x, y)

def
= K(x, y)χ(x− n)χ(y − n′).

We may apply to each truncated kernel Kn,n′ the estimate (4.20), using the Zd-translates of
a fixed function ψ equal to unity in [−1, 1]d (note that all the translates share the same L2

norm). If the ‖K̂n,n′‖L1 decay sufficiently fast so that
∑

n,n′ ‖K̂n,n′‖L1 <∞, then by triangle
inequality we deduce that A is trace class, with norm

‖A‖tr ≤ Cψ
∑
n,n′

‖K̂n,n′‖L1 <∞, with Cψ =
‖ψ‖2

L2

(2π)d
.

By the standard Fourier transform estimate we have

‖K̂n,n′‖L1 ≤ Cd
∑

|α|≤2d+1

‖∂αKn,n′‖L1 .

Taking into accound the partition of unity (4.22) and the fact that the derivatives of ψ are
bounded, we find that

‖A‖tr ≤ C
∑

|α|≤2d+1

∑
n,n′

‖∂αKn,n′‖L1 ≤ C ′
∑

|α|≤2d+1

‖∂αx,yK‖L1(dx dy).

If the RHS is finite, the function x 7→ K(x, x) is then automatically continuous, bounded
and integrable, and we have by linearity

trA =

∫
K(x, x) dx .

We have showed the following

Proposition 4.42. Assume that Schwartz kernel K(x, y) of an operator A : L2(Rd) →
L2(Rd) satisfies ∑

|α|≤2d+1

‖∂αx,yK‖L1(dx dy) <∞.
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Then this operator is trace class on L2(Rd), and its trace-norm is bounded by

(4.23) ‖A‖tr ≤ Cd
∑

|α|≤2d+1

‖∂αx,yK‖L1(dx dy) .

Furthermore, the restriction of the kernel on the diagonal is integrable, and

tr(A) =

∫
K(x, x) dx.

Let us now search a criterion for a PDO Op~(a) to be trace-class. For simplicity we start
using the right quantization OpR1 (a), which we may write as

OpR1 (a)u(x) =

∫
eiξ·xa(x, ξ)F1u(ξ)

dξ

(2π)d/2
.

Hence, OpR1 (a) is the composition of the (unitary) Fourier transform, with the operator of
kernel K(x, ξ) = eiξ·x a(x, ξ) (viewing ξ as the initial variable). These two operators share
the same singular values, hence OpR1 (a) is trace class iff AK is so.

It is not possible to directly use the estimate (4.23) for the kernel K(x, ξ), since we get a
(bad) factor ξ each time we differentiate it w.r.t. x, and vice-versa. As we did before, we
split this kernel using the smooth partition of unity

∑
n χ(• − n), to get elements

Kn.n′(x, ξ) = χ(x− n)χ(ξ − n′)eiξ·xa(x, ξ).

We then decompose the phase ξ · x = (ξ − n′) · (x− n) + ξ · n + n′ · x− n · n′, so that the
derivatives of the first term remainds uniformly bounded in suppKn,n′ . The terms ξ ·n+n′ ·x
produce a shift in the Fourier transform:

K̂n,n′(x
∗, ξ∗) = e−in·n

′
ân,n′ (x

∗ − n′, ξ∗ − n) , where an,n′(x, ξ)
def
= χ(x−n)χ(ξ−n′)ei(ξ−n′)·(x−n)a(x, ξ)

We thus get a trace class operator provided∑
n′n′

‖K̂n,n′‖L1 =
∑
n′n′

‖ân,n′‖L1 <∞

The advantage of this phase decomposition is that the derivatives of an,n′ are bounded
uniformly in terms of those of the derivatives of a(x, ξ) near (n,n′), because the factors
(ξ −n′), (x−n) in the phase remain bounded. Hence, the above RHS is bounded above by

C
∑
n,n′

∑
|α|≤2d+1

‖∂αan,n′‖L1 ≤ C ′
∑

|α|≤2d+1

‖∂αa‖L1 .

We have thus proved that

‖OpR(a)‖tr ≤ Cd
∑

|α|≤2d+1

‖∂αa‖L1(R2d).
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Wemay now restore the factors ~, using the unitary rescaling (4.13): OpR~ (a) = U~ OpR1 (ah)U
∗
~

imply that the two conjugate operators have same trace norm and trace. Analyzing the L1

norms of ∂αah, we obtain the following criteria for trace-class property:

Theorem 4.43. Assume that the symbol a ∈ S(1) satisfies
∑
|α|≤2d+1 ‖∂αa‖L1 ≤ C uniformly

for ~ ∈ (0, 1]. Then the operator OpR~ (a) is trace class, with the bound

‖OpR~ (a)‖tr ≤ Cd ~−d
∑

|α|≤2d+1

~|α|/2 ‖∂αa‖L1(R2d).

Its trace is explicitly given by

tr OpR~ (a) =
1

(2π~)d

∫
a(x, ξ; ~) dx dξ.
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5. Quantitative study of semiclassical PDOs

We now want to use the ~-PDO toolbox to get informations on the spectral properties of
Op~(a) in terms of the properties of its symbol a(x, ξ). We’ll see that in some cases we can
have access to a rather precise description of that spectrum.

5.1. Invertibility of elliptic PDOs and Gårding inequalities.

5.1.1. Ellipticity and invertibility. The first question is that of the invertibility of the operator
Op~(a), when the symbol a is invertible (that is, nonvanishing) on R2d.

Definition 5.1. A symbol a ∈ S(1) is said to be (semiclassically) elliptic (in S(1)) if
|a(ρ; ~)| ≥ γ > 0 for all ρ ∈ R2d and ~ ∈ (0, 1].

In that case, the pseudodifferential calculus of Cor. 4.28 will allow us to construct a
parametrix for OpW~ (a) (that is, a quasi-inverse), which is then easily transformed into a
true inverse.

Theorem 5.2. Assume that a ∈ S(1) is h-independent and elliptic. Then for ~ > 0 small
enough, Op~(a) is invertible, and its inverse is a PDO with symbol b = b(~) ∈ S(1) admitting
an asymptotic expansion

b ∼
∑
j

~jbj, with principal symbol b0 =
1

a
.

Proof. The construction is similar with the one in the proof of Proposition 3.22.We start by
the trial function (Ansatz) b0 = 1/a. From the ellipticity of a, one easily checks that this
symbol is in S(1). Then, the symbol calculus shows that

a#~b0 = 1 + r1, r1 ∈ ~S(1).

From the Calderón-Vaillancourt theorem, for ~ small enough we’ll have ‖Op~(r1)‖L2→L2 <

1/2, so we can invert 1 + Op~(r1) by Neumann series18, to get

Op~(a) Op~(b0) (I + Op~(r1))−1 = I.

This produces a right inverse BR for Op~(a), with operator norm
∥∥BR

∥∥
L2→L2 ≤ C. On may

similarly construct a left inverse of the form BL = (I + Op~(r2))−1 Op~(b0). The existence of
these two inverses shows that Op~(a) is invertible, and that BL = BL Op~(a)BR = BR def

= B.

18The Neumann series is the expression (I +R)
−1

=
∑
n≥0(−1)nRn, with norm

∥∥∥(I +R)
−1
∥∥∥ ≤ (1− ‖R‖)−1,

valid as soon as ‖R‖ < 1.
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To prove that B = Op~(b) with b ∈ S(1), one may use Beals’s Theorem 4.32, and the
following algebraic trick. For any linear symbols `1, . . . , `N , the commutator

(5.1) adOp~(`1)B = −B
(
adOp~(`1) Op~(a)

)
B = O(~)L2→L2 .

Applying the Leibniz rule to this expression, one shows by iteration that
N∏
j=1

adOp~(`j) B = O(~N)L2→L2 .

Beals’s Lemma then states that b ∈ S(1).

To get more information on the symbol b, we notice that r1 ∈ ~S(1), so we may partially
cancel it by taking b1 = −r1/a, so that a#b1 = −r1 + O(~2)S(1). Continuing this way, we
construct b2, b3, . . . bN with bj ∈ ~jS(1), such that a#(b0 + · · ·+ bN) = I +O(~N+1)S(1). An
equivalent way to obtain the expansion of b is to write:

b ∼ b0#~ (1− r1 + r1#~r1 − r1#~r1#~r1 + · · · )

�

This inversion property can be generalized to to elliptic symbols in classes S(m) for an
arbitrary order function m(ρ).

Definition 5.3. A symbol a ∈ S(m) is said to be elliptic (in that class) if there exists γ > 0

such that |a(ρ)| ≥ γm(ρ) for all ρ ∈ R2d and ~ ∈ (0, 1].

Theorem 5.4. If a ∈ S(m) is elliptic, then for ~ ≤ ~0 small enough, there exists b ∈ S(m−1)

such that a#~b = b#~a = 1.

Proof. From the symbol b0 = a−1 ∈ S(m−1), we have a#~b0 = 1 + r1(~), with the symbol
calculus showing that r1(~) ∈ ~S(1). We can then use the preceding theorem in order (when
~ < ~0) to invert Op~(1 + r1) into a PDO with symbol ∼ 1− r1 + r1#~r1 − · · · , and finally
apply the Moyal product with a−1 ∈ S(m−1) to get the exact inverse b ∈ S(m−1). �

5.2. Domains of operators in Ψ~(m): semiclassical Sobolev spaces. Now that we
know that symbols a ∈ S(1) lead to bounded operators on L2 → L2, what can be said of
operators issued from symbols a ∈ S(m) for a general order function m? We will mostly
consider the case whenm ≥ 1 andm(ρ)→∞ when |ρ| → ∞, at least along certain directions
in phase space.

Example 5.5. The semiclassical Laplacian P = −~2∆ is the quantization of p(x, ξ) = |ξ|2.
This symbol belongs to the class m(ρ) = 〈ξ〉2, which diverges in the limit |ξ| → ∞. It is well-
known that the Laplacian is unbounded on L2, and admits as natural domain the Sobolev
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space H2(R2d) = {u ∈ L2, ∆u ∈ L2}. This Sobolev space can be constructed as the image
of L2 by the resolvent (1−∆)−1, but also as the image of L2 by the resolvent (1− ~2∆)−1:

H2(Rd) = (1− ~2∆)−1L2(Rd).

For a given ~ > 0, we can equip this Sobolev space by the norm resulting from this construc-
tion, that is take, for any u = (1− ~2∆)−1v ∈ H2,

‖u‖H2
def
= ‖v‖L2 = ‖(1− ~2∆)u‖L2 .

Of course, this norm is equivalent with the one constructed with ~ = 1. Still, to emphasize
the ~-dependence of the norm, we denote the space H2 equipped with this norm by H2

~ .

In the above construction, the crucial object was the operator 1 − ~2∆ = Op~(1 + |ξ|2).
The symbol (1 + |ξ|2) belongs to the class S(m) for m(x, ξ) = 〈ξ〉2, and also satisfies also
(1 + |ξ|2) ≥ m(ρ), so according to Definition 5.3, that symbol is elliptic in S(m).

More generally, for an order function m, we may use an elliptic symbol in S(m) to define a
norm on S , and then a functional space by completion.

Definition 5.6. Let m be an order function, and gm be an elliptic symbol in S(m). We then
define the following norm on S (Rd):

∀u ∈ S (Rd), ‖u‖H~(m)
def
= ‖Op~(gm)u‖L2 .

The completion of S (Rd) w.r.t. this norm is denoted by H~(m), it is called a generalized
(semiclassical) Sobolev space.

Lemma 5.7. If we choose another elliptic symbol g′ in S(m), then for ~ ≤ ~0 small enough
the corresponding norm is equivalent with the one above, with implied constants uniform w.r.t.
~ ∈ (0, ~0].

Proof. Let us call ‖u‖′H~(m)

def
= ‖Op~(g

′)u‖L2 . From the ellipticity of g ∈ S(m), for ~ small
enough Op~(g) is invertible and Op~(g)−1 ∈ Ψ~(m

−1), so that Op~(g
′) Op~(g)−1 ∈ Ψ~(1).

Hence

‖u‖′H~(m) = ‖Op~(g
′) Op~(g)−1 Op~(g)u‖L2

≤ ‖Op~(g
′) Op~(g)−1‖L2→L2‖Op~(g)u‖L2 ,

so ‖u‖′H~(m) ≤ C‖u‖H~(m), with C > 0 uniform w.r.t. ~. Since g and g′ play symmetric roles,
we obtain the uniform norm equivalence for ~ ≤ ~0. �

Similarly, we may compare two generalized Sobolev spaces if the corresponding order func-
tions are ordered:



86 STÉPHANE NONNENMACHER

Proposition 5.8. Assume two order functions satisfy m ≤ m′. Then the inclusion S(m′) ⊂
S(m) implies H~(m

′) ⊂ H~(m). More quantitatively, there exists C > 0 such that, for any
u ∈ H~(m

′) and any ~ ≤ ~0,
‖u‖H~(m) ≤ C‖u‖H~(m′).

This bound generalizes the well-known estimates between Sobolev spaces of varying orders.

Proposition 5.9. For any order function m, any symbol a ∈ S(m) and ~ ≤ ~0, the operator
Op~(a) : S → S can be extended to a bounded operator H~(m)→ L2.

Proof. Let g ∈ S(m) be an elliptic symbol, so u ∈ H~(m)⇐⇒ Op~(g)u ∈ L2. For ~ ≤ ~0 we
have Op~(g)−1 ∈ Ψ~(m

−1) and Op~(a) Op~(g)−1 ∈ Ψ~(1). For any u ∈ H~(m), the action of
Op~(a) on u reads:

Op~(a)u = Op~(a) Op~(g)−1 Op~(g)u.

In particular,

‖Op~(a)u‖L2 ≤ ‖Op~(a) Op~(g)−1‖L2→L2 ‖Op~(g)u‖L2 = ‖Op~(a) Op~(g)−1‖L2→L2 ‖u‖H~(m) .

�

Assume m ≥ 1 so that H~(m) ⊂ L2 (see Prop.5.8). If a ∈ S(m) is real valued, we already
know that A def

= OpW~ (a) : S → S is symmetric w.r.t. the L2 scalar product. In the case
m = 1, A : L2 → L2 is bounded and selfadjoint. If m ≥ 1, we have just seen that we can
take H~(m) as the domain of A. Is A essentially selfadjoint on this domain? We recall that
one criterion for A : D(A)→ L2 to be selfadjoint is that Ran(A+ i) = Ran(A− i) = L2. So
we deduce the following

Proposition 5.10. Assume m ≥ 1. Assume a ∈ S(m) is real-valued, and is such that a+ i

(which automatically belongs to S(m)) is elliptic in S(m). Then for ~ small enough, the
operator OpW~ (a) : H~(m) ⊂ L2 → L2 is selfadjoint.

Proof. From the reality of a, we already know that OpW~ (a) is symmetric. The ellipticity
assumption implies that, for ~ small enough, OpW~ (a)± i : H~(m)→ L2 are bijections, which
is a necessary and sufficient criterion for self-adjointness. �

Another direct application of the calculus on S(m) is a characterization of unbounded oper-
ators with discrete spectra.

Theorem 5.11. Consider an order function m(ρ)
|ρ|→∞→ ∞. If a ∈ S(m) is elliptic, then for

~ > 0 small enough, the operator Op~(a) is unbounded on L2 with domain H~(m), and it has
a purely discrete spectrum.



AN INTRODUCTION TO SEMICLASSICAL ANALYSIS 87

Proof. The ellipticity of a implies that Op~(a)−1 ∈ Ψ~(m
−1). From Theorem 4.41, the op-

erator Op~(a)−1 : L2 → L2 is compact, hence its spectrum consists in eigenvalues of finite
multiplicities {µj ∈ C, |µj| ≤ C} accumulating at zero. The spectrum of Op~(a) is composed
of the eigenvalues

{
µ−1
j

}
such that µj →∞ as j →∞. �

Example 5.12. (Schrödinger operator with confining potential) If a potential function sat-

isfies V (x)
|x|→∞→ +∞ with polynomial growth (more precisely, V belongs to some class S(m̃)

on Rd with m̃(x)→∞ and is elliptic), then the functionm(ρ)
def
= 〈ξ〉2+m̃(x) is an order func-

tion which satisfies m(ρ)→∞. For C > 0 large enough the symbol a(x, ξ) = |ξ|2 +V (x) +C

is obviously elliptic in S(m). As a result, for ~ small enough the Schrödinger operator
Op~(a) = −~2∆ + V has discrete (and unbounded) spectrum.

5.3. Resolvent operator and Gårding inequality.

5.3.1. Weak Gårding inequality. A major application of this invertibility will concern the
study and manipulation of the resolvent of an operator Op~(a) ∈ Ψ~(m), namely the family
of bounded operators

R~(z) = (Op~(a)− z)−1 ,

for z in the resolvent set of Op~(a), namely the subset of C where Op~(a)− z : D(Op~(a))→
L2 is invertible.

This family of operators is used to analyze the spectrum of Op~(a), and to construct a
functional calculus (at least when Op~(a) is selfadjoint).

Corollary 5.13. Take an order function m ≥ 1, a ∈ S(m), and z ∈ C is such that the
symbol (a − z) is elliptic in S(m). Then for ~ > 0 small enough, z belongs to the resolvent
set of Op~(a), and (Op~(a)− z)−1 admits a symbol

r(z; ~) = (a− z)−1 +O(~2) ∈ S(m−1).

Proof. The Moyal product

(5.2) (a− z) #~ (a− z)−1 = 1 + 0 + r2(z; ~)

with r2 ∈ ~2S(1). �

A first use of the resolvent concerns the quasi-positivity of an operator Weyl-quantizing a
positive symbol.

Proposition 5.14. (Weak Gårding inequality) Assume that the symbol a ∈ S(1) satisfies
a ≥ 0. Then for any ε > 0, there exists ~ε > 0 such that, for any 0 < ~ < ~ε, the self-adjoint



88 STÉPHANE NONNENMACHER

operator OpW~ (a) satisfies
OpW~ (a) ≥ −εI.

Proof. For any fixed z ≤ ε, (a− z) is elliptic in S(1), so according to the above Corollary we
may invert (Op~(a)−z) for ~ > 0 small enough. We want to show that this “small enough ~”
can be chosen uniformly for all z ≤ −ε. For this we need to show that the seminorms for the
second-order symbol r2(z; ~) appearing in (5.2) are bounded uniformly w.r.t. z ≤ −ε. These
seminorms involve a certain number of derivatives (w.r.t. ρ) of (a− z) and (a− z)−1. The
derivatives of (a(ρ)− z) are obviously independent of z; on the other hand, the derivatives
of (a(ρ)− z)−1 are schematically of the form:

(5.3) ∂α (a− z)−1 = (a− z)−1

|α|∑
k=1

∑
β1+···+βk=α

C~β

k∏
j=1

(
(a− z)−1 ∂β

j

a
)
,

so the RHS is bounded above by |∂∗a|
(a−z)2 + |∂∗a||∂∗a|

(a−z)3 + · · · + |(∂a)k|
(a−z)k+1 , uniformly for all z ≤ −ε.

As a result,
∥∥OpW~ (r2(z; ~))

∥∥
L2→L2 ≤ C~2 for all z ≤ −ε and all ~ ∈ (0, 1]. Hence, there

exists ~ε > 0 such that I + OpW~ (r2(z; ~)) is invertible, of uniformly bounded inverse for all
z ≤ −ε and ~ ∈ (0, ~ε). As a consequence, for any ~ ∈ (0, ~ε) and all z ≤ −ε, the operators
OpW~ (a)− z admit inverses of the form

(5.4)
(
OpW~ (a)− z

)−1
= OpW~

(
(a− z)−1

)
◦
(
I + OpW~ (r2(z; ~))

)−1
,

showing that the half-line (−∞,−ε] is in the resolvent set of OpW~ (a). �

5.3.2. Exotic symbol classes. In Prop. 5.14 the symbol r(•;h) ∈ S(1) depended explicitly on
h, even if a did not. By working harder, we may allow this symbol to become singular when
~ ↘ 0, yet in a controlled manner: we are thus lead to consider classes of semiclassically
singular symbols, also called classes of exotic symbols. This singularity will already be present
in the principal symbol (a− z)−1, if the parameter z is allowed to approach the origin when
~↘ 0.

Let us introduce these classes of exotic symbols.

Definition 5.15. Take δ ∈ (0, 1/2) and an order function m(ρ). We define the following
exotic symbol class:

Sδ(m)
def
=

{
a(~) ∈ C∞(R2d), ∀α ∈ N2d, ∃Cα, ∀~ ∈ (0, 1] sup

ρ
|∂αa(ρ)| ≤ Cαm(ρ) ~−|α|δ

}
.

This class obviously extends the class S(m), it contains symbols a(ρ; ~) explicitly depending
on ~, in a way which may be more and more singular as ~ → 0. For instance, this class
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contains functions of the type a(ρ; ~) = χ
(
ρ−ρ0
~δ
)
, with χ ∈ C∞c (R2d) independent of ~: such

symbols are microlocalized in a precise microscopic neighbourhood of ρ0 when ~↘ 0.

Proposition 5.16. In the case m = 1, the symbol calculus of Thm 4.17 and the Calderón-
Vaillancourt Thm 4.26 naturally extend to the class Sδ(1), with the effective expansion pa-
rameter being ~1−2δ instead of ~.

Proof. If a ∈ Sδ(1), it is obvious that the rescaled function ã(ρ)
def
= a(~δρ) belongs to S(1). A

simple computation shows that the ~δ-rescaling of the Moyal product a1#~a2 is exactly equal
to ã1#~1−2δ ã2. Hence, applying Thm 4.17 to the latter product, we obtain an expansion for
a1#~a2, with expansion parameter ~1−2δ.

Concerning the L2-boundedness, a slight modification of the scaling operator of eq.(4.13)
shows that U~δ OpW~ (a) = OpW~1−2δ(ã)U~δ , so we may apply the Calderón-Vaillancourt Thm
4.26 to the operator OpW~1−2δ(ã), and translate it back to OpW~ (a) by unitarity. �

A more “pedestrian” way to understand the appearance of this modified parameter ~1−2δ is
the following: each term in the expansion of a1#~a2 is of order ~j∂ja∂jb ≤ C~j~−jδ~−jδ =

C~j(1−2δ).

We notice that the value δ = 1/2 is critical: for general symbols ai ∈ S1/2(1), eventhough the
symbol a1#~a2 is well defined, it cannot be expanded in an asymptotic expansion of a small
parameter. There is nevertheless a way to consider symbols whose derivatives grow almost
as fast as ~−j/2, but for which we can maintain some form of asymptotic calculus. It consists
of introducing a second small parameter (called ~̃), independent of ~, and to rescale symbols
by (~/~̃)1/2.

Definition 5.17. [Critical symbol class] Consider the usual small parameter ~ ∈ (0, 1], and
an independent small parameter ~̃ ∈ (0, 1], which we see as the inverse of a large constant.
We may consider a symbol class depending on these two parameters:

S̃1/2(1)
def
=

{
a(~, ~̃) ∈ C∞(R2d), ∀α ∈ N2d, ‖∂αa‖L∞ ≤ Cα

(
~/~̃
)−|α|/2}

.

One may straightforwardly adapt Prop. 5.16 to this critical class:

Proposition 5.18. The symbol calculus of Thm 4.17 and the Calderón-Vaillancourt Thm
4.26 naturally extend to the class S̃1/2(1), with the effective expansion parameter being ~̃. On
the other hand, if a1 ∈ S̃1/2(1) and a2 ∈ S(1), then a1#~a2 ∈ S̃1/2(1) satisfies an expansion

in the parameter
(
~~̃
)j/2

.
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Proof. The first statement is obtained through the rescaling ã(ρ)
def
= a((~/~̃)1/2ρ) ∈ S(1). It

satisfies
ã1#~a2 = ã1#~̃ã2, and U(~/~̃)1/2 OpW~ (a) = OpW~̃ (ã)U(~/~̃)1/2 ,

from where the proof proceeds as in Prop.5.16. The second and third statements can be
obtained by applying the asymptotic expansion for the Moyal product a#~b, and estimating
the size of each term. Alternatively, for the second statement we may rescale as above, and
use the expansion of the Moyal product ã1#~̃ã2 in powers of ~̃. �

Claim 5.19. The semiclassical calculus of Thm 4.17 can also be extended to the classes Sδ(m)

for any order function m, with the effective expansion parameter ~1−2δ.

5.3.3. Sharp Gårding inequality. The first application of these exotic symbol calculi will be
to improve the Gårding inequality:

Theorem 5.20. (Sharp Gårding inequality) Assume that a ∈ S(1) satisfies a ≥ 0. Then
there exists C0 > 0 and ~0 > 0 such that, for any ~ < ~0, the self-adjoint operator OpW~ (a)

satisfies, for ~ small enough:
OpW~ (a) ≥ −C0~.

Proof. To obtain this inequality we will construct an inverse of OpW~ (a − z) with z ≤ −C~
with C > 0 a large enough constant; equivalently, we will take z ≤ −~/~̃ , where ~̃ > 0 will
be a small parameter, independent of ~. This second notation is a hint that we will be using
the critical exotic class of Def. 5.17.

As in the proof of the weak Gårding inequality, we need to study the trial function (a− z)−1

and its derivatives. Since a ≥ 0, the first bound is
∥∥(a− z)−1

∥∥
L∞
≤ |z|−1. To estimate the

derivatives we use the expansion (5.3). The simple bounds

(5.5) (a− z)−1
∣∣∂βa(x)

∣∣ ≤ Cβ|z|−1

leads to

(5.6)
∣∣∂α (a− z)−1

∣∣ ≤ Cα (a− z)−1 |z|−|α|.

However, we can take advantage of the positivity of a to improve this bound on the derivatives.
Indeed, let us write the Taylor expansion up to second order:

a(x+ y) = a(x) + 〈y, ∂a(x)〉+

∫ 1

0

(1− t)〈∂2a(x+ ty)y, y〉,

and take y = −λ∂a(x) for some λ > 0. The positivity a(x+ y) ≥ 0 leads to

λ |∂a(x)|2 ≤ a(x) +
λ2

2
‖∂2a‖L∞ |∂a(x)|2 .
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Selecting λ = ‖∂2a‖−1
L∞ , we obtain

|∂a(x)| ≤
(
2
∥∥∂2a

∥∥
L∞

a(x)
)1/2

.

This leads to

|z|1/2 |∂a(x)| ≤ C|z|1/2a(x)1/2 ≤ C(a− z), and then (a− z)−1 |∂a(x)| ≤ C |z|−1/2,

which improves (5.5) for |β| = 1. For the terms with |β| ≥ 2 we keep the bounds (5.5).
Injecting these two estimates in the expansion (5.3) we see that the “worst term” is the term
with all |βj| = 1, which gives the bound∣∣∂α (a− z)−1

∣∣ ≤ Cα (a− z)−1 |z|−|α|/2,

which is sharper than (5.6). From this estimate, we check that if the spectral parameter
z ≤ −~

~̃ the function |z| (a− z)−1 belongs to the exotic symbol class S̃1/2(1) of Def. 5.17.
Equipped with the corresponding calculus, we get

(a− z) #~ (a− z)−1 =
(a− z)

|z|
#~|z| (a− z)−1 = 1 + 0 + r2(z; ~, ~̃),

with r2 ∈
1

|z|
(~~̃)S̃1/2 ⊂ ~̃2S̃1/2.

As a result, applying the C-V theorem to the symbol r2(~, ~̃), we see that as long as ~̃ ≤ ~̃0

and ~ ≤ ~0, the operator I+ OpW~ (r2(z; ~, ~̃)) is invertible with a uniformly bounded inverse.
Like in the proof of Prop. 5.14, this leads to the proof that OpW~ (a− z) is invertible. One
can also check that the bound on Op~(r2(z; ~) is uniform w.r.t. z ∈ (−∞,−~/~̃], which
shows that Spec OpW~ (a) ⊂

(
−~/~̃,∞

)
. Calling C0 = 1/~̃0, we have thus shown that

OpW~ (a) ≥ −C0~ for ~ < ~0. �

Remark 5.21. The Weyl quantization maps a real symbol into a selfadjoint operator, but
not a positive symbol to a positive operator. However, the above result shows that in the
semiclassical limit, OpW~ (a) is “almost positive”. There exists and alternative quantization,
called the anti-Wick quantization, which automatically satisfies a strict positivity property:
the quantization of a positive symbol is automatically a positive operator.

Corollary 5.22. (Improved norm bound) For a ∈ S(1) real-valued, there exists Ca > 0 and
~0 > 0 such that, for any ~ < ~0, the operator OpW~ (a) satisfies

inf
ρ
a(ρ)− Ca~ ≤ OpW~ (a) ≤ sup

ρ
a(ρ) + Ca~.

In particular, ∥∥OpW~ (a)
∥∥ ≤ ‖a‖L∞ + Ca~.
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Notice that this estimate is sharper than then bound we had obtained in the Calderon-
Vaillancourt Thm 4.26.

Proof. The symbol a−(ρ)
def
= a(ρ) − inf a ≥ 0, so the sharp Gårding inequality implies that

OpW~ (a−) ≥ −C~, proving the lower bound on OpW~ (a). In turn, the symbol a+(ρ) =

sup a− a(ρ) ≥ 0, so OpW~ (a+) ≥ −C~, proving the upper bound. �

5.4. Functional calculus on PDOs. In the previous section we have made use of the
resolvent of a selfadjoint operator, namely the operator valued function z 7→

(
z −OpW~ (a)

)
,

for z outside the spectrum of OpW~ (a). The holomorphy of this operator-valued function will
allow us to manipulate it quite conveniently. In particular, through the resolvent one is able
to adapt standard tools of complex analysis to the framework of operators. One such tool is
the Cauchy formula, which allows to recover functions of the operator, from its resolvent.

We will especially consider selfadjoint operators A = OpW~ (a), with a ∈ S(m) a real valued
symbol, not necessarily bounded. In this framework, the functions of A can be defined using
the spectral theorem, as explained in the Appendix (see Corollaries A.2 and A.5). For a
continuous, bounded function f : R → R, the operator f(A) is then a bounded selfadjoint
operator on L2(Rd), with norm ‖f(A)‖L2→L2 ≤ ‖f‖L∞ . More precisely,

‖f(A)‖L2→L2 = sup
t∈SpecA

|f(t)|.

We want to investigate the operator f(A) when A = OpW~ (a) and f : R → R is a smooth,
compactly supported function. We will show that f(A) is a PDO in the class Ψ~(1), and
compute the asymptotic expansion of its symbol in terms of the symbol a and the function
f .

5.4.1. A Cauchy formula for f(A). For this aim we will use a Cauchy formula (sometimes
called the Helffer-Sjöstrand formula) to define the operator f(A). This formula uses an
auxiliary function f̃ , which is an almost analytic extension of the function f .

Definition 5.23. Consider f ∈ C∞c (R;C). An almost analytic extension of f is a function
f̃ ∈ C∞c (C,C) which coincides with f on R, and is “almost analytic” on R, in the sense that19

∀N ≥ 0, ∀z ∈ C,
∣∣∣∂̄f̃(z)

∣∣∣ ≤ CN |Im z|N .

A short way to write this almost analyticity is ∂̄f̃(z) = O (| Im z|∞). We will actually need
this property only up to some fixed order N .

19We remind the notation of holomorphic and anti-holomorphic derivatives. For z = x+iy, ∂z = 1
2 (∂x − i∂y),

∂̄z = 1
2 (∂x + i∂y).
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There are several ways to define such analytic extensions. One way uses the Fourier transform
f̂ = F1f and two cutoff functions ψ, χ ∈ C∞c (R) with ψ = 1 near supp f , χ = 1 near 0: the
extension is then defined as

f̃(x+ iy)
def
= χ(y)ψ(x)

∫
eiξ(x+iy) χ(yξ) f̂(ξ)

dξ

(2π)1/2
.

Exercise 5.24. Check that this expression is an analytic extension of f (to infinite order).

Since we only need a finite order analytic extension, we may use a simpler definition, and
take:

f̃(x+ iy) =

(
N∑
j=0

f (j)(x)
(iy)r

r!

)
τ

(
y

〈x〉

)
,

where τ ∈ C∞c ((−2, 2)), τ(s) = 1 on [−1, 1].

Exercise 5.25. Check that the above function f̃ is almost analytic of f of order N .

We now use this almost analytic extension to state our Cauchy formula:

Proposition 5.26. Let f ∈ C∞c (R;C) and f̃ ∈ C∞c (C) an almost analytic extension20 of f .
Then for any t ∈ R,

(5.7) f(t) = − 1

π

∫∫
∂̄f̃(z) (z − t)−1 d2z.

(Notice that the integrand is smooth when y → 0).

As a result, for any selfadjoint operator A, the function f(A) can be written as

(5.8) f(A) = − 1

π

∫∫
∂̄f̃(z) (z − A)−1 d2z.

Proof. To prove the scalar formula we integrate by parts to get 1
π

∫∫
f̃(z) ∂̄ (z − t)−1 d2z, and

we use the distributional formula21 ∂̄ 1
z

= πδ(z) to conclude. To prove the operator expression,
we may write A using the projection valued decomposition

A =

∫
λ dPλ,

where Pλ is the spectral projector of A on the interval (−∞, λ], so that for z 6∈ R we have
(z − A)−1 =

∫
(z − λ)−1 dPλ. We can then define

− 1

π

∫∫
∂̄f̃(z) (z − A)−1 d2z = − 1

π

∫∫
∂̄f̃(z)

∫
(z − λ)−1 dPλd

2z,

20Actually it is sufficient to require that ∂̄f̃(x+ iy) = O(|y|).
21Here δ(z) is the delta distribution at 0 ∈ C.
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noticing that the integrand of the LHS is well-defined in the limit y → 0 thanks to the
estimate

(5.9)
∥∥(z − A)−1

∥∥ ≤ 1

| Im z|

and the fact that f̃ is almost analytic. We may apply Fubini’s theorem and for all λ ∈ R
apply the expression (5.7) to recover

∫
f(λ) dPλ = f(A). �

When A = OpW~ (a), this expression for f(A) will allow us to use our semiclassical analysis
of the resolvent (z − A)−1 to gather informations on the operator f(A).

5.4.2. Refined estimates for the resolvent. Let us consider a real-valued symbol a ∈ S(m),
with the assumption m ≥ 1, and assume that (a+ i) is elliptic in S(m), that is, |a(ρ) + i| ≥
γm(ρ) for some γ > 0 and all ρ ∈ R2d. In that case, the function (a + i)−1 ∈ S(m−1).
According to Thm 5.2 and the following Claim, for any given value of z away from the range
of a, in particular for Im z > 0 fixed, the symbol b(z) of the resolvent

(
z −OpW~ (a)

)−1 belongs
to the class S(m−1), and its principal symbol is the function (z − a)−1. Yet, we will need to
integrate the resolvent over z ∈ supp f̃ which contains the real axis, so we need to understand
how the estimates on b(z) depend on z, in particular when Im z → 0.

Lemma 5.27. Under the above conditions, the symbol b(ρ; z, ~) of the resolvent B(z) =(
z −OpW~ (a)

)−1 satisfies the following bounds, uniformly for ~ ∈ (0, 1], z ∈ {|Re z| ≤ R, Im z > 0}
and ρ ∈ R2d:

(5.10) |∂αb(ρ; z; ~)| ≤ Cα,a max

(
1,

~1/2

|Im z|

)2d+1

|Im z|−1−|α| .

Proof. We first treat the case of the order function m = 1. We use the inverse-CV result of
Eq.(4.14) applied to the symbols b(z) of B(z) =

(
z −OpW~ (a)

)−1 , slightly refining the proof
of Beals’s Theorem. An easy computation, obtained by generalizing the trick (5.1), shows
that

(5.11)
∥∥adOp~(`N ) ◦ · · · adOp~(`1) B(z)

∥∥
L2→L2 = O

(
~N

| Im z|N+1

)
,

which implies Op~
(
∂βb(ρ; z; ~)

)
= O

(
1

| Im z||β|+1

)
. Applying the inverse C-V theorem (4.14)

we find that for any α ∈ N2d,

‖∂αb(z)‖L∞ ≤ Cα
∑

|β|≤2d+1

~|β|/2| Im z|−1−|β|−|α|.

Depending on the ratio ~1/2
| Im z| , this sum is dominated either by the term |β| = 0, or by the

terms |β| = 2d+ 1, which gives the required result.
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Now, let us assume that a ∈ S(m) with m(ρ)→∞ and (a+ i) is elliptic in S(m). As above
we call B(z) = (z − A)−1, A = OpW~ (a). We expand the commutator between `w = OpW~ (`)

and B(z) in Beals’s Theorem as:

[`w, B(z)] = −B(z) [`w, A]B(z)

= −B(z) [`w, A]B(i) (i− A)B(z)

= −B(z) [`w, A]B(i)P (z),

where the operator P (z) = (i− A)B(z) = (i− A) (z − A)−1 satisfies ‖P (z)‖ = O
(

1
| Im z|

)
.

On the other hand, [`w, A]B(i) ∈ ~Ψ~(1), so that ‖[`w, A]B(i)‖ = O(~). Using also the
a priori bound ‖B(z)‖ = O

(
1

| Im z|

)
we obtain ‖[`w, B(z)]‖ = O

(
~

| Im z|2

)
. Proceeding by

iterations we prove the estimate (5.11) for this case as well, which leads to the result. �

We notice that if | Im z| is too small, b(ρ; z; ~) does not belong to a “good” symbol class.
However, in the Cauchy integral we are interested in, this symbol is multiplied by ∂̄f̃(z),
which “tames” its singularity.

Corollary 5.28. For m ≥ 1, a ∈ S(m) with (a+ i) elliptic, and f ∈ C∞c (R,C), the operator
f(OpW~ (a)) is a PDO with symbol c ∈ S(m−∞).

Proof. If we apply the Cauchy formula (5.8) at the level of symbols, we get the explicit
formula:

(5.12) c(ρ; ~) = − 1

π

∫∫
∂̄f̃(z) b (ρ; z; ~) d2z.

The estimates on ∂̄f̃(z) and (5.10) show that ∂̄f̃(z) ∂αρ b (ρ; z; ~) = O(| Im z|∞), uniformly
w.r.t. ρ ∈ R2d, so that the symbol c(~) ∈ S(1). Another way to express this is to notice that
the symbols ∂̄f̃(z) b (z; ~) belong to S(1), uniformly w.r.t. z ∈ supp f̃ .

For any k ≥ 0 we may apply the above result to the function fk(t) = (i− t)k f(t), so that
f(A) = (i− A)−k fk(A). Since fk(A) belongs to Ψ~(1), and (a− i) is elliptic in S(m), f(A)

belongs to Ψ~(m
−k). �

5.4.3. Computation of the symbol of f(A). We now want to compute more explicitly the
symbol c(ρ; ~) of f(A). For this aim, we will split the integral (5.12) between two re-
gions. Fix some parameter δ ∈ (0, 1/2). The region “close to the real axis” is defined by{
z ∈ C, |Im z| ≤ ~δ

}
. Using the estimates (5.10) on the resolvent symbol and the almost an-

alyticity of f̃ , one sees that the contribution of this region to the integral (5.12) is O(~∞)S(1).

We are then lead to estimate the integral over the region “distant” from the real axis”,

R def
=
{
z ∈ C, |Im z| ≥ ~δ

}
∩ {|z| ≤ R0} ,
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where R0 will be taken large enough such that the disk {|z| ≤ R0} contains the support of
f̃ . We call this truncated integral

cR(ρ)
def
= − 1

π

∫∫
R
∂̄f̃(z) b (ρ; z; ~) d2z,

and we have just shown that

(5.13) c = cR +O(~∞)S(1).

In the region R, using the expression (5.3) for the derivatives of (z − a)−1, we get the simple
bounds

(5.14) ∂αρ (z − a(ρ))−1 ≤ Cα,am(ρ)−1 |Im z|−1−|α| ,

valid uniformly for ρ ∈ R2d and z ∈ R. Hence, for z in the region R, the function (z − a)−1

belongs to the symbol class ~−δSδ(m−1), where we use the exotic symbol class defined in Def.
5.15.

Lemma 5.29. For ~ small enough and uniformly in z ∈ R, the symbols (z − a)−1 and b(z; ~)

both belong to the class ~−δSδ(m−1).

Proof. The first part is contained in the estimate (5.14). The estimates (5.10) on derivatives
of b(z) show that b(z) ∈ ~−δSδ(1). We can easily adapt the proof of Corollary 5.4 to the
setting of the exotic classe Sδ(m), namely by considering the expansion

(z − a) #~ (z − a)−1 = 1 + r2(~, z) .

The symbol calculus in S(m)×Sδ(m−1) shows that r2 ∈ ~2−3δSδ(1). The Calderón-Vaillancourt
theorem for the class Sδ(1) implies that for ~ small enough OpW~ (1+r2) is invertible, of inverse
in Sδ(1), so if we multiply that symbol on the left by b0(z) = (z − a)−1 we get the symbol
b(z) ∈ ~−δSδ(m−1). �

This proof also provides a way to compute the expansion for b(z). From the identity

OpW~ (z − a) OpW~ (b0(z))
(
I + OpW~ (r2(z))

)−1
= I,

we get

(5.15) b(z) = b0(z)# (1− r2(z) + r2(z)#r2(z)− · · · ) .
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We want to keep track of the z-dependence in the expansion for the remainder r2(~, z). This
expansion takes the following schematic form:

r2(z) ∼ −
∞∑
j≥2

(i~/2)j

j!
a
(
ω(
←−
D,
−→
D)
)j

(z − a)−1

∼
∞∑
j≥2

~j (z − a)−1−j Dja

j∑
k=1

(z − a)j−k
∑

j1+···+jk=j

k∏
i=1

(
Djia

)
,

where we factorized by (z − a)−j so as to exhibit in the numerator polynomials qj−1(z, ρ) in
the variable z, of degrees ≤ j − 1:

r2(z) ∼
∑
j≥2

~j (z − a)−1−j qj−1(z).

The Moyal product b0#r2 then expands into∑
`≥0

~`D`(z − a)−1D`r2 =
∑
`≥0

~`D`(z − a)−1D`

(
∞∑
j=2

~j (z − a)−1−j qj−1(z)

)
=
∑
`≥0

~`+j(z − a)−1−`Q`−1(z)
∑
j≥2

(z − a)−1−j−`Qj,`(z)

=
∑

`≥0,j≥2

~`+j(z − a)−(2`+j+2)Q
(1)
j,` (z),

with degQ`−1 ≤ `− 1, degQj,`(z) ≤ j + `− 1, so that degQ
(1)
j,` (z) ≤ 2`+ j − 2. If we group

the terms of same order k = `+ j, the denominators have orders 2+2`+ j = 2+2k− j ≤ 2k,
so we may write

b0#r2 ∼
∑
k≥2

~k(z − a)−2kQ
(1)
2k−4(z), degQ

(1)
2k−4 ≤ 2k − 4.

In the region R, this term is of order ~2−4δ = ~2(1−2δ).

The next order b0#r2#r2 has the form∑
`≥0

∑
k≥2,j≥2

~`+k+j(z − a)−1−2(k+`)−jQk,j,`(z),

with degQk,j,`(z) ≤ 2(k + `) + j − 5. So at a given order m = `+ k + j, the maximal power
of the denominator is 1 + 2(k + `) + j = 1 + 2m− j ≤ 2m− 1, with m ≥ 4:

b0#(r2)#2 ∼
∑
k≥4

~k(z − a)−2k+1Q
(2)
2k−7(z), degQ

(2)
2k−7 ≤ 2k − 7.
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This term is of order ~4−7δ = ~4(1−2δ)+δ . Continuing the derivation by taking the Moyal
product with r2, we find similarly

b0#r#3
2 ∼

∑
k≥6

~k(z − a)−2k+2Q
(3)
2k−10(z), degQ

(3)
2k−10 ≤ 2k − 10.

By induction, one can show that the higher powers satisfy the expansion

b0#r#n
2 ∼

∑
k≥2n

~k(z − a)−2k+n−1Q
(n)
2k−3n−1(z), degQ

(n)
2k−3n−1 ≤ 2k − 3n− 1.

We see that for a given power k, there will be finitely many terms n ≥ 1 involved (the ones
such that 2n ≤ k), which can be grouped into a single asymptotic series for b(z):

(5.16) b(z) ∼ (z − a)−1 +
∑
k≥2

~k(z − a)−2kQ2k−4(z), degQ2k−4 ≤ 2k − 4.

This expression will be of order ~−δ, uniformly for z ∈ R.

The derivatives ∂αb(z) can be analyzed similarly, they satisfy asymptotic expansions obtained
by differentiating the above one. For z ∈ R one can check that the derivative ∂αb(z) is
dominated by the term ∂αb0(z) = O(~−δ(1+|α|)). This leads to the following

Lemma 5.30. For ~ small enough and z ∈ R, the symbol b(z) ∈ ~−δSδ(m−1) admits the
expansion (5.16), uniformly w.r.t. z ∈ R.

By injecting the expansion for b(z) in the Cauchy formula (5.12), we obtain the following
expansion of cR:

cR ∼ −
1

π

∫∫
R
∂̄f̃(z)

[
(z − a)−1 +

∑
k≥2

~k(z − a)−2kQk(z)

]
d2z.

Since ∂̄f̃(z) = O(~∞) when | Im z| ≤ ~δ, we may extend the integral to z ∈ C, up to a term
O(~∞)S(1). From (5.13), this full integral is also the expansion of the full symbol c:

c ∼ − 1

π

∫∫
C
∂̄f̃(z)

[
(z − a)−1 +

∑
k≥2

~k(z − a)−2kQk(z)

]
d2z.

Fixing ρ ∈ R2d, each term of the expansion can be computed by using the Cauchy formula.
The first term provides the principal symbol:

− 1

π

∫∫
∂̄f̃(z) (z − a(ρ))−1 d2z = f(a(ρ)),
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by applying (5.7) with t = a(ρ). The term of order ~k, k ≥ 2, can also be computed after
some integration by parts in the variables z, z̄:

− 1

π

∫∫
∂̄f̃(z)Qk(z) (z − a)−2kd2z = − 1

π(2k − 1)!

∫∫
∂̄f̃(z)Qk(z) (−∂)2k−1

[
(z − a)−1

]
d2z

=
1

π(2k − 1)!

∫∫
∂2k−1

[
f̃(z)Qk(z)

]
∂̄
[
(z − a)−1

]
d2z

=
1

(2k − 1)!
∂2k−1
t [f(t)Qk(t)] �t=a(ρ) .

In the second line we integrated by parts ∂ and ∂̄ separately, and used that Qk(z) is holo-
morphic, while in the last we used the fact that ∂jz f̃(z) �z=t= ∂jt f(t). We finally obtain the
following

Theorem 5.31. The symbol c(~) of the operator f
(
OpW~ (a)

)
admits an expansion in S(1),

c ∼
∑
k≥0

~kck(ρ), c0 = f(a), c1 = 0.

Each ck(ρ) ∈ S(1), and is supported in the set

supp f(a) =
{
ρ ∈ R2d, a(ρ) ∈ supp f

}
.

5.5. Application of the functional calculus: Semiclassical Weyl’s Law.

5.5.1. Trace-class property of the operatorf(A). We will now work under the following alter-
native assumptions on the order function m and the real-valued symbol a ∈ S(m):

(1) m→∞ as |ρ| → ∞, and (a+ i) is elliptic in S(m);
(2) m = 1 and there exists an interval I b R a compact set Ω b R2d and C > 0 such

that,
∀~ ∈ (0, 1], ∀ρ ∈ R2d \ Ω, dist(a(ρ; ~), I) ≥ C.

In this case we will assume that f ∈ C∞c (I).

In these two situations, the functions ck(ρ) appearing in the Thm 5.31 are all supported in a
common compact set. Actually, the full symbol c(~) has a compact essential support:

Proposition 5.32. If either of the above assumptions on m, a is satisfied, the symbol c of
f(OpW~ (a)) belongs to S(〈ρ〉−∞). Besides, c(~) is essentially supported in supp f(a), with
estimates

∂αc(ρ; ~) = O
((

~
dist (ρ, supp f(a))

)∞)
, for any ρ such that dist (ρ, supp f(a)) ≥ C.



100 STÉPHANE NONNENMACHER

Proof. Our general assumption is that there exists some bounded neighbourhood Ω of supp f(a)

and a constant C > 0, such that dist(a(ρ), supp f) ≥ C for all ρ 6∈ Ω. Up to a trivial change
of sign, we may assume that

a(ρ) ≥ max supp f + C, ∀ρ 6∈ Ω.

By smoothly modifying a(ρ) inside Ω, we may construct an auxiliary symbol ã ∈ S(m), such
that ã(ρ) = a(ρ), ρ 6∈ Ω,

ã(ρ) ≥ max supp f + C/2, ρ ∈ R2d.

We then use the following resolvent identity, valid for any z 6∈ R:

(5.17)
(
z −OpW~ (a)

)−1
=
(
z −OpW~ (ã)

)−1
+
(
z −OpW~ (a)

)−1
OpW~ (a−ã)

(
z −OpW~ (ã)

)−1
.

We can now inject this decomposition into the Cauchy formula (5.8). Let us consider the
first term on the RHS. Due to the range of ã, we see that

(
z −OpW~ (ã)

)
is invertible if

Re z ≤ max supp f + C/4, in particular we may assume that this is the case for z ∈ supp f̃ ,
with uniform estimates. Besides,

(
z −OpW~ (ã)

)−1 is a bounded operator, depending holo-
morphically on z in supp f̃ , so that

∂̄
(
z −OpW~ (ã)

)−1
= 0, ∀z ∈ supp f̃ .

By integration by parts in the Cauchy formula, this shows that f
(
OpW~ (ã)

)
= 0. We are

now interested in integrating the second term over z in (5.17). Using the notation b(z), b̃(z)

for the symbols of the resolvents, the symbol c of the second term is given by

c = − 1

π

∫
∂̄f̃(z) b(z)#~ (a− ã) #~b̃(z) d2z.

Since (a− ã) is compactly supported, we know from the Quasilocality Lemma 4.18 that the
symbol b(2)(z)

def
= (a− ã) #~b̃(z) is in S (R2d) uniformly for z ∈ supp f̃ , and admits estimates

O
((

~
dist(ρ,Ω)

)∞)
S

for ρ outside Ω. The Moyal product with the symbol ∂̄f̃(z)b(z), which is

uniformly in S(1), gives a symbol in S (R2d) with the same estimates. Finally, integrating z
over supp f̃ gives the Proposition. �

Using Prop. 4.40 we obtain the following trace-class property of the operator f(A):

Corollary 5.33. Assume that either of the two assumptions on m, a are satisfied. Then, for
any function f ∈ C∞c (R) (resp. for any f ∈ C∞c (I)) and for ~ small enough, the operator
f
(
OpW~ (a)

)
is trace class on L2(R2d). Besides, one has

(5.18) trf
(
OpW~ (a)

)
=

1

(2π~)d

∫
c(ρ)dρ ∼ 1

(2π~)d

∑
k≥0

~k
∫
ck(ρ)dρ.
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In particular, the principal order term is 1
(2π~)d

∫
f(a(ρ)) dρ.

This corollary shows that for ~ > 0 small enough, the spectrum of the selfadjoint operator
OpW~ (a) inside supp f is purely discrete, composed of eigenstates/values (ϕj(~), λj(~))j∈J . In
our semiclassical setting, we may try to estimate the density of these eigenvalues.

5.5.2. Semiclassical Weyl’s Law. We now assume that the symbol a admits an expansion

a ∼
∑
j≥0

~jaj aj ∈ S(m) independent of ~.

We are then able to prove the following bounds on the counting function.

Theorem 5.34. (Semiclassical Weyl’s law) Fix some compact interval [E0, E1] b I, and call
N ([E0, E1] ; ~) the number of eigenvalues of OpW~ (a) in [E0, E1], counted with multiplicities.
Then we have the following estimates as ~→ 0:

1

(2π~)d
(V− ([E0, E1]) + o(1)) ≤ N ([E0, E1] ; ~) ≤ 1

(2π~)d
(V+ ([E0, E1]) + o(1)) ,

where we define the phase space volumes

V± ([E0, E1]) = lim
ε↘0

Vol
{
a−1

0 ([E0 ∓ ε, E1 ± ε])
}
.

Proof. For any ε > 0, one can construct two smooth functions f± ∈ C∞c (R), such that

1l[E0+ε,E1−ε] ≤ f− ≤ 1l[E0,E1] ≤ f+ ≤ 1l[E0−ε,E1+ε].

The standard functional calculus of selfadjoint operators shows the following inequalities:

trf−(A) ≤ N ([E0, E1] ; ~) ≤ trf+(A).

We can apply the trace estimate (5.18) on both bounds, leading to∫
f− (a0(ρ)) dρ−Of−(~) ≤ (2π~)dN ([E0, E1] ; ~) ≤

∫
f+ (a0(ρ)) dρ+Of+(~).

Vol a−1
0 ([E0 + ε, E1 − ε])−Of−(~) ≤ (2π~)dN ([E0, E1] ; ~) ≤ Vol a−1

0 ([E0 − ε, E1 + ε]) +Of+(~).

We can take a sequence ε = ε~ ↘ 0 slowly enough so that the remainders Of±(~) still decay,
and get the result. �

Corollary 5.35. If E0 and E1 are regular energies (meaning that da0(ρ) does not vanish on
the energy shells a−1

0 (Ei)), then we have the asymptotics

(5.19) N ([E0, E1] ; ~) =
1

(2π~)d
(
Vol a−1

0 ([E0, E1]) + o(1)
)
, ~↘ 0.

Notice that from Sard’s theorem, almost all values E ∈ R are regular values of a0.
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Remark 5.36. This semiclassical Weyl’s law is often interpreted in physics as the fact that
each eigenstate “occupies” a volume (2π~)d in phase space. More generally, that a region
U b R2d can “host” about (2π~)−d VolU orthogonal quantum states, or corresponds to a
subspace of L2(Rd) of dimension ∼ (2π~)−d VolU .

This counting is related with the idea of the uncertainty principle: the latter tells that a
maximally localized quantum state occupies a “box” of volume ∼ Chd. If we pave U with
disjoint boxes of volumes ∼ C~d, we can accomodate about C−1~−d VolU maximally localized
states (which can be hoped to generate a subspace of the same dimension).

Several improvements of Weyl’s law are possible. We may want to let the interval [E0, E1]

depend explicitly on ~, for instance have it shrink at a certain speed when ~ ↘ 0. The
adaptation of the above method would consist in using ~-dependent cutoff functions f±(~),
making sure that they belong to a good class Sδ(R) for some δ ∈ (0, 1/2); one then will need
to extend the functional calculus presented above, to such ~-dependent functions f ∈ Sδ(R).
This method allows to take ε = ~δ in the above proof, which, for regular energies Ei, allows
to get a remainder O(~δ) instead of o(1) in (5.19). If E0 is regular, this also shows that for
any C0 > 0 large enough,

N
([
E0, E0 + C0~δ

]
; ~
)

=
1

(2π~)d
(
Vol a−1

0

([
E0, E0 + C0~δ

])
+O(~δ)

)
,

where the implied constant on the RHS does not depend on the choice of the parameter C0.
In particular, if C0 > 0 is chosen large enough, then the above RHS is � ~δ−d.

Exercise 5.37. Take some δ ∈ (0, 1/2). Show that the semiclassical functional calculus we
have constructed above extends to compactly-supported functions f ∈ Sδ(R), and leads to a
full symbol c ∈ Sδ(R2d) for the operator f(A).

Remark 5.38. Stronger improvements of the remainder estimate in (5.19) are possible, for
instance replacing o(1) byO(~), but this requires to make stronger assumptions on the symbol
a0 , in particular dynamical assumptions on the Hamiltonian flow Φt

a0
. The proofs involve

different semiclassical techniques, typically one needs to use the propagator e−itOpW~ (a)/~,
which is not a PDO but a different type of semiclassical beast (a semiclassical Fourier Integral
Operator).

To connect this result with the usual Weyl’s law for the Laplacian on a smooth compact
Riemannian manifold, we would need to extend the semiclassical calculus to this manifold
setting. This is feasible, but we will not do it in these notes (see e.g. Zworski’s book).

Remark 5.39. In dimension d = 1 there are methods to get approximate values for the
individual eigenvalues of OpW~ (a), in the limit ~→ 0. On the other hand, in higher dimension
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we have no such approximate expression for the eigenvalues. The above expression for the
counting function is therefore very valuable. It gives global quantitative information on the
spectrum, without any knowledge about individual eigenvalues.
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6. Microlocal properties of the eigenstates of a PDO

We switch name for our real-valued symbol, and call it p ∼
∑

j≥0 ~jpj ∈ S(m). We suppose
that p satisfies either of the two assumption of section 5.5.1, ensuring that the spectrum of
P~ = OpW~ (p) is discrete in some interval I b R, for ~ > 0 small enough.

Let us choose an energy E0 ∈ I, such that Vol
[
p−1

0 ([E0 − ε, E0 + ε])
]
> 0 for any ε > 0.

According to Weyl’s law (5.19), each such interval [E0 − ε, E0 + ε] contains many eigenvalues
of P~ in the semiclassical limit. We are thus allowed to consider a sequence of eigenstates
(ϕ~, λ~), so that

(6.1) (P~ − λ~)ϕ~ = 0, λ~ → E0 when ~→ 0.

For a general symbol P~,we have no explicit, or even approximate expression for ϕ~. What can
we learn about these eigenstates ϕ~ from semiclassical methods? (we will always normalize
our eigenstates as ‖ϕ~‖L2 = 1).

Remark 6.1. From the assumptions on p, we have |p0(ρ)−E0| � m(ρ) for ρ outside a bounded
region Ω.

6.1. Wavefront set properties.

Theorem 6.2. The wavefront set of the family (ϕ~)~→0 is contained in p−1
0 (E0).

Proof. The eigenstates satisfy (P~ − λ~)ϕ~ = 0. Let a ∈ S(1) be supported away from
p−1

0 (E0). There exists some ε > 0 such that supp a is also disjoint from p−1
0 ([E0 − ε, E0 + ε]).

We want to show that
∥∥OpW~ (a)ϕ~

∥∥ = O(~∞). For this, we will construct a bounded operator
B~ = OpW~ (b) such that

(6.2) B~(P~ − λ~) = A~ +O(~∞)L2→L2 .

Once this is done, we will have

0 = B~(P~ − λ~)ϕ~

= A~ϕ~ +O(~∞)L2 ,

which will prove that supp a is not in WF~(ϕ~).

How to construct the operator B~? We will enlarge a bit the scope, and construct a family
B~(λ) of operators, indexed by ~ and also by λ ∈ [E0 − ε, E0 + ε]. We want them to solve

(6.3) B~(λ)(P~ − λ) = A~ +O(~∞)L2→L2 ,

with implied constants uniform w.r.t. λ ∈ [E0 − ε, E0 + ε]. It is impossible to take B~(λ) =

A~(P~ − λ)−1, since (P~ − λ) is not invertible for many such λ’s (for instance for λ = λ~).
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However, the obstruction from being invertible comes from the phase space region surround-
ing p−1

0 ([E0 − ε, E0 + ε]), which is away from WF~(A~) = supp a. At the principal symbol
level, the equation b0(λ)(p0 − λ) = a can be solved by

b0(ρ;λ)
def
=

(p0(ρ)− λ)−1a(ρ), ρ ∈ supp a,

0, ρ 6∈ supp a.

which makes perfectly sense since (p0 − λ) does not vanish on supp a. Using the elliptic-
ity assumptions of p (see Remark 6.1), the symbol b0(λ) belongs to S(m−1), with uniform
estimates w.r.t. λ. We will solve (6.3) by constructing the symbol b(λ) of B~(λ) start-
ing from the Ansatz b(λ; ~) ∼

∑
~jbj(λ), and solving, order by order, the symbol equation

b(λ; ~)#~(p− λ) = a.

At order ~0 we have already found the unique solution b0(λ).

At order ~1 the equation reads

0 =
1

2i
{b0, p0}+ b0p1 + b1 (p0 − λ)

=⇒ b1(λ) = (p0 − λ)−1

(
b0(λ)p1 +

1

2i
{b0(λ), p0}

)
.

The expression on the RHS is well-defined, since b0(λ) is supported in supp a, away from
p−1

0 (λ). b1(λ) is in the class S(m−1).

At any order ~j, j ≥ 2, the equation for bj(λ) will be of the form

bj (p0 − λ) + F (b0, b1, · · · , bj−1; p0, p1, . . . , pj) = 0,

where the function F ∈ S(1) is supported in supp a. It is solved by b1 = (p0 − λ)−1 F ∈
S(m−1). By Borel summation, we obtain a symbol b(λ; ~) ∈ S(m−1), satisfying b(λ)#~(p −
λ) = a + O(~∞)S(1). Its quantization B~(λ) = OpW~ (b~) therefore satisfies (6.3). Since all
estimates are uniform w.r.t. λ ∈ [E0 − ε, E0 + ε], we may particularize its values and take
B~ = B~(λ~), which solves (6.2). �

Proposition 6.3. The wavefront set WF~(ϕ~) is not empty.

Proof. We show it by reasoning ab absurdo. If each point ρ ∈ p−1
0 (E0) were outside WF~(ϕ~),

there would exist functions χρ ∈ C∞c with χρ(ρ) = 1, and such that

(6.4) OpW~ (χρ)ϕ~ = O(~∞).

Notice that for each ρ, χρ(ρ′) ≥ 1/2 in some ball B(ρ, rρ). By compactness of p−1
0 (E0),

one can extract a finite set of poins S ⊂ p−1
0 (E0) such that χ def

=
∑

ρ∈S χρ ≥ 1/2 in some
neighbourhood of p−1

0 (E0). By a slight modification of the χρ, we may assume that χ ≡ 1
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near p−1
0 (E0). As a result, a = 1−χ satisfies the properties in the proof of the above theorem,

so that OpW~ (χ)ϕ~ = OpW~ (1− a)ϕ~ = ϕ~ +O(~∞). This obviously contradicts (6.4). �

6.2. Semiclassical measures. There is a more precise way to describe the microlocaliza-
tion properties of the sequence of normalized states (ϕ~)~→0, by constructing semiclassical
measures (sometimes called semiclassical defect measures) associated with that sequence.

Definition 6.4. Let (u~)~→0 be a sequence of normalized states. A semiclassical measure
associated with this sequence is a nonnegative Radon measure µ on R2d such that, after
extracting a subsequence (~j → 0), we have, for any observable a ∈ C∞c (R2d),

lim
j→∞
〈u~j ,OpW~j (a)u~j〉 =

∫
a(ρ) dµ(ρ).

If this limit holds without extracting a subsequence, we say that µ is the semiclassical measure
associated with the sequence (u~).

The semiclassical measure indicates the region of phase space where the states (u~) are
microlocally significant (in the sense that they carry a positive L2 weight in this region) in
the semiclassical limit. It gives a more quantitative information than the wavefront set of
the sequence.

Proposition 6.5. Any semiclassical measure µ associated with (u~) is necessarily supported
in WF~(u~).

Proof. If ρ 6∈ WF~(u~), then there is χρ ∈ C∞c (R2d, [0, 1]) with χρ(ρ) = 1, and such that
OpW~ (χρ)u~ = O(~∞). This implies that for any subsequence (~j), limj→∞〈u~j ,OpW~j (χρ)u~j〉 =

0. Hence, for any semiclassical measure µ associated with the sequence,
∫
χρdµ = 0, which

shows that ρ 6∈ suppµ. �

Do semiclassical measures always exist?

Theorem 6.6. Any sequence (u~)~→0 of normalized states admits at least one semiclassical
measure µ.

Proof. Let us first fix an observable a ∈ C∞c (R2d,R). By the improved Calderon-Vaillancourt
Thm (Cor. 5.22), we have∣∣〈u~,OpW~ (a)u~〉

∣∣ ≤ ∥∥OpW~ (a)
∥∥ ≤ ‖a‖L∞ +Oa(~).

As a consequence, we may extract a subsequence (~j → 0) s.t. limj→∞〈u~j ,OpW~j (a)u~j〉 = α,
with the limit |α| ≤ ‖a‖L∞ .
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To obtain a limit for any observable, we need to use the fact that the functional space
C∞c (R2d) is separable. Hence there is a sequence (ak)k≥1 of functions in C∞c (R2d), which is
dense in that space.

Let us consider the observable a1. From the above, we can extract a subsequence (~1
j → 0)

such that
lim
j→∞
〈u~1j ,OpW~1j

(a1)u~1j 〉 = α1, with |α1| ≤ ‖a1‖L∞ .

Let us now consider the observable a2. We may extract from (~1
j) a subsequence (~2

j → 0)

such that
lim
j→∞
〈u~2j ,OpW~2j

(a2)u~2j 〉 = α2, with |α2| ≤ ‖a2‖L∞ .

By induction, when considering the observable ak, we may extract from the sequence (~k−1
j →

0) a subsequence (~kj → 0) such that

lim
j→∞
〈u~kj ,OpW~kj

(ak)u~kj 〉 = αk, with |αk| ≤ ‖ak‖L∞ .

Notice that the subsequence (~kj ) also “works” for the observables a1, a2, · · · ak−1. We cannot
take for ~j the “k →∞ limit” of the subsequences (~kj ), because we may have limk→∞ ~k1 = 0,
in which case this limiting sequence would be trivial. Instead, we proceed by a diagonal
extraction argument. Namely, we take ~j

def
= ~jj. One easily checks (from this diagonal

extraction) that for any k ≥ 1, this sequence satisfies

lim
j→∞
〈u~j ,OpW~j (ak)u~j〉 = αk.

The mapping Φ : ak → αk is obviously linear, and it is bounded as: |Φ(ak)| ≤ ‖ak‖L∞ . This
mapping is defined on a dense subset of C∞c (R2d), so it can be extended continuously to the
full space C∞c (R2d). Now, if akn → a in C∞c , we have in particular ‖akn − a‖L∞ → 0. Hence,
for any ε > 0, if n ≥ n(ε) such that ‖a− akn‖L∞ ≤ ε, we have

lim sup
j→∞

∣∣∣〈u~j ,OpW~j (a)u~j〉 − 〈u~j ,OpW~j (akn)u~j〉
∣∣∣ ≤ ‖a− akn‖L∞ ≤ ε

=⇒ lim sup
j→∞

∣∣∣〈u~j ,OpW~j (a)u~j〉 − Φ(a)
∣∣∣ ≤ 2ε.

We conclude that limj→∞〈u~j ,OpW~j (a)u~j〉 = Φ(a).

By the Riesz representation theorem, this bounded linear mapping defines a unique Radon
measure on R2d, which we denote by µ:

∀a ∈ C∞c (R2d), Φ(a) =

∫
a(ρ) dµ(ρ).
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Since the scalar products 〈u~,OpW~ (a)u~〉 are real, so are the limits Φ(a), so the measure µ
is real valued. If a ≥ 0, the sharp Gårding inequality (Thm 5.20) implies that

Φ(a) = lim
j→∞
〈u~j ,OpW~j (a)u~j〉 ≥ lim inf

j
(−Ca~j) ≥ 0,

which shows that the measure µ is nonnegative. �

The bound
∣∣∫ a dµ∣∣ ≤ ‖a‖L∞ immediately translates into the following property:

Proposition 6.7. Any semiclassical measure µ associated with a family of normalized states
(u~)~→0 satisfies µ(R2d) ≤ 1.

Remark 6.8. For a general sequence (u~), the associated semiclassical measures can be strict
subprobability measures, or even be trivial. For instance, if f ∈ L2 is normalized and
0 6= v0 ∈ Rd, the sequence (u~ = f(• − ~−1v0)) has a zero semiclassical measure, because the
full mass of u~ escapes to |x| → ∞.

Similarly, if 0 6= ξ0 ∈ Rd, the sequence (u~(x) = eiξ0·x/~
2
f(x)) has zero semiclassical measure,

because the mass of u~ escapes to |ξ| → ∞.

6.3. Semiclassical measures of eigenstates of P~. Let us now specialize to the sequence
of eigenstates (ϕ~, λ~) we had considered before. How do their semiclassical mesures look
like? By combining Thm 6.2 and Prop. 6.5 we obtain the following

Corollary 6.9. Assume (ϕ~, λ~) are eigenstates of P~ so that λ~ → E0 as ~→ 0. Then any
associated semiclassical measure is a probability measure supported in p−1

0 (E0).

Proof. The Thm and Prop. directly imply that suppµ ⊂ p−1
0 (E0). There remains to prove

that any measure µis a probability measure. From Prop. 6.7 µ is a subprobability measure,
namely µ(R2d) ≤ 1. Let us show the converse inequality. Using the proof of Thm 6.2 we find
that for any χ ∈ C∞c (R2d, [0, 1]) such that χ = 1 in some neighbourhood U of p−1

0 (E0), we
have OpW~ (χ)ϕ~ = ϕ~ +O(~∞). As a result,

µ(suppχ) ≥
∫
χdµ = lim

j→∞
〈u~j ,OpW~j (χ)u~j〉 = 1.

�

These properties of the semiclassical measures can actually be generalized to quasimodes of
P~, that is approximate eigenstates.

Proposition 6.10. Assume that a sequence of normalized states (u~)~→0 satisfies the quasi-
mode property

‖(P~ − E0)u~‖L2 = o(1) as ~→ 0.
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Then any semiclassical measure associated with (u~) is a probability measure supported on
p−1

0 (E0).

Proof. Let us go back to the proof of Thm 6.2. For a ∈ S(1) supported away from p−1
0 (E0),

we construct a bounded operator B~ satisfying (6.2), where λ~ has been replaced by E0. We
then have

B~(P~ − E0)u~ = A~u~ +O(~∞)

=⇒ |〈u~, A~u~〉| ≤ ‖B~‖ o(1) +O(~∞)

=⇒ lim
~→0
〈u~, A~u~〉 = 0,

so we find µ(a) = 0.

For χ ∈ C∞c equal to unity near p−1
0 (E0), we find for the same reason OpW~ (1− χ)u~ = o(1),

hence OpW~ (χ)u~ = u~ + o(1), and hence for any semiclassical measure associated with (u~),
µ(χ) = 1. �

Our last result is a refinement of this Proposition. For the first time it involves the Hamil-
tonian dynamics generated by p0.

Theorem 6.11. Assume that a sequence of normalized states (u~)~→0 satisfies the sharper
quasimode property

‖(P~ − λ~)u~‖L2 = o(~) as ~→ 0,

with λ~ → E0. Then any semiclassical measure associated with (u~) is a probability measure
supported on p−1

0 (E0), which is invariant w.r.t. the flow Φt
p0
.

The invariance property of the measure is equivalent with the fact that for any a ∈ C∞c (R2d),

(6.5) ∀t ∈ R, µ(a ◦ Φt
p0

) = µ(a).

Proof. We will use the relation between commutator and Poisson bracket, mentioned in
section 3.3, which can be easily extended to symbols p ∈ S(m): for any a ∈ C∞c (R2d) and
A~ = OpW~ (a), we have

i

~
[P~, A~] = OpW~ ({p0, a}) +O(~)L2→L2 .

Injecting the commutator in the scalar product, we get (using the self-adjointness of P~ and
A~:

〈u~, [P~ − λ~, A~]u~〉 = 〈(P~ − λ~)u~, A~u~〉 − 〈A~u~, (P~ − λ~)u~〉 = o(~).

Using the above identity, this gives

〈u~,OpW~ ({p, a})u~〉 = o(1),
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which implies that any semiclassical measure µ satisfies µ ({p0, a}) = 0. This infinitesimal
equation is actually equivalent with the invariance (6.5): since we may replace a by a ◦ Φt

p0

in the above identity, we get:

∀t ∈ [0, T ], 0 = µ
({
p0, a ◦ Φt

p0

})
= µ(

d

dt
a ◦ Φt

p0
) =

d

dt
µ(a ◦ Φt

p0
)

=⇒µ(a ◦ ΦT
p0

)− µ(a ◦ Φ0
p0

) = 0.

�

Appendix A. Appendix: Reminder on operator and spectral theory (on
Hilbert space)

Below we describe a few properties of spectral theory on H a separable Hilbert space (we’ll
be mostly interested in the case H = L2(Rd)).

A.1. Reminder: spectral theory of bounded operators. Let A : H → H be a bounded
operator. Its resolvent set

ρ(A) = {z ∈ C : (A− z) is invertible on H, with bounded inverse} .

Its spectrum Spec(A) = C \ ρ(A). The spectrum can be composed of isolated eigenvalues of
finite multiplicities (discrete spectrum) and essential spectrum (all the rest).

A bounded operator A admits an adjoint A∗, which is also bounded. A is selfadjoint iff
A = A∗.

Theorem A.1. (Spectral theorem) For A a bounded selfadjoint operator, there exists a
probability space (X,M, µ), a unitary operator U : H → L2(X,µ) and a function f ∈
L∞(X,µ) such that

(A.1) A = U∗MfU, where Mf is the multiplication by f.

Note that the pure point spectrum corresponds to the countable set {f(xi), xi an atom of µ}.

Corollary A.2. (Functional calculus of bounded selfadjoint operators) Take θ : R → R a
continuous function. Then, for A a bounded selfadjoint operator on H, if we represent A as
in (A.1), then the function θ ◦ f ∈ L∞(µ). We may then define the operator θ(A) as follows:

θ(A) = U∗Mθ◦fU.

One can easily check that this definition is compatible with more obvious one, in the case
where θ is a polynomial.
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We remind that an operator A : H → H is compact iff it maps the unit ball {‖u‖ ≤ 1} into
a precompact set of H (that is, a set with compact closure). Compact operators are rather
similar with operators of finite rank. In particular, their nonzero spectrum is exclusively
made of eigenvalues of finite multiplicities, which may accumulate only at zero.

A.2. Reminder: unbounded selfadjoint operators. An unbounded operator P is de-
fined by its domain D(P ) ⊂ H, which is assumed to be dense in H. This operator is closable
if there exists a closed operator P̄ which contains P (meaning that D(P ) ⊂ D(P̄ ) and they
coincide on D(P )).

The adjoint P ∗ (and its domain D(P ∗) is defined by duality: v ∈ D(P ∗) if

|〈v, Pu〉| ≤ C(v)‖u‖, for all u ∈ D(P ).

Then, one may define P ∗v by duality and density of D(P ): due to the above inequality, there
exists a unique state P ∗v ∈ H such that 〈v, Pu〉 = 〈P ∗v, u〉 for all u ∈ D(P ). This operator
is always closed.

If P ∗ is densely defined, then P is closable, and its closure can be obtained as P̄ = (P ∗)∗.

P is symmetric if P ⊂ P ∗: for all u, v ∈ D(P ), 〈v, Pu〉 = 〈Pv, u〉.

P is essentially selfadjoint if P̄ = P ∗.

P is selfadjoint if P = P ∗.

Theorem A.3. (Spectral theorem for unbounded selfadjoint operators) Let (A,Dom(A)) be
an unbounded selfadjoint operator on H, with dense domain. There exists a measure space
(X,M, µ), a unitary operator U : H → L2(X,µ) and a real valued measurable function f

such that

- ψ ∈ Dom(A) iff Uψ ∈ Dom(Mf ), meaning that MfUψ ∈ L2(X,µ)

- if this is the case, then Aψ = U∗MfUψ.

(A.2) A = U∗MfU.

The domain Dom(A) corresponds through U to the domain of the multiplication operator Mf

on L2(X,µ).

The easiest example is that where A is already a multiplication operator. For instance,
the operator of multiplication by x1, acting on L2(Rd), admits as domain the subspace{
u ∈ L2(Rd), x1u ∈ L2(Rd)

}
. We can take X = Rd
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Example A.4. Consider the Schrödinger operator of a free particle on Rd, P~ = −~2∆.
This operator is unbounded, its domain is the Sobolev space H2(Rd). Through the (unitary)
Fourier transform F~ it is mapped into the multiplication operator by |ξ|2 acting on the space
L2(Rd, dξ). So we may write

−~2∆ = F∗~M|ξ|2F~.

Corollary A.5. (Functional calculus of unbounded selfadjoint operators) Take θ : R→ C a
continuous bounded function22. Then, for A an unbounded selfadjoint operator on H, if we
represent A as in (A.2), then the function θ ◦ f ∈ L∞(µ). We may then define the operator
θ(A) as:

θ(A) = U∗Mθ◦fU.

This operator can be extended to H, where it is bounded, with ‖θ(A)‖H→H ≤ ‖θ‖C0(R) =

supt∈R |θ(t)|.

Theorem A.6. (Stone’s theorem) Suppose (A,Dom(A) ⊂ H) is a selfadjoint (possibly un-
bounded) operator. Then the function t 7→ U(t) = e−itA forms a strongly continuous unitary
group on H:

U(t)U(s) = U(t+ s), U(t)∗ = U(−t),

∀ψ ∈ H, ‖U(t)ψ − ψ‖ t→0−−→ 0.

Furthermore, for any ψ0 ∈ Dom(A), the family of states ψ(t) = U(t)ψ0 solves the Schrödinger
equation

i∂tψ(t) = Aψ(t), ψ(0) = ψ0,

and one has
U(t)ψ0 − ψ0

t

t→0−−→ −iAψ0.

E-mail address: stephane.nonnenmacher@universite-paris-saclay.fr

22In Reed-Simon this calculus is extended to bounded Borel functions, which are functions (i.e. everywhere
defined on R ) θ(t) such that for any open interval I the set θ−1(I) is a Borel set.
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