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Some notations

We list some notations used throughout the text.

The symbol N denotes the set of the natural numbers starting from 0.

If (M, T , µ) is a measure space and f : M → C is a measurable function, then we denote the
essential range and the essential supremum of f w.r.t. the measure µ:

essµ Ran f
def
=

{
z ∈ C : µ

{
x ∈M :

∣∣z − f(x)∣∣ < ϵ
}
> 0 for all ϵ > 0

}
,

essµ sup |f |
def
= inf

{
a ∈ R : µ

{
x ∈M :

∣∣f(x)∣∣ > a
}
= 0

}
.

If the measure µ is obvious in the context, we will omit to indicate it in the notations.

In the following, we will consider linear operators acting on a comple Banach space, which we will
usually denote by the letter B, but a large part of the notes will be focussed on the case of Hilbert
spaces. What we call a Hilbert space will mean a separable complex Hilbert space, which we will
generally denote by H.

Because we’ll have in mind mostly Hilbert spaces made of functions on Rd or some domain Ω ⊂ Rd,
we will denote the “vectors” of H by u, v, w . . .. For two vectors u, v ∈ H, ⟨u, v⟩ will denote the
sesquilinear scalar product of u and v. If several Hilbert spaces are considered in the problem, we will
specify the scalar product with the notation ⟨u, v⟩H. To respect the convention in quantum mechanics,
our scalar products will always be linear with respect to the second argument, and as antilinear with
respect to the first one:

∀α ∈ C ⟨u, αv⟩ = ⟨ᾱu, v⟩ = α⟨u, v⟩.

For example, the scalar product in the Lebesgue space L2(R) is defined by

⟨f, g⟩L2 =

∫
R
f(x)g(x) dx.

If A is a finite or countable set, ℓ2(A) denotes the vector space of square-summable functions u :
A→ C: ∑

a∈A

∣∣u(a)∣∣2 <∞.
This forms a Hilbert space, equipped with the scalar product

⟨u, v⟩ =
∑
a∈A

u(a)v(a).
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Note that when A = N or A = Z the functions u are sometimes written as sequences: u(a) = ua.

L(B) and K(B) denote the spaces of bounded linear operators, respectively of compact operators
from B to B. A similar notation applies also to bounded, resp. compact opertors on a Hilbert space
H.

Some functional spaces

If Ω ⊂ Rd is an domain (= convex open set) and k ∈ N, then Hk(Ω) denotes the kth Sobolev space
on Ω, i.e. the space of functions in L2, whose partial derivatives up to order k are also in L2(Ω). The
Sobolev space Hk is equipped with the scalar product:

(0.0.1) ⟨u, v⟩Hk =
∑
|α|≤k

⟨∂αu, ∂αv⟩L2 ,

where α = (α1, . . . , αd) ∈ Nd is a multiindex, and ∂α = ∂α
1

x1
· · · ∂αd

xd
is the multi-derivative operators.

It is complete w.r.t. the norm associated with this scalar product.

We will use a notation frequent in the theory of partial differential equations: the symmetric derivative
operator Dx = 1

i
∂x, as well as its multi-derivative version

Dα = Dα1
x1
· · ·Dαd

xd
= (−i)|α|∂α, α ∈ Nd.

By Hk
0 (Ω) we denote the completion in H

k(Ω) of the subspace C∞
c (Ω) (with respect to the norm of

Hk(Ω)). The symbol Ck(Ω) denotes the space of functions on Ω whose partial derivatives up to order
k are continuous; in particular, the set of the continuous functions is denoted as C0(Ω). This should
not be confused with the notation C0(Rd) for the space of continuous functions f : Rd → C vanishing
at infinity: lim|x|→∞ f(x) = 0. The subscript comp on a functional space indicates that its elements
have compact supports: for instance H1

comp(Rd) is the space of functions in H1(Rd) having compact
supports.

We denote by F : L2(Rd)→ L2(Rd) the Fourier transform, defined for f ∈ S(Rd) by:

Ff(ξ) = 1

(2π)d/2

∫
Rd

f(x) e−iξ·x dx.

The normalization makes this transform unitary on L2(Rd, dx). The Fourier transformed function Ff
will sometimes be denoted by f̂ .
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detailed account is given in the series by Reed&Simon, in particular [7, 8, 9].

Additional references for particular topics will be given throughout the text.
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Chapter 1

What is a Spectrum ?

1.1 The spectrum in physics

The term “spectrum” first appeared in different domains of physics; originally it described the decom-
position of the light observed from the spatial objects (like the sun, or other stars), when observed
through a device able to separate the different colors (that is, the different frequencies of the received
light). Quite often, one could observe peaks of luminosity at certain frequencies, above a more or
less uniform “background”. Chemists observed that the light emitted by some gases always produced
peaks at the same frequencies: the emitted spectra were thus characteristic of chemical elements,
and allowed to analyse chemical reactions inside stars.

In the study of electric circuits and electronics, one often observes a time signal (e.g. of the voltage
along some part of the circuit). This time signal S(t) can be analyzed through the Fourier transform,
or the Laplace transform

Ŝ(ω) =

∫ ∞

0

e−iωtS(t) dt

(we assume that the signal vanishes for negative times). Often one cannot detect the phase of Ŝ(ω),
but only observes |Ŝ(ω)|2, which is called the power spectrum of the signal S(t). For instance, the
RLC circuit leads to a power spectrum which is peaked at the characteristic frequency ω0 =

1√
LC
, the

width of the peak depending on the size of the resistance R.

In both examples, the spectrum corresponds to a decomposition in frequency. The hope is to analyze a
(possibly complicated) time signal, through a (hopefully small) set of characteristic frequencies, which
would contain most of the “interesting” information of the signal.

1.2 An example: Schrödinger evolution in quantum mechanics

This analysis is most relevant when the dynamics under study can be modeled by a semigroup gener-
ated by a linear operator. We will take for example the case of Quantum Mechanics, where the notion
of spectrum acquired a central place, which acted as a strong incentive to the fast development of
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spectral theory in mathematics.

The state of a quantum particle evolving in some domain (“box”) Ω ⊂ Rd is represented by a time-
dependent wavefunction

ψ : R ∋ t 7→ ψ(t) ∈ L2(Ω) .

The state of the particle at time t ∈ R is represented by the function ψ(t) ∈ L2(Ω). Quantum
mechanics is a probabilistic theory: if one uses a device to measure the position of the particle at time
t, then |ψ(t, x)|2 represents the probability density to detect the particle at the point x. With this
probabilistic interpretation in mind, one needs to enforce the normalization:

∀t ∈ R, ∥ψ(t)∥L2 = 1.

Quantum mechanics prescribes the law of evolution of ψ(t): it is given by the (time dependent)
Schrödinger equation

iℏ
∂

∂t
ψ(t, x) = − ℏ2

2m
∆ψ(t, x) + V (x)ψ(t, x),

where ∆ =
∑d

j=1
∂2

∂x2
j
is the Laplacian, and the real valued function V : Ω → R represents the

potential energy of the particle (e.g. the electric potential, if the particle carries an electric charge).

By rescaling the units of time and space, we can remove the physical constants, to obtain1:

(1.2.1) i
∂

∂t
ψ(t, x) = −∆ψ(t, x) + V (x)ψ(t, x) = [P ψ](t)

where P = −∆+V appears as a linear operator acting on the Hilbert spaceH = L2(Ω); it is called a
Schrödinger operator, or also the Hamiltonian of this quantum system. This equation therefore takes
the form of a linear evolution equation, where the operator P acts as the generator of a semigroup
on H.

Several mathematical questions pop up. A generic function ψ ∈ L2 does not admit derivatives in L2,
so ∆ψ is not well-defined on L2. This means that the operator ∆ is not defined on the whole of L2,
but only on a linear subspace of that space, namely the Sobolev space H2(Ω). If the potential V is
bounded on Ω, then H is still well-defined on H2(Ω). We call H2(Ω) the domain of the operator P ,
denoted by D(P ). In this course we will pay a special attention to the domains of operators.

Another question (both physical and mathematical) concerns the boundary behaviour of the functions
ψ(t): from physical ground, we may want to assume that the wavefunctions ψ(t, x) vanish when x
approaches the boundary of the box ∂Ω. One may want to take into account such a physical constraint,
when defining the domain of P .

1.2.1 The Schrödinger group

Semigroup theory, in particular the Hille-Yosida theorem, teaches us that, under favorable conditions
on the operator P : D(P )→ H, this operator will generate a semigroup of evolution, meaning that for
any initial data ψ(0) ∈ D(P ), the equation (1.2.1) admits a unique solution ψ ∈ C1(R+,H), defined

1. Implicitly, the functions ψ and V have been modified by the rescaling, but we keep the same notations.

Introduction to Spectral Theory, Fall 2022 Stéphane Nonnenmacher
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through a semigroup of bounded operators S(t) : H → H: ψ(t) = S(t)ψ(0). What is remarkable is
that this semigroup extends to the full Hilbert space H, namely the evolution is actually defined even
for initial data ψ(0) ̸∈ D(P ).

The “favorable conditions” on the operatorH can be expressed in terms of the resolvent of the opera-
tor, which will play a crucial role in these notes. We will give a more formal definition of the resolvent,
but roughly speaking it is a family of bounded operators R(z) = (P − z)−1 : H → H, depending on
complex parameter z defined on some open subset of C.

In the case of the Schrödinger operator P acting on L2(Ω), which is symmetric, these conditions can
be replaced by a positivity argument, provided the potential V is bounded from below. We will see
that, if one makes “good” choices of domainD(P ), the operator P is not only symmetric, but actually
selfadjoint. In this case, the semigroup generated by P extends to a unitary group (U t)t∈R on L2(Ω),
which describes the quantum evolution:

∀t ∈ R, ψ(t) = U tψ(0).

Formally, we may write U t = e−itP , eventhough the exponentiation of P cannot be defined by a
series.

1.2.2 Spectral expansion

In order to describe more quantitatively the behaviour of ψ(t) = U tψ(0), one is lead to study the
spectrum of the operator P . Let us restrict ourelves to the case where

i) the “box” Ω is bounded,

ii) one imposes Dirichlet boundary conditons on Ω,

iii) and the potential V ∈ L∞(Ω).

In that case, we will show that the spectrum of P is purely discrete: it is composed of a countable set
of real eigenvalues (λj)j∈N of finite multiplicities, associated with a family of eigenfunctions (φj)j∈N
which form an orthonormal Hilbert basis of L2(Ω). This spectral information allows to expand the
evolved state ψ(t), taking into account the decomposition of ψ(0) in this eigenbasis:

(1.2.2) ψ(0) =
∑
j∈N

⟨φj, ψ(0)⟩φj ∀t ∈ R, ψ(t) =
∑
j∈N

e−itλj ⟨φj, ψ(0)⟩φj.

We note that the spectrum of the differential operator P generally depends on the choice of its domain
D(P ), and so does the expansion (1.2.2). For instance, requiring Dirichlet, vs. Neumann boundary
conditions, leads to two different discrete spectra for P . This shows that the question of domain is not
just a mathematical subtlety, but it directly impacts the evolution of the quantum state.

Introduction to Spectral Theory, Fall 2022 Stéphane Nonnenmacher
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1.2.3 Stationary states

The above expansion shows that, if the initial state is an eigenstate of P , namely ψ(0) = φj for some
j, then the evolution of ψ is very simple:

ψ(t) = e−itλj ψ(0) = e−itλj φj .

The global phase factor e−itλj is not detectable physically, which explains why such a particle is said
to occupy a stationary state. A large part of atomic and molecular physics consists in computing
the eigenvalues (λj) and eigenstates (φj) of the corresponding Hamiltonian operator. Once this
spectrum is known, the evolution of the atom (or molecule) is often described in physics textbooks
as a sequence of “jumps” between different stationary states, induced by the interaction with an
external electromagnetic field (one speaks of light emission or absorption, depending on whether
the eigenvalue goes down or up). Such an evolution through “jumps” cannot simply result from the
Schrödinger group described above, and we will not try to do it here. Yet, it shows the importance of
identifying the spectra of Schrödinger operators in quantum physics.

1.3 Example of the heat equation

Let us briefly describe another equation making use of the spectral decomposition of the Laplacian on
a bouded open set Ω ⊂ Rd. The heat equation

∂tθ(t, x) = ∆θ(t, x)

describes the evolution of the temperature θ(t, x) in a body Ω, when this body is inserted in a thermo-
stat of given temperature θth ∈ R, starting from a given temperature distribution θ(0, x). The function
u(t) = θ(t)− θth describes the relative temperature. The physical condition of thermal contact at the
boundary of Ω imposes the constraint θ(t, x) = θth for all t > 0, x ∈ ∂Ω. It is easier to consider

the relative temperature u(t, x)
def
= θ(t, x) − θth, which satisfies the Dirichlet boundary conditions,

and satisfies the same heat equation as θ. The discrete spectrum of P = −∆ implies the following
spectral expansion for the function u:

(1.3.3) u(t) =
∑
j∈N

e−tλj ⟨φj, u0⟩φj.

As opposed to the expansion (1.2.2), we see that the above expansion is dominated by its first few
terms when t→∞. To understand the long time behaviour of the heat equation, it is not necessary
to identify the full spectrum, but only the “bottom” of the spectrum of P .

This example shows that, quite often, a partial description of the spectrum (like the identification of the
bottom of the spectrum, or the presence of a spectral gap at the bottom), already provides relevant
physical information for equations like the heat equation.

Focussing on selfadjoint operators on Hilbert spaces

In situations where the spectrum of P is not purely discrete, a similar (yet more complicated) decom-
position can be written. Such a decomposition uses the spectral theorem for selfadjoint operators.

Introduction to Spectral Theory, Fall 2022 Stéphane Nonnenmacher
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The power of this theorem, and its relevance for quantum mechanics, induce us to devote a large part
of the present notes to the specific case of selfadjoint operators defined on a Hilbert space. We will
already see that the precise identification of such operators (including their domains) requires some
care. A nice way to construct such selfadjoint operators is through the use of quadratic forms.

Yet, spectral expansions (possibly with some remainder term) can also be helpful in nonselfadjoint sit-
uations, for instance when the natural functional space is not a Hilbert space, but only a Banach space,
for instance a space of Lebesgue type Lp(Ω), a Sobolev space based on such an Lp. Alternatively,
the space of continuous functions C0(Ω), or of finitely differentiable functions Ck(Ω) is often useful
when describing operators issued from the theory of dynamical systems, which is another application
of spectral theory.

Introduction to Spectral Theory, Fall 2022 Stéphane Nonnenmacher



Chapter 2

Bounded vs. Unbounded operators

In this section, after recalling the definition of a bounded operator on a Hilbert (or Banach) space,
we start to describe a more general class of linear operators, namely (densely defined) unbounded
operators, which will constitute the main focus of these notes. The Schrödinger operator P = −∆+
V on L2(Ω) mentioned in the introduction is and example of such unbounded operators; actually,
all differential operators belong to that class, which explains the importance of the study of these
operators towards understanding linear (and actually, also nonlinear) Partial Differential Equations.

2.1 Some definitions

A linear operator T on a Banach space B is a linear map from a subspace D(T ) ⊂ B (called the
domain of T ) to B. The domain is an important component of the definition of the operator, so one
should actually denote the operator by the pair (T,D(T )). Yet, we will often omit to mention the
domain, keeping the shorter notation T .

Across these notes, we will implicitly assume that the domain D(T ) is a dense subspace of B (w.r.to
the natural topology of B), unless the opposite is explicitly stated.

The range of (T,D(T )) is the set RanT
def
= {Tu : u ∈ D(T )}; this is obviously a linear subspace of

B. We say that a linear operator T is bounded if the quantity

µ(T )
def
= sup

u∈D(T )
u̸=0

∥Tu∥
∥u∥

is finite. On the opposite, an operator (T,D(T )) will be said to be unbounded if µ(T ) =∞.

If D(T ) = B and T is bounded, then the operator T : B → B is continuous. The set of continuous
operators on B forms a vector space, denoted by L(B). Equipped with the norm ∥T∥ def

= µ(T ), this
space has the structure of a Banach algebra: it is a Banach space, and also hosts an interal product
S, T ∈ L(B) 7→ ST = S ◦ T ∈ L(B), with the inequality ∥ST∥ ≤ ∥S∥ ∥T∥.
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Proposition 2.1.1 Assume (T,D(T )) is a bounded linear operator on B with a dense domain
D(T ). Then T can be uniquely extended to a continuous linear operator defined on all of B. This
extension is called the closure the T , and is usually denoted by T .

Proof.— Let us consider an element u ∈ B \D(T ). By the density of D(T ) in B, we may consider a
sequence (un ∈ D(T ))n∈N converging to u in B. The sequence (Tun)n∈N satisfies ∥Tun − Tum∥ ≤
∥T∥∥un − um∥, hence it is a Cauchy sequence in B, and admits a limit w ∈ B. Let us decide that w
is the image of u through an extended operator T ; we need to check that this image does not depend
on the choice of sequence converging to u. Indeed, if (ũn) is another sequence converging to u, with
T ũn converging to some w̃ ∈ B, then considering the alternating sequence (u0, ũ0, u1, ũ1, . . .) shows
that w = w̃, therefore the image of u is unique. It is easy to check that the resulting operator T is
linear, and bounded, with the same norm ∥T∥ = ∥T∥.

2.1.1 Closed unbounded operators

If (T,D(T )) is unbounded, it is not possible to extend it to all of B in a natural way. Yet, we can aim
at an alternative property, closedness, which refers to a topological property of the graph of T .

Definition 2.1.2 (Graph of a linear operator) The graph of a linear operator (T,D(T )) is the
set

grT
def
=

{
(u, Tu) : u ∈ D(T )

}
⊂ B × B.

This is obviously a linear subspace of B × B.

For two linear operators T1 and T2 in B, we write T1 ⊂ T2 if grT1 ⊂ grT2. Namely, T1 ⊂ T2 means
that D(T1) ⊂ D(T2) and that T2u = T1u for all u ∈ D(T1); the operator T2 is then called an
extension of T1, while T1 is called a restriction of T2.

Definition 2.1.3 (Closed operator, closable operator)

• An operator (T,D(T )) on B is called closed if its graph is a closed subspace in B × B.

• An operator (T,D(T )) on B is called closable, if the closure grT of the graph of T in
B × B is still the graph of a certain operator, which we call T . The latter operator T is
called the closure of T .

Introduction to Spectral Theory, Fall 2022 Stéphane Nonnenmacher
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An easy exercise shows that any bounded operator T ∈ L(B) is closed. Similarly, if we start from
a bounded operator (T,D(T )) defined on a dense domain, the extension T constructed in Proposi-
tion 2.1.1 is the closure of T .

The closedness property can be characterized in terms of sequences.

Proposition 2.1.4 A linear operator T in B is closed if and only if, for any sequence (un)n∈N
satisfying the following two conditions:

i) the sequence (un)n∈N converges to some element u ∈ B,

ii) the sequence (Tun)n∈N converges to v ∈ B,

then one has u ∈ D(T ) and v = Tu.

Another characterization of the closedness can be obtained by introducing an auxiliary norm onD(T ),
called the graph norm.

Definition 2.1.5 (Graph norm) Let (T,D(T )) be a linear operator on B. We define on D(T )
the function:

u 7→ ∥u∥T
def
= ∥u∥B + ∥Tu∥B.

One easily checks that it makes up a norm on D(T ). We call it the graph norm for T .
If B = H is a Hilbert space, the graph norm is usually defined alternatively as

∥u∥′T
def
=

√
∥u∥2H + ∥Tu∥H

This definition has the advantage to be a Hilbert norm, associated with the scalar product
⟨u, v⟩T = ⟨u, v⟩+ ⟨Tu, Tv⟩. This norm is equivalent with ∥ · ∥T .

If T is bounded, the graph norm is equivalent with the standard norm. But this is not the case for an
unbounded operator.

The closedness property can then be characterized as follows.

Proposition 2.1.6 Let (T,D(T )) be a linear operator on B.

i) (T,D(T )) is closed iff the domain D(T ), equipped with the graph norm, is a complete
Banach space.

Introduction to Spectral Theory, Fall 2022 Stéphane Nonnenmacher
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ii) if (T,D(T )) is closable, then the domain D(T ), equipped with the graph norm, can be
completed inside B, namely its completionD(T )

∥·∥T can be identified with a certain subspace
of B, thereby extending the norm ∥ · ∥T to that subspace. This subspace is then the domain
D(T ) of the operator T .

The second point is a bit subtle: a normed space like (D(T ), ∥ · ∥T ) will always admit a formal
completion, that is a Banach space B̃ such that D(T ) embeds into B̃ isometrically, and in a dense
way. However, in general it is not clear whether B̃ can be identified with a subspace of the initial
Banach space B. See Example 2.1.11 for a counter-example to this property.

Proposition 2.1.7 (Closed graph theorem) A linear operator T on B with D(T ) = B is closed
if and only if it is bounded.

Proof.— The implication bounded =⇒ closed is obvious. Conversely, let us assume that T is closed.
Its graph grT is thus a closed linear subspace of the Banach space B ×B, hence grT can be viewed
itself as a Banach space. Consider the two natural projections p1, p2 : B×B → B; they are obviously
continuous linear maps. Their restrictions on grT → B are still continuous. In particular, the first
projection p1 : grT → B is a continuous bijection. The isomorphism theorem states that the inverse
map q : B → grT is also a continuous bijection. Finally, the composition p2◦q : B → B is continuous.
But note that p2 ◦ q is nothing but T itself.

(u, Tu)
p2←→
q

Tu

↓ p1 ↙ T
u

We now give some examples of closed unbounded operators.

Example 2.1.8 (Multiplication operator) Take H = L2(Rd) and pick f ∈ L∞
loc(Rd). Define a

linear operator Mf in H as follows:

D(Mf ) = {u ∈ L2(Rd) : fu ∈ L2(Rd)} and Mfu = fu for u ∈ D(Mf ).

It can be easily seen that D(Mf ), equipped with the graph norm ∥·∥′Mf
, coincides with the weighted

space L2
(
Rd, (1+ |f |2)dx

)
, which is a Hilbert space, hence complete. This shows that Mf is closed.

Exercise 2.1.9 For any p ∈ [1,∞[, one may define a closed multiplication operator Mf on B =
Lp(Rd) in a similar way.

Using the Fourier transform, we are able to transform multiplication operators on H = L2 into differ-
ential operators. Let us start with the most famous one, the Laplacian on Rd, which will appear many
times in those notes.
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Example 2.1.10 (Laplacians in Rd) Take H = L2(Rd) and consider two operators in H:

T0u = −∆u, D(T0) = C∞
c (Rd),

T1u = −∆u, D(T1) = H2(Rd) (second Sobolev space).

We are going to show that T0 = T1 (this implies that T1 is closed, while T0 is not).
For this aim, we will use the Fourier transform to transform the differential operator ∆ into a
multiplication operator.
When acting on a function f ∈ S(Rd), we have the identity

F∆f(ξ) = −|ξ|2Ff(ξ), ξ ∈ Rd,

showing that −∆ is conjugate to the multiplication operator by |ξ|2.
By duality, the above identity holds as well for distributions f ∈ S ′(Rd). But we would like to
restrict −∆ to the Sobolev space H2(Rd). How does this space translate on the Fourier side?

f ∈ H2(Rd)⇐⇒ f̂ , ξj f̂ , ξjξkf̂ ∈ L2(Rd), for any indices j, k.
The conditions on the right-hand side can be simplified. Indeed, the bounds:

(2.1.1) ∀ξ ∈ Rd, ∀j, k = 1, . . . , d, |ξjξk| ≤
ξ2j + ξ2k

2
≤ |ξ|2, |ξj| ≤

1 + ξ2j
2
≤ (1 + |ξ|2),

imply that

f ∈ H2(Rd)⇐⇒ (1 + |ξ|2)f̂ ∈ L2(Rd)

⇐⇒ (1−∆)f ∈ L2(Rd)

⇐⇒ f, ∆f ∈ L2(Rd) .

(2.1.2)

The first line shows that the operator T1, with domain H2(Rd), is unitarily conjugate through the
Fourier transform to the operator T̂ defined by

D(T̂ ) = {g ∈ L2 : |ξ|2g ∈ L2}, T̂ g(ξ) = |ξ|2g(ξ).

In other words, we have the exact conjugacy

T1 = F−1 T̂ F , D(T1) = F−1D(T̂ ).

This conjugacy shows the following relation between the graphs of the two operators:

grT1 = {(F−1u,F−1T̂ u) : u ∈ D(T̂ )} = K(gr T̂ ),

where K is the linear operator on L2×L2 defined by K(u, v) = (F−1u,F−1v). The unitarity of F
implies that K acts unitarily on L2 × L2, in particular it maps closed sets to closed sets.
Now, the example 2.1.8 shows that the multiplication operator T̂ is closed on L2(Rd), which means
that gr T̂ is closed in L2 × L2. Finally, grT1 = K(gr T̂ ) is a closed set too, hence T1 is closed.
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Since T0 is a restriction of the closed operator T1, namely D(T0) ⊂ D(T1), it follows that the closure
of D(T0) is contained in the closed subspace D(T1), which implies that D(T0) is a graph. Hence
T0 is closable, and the domain of its closure D(T 0) is the closure of D(T0) in the graph norm of T0
(Proposition 2.1.6).
What is this graph norm? The inequalities (2.1.1) show that the standard norm on H2, expressed
through the Fourier conjugacy, reads:

∥f∥2H2 = ∥f̂∥2L2 +
∑
j

∥ξj f̂∥2L2 +
∑
j,k

∥ξjξkf̂∥2L2 ,

This norm is equivalent with the modified norm

∥f∥2modif
def
= ∥f̂∥2L2 + ∥|ξ|2f̂∥2 = ∥f∥2L2 + ∥∆f∥2L2 ,

namely the graph norm of T0, so the two norms generate the same topology. The space D(T1) =
H2 is hence complete w.r.to the norm ∥ · ∥modif = ∥ · ∥T1 ∼ ∥ · ∥H2 (using the first item of
Proposition 2.1.6, this is a second way to prove that T1 is closed).
Finally, we know that D(T0) = C∞

c is a dense subspace in H2 (w.r.to the corresponding Sobolev
norm), hence its closure in H2 is the full space H2 = D(T1). In conclusion, D(T0) = H2 = D(T1),
or equivalently T0 = T1.

Let us now exhibit a rather simple operator which does NOT admit a closure.

Example 2.1.11 (Non-closable operator) Take B = Lp(R) for some p ∈ [1,∞[, and pick a
nontrivial function g ∈ B. Consider the rank-1 operator L defined on D(L) = C0(R) ∩ Lp(R) by
Lf = f(0)g. Let us show that this operator is not closable.
Choose some nontrivial function f ∈ D(L). It is easy to construct two sequences (fn)n∈N, (gn)n∈N
in D(L) such that both converge in Lp to f , but with fn(0) = 0 and gn(0) = 1 for all n. Then for
all n we have Lfn = 0, while Lgn = g: both sequences Lfn and Lgn converge to different limits.
This shows that the closure of grL in B × B is not a graph, since it contains both elements (f, 0)
and (f, g). Hence L is not closable.
If we try to complete D(L) w.r.to the graph norm ∥ · ∥L, we will obtain a space B̃ isometric to
Lp(R) × R, which takes into account both the limiting function limn f ∈ Lp(R), and the limiting
values limn fn(0). The space B̃ is “larger” than Lp(R), since it records the extra information of the
value taken by the function at zero.

The next example generalizes the case of the Laplacian, and shows that considering differential oper-
ators acting on a domain Ω ⫋ Rd with boundaries makes the analysis more tricky.

2.1.2 Partial differential operators

Let Ω be an open subset of Rd and P (x,Dx) be a partial differential expression with C∞ coefficients:

P (x,Dx) =
∑
|α|≤m

aα(x)D
α, aα ∈ C∞(Ω),
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where we use the notation Dx = 1
i
∂x, and Dα = Dα1

x1
· · ·Dαd

xd
for multiple derivatives. Choosing as

reference space H = L2(Ω), this differential expression defines a linear operator P on the domain
D(P ) = C∞

c (Ω), Pu(x) = P (x,Dx)u(x). Like in the example of the Laplacian, we try to extend P
to some larger subspace of L2.

The theory of distributions teaches us that, for any u ∈ L2, the expression P (x,Dx)u makes sense as
a well-defined distribution inD′(Ω), yet generally this distribution is not in L2. However, if a sequence
(un ∈ D(P )) converges to u in L2, and satisfies Pun → v in L2, then the two limits hold as well
in D′. Because P acts continuously D′ → D′, the limit v must be equal to the (unique) distribution
defined by Pu. Hence, the limit v is independent of the sequence (un) converging towards u. This
shows that the closure of grP in L2 × L2 is a graph, hence that P is closable. Its closure P = Pmin
is called the minimal closed extension, or minimal operator. The above reasoning also shows that
grP = grP must be included in the set

(2.1.3)
{
(u, f) ∈ H ×H : P (x,Dx)u = f in D′(Ω)

}
.

The above set defines a closed graph in L2 × L2, the corresponding operator is called the maximal
extension, or the maximal operator, and is denoted by Pmax. Its domain is

D(Pmax) =
{
u ∈ H : P (x,Dx)u ∈ H

}
,

where, as above, P (x,Dx)u is understood in the sense of distributions.

We have already shown the inclusion Pmin ⊂ Pmax, and we saw in the Example 2.1.10 of the Laplacian
on Rd, that one can have Pmin = Pmax. But one may easily find examples where this equality does not
hold.

Example 2.1.12 If we take P (x,Dx) = d/dx and Ω = R∗
+, with domain D(P ) = C∞

c (R∗
+), we

find for the minimal closed extension
D(Pmin) = C∞

c (R∗
+)

H1
= H1

0 (R∗
+),

(the space of H1 functions vanishing at x = 0), since the graph norm ∥ · ∥P is equivalent with the
H1 norm. On the other hand,

D(Pmax) = {u ∈ L2(R∗
+), u

′ ∈ L2(R∗
+)} = H1(R∗

+)

(with no condition at x = 0).

In general, one may expect that Pmin ⫋ Pmax if Ω has a boundary.

Such questions become more involved if one studies partial differential operators with more singular
coefficients (e.g. with coefficients which are not smooth but just belong to some Lp), since one
cannot easily define their action on distributions. During the course, we will nevertheless deal with
certain classes of such operators (one easy case is the multiplication operator by an L∞

loc function of
Example 2.1.8).

In the next section, we restrict ourselves to operators P defined on a Hilbert space. In this framework,
we will define and study the adjoint operator of P ; we will see that the very definition of the adjoint
is not obvious, in cases where P is unbounded on H.

Note that adjoints can also be defined on Banach space B, yet the adjoint operator then acts on the
dual space B′, which is generally different from B. We will not describe this situation in those notes.
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2.2 Adjoint of an operator on a Hilbert space

In this section all operators are defined on a Hilbert space H.

2.2.1 Adjoint of a continuous operator

For a continuous operator T ∈ L(H), its adjoint T ∗ is defined by the identity

(2.2.4) ⟨u, Tv⟩ = ⟨T ∗u, v⟩ for all u, v ∈ H.

The fact that these identities uniquely define the operator T ∗ comes from the Riesz representation
theorem: for each u ∈ H the map H ∋ v 7→ ⟨u, Tv⟩ ∈ C is a continuous linear functional; the Riesz
theorem states that there exists a unique vector w ∈ H such that ⟨u, Tv⟩ = ⟨w, v⟩ for all v ∈ H.
One can then easily check that the map u 7→ w is linear, and by estimating the above scalar product
with v = w, one finds that this map is bounded:

⟨w,w⟩ = ⟨u, Tw⟩ =⇒ ∥w∥2 ≤ ∥u∥∥T∥∥w∥ =⇒ ∥w∥ ≤ ∥T∥∥u∥

We may hence denote this map by: w = T ∗u, thus defining the operator T ∗. The above bound shows
that ∥T ∗∥ ≤ ∥T∥. Actually, the symmetry of (2.2.4) shows that (T ∗)∗ = T , hence we actually have
∥T ∗∥ = ∥T∥.

2.2.2 Adjoint of an unbounded operator

Let us try to generalize this construction for an unbounded operator T . As we will see, the main
difficulty consists in properly defining the domain of T ∗.

Definition 2.2.1 (Adjoint operator) Let (T,D(T )) be a linear operator inH, with D(T ) dense
in H. We then define its adjoint operator (T ∗, D(T ∗)) as follows.
The domain D(T ∗) consists of the vectors u ∈ H for which the map D(T ) ∋ v 7→ ⟨u, Tv⟩ ∈ C
is a bounded linear form on H. For such u there exists, by the Riesz theorem, a unique vector
(which we denote by T ∗u) such that ⟨u, Tv⟩ = ⟨T ∗u, v⟩ for all v ∈ D(T ).

We notice that our assumption of a dense domain D(T ) = H is crucial here: if it is not satisfied, then
there are several ways to extend the linear form defined on D(T ), into a bounded linear form on H.
Equivalently, the vector T ∗u is not uniquely determined, since one can add to T ∗u an arbitrary vector
in D(T )⊥. Hence, when we mention the adjoint of an operator T , we always implicitly assume that
D(T ) is dense.
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Let us give a geometric interpretation of the adjoint operator. Consider the linear “−π/2 rotation”
operator

J : H×H → H×H, J(u, v) = (v,−u) .

We notice that J commutes with taking the orthogonal complement in H ×H: for any subset V ⊂
H×H, J(V )⊥ = J(V ⊥).

Proposition 2.2.2 (Geometric interpretation of the adjoint) Let T be a linear operator in H,
with dense domain D(T ). Then the graph of the adjoint operator T ∗ is given by:

(2.2.5) grT ∗ = J(grT )⊥ = J
(
(grT )⊥

)
.

Proof.— By definition, u ∈ D(T ∗) iff there exists a vector T ∗u such that, for any v ∈ D(T ),

0 = ⟨u, Tv⟩H − ⟨T ∗u, v⟩H
=

⟨
(u, T ∗u), (Tv,−v)

⟩
H×H

=
⟨
(u, T ∗u), J(v, Tv)

⟩
H×H .

(2.2.6)

Equivalently, u ∈ D(T ∗) iff there exists T ∗u ∈ H such that (u, T ∗u) is orthogonal to the subspace
J(grT ). Hence, the set of admissible pairs (u, T ∗u) is given by the orthogonal complement to J(grT ).
We know that these pairs form a graph (to each admissible u corresponds a unique T ∗u). We finally
get the required identify grT ∗ = J(grT )⊥.

A byproduct of the equalities (2.2.6) is the identity

KerT ∗ = (RanT )⊥ .

As a simple application we obtain

Proposition 2.2.3 i) The adjoint T ∗ is a closed operator.
ii) If T is closable, then T ∗ = (T )∗.

Proof.— In (2.2.5), we remember that the orthogonal complement of a subspace is always a closed
subspace, so grT ∗ is closed, meaning that T ∗ is a closed operator.

Besides, the map J is continuous, and the complement of a subspace is equal to the complement of
its closure, so

J(grT )⊥ = J(grT )
⊥
= J(grT )⊥ = J(grT )⊥,

which proves the second item.

So far, we do not know if the domain of the adjoint operator could be nontrivial. This is discussed in
the following proposition.
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Proposition 2.2.4 (Domain of the adjoint) Let (T,D(T )) be a closable operator on H, with
dense domain. Then
i) D(T ∗) is a dense subspace of H;
ii) T ∗∗ def

= (T ∗)∗ = T .

Proof.— The item ii) easily follows from i) and Eq. (2.2.5): one remarks that J2 = −1, and that
taking twice the orthogonal complement results in taking the closure of the graph, hence grT .

Now let us prove i). Assume the opposite conclusion, namely that some nonzero vector w ∈ H is
orthogonal to D(T ∗): ⟨u,w⟩ = 0 for all u ∈ D(T ∗). Then for all u ∈ D(T ∗) one has

⟨J(u, T ∗u), (0, w)⟩H×H = ⟨u,w⟩+ ⟨T ∗u, 0⟩ = 0,

which means that (0, w) ∈ J(grT ∗)⊥ = grT . Since the operator T is closable, the closure grT must
be a graph, which imposes w = 0, so we have a contradiction.

Remark 2.2.5 In the above Proposition, the closability of T is a necessary assumption. Indeed, let
us come back to the Example 2.1.11 of the nonclosable operator L. The adjoint of this operator
has for domain D(L∗) = {g}⊥, a closed subspace of codimension 1, hence not dense on L2. Note
that the operator L∗ vanishes on this domain.

Let us consider some examples of adjoints of closable operators.

Example 2.2.6 (Adjoint of a bounded operator) The general definition (2.2.1) for the adjoint
operator is compatible with the definition of the adjoint of a continuous linear operators given in
section 2.2.1: in case T is bounded and D(T ) = H, the domain of the adjoint is D(T ∗) = H, and
the relation ⟨u, Tv⟩ = ⟨T ∗u, v⟩ for all u, v ∈ H fully defines T ∗.

Example 2.2.7 (Laplacian on Rd) Let us consider again the operators T0 and T1 from Exam-
ple 2.1.10, and show that T ∗

0 = T1.
By definition, the domain D(T ∗

0 ) consists of the functions u ∈ L2(Rd) for which there exists a vector
f ∈ L2(Rd) such that

∀v ∈ D(T0) = C∞
c (Rd),

∫
Rd

u(x)(−∆v)(x)dx =

∫
Rd

f(x)v(x)dx .

This equation exactly means that f = −∆u as a distribution in D′(Rd). Therefore, D(T ∗
0 ) consists

of the functions u ∈ L2 such that the distribution −∆u is actually in L2. The identities (2.1.2)
showed that this is exactly the space H2(Rd) = D(T1). So D(T ∗

0 ) = D(T1), and the two operators
both act by u 7→ −∆u, they are thus identical.

Let us come back to the simplest differential operator, which appeared in Example 2.1.12.

Introduction to Spectral Theory, Fall 2022 Stéphane Nonnenmacher



CHAPTER 2. BOUNDED VS. UNBOUNDED OPERATORS 21

Example 2.2.8 Consider the operator A0 acting through A0u = Dxu
def
= −i∂xu for u ∈ D(A0) =

C∞
c (]0, 1[). In Example 2.1.12 we showed that the “minimal operator” A0 admits the domain

D(A0) = H1
0 (]0, 1[).

Let us show that the adjoint A∗
0 admits the larger domain D(A∗

0) = H1(]0, 1[). Indeed, if v ∈
C∞

c (]0, 1[), the equation
⟨u,Dxv⟩ = ⟨Dxu, v⟩

holds for any u ∈ C∞(]0, 1[) thanks to an integration by parts, and the resulting linear form in v can
be continuously extended to all of v ∈ L2, as long as Dxu ∈ L2, hence as long as u ∈ H1(]0, 1[).
To anticipate the Definition 2.2.10 below, the operator A0 is symmetric, but not essentially selfad-
joint, since A0 ⫋ A∗

0. Equivalently, the non-inclusion A∗
0 ̸⊂ A∗∗

0 = A0 shows that the operator A∗
0

is not symmetric.

Exercise 2.2.9 Remember the multiplication operatorMf from Example 2.1.8, for a complex valued
function f . Show that (Mf )

∗ =Mf̄ .

2.2.3 Symmetric and Selfajdoint operators

The following definition introduces classes of linear operators defined on a Hilbert space, which will be
studied intensively in this course.

Definition 2.2.10 (Symmetric, self-adjoint, essentially self-adjoint ops) An operator
(T,D(T )) on a Hilbert space is said to be symmetric (or Hermitian) if

⟨u, Tv⟩ = ⟨Tu, v⟩ for all u, v ∈ D(T ).

Equivalently, T is symmetric iff T ⊂ T ∗ (that is, T ∗ is an extension of T ).

• T is called selfadjoint if T = T ∗ (in particular, D(T ) = D(T ∗))

• T is called essentially selfadjoint if T is closable and T is self-adjoint: T = (T )∗ = T ∗.

An important feature of symmetric operators is their closability:

Proposition 2.2.11 A symmetric operator (T,D(T )) is necessarily closable.

Proof.— Indeed, for a symmetric operator T we have grT ⊂ grT ∗ and, due to the closedness of T ∗,
grT ⊂ grT ∗ is a graph, the graph of the closure T .
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Example 2.2.12 (Free Laplacian on Rd) The Laplacian T1 from Example 2.1.10 is selfadjoint.
Indeed, we have shown in Ex. 2.2.7 that T ∗

0 = T1, hence T ∗
1 = T ∗∗

0 = T0 = T1, where the last
equality uses Ex. 2.1.10. This shows that T1 is selfadjoint, while its restriction T0 is essentially
selfadjoint.
The operator T1 is called the free Laplacian on Rd.

Example 2.2.13 (Continuous symmetric operators are self-adjoint) For T ∈ L(H), being sym-
metric is equivalent to being selfadjoint, since the domains of T and T ∗ are both the full space H.

For unbounded operators, proving the symmetry is often easy, but proving selfadjointness requires a
precise identification of the domains, which may be quite difficult in general. This is a reason why, in
the next section, we will appeal to quadratic forms to construct selfadjoints operators.

Example 2.2.14 (Self-adjoint multiplication operators) As follows from example 2.2.9, the mul-
tiplication operator Mf on L2(Rd) from example 2.1.8 is self-adjoint iff f(x) ∈ R for a.e. x ∈ Rd.

The following proposition will allow to construct a large class of self-adjoint operators.

Proposition 2.2.15 Let T be an injective selfadjoint operator, then its inverse T−1 is also self-
adjoint (notice that the inverse may be unbounded).

Proof.— We show first that D(T−1)
def
= RanT is dense in H. Let u ⊥ RanT , then ⟨u, Tv⟩ = 0 for all

v ∈ D(T ). This can be rewritten as ⟨u, Tv⟩ = ⟨0, v⟩ for all v ∈ D(T ), which shows that u ∈ D(T ∗),
with image T ∗u = 0. Since by assumption T ∗ = T , we have u ∈ D(T ) and Tu = 0. Since T in
injective, the vector u must be trivial. Hence RanT is dense.

Now consider the “switch operator” S : H × H → H × H given by S(u, v) = (v, u). One has
then grT−1 = S(grT ). We conclude the proof by noting that S commutes with the operation of the
orthogonal complement in H ×H and anticommutes with J . From the assumption grT = grT ∗ =
J(grT )⊥, we draw:

grT−1 def
= S(grT )

ass.
= S(grT ∗) = S

(
J(grT )⊥

)
= −JS

(
(grT )⊥

)
= J

(
S grT

)⊥
J(grT−1)⊥ = gr(T−1)∗.

It is in general rather easy to check that an operator is symmetric (for differential operators, this fact
often involves some form of integration by parts). There exist explicit criteria to check (essential)
selfadjointness.

Proposition 2.2.16 Assume the operator (T,D(T )) is symmetric on the Hilbert space H. Then
the following properties are equivalent:
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i) (T,D(T )) is essentially selfadjoint (selfadjoint);
ii) Ker(T ∗ + i) = Ker(T ∗ − i) = {0} (and furthermore (T,D(T )) is closed);
iii) Ran(T + i) = Ran(T − i) is dense in H (is equal to H).

Proof.— We will give the proofs for the selfadjoint case only, the small adaptations necessary for the
essentially selfadjoint case being left to the reader.

i) =⇒ ii): easy.

ii) =⇒ iii): we have 0 = Ker(T ∗ ± i) = Ran(T ∓ i)⊥, which shows that Ran(T ± i) is dense.
Assuming the closedness of T , we want to show the closedness of Ran(T ± i). For this, we use
“Pythagore’s theorem”:

∥(T + i)u∥2 = ⟨(T + i)u, (T + i)u⟩ = ⟨Tu, Tu⟩+ ⟨u, u⟩

Assume a sequence (un ∈ D(T )) is such that (T + i)un is Cauchy. The sequence ((T + i)un) is
Cauchy, hence the above equality shows that so are (un) and (Tun). The closedness ofA then implies
that un → u and Tun → Tu, hence (T + i)un → (T + i)u ∈ Ran(T + i). As a result, Ran(T + i) is
closed, and is equal to H. The proof for Ran(T − i) is identical.

iii) =⇒ i) The symmetry means that T ⊂ T ∗, and we want to show the inverse inclusion T ∗ ⊂ T .

Take v ∈ D(T ∗), so that (T ∗ + i)v ∈ H. From the assumption that Ran(T + i) = H, there exists
u ∈ D(T ) such that (T ∗+i)v = (T+i)u; since T ⊂ T ∗, this identity also reads (T ∗+i)v = (T ∗+i)u,
hence v − u ∈ Ker(T ∗ + i) = Ran(T − i)⊥. The assumption Ran(T − i) = H shows that u = v, so
that D(T ∗) ⊂ D(T ).

Remark 2.2.17 (Why focus on selfadjoint operators?) As mentioned in the introduction, self-
adjoint operators lie at the heart of quantum mechanics, not just in as Hamiltonians generating
the quantum evolution, but also as quantum observables, selfadjoint operators reprensenting the
quantities which can (in theory) be measured in an experiment.
Mathematically, selfadjoint operators enjoy a very special spectral structure: we will establish the
spectral theorem for selfadjoint operators, which provides a general description of these operators,
in terms of their spectral measure. From this theorem we will also construct a functional calculus
for selfadjoint operators, that is define operators of the form f(T ), where T is selfadjoint, and
f : R→ C is an arbitrary function.

2.3 Exercises

Exercise 2.3.1 (a) Let H1 and H2 be Hilbert spaces. Let A be a linear operator in H1, B be
a linear operator in H2. Assume that there exists a unitary operator U : H2 → H1 such that
D(A) = UD(B) and that U∗AUf = Bf for all f ∈ D(B); such A and B are called unitary
equivalent.

Introduction to Spectral Theory, Fall 2022 Stéphane Nonnenmacher



CHAPTER 2. BOUNDED VS. UNBOUNDED OPERATORS 24

Let two operators A and B be unitarily equivalent. Show that A is closed/symmetric/self-adjoint
iff B has the same property.
(b) Let (λn) be an arbitrary sequence of complex numbers, n ∈ N. In the Hilbert space ℓ2(N)
consider the operator S:

D(S) =
{
(xn) : there exists N such that xn = 0 for n > N

}
, S(xn) = (λnxn).

Describe the closure of S.
(c) Now let H be a separable Hilbert space and T be a linear operator in H with the following
property there exists an orthonormal basis (en)n∈N of H with en ∈ D(T ) and Ten = λnen for all
n ∈ N, where λn are some complex numbers.

i) Describe the closure T of T . Hint: one may use (a) and (b).

ii) Describe the adjoint T ∗ of T .

iii) Let all λn be real. Show that the operator T is self-adjoint.

Exercise 2.3.2 Let A and B be self-adjoint operators in a Hilbert space H such that D(A) ⊂ D(B)
and Au = Bu for all u ∈ D(A). Show that D(A) = D(B). (This property is called the maximality
of self-adjoint operators.)

Exercise 2.3.3 We consider a linear operator A on a Hilbert space H, and a continuous operator
B on the same space; we define their sum A + B as the operator S with domain D(S) = D(A),
such that Su def

= Au + Bu for each u ∈ D(S). (We note that defining the sum of two unbounded
operators is a nontrivial task in general, due to questions of domains.)
(a) Assumed A is a closed operator and B is continuous. Show that A+B is closed.
(b) Assume, in addition, that A is densely defined. Show that (A+B)∗ = A∗ +B∗ (here the sum
A∗ +B∗ is defined similarly as A+B).

Exercise 2.3.4 Let H = L2(]0, 1[). For α ∈ C, consider the operator Tα acting as Tαf = if ′ on
the domain

D(Tα) =
{
f ∈ C∞(

[0, 1]
)
: f(1) = αf(0)

}
.

(a) Describe the adjoint of Tα.

(b) Describe the closure Sα
def
= Tα.

(c) Find all α for which Sα is selfadjoint.
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