Université Paris-Saclay • M2 Analyse Modélisation Simulation Introduction to spectral theory (2016-2017, 1er semestre)

Stéphane Nonnenmacher

Examen intermédiaire (26 octobre 2016)

Exponential mixing of the angle-doubling map

Our goal is to analyse the long time dynamics of a simple map (or *transformation*) T defined on the 1-dimensional torus $\mathbb{T} = \mathbb{R}/\mathbb{Z}$:

$$T: \mathbb{T} \to \mathbb{T}$$
$$x \mapsto T(x) = 2x \mod \mathbb{Z}.$$

This transformation T is often called the angle doubling map. Because |T'(x)| > 1 at each point $x \in \mathbb{T}$, this map is said to be *uniformly dilating*. For this reason, it is *strongly chaotic*. One aspect of this chaos is the *mixing property*, which will be examined below. The analysis of the long time iterates of T, namely the maps $T^n = T \circ \cdots \circ T$, $n \to \infty$, will lead us to study an associated *transfer operator*, on various functional spaces.

- 1. Show that the map T is C^{∞} on \mathbb{T} . Here and below, the torus \mathbb{T} can be identified with the unit interval I = [0, 1), with periodic boundary conditions. Draw the graph of T using this identification
- 2. The long time behaviour of the map T is studied through the *correlation function* between two *test functions* $f, g : \mathbb{T} \to \mathbb{R}$: the correlation at *time* n > 0 between the two functions is defined as

(1)
$$C_{f,g}(n) \stackrel{\text{def}}{=} \int f(x) g \circ T^n(x) dx - \int f(x) dx \int g(x) dx \,,$$

all integrals being taken on $\mathbb{T} \simeq [0, 1)$. The mixing property of the dynamics T is equivalent with the fact that $C_{f,g}(n) \to 0$ when $n \to \infty$. Our goal is to investigate more precisely this mixing.

- (a) For $f, g \in L^2(\mathbb{T})$, express the correlation function $C_{f,g}(t)$ in terms of scalar products involving f, g, the *n*-th iterate of the pull-back operator $A_T(f) \stackrel{\text{def}}{=} f \circ T$, and the constant function $e_0(x) = 1$.
- (b) Recall the formula for the spectral radius of a bounded operator. Since we are interested in scalar products involving iterates A_T^n for n large, justify why it makes sense to study the spectrum of A_T on $L^2(\mathbb{T})$.
- (c) Show that $A_T: L^2(\mathbb{T}) \to L^2(\mathbb{T})$ is bounded.
- (d) Show that this operator is an isometry. Compute its norm $||A_T||_{\mathcal{L}(L^2)}$. What can be deduced about the spectrum of A_T on L^2 ?

- (e) We will see later that it will be more convenient to express the correlations $C_{f,g}(n)$ in terms of the adjoint operator $\mathcal{L}_T = A_T^*$. \mathcal{L}_T is often called the **trans-fer operator** associated with the map T. Write down $C_{f,g}(n)$ in terms of the *n*-th power of \mathcal{L}_T .
- (f) Write down explicitly the action of \mathcal{L}_T on a function $f \in C^0(\mathbb{T})$.
- 3. To study the spectrum of A_T and \mathcal{L}_T more closely, we will use the Fourier decomposition of $L^2(\mathbb{T})$. We define the **Fourier modes** on \mathbb{T} by

$$e_k(x) = \exp(2i\pi kx), \quad k \in \mathbb{Z}, \quad x \in \mathbb{T}.$$

- (a) Check that each e_k belongs to $C^{\infty}(\mathbb{T})$.
- (b) Show that the modes $(e_k)_{k\in\mathbb{Z}}$ form an orthonormal family in $L^2(\mathbb{T})$. Deduce that the Fourier series of a function $f \in L^2(\mathbb{T})$,

$$f(x) = \sum_{k \in \mathbb{Z}} \hat{f}_k e_k(x) , \quad \hat{f}_k = \langle e_k, f \rangle_{L^2} ,$$

induces a unitary map between $f \in L^2(\mathbb{T})$ and $(\hat{f}_k) \in \ell^2(\mathbb{Z})$.

- (c) Compute the action of A_T on the Fourier modes e_k .
- (d) Deduce the action of \mathcal{L}_T on e_k . *Hint*: distinguish two cases, according to the parity of k. Is \mathcal{L}_T an isometry on $L^2(\mathbb{T})$?
- 4. For each k a positive odd integer, denote by \mathcal{V}_k the subspace of L^2 generated by the Fourier modes $\{e_{2^jk}, j \in \mathbb{N}\}$, and similarly for \mathcal{V}_{-k} . We will call $\overline{\mathcal{V}_{\pm k}}$ the L^2 -closures of these spaces.
 - (a) Show that A_T and \mathcal{L}_T leave each subspace $\overline{\mathcal{V}_k}$ invariant. We will denote $\mathcal{L}_{T,k} \stackrel{\text{def}}{=} \mathcal{L}_T \upharpoonright_{\overline{\mathcal{V}_k}}$.
 - (b) For k a given odd integer, show that $\mathcal{L}_{T,k}$ is unitarily equivalent with the shift operator S on $\ell^2(\mathbb{N})$: $S(\psi_j) = (\psi_{j+1})$, for any $(\psi_j)_{j \in \mathbb{N}} \in \ell^2(\mathbb{N})$.
 - (c) deduce that $\mathcal{L}_{T,k}$ admits as point spectrum the open unit disk $D_1 = \{z \in \mathbb{C}, |z| < 1\}$, and as spectrum the closed disk $\overline{D}_1 = \{z \in \mathbb{C}, |z| \le 1\}$. What is the spectrum of $A_{T,k} \stackrel{\text{def}}{=} A_T \upharpoonright_{\overline{\mathcal{V}_k}}$?
 - (d) For each $z \in D$, show that ker $(\mathcal{L}_{T,k} z)$ is 1-dimensional, and describe its eigenfunction $\phi_{k,z}(x)$ through its Fourier series. What is the dimension of ker $(A_{T,k} z)$?
- 5. Let us call $\mathcal{V}_0 = \mathbb{C}e_0$ the 1-dimensional space generated by the constant function e_0 . Check that \mathcal{V}_0 is an eigenspace of both A_T and \mathcal{L}_T .
- 6. Show that $L^2(\mathbb{T})$ can be written as the closure of the following orthogonal direct sum :

(2)
$$L^{2}(\mathbb{T}) = \left(\mathcal{V}_{0} \oplus \bigoplus_{k>0 \text{ odd}} (\overline{\mathcal{V}_{k}} \oplus \overline{\mathcal{V}_{-k}})\right)$$

- (a) What are the spectrum and the point spectrum of \mathcal{L}_T on L^2 ? What are the discrete and essential spectra of \mathcal{L}_T ?
- (b) Same questions for $A_T: L^2 \to L^2$.
- (c) show that for any $\rho \in (0,1)$, there exists $f,g \in L^2$ such that $|C_{f,g}(n)| \geq \rho^n ||f||_{L^2} ||g||_{L^2}$. Hint : use the eigenfunctions $\phi_{z,k}$.

As a result, for L^2 test functions there is no *uniform* exponential decay of the correlations.

7. In order to improve the decay of the correlations we will next assume that the test functions f, g are more regular than L^2 , namely, we will assume f, g are in some Sobolev space $H^p(\mathbb{T})$ for some $p \in \mathbb{N}^*$. We will use the following norm on $H^p(\mathbb{T})$:

(3)
$$||f||_{H^p}^2 \stackrel{\text{def}}{=} \sum_{k \in \mathbb{Z}} (1+k^2)^p |\hat{f}_k|^2$$

- (a) In the case p = 1, check that the norm $\| \bullet \|_{H^1}$ on H^1 is equivalent with the norm $\|f\|_1 = \|f\|_{L^2} + \|f'\|_{L^2}$.
- (b) Using the explicit expressions of A_T and \mathcal{L}_T , show that for any $f \in H^1(\mathbb{T})$, $\|(A_T f)'\|_{L^2} = 2\|f'\|_{L^2}$ and $\|(\mathcal{L}_T f)'\|_{L^2} \leq \frac{1}{2}\|f'\|_{L^2}$. *Hint*: for the second inequality, you may use the identity $(a+b)^2 \leq 2(a^2+b^2)$.
- (c) Deduce that A_T and \mathcal{L}_T are bounded operators $H^1(\mathbb{T}) \to H^1(\mathbb{T})$. Using the norm $\| \bullet \|_1$ on H^1 , show that $\|A_T\|_{\mathcal{L}(H^1)} \leq 2$ and $\|\mathcal{L}_T\|_{\mathcal{L}(H^1)} \leq 1$. Deduce bounds on the spectra of A_T and \mathcal{L}_T on $H^1(\mathbb{T})$. Are A_T and \mathcal{L}_T , viewed as operators $H^1 \to H^1$, adjoint to each other?
- 8. We will also consider the subspace of $H^p(\mathbb{T})$ made of functions orthogonal to the constant function, $\dot{H}^p(\mathbb{T}) \stackrel{\text{def}}{=} H^p(\mathbb{T}) \cap \{e_0\}^{\perp}$.
 - (a) explain why $\dot{H}^{p}(\mathbb{T})$ is a closed subspace of $H^{p}(\mathbb{T})$, and thus a Hilbert space, equipped with the norm (3).
 - (b) Check that on \dot{H}^p , the norm (3) is equivalent with the homogeneous norm

(4)
$$\|f\|_{\dot{H}^p}^2 \stackrel{\text{def}}{=} \sum_{k \in \mathbb{Z} \setminus 0} k^{2p} \, |\hat{f}_k|^2 \, .$$

- 9. We will again use the decomposition (2) to analyze the spectrum of the operator \mathcal{L}_T on H^p , which we will denote by $\mathcal{L}_T^{(p)}$.
 - (a) Show that for any $p \ge 1$, 1 belongs to the point spectrum of $\mathcal{L}_T^{(p)}$.
 - (b) For k an odd integer and $z \in D_1$, recall the eigenfunction $\phi_{z,k} \in L^2$ of $\mathcal{L}_{T,k}$ described above. Show that $\phi_{z,k}$ belongs to $H^p(\mathbb{T})$ if and only if $|z| < 2^{-p}$.
 - (c) Deduce that the spectrum of $\mathcal{L}_T^{(p)}$ contains the disk $\bar{D}_{2^{-p}}$.

(d) show that $\mathcal{L}_T^{(p)}$ can be decomposed as the sum of two operators acting on each subspace of the orthogonal decomposition $H^p = \mathcal{V}_0 \oplus \mathcal{V}_0^{\perp}$, with $\mathcal{V}_0^{\perp} = \dot{H}^p$:

(5)
$$\mathcal{L}_T^{(p)} = \Pi_{\mathcal{V}_0} \oplus \dot{\mathcal{L}}_T^{(p)} \Pi_{\mathcal{V}_0^{\perp}}$$

Here $\Pi_{\mathcal{V}_0}$ (resp. $\Pi_{\mathcal{V}_0^{\perp}}$ is the orthogonal projector on \mathcal{V}_0 (resp. on \mathcal{V}_0^{\perp}), while $\dot{\mathcal{L}}_T^{(p)} \stackrel{\text{def}}{=} \mathcal{L}_T^{(p)} \upharpoonright_{\dot{H}^p}$.

(e) Using the norm (4), show that

$$\forall f \in \dot{H}^p, \qquad \|\dot{\mathcal{L}}_T^{(p)} f\|_{\dot{H}^p} \le 2^{-p} \|f\|_{\dot{H}^p}.$$

- (f) Deduce that the spectrum of $\dot{\mathcal{L}}_T^{(p)}$ is equal to the disk $\bar{D}_{2^{-p}}$.
- (g) What are the discrete spectrum, resp. the essential spectrum, of the operator $\mathcal{L}_T^{(p)}$? Such an operator is said to be *quasicompact*.
- 10. We can now go back to the analysis of the correlations $C_{f,g}(n)$, for $f, g \in H^p(\mathbb{T})$.
 - (a) For any $n \geq 1$, write down a decomposition of $(\mathcal{L}_T^{(p)})^n$ similar with (5), and insert it in the expression for $C_{f,g}(n)$.
 - (b) Using the above the spectral analysis of $\mathcal{L}_T^{(p)}$, prove that $C_{f,g}(n)$ decays exponentially as $n \to \infty$, uniformly for $f, g \in H^p(\mathbb{T})$: in other words, show that there is a uniform decay rate $\gamma_p > 0$ and C > 0 such that,

$$\forall f, g \in H^p, \ \forall n \ge 0, \quad |C_{f,g}(n)| \le C e^{-n\gamma_p} \|f\|_{H^p} \|g\|_{H^p}.$$

This bound means that the dynamical system T is exponentially mixing. Such a mixing property is typical of very chaotic systems.

(c) Show that for two test functions $f, g \in C^{\infty}(\mathbb{T})$, the correlation $C_{f,g}(n)$ decays faster than any exponential. One says that the decay of the correlations is *superexponential*.