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Exponential mixing of the angle-doubling map
Our goal is to analyse the long time dynamics of a simple map (or transformation) T

defined on the 1-dimensional torus T = R/Z :

T :T→ T
x 7→ T (x) = 2x mod Z.

This transformation T is often called the angle doubling map. Because |T ′(x)| > 1 at
each point x ∈ T, this map is said to be uniformly dilating. For this reason, it is strongly
chaotic. One aspect of this chaos is the mixing property, which will be examined below.
The analysis of the long time iterates of T , namely the maps T n = T ◦ · · · ◦ T , n → ∞,
will lead us to study an associated transfer operator, on various functional spaces.

1. Show that the map T is C∞ on T. Here and below, the torus T can be identified
with the unit interval I = [0, 1), with periodic boundary conditions. Draw the
graph of T using this identification

2. The long time behaviour of the map T is studied through the correlation function
between two test functions f, g : T → R : the correlation at time n > 0 between
the two functions is defined as

(1) Cf,g(n)
def
=

∫
f(x) g ◦ T n(x) dx−

∫
f(x)dx

∫
g(x)dx ,

all integrals being taken on T ' [0, 1). The mixing property of the dynamics T is
equivalent with the fact that Cf,g(n)→ 0 when n→∞. Our goal is to investigate
more precisely this mixing.
(a) For f, g ∈ L2(T), express the correlation function Cf,g(t) in terms of scalar

products involving f, g, the n-th iterate of the pull-back operator AT (f)
def
= f◦T ,

and the constant function e0(x) = 1.
(b) Recall the formula for the spectral radius of a bounded operator. Since we are

interested in scalar products involving iterates AnT for n large, justify why it
makes sense to study the spectrum of AT on L2(T).

(c) Show that AT : L2(T)→ L2(T) is bounded.
(d) Show that this operator is an isometry. Compute its norm ‖AT‖L(L2). What can

be deduced about the spectrum of AT on L2 ?
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(e) We will see later that it will be more convenient to express the correlations
Cf,g(n) in terms of the adjoint operator LT = A∗T . LT is often called the trans-
fer operator associated with the map T . Write down Cf,g(n) in terms of the
n-th power of LT .

(f) Write down explicitly the action of LT on a function f ∈ C0(T).
3. To study the spectrum of AT and LT more closely, we will use the Fourier decom-

position of L2(T). We define the Fourier modes on T by

ek(x) = exp(2iπkx), k ∈ Z, x ∈ T.

(a) Check that each ek belongs to C∞(T).
(b) Show that the modes (ek)k∈Z form an orthonormal family in L2(T). Deduce

that the Fourier series of a function f ∈ L2(T),

f(x) =
∑
k∈Z

f̂k ek(x) , f̂k = 〈ek, f〉L2 ,

induces a unitary map between f ∈ L2(T) and (f̂k) ∈ `2(Z).
(c) Compute the action of AT on the Fourier modes ek.
(d) Deduce the action of LT on ek. Hint : distinguish two cases, according to the

parity of k. Is LT an isometry on L2(T) ?
4. For each k a positive odd integer, denote by Vk the subspace of L2 generated by the

Fourier modes {e2jk, j ∈ N}, and similarly for V−k. We will call V±k the L2-closures
of these spaces.

(a) Show that AT and LT leave each subspace Vk invariant. We will denote LT,k
def
=

LT �Vk .
(b) For k a given odd integer, show that LT,k is unitarily equivalent with the shift

operator S on `2(N) : S(ψj) = (ψj+1), for any (ψj)j∈N ∈ `2(N).
(c) deduce that LT,k admits as point spectrum the open unit disk D1 = {z ∈

C, |z| < 1}, and as spectrum the closed disk D̄1 = {z ∈ C, |z| ≤ 1}. What is
the spectrum of AT,k

def
= AT �Vk ?

(d) For each z ∈ D, show that ker(LT,k−z) is 1-dimensional, and describe its eigen-
function φk,z(x) through its Fourier series. What is the dimension of ker(AT,k−
z) ?

5. Let us call V0 = Ce0 the 1-dimensional space generated by the constant function
e0. Check that V0 is an eigenspace of both AT and LT .

6. Show that L2(T) can be written as the closure of the following orthogonal direct
sum :

(2) L2(T) =
(
V0 ⊕

⊕
k>0 odd

(Vk ⊕ V−k)
)
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(a) What are the spectrum and the point spectrum of LT on L2 ? What are the
discrete and essential spectra of LT ?

(b) Same questions for AT : L2 → L2.
(c) show that for any ρ ∈ (0, 1), there exists f, g ∈ L2 such that |Cf,g(n)| ≥

ρn‖f‖L2‖g‖L2 . Hint : use the eigenfunctions φz,k.
As a result, for L2 test functions there is no uniform exponential decay of the
correlations.

7. In order to improve the decay of the correlations we will next assume that the test
functions f, g are more regular than L2, namely, we will assume f, g are in some
Sobolev space Hp(T) for some p ∈ N∗. We will use the following norm on Hp(T) :

(3) ‖f‖2Hp
def
=
∑
k∈Z

(1 + k2)p |f̂k|2

(a) In the case p = 1, check that the norm ‖ • ‖H1 on H1 is equivalent with the
norm ‖f‖1 = ‖f‖L2 + ‖f ′‖L2 .

(b) Using the explicit expressions of AT and LT , show that for any f ∈ H1(T),
‖(ATf)′‖L2 = 2‖f ′‖L2 and ‖(LTf)′‖L2 ≤ 1

2
‖f ′‖L2 .

Hint : for the second inequality, you may use the identity (a+ b)2 ≤ 2(a2 + b2).
(c) Deduce that AT and LT are bounded operators H1(T) → H1(T). Using the

norm ‖ • ‖1 on H1, show that ‖AT‖L(H1) ≤ 2 and ‖LT‖L(H1) ≤ 1. Deduce
bounds on the spectra of AT and LT on H1(T). Are AT and LT , viewed as
operators H1 → H1, adjoint to each other ?

8. We will also consider the subspace of Hp(T) made of functions orthogonal to the
constant function, Ḣp(T)

def
= Hp(T) ∩ {e0}⊥.

(a) explain why Ḣp(T) is a closed subspace of Hp(T), and thus a Hilbert space,
equipped with the norm (3).

(b) Check that on Ḣp, the norm (3) is equivalent with the homogeneous norm

(4) ‖f‖2
Ḣp

def
=
∑
k∈Z\0

k2p |f̂k|2 .

9. We will again use the decomposition (2) to analyze the spectrum of the operator
LT on Hp, which we will denote by L(p)

T .

(a) Show that for any p ≥ 1, 1 belongs to the point spectrum of L(p)
T .

(b) For k an odd integer and z ∈ D1, recall the eigenfunction φz,k ∈ L2 of LT,k
described above. Show that φz,k belongs to Hp(T) if and only if |z| < 2−p.

(c) Deduce that the spectrum of L(p)
T contains the disk D̄2−p .
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(d) show that L(p)
T can be decomposed as the sum of two operators acting on each

subspace of the orthogonal decomposition Hp = V0 ⊕ V⊥0 , with V⊥0 = Ḣp :

(5) L(p)
T = ΠV0 ⊕ L̇

(p)
T ΠV⊥0 .

Here ΠV0 (resp. ΠV⊥0 is the orthogonal projector on V0 (resp. on V⊥0 ), while
L̇(p)
T

def
= L(p)

T �Ḣp .
(e) Using the norm (4), show that

∀f ∈ Ḣp, ‖L̇(p)
T f‖Ḣp ≤ 2−p ‖f‖Ḣp .

(f) Deduce that the spectrum of L̇(p)
T is equal to the disk D̄2−p .

(g) What are the discrete spectrum, resp. the essential spectrum, of the operator
L(p)
T ? Such an operator is said to be quasicompact.

10. We can now go back to the analysis of the correlations Cf,g(n), for f, g ∈ Hp(T).

(a) For any n ≥ 1, write down a decomposition of (L(p)
T )n similar with (5), and

insert it in the expression for Cf,g(n).

(b) Using the above the spectral analysis of L(p)
T , prove that Cf,g(n) decays expo-

nentially as n → ∞, uniformly for f, g ∈ Hp(T) : in other words, show that
there is a uniform decay rate γp > 0 and C > 0 such that,

∀f, g ∈ Hp, ∀n ≥ 0, |Cf,g(n)| ≤ C e−nγp ‖f‖Hp ‖g‖Hp .

This bound means that the dynamical system T is exponentially mixing. Such
a mixing property is typical of very chaotic systems.

(c) Show that for two test functions f, g ∈ C∞(T), the correlation Cf,g(n) decays
faster than any exponential. One says that the decay of the correlations is
superexponential.
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