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Abstract We study the high-energy limit for eigenfunctions of the Laplacian, on a
compact negatively curved manifold. We review the recent result of Anantharaman–
Nonnenmacher (Ann. Inst. Fourier 57(7):2465–2523, 2007) giving a lower bound on
the Kolmogorov–Sinai entropy of semiclassical measures. The bound proved here
improves that result in the case of variable negative curvature.

1 Motivations

The theory of quantum chaos tries to understand how the chaotic behaviour of a clas-
sical Hamiltonian system is reflected in its quantum counterpart. For instance, let M

be a compact Riemannian C∞ manifold, with negative sectional curvatures. The
geodesic flow has the Anosov property, which is considered as the ideal chaotic be-
haviour in the theory of dynamical systems. The corresponding quantum dynamics
is the unitary flow generated by the Laplace-Beltrami operator on L2(M). One ex-
pects that the chaotic properties of the geodesic flow influence the spectral theory of
the Laplacian. The Random Matrix conjecture [7] asserts that the large eigenvalues
should, after proper unfolding, statistically resemble those of a large random ma-
trix, at least for a generic Anosov metric. The Quantum Unique Ergodicity conjec-
ture [26] (see also [6, 30]) describes the corresponding eigenfunctions ψk: it claims
that the probability measure |ψk(x)|2dx should approach (in the weak topology) the
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Riemannian volume, when the eigenvalue tends to infinity. In fact a stronger prop-
erty should hold for the Wigner transform Wψ , a function on the cotangent bundle
T ∗M , (the classical phase space) which simultaneously describes the localization of
the wave function ψ in position and momentum.

We will adopt a semiclassical point of view, that is consider the eigenstates of
eigenvalue unity of the semiclassical Laplacian −�

2�, thereby replacing the high-
energy limit by the semiclassical limit � → 0. We denote by (ψk)k∈N an orthonor-
mal basis of L2(M) made of eigenfunctions of the Laplacian, and by (− 1

�
2
k

)k∈N the

corresponding eigenvalues:

−�
2
k�ψk = ψk, with �k+1 ≤ �k. (1)

We are interested in the high-energy eigenfunctions of −�, in other words the semi-
classical limit �k → 0.

The Wigner distribution associated to an eigenfunction ψk is defined by

Wk(a) = 〈Op�k
(a)ψk, ψk〉L2(M), a ∈ C∞

c (T ∗M).

Here Op�k
is a quantization procedure, set at the scale (wavelength) �k , which as-

sociates to any smooth phase space function a (with nice behaviour at infinity) a
bounded operator on L2(M). See for instance [13] or [14] for various quantizations
Op� on R

d . On a manifold, one can use local coordinates to define Op in a finite
system of charts, then glue the objects defined locally thanks to a smooth partition of
unity [11]. For standard quantizations Op�k

, the Wigner distribution is of the form
Wk(x, ξ) dx dξ , where Wk(x, ξ) is a smooth function on T ∗M , called the Wigner
transform of ψ . If a is a function on the manifold M , Op�(a) can be taken as the
multiplication by a, and thus we have Wk(a) = ∫

M
a(x)|ψk(x)|2dx: the Wigner

transform is thus a microlocal lift of the density |ψk(x)|2. Although the definition of
Wk depends on a certain number of choices, like the choice of local coordinates, or
of the quantization procedure (Weyl, anti-Wick, “right” or “left” quantization. . . ),
its asymptotic behaviour when �k → 0 does not. Accordingly, we call semiclassical
measures the limit points of the sequence (Wk)k∈N, in the distribution topology.

In the semiclassical limit, “quantum mechanics converges to classical mechan-
ics”. We will denote | · |x the norm on T ∗

x M given by the metric. The geodesic flow
(gt )t∈R is the Hamiltonian flow on T ∗M generated by the Hamiltonian H(x, ξ) =
|ξ |2x

2 . A quantization of this Hamiltonian is given by the rescaled Laplacian −�
2�
2 ,

which generates the unitary flow (Ut
�
) = (exp(it�

�
2 )) acting on L2(M). The semi-

classical correspondence of the flows (Ut
�
) and (gt ) is expressed through the Egorov

Theorem:

Theorem 1. Let a ∈ C∞
c (T ∗M). Then, for any given t in R,

‖U−t
�

Op�(a)Ut
�

− Op�(a ◦ gt )‖L2(M) = O(�), � → 0. (2)

The constant implied in the remainder grows (often exponentially) with t , which
represents a notorious problem when one wants to study the large time behaviour of
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(Ut
�
). Typically, the quantum-classical correspondence will break down for times t

of the order of the Ehrenfest time (34).
Using (2) and other standard semiclassical arguments, one shows the following:

Proposition 2. Any semiclassical measure is a probability measure carried on the
energy layer E = H−1( 1

2 ) (which coincides with the unit cotangent bundle S∗M).
This measure is invariant under the geodesic flow.

Let us call M the set of gt -invariant probability measures on E . This set is convex
and compact for the weak topology. If the geodesic flow has the Anosov property—
for instance if M has negative sectional curvature—that set is very large. The geo-
desic flow has countably many periodic orbits, each of them carrying an invariant
probability measure. There are many other invariant measures, like the equilibrium
states obtained by variational principles [19], among them the Liouville measure
μLiouv, and the measure of maximal entropy. Note that, for all these examples of
measures, the geodesic flow acts ergodically, meaning that these examples are ex-
tremal points in M. Our aim is to determine, at least partially, the set Msc formed by
all possible semiclassical measures. By its definition, Msc is a closed subset of M,
in the weak topology.

For manifolds such that the geodesic flow is ergodic with respect to the Liouville
measure, it has been known for some time that almost all eigenfunctions become
equidistributed over E , in the semiclassical limit. This property is dubbed as Quan-
tum Ergodicity:

Theorem 3 ([27, 32, 11]). Let M be a compact Riemannian manifold, assume that
the action of the geodesic flow on E = S∗M is ergodic with respect to the Liouville
measure. Let (ψk)k∈N be an orthonormal basis of L2(M) consisting of eigenfunc-
tions of the Laplacian (1), and let (Wk) be the associated Wigner distributions on
T ∗M .

Then, there exists a subset S ⊂ N of density 1, such that

Wk → μLiouv, k → ∞, k ∈ S . (3)

The question of existence of “exceptional” subsequences of eigenstates with a
different behaviour is still open. On a negatively curved manifold, the geodesic
flow satisfies the ergodicity assumption, and in fact much stronger properties: mix-
ing, K-property, etc. For such manifolds, it has been postulated in the Quantum
Unique Ergodicity conjecture [26] that the full sequence of eigenstates becomes
semiclassically equidistributed over E : one can take S = N in the limit (3). In
other words, this conjecture states that there exists a unique semiclassical measure,
and Msc = {μLiouv}.

So far the most precise results on this question were obtained for manifolds M

with constant negative curvature and arithmetic properties: see Rudnick–Sarnak
[26], Wolpert [31]. In that very particular situation, there exists a countable com-
mutative family of self-adjoint operators commuting with the Laplacian: the Hecke
operators. One may thus decide to restrict the attention to common bases of eigen-
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functions, often called “arithmetic” eigenstates, or Hecke eigenstates. A few years
ago, Lindenstrauss [24] proved that any sequence of arithmetic eigenstates become
asymptotically equidistributed. If there is some degeneracy in the spectrum of the
Laplacian, note that it could be possible that the Quantum Unique Ergodicity con-
jectured by Rudnick and Sarnak holds for one orthonormal basis but not for another.
On such arithmetic manifolds, it is believed that the spectrum of the Laplacian has
bounded multiplicity: if this is really the case, then the semiclassical equidistribution
easily extends to any sequence of eigenstates.

Nevertheless, one may be less optimistic when extending the Quantum Unique
Ergodicity conjecture to more general systems. One of the simplest example of a
symplectic Anosov dynamical system is given by linear hyperbolic automorphisms
of the 2-torus, e.g. Arnold’s “cat map”

(
2 1
1 1

)
. This system can be quantized into a

sequence of N × N unitary matrices—the propagators, where N ∼ �
−1 [18]. The

eigenstates of these matrices satisfy a Quantum Ergodicity theorem similar with
Theorem 3, meaning that almost all eigenstates become equidistributed on the torus
in the semiclassical limit [9]. Besides, one can choose orthonormal eigenbases of the
propagators, such that the whole sequence of eigenstates is semiclassically equidis-
tributed [22]. Still, because the spectra of the propagators are highly degenerate, one
can also construct sequences of eigenstates with a different limit measure [16], for
instance, a semiclassical measure consisting in two ergodic components: half of it
is the Liouville measure, while the other half is a Dirac peak on a single (unsta-
ble) periodic orbit. It was also shown that this half-localization is maximal for this
model [15]: a semiclassical measure cannot have more than half its mass carried by a
countable union of periodic orbits. The same type of half-localized eigenstates were
constructed by two of the authors for another solvable model, namely the “Walsh
quantization” of the baker’s map on the torus [3]; for that model, there exist ergodic
semiclassical measures of purely fractal type (that is, without any Liouville compo-
nent). Another type of semiclassical measure was recently obtained by Kelmer for
quantized hyperbolic automorphisms on higher-dimensional tori [20]: it consists in
the Lebesgue measure on some invariant co-isotropic subspace of the torus.

For these Anosov models on tori, the construction of exceptional eigenstates
strongly uses nongeneric algebraic properties of the classical and quantized sys-
tems, and cannot be generalized to nonlinear systems.

2 Main Result

In order to understand the set Msc, we will attempt to compute the Kolmogorov–
Sinai entropies of semiclassical measures. We work on a compact Riemannian man-
ifold M of arbitrary dimension, and assume that the geodesic flow has the Anosov
property. Actually, our method can without doubt be adapted to more general
Anosov Hamiltonian systems.
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The Kolmogorov–Sinai entropy, also called metric entropy, of a (gt )-invariant
probability measure μ is a nonnegative number hKS(μ) that describes, in some
sense, the complexity of a μ-typical orbit of the flow. The precise definition will be
given later, but for the moment let us just give a few facts. A measure carried on a
closed geodesic has vanishing entropy. In constant curvature, the entropy is maximal
for the Liouville measure. More generally, for any Anosov flow, the energy layer E
is foliated into unstable manifolds of the flow. An upper bound on the entropy of an
invariant probability measure is then provided by the Ruelle inequality:

hKS(μ) ≤
∣
∣
∣
∣

∫

E
log Ju(ρ)dμ(ρ)

∣
∣
∣
∣. (4)

In this inequality, Ju(ρ) is the unstable Jacobian of the flow at the point ρ ∈ E ,
defined as the Jacobian of the map g−1 restricted to the unstable manifold at the
point g1ρ (note that the average of log Ju over any invariant measure is negative).
The equality holds in (4) if and only if μ is the Liouville measure on E [23]. If M

has dimension d and has constant sectional curvature −1, the above inequality just
reads hKS(μ) ≤ d − 1.

Finally, an important property of the metric entropy is that it is an affine func-
tional on M. According to the Birkhoff ergodic theorem, for any μ ∈ M and for
μ-almost every ρ ∈ E , the weak limit

μρ = lim|t |→∞
1

t

∫ t

0
δgsρds

exists, and is an ergodic probability measure. We can then write

μ =
∫

E
μρdμ(ρ),

which realizes the ergodic decomposition of μ. The affineness of the KS entropy
means that

hKS(μ) =
∫

E
hKS(μρ)dμ(ρ).

An obvious consequence is the fact that the range of hKS on M is an interval
[0, hmax].

In the whole article, we consider a certain subsequence of eigenstates (ψkj
)j∈N of

the Laplacian, such that the corresponding sequence of Wigner distributions (Wkj
)

converges to a semiclassical measure μ. In the following, the subsequence (ψkj
)j∈N

will simply be denoted by (ψ�)�→0, using the slightly abusive notation ψ� = ψ�kj

for the eigenstate ψkj
. Each eigenstate ψ� thus satisfies

(−�
2 � −1

)
ψ� = 0. (5)
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In [2] the first author proved that the entropy of any μ ∈ Msc is strictly positive.
In [4], more explicit lower bounds were obtained. The aim of this paper is to improve
the lower bounds of [4] into the following

Theorem 4. Let μ be a semiclassical measure associated to the eigenfunctions of
the Laplacian on M . Then its metric entropy satisfies

hKS(μ) ≥
∣
∣
∣
∣

∫

E
log Ju(ρ)dμ(ρ)

∣
∣
∣
∣ − (d − 1)

2
λmax, (6)

where d = dim M and λmax = limt→±∞ 1
t

log supρ∈E |dgt
ρ | is the maximal expan-

sion rate of the geodesic flow on E .
In particular, if M has constant sectional curvature −1, we have

hKS(μ) ≥ d − 1

2
. (7)

In dimension d , we always have
∣
∣
∣
∣

∫

E
log Ju(ρ)dμ(ρ)

∣
∣
∣
∣ ≤ (d − 1)λmax,

so the above bound is an improvement over the one obtained in [4],

hKS(μ) ≥ 3

2

∣
∣
∣
∣

∫

E
log Ju(ρ)dμ(ρ)

∣
∣
∣
∣ − (d − 1)λmax. (8)

In the case of constant or little-varying curvature, the bound (7) is much sharper
than the one proved in [2]. On the other hand, if the curvature varies a lot (still being
negative everywhere), the right hand side of (6) may actually be negative, in which
case the bound is trivial. We believe this “problem” to be a technical shortcoming
of our method, and actually conjecture the following bound:

hKS(μ) ≥ 1

2

∣
∣
∣
∣

∫

E
log Ju(ρ)dμ(ρ)

∣
∣
∣
∣. (9)

Extended to the case of the quantized torus automorphisms or the Walsh-quantized
baker’s map, this bound is saturated for the half-localized semiclassical measures
constructed in [16], as well as those obtained in [20, 3]. This bound allows certain
ergodic components to be carried by closed geodesics, as long as other components
have positive entropy. This may be compared with the following result obtained by
Bourgain and Lindenstrauss in the case of arithmetic surfaces:

Theorem 5 ([8]). Let M be a congruence arithmetic surface, and (ψj ) an ortho-
normal basis of eigenfunctions for the Laplacian and the Hecke operators.

Let μ be a corresponding semiclassical measure, with ergodic decompo-
sition μ = ∫

E μρdμ(ρ). Then, for μ-almost all ergodic components we have
hKS(μρ) ≥ 1

9 .
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As discussed above, the Liouville measure is the only one satisfying hKS(μ) =
| ∫E log Ju(ρ) dμ(ρ)| [23], so the Quantum Unique Ergodicity would be proven
in one could replace 1/2 by 1 on the right hand side of (9). However, we believe
that (9) is the optimal result that can be obtained without using much more precise
information, like for instance a sharp control on the spectral degeneracies, or fine
information on the lengths of closed geodesics.

Indeed, in the above mentioned examples of Anosov systems where the Quan-
tum Unique Ergodicity conjecture is wrong and the bound (9) sharp, the quantum
spectrum has very high degeneracies, which could be responsible for the possibility
to construct exceptional eigenstates. Such high degeneracies are not expected in the
case of the Laplacian on a negatively curved manifold. For the moment, however,
there is no clear understanding of the precise relation between spectral degeneracies
and failure of Quantum Unique Ergodicity.

3 Outline of the Proof

We start by recalling the definition and some properties of the metric entropy asso-
ciated with a probability measure on T ∗M , invariant through the geodesic flow. In
Sect. 3.2 we extend the notion of entropy to the quantum framework. Our approach
is semiclassical, so we want the classical and quantum entropies to be connected
in some way when � → 0. The weights appearing in our quantum entropy are es-
timated in Theorem 6, which was proven and used in [2]. In Sect. 3.2.1 we also
compare our quantum entropy with several “quantum dynamical entropies” previ-
ously defined in the literature. The proof of Theorem 4 actually starts in Sect. 3.3,
where we present the algebraic tool allowing us to take advantage of our estimates
(18) (or their optimized version given in Theorem 11), namely an “entropic uncer-
tainty principle” specific of the quantum framework. From Sect. 3.4 on, we apply
this “principle” to the quantum entropies appearing in our problem, and proceed
to prove Theorem 4. Although the method is basically the same as in [4], several
small modifications allow to finally obtain the improved lower bound (6), and also
simplify some intermediate proofs, as explained in Remark 12.

3.1 Definition of the Metric Entropy

In this paper we will meet several types of entropies, all of which are defined using
the function η(s) = −s log s, for s ∈ [0, 1]. We start with the Kolmogorov–Sinai
entropy of the geodesic flow with respect to an invariant probability measure.

Let μ be a probability measure on the cotangent bundle T ∗M . Let P = (E1, . . . ,

EK) be a finite measurable partition of T ∗M: T ∗M = ⊔K
i=1 Ei . We will denote the

set of indices {1, . . . , K} = [[1,K]]. The Shannon entropy of μ with respect to the
partition P is defined as
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hP(μ) = −
K∑

k=1

μ(Ek) log μ(Ek) =
K∑

k=1

η
(
μ(Ek)

)
.

For any integer n ≥ 1, we denote by P∨n the partition formed by the sets

Eα = Eα0 ∩ g−1Eα1 ∩ · · · ∩ g−n+1Eαn−1 , (10)

where α = (α0, . . . , αn−1) can be any sequence in [[1,K]]n (such a sequence is said
to be of length |α| = n). The partition P∨n is called the n-th refinement of the
initial partition P = P∨1. The entropy of μ with respect to P∨n is denoted by

hn(μ,P) = hP∨n(μ) =
∑

α∈[[1,K]]n
η
(
μ(Eα)

)
. (11)

If μ is (gt )-invariant, it follows from the convexity of the logarithm that

∀n,m ≥ 1, hn+m(μ,P) ≤ hn(μ,P) + hm(μ,P), (12)

in other words the sequence (hn(μ,P))n∈N is subadditive. The entropy of μ with
respect to the action of the geodesic flow and to the partition P is defined by

hKS(μ,P) = lim
n→+∞

hn(μ,P)

n
= inf

n∈N

hn(μ,P)

n
. (13)

Each weight μ(Eα) measures the μ-probability to visit successively Eα0, Eα1 , . . . ,

Eαn−1 at times 0, 1, . . . , n − 1 through the geodesic flow. Roughly speaking, the
entropy measures the exponential decay of these probabilities when n gets large. It
is easy to see that hKS(μ,P) ≥ β if there exists C such that μ(Eα) ≤ C e−βn, for
all n and all α ∈ [[1,K]]n.

Finally, the Kolmogorov–Sinai entropy of μ with respect to the action of the
geodesic flow is defined as

hKS(μ) = sup
P

hKS(μ,P), (14)

the supremum running over all finite measurable partitions P . The choice to con-
sider the time 1 of the geodesic flow in the definition (10) may seem arbitrary, but
the entropy has a natural scaling property: the entropy of μ with respect to the flow
(gat ) is |a|-times its entropy with respect to (gt ).

Assume μ is carried on the energy layer E . Due to the Anosov property of the
geodesic flow on E , it is known that the supremum (14) is reached as soon as the
diameter of the partition P ∩ E (that is, the maximum diameter of its elements
Ek ∩ E ) is small enough. Furthermore, let us assume (without loss of generality)
that the injectivity radius of M is larger than 1. Then, we may restrict our attention
to partitions P obtained by lifting on E a partition of the manifold M , that is take
M = ⊔K

k=1 Mk and then Ek = T ∗Mk . In fact, if the diameter of Mk in M is of
order ε, then the diameter of the partition P∨2 ∩ E in E is also of order ε. This
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special choice of our partition is not crucial, but it simplifies certain aspects of the
analysis.

The existence of the limit in (13), and the fact that it coincides with the infimum,
follow from a standard subadditivity argument. It has a crucial consequence: if (μi)

is a sequence of (gt )-invariant probability measures on T ∗M , weakly converging to
a probability μ, and if μ does not charge the boundary of the partition P , we have

hKS(μ,P) ≥ lim sup
i

hKS(μi,P).

In particular, assume that for i large enough, the following estimates hold:

∀n ≥ 1, ∀α ∈ [[1,K]]n, μi(Eα) ≤ Cie
−βn, (15)

with β independent of i. This implies for i large enough hKS(μi,P) ≥ β, and this
estimate goes to the limit to yield hKS(μ) ≥ β.

3.2 From Classical to Quantum Dynamical Entropy

Since our semiclassical measure μ is defined as a limit of Wigner distributions W�,
a naive idea would be to estimate from below the KS entropy of W� and then take
the limit � → 0. This idea cannot work directly, because the Wigner transforms W�

are neither positive, nor are they (gt )-invariant. Therefore, one cannot directly use
the (formal) integrals W�(Eα) = ∫

Eα
W�(x, ξ) dx dξ to compute the entropy of the

semiclassical measure.
Instead, the method initiated by the first author in [2] is based on the following

remarks. Each integral W�(Eα) can also be written as W�(1lEα ) = ∫
T ∗M W�1lEα ,

where 1lEα is the characteristic function on the set Eα , that is

1lEα = (1lEαn−1
◦ gn−1) × · · · × (1lEα1

◦ g) × 1lEα0
. (16)

Remember we took Ek = T ∗Mk , where the Mk form a partition of M .
From the definition of the Wigner distribution, this integral corresponds formally

to the overlap 〈ψ�, Op�(1lEα )ψ�〉. Yet, the characteristic functions 1lEα have sharp
discontinuities, so their quantizations cannot be incorporated in a nice pseudodiffer-
ential calculus. Besides, the set Eα is not compactly supported, and shrinks in the
unstable direction when n = |α| → +∞, so that the operator Op�(1lEα ) is very
problematic.

We also note that an overlap of the form 〈ψ�, Op�(1lEα )ψ�〉 is a hybrid expres-
sion: this is a quantum matrix element of an operator defined in terms of the classical
evolution (16). From the point of view of quantum mechanics, it is more natural to
consider, instead, the operator obtained as the product of Heisenberg-evolved quan-
tized functions, namely

(U−n+1
�

Pαn−1U
n−1
�

)(U−n+2
�

Pαn−2U
n−2
�

) · · · (U−1
�

Pα1U�) Pα0 . (17)
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Here we used the shorthand notation Pk = 1lMk
, k ∈ [[1,K]] (multiplication op-

erators). To remedy the fact that the functions 1lMk
are not smooth, which would

prevent us from using a semiclassical calculus, we apply a convolution kernel to

smooth them, obtain functions 1lsmMk
∈ C∞(M), and consider Pk

def= 1lsmMk
(we can do

this keeping the property
∑K

k=1 1lsmMk
= 1).

In the following, we will use the notation A(t)
def= U−t

�
AUt

�
for the Heisen-

berg evolution of the operator A though the Schrödinger flow Ut
�

= exp(−it�
�
2 ).

The norm ‖ • ‖ will denote either the Hilbert norm on L2(M), or the correspond-
ing operator norm. The subsequent “purely quantum” norms were estimated in [2,
Theorem 1.3.3]:

Theorem 6 (The main estimate [2]). Set as above Pk
def= 1lsmMk

. For every K > 0,
there exists �K > 0 such that, uniformly for all � < �K , for all n ≤ K | log �|,
for all (α0, . . . , αn−1) ∈ [[1,K]]n,

‖Pαn−1(n − 1) Pαn−2(n − 2) · · · Pα0 ψ�‖ ≤ 2(2π�)−d/2 e− Λ
2 n(1 + O(ε))n. (18)

The exponent Λ is given by the “smallest expansion rate”:

Λ = − sup
ν∈M

∫
log Ju(ρ)dν(ρ) = inf

γ

d−1∑

i=1

λ+
i (γ ).

The infimum on the right hand side runs over the set of closed orbits on E , and the
λ+

i denote the positive Lyapunov exponents along the orbit, that is the logarithms of
the expanding eigenvalues of the Poincaré map, divided by the period of the orbit.
The parameter ε > 0 is an upper bound on the diameters of the supports of the
functions 1lsmMk

in M .
From now on we will call the product operator

Pα = Pαn−1(n − 1) Pαn−2(n − 2) · · · Pα0 , α ∈ [[1,K]]n. (19)

To prove the above estimate, one actually controls the operator norm

‖Pα Op�(χ)‖ ≤ 2(2π�)−d/2 e− Λ
2 n(1 + O(ε))n, (20)

where χ ∈ C∞
c (E ε) is an energy cutoff such that χ = 1 near E , supported inside a

neighbourhood E ε = H−1([ 1
2 − ε, 1

2 + ε]) of E .
In quantum mechanics, the matrix element 〈ψ�, Pαψ�〉 looks like the “proba-

bility”, for a particle in the state ψ�, to visit successively the phase space regions
Eα0, Eα1, . . . , Eαn−1 at times 0, 1, . . . , n − 1 of the Schrödinger flow. Theorem 6
implies that this “probability” decays exponentially fast with n, with rate Λ

2 , but this
decay only starts around the time

n1
def= d| log �|

Λ
, (21)
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which is a kind of “Ehrenfest time” (see (34) for another definition of Ehrenfest
time).

Yet, because the matrix elements 〈ψ�, Pαψ�〉 are not real in general, they can
hardly be used to define a “quantum measure”. Another possibility to define the
probability for the particle to visit the sets Eαk

at times k, is to take the squares of
the norms appearing in (18):

‖Pα ψ�‖2 = ‖Pαn−1(n − 1) Pαn−2(n − 2) · · · Pα0ψ�‖2. (22)

Now we require the smoothed characteristic functions 1lsmMi
to satisfy the identity

K∑

k=1

(
1lsmMk

(x)
)2 = 1 for any point x ∈ M. (23)

We denote by Psm the smooth partition of M made by the functions ((1lsmMk
)2)Kk=1.

The corresponding set of multiplication operators (Pk)
K
k=1

def= Pq forms a “quantum
partition of unity”:

K∑

k=1

P 2
k = IdL2 . (24)

For any n ≥ 1, we refine the quantum partition Pq into (Pα)|α|, as in (19). The
weights (22) exactly add up to unity, so it makes sense to consider the entropy

hn(ψ�,Pq)
def=

∑

α∈[[1,K]]n
η
(‖Pα ψ�‖2). (25)

3.2.1 Connection with Other Quantum Entropies

This entropy appears to be a particular case of the “general quantum entropies” de-
scribed by Słomczyński and Życzkowski [29], who already had in mind applications
to quantum chaos. In their terminology, a family of bounded operators π = (πk)

N
k=1

on a Hilbert space H satisfying

N∑

k=1

π∗
k πk = IdH (26)

provides an “instrument” which, to each index k ∈ [[1,N ]], associates the following
map on density matrices:

ρ �→ I (k)ρ = πk ρ π∗
k , a nonnegative operator with tr(I (k)ρ) ≤ 1.

From a unitary propagator U and its adjoint action U ρ = UρU−1, they propose to
construct the refined instrument
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I (α)ρ
def= I (αn−1) ◦ · · · ◦ U ◦ I (α1) ◦ U ◦ I (α0)ρ = U−n+1 πα ρ π∗

α Un−1,

α ∈ [[1,N ]]n,
where we used (19) to refine the operators πk into πα . We obtain the probability
weights

tr(I (α)ρ) = tr(παρπ∗
α), α ∈ [[1,N ]]n. (27)

For any U -invariant density ρ, these weights provide an entropy

hn(ρ,I ) =
∑

α∈[[1,N ]]n
η
(

tr(I (α)ρ)
)
. (28)

One easily checks that our quantum partition Pq = (Pk)
K
k=1 satisfies (26), and that

if one takes ρ = |ψ�〉〈ψ�| the weights tr(I (α)ρ) exactly correspond to our weights
‖Pαψ‖2. Hence, the entropy (28) coincides with (25).

Around the same time, Alicki and Fannes [1] used the same quantum partition
(26) (which they called “finite operational partitions of unity”) to define a different
type of entropy, now called the “Alicki–Fannes entropy” (the definition extends to
general C∗-dynamical systems). For each n ≥ 1 they extend the weights (27) to
“off-diagonal entries” to form a N n × N n density matrix ρn:

[ρn]α′,α = tr(πα′ ρ π∗
α), α,α′ ∈ [[1,N ]]n. (29)

The AF entropy of the system (U , ρ) is then defined as follows: take the Von Neu-
mann entropy of these density matrices, hAF

n (ρ, π) = tr η(ρn), then take

lim supn→∞ 1
n
hAF

n (ρ, π) and finally take the supremum over all possible finite op-
erational partitions of unity π .

We mention that traces of the form (29) also appear in the “quantum histories” ap-
proach to quantum mechanics (see e.g. [17], and [29, Appendix D] for references).

3.2.2 Naive Treatment of the Entropy hn(ψ�,Pq)

For fixed |α| > 0, the Egorov theorem shows that ‖Pαψ�‖2 converges to the clas-
sical weight μ((1lsmMα

)2) when � → 0, so for fixed n > 0 the entropy hn(ψ�,Pq)

converges to hn(μ,Psm), defined as in (11), the characteristic functions 1lMk
being

replaced by their smoothed versions (1lsmMk
)2. On the other hand, from the estimate

(20) the entropies hn(ψ�,Pq) satisfy, for � small enough,

hn(ψ�,Pq) ≥ n
(
Λ + O(ε)

) − d| log �| + O(1), (30)

for any time n ≤ K | log �|. For large times n ≈ K | log �|, this provides a lower
bound

1

n
hn(ψ�,Pq) ≥ (

Λ + O(ε)
) − d

K
+ O(1/| log �|),
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which looks very promising since K can be taken arbitrary large: we could be
tempted to take the semiclassical limit, and deduce a lower bound hKS(μ) ≥ Λ.

Unfortunately, this does not work, because in the range {n > n1} where the
estimate (30) is useful, the Egorov theorem breaks down, the weights (22) do not
approximate the classical weights μ((1lsmMα

)2), and there is no relationship between

hn(ψ,Pq) and the classical entropies hn(μ,Psm).
This breakdown of the quantum-classical correspondence around the Ehrenfest

time is ubiquitous for chaotic dynamics. It has been observed before when studying
the connection between the Alicki–Fannes entropy for the quantized torus automor-
phisms and the KS entropy of the classical dynamics [5]: the quantum entropies
hAF

n (ψ�,Pq) follow the classical hn(μ,Psm) until the Ehrenfest time (and there-
fore grow linearly with n), after which they “saturate”, to produce a vanishing en-
tropy lim supn→∞ 1

n
hAF

n (ψ�,Pq).
To prove Theorem 4, we will still use the estimates (20), but in a more subtle

way, namely by referring to an entropic uncertainty principle.

3.3 Entropic Uncertainty Principle

The theorem below is an adaptation of the entropic uncertainty principle conjectured
by Deutsch and Kraus [12, 21] and proved by Massen and Uffink [25]. These au-
thors were investigating the theory of measurement in quantum mechanics. Roughly
speaking, this result states that if a unitary matrix has “small” entries, then any of
its eigenvectors must have a “large” Shannon entropy.

Let (H , 〈., .〉) be a complex Hilbert space, and denote ‖ψ‖ = √〈ψ,ψ〉 the as-
sociated norm. Consider a quantum partition of unity (πk)

N
k=1 on H as in (26). If

‖ψ‖ = 1, we define the entropy of ψ with respect to the partition π as in (25),
namely hπ(ψ) = ∑N

k=1 η(‖πk ψ‖2). We extend this definition by introducing the
notion of pressure, associated to a family v = (vk)k=1,...,N of positive real num-
bers: the pressure is defined by

pπ,v(ψ)
def=

N∑

k=1

η
(‖πk ψ‖2) −

N∑

k=1

‖πk ψ‖2 log v2
k .

In Theorem 7, we actually need two partitions of unity (πk)
N
k=1 and (τj )

M
j=1, and

two families of weights v = (vk)
N
k=1, w = (wj )

M
j=1, and consider the corresponding

pressures pπ,v(ψ), pτ,w(ψ). Besides the appearance of the weights v, w, we bring
another modification to the statement in [25] by introducing an auxiliary operator O .

Theorem 7 ([4, Theorem 6.5]). Let O be a bounded operator and U be an isometry
on H .

Define c
(v,w)
O (U )

def= supj,k wj vk‖τjU π∗
k O‖, and V = maxk vk , W = maxj wj .

Then, for any ε ≥ 0, for any normalized ψ ∈ H satisfying
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∀k = 1, . . . ,N , ‖(Id − O) πk ψ‖ ≤ ε, (31)

the pressures pτ,w(U ψ), pπ,v(ψ) satisfy

pτ,w(U ψ) + pπ,v(ψ) ≥ −2 log
(
c
(v,w)
O (U ) + N V W ε

)
.

Example 8. The original result of [25] corresponds to the case where H = C
N ,

O = Id , ε = 0, N = M , vk = wj = 1, and the operators πk = τk are the
orthogonal projectors on some orthonormal basis (ek)

N
k=1 of H . In this case, the

theorem asserts that

hπ(U ψ) + hπ(ψ) ≥ −2 log c(U )

where c(U ) = supj,k |〈ek,U ej 〉| is the supremum of all matrix elements of U in
the orthonormal basis (ek). As a special case, one gets hπ(ψ) ≥ − log c(U ) if ψ is
an eigenfunction of U .

3.4 Applying the Entropic Uncertainty Principle to the Laplacian
Eigenstates

In this section we explain how to use Theorem 7 in order to obtain nontrivial infor-
mation on the quantum entropies (25) and then hKS(μ). For this we need to define
the data to input in the theorem. Except the Hilbert space H = L2(M), all other
data depend on the semiclassical parameter �: the quantum partition π , the operator
O , the positive real number ε, the weights (vj ), (wk) and the unitary operator U .

As explained in Sect. 3.2, we partition M into M = ⊔K
k=1 Mk , consider open

sets Ωk � Mk (which we assume to have diameters ≤ ε), and consider smoothed
characteristic functions 1lsmMk

supported respectively inside Ωk , and satisfying the
identity (23). The associated multiplication operators on H are form a quantum
partition (Pk)

K
k=1, which we had called Pq . To alleviate notations, we will drop the

subscript q.
From (24), and using the unitarity of U�, one realizes that for any n ≥ 1, the

families of operators P∨n = (P ∗
α )|α|=n and T ∨n = (Pα)|α|=n (see (19)) make up

two quantum partitions of unity as in (26), of cardinal Kn.

3.4.1 Sharp Energy Localization

In the estimate (20), we introduced an energy cutoff χ on a finite energy strip E ε,
with χ ≡ 1 near E . This cutoff does not appear in the estimate (18), because, when
applied to the eigenstate ψ�, the operator Op�(χ) essentially acts like the identity.

The estimate (20) will actually not suffice to prove Theorem 4. We will need
to optimize it by replacing χ in (20) with a “sharp” energy cutoff. For some fixed
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(small) δ ∈ (0, 1), we consider a smooth function χδ ∈ C∞(R; [0, 1]), with
χδ(t) = 1 for |t | ≤ e−δ/2 and χδ(t) = 0 for |t | ≥ 1. Then, we rescale that function
to obtain the following family of �-dependent cutoffs near E :

∀� ∈ (0, 1), ∀n ∈ N, ∀ρ ∈ T ∗M,

χ(n)(ρ; �)
def= χδ

(
e−nδ

�
−1+δ(H(ρ) − 1/2)

)
.

(32)

The cutoff χ(n) is supported in a tubular neighbourhood of E of width 2�
1−δ enδ .

We will always assume that this width is � �
1/2 in the semiclassical limit, which is

the case if we ensure that n ≤ Cδ| log �| for some 0 < Cδ < (2δ)−1 − 1. In spite
of their singular behaviour, these cutoffs can be quantized into pseudodifferential
operators Op(χ(n)) described in [4] (the quantization uses a pseudodifferential cal-
culus adapted to the energy layer E , drawn from [28]). The eigenstate ψ� is indeed
very localized near E , since it satisfies

∥
∥
(
Op(χ(0)) − 1

)
ψ�

∥
∥ = O(�∞)‖ψ�‖. (33)

In the rest of the paper, we also fix a small δ′ > 0, and call “Ehrenfest time” the
�-dependent integer

nE(�)
def=

⌊
(1 − δ′)| log �|

λmax

⌋

. (34)

Notice the resemblance with the time n1 defined in (21). The significance of this
time scale will be discussed in Sect. 3.4.5.

The following proposition states that the operators (P ∗
α )|α|=nE

, almost preserve
the energy localization of ψ�:

Proposition 9. For any L > 0, there exists �L such that, for any � ≤ �L, the
Laplacian eigenstate satisfies

∀α, |α| = nE,
∥
∥(

Op(χ(nE)) − Id
)
P ∗

α ψ�

∥
∥ ≤ �

L‖ψ�‖. (35)

We recognize here a condition of the form (31).

3.4.2 Applying Theorem 7: Step 1

We now precise some of the data we will use in the entropic uncertainty princi-
ple, Theorem 7. As opposed to the choice made in [4], we will use two different
partitions π, τ .

• The quantum partitions π and τ are given respectively by the families of oper-
ators π = P∨nE = (P ∗

α )|α|=nE
, τ = T ∨nE = (Pα)|α|=nE

. Notice that these
partitions only differ by the ordering of the operators Pαi

(i) inside the products.
In the semiclassical limit, these partitions have cardinality N = KnE � �

−K0

for some fixed K0 > 0.
• The isometry will be the propagator at the Ehrenfest time, U = U

nE

�
.
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• The auxiliary operator is given as O = Op(χ(nE)), and the error ε = �
L, where

L will be chosen very large (see Sect. 3.4.4).
• The weights vα, wα will be selected in Sect. 3.4.4. They will be semiclassically

tempered, meaning that there exists K1 > 0 such that, for � small enough, all
vα, wα are contained in the interval [1, �

−K1 ].
The entropy and pressures associated with a state ψ ∈ H are given by

hπ(ψ) =
∑

|α|=nE

η
(‖P ∗

α ψ‖2), (36)

pπ,v(ψ) = hπ(ψ) − 2
∑

|α|=nE

‖P ∗
α ψ‖2 log vα. (37)

With respect to the second partition, we have

hτ (ψ) =
∑

|α|=nE

η
(‖Pα ψ‖2), (38)

pτ,w(ψ) = hτ (ψ) − 2
∑

|α|=nE

‖Pα ψ‖2 log wα. (39)

We notice that the entropy hτ (ψ) exactly corresponds to the formula (25), while
hπ(ψ) is built from the norms

‖P ∗
α ψ‖2 = ‖Pα0Pα1(1) · · · Pαn−1(n − 1) ψ‖2.

If ψ is an eigenfunction of U�, the above norm can be obtained from (22) by
exchanging U� with U−1

�
, and replacing the sequence α = (α0, . . . , αn−1) by

ᾱ
def= (αn−1, . . . , α0). So the entropies hπ(ψ) and hτ (ψ) are mapped to one an-

other through the time reversal U� → U−1
�

.
With these data, we draw from Theorem 7 the following

Corollary 10. For � > 0 small enough consider the data π , τ , U , O as defined
above. Let

c
v,w
O (U )

def= max
|α|=|α′|=nE

(
wα′ vα ‖Pα′ UnE

�
Pα Op(χ(nE))‖). (40)

Then for any normalized state φ satisfying (35),

pτ,w(U
nE

�
φ) + pπ,v(φ) ≥ −2 log

(
c
v,w
O (U ) + hL−K0−2K1

)
.

From (35), we see that the above corollary applies to the eigenstate ψ� if � is small
enough.

The reason to take the same value nE for the refined partitions P∨nE , T ∨nE

and the propagator U
nE

�
is the following: the products appearing in c

v,w
O (U ) can be

rewritten (with U ≡ U�):
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Pα′ UnE Pα = U−nE+1Pα′
nE−1

U · · ·UPα′
0
UPαnE−1U · · · UPα0 = UnE Pαα′ .

Thus, the estimate (20) with n = 2nE already provides an upper bound for the
norms appearing in (40)—the replacement of χ by the sharp cutoff χ(nE) does not
harm the estimate.

To prove Theorem 4, we actually need to improve the estimate (20), as was done
in [4], see Theorem 11 below. This improvement is done at two levels: we will use
the fact that the cutoffs χ(nE) are sharper than χ , and also the fact that the expansion
rate of the geodesic flow (which governs the upper bound in (20)) is not uniform,
but depends on the sequence α.

Our choice for the weights vα , wα will then be guided by the α-dependent upper
bounds given in Theorem 11. To state that theorem, we introduce some notations.

3.4.3 Coarse-Grained Unstable Jacobian

We recall that, for any energy λ > 0, the geodesic flow gt on the energy layer
E (λ) = H−1(λ) ⊂ T ∗M is Anosov, so that the tangent space TρE (λ) at each
ρ ∈ T ∗M , H(ρ) > 0 splits into

TρE (λ) = Eu(ρ) ⊕ Es(ρ) ⊕ R XH (ρ)

where Eu (resp. Es) is the unstable (resp. stable) subspace. The unstable Jacobian
Ju(ρ) is defined by Ju(ρ) = det(dg−1

|Eu(g1ρ)
) (the unstable spaces at ρ and g1ρ are

equipped with the induced Riemannian metric).
This Jacobian can be “discretized” as follows in the energy strip E ε ⊃ E . For

any pair of indices (α0, α1) ∈ [[1,K]]2, we define

Ju
1 (α0, α1)

def= sup{Ju(ρ) : ρ ∈ T ∗Ωα0 ∩ E ε, g1ρ ∈ T ∗Ωα1} (41)

if the set on the right hand side is not empty, and Ju
1 (α0, α1) = e−R otherwise,

where R > 0 is a fixed large number. For any sequence of symbols α of length n,
we define

Ju
n (α)

def= Ju
1 (α0, α1) · · · Ju

1 (αn−2, αn−1). (42)

Although Ju and Ju
1 (α0, α1) are not necessarily everywhere smaller than unity, there

exists C, λ+, λ− > 0 such that, for any n > 0, for any α with |α| = n,

C−1 e−n(d−1) λ+ ≤ Ju
n (α) ≤ C e−n(d−1) λ− . (43)

One can take λ+ = λmax(1 + ε), where λmax is the maximal expanding rate in
Theorem 4. We now give our central estimate, easy to draw from [4, Corollary 3.4].

Theorem 11. Fix small positive constants ε, δ, δ′ and a constant 0 < Cδ <

(2δ)−1 − 1. Take an open cover M = ⋃
k Ωk of diameter ≤ ε and an associated

quantum partition P = (Pk)
K
k=1. There exists �0 such that, for any � ≤ �0, for any

positive integer n ≤ Cδ| log �|, and any pair of sequences α, α′ of length n,
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∥
∥Pαα′ Op(χ(n))

∥
∥ = ∥

∥Pα′ Un
�

Pα Op(χ(n))
∥
∥ ≤ C �

− d−1
2 −δ enδ

√
Ju

n (α) J u
n (α′).

(44)
The constant C only depends on the Riemannian manifold (M, g). If we take n =
nE , this takes the form

‖Pα′ UnE

�
Pα Op(χ(nE))‖ ≤ C �

− d−1+cδ
2

√
Ju

nE
(α) J u

nE
(α′), (45)

where c = 2 + 2λ−1
max.

The idea of proof in Theorem 11 is rather simple, although the technical imple-
mentation is cumbersome. We first show that for any normalized state ψ , the state
Op(χ(n))ψ can be essentially decomposed into a superposition of �

−d | supp χ(n)|
normalized Lagrangian states, supported on Lagrangian manifolds transverse to
the stable foliation. In fact the Lagrangian states we work with are truncated δ-
functions, supported on Lagrangians of the form

⋃
t gtS∗

z M . The action of the oper-
ator UnPαα′ = Pα′

n−1
U · · · UPα0 on such Lagrangian states can be analyzed through

WKB methods, and is simple to understand at the classical level: each application
of the propagator U stretches the Lagrangian along the unstable direction (the rate
of stretching being described by the local unstable Jacobian), whereas each operator
Pk “projects” on a piece of Lagrangian of diameter ε. This iteration of stretching and
cutting accounts for the exponential decay. The αα′-independent factor on the right
of (45) results from adding together the contributions of all the initial Lagrangian
states. Notice that this prefactor is smaller than in Theorem 6 due to the condition
Cδ < (2δ)−1 − 1.

Remark 12. In [4] we used the same quantum partition P∨nE for π and τ in The-
orem 7. As a result, we needed to estimate from above the norms ‖P ∗

α′ UnE Pα ×
Op(χ(nE))‖ (see [4, Theorem. 2.6]). The proof of this estimate was much more
involved than the one for (45), since it required to control long pieces of unstable
manifolds. By using instead the two partitions P(n), T (n), we not only prove a
more precise lower bound (6) on the KS entropy, but also short-circuit some fine
dynamical analysis.

3.4.4 Applying Theorem 7: Step 2

There remains to choose the weights (vα, wα) to use in Theorem 7. Our choice
is guided by the following idea: in (40), the weights should balance the variations
(with respect to α,α′) in the norms, such as to make all terms in (40) of the same
order. Using the upper bounds (45), we end up with the following choice for all α

of length nE :

vα = wα
def= Ju

nE
(α)−1/2.

From (43), there exists K1 > 0 such that, for � small enough, all the weights
are contained in the interval [1, �

−K1 ], as announced in Sect. 3.4.2. Using these
weights, the estimate (45) implies the following bound on the coefficient (40):
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∀� < �0, c
v,w
O (U ) ≤ C �

− d−1+cδ
2 .

We can now apply Corollary 10 to the particular case of the eigenstates ψ�. We

choose L such that L − K0 − 2K1 > − d−1+cδ
2 , so from Corollary 10 we draw the

following

Proposition 13. Let (ψ�)�→0 be our sequence of eigenstates (5). In the semiclassi-
cal limit, the pressures of ψ� satisfy

pP∨nE ,v(ψ�) + pT ∨nE ,w(ψ�) ≥ − (d − 1 + cδ)λmax

(1 − δ′)
nE + O(1). (46)

If M has constant curvature we have log Jn
α ≤ −n(d − 1)λmax(1 − O(ε)) for all

α of length n, and the above lower bound can be written

hP∨nE (ψ�) + hT ∨nE (ψ�) ≥ (d − 1)λmax
(
1 + O(ε, δ, δ′)

)
nE.

As opposed to (30), the above inequality provides a nontrivial lower bound for the
quantum entropies at the time nE , which is smaller than the time n1 of (21), and
will allow to connect those entropies to the KS entropy of the semiclassical measure
(see below).

3.4.5 Subadditivity Until the Ehrenfest Time

Even at the relatively small time nE , the connection between the quantum entropy
h(ψ�,P∨nE ) and the classical h(μ,P∨nE

sm ) is not completely obvious: both are
sums of a large number of terms (� �

−K0 ). Before taking the limit � → 0, we will
prove that a lower bound of the form (46) still holds if we replace nE � | log �|
by some fixed no ∈ N, and P∨nE by the corresponding quantum partition P∨no .
The link between quantum pressures at times nE and no is provided by the fol-
lowing subadditivity property, which is the semiclassical analogue of the classical
subadditivity of pressures for invariant measures (see (12)).

Proposition 14 (Subadditivity). Let δ′ > 0. There is a function R(no, �), and a
real number R > 0 independent of δ′, such that, for any integer no ≥ 1,

lim sup
�→0

|R(no, �)| ≤ R

and with the following properties. For any small enough � > 0, any integers no,
n ∈ N with no + n ≤ nE(�), for any ψ� normalized eigenstate satisfying (5), the
following inequality holds:

pP∨(no+n),v(ψ�) ≤ pP∨no ,v(ψ�) + pP∨n,v(ψ�) + R(no, �).

The same inequality is satisfied by the pressures pT ∨n,w(ψ�).
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To prove this proposition, one uses a refined version of Egorov’s theorem [10] to
show that the non-commutative dynamical system formed by (Ut

�
) acting (through

Heisenberg) on observables supported near E is (approximately) commutative on
time intervals of length nE(�). Precisely, we showed in [4] that, provided ε is small
enough, for any a, b ∈ C∞

c (E ε),

∀t ∈ [−nE(�), nE(�)], ∥
∥[Op�(a)(t), Op�(b)]∥∥ = O(�cδ′

), � → 0,

and the implied constant is uniform with respect to t . Within that time interval, the
operators Pαj

(j) appearing in the definition of the pressures commute up to small
semiclassical errors. This almost commutativity explains why the quantum pres-
sures pP∨n,v(ψ�) satisfy the same subadditivity property as the classical entropy
(12), for times smaller than nE .

Thanks to this subadditivity, we may finish the proof of Theorem 4. Fixing no,
using for each � the Euclidean division nE(�) = q(�) no + r(�) (with r(�) < no),
Proposition 14 implies that for � small enough,

pP∨nE ,v(ψ�)

nE

≤ pP∨no ,v(ψ�)

no

+ pP∨r ,v(ψ�)

nE

+ R(no, �)

no

.

The same inequality is satisfied by the pressures pT ∨n,w(ψ�). Using (46) and the
fact that pP∨r ,v(ψ�) stays uniformly bounded when � → 0, we find

pP∨no ,v(ψ�) + pT ∨no ,w(ψ�)

no

≥ −2(d − 1 + cδ)λmax

2(1 − δ′)
− 2R(no, �)

no

+ Ono(1/nE). (47)

We are now dealing with quantum partitions P∨no , T ∨no , for n0 ∈ N independent
of �. At this level the quantum and classical entropies are related through the (finite
time) Egorov theorem, as we had noticed in Sect. 3.2.2. For any α of length no, the
weights ‖Pα ψ�‖2 and ‖P ∗

α ψ�‖2 both converge to μ((1lsmMα
)2), where we recall that

1lsmMα
= (1lsmMαno−1

◦ gno−1) × · · · × (1lsmMα1
◦ g) × 1lsmMα0

.

Thus, both entropies hP∨no (ψ�), hT ∨no (ψ�) semiclassically converge to the clas-
sical entropy hno(μ,Psm). As a result, the left hand side of (47) converges to

2
hno(μ,Psm)

no

+ 2

no

∑

|α|=no

μ
(
(1lsmMα

)2) log Ju
no

(α). (48)

Since μ is gt -invariant and Ju
no

has the multiplicative structure (42), the second term
in (48) can be simplified:

∑

|α|=no

μ
(
(1lsmMα

)2) log Ju
no

(α) = (no − 1)
∑

α0,α1

μ
(
(1lsmM(α0,α1)

)2) log Ju
1 (α0, α1).
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We have thus obtained the lower bound

hno(μ,Psm)

no

≥ −no − 1

no

∑

α0,α1

μ
(
(1lsmM(α0,α1)

)2) log Ju
1 (α0, α1)

− (d − 1 + cδ)λmax

2(1 − δ′)
− R

no

. (49)

At this stage we may forget about δ and δ′. The above lower bound does not depend
on the derivatives of the functions 1lsmMα

, so the same bound carries over if we replace

1lsmMα
by the characteristic functions 1lMα . We can finally let no tend to +∞, then

let the diameter ε tend to 0. The left hand side converges to hKS(μ) while, from
the definition (41), the sum in the right hand side of (49) converges to the integral∫
E log Ju(ρ)dμ(ρ) as ε → 0, which proves (6).
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