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Abstract

The color-flavor transformation, an identity that connects two integrals, each of which is over one
of a dual pair of Lie groups acting in the fermionic Fock space, is extended to the case of the special
unitary group. Using this extension, a toy model of lattice QCD is studied:Nf species of spinless
fermions interacting with strongly coupled SU(Nc) lattice gauge fields in 1+ 1 dimensions. The
color-flavor transformed theory is expressed in terms of gauge singlets, the meson fields, organized
into sectors distinguished by the distribution of baryonic flux. A comprehensive analytical and
numerical search is made for saddle-point configurations of the meson fields, with various topological
charges, in the vacuum and single-baryon sectors. Two definitions of the static baryon on the square
lattice, straight and zigzag, are investigated. The masses of the baryonic states are estimated using
the saddle-point approximation for largeNc.  2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In quantum chromodynamics (QCD), a hierarchy of scales is provided byΛχ ∼ 1 GeV,
the scale of chiral symmetry breaking, andΛQCD ∼ 0.18 GeV, defined as the location of
the Landau pole of the one-loop beta function. The running coupling constant increases
from weak to strong coupling as the momentum scale is lowered from the perturbative
regime aboveΛχ down toΛQCD.
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In the past two decades a great deal was learned about the non-perturbative structure
of QCD at scales betweenΛχ andΛQCD. The guiding idea was to construct low-energy
effective theories which encode the symmetries of the fundamental QCD Lagrangian. To
obtain these effective theories, one may start from full QCD, and integrate out the high-
energy degrees of freedom (quarks and gluons) in order to produce a low-energy effective
action in terms of mesons and baryons. In this way it was possible to recover the chiral
Lagrangian [1–4] that had been introduced phenomenologically by Weinberg [5].

In a more recent development, it was shown [6] how to extract the effective long-
distance degrees of freedom by starting from the lattice [7,8] formulation of QCD. In
that approach it is assumed that the long-distance physics of lattice QCD (LQCD) can
be described by a strongly coupled lattice theory. From the latter, one gets the continuum
chiral Lagrangian by expanding the effective action in powers of the lattice spacing and
external momenta. All the terms of the Gasser–Leutwyler continuum effective Lagrangian
[9] can be recovered in this way [10]. The lattice formulation is, however, deficient in
one respect: by the technical difficulties with chiral symmetry for lattice fermions, the
chiral anomaly is lost, i.e., forNf massless quark flavors the chiral symmetry of the lattice
effective theory is U(Nf ) rather than SU(Nf ).

This type of approach was initiated in [11,12]; it relied on a “bosonization” of the
strong-coupling LQCD action, and a large-Nc or large-dimension expansion. Technically,
the heart of the method is the computation of integrals over the group SU(Nc) with Haar
measure, weighted by e−S(U). Some general results for such integrals have recently been
reviewed in [13].

A few years ago, an alternative kind of bosonization scheme was introduced [14],
relying on a mathematical formalism later called the “color-flavor transformation” [15].
This transformation relates two different formulations of a certain class of theories. In
condensed matter theory, the transformation has found a number of applications, among
others to the random flux model [16].

The color-flavor transformation in its original version applies to the gauge group U(Nc).
For this group, all gauge singlets are of “mesonic” (or quark–antiquark) type. In order
for baryons to appear, one needs to replace U(Nc) by the special unitary group SU(Nc).
In Section 2 of the present paper we extend the color-flavor transformation to SU(Nc),
by decomposing the (colorless) flavor sector of Fock space into disconnected subsectors
labeled by the baryonic charge.

In Sections 4–7 we apply the formalism to a toy model of LQCD:Nf species of
spinless fermions interacting with strongly coupled SU(Nc) lattice gauge fields in 1+ 1
dimensions. The color-flavor transformation yields a dual representation of this non-
Abelian model. Combining numerical computations with analytical considerations, we
conduct a comprehensive search for saddle-point configurations in various baryonic sectors
with different topological properties. We use these configurations (without fluctuation
corrections) to estimate the mass of a single baryon in our model. In doing so we ignore
the Mermin–Wagner–Coleman theorem (asserting that spontaneous breaking of continuous
global symmetries does not occur in 1+ 1 dimensions), by assuming the pattern of chiral
symmetry breaking that is known to occur in the physical case of 3+ 1 dimensions.

After the present work had been completed, we learned that the SU(N) generalization
of the color-flavor transformation has also been worked out by Schlittgen and Wettig [17].
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2. Color-flavor transformation for SU(Nc)

2.1. Group action on fermionic Fock space

In this section we set up some algebraic structures, which are needed to establish the
“color-flavor” transformation for the special unitary group. Our discussion follows the line
of reasoning of Ref. [14] but is somewhat simpler, as we do not need the superalgebraic
framework employed there.

We start by considering a set of fermionic creation and annihilation operatorsf̄ iA and
f iA, which obey the canonical anticommutation relations{

f iA,f
j
B

}= 0,
{
f̄ iA, f̄

j
B

}= 0,
{
f iA, f̄

j
B

}= δABδij .
The lower index takes the values+a or −a, with rangea = 1, . . . ,Nf , and the upper
index takes the valuesi = 1, . . . ,Nc . Having QCD in mind, we interpret the operators
f̄ i+a andf̄ i−a as creation operators for “quarks” and “antiquarks”, respectively; the indexi

corresponds to the gauge (or color) degrees of freedom and the indexa labels the different
quark flavors. (The quarks are regarded here as being spinless.) The operatorsf iA andf̄ iA
act on a Fock space with vacuum|0〉 and its conjugate〈0|, byf iA|0〉 = 0 and〈0|f̄ iA = 0 for
all A andi.

We next consider the set of quadratic operatorsE
ij
AB defined by

E
ij
+a,+b = f̄ i+af j+b, E

ij
+a,−b = f̄ i+af̄ j−b,

E
ij

−a,+b = f i−af j+b, E
ij

−a,−b = f i−af̄ j−b.
The C-linear span of these operators has the structure of a complex Lie algebra,G.
More precisely, the operatorsEijAB obey the commutation relations of a set of canonical
generators of the Lie algebragl(2NfNc):[

E
ij
AB,E

kl
CD

]= δjkδBCEilAD − δliδDAEkjCB.
Thus we have a Lie algebra isomorphism fromgl(2NfNc) (i.e., the space of complex
matrices of size 2NfNc × 2NfNc, with the Lie bracket given by the commutator) toG:

t :gl(2NfNc)→ G, m �→ tm :=
∑
ij,AB

m
ij

ABE
ij

AB.

This isomorphism lifts to an isomorphism of the corresponding complex groups:

(1)T : GL(2NfNc)→G, M = exp(m) �→ TM = exp(tm),

which forms a (reducible) representation of GL(2NfNc) on Fock space. The representation
is single-valued (which means there are no U(1) obstructions from the multi-valuedness of
the logarithm) as the spectrum of each operatorEiiAA is the set{0,1}.

The Lie algebragl(2NfNc) has two subalgebrasgl(Nc) and gl(2Nf ) which are
embedded in a natural way: a matrixX ∈ gl(Nc) is identified with I2Nf ⊗ X, and a
matrixY ∈ gl(2Nf ) with Y ⊗ INc . Through these embeddings,gl(Nc) andgl(2Nf ) form a
pair of maximal commuting subalgebras ofgl(2NfNc), also known as a “dual pair” [18].
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The subgroups GL(Nc) and GL(2Nf ) are embedded into GL(2NfNc) in the same way.
Their adjoint action on the fermionic creation and annihilation operators is described in
Appendix A.

We define thecolor groupto be the subgroup SU(Nc) of GL(Nc), and theflavor group
to be the subgroup U(2Nf ) of GL(2Nf ). GL(Nc) contains an extra U(1) subgroup which
lies outside the color group and, being generated by the unit matrix, commutes with the
whole group GL(2NfNc). This U(1) is generated bŷQ+Nf where

(2)Q̂= 1

Nc

∑
A,i

EiiAA −Nf = 1

Nc

∑
a,i

(
f̄ i+af i+a − f̄ i−af i−a

)
counts the difference between the number of particles and the number of antiparticles:
Q̂ = 1

Nc
(N+ − N−). In contrast, the operator giving the total number of particles,

N̂ =∑
a,i(f̄

i+af i+a + f̄ i−af i−a), does not commute with the generators ofgl(Nf ). We will
call Q̂ thebaryon charge operator.

2.2. From color group integrals to flavor group integrals

Let ψiA andψ̄iA be two independent sets of Grassmann variables, referred to as “quark
fields”, and consider the color group integral

(3)Z(ψ, ψ̄)=
∫

SU(Nc)

dU exp
(
ψ̄i+aUijψ

j
+a + ψ̄i−b�Uijψj−b

)
.

The Haar measuredU of SU(Nc) is understood to be normalized by
∫

SU(Nc)
dU = 1. We

also adopt the convention that repeated occurrence of an index implies summation.
The color-flavor transformation will replace the integral (3) by an integral over the flavor

group U(2Nf ). A key step in doing the transformation is to interpretZ(ψ, ψ̄) as the matrix
element of an operatorP that projects on thecolorless sector(or flavor sector) of Fock
space. This sector is the subspace of all states|flavor〉 which are invariant under the color
group:TU |flavor〉 = |flavor〉 for all U ∈ SU(Nc).

The first step towards the color-flavor transformation is to express the projectorP as

(4)P =
∫

SU(Nc)

dU TU .

Let us now introduce the fermion coherent states

(5)〈�Ψ | = 〈0|exp
(
ψ̄i−af i−a + ψ̄i+af i+a

)
, |Ψ 〉 = exp

(
f̄ i−aψi−a + f̄ i+aψi+a

)|0〉.
By making use of the first set of relations in Appendix A, it is straightforward to show that

〈�Ψ |TU |Ψ 〉 = exp
(
ψ̄i+aUijψ

j
+a + ψ̄i−b�Uijψj−b

)
for U ∈ SU(Nc). This yields the simple formula

(6)Z(ψ, ψ̄)= 〈Ψ̄ |P |Ψ 〉.
To expressZ(ψ, ψ̄) as an integral over the flavor group, we will derive an alternative

representation of the projectorP , as an integral over coherent states of the flavor sector.
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2.3. The flavor sector

The subspace of states in Fock space which are invariant under U(Nc) was described in
[14]. It consists of the vacuum and ofmesonicexcitations on top of it. The prototype of
such an excitation is the “one-meson” state

|mab〉 =
∑
i

Eii+a,−b|0〉 =
∑
i

f̄ i+a f̄ i−b|0〉.

By the multiple action of thegl(2Nf ) generatorsEii+a,−b (where we have gone back to
using the summation convention), one can build states containing up toNcNf mesons, with
different flavors. These states are automatically U(Nc)-invariant; conversely, all U(Nc)-
invariant states are linear combinations of such multi-meson states. The group U(2Nf )
acts irreducibly on this invariant subspace.

The set of SU(Nc)-invariant states is larger. To obtain it, one relaxes the constraint
Q̂|ψ〉 = 0. Thus there exist colorless sectors of Fock space on which the central
generator̂Q takes a non-zero value. These sectors contain thebaryons, which are totally
antisymmetric combinations ofNc quarks. A baryon with flavorsa1, . . . , aNc is defined as

(7)|bA1...ANc
〉 = 1

Nc!εi1...iNc f̄
i1
A1

· · · f̄ iNcANc |0〉,

where theAk = ±ak are taken either all positive (baryon), or all negative (antibaryon).
A matrix g ∈ GL(Nc) acts on this state simply by multiplication with Det(g) (respec-
tively, Det−1(g)). Therefore, the state is invariant under the color group SU(Nc).

The above baryon (respectively, antibaryon) is an eigenstate of the baryon charge
operatorQ̂ with eigenvalue+1 (respectively,−1). Acting on it with the generatorsEiiAB
of the flavor algebragl(2Nf ), one builds other colorless states with the same baryon
number, which form an irreducible subspace for U(2Nf ): the one-baryon (respectively,
one-antibaryon) sector.

The one-baryon sector can be generated from the state (7) with allAj = 1. One can
similarly buildQ-baryon (respectively,Q-antibaryon) states from

(8)|BQ〉 =
Q∏
a=1

f̄ 1+a · · · f̄ Nc+a |0〉, |B0〉 = |0〉, |B−Q〉 =
Q∏
a=1

f̄ 1−a · · · f̄ Nc−a |0〉.

The values of the baryon charge range from−Nf to Nf , according to Pauli’s exclusion
principle. As withQ = ±1, acting on|BQ〉 with the algebragl(2Nf ) builds the fullQ-
baryon part of the flavor sector, so the group U(2Nf ) acts irreducibly on this part. This
can be proved by using the dual-pair property of the subalgebrasgl(2Nf ) andgl(Nc), as
exposed in [18].

To summarize, the flavor sector of Fock space decomposes into 2Nf + 1 subsectors,
characterized by their baryon chargesQ. Each sector carries an irreducible unitary
representation of the flavor group U(2Nf ).
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2.4. Coherent states

Having decomposed the flavor sector as described above, we can now express the
projectorP in a different way. For this purpose we will use coherent states, in the spirit
of Perelomov [19]. On each subsector with a fixed baryon chargeQ, we consider the
generalized coherent statesbuilt by the action ofG≡ U(2Nf ) on the reference state|BQ〉,
i.e., the states

(9)∀g ∈G, ∀Q=−Nf , . . . ,Nf : |gQ〉 def= Tg |BQ〉, 〈gQ| def= 〈BQ|T †
g .

The crucial property of coherent states we will now use, is that they supply a resolution of
unity. Because of the irreducibility of the U(2Nf ) action on eachQ-subsector, the operator

(10)PQ def= αQ
∫
G

dg |gQ〉〈gQ|

coincides with the orthogonal projector on that subsector, the only provision being that
the normalization constantαQ be chosen appropriately. Indeed, the operatorPQ trivially
commutes with every element of the flavor group; Schur’s lemma then ensures that it
is proportional to the identity on each irreducible space of this group, therefore, on
each subsector with fixed baryonic charge. Owing to orthogonality,PQ vanishes on all
subsectors withQ′ �=Q, whereas it is the identity on theQ-subsector if we take

(11)αQ =
(∫
G

dg |〈BQ|Tg|BQ〉|2
)−1

.

Some particular values of the constant (namelyα0, α±1) are computed in Appendix B.
For the matrix element (6) of the projectorP on the full flavor sector,

P =
Nf⊕

Q=−Nf
PQ,

we now have a new representation:

(12)Z(ψ, ψ̄)=
Nf∑

Q=−Nf
αQ

∫
G

dg 〈�Ψ |gQ〉〈gQ|Ψ 〉.

To compute the overlaps〈�Ψ |gQ〉 and〈gQ|Ψ 〉, it is convenient to use a Gauss decomposi-
tion ofG= U(2Nf ): almost any matrixg = (

A B
C D

)∈G can be factored as

(13)

(
A B

C D

)
=
(

1 Z

0 1

)(
Ã 0

0 D

)(
1 0

Z̃ 1

)
,

where the relationsZ = BD−1, Z̃ =D−1C, andÃ=A−BD−1C hold. The decomposi-
tion becomes singular ifD does, but this happens only on a submanifold of codimension

one (and, hence, measure zero) ofG. The unitarity ofg implies Z̃ = −D†Z†A†−1
and
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allows to write the central matrix in the form

(14)

(
Ã 0

0 D

)
=
(
(1+ZZ†)1/2 0

0 (1+Z†Z)−1/2

)(U 0

0 V

)
.

The matricesU andV are unitary, so
(U 0

0 V
)

is an element of the diagonal U(Nf )×U(Nf )
subgroup ofG, which we callH . It can thus be shown that the elementsg of an open dense
subset ofG are in one-to-one correspondence with the triplets(Z,U,V), where the pair
diag(U,V) is an element ofH , whileZ represents a point in the coset spaceG/H and can
be any complexNf ×Nf matrix. Moreover, the Haar measuredg of G factorizes as

(15)
∫
G

dg =
∫
G/H

d(gH)

∫
H

dh=
∫

C
Nf ×Nf

dµ
(
Z,Z†)∫

H

dU dV .

BothdU anddV are normalized Haar measures on U(Nf ), and

dµ
(
Z,Z†)= CNf Det

(
1+ZZ†)−2Nf

∏
i,j

dZij d�Zij

is the normalized invariant measure onG/H . The normalization factorCNf is computed
in Appendix B; see Eq. (B.6).

We now explain how to use this decomposition to compute the overlaps. The Gauss
decomposition (13) carries over to any representation ofG, so for everyg ∈ G we can
write the operatorTg as

(16)Tg = TζTdiag(Ã,D)Tζ̃ ,

whereζ = ( 1 Z
0 1

)
andζ̃ = ( 1 0

Z̃ 1

)
. According to the relations given in Appendix A, the factors

Tζ andTζ̃ act trivially on the reference states:

(17)∀Q=−Nf , . . . ,Nf : Tζ̃ |BQ〉 = |BQ〉, 〈BQ|Tζ = 〈BQ|.
The action of the block-diagonal operator is slightly more subtle. Using the third set of
relations given in Appendix A, we get

Tdiag(Ã,D)|0〉 = (DetD)Nc |0〉,

Tdiag(Ã,D)|B1〉 = (DetD)Nc
Nc∏
i=1

Ãa1f̄
i+a |0〉,

Tdiag(Ã,D)|B−1〉 = (DetD)Nc
Nc∏
i=1

(
D−1)

1af̄
i−a |0〉.

(To make sense of these formulas one must remember that we are using the summation
convention: the flavor indexa under the product is understood to be summed over.) These
formulas directly yield the desired overlaps with〈�Ψ |:

〈�Ψ |g0〉 = (DetD)Nc
Nc∏
i=1

exp
(
ψ̄i+aZabψ̄i−b

)
,
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〈�Ψ |g1〉 = (DetD)Nc
Nc∏
i=1

ψ̄i+cÃc1 exp
(
ψ̄i+aZabψ̄i−b

)
,

〈�Ψ |g−1〉 = (DetD)Nc
Nc∏
i=1

D−1
1c ψ̄

i−c exp
(
ψ̄i+aZabψ̄i−b

)
,

as well as the overlaps with|Ψ 〉:

〈g0|Ψ 〉 = (
DetD†)Nc Nc∏

i=1

exp
(
ψi−aZ†

abψ
i+b
)
,

〈g1|Ψ 〉 = (
DetD†)Nc Nc∏

i=1

Ã
†
1cψ

i+c exp
(
ψi−aZ†

abψ
i
+b
)
,

〈g−1|Ψ 〉 = (
DetD†)Nc Nc∏

i=1

ψi−c
(
D−1)†

c1 exp
(
ψi−aZ†

abψ
i
+b
)
.

The overlaps with the coherent states|gQ〉 containing more than one baryon (|Q|> 1) can
be computed in the same way; in front of the exponential factors, there will be|Q| similar
products, with flavor indices 1, . . . , |Q|.

We now insert the above expressions for the overlaps into (12), and use the factorization
(15) to arrive at an integral over triples (Z,U,V). Leaving theZ-integral for later, we next
carry out the integrations over the unitary matricesU andV . They enter in the overlaps via
the matrix elements of̃A andD; see Eq. (14). To simplify the notation, we first perform a
flavor rotation on the Grassmann fields:

φi+b = (
√

1+ZZ† )baψ
i+a, φi−b = ψi−a(

√
1+Z†Z )ab,

φ̄i+b = ψ̄i+a(
√

1+ZZ† )ab, φ̄i−b =
(√

1+Z†Z
)
ba
ψ̄i−a.

The integrals we need to compute then read as follows (assumingQ> 0):

(18)χQ(φ̄+, φ+)
def= αQ

∫
U(Nf )

dU
Q∏
c=1

Nc∏
i=1

(
φ̄i+aUac

)(
φi+bU

−1
cb

)
,

(19)χ−Q(φ̄−, φ−)
def= α−Q

∫
U(Nf )

dV
Q∏
c=1

Nc∏
i=1

(
φ̄i−aV−1

ca

)(
φi−bVbc

)
.

We also setχ0 ≡ α0, andχQ(ψ̄,ψ;Z) ≡ χQ(φ̄+, φ+), andχ−Q(ψ̄,ψ;Z) ≡ χ−Q(φ̄−,
φ−). The functionχ1(φ̄+, φ+) will play a distinguished role in the lattice gauge theory
application in Section 3, and we therefore evaluate it explicitly in the next subsection.

The integrations overH having been done, we are left with an integral overG/H , i.e.,
over aZ-dependent integrand, in eachQ-subsector. Putting everything together, we finally
arrive at the following identity:
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SU(Nc)

dU exp
(
ψ̄i+aUijψ

j
+a + ψ̄i−b�Uijψj−b

)

(20)

=
Nf∑

Q=−Nf

∫
C
Nf ×Nf

dµ
(
Z,Z†)χQ(ψ̄,ψ;Z)exp(ψ̄i+aZabψ̄i−b +ψj−bZ†

baψ
j
+a)

Det(1+ZZ†)Nc
,

which is called the color-flavor transformation for SU(Nc), and is the central result of the
present section. Note that the right-hand side of the transformation has the attractive feature
of organizing the contributions according to the different baryonic sectors.

An effective action in the bosonic variableZ can be obtained by doing the (Gaussian)
integral over the Grassmann fields. This will be done in a lattice gauge context in Section 3.

2.5. Evaluation ofχ1

In this subsection we evaluate the coefficient

χ1(φ̄+, φ+)= α1

∫
U(Nf )

dU
Nc∏
i=1

(
φ̄i+aUa1

)(
φi+b�Ub1

)
.

Only the first column of the unitary matrixU occurs in the integrand, so the integral
is effectively over a unit sphere inNf -dimensional complex space, S2Nf−1 = CNf /R+.
Parametrizing the latter by a complex vectorz= (z1, . . . , zNf ) with unit norm|z| = 1, we
have

χ1(φ̄+, φ+)= α1

∫
|z|=1dΩ(z, z̄)

∏Nc
i=1(φ̄

i+aza)(φi+bz̄b)∫
|z|=1dΩ(z, z̄)

,

wheredΩ(z, z̄) is a U(Nf )-invariant measure on the unit sphere|z| = 1. By homogeneity
in z andz̄, we may use the trick of replacing the numerator and denominator by integrals
overC

Nf , with a Gaussian weight function e−|z|2 included in the integrands. The answer
then easily follows from Wick’s theorem:

χ1(φ̄+, φ+)= α1
(Nf − 1)!

(Nc +Nf − 1)!
∑
σ∈SNc

sgnσ
Nc∏
i=1

φ̄i+aφ
σ(i)
+a

(21)= α1
(Nf − 1)!

(Nc +Nf − 1)!
∑
σ∈SNc

sgnσ
Nc∏
i=1

ψ̄i+a
(
1+ZZ†)

ab
ψ
σ(i)
+b ,

whereSNc denotes the group of permutations of the numbers 1, . . . ,Nc .
This result was already obtained in [22]. More general considerations based on the

group theoretical approach were presented in [17]. Our calculation of the pre-exponential
factorsχ0, χ±1 are in agreement with the latter work where a general formula forχQ was
derived.
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3. Color-flavor transformation on the lattice

We consider a Euclidean SU(Nc) gauge theory in 1+ d dimensions placed on a
hypercubic lattice with lattice constanta. The fermionsψib(n), with colorsi = 1, . . . ,Nc
and flavorsb = 1, . . . ,Nf , are put on lattice sites labeled byn = (n0, . . . , nd), while the

gauge matrix variablesU(n+ µ̂
2 )= exp[iagAµ(na + aµ̂

2 )] ∈ SU(Nc) are placed on lattice
links n+ µ̂/2 (we label links by theirmiddle points), starting from sitesn in any of the
directionsµ= 0, . . . , d . In the limit of a strong gauge couplingg, the gauge theory has the
partition sumZ = ∫ ∏

n dψ(n) dψ̄(n)Z(ψ, ψ̄) with [11]

(22)Z(ψ, ψ̄)=
∏
n

eSm,ψ,ψ̄ (n)
∏
µ

∫
SU(Nc)

dU

(
n+ µ̂

2

)
exp

{
SU,ψ,ψ̄

(
n+ µ̂

2

)}
.

The fermions on two neighboring sitesn andn+ µ̂ are coupled through the gauge fields
on the connecting linkn+ µ̂/2 in a gauge-invariant way:

SU,ψ,ψ̄

(
n+ µ̂

2

)
= a

d

2

[
ψ̄ib(n)U

ij

(
n+ µ̂

2

)
ψ
j
b (n+ µ̂)

(23)− ψ̄jb (n+ µ̂)U†ji
(
n+ µ̂

2

)
ψib(n)

]
,

while the (bare) quark massm couples the fermions diagonally

(24)Sm,ψ,ψ̄ (n)= ad+1mψ̄(n)ψ(n).

We are not going to worry here about the fermion doubling problem and will restrict our
considerations to this naive discretization of the fermionic action. Also, for simplicity we
do not take into account the spin degrees of freedom, leaving their inclusion for a future
publication.

We rescale the fermionic fields so as to absorb the prefactorad/2. This just adds a global
prefactor toZ, and has no effect on the physical quantities. The SU(Nc)-integral overU
on each link is then identical to (3) after the following substitutions:

ψ̄+ = ψ̄(n), ψ+ =ψ(n+ µ̂), ψ̄− =ψ(n), ψ− = ψ̄(n+ µ̂).
On each link, we perform the color-flavor transformation (20), thereby introducing a

complex “flavor matrix field”Z(n+ µ̂
2 ), Z

†(n+ µ̂
2 ). The outcome of the transformation

reads

Z(ψ, ψ̄)=
∑
{Q}

∏
n

e2amψ̄(n)ψ(n)

×
∏
µ

∫
C
Nf ×Nf

dµ

(
Z,Z†

(
n+ µ̂

2

))
χ
Q

Z,ψ,ψ̄

(
n+ µ̂

2

)

(25)× exp
{
SZ,ψ,ψ̄ (n+ µ̂

2 )
}

Det(1+Z†Z(n+ µ̂
2 ))

Nc
,
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where the sum on the right-hand side extends over all possible distributions{Q} of baryonic
charge (actually, baryonic flux) over the links of the lattice. The color-flavor transformed
action on a linkn+ µ̂/2 is

SZ,ψ,ψ̄

(
n+ µ̂

2

)
= ψ̄ia(n)Zab

(
n+ µ̂

2

)
ψib(n)

(26)+ψ̄jb (n+ µ̂)Z†
ba

(
n+ µ̂

2

)
ψ
j
a (n+ µ̂) ,

and theχ -coefficients areχ0(n+ µ̂
2 )= α0 and (withQ=Q(n+ µ̂

2 ) > 0)

χ
Q

Z,ψ,ψ̄

(
n+ µ̂

2

)

(27)= χ
Q(n+ µ̂2 )

(
ψ̄(n)

√
1+ZZ†

(
n+ µ̂

2

)
,

√
1+ZZ†

(
n+ µ̂

2

)
ψ(n+ µ̂)

)
,

χ
−Q
Z,ψ,ψ̄

(
n+ µ̂

2

)

(28)= χ−Q(n+ µ̂2 )
(√

1+Z†Z

(
n+ µ̂

2

)
ψ(n), ψ̄(n+ µ̂)

√
1+Z†Z

(
n+ µ̂

2

))
.

The fermions are now coupled through theirflavor indices, whereas in the original action
the coupling had been mediated by the color degrees of freedom. Moreover, the coupling
has become ultralocal: the fermions at a siten couple only to one another, viaZ(n+ µ̂

2 ),

and so do the fermions at siten + µ̂, via Z†(n + µ̂
2 ). Correlations between neighbors

are solely due to the relation betweenZ andZ† by Hermitian conjugation. A graphical
description of the change of coupling scheme is given in Fig. 1.

The partition function (25) is a sum over all configurations of baryonic fluxes
{Q(n+ µ̂

2 )}. For most of these configurations, the Grassmann integral vanishes identically.
To see that, we expand the integrand for a given configuration into a polynomial in the
Grassmann fields, and count (for each siten) the number of fermionsψ(n), ψ̄(n) in the
various monomials:

Fig. 1. Coupling of the fermion fields before and after the color-flavor transformation.
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• For every directionµ, the coefficientχQ(n+ µ̂
2 ) containsNc|Q| Grassmann variables

ψ̄ia(n) if Q> 0, and the same number of Grassmann variablesψia(n) if Q< 0.

• For the coefficientsχQ(n− µ̂
2 ) the situation is the same, except thatψ(n) andψ̄(n)

switch roles.
• Each term of the expansion of eψ̄Zψ+ψ̄Z†ψ+2amψ̄ψ involves as manȳψ(n) asψ(n).

The Grassmann integral
∫
dψ(n) dψ̄(n) extracts the coefficient of the top-monomial,∫

dψ̄(n) dψ(n)

Nc∏
i=1

Nf∏
a=1

ψia(n)ψ̄
i
a(n)= 1,

setting all others to zero. This monomial contains as manyψ̄(n) asψ(n). Hence, in view
of the counting above, the contribution from a configuration{Q(n+ µ̂

2 )} vanishes unless
the following condition is met:

(29)
d∑
µ=0

Q

(
n+ µ̂

2

)
=

d∑
µ=0

Q

(
n− µ̂

2

)
.

The physical meaning of this equation is conservation of the baryon current: the (algebraic)
number of baryons “arriving” at the siten (from the linksn− µ̂/2) must equal the number
of baryons “leaving” the site (via the linksn+ µ̂/2).

The general structure of the partition function (25) corresponds to the hadronic
correlation function written in terms of colorlessNc-quark currents [20,21].

3.1. Integration over the fermions

Based on the general considerations above, we perform the integration over the fermions
sector by sector, and present below two particular cases: the “vacuum”, i.e., the sector
where the baryonic fluxQ(n+ µ̂

2 ) vanishes on every linkn+ µ̂/2, and a toy model of a

static baryon on a mesonic background (withQ(n+ µ̂
2 )= 1 along a time axis).

In each case, integration over the Grassmann variables yields a purely bosonic effective
action, which depends on the configuration of the fieldsZ and Z†. After computing
these effective actions, we will look for their saddle-point configurations to estimate the
respective partition functions.

Before computing the effective actions in particular cases, we emphasize the conse-
quences of chiral symmetry, which emerges in the limit of zero quark mass. The hyper-
cubic lattice is bipartite, so it can be split into two sublattices according to the parity of

|n| def= ∑
µ nµ. Given this splitting, the effective actionsS(Z,Z†) of all sectors are invari-

ant under the following global transformation:

|n| even: Z

(
n+ µ̂

2

)
�→ U1Z

(
n+ µ̂

2

)
U2,

Z†
(
n+ µ̂

2

)
�→ U

†
2Z

†
(
n+ µ̂

2

)
U

†
1 ,
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|n| odd: Z

(
n+ µ̂

2

)
�→U

†
2Z

(
n+ µ̂

2

)
U

†
1 ,

(30)Z†
(
n+ µ̂

2

)
�→ U1Z

†
(
n+ µ̂

2

)
U2,

for any pair (U1,U2) ∈ U(Nf ) × U(Nf ). Therefore, in each sector, the saddle-point
configurations in the chiral limit form a continuous set (namely an “orbit”) generated by
acting with the chiral symmetry group U(Nf ) × U(Nf ). As soon as the quark masses
are turned on, this degeneracy disappears, and the saddle points become isolated. Eq. (30)
show that the fieldsZ, Z†(n + µ̂

2 ) transform differently according to the parity of|n|.
To stress this difference, we give different names to the fields on different sublattices: the
fields living on the “even” lattice links will be calledV,V †(n+ µ̂

2 ), while the fields on the

“odd” links will be denoted byW, W†(n+ µ̂
2 ).

3.1.1. Vacuum action
For the vacuum sector we have zero baryonic flux(Q = 0) everywhere on the lattice;

the integral over the fermions, being Gaussian, is then easily done and yields

Zvacuum=
∫
dψ̄(n) dψ(n)Zvacuum(ψ, ψ̄)

(31)=
∫ {∏

n,µ

α0dµ

(
Z,Z†

(
n+ µ̂

2

))}
exp(−NcSvacuum[Z]),

where the result of the integration has been sent back to the exponent. The integration
measure in curly brackets will be denoted byD(Z,Z†) in the following. The factorNc
in the exponent comes from the color content of the fermions: since the actionSZ(ψ̄,ψ)

does not couple fermions with different colors, the Grassmann integral is a product ofNc
identical integrals. The effective action is

(32)Svacuum=−
∑
n

Tr lnM(n)+
∑
n

d∑
µ=0

Tr lnN

(
n+ µ̂

2

)
,

where

(33)M(n)
def= 2am +

d∑
µ=0

[
Z

(
n+ µ̂

2

)
+Z†

(
n+ µ̂

2

)]
,

(34)N

(
n+ µ̂

2

)
def= 1+Z

(
n+ µ̂

2

)
Z†
(
n+ µ̂

2

)
.

3.1.2. Static baryon action
By the static baryon we mean the following distribution of baryonic fluxes over the

lattice:Q(n+ µ̂
2 )= 1 along the links of the “world line” (or “string”)n = (t,0, . . . ,0) ∈

Z
1+d , µ̂= 0̂, with t = 0, . . . , T − 1; on all other linksQ= 0 (see Fig. 2). This distribution

satisfies the current conservation law (29) at all sites but the endst = 0 and t = T
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Fig. 2. Baryon string placed on a two-dimensional lattice.

of the world line. There it does, too, if we impose periodic (or antiperiodic) boundary
conditions on the Grassmann fields: for a lattice of sizeT in the time direction, we set
ψ(T + 1,  r )= ψ(1,  r ), ψ̄(T + 1,  r )= ψ̄(1,  r ). We again write the partition function in
the form (31),

(35)Zbaryon=
∫

Dψ̄ Dψ Zbaryon(ψ, ψ̄)=
∫

D
(
Z,Z†)exp(−NcSbaryon[Z]).

The effective actionSbaryoncontains the “sea” termSvacuum[Z], plus an extra part coming
from the factorsχ1 along the world line of the baryon. These factors depend on the values
of theZ field along this line and on the adjacent links, through the following matrix:

G
def= N

(
1

2
0̂

)
M(10̂)−1N

(
3

2
0̂

)
· · ·N

((
T − 3

2

)
0̂

)
(36)×M((T − 1)0̂)−1N

((
T − 1

2

)
0̂

)
M(T 0̂)−1.

(We use the abbreviationt0̂ ≡ 0 + t0̂ to denote the sites or links on the world line of
the baryon.) This product of matrices runs over all sitesn on the baryon world line (it
is expressed as a “quark propagator” along that line). In Appendix C we show that the
effective action takes the form

e−NcSbaryon[Z] = 1

Nc!

{
α0

α1

(
Nc +Nf − 1

Nc

)}−T

(37)×
∑
σ̂∈ŜNc

N (σ̂ )
Nc∏
l=1

(
Tr Gl

)cl (σ̂ )e−Nc Svacuum[Z].

In the non-vacuum factor of (37),̂σ runs over all conjugacy classes of the groupSNc of
permutations of the set{1, . . . ,Nc}. Every representative of the classσ̂ can be decomposed
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as a product of cycles of various lengthsl, such thatcl(σ̂ ) cycles of lengthl occur; thus,
each clasŝσ is uniquely specified by the sequence{cl}, or equivalently by a Young diagram.
The weight factorN (σ̂ ) is simply the cardinality of the clasŝσ , and is given by

(38)N (σ̂ )= Nc!∏Nc
l=1 l

cl (σ̂ )cl(σ̂ )!
.

For the lowest numbers of colors the explicit expressions are

Nc = 1: Sbaryon= Svacuum− lnTr G + const,

Nc = 2: Sbaryon= Svacuum− 1

2
ln
(
(Tr G)2 + Tr G2)+ const,

(39)Nc = 3: Sbaryon= Svacuum− 1

3
ln
(
(Tr G)3 + 3 TrG2 Tr G + 2 TrG3)+ const.

The constants, which are not given above, make contributions to the baryon mass, so they
need to be taken into account in the final answer.

In the following section, we look for the saddle-point configurations of the effective
actionsSvacuumandSbaryon.

3.2. Saddle-point equations

In the two sectors that we are interested in—the vacuum and the static baryon—we
wish to compute, or at least estimate, the partition functions (31), respectively, (35). Since
we are unable to provide an exact answer, we will treat both integrals in a saddle-point
approximation, valid in the limit of a large number of colorsNc . For both the vacuum
and the static baryon, we will restrict ourselves to a purely classical approximation, which
is to say we will identify the saddle points, evaluate the action functional on them, and
approximate the partition function asZ ∼ e−S(Zs.p.). Thus we neglect all loop corrections,
which are of higher order in 1/Nc.

In the vacuum sector, whereNc appears explicitly as a factor ofSvacuum[Z], the saddle-
point approximation is fully justified in the large-Nc limit. The situation is less transparent
in the static-baryon sector (37). However, for the ansatz made below, the matrixG is
proportional to unity:G = gINf . (Note thatG transforms under the chiral transformation
(30) asG �→ UGU−1, so the multiples of unity are fixed points of this group action.) If
one decides to consider only those configurations ofZ andZ† for which G is scalar, the
static-baryon action (37) simplifies to

Sbaryon[Z] = Svacuum[Z] − logg + const,

so the saddle-point expansion is rigorously justified (for largeNc) if the integral is
restricted to these configurations. We will use it to approximate the full integral.

4. Vacuum saddle-point configurations

The saddle-point analysis for the action functionalSvacuum[Z] has already been carried
out in [16,22,23], so we are going to be brief here. In varying the action (32), the complex
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matricesZ and Z† are to be considered as independent, which leads to two sets of
equations. Variations ofZ(n + µ̂

2 ) affect only the blocksM(n) andN(n + µ̂
2 ), with the

linear response being

δSvacuum= Tr

(
−M(n)−1 +Z†

(
n+ µ̂

2

)
N

(
n+ µ̂

2

)−1)
δZ

(
n+ µ̂

2

)
.

The resulting saddle-point equation readsM(n)−1 = Z†(n+ µ̂
2 )N(n+ µ̂

2 )
−1 or, by taking

the inverse on both sides,

(40)M(n)=Z
(
n+ µ̂

2

)
+Z†

(
n+ µ̂

2

)−1

.

Similarly, the variationδZ†(n− ν̂
2) influencesM(n) andN(n− ν̂

2), and yields the saddle-

point equationM(n)−1 =N(n− ν̂
2)

−1Z(n− ν̂
2), which is equivalent to

(41)M(n)=Z†
(
n− ν̂

2

)
+Z

(
n− ν̂

2

)−1

.

As an immediate corollary, we have

(42)Z

(
n+ µ̂

2

)
+Z†

(
n+ µ̂

2

)−1

= Z†
(
n− ν̂

2

)
+Z

(
n− ν̂

2

)−1

at every siten and for any pairµ,ν.

4.1. Homogeneous vacuum

The simplest possibility for the fieldZ, Z† is the scalar ansatzZ = Z† = zI, with
z a spacetime-independent real number. The vacuum saddle-point Eqs. (40) and (41) are
solved by this ansatz if we put

(43)z= z± =± 1√
2d + 1

√
1+ (am)2

2d + 1
− am

2d + 1
.

If m > 0, the actionSvacuum takes different values on these solutions. Expanding it in
powers of(am), we get

(44)Svacuum[z±] = Ld+1Nf

[
ln

(
(2d + 2)d

(2d + 1)d+1/2

)
∓

√
2d + 1

d + 1
am

]
,

which shows that for a positive quark mass, the configurationz≡ z+ minimizes the action.
In the chiral limit (m = 0), a continuous set of solutions is obtained by applying the

transformations (30) to the homogeneous configurationZ =Z† = zvacI for

zvac= (2d + 1)−1/2.

This vacuum configuration is invariant under the transformations of the diagonal
subgroupU1 =U2 ∈ U(Nf ) of the chiral symmetry group, but it maps to a new “vacuum”
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by takingU1 = U ∈ U(Nf ), U2 = INf . By the Goldstone mechanism, the breaking of the
continuous U(Nf ) symmetry leads to the existence of massless modes, namely the mesons,
an effective Lagrangian for which was obtained by expandingSvacuumnear this vacuum in
[16,22].

If ±I �= U ∈ U(Nf ), the vacua obtained by translating the homogeneous one byU are
staggered, in the sense that the value ofZ depends on the parity of its position. However,
on adopting the notationsV (n+ µ̂

2 ),W(n
′ + µ̂

2 ) for fields on the even and odd sublattices,
the staggered vacua become homogeneous for each sublattice:

(45)V

(
n+ µ̂

2

)
= (2d + 1)−1/2U, W

(
n′ + µ̂

2

)
= (2d + 1)−1/2U†.

In [23], it was proved that, modulo the U(Nf ) degeneracy, the configurationZ ≡ zvac
is theuniquesolution of the vacuum saddle-point equations in the chiral limit (except in
dimensiond = 0, where the symmetry of the action is larger). The proof proceeds by a local
argument, showing that for each siten the 2(d+1) saddle-point equations involvingM(n)
imply the equality of the matricesZ(n+ µ̂

2 ), Z
†(n+ µ̂

2 ) for all µ= 0, . . . , d ; iteration of
this result then trivially leads to the set of staggered configurations (45). The proof strongly
relies onZ† being the Hermitian conjugate ofZ, a constraint which is not mandatory. By
relaxing it, we are now going to find a plethora of additional solutions of the vacuum
saddle-point equations.

4.2. Nonhomogeneous vacuum configurations

By local considerations, as stated above, the only solutions of the vacuum saddle-
point equations (and the Hermiticity constraint relatingZ to Z†) in the chiral case are
homogeneous in both sublattice fieldsV andW . However, on a finite lattice, say with
the topology of a(d + 1)-dimensional torusLd × T , there is also aglobal aspect to
consider: one has to make a choice of boundary conditions for the various fields. The
simplest choice are periodic boundary conditions in all directions, but one can also impose
θ -twisted boundary conditions, say along the first spatial direction1̂:

V

(
n+ µ̂

2
+L1̂

)
= eiθV

(
n+ µ̂

2

)
,

(46)W

(
n′ + µ̂

2
+L1̂

)
= e−iθW

(
n′ + µ̂

2

)
,

for all n andµ̂. An opposite twist for the fieldsV , W is natural in view of their opposite
behavior under the chiral transformations (30).

Now, accepting these twisted boundary conditions, let us investigate which configura-
tion will minimize the action (32). A homogeneous configuration suffers from a “phase
jump” along ad-dimensional boundary, which is energetically very costly. A more rea-
sonable ansatz for a minimum of the action is the following: the fieldsV , W smoothly
rotate their phase, starting fromV, W ≈ zvac for n1 = 1, toV = eiθzvac, W = e−iθ zvac at
n1 = L, with a linear phase evolution in between. In this way, everywhere in spacetime the
configurationlocally looks like one of the degenerate homogeneous vacua.
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4.2.1. Contour deformation
The above ansatz forV,W is only qualitative. In order to actually obtain field

configurations that satisfyboth the twisted boundary conditions (46)and the saddle-point
equations (40), (41), we need to relax the Hermiticity relation between the fieldsZ andZ†.

By its construction via the color-flavor transformation, the integrand e−Svacuum is to be
viewed primarily as a function of therealvariables{(Zab+Z†

ba)(n+ µ̂
2 ), i(Zab−Z†

ba)(n+
µ̂
2 )}, the total number of which isD = 2N2

f (d + 1) (T Ld). From [23], this function for

θ /∈ 2πZ has no saddle points onRD , but it can be analytically continued intoCD , where
complex saddle pointsmay exist. On such a saddle point there must exist at least one link
(n+ µ̂

2 ) where the matrixZ† differs from the Hermitian conjugate ofZ.
If a complex saddle point is not “too far” from the original contour of integration,

it contributes to the vacuum-sector partition function, upon deforming the contour of
integration so as to reach that point.

4.2.2. Vacuum saddle-point equations for twisted fields
We will demonstrate below the existence of complex saddle points for the vacuum

sector with anyθ -twist. To make things simpler, we restrict ourselves to a 2-dimensional
spacetime, with a twist in the spatial boundary conditions (we call the time indext , the
spatial indexx). The above qualitative ansatz for the fieldsV , W suggests the following
symmetries:

• All fields are scalar, i.e., at each pointZ andZ† are multiples of the identity matrix.
• The fieldsV ,W are time-independent. For each positionx, there are 4 field variables

associated with the time-like link which we denote byv0(x), w0(x), v
∗
0(x), w

∗
0(x),

and 4 field variables associated with the space direction, which we denote by
v1(x + 1/2), w1(x + 1/2), v∗1(x + 1/2), w∗

1(x + 1/2).

Thus, at each positionx = 0, . . . ,L− 1 we have 8 independent complex variables. In the
chiral limit (m= 0), the saddle-point equation (40) pertaining toM(x, t) on an even site
(x, t) read

v0(x)+w∗
0(x)+ v1(x + 1/2)+w∗

1(x − 1/2)

= v0(x)+ 1/v∗0(x)
=w∗

0(x)+ 1/w0(x)

= v1(x + 1/2)+ 1/v∗1(x + 1/2)

(47)=w∗
1(x − 1/2)+ 1/w1(x − 1/2).

Eq. (41) pertaining toM(x, t + 1) are obtained by interchangingv↔ w, v∗ ↔ w∗. For a
finite quark mass, 2am is to be added to the left-hand side.

• The two first equations, together with theirv↔ w exchange analogs, allow us one
more simplification. Indeed, they imply the identitiesv0(x)= w∗

0(x), v
∗
0(x)= w0(x)

(the alternative possibility,v0(x) = 1/w0(x) andv∗0(x) = 1/w∗
0(x), is incompatible
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with other relations that need to be satisfied). So there remain only 6 complex variables
for eachx.

In the next section, we will provide approximate solutions for Eq. (47) together with their
v↔w partners and assuming the above symmetries.

4.2.3. Linearized problem
To solve (at least approximately) the above equations, we will use the fact that we

expect the fields to be locally close to one of the configurations (45). We can then expand
the saddle-point equations to first order in the perturbations from that configuration, and
solve the linear problem. We start by expanding the fields around the real positive vacuum
V,W = I/

√
3:

v0(x)= 1√
3

(
1+ δv0(x)

)
,

v∗0(x)=
1√
3

(
1+ δv∗0(x)

)
,

v1(x + 1/2)= 1√
3

(
1+ δv1(x + 1/2)

)
,

v∗1(x + 1/2)= 1√
3

(
1+ δv∗1(x + 1/2)

)
,

w1(x + 1/2)= 1√
3

(
1+ δw1(x + 1/2)

)
,

w∗
1(x + 1/2)= 1√

3

(
1+ δw∗

1(x + 1/2)
)
.

After inserting these expressions into (47) and expanding to linear order, we obtain a
“transfer matrix representation” of these equations, i.e., a linear equation relating the
vector of deviations of the spatial components of the fields{δv1, δv

∗
1, δw1, δw

∗
1} at position

x + 1/2, to the same vector at positionx − 1/2. The structure of the 4× 4 transfer matrix
allows to decompose it into two 2× 2 matrices, upon considering at each point the vectors

(48)R =
(
δv1 + δw1

δv∗1 + δw∗
1

)
, I =

(
δv1 − δw1

δv∗1 − δw∗
1

)
.

In terms of these two vectors, the linearized equations read

(49)R(x + 1/2)=
(−6 1

−1 0

)
R(x − 1/2)

def= TrR(x − 1/2),

(50)I(x + 1/2)=
(

3/2 −1/2

1/2 1/2

)
I(x − 1/2)

def= Ti I(x − 1/2).

Similarly, the deviations of the temporal componentsδv0(x), δv∗0(x) are determined by the
variations atx − 1/2:

(51)

(
δv0(x)

δv∗0(x)

)
=
(

3/4 −1/4

3/4 −1/4

)
R(x − 1/2)+

(
3/8 −1/8

−3/8 1/8

)
I(x − 1/2).
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Thus, the transfer matrix allows to express the linear variation of all fields by the deviations
at position 1/2.

To make thex-dependence more explicit, we seek to diagonalize the transfer matrices
Tr andTi . The first transfer matrixTr has the eigenvalues

(52)−e±λ def= −(3± 2
√

2), associated to the vectorsR±
def=
(

1

e∓λ

)
.

The second transfer matrixTi cannot be diagonalized but only put in Jordan normal form.
Indeed, it acts on the vectors

(53)I+
def=
(

1

1

)
, I−

def=
(

1

−1

)
as

Ti I+ = I+ + I−, Ti I− = I−.
Therefore, an initial deviation

R(1/2)= c+r R+ + c−r R−, I(1/2)= c+i I+ + c−i I−
propagates through the transfer matrix as follows:

R(x + 1/2)= c+r
(−eλ

)x
R+ + c−r

(−e−λ
)x

R−,
(54)I(x + 1/2)= c+i I+ + (c−i + xc+i ) I−.

This linear evolution is only valid as long as the deviations from 1/
√

3 are small compared
to unity. This cannot be the case uniformly for our twisted ansatz, where the fields near
x = L take values close to e±iθ /

√
3. Still, the fact thatI(x + 1/2) dependslinearly on the

position is encouraging: this is exactly the behavior we expect for thephasesof the fields
in the ansatz.

The linearization of the saddle-point equations can actually be performed nearanyof
the degenerate family of vacua (45). Linearizing the equations in the vicinity of a vacuum
v = e±iϕ/

√
3, we obtain for the deviations the same transfer matrix as before. We can

therefore construct local solutions near variousϕ-vacua using (54), and glue them together
to obtain a global, “rotating” solution. An equivalent procedure is to exponentiate the
deviations,

(55)v0(x)= 1√
3

exp{δv0(x)},
etc., and extend Eq. (54) forI(x+1/2) to a larger domain of validity. This we do as follows.

First of all, theR-part of the deviations grows exponentially, and is staggered with
respect tox. Our ansatz excludes both features, so we simply setc+r = c−r = 0. Next,
we note that theI-deviations depend on two coefficients,c+i andc−i . According to (55),
their real parts describe the moduli of the fields, and the imaginary parts the phases. In our
ansatz, we expect the moduli of the fields to be constant and close to 1/

√
3 (a linear growth

would be incompatible with the boundary conditions). Therefore, we set Rec+i = 0.
The other coefficientc−i causes a global shift of the fields, which can be interpreted

as a “generalized chiral rotation”: the generalization consists in taking in Eqs. (30) forU1
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andU2 any invertible complex matrix, and replacingU†
1 andU†

2 by U−1
1 andU−1

2 . One
easily checks that the effective action is invariant under this GL(Nf )×GL(Nf ) extension
of the chiral symmetry group. The complex extension appears since we have relaxed the
Hermiticity condition. The parameterc−i is then seen to parametrize theC×-manifold of
scalar complex homogeneous vacua.

The remaining coefficient, which we abbreviate toα
def= Im c+i , is responsible for a non-

homogeneous solution. As we explained above, deviationsI(x)∼ iαx of orderO(1) can
be rescaled to deviations of orderO(α) by changing the reference vacuum e±iϕ/

√
3. As

a result, the fields built from (55), (54) withc±r = 0, Rec+i = 0 satisfy the saddle-point
equations up to orderO(α2) uniformly in x.

One can add terms of higher order inα to the exponent, so as to kill the higher-order
terms in the expansion of (47). By iterating the procedure, one obtains for the fields a series
expansion in powers ofα, such that the saddle-point equations are satisfied to any order.
We conjecture that this expansion can be (re)summed, at least in a certain domain inα,
thereby yielding an exact solution of (47). The solution up to orderα2 is

v0(x)= eiαx

√
3

ec−i−iα/2+5α2/8,

v1(x + 1/2)= eiαx
√

3
ec−i+iα−α2/8,

(56)v∗1(x + 1/2)= e−iαx

√
3

e−c−i+iα−α2/8.

The expressions for the fieldsw, w∗ are obtained by replacingα→−α, c−i →−c−i .
The coefficientα parametrizes the slope of the phase with respect tox, and it must be

tuned according to the boundary conditions:

(57)αL= θ + 2πQw,

whereQw is some integer. For a finite twistθ , α can be chosen small only in the large–
volume limit L % 1, in which caseα can take several values labeled by the integers
Qw & L.

4.2.4. Topologically non-trivial configurations
We now return to the original problem with periodic boundary conditions (θ = 0).

We have shown that there exist non-trivial solutions, for which the fields are position-
dependent, with their phases rotatingQw times when the positionx goes from 0 toL.
The integerQw can be called thewinding numberof the configuration. We can associate
a winding number to a (discrete) configuration because the phases of the fieldsv, w are
varying smoothlywith position. More generally, when the lattice has the topology of a
(1 + d)-dimensional torus, one can associate to any smooth scalar configuration a set
of winding numbers{Qw,µ̂}, each number specifying the number of times arg(v) rotates

between the positions(n+ ν̂
2) and(n+Lµ̂+ ν̂

2).
Using Newton’s algorithm, we have searched for numerical solutions of the vacuum

saddle-point equations (47), starting from trial configurations withQw = 1,Qw = 2. We
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Fig. 3. Vacuum configuration computed numerically, with winding numberQw = 1 in the chiral limit. Fields
which are numerically indistinguishable (e.g.,|v1| and |w∗

1|) are represented by the same symbol. There is a

perfect fit with formulas (56), including theα2 correction. The difference between|v0| and |v∗0| comes from
Rec−i �= 0.

plot some results in Fig. 3. These plots are very well described by our approximation (56),
including theO(α2) corrections.

4.2.5. Nontrivial vacua for finite quark mass
So far we have constructed non-trivial vacua only in the chiral limit, where a continuum

of homogeneous vacuum configurations exists. What happens to these non-trivial vacua
when the chiral symmetry is broken explicitly by switching on the quark mass?

Recall that form �= 0 there remain only two homogeneous scalar vacua (43) out of
the former U(1) continuum, with one of them (zvac= z+) being an absolute minimum of
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the action. One can again study the linearized saddle-point equations near this solution.
Unlike before, the results will apply only locally, since we cannot use the trick of rescaling
the homogeneous reference vacuum any more.

We have performed numerical searches for(1 + 1)-dimensional topologically non-
trivial vacua, assuming the same symmetries as before (we took scalar, time-independent,
smoothly varying fields). The saddle-point equations are modified by the addition of the
quark mass term 2am to the left-hand side of Eq. (47). The outcome of these calculations
(see below) can be understood in large part by analytical reasoning, as follows.

To linearize the saddle-point equations around the pointz+, we set

(58)v0(x)= z+eδv0(x), etc.

As in the chiral case, the 4× 4 transfer matrix splits into two 2× 2 matrices that apply to
the vectorsR, I defined in Eq. (48). These matrices can be written for an arbitrary value of
am, using the exact expression (43) forz+(am) (we only consider the cased = 1). Using
the same notations as above, they are

Tr (am)= 1

1− z4+

(−z−2+ − 2− z2+ 2z2+ + 2z4+
−2z2+ − 2z4+ −z2+ + 2z4+ + 3z6+

)
,

(59)Ti (am)= 1

1− z4+

(
z−2+ − 2+ z2+ 2z2+ − 2z4+
−2z2+ + 2z4+ z2+ + 2z4+ − 3z6+

)
,

and the deviations on links pointing in the time direction propagate as(
δv0(x)

δv∗0(x)

)
= 1

2(1− z2+)
(

1 −z2+
1 −z2+

)
R(x − 1/2)

(60)+ 1

2(1+ z2+)
(

1 −z2+
−1 z2+

)
I(x − 1/2).

One easily checks that both transfer matrices have the property DetTr/i(am)= 1.
We expand both matrices and their spectra in powers ofam, since we are interested in

the case of a small quark mass. In the massless limit the matrixTr (0) is hyperbolic, with
negative real eigenvalues that are well separated from each other (one expanding, the other
contracting). Thus, a perturbation of orderO(am) is still diagonalizable, with eigenvalues
and eigenspaces shifted by that same orderO(am). We will keep calling the eigenvalues
−e±λ, with the expansion

(61)λ(am)= ln(3+ 2
√

2)+ am/√6+O
(
(am)2

)
.

On the other hand,Ti (0) was non-diagonalizable with eigenvalue+1, so a perturbation
can change its qualitative features. For any positiveam, Ti (am) becomes diagonalizable,
with real positive eigenvalues e±γ (am) associated to eigenvectors

( 1
e±κ1(am)

)
. To express the

deviations of the fieldv0(x), we use the coefficients

eκ±0 def= 1+ z2+e±κ1

1+ z2+
.
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For smallam, these data have the following expansions:

γ (am)= 2

31/4(am)
1/2 + 5

37/4 (am)
3/2 + O

(
(am)5/2

)
,

κ1(am)=− 4

31/4
(am)1/2 − 4

37/4
(am)3/2 + O

(
(am)5/2

)
,

(62)κ±0(am)=∓ 1

31/4
(am)1/2 +

√
3

2
am± 1

2× 37/4
(am)3/2 +O

(
(am)2

)
.

For a finite massam, one expects the linear approximation to be valid only for small
deviations. However, the error introduced in the saddle-point equations by the linear
approximation is at most of orderO(am|δz|), so it remains small if the mass is small.

The numerical solution we obtained for a massam= 0.01 and winding numberQw = 1
(see Figs. 4, 5) suggest that the vectorsR are negligible in a large domain ofx around the
point x = 0 where fields are close toz+. This indicates that the coefficientsc±r vanish,
like in the chiral case. The fields will, therefore, depend on two complex parametersε±:

δv1(x + 1/2)= ε+eγ x + ε−e−γ x,
δv∗1(x + 1/2)=−ε+eκ1+γ x − ε−e−κ1−γ x,

(63)δv0(x + 1)= ε+eκ+0+γ x + ε−eκ−0−γ x .
As opposed to the chiral case, both coefficientsε± are complex, so that both the phases and
the moduli of the fields vary withx. This ansatz fits the numerical solution even when the
deviations fromz+ become of orderO(1), which is quite surprising. However, it is unable
to reproduce the zone where the fields cross the negative real axis (nearx = L/2). For a
quark massam= 0.01 the values of the various exponents are

(64)γ = 0.1527, κ1 =−0.3045, κ+0 =−0.0673, κ−0 = 0.0845.

These values are used in the fits to the numerical solution shown in Fig. 5.

5. Static baryon saddle-point equations

The effective actionSbaryon for the static-baryon sector, Eq. (37), contains a “string”
term in addition to the “sea” termS|0〉. While the sea term depends on every one of the

matricesZ(n+ µ̂
2 ), the string term involves only those matricesZ andZ† that are situated

in the near vicinity of the string. More precisely, what enters into the baryon world line
propagator,G, are the matricesN((t + 1

2)0̂) andM(t0̂). Of these, the former depend only

onZ andZ† along the string, whereas the latter also involve the matricesZ(t0̂+ µ̂/2) and
Z†(t0̂− µ̂/2). TheZ field on the remaining links (away from the string) appears only in
S|0〉, so the variation with respect to these matrices yields the same Eqs. (40) and (41) as
in the vacuum sector.

For simplicity let us consider the two particular casesNc = 2 andNc = 3, using the
expressions (39) for the effective action. The most general variation yields

Nc = 2 :δSbaryon= δSvacuum− Tr(GδG)+ Tr(G)Tr(δG)

Tr(G2)+ (Tr G)2
,
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Fig. 4. Numerical vacuum configuration with winding numberQw = 1 and chiral symmetry explicitly broken by
a finite quark mass. The fields are normalized with respect to the corresponding valuez+. The phases arg(v0) and
−arg(v∗0) are indistinguishable, so we plot them together (idem for arg(v1) and−arg(w1), respectively, arg(w∗

1)

and−arg(v∗1)).

Nc = 3 :δSbaryon

= δSvacuum− (Tr G)2 Tr δG + 2 TrG Tr(GδG)+ Tr(G2)Tr(δG)+ 2 Tr(G2δG)

(Tr G)3 + 3 TrG Tr(G2)+ 2 TrG3
.

We then work out how the various traces of powers ofG respond to variations of each
matrixZ andZ† entering in the definition ofG. For instance, variations ofZ(t0̂+ µ̂/2)
with µ �= 0 affect only the matrixM(t0̂), whereas varyingZ((t + 1/2)0̂) affects both
M(t0̂) andN((t + 1/2)0̂). These computations are simplified by the use of cyclicity
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Fig. 5. Same vacuum configuration as in the previous figure, plotted on a logarithmic scale. We fit the fields in the
range 0< |x|< 30 (where they are close toz+) with the ansatz (63), using the theoretical values forγ , κ1, κ±0
from Eq. (64). The best fit is obtained withε+ = (−2.80+ i7.62)× 10−5 andε− = (−1.82− i5.48)× 10−5.

properties: given any decompositionG = G1G2, we may replaceG in the static-baryon
action by the matrix̃G = G2G1, asG always appears under a trace.

We provide detailed calculations for the variation with respect toζ ≡ Z((t + 1/2)0̂).
The modified factors ofG in this case areM(t0̂)−1 andN((t + 1/2)0̂), and the modified
matrix G reads

G + δG = · · ·M(t0̂)−1
{
1+ δζ

[
−M(t0̂)−1 + ζ †N

(
(t + 1/2)0̂

)−1
]}

×N((t + 1/2)0̂
) · · · .
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It is now natural to conjugateG + δG into

T (G + δG)T −1 = G̃ + δζ
[
−M(t0̂)−1 + ζ †N

(
(t + 1/2)0̂

)−1
]
G̃,

where G̃
def= N((t + 1/2)0̂)M((t + 1)0̂)−1 · · ·N((t − 1/2)0̂)M(t0̂)−1. The saddle-point

equation that follows from varyingZ((t + 1/2)0̂) then takes the succinct form

δZ
(
(t + 1/2)0̂

): 0=
[
−M(t0̂)−1 +Z†((t + 1/2)0̂

)
N
(
(t + 1/2)0̂

)−1
]

× (
INf − FNc(G̃)

)
,

with the case-by-case definition of the matrix-valued functionFNc(G) being

Nc = 2 :F2(G)= G2 +GTrG

Tr(G2)+ (TrG)2
,

Nc = 3 :F3(G)= G(TrG)2 + 2G2 TrG+GTr(G2)+ 2G3

(TrG)3 + 3 TrGTr(G2)+ 2 Tr(G3)
.

The saddle-point equation obtained by varyingZ†((t − 1/2)0̂) is similar. In terms of the
matrix G̃′ =M(t0̂)−1N((t + 1/2)0̂) · · ·M((t − 1)0̂)−1N((t − 1/2)0̂) it is best expressed:

0= (
INf − FNc(G̃′)

) · [−M(t0̂)−1 +N((t − 1/2)0̂
)−1
Z
(
(t − 1/2)0̂

)]
,

with the same definitions forFNc as above. The term multiplying the unit matrixINf stems
from δSvacuum. Note that this term factors out in both of the above variations.

To get an idea of the matrixINf − FNc (G), we compute it in the vacuum configuration
Z ≡ zvacINf . In this case we haveG = G̃ = G̃′ ∝ INf . We then notice thatFNc(αINf ) =
N−1
f INf for any number of colors and anyα �= 0. Therefore, on the vacuum configuration,

we get INf − FNc (G) = (1 − N−1
f )INf , which is invertible as soon asNf > 1. More

generally, this equation holds as long asG is a multiple of the unit matrix, which is a
property of the inhomogeneous scalar ansatz we will make in the next section.

Clearly, as long as the matrixINf − FNc(G) remains non-singular, the saddle-point

equations due to varyingZ((t + 1/2)0̂) andZ†((t + 1/2)0̂) are identical to those in the
vacuum sector, Eqs. (40) and (41). As was said earlier, this is also the case for the equations
due to varying all matricesZ andZ† not involved in the matrixG, i.e., those away from the
string. The only difference to the vacuum equations comes from the matrices on the links
adjacentto the string, namelyZ(t0̂+ µ̂/2), Z†(t0̂− µ̂/2) for the directionsµ= 1, . . . , d .
These matrices are contained only in someM−1 factor ofG, and their variations give the
following saddle-point equations:

δZ(t0̂+ µ̂/2): −M(t0̂)−1 +Z†(t0̂+ µ̂/2)N(t0̂+ µ̂/2)−1

(65)=−M(t0̂)−1FNc(G̃),

δZ†(t0̂− µ̂/2): −M(t0̂)−1 +N−1(t0̂− µ̂/2)Z(t0̂− µ̂/2)
(66)=−FNc(G̃′)M(t0̂)−1,
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where the matrices̃G, G̃′ are the same as before. These equations represent the only
obstruction that prevents the vacuum configurationZ = Z† ≡ zvacI from being also a
saddle point of the static-baryon sector.

5.1. Configurations for the static baryon in1+ 1 dimensions

In this section we present approximate solutions of the saddle-point equations in
the static baryon sector for the simplest non-trivial case, which is the two-dimensional
Euclidean square lattice (d = 1). We use the same notations and assume the same
symmetries as in Section 4.2.2, so at each positionx there are 8 independent complex
scalar variables.

The baryonic string is placed on the Euclidean time axis at positionx = 0. The equations
to solve are the vacuum saddle-point equations (47) off the string(x �= 0), and the modified
equations

v0(0)+w∗
0(0)+ v1(1/2)+w∗

1(−1/2)+ 2am

= v0(0)+ 1/v∗0(0)
=w∗

0(0)+ 1/w0(0)

= (
1−N−1

f

){
v1(1/2)+ 1/v∗1(1/2)

}
(67)= (

1−N−1
f

){
w∗

1(−1/2)+ 1/w1(−1/2)
}

on the string, together with the equations obtained by exchangingv ↔ w, v∗ ↔ w∗.
As in the vacuum sector, these equations imply the identificationsv0(x) = w∗

0(x) and
w0(x)= v∗0(x) for all x.

5.1.1. Physical requirements
Recall from Section 4.1 that demandingZ† to be the Hermitian conjugate ofZ (and

assuming the vacuum saddle-point equations) leads to a homogeneous configuration,
where the fields are constant on each sublattice. Such a homogeneous configurationcannot
satisfy the last two of Eq. (67). To get a solution, we must relax the Hermiticity condition
(cf. Section 4.2.1), and consider the fieldsZ andZ† as independent variables.

We want the baryon to be alocalizedobject, in the sense that a baryonic saddle-point
configuration should differ from a vacuum configuration only in some neighborhood of the
baryon world line. The baryon can then be interpreted as a spatially localized excitation of
this vacuum. A priori, baryon excitations may exist on top of each of the vacua described
in Section 4.

In Eq. (67), the number of flavorsNf enters just as a parameter, so one can extend the
equations to any real value ofNf . In the limit Nf = ∞, we recover the vacuum saddle-
point equations. We can therefore obtain a solution of the baryon saddle-point equations by
starting from a given vacuum configuration (atNf =∞), and deforming the configuration
by continuous variation ofNf down to its physical value (sayNf = 2). Any baryon
configuration obtained in this way carries the same topological charge as the vacuum it
is associated to.
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Fig. 6. Numerical baryon configuration in the chiral limit. All fields are real. Top: the fields converge exponentially
fast tozvac. Bottom: we compare the numerical data (circles, triangles, squares) with the theory of Section 5.1.2
(3 lines, cross forz0(0)).

5.1.2. Topologically trivial sectorQw = 0, chiral limit
In the sector with zero winding number, we numerically found a unique solution

(see Fig. 6) asymptotic to the homogeneous vacuumzvac, i.e., satisfying the asymptotic
condition

vµ, v
∗
µ, wµ, w

∗
µ

|x|→∞−→ zvac= 1/
√

3.

All the fields of this configuration are real and time-independent. Various components
coincide pairwise or in quadruples:

v0 =w0 = v∗0 =w∗
0 ≡ z0, v1 =w1 ≡ z1, v∗1 =w∗

1 ≡ z∗1.
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One easily checks that the saddle-point equations are invariant under the following
transformation:

(68)z1(x + 1/2)↔ z∗1(−x − 1/2), z0(x)↔ z0(−x),
which represents a reflection at the baryon world line. The solution found numerically is
invariant under this transformation, and we believe the same to be true for the exact solution
(or else we would get a second solution by reflection). We can therefore restrict our study
to the domain 0� x.

Our numerics show an exponential convergence of all the fields towardszvac as we
depart from the string (see Fig. 6), and the signs of the deviations alternate withx.
This phenomenon can be explained by the linearized saddle-point equations studied in
Section 4.2.3. The linear theory indeed applies if the fields are close tozvac, which is
the case for large enoughx. Eqs. (51), (54), together with the physical condition that the
deviations decay asx→∞, requirec+r = 0. We thus get the ansatz

z0(x)= 1√
3

[
1+ c−r

√
2eλ

(−e−λ
)x]
,

z1(x + 1/2)= 1√
3

[
1+ c−r

(−e−λ
)x]
,

(69)z∗1(x + 1/2)= 1√
3

[
1+ c−r eλ

(−e−λ
)x]
,

with eλ = 3+ 2
√

2 as before. According to this linear approximation, the fields oscillate
around the asymptotic valuezvac, and the amplitude of the oscillations is controlled by a

unique coefficient, which we denote byC1
def= c−r .

The results (69) fit the numerical configuration not only far from the string (where this
is expected), but even down to the baryon string, where the fields deviate significantly from
zvac. More precisely, the ansatz fitsz1, z∗1 for all x, whereasz0 departs from it only atx = 0.

The valuez0(0)
def= 1√

3
(1+ C̃0) together with the parameterC1 can be computed using the

(nonlinear) saddle-point equations on the string (67) and the reflection symmetry (68). We
obtain two equations:

C̃2
0 + 2C1C̃0 + 2C1 + 4C̃0 = 0,

3eλC2
1 + 4eλC̃0C1 + 4C̃0 +C1

(
3+ 7eλ

)+ 4= 0.

The equations have four pairs of solutions, two real ones and two complex ones, conjugate
to one another. The physical solution (which deforms toC1 = C̃0 = 0 as we varyNf from
2 to∞) isC1 =−0.0971 and̃C0 = 0.0504, giving

(70)
√

2eλC1 =−0.8002.

The relative smallness of these constants (except for the last one, which governs the
amplitudeδz0(0)) may explain why the ansatz works well down to the string.

The above saddle-point configuration is indeed situated outside of the original contour
of integration: it is a “complex saddle point” (although all fields have real values).
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A contour deformation has to be performed for the variables i(z1 − z∗1)(x), which move
away from the real axis as|x| decreases.

This ansatz is tailored to the limitL→∞, but owing to the fast decrease towardszvac,
it is already quite good for short lattices. In Fig. 6 (bottom), we show a logarithmic plot
of the deviations of the fields from the homogeneous vacuum, for a lattice of total length
L= 20, as well as the values predicted by the above ansatz.

This configuration might be called a non-topological soliton, cf. [21]. Its characteristic
length (in units of the lattice spacinga) is λ−1 = 0.5673, and its mass will be computed in
the next section.

This real scalar configuration is just one point on a U(Nf )-manifold of solutions,
obtained by the action (30) of the chiral symmetry group. For a generic point on
this manifold, the configuration is staggered in time. These solutions are saddle-point
configurations forNf = 2, and do not depend on the number of colorsNc (which does
not appear in the saddle-point equations). However, the value of the action for these
configurations does depend onNc; see the next section.

5.1.3. Topological baryon, chiral limit
We also obtained topologically non-trivial configurations, characterized by a non-

vanishing winding numberQw. In Fig. 7 we plot a solution in the baryon sector with
Qw = 1. All fields are scalar, and have the symmetries described in Section 4.2.2.

Away from the string (x% 1), the moduli of the fields are close tozvac, and the phase
varies linearly. In this region, we can apply the linear theory described in Section 4.2.3,
in particular the ansatz (55). Now only the coefficientc+r has to vanish, to prevent the
deviations from exploding asx → ∞. As in the vacuum case, the coefficientc−i can
take any value, yielding only a chiral shift of the fields. We find thatc+i = iα is purely
imaginary, as in the vacuum. The fields are well fitted by

(71)v1(x + 1/2)= 1√
3

eiα(x+1)[1+ c−r
(−e−λ

)x]
, etc.

for positivex. Near the string, the moduli of the fields behave in a similar way as in the
non-topological sector, whereas their phases make a small jumpβ atx = 0. Both this jump
and the value ofc−r can be computed from the full saddle-point equations near the string
(see below). The value of the parameterα depends on the height of this jump:α will not
be exactly equal to its value in the vacuum, which is 2π/L for this topological sector,
but rather to(2π − β)/L. As a consequence, the convergence of the fields towards the
vacuum configuration away from the string will not be exponential, but only linear (the
fields coincide at the “antipode” of the baryon,x = L/2).

From Fig. 7, we can assume that the above ansatz is still a good approximation
for v1(1/2), and for v∗1(1/2) up to a phase jump ofβ/2. Given this assumption and
settingNf = 2, the saddle-point equation on the baryon worldline,v0(0) + 1/v∗0(0) =
1/2{v1(1/2)+ 1/v∗1(1/2)}, yields two real equations, one of which reads

sin(3α/2+ β/2)
sin(α/2)

= 3(1+C1)

2(1+C1eλ)
.
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Fig. 7. Numerical baryon in the chiral limit with winding numberQw = 1 (we only plot the vicinity of the
baryon worldline). The absolute values are very similar to the caseQw = 0, but now the phases vary linearly
away from the worldline. The slopeα and the phase jumpβ at the baryon are in good agreement with the theory
of Section 5.1.3: we find 2π/α = 123.42 and argv0(1)− argv0(−1)= 0.046≈ 5.24α.

For small anglesα andβ , this equation gives a linear relation between them: using the
value forC1 obtained in the non-topological sector, we getβ ≈ 3.24α. The value of the
slopeα then isα = 2πQw/(3.24+L).

5.1.4. Topological baryon,m �= 0
As in the vacuum sector, our results for a finite quark mass are mostly numerical (see

Figs. 8, 9). We obtained solutions of the saddle-point equations with various winding
numbers, which are close to the corresponding vacuum configurations except in the vicinity
of the baryon string. Near the antipode of the string (x = L/2), the field approaches the
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Fig. 8. Numerical baryon with winding numberQw = 1 and broken chiral symmetry. Away from the worldline,
the fields converge exponentially fast toz+. The logarithms of the phases are linear in the range 3< x < 55, with
slopes 0.1523� γ � 0.1533 in agreement with the theoretical value from Eqs. (64).

homogeneous valuez+, and the fields can be fitted by the linear theory developed in
Section 4.2.5.

6. Mass of the static baryon (Nf = 2)

The massMbaryon of the baryon is defined by comparing the static baryon partition
function to the vacuum one. Since the saddle-point configurations are classified according
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Fig. 9. Numerical baryon with winding numberQw = 2 and broken chiral symmetry. The symmetry with respect
to x = 0 is only approximate, due to a numerical loss of accuracy.

their winding numberQw , the comparison is performed within a given topological class,
i.e., between a baryon configuration and the corresponding vacuum sector.

In the limit of large lattices, the ratio of partition functions is expected to behave as

(72)
Zbaryon,Qw(L× T )
Zvacuum,Qw(L× T ) ∝ e−Mbaryon,Qw T asT →∞.

As explained in Section 3.2, we estimate both partition functions through their respective
lowest-order saddle-point approximations:

(73)
Zbaryon

Zvacuum
∼ exp

(−Nc{Sbaryon[zbaryon] − Svacuum[zvac]
})
.
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As before, we will only treat the(1+ 1)-dimensional case.

6.1. Mass of the static non-topological baryon

We first study the baryonic excitation on top of a homogeneous vacuum, which has
vanishing winding number. The value of the action for the homogeneous vacuum was
given in Eq. (44). It is proportional to the volume of the lattice, and is called a “sea” term
in the literature.

The actionSvacuum is part of the full static baryon action (37), which leads to a “sea”
contribution to the baryon mass:

Msea
def= Nc Svacuum[zbaryon] − Svacuum[zvac]

T
.

We now assume the limitm = 0 (Section 5.1.2). By the time-independence of both
configurations, the sea contribution reads

Msea=NfNc
(

L/2∑
x=−L/2

ln
N1(x + 1/2)N0(x)

M(x)

∣∣∣∣
Z=zbaryon

− ln
N1(x + 1/2)N0(x)

M(x)

∣∣∣∣
Z=zvac

)
.

Since the deviations of the fields fromzvac are small and decrease exponentially—see
Eq. (69)—it is reasonable to keep only the linear order, and extend the sums toL = ∞.
Quite remarkably, this linear approximation gives avanishingsea term (form = 0).
Alternatively, we can compute the sea term from theNf = 2 configuration obtained
numerically. In this way we obtain

Msea≈ 0.02324×Nc
(
in units ofa−1).

This answer is small (5%) compared to the second term we compute below, so the linear
approximation (givingMsea= 0) is rather good in this respect.

The remaining contribution to the baryon mass comes from the sum over traces ofG,
which involve only the fields on or adjacent to the string. In the QCD context this is
generally referred to as the “valence quark contribution” [21]. For the time-independent
configuration described in Section 5.1.2, the valence term forNf = 2 becomes

(74)Mvalence= ln

{
α0

α1

(
Nc +Nf − 1

Nc

)}
+Nc ln

(
2z0(0)+ 2z1(1/2)

1+ z0(0)2
)∣∣∣∣
zbar

.

The term proportional toNc evaluates to

ln
√

3 + ln

(
1+C1/2+ C̃0/2

1+ C̃0/2+ C̃2
0/4

)
≈ ln

√
3 + C1/2= 0.5493− 0.0485.

We notice that the second term due to the deviations|zbaryon− zvac| is small compared to
the first term ln

√
3, obtained by inserting the vacuum configurationzvac into (74).
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Table 1

Qw m= 0 am= 0.002 am= 0.01

0 2.839 2.840 2.852
1 2.840 3.097 3.692

The result of this linear approximation is very close to the exact (numerical) value,
0.5004. On including the combinatorial and normalization terms (see Eq. (B.7)), we finally
get, for the non-topological static baryon in the chiral limit:

(75)Mbaryon≈ 0.5236Nc+ ln(1+Nc/2)+ ln(1+Nc).
This yields for example

Nc = 2 :Mbaryon= 2.839a−1,

Nc = 3 :Mbaryon= 3.873a−1,

where we have reinstated the mass scale given by the lattice constant.

6.2. Masses of topological baryons

To compute the baryon masses in the topologically non-trivial sectors, we first need
to evaluateSvacuum on the corresponding vacua with winding numberQw . This is
straightforward in the chiral limit, where we have the accurate approximation (56) at our
disposal. The result up to second order in the small parameterα = 2πQw/L is

T −1(Svacuum[zvac,α] − Svacuum[zvac]
)=NfL3α2

16
= 3π2Q2

w

4L
Nf .

The vacuum energies are obtained from this by multiplication with the number of colors,
Nc . They agree well with the values computed numerically forL = 120 (andNc = 2):
E
(0)
1 = 0.25,E(0)2 = 0.98.
The baryon mass in each topological sector is defined relative to the corresponding

vacuum energyE(0)Qw
. For a non-vanishing quark mass, both the vacuum energy and the

baryon energy are computed numerically. In Table 1, we summarize our results for a lattice
L = 120, withNc = Nf = 2, for various quark masses: In Fig. 10, we plot the baryon
masses in the topological sectorsQw = 0 andQw = 1 as a function of the quark mass.

7. Zigzag baryon

In the standard formulation of the theory on the Euclidean 2-dimensional square lattice,
the temporal and spatial directions are given by the lattice generators,t̂ = (1,0), x̂ = (0,1).
However, it is also possible to use different spacetime axes. For instance, on the same
square lattice, we define thezigzagspacetime axes aŝt = (1/2,−1/2), x̂ = (1/2,1/2)
(see Fig. 11). The unit spacetime separation now has the lengtha/

√
2. For convenience,

we choose the spacetime origin on themiddle of a link(say, a link in the direction̂t + x̂),
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Fig. 10. Masses of static baryons as functions of the quark massam, for the topological sectorsQw = 0 and
Qw = 1.

Fig. 11. Zigzag baryon string on a square lattice.

so that the coordinates of lattice sites will be half-integers, while links will be indexed by
integers.

The division of the square lattice into two sublattices is now expressed only in terms of
the spatial coordinate: the links atevenpositionsx = 2n carry the fieldsV,V †, while the
links at oddx = 2n+ 1 carry the fieldsW,W†.

The vacuum effective action and its corresponding saddle-point equations are still given
by the formulas (40), (41), after a suitable change of labels for links and sites.
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7.1. Time-independent vacua

Once again, we make a scalar time-independent ansatz for the fields:

(76)∀x even, ∀ t : V (x, t)= v(x)I, V †(x, t)= v∗(x)I,
(77)∀x odd, ∀ t : W(x, t)=w(x)I, W†(x, t)=w∗(x)I.

In particular, this implies the equality of fields situated on links(x, t) and(x, t + 1). There
are 2 scalar variables at each position.

With these symmetries, the vacuum saddle-point equations read:

x even: 2v(x)+ 2w∗(x − 1)+ 2am= v(x)+ 1/v∗(x)
=w∗(x − 1)+ 1/w(x − 1),

x odd: 2w(x)+ 2v∗(x − 1)+ 2am=w(x)+ 1/w∗(x)
(78)= v∗(x − 1)+ 1/v(x − 1).

In the chiral limit, the homogeneous vacuum configurations are still given byv = w∗ =
eiϕzvac andv∗ =w = e−iϕzvac. For fields close to this vacuum (v(x)= eiϕzvacexp{δv(x)},
etc.) the linearized saddle-point equations yield the following transfer matrix equation:

(79)

(
δz(x)

δz∗(x)

)
=
(−3/2 −1/2

1/2 −1/2

)(
δz(x − 1)

δz∗(x − 1)

)
= Tzig

(
δz(x − 1)

δz∗(x − 1)

)
.

The symbolδz stands for eitherδv or δw, depending of the parity ofx. In contrast with
Section 4.2.3, we now have just one transfer matrix, which relates deviations ofv, v∗ to
deviations ofw,w∗ and vice versa. This transfer matrixTzig is related to the matrixTi
described in Section 4.2.3. Indeed, it acts on the vectorsI+, I− as follows:

TzigI+ =−I+ − I−, TzigI− =−I−.

The deviationsδv(0), δv∗(0) are parametrized by twocomplexparametersc± as(
δv(0)

δv∗(0)

)
= c+I+ + c−I−.

The deviations will then depend on position as follows (x is even):

(80)

(
δv(x)

δv∗(x)

)
=
(
c− + (x + 1)c+
−c− − (x − 1)c+

)
,

(
δw(x + 1)

δw∗(x + 1)

)
=
(−c− − (x + 2)c+

c− + xc+
)
.

The rest of the discussion is identical to the one following Eq. (55). The coefficientc−
plays the role of a global shift, or “generalized chiral rotation”. If Rec+ �= 0, the absolute
values of the fields vary linearly withx, which is incompatible with their periodicity. On
the other hand, takingc+ = iα will linearly rotate the phases of the fields, keeping them
close to some vacuum configuration, as in Eq. (56). Taking forα a multiple of 2π/L, we
obtain a topologically non-trivial configuration.

The case of broken chiral symmetry (m �= 0) can be treated along the same lines as in
Section 4.2.5; the above linear evolution in position is then replaced by an exponential
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one, at least for fields in the vicinity of the valuez+. The transfer matrix takes the

form
(−z−2+ /2 −1/2

1/2 −3z2+/2
)
, and has the eigenvalues−exp(±γzig) associated to the eigenvectors( 1

−exp(±κzig)

)
, with the expansions

(81)γzig =
√

2

31/4(am)
1/2 +O

(
(am)3/2

)
,

(82)κzig =−2
√

2

31/4
(am)1/2 +O

(
(am)3/2

)
.

Up to this order, the exponentγzig differs from the corresponding exponentγ of Eq. (62)
by a factor of

√
2. This factor actually compensates for the ratio of unit lengths between

the two frameworks (a versusa/
√

2). For the quark massam= 0.005 used in compiling
the figures, we haveγzig = 0.0762 and eκzig = 0.85905.

7.2. Zigzag baryon configurations

In the new labeling conventions, the worldline of a static baryon situated at position
x = 0 forms a zigzag curve (see Fig. 11). Assuming that the fields are scalar and time-
independent, theG matrix appearing in the baryonic part of the action is

G = {[
2v(0)+ 2w∗(−1)+ 2am

]−1(
1+ v(0)v∗(0))

× [
2w(1)+ 2v∗(0)+ 2am

](
1+ v(0)v∗(0))}T/2 I.

The resulting saddle-point equations on the string read

2v(0)+ 2w∗(−1)+ 2am= v(0)+ 1/v∗(0)
= (

1−N−1
f

){
w∗(−1)+ 1/w(−1)

}
,

2w(1)+ 2v∗(0)+ 2am= v∗(0)+ 1/v(0)

(83)= (
1−N−1

f

){
w(1)+ 1/w∗(1)

}
.

The saddle-point equations are invariant under the transformation

(84)w(−x)←→w∗(x), v(−x)←→ v∗(x),

which is also a symmetry of our numerical solutions.
In the chiral limit, the linear dependence in (80) makes it impossible for the absolute

values of the fields to approachzvac at infinity, unless the deviations are purely imaginary;
this latter possibility (|z(x)| ≡ zvac) is incompatible with the saddle-point equations on
the baryon string (83). However, for a finite lattice, infinity is the “antipodal point”
x∞ = ±L/2. In numerical searches (see Fig. 12, top), we found a solution which comes
close tozvac near the antipode (but does not converge exponentially to it). To describe these
fields, it is convenient to use the position variable centered at the antipode,x ′ = x + L/2
(we assume thatL/2 is even, so thatx andx ′ have the same parity). The symmetry (84) also
holds if one replacesx by x ′. Forx ′ even,−L/2< x < L/2, the fields are well described
by
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Fig. 12. Numerical zigzag baryon for the case with chiral symmetry (top) and without (bottom). We plot the
(real) fields on a logarithmic scale. Top: a linear fit yields the slopec+ = 0.04 and the field on the baryon
v(0)= 0.1735, in excellent agreement with formulas (86). Bottom: we use the exponential ansatz of Section 7.2.1,
with coefficientsε± fitted over the domain|x′|< 30. The valuesε+ = 0.062,ε− =−0.053 are in good agreement
with the analytical theory.

v(x ′)= zvacec+(x
′+1), v∗(x ′)= zvace−c+(x

′−1),

(85)w(x ′ + 1)= zvace−c+(x
′+2), w∗(x ′ + 1)= zvacec+ x

′
,

where the value of the real coefficientc+ is small (for a lattice of lengthL = 80, we
foundc+ ≈ 0.04). At all pointsx �= 0, the fields are close to a “generalized homogeneous
vacuum”.

The coefficientc+ can be analytically estimated by using the above ansatz forw, w∗ at
the positionx ′ = −1+ L/2, and then enforcing Eq. (83). One obtains (to lowest order in
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c+) the transcendental equation

(86)c+ec+L = 1,

with approximate solutionc+ ≈ L−1 lnL. The field on the baryon then takes the value

v(0)= v∗(0)= 3zvac

2
√
c+.

This configuration is very “distorted” compared to the original contour of integration.
Indeed, the ratiosv/v∗ andw/w∗ are of orderL in the vicinity of the string. In the case
L = 80, the above equations yieldc+ = 0.04018,v(0) = 0.1736, which are in excellent
agreement with our numerical data.

7.2.1. Zigzag baryon—broken chiral symmetry
If chiral symmetry is broken by a non-vanishing quark mass, the deviations fromz+

evolve exponentially withx ′ away from the antipodal pointx ′ = 0. More precisely, in
some domain|x ′| & L/2 the fields should follow the ansatz(

δz(x ′)
δz∗(x ′)

)
≈
(

ε+(−eγzig)x
′ + ε−(−e−γzig)x

′

−ε+ eκzig(−eγzig)x
′ − ε− e−κzig(−e−γzig)x

′

)
.

From the mirror symmetry (84), the coefficientsε± are related by

(87)ε− =−eκzig ε+.
We numerically computed a solution withL = 80, am= 0.005 (see Fig. 12, bottom), for
which this ansatz works well up to the string. Using this fact, it is possible to estimate the
value ofε+ (the last remaining parameter), as in the chiral case. The crudest approximation
yields the equation

−ε+ κzigC e2Cε+ = 2, with C
def= exp

{
γzig(L/2− 1)

}
.

The solution of this equation in the caseL = 80, am = 0.005 is ε+ = 0.0614. This
configuration has a massM = 2.885a−1 with respect to the homogeneous vacuum.

There also exist topologically non-trivial vacuum and baryon saddle-point configura-
tions with the symmetry (84). For example, Fig. 13 shows the solution in the sectorQw = 1
with quark massam= 0.005 on a lattice of lengthL= 160. With respect to the correspond-
ing vacuum configuration, this configuration has a massM = 3.18a−1.

8. Concluding remarks

The “color-flavor transformation” introduced in [14,15] replaces an integral over the
gauge group U(Nc) by an integral over the “flavor” degrees of freedom. In the present
paper we extended this transformation to the gauge group SU(Nc).

The color-flavor transformation can be interpreted as a kind of duality, linking two
different formulations of the theory. We believe that this duality transformation may be
useful for treating realistic non-perturbative QCD. Here we have applied it to a simple
model of two-dimensional lattice fermions. The non-Abelian theory we have treated is
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Fig. 13. Numerical zigzag baryon with winding numberQw = 1 and broken chiral symmetry. We plot the real
(top) and imaginary (bottom) parts of log(z/z+) on a logarithmic scale, together with a fit by the ansatz (7.2.1) in
the region|x′|< 60. The coefficients take the valuesε+ ≈ (3.48+ i1.07)×10−3, ε− ≈−(3.00+ i0.92)×10−3,
and satisfy quite well the relation (87).

of course too far from realistic four-dimensional QCD for our results to be of direct
phenomenological relevance.

The main approximation we made was to assume the strong-coupling limit for the
lattice gauge fields. In this approximation gluons do not propagate, and the connection
to asymptotic freedom at short distances is lost. An unphysical consequence is the absence
of the U(1) chiral anomaly. Thus, the chiral symmetry group of our low-energy effective
action is not SU(Nf ) but the larger group U(Nf ).
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Among the gauge groups SU(Nc) the caseNc = 2 is special, as the vector and covector
representations of SU(2) happen to be equivalent. Since these representations correspond
to quarks and antiquarks, respectively, there is no physical distinction between baryons
and mesons in that case. This symmetry between baryons and mesons is obscured in the
present treatment which, by the use of a saddle-point approximation valid only forNc % 1,
is geared to the large-Nc limit. It can, however, be made manifest by identifying SU(2)with
the compact symplectic gauge group Sp(2) and using the color-flavor transformation for
the latter [15].

To extend the formalism to lattice QCD in four dimensions, we need to take into account
the spin degrees of freedom and put the chiral fermions properly on the lattice. We hope to
address these issues in a separate publication. Here we only note that a first step towards
a more realistic color-flavor transformed theory of the strong interaction was described in
[22,24], where we discuss the effect of spontaneous chiral symmetry breaking and estimate
the numerical values of the chiral condensate, the pion decay constant and the mass of the
pion.
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Appendix A. Action of the color and flavor groups

TransformationsU ∈ GL(Nc) of color space act on the one-fermion operators by

TUf
k+aT −1

U = f j+a
(
U−1

)kj
, TUf

k−aT −1
U = f j−aUjk,

TU f̄
k+aT −1

U = f̄ j+aUjk, TU f̄
k−aT −1

U = f̄ j−a
(
U−1

)kj
.

Transformations
(
A B
C D

) ∈ GL(2Nf ) of flavor space can be decomposed in the way shown
in Eq. (13), and the action of the various factors may be described separately. An element
ζ = ( 1 Z

0 1

)= exp
( 0 Z

0 0

)
acts by

Tζf
k+bT

−1
ζ = f k+b − f̄ k−aZba, Tζ f

k−bT
−1
ζ = f k−b + f̄ k+aZab,

Tζ f̄
k
+bT

−1
ζ = f̄ k+b, Tζ f̄

k
−bT

−1
ζ = f̄ k−b,

an element diag(A,D)= (
A 0
0 D

) ∈ GL(2Nf ) by

Tdiag(A,D)f
k+bT

−1
diag(A,D) = f k+a

(
A−1

)
ba
, Tdiag(A,D)f

k−bT
−1
diag(A,D) = f k−aDab,

Tdiag(A,D)f̄
k+bT

−1
diag(A,D) = f̄ k+aAab, Tdiag(A,D)f̄

k−bT
−1
diag(A,D) = f̄ k−a

(
D−1

)
ba
,
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and an element̃ζ = ( 1 0
Z̃ 1

) ∈ GL(2Nf ) by

Tζ̃ f
k
+bT

−1
ζ̃

= f k+b, Tζ̃ f
k
−bT

−1
ζ̃

= f k−b,
Tζ̃ f̄

k
+bT

−1
ζ̃

= f̄ k+b + f k−aZ̃ab, Tζ̃ f̄
k
−bT

−1
ζ̃

= f̄ k−b − f k+aZ̃ba.
All these formulas are particular cases of the fermionic Fock-space representation of the
Lie group GL(2Nf ) expounded in Chapter 9 of [19].

Appendix B. Normalization constants

We are going to calculate the normalization constantsα−1
Q = ∫

G
dg |〈BQ|Tg|BQ〉|2

introduced in Eq. (11)—for the valuesQ = 1,0,−1. To that end, we employ the
decomposition of the groupG= U(2Nf ) given by Eqs. (13) and (14). This yields

∣∣〈B1|Tg|B1〉
∣∣2 = |(√1+ZZ†)1aUa1|2Nc

Det(1+ZZ†)Nc

for Q= 1, and similar expressions for the other two cases. The first step now is to do the
integral overU ∈ U(Nf ), which forQ = ±1 is effectively an integral over a(2Nf − 1)-
dimensional sphere. Carrying it out by the method of Section 2.5, we get the preliminary
expressions

(B.1)α−1
0 = CNf

∫
C
Nf ×Nf

dZ dZ†

Det(1+ZZ†)2Nf+Nc
,

(B.2)α−1
1 = α−1

−1 = CNf
(Nf − 1)!Nc!
(Nc +Nf − 1)!

∫
C
Nf ×Nf

[(1+Z†Z)11]NcdZ dZ†

Det(1+ZZ†)2Nf+Nc
,

whereCNf is defined by

(B.3)C−1
Nf

=
∫

C
Nf ×Nf

dZ dZ†

Det(1+ZZ†)2Nf
.

For later convenience, we have made a change of integration variablesZ ↔ Z† in the
numerator of the integral in (B.2).

In the second step we perform the integration over theNf × Nf matrix Z using a
recursion procedure similar to that in [25]. From here on we use the simplified notation
n= Nf . The recursion consists in slicing the matrixZ into vertical vectors, step by step.
We now detail the first step of the recursion. We decomposeZ asZ = (Zn,n−1, z1), where
z1 is a (column)n-vector, andZn,n−1 is an× (n−1)matrix. We then have the expressions

ZZ† =Zn,n−1Z
†
n,n−1 + z1z†1,

(
Z†Z

)
11 =

(
Z

†
n,n−1Zn,n−1

)
11.

Using the (positive definite)n× n matrixΓ1 which is defined as the square root of

Γ 2
1 = 1+Zn,n−1Z

†
n,n−1,
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we make a change of variables, fromz1 tow1 = Γ −1
1 z1. From 1+ZZ† = Γ1(1+w1w

†
1)Γ1,

we get the relation

Det
(
1+ZZ†)= (

1+w†
1w1

)
Det

(
1+Zn,n−1Z

†
n,n−1

)
.

The change of variables fromZ to {Zn,n−1,w1} has the Jacobian Det(1+Zn,n−1Z
†
n,n−1).

Each of the integrals (B.1), (B.2), and (B.3) can now be written as the product of aZn,n−1–
integral times aw1-integral.

The former can in turn be expressed as the product of aZn,n−2-integral times aw2-
integral (withw2 a n-vector), which can be decomposed in turn, and so on, until we
reach, at thenth step, aZn,1-integral, i.e., an integral over the first column of the original
matrixZ. We call this column vectorwn for reasons of homogeneity.

The successive Jacobians multiply to give the following integration measure:

dZ dZ† = dw†
1dw1

(
1+w†

2w2
)
dw

†
2 dw2 · · ·

(
1+w†

nwn
)n−1

dwn dw
†
n.

The integrands in (B.1)–(B.3) also have simple expressions in the new variables, due to the
identities(Z†Z)11=w†

nwn and

Det
(
1+ZZ†)= (

1+w†
1w1

)(
1+w†

2w2
) · · · (1+w†

nwn
)
.

Thewi -integrals to be performed are all of the type (N � n)∫
Cn

dw†dw

(1+w†w)N+1 = πn (N − n)!
N ! .

The resulting expressions for the normalization constants are

(B.4)α0 = 1

CNf π
N2
f

(2Nf +Nc − 1)! · · · (Nf +Nc)!
(Nc +Nf − 1)! · · ·Nc! ,

(B.5)α1 = α−1 = 1

CNf π
N2
f

Nf (2Nf +Nc − 1)! · · · (Nf +Nc + 1)!
(Nc +Nf − 2)! · · ·Nc! ,

(B.6)CNf = 1

π
N2
f

(2Nf − 1)! · · ·Nf !
(Nf − 1)! · · ·0! ,

where we have reinstatedn=Nf . The quantity entering into the baryon mass is the ratio

(B.7)
α1

α0
= Nf

Nf +Nc .

Appendix C. Static baryon

In this appendix we prove the formula (37) for the action functional of the static baryon
sector. We need to integrate polynomials in the quark fields along the worldline of the
baryon (the baryon “string”), weighted by the same Gaussian as in the vacuum sector.

We start out using the short-hand notationt0̂≡ 0+ t0̂ of Section 3.1.2 for sites and links
on the string. The part of the integrand containing the quark fields situated on the string,
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namelyψ(t0̂), ψ̄(t0̂) for t = 0, . . . , T − 1, then reads

χ1

(
ψ̄(0),N

(
1

2
0̂

)
ψ(10̂)

)
χ1

(
ψ̄(10̂),N

(
3

2
0̂

)
ψ(20̂)

)
· · ·χ1

(
ψ̄
(
(T − 1)0̂

)
,N

((
T − 1

2

)
0̂

)
ψ(T 0̂)

)
exp−

[
T−1∑
t=0

ψ̄i (t0̂)M(t0̂)ψi (t0̂)

]
.

Isolating the terms with fermions at the siten= t0̂, we are faced with the integral∫
dψ̄(n) dψ(n) χ1

(
ψ̄(n− 0̂),N(n− 0̂/2)ψ(n)

)
× e−ψ̄(n)M(n)ψ(n)χ1

(
ψ̄(n),N(n+ 0̂/2)ψ(n+ 0̂)

)
=
(
α1

(Nf − 1)!
(Nc +Nf − 1)!

)2∫ ∏
i,a

dψ̄ia(n) dψ
i
a(n)e

−ψ̄kc (n)Mcc′ (n)ψkc′ (n)

×
∑

σ,τ∈SNc

sgnσ sgnτ
∏
i

ψ̄ia(n− 0̂)Nab(n− 0̂/2)ψσ(i)b (n)

×
∏
j

ψ̄
j

a′(n)Na′b′(n+ 0̂/2)ψτ(j)
b′ (n+ 0̂)

=
(
α1

(Nf − 1)!
(Nc +Nf − 1)!

)2 ∑
σ,τ∈SNc

sgn(στ)
∏
i

[
ψ̄σ

−1(i)
ai

(n− 0̂)Naibi (n− 0̂/2)

×
{∫

dψ̄i(n) dψi(n)ψibi (n)ψ̄
i
a′i
(n)e−ψ̄i (n)M(n)ψi(n)

}
×Na′ib′i (n+ 0̂/2)ψτ(i)

b′i
(n+ 0̂)

]
,

where the first equality sign uses the expression (21) for the functionχ1. Note that the
integral between curly brackets involves only fermions of colori. The fermionic version
of Wick’s theorem yields for it the valueM−1

bia
′
i

(n)DetM(n), so after combining the

permutationsσ andτ , the above expression becomes

α2
1

(Nf − 1)!2
(Nc +Nf − 1)!2Nc!DetM(n)Nc

×
∑
ρ∈SNc

sgnρ
∏
i

ψ̄iai (n− 0̂)Gaib′i (n− 0̂→ n+ 0̂)ψρ(i)
b′i
(n+ 0̂)

= α1 DetM(n)Nc
(
Nc +Nf − 1

Nf − 1

)−1

χ1
(
ψ̄(n− 0̂),G(n− 0̂→ n+ 0̂)ψ(n+ 0̂)

)
,

with the “propagator”G(n− 0̂→ n+ 0̂)
def= N(n− 0̂/2)M(n)−1N(n+ 0̂/2).

Repeating the procedure, we successively integrate over the quark fields along the string,
by which process the matricesN andM get organized into a single propagator. In the final
integration step, we need to take into account the periodic boundary conditions for the
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quark fields:ψ(T 0̂)=ψ(0). The final integral overψ(0) then reads∫
dψ̄(0) dψ(0) χ1

(
ψ̄(0),G(0→ T 0̂)ψ(0)

)
e−ψ̄(0)M(0)ψ(0).

We now use the following expression for the functionχ1:

χ1(φ̄, φ)= α1
(Nf − 1)!

(Nc +Nf − 1)!
∑
{ai }

∑
σ∈SNc

Nc∏
i=1

φ̄iai φ
i
aσ(i)
,

which is easily obtained from Eq. (21) by interchanging the product over colors with the
sum over flavors. Wick’s theorem then yields for theψ(0)-integral the result

α1
(Nf − 1)!

(Nc +Nf − 1)! DetM(0)Nc (−1)Nc
∑

{ai ,bi}

∑
σ∈SNc

∏
i

Gaσ(i)bi (0→ T 0̂)M−1
biai
(0).

The last matrix product may also be expressed in terms of the propagatorG defined in
Eq. (36),G =G(0→ T 0̂)M(0)−1.

What is the interpretation of the sign factor(−1)Nc? To answer that question,
recall that we evaluated the Grassmann field integral usingtime-periodic boundary
conditions (instead of the conventional time-antiperiodic ones). In ad-dimensional
quantum mechanical frame work with HamiltonianH and inverse temperatureβ , this
would mean that we are computing not the usual partition function but rather the
supertraceTr(−1)NFe−βH with NF the total fermion number. The overall sign factor
(−1)Nc originates from that very fermion number, and is simply telling us that the baryon
is a fermion (boson) ifNc is odd (respectively, even).

Let us take a closer look at the contributions from the sum over permutationsσ ∈ SNc .
Each permutationσ can be uniquely decomposed into a product of independent cycles.
Denoting bycl(σ ) the number of cycles of lengthl in this decomposition, the contribution
from σ to the partition function can be written as

∑
{ai}

Nc∏
i=1

Gaiaσ(i) =
Nc∏
l=1

(
Tr Gl

)cl (σ ).
The permutation groupSNc may be partitioned into disjoint classes with respect to
conjugation (σ,σ ′ are said to be conjugate to each other iff there exists a permutation
τ such thatσ ′ = τ−1στ ). Two permutationsσ andσ ′ are in the same conjugacy class iff
they have the same cycle structure, i.e.,∀l : cl(σ )= cl(σ ′). This allows to rewrite the sum
overσ as a sum over the conjugacy classesσ̂ ∈ ŜNc , taking into account the cardinality of
each class,N (σ̂ ), given in Eq. (38). We then obtain the result (37).
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