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Abstract
We consider the effect of noise on the dynamics generated by volume-
preserving maps on a d-dimensional torus. The quantity we use to measure
the irreversibility of the dynamics is the dissipation time. We focus on the
asymptotic behaviour of this time in the limit of small noise. We derive universal
lower and upper bounds for the dissipation time in terms of various properties
of the map and its associated propagators: spectral properties, local expansivity,
and global mixing properties. We show that the dissipation is slow for a general
class of non-weakly-mixing maps; on the other hand, it is fast for a large class
of exponentially mixing systems, which include uniformly expanding maps and
Anosov diffeomorphisms.

Mathematics Subject Classification: 37D20, 82C05

1. Introduction

The origin of irreversibility in dynamical systems is often modelled by small stochastic
perturbations of the otherwise reversible dynamics. These perturbations may be attributed
to uncontrolled interactions with the ‘environment’, or with internal variables neglected
in the equations. In experimental or numerical investigations, stochasticity or ‘noise’ is
introduced, respectively, by finite precision of the preparation and measurement apparatus,
and by rounding-off errors due to finite computer precision.

One may take these stochastic perturbations explicitly into account by adding a term of
Langevin type in the evolution equations, or equivalently introducing some diffusion term in
the Fokker–Planck equation. In this paper, we choose to deal with discrete-time dynamics on
some compact phase space, namely the d-dimensional torus. All the maps we study preserve
the Lebesgue measure, which is therefore the ‘natural’ invariant measure associated with the
dynamics. The noise is implemented through a convolution operator, the kernel of which has
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a (small) width ε > 0. For a given map F , two types of stochastic perturbations will be
considered: the noise operator may be applied at each step of evolution, resulting in a ‘noisy
evolution’; on the other hand, we may choose to introduce some stochasticity only at the initial
(preparation) and final (measurement) steps, resulting in a ‘coarse-grained evolution’.

In general, the influence of the noise on the long-time evolution of the system depends on
the dynamical properties of the map. Typically, the effect is stronger if the map is ‘chaotic’
than if it is ‘regular’ [21, 3, 25]. We will try to give a quantitative version of this statement.
To this end, we will characterize the effect of noise on a map F through a single observable,
the dissipation time. By dissipation, we mean the damping (through the noisy or coarse-
grained evolution) of the density fluctuations, while the total probability remains constant.
Mathematically, this damping is expressed by the decay of the L2-norm of the density (or
equivalently, the L2-norm of the density fluctuations) with respect to the Lebesgue measure.
The decrease of this norm due to dissipation may be interpreted as an ‘entropy increase’ of the
system, up to the state of maximal entropy, which is the uniform density (here the word ‘entropy’
denotes the Boltzmann entropy of the probability density, unrelated with the topological or
Kolmogorov–Sinai entropies associated with the map). We define the dissipation time as the
time needed for the evolution to bring fluctuations under a fixed threshold (i.e. reduce the
L2-norm by a fixed factor) [14]. We are especially interested in the behaviour of this time in
the limit of small noise. We will show that this behaviour drastically depends on the dynamics
generated by the noiseless map F : in short, the dissipation will be ‘fast’ for a chaotic dynamics,
as opposed to ‘slow’ for a regular dynamics, the difference being ever more striking as the
level of noise decreases. Our main results exhibit this opposition by means of quantitative
estimates on the asymptotics of the dissipation time.

Since the dissipation time is defined in terms of an L2-norm, it is naturally related to the
spectral properties of the propagator associated with the map, acting on the space of square-
integrable functions. In section 3, we analyse the links between, on the one hand, the spectrum
and pseudospectrum of the noisy or noiseless propagators and, on the other, their dissipation
time. The relevance of the pseudospectrum for time evolution problems has been recently
proved in the context of non-unitary continuous-time dynamical systems [12]. These spectral
relationships will be mainly used to analyse the case of ‘regular’, precisely non-weakly-mixing
maps. In contrast, they are of little help for more chaotic ones.

In the following sections, we connect the dissipation time to more ‘dynamical’ properties
of the map F (under some smoothness assumptions on F ). We first obtain lower bounds for
the dissipation time from the local expansion properties of the map: a weak expansion, or
absence of local expansion will imply slow dissipation (section 4). Next, we obtain upper
bounds for the dissipation time using information on mixing properties of the map (i.e. the
time decay of correlations between observables). Strong (e.g. exponential) mixing is a typical
characteristic of chaotic behaviour and can be easily measured in numerical simulations [4].
The main conclusion is that exponential or stronger mixing implies fast dissipation, for both
the noisy and the coarse-grained evolution.

In section 6, we describe several families of volume-preserving maps on the torus, for
which the results obtained above yield useful information concerning the dissipation. The
two main families are expanding (non-invertible) maps and Anosov (or at least partially
hyperbolic) diffeomorphisms of the torus. All these maps are at least exponentially mixing,
so the dissipation is ‘fast’. In the case of Anosov maps, we collect our results in theorem 4.
For illustration, we also analyse in detail examples of linear mixing maps, for which exact
asymptotics of the dissipation times can be obtained, and therefore give an idea of the sharpness
of the bounds obtained earlier (the results concerning linear automorphisms had been obtained
in [14]).
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From these developments one can see that the dissipation time provides a robust
characterization of the chaoticity of a given dynamical system. As opposed to, e.g. the decay
rate of dynamical correlation, the dissipation time has the same asymptotics (up to a constant
factor) among Anosov diffeomorphisms while the decorrelation may be exponential (generic
Anosov case) or super-exponential depending on the particular map (cf results regarding
hyperbolic toral automorphisms [3] and corollary 5).

2. Set-up and notation

2.1. Evolution operators

Let (Td , B(Td), m) denote the d-dimensional torus, equipped with its σ -field of Borel sets and
the Lebesgue measure m. Let F : Td → Td be a map on the torus preserving the Lebesgue
measure: for any set B ∈ B(Td) we have m(F−1(B)) = m(B). In general, F is not supposed to
be invertible. In the following, we call such a map ‘volume preserving’ with implicit reference
to the Lebesgue measure.

The map F generates a discrete-time dynamics on Td , which in terms of a pathwise
description can be represented by the forward trajectory {Fn(x0), n ∈ N} of any initial point
(particle) x0 ∈ Td . However, instead of looking at the evolution of a single particle, one can
consider the statistical description of the dynamics, which is the evolution of a density (more
generally a measure) describing the initial statistical configuration of the system.

Let M(Td) denote the set of all Borel measures on Td . For any µ ∈ M(Td) and
f ∈ C0(Td) we write

µ(f ) =
∫

Td

f (x) dµ(x).

The map F induces a map F ∗ on M(Td) given by

(F ∗µ)(f ) = µ(f ◦ F), for all f ∈ C0(Td).

This map can also be defined as follows:

(F ∗µ)(B) = µ(F−1(B)), for all B ∈ B(Td).

In particular, if µ = δx0 then F ∗(µ) = δF(x0) and one recovers the pathwise description.
If µ is absolutely continuous w.r.t. m, then F ∗(µ) preserves this property (since the

measure-preserving map F is nonsingular w.r.t. m, see [23, p 42]). The corresponding densities
g = dµ/dm ∈ L1(Td) are transformed by the Frobenius–Perron or transfer operator PF [3]:

PF

(
dµ

dm

)
= d(F ∗µ)

dm
.

If the map F is invertible, PF is given explicitly by

(PF g)(x) = (g ◦ F−1)(x)
dF ∗m

dm
(x) = g ◦ F−1(x).

If the map F is differentiable, and the pre-image set of x is finite for all x, the Perron–Frobenius
operator is given by

(PF g)(x) =
∑

y|F(y)=x

g(y)
|JF (y)| ,

where JF (y) is the Jacobian of F at y.
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On the other hand, one can consider the dual of the Frobenius–Perron operator, called the
Koopman operator, which governs the evolution of observables f ∈ L∞(Td) instead of that
of densities g ∈ L1. The Koopman operator UF is defined as

UF f = f ◦ F. (1)

Due to the nonseparability of the Banach space L∞(Td), it is often more convenient to
consider its closure in some weaker Lp-norm, which yields larger (but separable) spaces of
observables Lp(Td). In this paper, we will be mainly concerned with the space L2(Td) and
its codimension-1 subspace of zero-mean functions L2

0(T
d) = {f ∈ L2(T2) : m(f ) = 0}.

This subspace is obviously invariant under UF and PF , due to the assumption F ∗m = m.
Throughout the paper, ‖ · ‖ will always refer to the L2-norm (and corresponding operator
norm) on L2

0(T
d) (any other norm will carry an explicit subscript).

For any measure-preserving map F , the operator UF is isometric on L2(Td) and L2
0(T

d).
When F is invertible, UF is unitary on these spaces, and satisfies UF = P −1

F = PF−1 .

2.1.1. Additional notation. Although the operators introduced in previous sections were
mostly defined on the space L2

0(T
d), it will be useful to consider other function spaces, which

we define now in some detail. For any m ∈ N, we denote by Cm(Td) the space of m-times
continuously differentiable functions, with the norm

‖f ‖Cm =
∑

|α|1�m

‖Dαf ‖∞

(we use the norm |α|1 = α1 + · · · + αd for the multi-index α ∈ Nd ). For any s = m + η

with m = [s] ∈ N, η ∈ (0, 1), let Cs(Td) denote the space of Cm functions for which the
m-derivatives are η-Hölder continuous; this space is equipped with the norm

‖f ‖Cs = ‖f ‖Cm +
∑

|α|1=m

sup
x�=y

|Dαf (x) − Dαf (y)|
|x − y|η .

The Fourier transforms of functions g ∈ L1(Rd) and f ∈ L1(Td) are defined as follows:

∀ξ ∈ Rd , ĝ(ξ) =
∫

Rd
g(x)e−2π ix·ξ dx, (2)

∀k ∈ Zd , f̂ (k) =
∫

Td

f(x)e−2π ix·k dx = 〈
ek, f

〉
. (3)

In the above expression we used the Fourier modes on the torus ek(x) := e2π ix·k. For any s � 0,
we denote by Hs(Td) and Hs(Rd) the Sobolev spaces of s-times weakly differentiable L2-
functions equipped with the norms ‖ · ‖Hs defined, respectively, by

‖g‖2
Hs(Rd ) =

∫
ξ∈Rd

(1 + |ξ|2)s |ĝ(ξ)|2 dξ,

‖f ‖2
Hs(Td ) =

∑
k∈Zd

(1 + |k|2)s |f̂ (k)|2.

Finally, for any of these spaces, adding the subscript 0 will mean that we consider the
(UF -invariant) subspace of functions with zero average, e.g. C

j

0 (Td) = {f ∈ Cj(Td),
m(f ) = 0}.

2.2. Noise operator

To construct the noise operator we first define the noise generating density i.e. an arbitrary
probability density function g ∈ L1(Rd) with even parity w.r.t. the origin: g(x) = g(−x). The
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noise width (or noise level) will be given by a single non-negative parameter, which we call ε.
To each ε > 0 corresponds the noise kernel on Rd :

gε(x) = 1

εd
g

(x
ε

)
,

with the convention that g0 = δ0. The noise kernel on the torus is obtained by periodizing gε ,
yielding the periodic kernel

g̃ε(x) =
∑
n∈Zd

gε(x + n). (4)

We remark that the Fourier transform of g̃ε is related to that of g by the identities ˆ̃gε(k) =
ĝε(k) = ĝ(εk).

The noise operator Gε is defined on any function f ∈ L2
0(T

d) as the convolution:

Gεf = g̃ε ∗ f.

As a convolution operator defined by an L1 density, Gε is compact on L2
0(T

d) (if g is square-
integrable, Gε is Hilbert–Schmidt). The Fourier modes {ek, k ∈ Zd \{0}} form an orthonormal
basis of eigenvectors of Gε , yielding the following spectral decomposition:

∀f ∈ L2
0(T

d), Gεf =
∑

0 �=k∈Zd

ĝ(εk)〈ek, f 〉 ek. (5)

This formula shows that the eigenvalue associated with ek is ĝ(εk). Since g is a symmetric
function, this eigenvalue is real, so that Gε is a self-adjoint operator. Its spectral radius rsp(Gε)

is, therefore, given by

rsp(Gε) = ‖Gε‖ = sup
0 �=k∈Zd

|ĝ(εk)|. (6)

Since the density g is positive, ĝ attains its maximum, ĝ(0) = 1, at the origin and nowhere
else. Besides, because g ∈ L1(Rd), ĝ is a continuous function vanishing at infinity. As a
result, for small enough ε > 0, the supremum on the RHS of (6) is reached at some point εk
close to the origin, and this maximum is strictly smaller than 1. This shows that the operator
Gε is strictly contracting on L2

0(T
d):

∀ε > 0, ‖Gε‖ = rsp(Gε) < 1. (7)

In the next section we study this noise operator more precisely, starting from appropriate
assumptions on the noise generating density.

2.3. Noise kernel estimates

In this subsection, we present some estimates regarding the noise operator, which will be used
throughout the paper to estimate the dissipation time.

We will be interested in the behaviour of the system in the limit of small noise level, that
is the limit ε → 0. Therefore, it will be useful to introduce the following asymptotic notation.
Given two variables aε , bε depending on ε > 0, we write

aε � bε if lim sup
ε→0

aε

bε

< ∞, (8)

aε ≈ bε if lim
ε→0

aε

bε

= 1, (9)

aε ∼ bε if aε � bε and bε � aε. (10)
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In order to obtain interesting estimates on the noise operator Gε , it will be necessary to
impose some additional conditions on its generating density g, regarding, e.g. its rate of decay
at infinity, or the behaviour of its Fourier transform near the origin.

The weakest condition considered in this paper is the existence of some positive moment
of g, by which we mean that for some α ∈ (0, 2],

Mα =
∫

Rd

|x|αg(x) dx < ∞, (11)

(we take the length |x| = (x2
1 + · · · + x2

d )
1/2 on Rd ). This condition implies the following

properties of the Fourier transform ĝ (proved in appendix A.1):

Lemma 1. For any α ∈ (0, 2] there exists a universal constant Cα such that, if a normalized
density g satisfies (11), then the following inequalities hold:

∀ξ ∈ Rd , 0 � 1 − ĝ(ξ) � CαMα|ξ|α. (12)

If (11) holds with α = 2, we have the more precise behaviour:

1 − ĝ(ξ) ∼ |ξ|2 in the limit ξ → 0.

In the case α < 2, we will sometimes assume a stronger property than (12), namely that

1 − ĝ(ξ) ∼ |ξ|α in the limit ξ → 0. (13)

Note that this behaviour implies a uniform bound 1 − ĝ(ξ) � C|ξ|γ for any γ � α and C

independent of γ .
Typical examples of noise kernels satisfying (13) include the Gaussian kernel and more

general symmetric α-stable kernels [27, p 152] defined for α ∈ (0, 2]:

gε,α(x) :=
∑
k∈Zd

e−(Q(εk))α/2
ek(x), (14)

where Q denotes an arbitrary positive definite quadratic form. For the values of α indicated,
the function gε,α(x) is positive on Rd .

In view of equation (6), the properties (11) or (13) directly constrain the rate at which Gε

contracts on L2
0(T

d). For instance, (13) implies that in the limit ε → 0,

1 − ‖Gε‖ ∼ εα. (15)

The following proposition describes the effect of the noise on various types of observables,
in the limit of small noise level. The proofs are given in appendix A.2.

Proposition 1.

(i) For any noise generating density g ∈ L1(Rd) and any observable f ∈ L2
0(T

d), one has

‖Gεf − f ‖ ε→0→ 0. (16)

To obtain information on the speed of convergence, we need to impose constraints on both
the noise kernel and the observable.

(ii) If for some α ∈ (0, 2] the kernel g satisfies (11) or (13), then for any γ > 0 there exists a
constant C > 0 such that for any observable f ∈ Hγ (Td),

‖Gεf − f ‖ � Cεγ∧α‖f ‖Hγ∧α , (17)

where γ ∧ α := min{γ, α}. If f ∈ C1(Td), the above upper bound can be replaced by

‖Gεf − f ‖ � Cε1∧α‖∇f ‖ � Cε1∧α‖∇f ‖∞. (18)

Using the noise operator, we are now in a position to define the noisy (resp. the
coarse-grained) dynamics generated by a measure-preserving map F .
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2.4. Noisy evolution operator and dissipation time

The noisy evolution through the map F is constructed by successively applying the Koopman
operator UF and the noise operator Gε , therefore by taking powers of the noisy propagator

Tε = GεUF .

In general, the operator Tε is not normal, but satisfies rsp(Tε) � ‖Tε‖ = ‖Gε‖.
We will also consider a coarse-grained dynamics defined by the application of the noise

kernel only at the beginning and the end of the evolution. Hence, we define the following
family of operators:

T̃ (n)
ε = GεU

n
F Gε, n ∈ N.

In view of the contracting properties of Gε , the inequalities ‖T n
ε ‖ � ‖Gε‖n,

‖T̃ (n)
ε ‖ � ‖Gε‖2 imply that both noisy and coarse-grained operators are strictly contracting

on L2
0(T

d). Our aim is to characterize the speed of contraction of these two evolutions, that
is the behaviour of the norms ‖T n

ε ‖, ‖T̃ (n)
ε ‖ in the joint limits ε → 0 and n → ∞. This

characterization will be connected with dynamical properties of the map F .
There are many ways to measure this speed of contraction. For instance, for fixed ε > 0,

the long-time decay of ‖T n
ε ‖ may be super-exponential (in which case Tε is quasi-nilpotent) or

exponential, governed by the largest eigenvalue of Tε . However, such exponential behaviour
may appear only after a transient time. In this paper, we will characterize the noisy dynamics
through a single, robust characteristic, namely the dissipation time. In its general form, the
dissipation time τ∗ is defined in terms of the norm ‖·‖p,0 on the space L

p

0 (Td), and an arbitrary
threshold η ∈ (0, 1):

τp,η
∗ (ε) := min{n ∈ N : ‖T n

ε ‖p,0 < η}, 1 � p � ∞. (19)

We will be concerned with the behaviour of the dissipation time when the level of noise becomes
small (as we prove in proposition 2, this time diverges in this limit). In [14], it was shown
that this asymptotic behaviour is independent of the choice of 0 < η < 1 and 1 < p < ∞.
Therefore, in this paper we will consider the computationally convenient choice p = 2 and
η = e−1. We will henceforth drop the superscripts, and the dependence of τ∗ on ε will always
be implicit:

τ∗ := τ 2,e−1

∗ (ε) = min{n ∈ N : ‖T n
ε ‖ < e−1}. (20)

A similar dissipation time will be defined for the coarse-grained evolution:

τ̃∗ := min{n ∈ N : ‖T̃ (n)
ε ‖ < e−1}. (21)

The dissipation time does not depend on whether the dynamics is applied to densities (i.e.
by the Frobenius–Perron operator) or to observables (by the Koopman operator). Indeed, the
norm of an operator equals the norm of its adjoint [30, p 195], so that

‖T̃ (n)
ε ‖ = ‖GεU

n
F Gε‖ = ‖(GεU

n
F Gε)

∗‖ = ‖GεP
n
F Gε‖,

and similarly for the noisy operator Tε . In particular, for invertible maps the dissipation time
does not depend on the direction of time.

We will distinguish two qualitatively different asymptotic behaviours of dissipation time in
the limit ε → 0. We say that the operator Tε (or the map F associated with it), respectively, has

(I) simple or power-law dissipation time if there exists β > 0 such that

τ∗ ∼ 1

εβ
,
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(II) fast or logarithmic dissipation time if

τ∗ ∼ ln

(
1

ε

)
.

We will also talk about slow dissipation time whenever there exists some β > 0 s.t.

τ∗ � 1

εβ
.

In the case of a logarithmic dissipation time, the dissipation rate constant R∗, when it exists,
is defined as

R∗ = lim
ε→0

τ∗
ln(1/ε)

. (22)

A similar terminology will be applied to the coarse-grained dissipation time τ̃∗.

3. Spectral properties and dissipation time of non-weakly-mixing maps

In this section, we investigate the connection between the dissipation time of the noisy
propagator Tε and its pseudospectrum together with some spectral properties of UF and Gε .
All the operators considered in this section are defined on L2

0(T
d). In the framework of

continuous-time dynamics, connections have been obtained between, on the one hand, the
pseudospectrum of the (non-self-adjoint) generator A, and, on the other, the norm of the
evolution operator etA [12]. We will obtain results of the same flavour, yet the proofs seem
easier here than in the case of continuous time.

3.1. Definitions and general bounds

Let us start with the definition of the pseudospectrum of a bounded operator [29].

Definition 1. Let T be a bounded linear operator on a Hilbert space H (we note T ∈ L(H)).
For any δ > 0, the δ-pseudospectrum of T (denoted by σδ(T )) can be defined in the following
three equivalent ways:

(I) σδ(T ) = {λ ∈ C : ‖(λ − T )−1‖ � δ−1},
(II) σδ(T ) = {λ ∈ C : ∃v ∈ H, ‖v‖ = 1, ‖(T − λ)v‖ � δ},

(III) σδ(T ) = {λ ∈ C : ∃B ∈ L(H), ‖B‖ � δ, λ ∈ σ(T + B)}.
We will apply these definitions to the operator Tε . For brevity, the resolvent of this operator
will be denoted by Rε(λ) = (λ−Tε)

−1. We call Sr the circle {λ ∈ C : |λ| = r} in the complex
plane, and define the following pseudospectrum distance function:

dε(r) := inf{δ > 0 : σδ(Tε) ∩ Sr �= ∅}.
From the definition (I) of the pseudospectrum, one easily shows that this distance is also
given by

d−1
ε (r) = sup

|λ|=r

‖Rε(λ)‖. (23)

We first establish general (abstract) bounds for the dissipation time in terms of the spectral
properties of Gε and Tε . In a second step, we relate these properties to dynamical properties
of the underlying map F .
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Theorem 1. For any isometric operator U on L2
0(T

d) and noise operator Gε , the dissipation
time of the noisy evolution operator Tε = GεU satisfies the following estimates:

1 − e−1

dε(1)
� τ∗ � 1

|ln(‖Gε‖)| + 1, (24)

τ∗ � inf
rsp(Tε)<r<1

1

| ln(r)| ln

(
e

dε(r)

)
. (25)

We note that the first upper bound does not depend on U at all, but only on the noise.
Using the estimate (15), we obtain the following obvious corollary:

Corollary 1. If the noise generating density satisfies the estimate (13) for some α ∈ (0, 2],
then for any measure-preserving map F the noisy dissipation time is bounded from above by:

τ∗ � ε−α.

Proof of the theorem.
1. Lower bound. We use the following series expansion of the resolvent [30, p 211] valid for
any |λ| > rsp(Tε):

Rε(λ) =
∞∑

n=0

λ−n−1T n
ε . (26)

Considering that rsp(Tε) � ‖Gε‖ < 1, we may take |λ| = 1, and split this sum into two
parts:

Rε(λ) =
τ∗−1∑
n=0

λ−n−1T n
ε + λ−τ∗T τ∗

ε Rε(λ).

Taking norms and applying the triangle inequality, we get

‖Rε(λ)‖ �
∥∥∥∥∥

τ∗−1∑
n=0

λ−n−1T n
ε

∥∥∥∥∥ + |λ|−τ∗‖T τ∗
ε ‖‖Rε(λ)‖

� τ∗ + e−1‖Rε(λ)‖
�⇒ ‖Rε(λ)‖(1 − e−1) � τ∗.

Taking the supremum over λ ∈ S1 yields the lower bound.

2. Upper bounds. To get both upper bounds, we use the following trivial lemma.

Lemma 2. Assume that (for some value of ε) the powers of Tε satisfy

∀n ∈ N, ‖T n
ε ‖ � �(n),

where the function �(n) is strictly decreasing, and �(n)
n→∞→ 0. Then, the dissipation time is

bounded from above by

τ∗ � �(−1)(e−1) + 1,

where �(−1) is the inverse function of �. In particular, for the geometric decay �(n) = Crn

with r ∈ (0, 1), C � 1, one obtains τ∗ � ln(eC)/| ln r| + 1.
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The upper bound in equation (24) comes from the obvious estimate

‖T n
ε ‖ � ‖Gε‖n,

on which we apply the lemma with C = 1, r = ‖Gε‖.
To prove the second upper bound, we use the representation of T n

ε in terms of the resolvent:

T n
ε = 1

2π i

∫
Sr

λnRε(λ) dλ

valid for any r > rsp(Tε). Thus, for all r ∈ (rsp(Tε), 1), one has

‖T n
ε ‖ � 1

2π

∫
Sr

|λ|n‖Rε(λ)‖|dλ| � sup
|λ|=r

‖Rε(λ)‖rn+1 = 1

dε(r)
rn+1.

We then apply lemma 2 on the geometric decay for any radius rsp(Tε) < r < 1, with
C = r/dε(r) � 1. �

3.2. Consequences

We now use theorem 1 in the case where U = UF is the Koopman operator for some measure-
preserving map F on Td with some specific dynamical properties. We recall [10] that the
map F is ergodic (resp. weakly-mixing) iff 1 is not an eigenvalue of UF (resp. iff UF has no
eigenvalue) on L2

0(T
d).

Proposition 2. For any measure-preserving map F and any noise generating function g, the
dissipation time of Tε diverges in the small-noise limit ε → 0.

Proof. We drop the subscript F to simplify the notation. We only use the fact that U = UF is
an isometry. We shall prove by induction the following strong convergence of operators:

∀f ∈ L2
0(T

d), ∀n ∈ N, ‖T n
ε f − Unf ‖ ε→0→ 0.

From proposition 1(i), this limit holds in the case n = 1. Let us assume it holds at the rank
n − 1. Then, we write

T n
ε f = UT n−1

ε f + (Gε − I )UT n−1
ε f.

From the inductive hypothesis, T n−1
ε f

ε→0→ Un−1f , so that the first term on the RHS converges
to Unf . Applying proposition 1(i) to the function Unf , we see that the second term vanishes
in the limit ε → 0. From the isometry of U , we obtain that for any n > 0, ‖T n

ε ‖ ε→0→ 1, so that
τ∗

ε→0→ ∞. �
This ‘non-finiteness’ of the noisy dissipation time allows us to prove another general result

concerning the pseudospectrum of Tε (this corollary is proved in appendix A.3):

Corollary 2. For any isometry U and noise generating function g, one has

dε(1)
ε→0→ 0. (27)

This means that for any fixed δ > 0, the pseudospectrum σδ(Tε) will intersect the unit circle
for small enough ε.

In order to better control the growth of τ∗, we need more precise information on the noise
and the dynamics. In the present section, we restrict ourselves to the dynamical property of
weak-mixing.
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Corollary 3. Assume that the noise generating density g satisfies the estimates (11) or (13)
with exponent α ∈ (0, 2]. If F is not weakly-mixing and at least one eigenfunction of UF

belongs to Hγ (Td) for some γ > 0, then Tε has a slow dissipation time:

ε−(α∧γ ) � τ∗.

Proof. Let h ∈ Hγ (Td) be a normalized eigenfunction of UF with eigenvalue λ. Applying
proposition 1(ii), we get

‖(λ − Tε)h‖ = ‖(I − Gε)h‖ � Kεγ∧α

for some constant K > 0 depending on g and h. This implies that ‖Rε(λ)‖ � 1/Kεγ∧α;
therefore, taking the supremum over |λ| = 1 yields dε(1)−1 � 1/Kεγ∧α . The lower bound in
theorem 1 then implies

1 − e−1

Kεγ∧α
� τ∗. (28)

�
Remark 1. Recall that if g satisfies (13) with exponent α, then the dissipation time is also
bounded from above, as shown in corollary 1. If one eigenfunction h has regularity Hγ with
γ � α, then both corollaries imply that the dissipation is simple, of exponent α.

Remark 2. The above results can be stated in a more general form: UF does not need to be a
Koopman operator associated with a map F . The result holds true for any isometric operator
U on L2

0 with an eigenfunction of Sobolev regularity.

The dependence of the lower bound in (28) on γ can be intuitively explained as follows.
In the case of non-weakly-mixing maps the eigenfunctions of UF are, in general, responsible
for slowing down the dissipation. The rate of dissipation is affected by the regularity of the
smoothest eigenfunction. In principle, irregular functions undergo faster dissipation giving
rise to slower asymptotics of τ∗. It is not clear, however, whether the actual asymptotics of the
dissipation time will be slower than power law asymptotics in the case when all eigenfunctions
of UF on L2

0(T
d) are outside any space Hγ (Td) with γ > 0.

In corollary 2 we have shown that for any map F and arbitrary small δ > 0, the
pseudospectrum σδ(Tε) intersects the unit circle for sufficiently small ε > 0. If F is not
weakly-mixing, the spectral radius of Tε (i.e. the modulus of its largest eigenvalue) is believed
to converge to 1 when ε → 0, and the associated eigenstate hε should converge to a ‘noiseless
eigenstate’ h. This ‘spectral stability’ has been discussed for several cases in the continuous-
time as well as for discrete-time maps on T2 [21, 25].

In contrast, if F is an Anosov map on T2 (see section 6.3), the spectrum of Tε does not
approach the unit circle, but stays away from it uniformly: rsp(Tε) is smaller than some r0 < 1
for any ε > 0 [7]. Simultaneously, ‖Tε‖ → 1, so we have here a clear manifestation of the non-
normality of Tε for such a map. In some cases (see [25] and the linear examples of section 6), the
operator Tε is even quasi-nilpotent, meaning that rsp(Tε) = 0 for all ε > 0. For such an Anosov
map, the spectral radius of Tε is, therefore, ‘unstable’ or ‘discontinuous’ in the limit ε → 0,
while in the same limit the (radius of its) pseudospectrum σδ(Tε) (for δ > 0 fixed) is ‘stable’.

4. Universal lower bounds for the dissipation time of C1 maps

In this section, we consider both noisy and coarse-grained evolutions. We start our discussion
with general properties of the coarse-grained dissipation time.
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Proposition 3. Let F be a measure-preserving map:

(i) For an arbitrary noise kernel, the coarse-grained dissipation time diverges as ε → 0.
(ii) If F is not weakly-mixing, then τ̃∗ = ∞ for small enough ε > 0.

Proof.

(i) Similarly as in proposition 2 we have

‖T̃ n
ε f − Unf ‖ = ‖GεU

n
F (Gε − I )f + (Gε − I )Unf ‖ � ‖(Gε − I )f ‖

+ ‖(Gε − I )Unf ‖ → 0.

(ii) Let h ∈ L2
0(T

d) be a normalized eigenfunction of UF , then

‖T̃ (n)
ε h‖ = ‖GεU

n
F (h + (Gε − I )h)‖ � ‖Gεh‖ − ‖GεU

n
F (Gε − I )h‖

� 1 − 2‖(Gε − I )h‖.
Since the RHS above is independent of n, we see that ‖T̃ (n)

ε ‖ is close to 1 for all times and
sufficiently small ε > 0. �
As opposed to the noisy case (see proposition 1), the coarse-grained evolution through a

non-weakly mixing map does not dissipate. Therefore, there exists no general upper bound
for τ̃∗.

In contrast, we will prove below a general lower bound for both coarse-grained and
noisy evolutions, valid for any measure-preserving map F of regularity C1. We note that
propositions 2 and 3(i) (which are valid independently of any regularity assumption) do not
provide an explicit lower bound.

First, we introduce some notation. For any map F ∈ C1, DF(x) is the tangent map of
F at the point x ∈ Td , mapping a tangent vector at x to a tangent vector at F(x). Selecting
the canonical (i.e. Cartesian) basis and metrics on T (Td), this map can be represented as a
d × d matrix. The metrics naturally yield a norm v ∈ Tx(T

d) �→ |v| on the tangent space, and
therefore a norm on this matrix: |DF(x)| = max|v|=1 |DF(x) · v|. We are now in position to
define the maximal expansion rate of F :

µF = lim sup
n→∞

‖DFn‖1/n
∞ , where ‖DFn‖∞ = sup

x∈Td

|(DFn)(x)|.

Since F preserves the Lebesgue measure, the Jacobian JF (x) satisfies |JF (x)| � 1 at all points.
In the Cartesian basis, JF (x) = det(DF(x)), so that we have ‖DFn(x)‖ � 1 for all x ∈ Td ,
n � 0. One can actually prove the following remark.

Remark 3. Although |(DFn)(x)| and ‖DF‖∞ may depend on the choice of the metrics, µF

does not, and satisfies 1 � µF � ‖DF‖∞.

From the definition of µF , for any µ > µF there exists a constant A � 1 such that

∀n ∈ N, ‖DFn‖∞ � Aµn. (29)

In some cases one may take µ = µF in the RHS. In the case µF = 1, ‖DFn‖∞ can sometimes
grow as a power-law:

‖DFn‖∞ � Anβ, n ∈ N (30)

for some β > 0, or even be uniformly bounded by a constant (β = 0).
The relationship between the local expansion of the map F , on the one hand, and the

dissipation time, on the other, can be intuitively understood as follows. A lack of expansion
(‖DF‖∞ = 1) results in the transformation of ‘soft’ or ‘long-wavelength’ oscillations into
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‘soft oscillations’, both being little affected by the noise operator Gε . In contrast, a locally
strictly expansive map (‖DF‖∞ > 1) will quickly transform soft oscillations into ‘hard’ or
‘short-wavelength’ oscillations, the latter being much more damped by the noise.

The following theorem precisely measures this relationship, in terms of lower bounds for
the dissipation times.

Theorem 2. Let F be a measure-preserving C1 map on Td , and assume that the noise
generating density g satisfies (11) or (13) for some α ∈ (0, 2].

(i) If ‖DF‖∞ > 1, resp. µF > 1, then there exists a constant c, resp. constants µ � µF and
c̃, such that for small enough ε,

τ∗ � α ∧ 1

ln(‖DF‖∞)
ln(ε−1) + c, resp. τ̃∗ � α ∧ 1

ln µ
ln(ε−1) + c̃. (31)

If F is a C1 diffeomorphism, then (31) holds with ‖DF‖∞ replaced by ‖DF‖∞ ∧
‖D(F−1)‖∞, resp. with some µ � µF ∧ µF−1 .

(ii) If ‖DF‖∞ = 1, then Tε has slow dissipation time, τ∗ � ε−(α∧1). If the noise kernel
satisfies the condition (13) for α ∈ (0, 1], then the dissipation time is simple, τ∗ ∼ ε−α .

(iii) If µF = 1 and ‖DFn‖∞ grows as a power-law as in equation (30) with β > 0, then
τ̃∗ � ε−(α∧1)/β . If ‖DFn‖∞ is uniformly bounded above by a constant, then τ̃∗ = ∞ for
small enough ε.

Remark 4. This theorem shows that classical systems on Td (i.e. C1 diffeomorphisms) cannot
have a dissipation time growing slower than C ln(ε−1). In view of the results for toral
automorphisms (cf proposition 4), this lower bound on the dissipation time is sharp and
consistent with Kouchnirenko’s upper bound on the entropy of the classical systems, namely
all classical systems have a finite (possibly zero) Kolmogorov–Sinai entropy (theorem 12.35.
in [1], see also [2, 22]).

Proof of the theorem. We will need the following trivial lemma (similar to lemma 2).

Lemma 3. Assume that there exists some α > 0 and a strictly increasing function γ (n),
γ (0) = 0 such that

∀n � 1, ‖T n
ε ‖ � 1 − εαγ (n). (32)

Then, the dissipation time is bounded from below as:

τ∗ � γ (−1)

(
1 − e−1

εα

)
, (33)

where γ (−1) is the inverse function of γ .
The same statement holds for the coarse-grained version.

Our task is, therefore, to bound ‖T n
ε ‖ (resp. ‖T̃ (n)

ε ‖) from below. A simple computation
shows that for any f ∈ C0(Td), ‖Gεf ‖∞ � ‖f ‖∞. Since convolution commutes with
differentiation, for f ∈ C1 we also have ‖∇(Gεf )‖∞ � ‖∇f ‖∞. We use this fact to estimate
the gradient of Tεf :

‖∇(Tεf )‖∞ = ‖∇(GεUF f )‖∞
� ‖∇(f ◦ F)‖∞ = ‖(∇f ) ◦ F · DF‖∞
� ‖(∇f ) ◦ F‖∞‖DF‖∞ = ‖∇f ‖∞‖DF‖∞.
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Repeating the above procedure m times, we get

‖∇(T m
ε f )‖∞ � ‖∇f ‖∞‖DF‖m

∞, ‖∇(UF T m
ε f )‖∞ � ‖∇f ‖∞‖DF‖m+1

∞ . (34)

We now choose some arbitrary f ∈ C1
0(T

d), with ‖f ‖ = 1. We first apply the triangle
inequality:

‖T n
ε f ‖ = ‖GεUF T n−1

ε f ‖ � ‖UF T n−1
ε f ‖ − ‖(Gε − I )UF T n−1

ε f ‖.
To estimate the second term on the RHS we use the bound (18) and the estimate (34) to obtain

‖T n
ε f ‖ � ‖T n−1

ε f ‖ − Cεα∧1‖∇f ‖∞‖DF‖n
∞.

Applying the same procedure iteratively to the first term on the RHS, we finally get (remember
‖f ‖ = 1):

‖T n
ε ‖ � ‖T n

ε f ‖ � 1 − Cεα∧1‖∇f ‖∞
n∑

m=1

‖DF‖m
∞. (35)

The computations in the case of the coarse-grained operator are even simpler:

‖T̃ (n)
ε f ‖ = ‖GεU

n
F Gεf ‖

� 1 − Cεα∧1‖∇f ‖∞ − Cεα∧1‖∇(Gεf )‖∞‖DFn‖∞
� 1 − 2Cεα∧1‖∇f ‖∞‖DFn‖∞. (36)

Note that from the assumptions on f , ‖∇f ‖∞ cannot be made arbitrary small, but is necessarily
larger than some positive constant. We choose some arbitrary function, say f = ek with
k = (1, 0) which satisfies ‖∇f ‖∞ = 2π .

The estimate (35) has the form given in lemma 3. The growth of the function γ (n)

depends on whether ‖DF‖∞ is equal to or larger than 1, which explains why the lower bounds
are qualitatively different in the two cases.

In the case when ‖DF‖∞ is strictly larger than 1, the function γ (n) grows like an
exponential; therefore, the lower bound is of the type (31). For the coarse-grained version, a
growth of ‖DF‖∞ of the type (29) yields the lower bound for τ̃∗ in (31).

In the case ‖DF‖∞ = 1, γ (n) is a linear function, so that τ∗ � ((1 − e−1)/

C‖∇f ‖∞)ε−(α∧1).
In the coarse-grained version, if µF = 1 and ‖DFn‖∞ grows like in (30) with β > 0,

the dissipation is slow: τ̃∗ � Cε−(α∧1)/β . In the case where ‖DFn‖∞ is uniformly bounded
by some constant, the norm of the coarse-grained propagator stays larger than some positive
constant for all times, so that for small enough noise τ̃∗ is infinite. �

5. An upper bound of the dissipation time for mixing maps

For any two functions f, h ∈ L2
0(T

d), the dynamical correlation function for the map F is
defined as the following function of n ∈ N (see, e.g. [3]):

Cf,h(n) = C0
f,h(n) = m(f Un

F h) = 〈f̄ , Un
F h〉 = 〈P n

F f̄ , h〉.
The same quantity may be defined for the noisy evolution:

Cε
f,h(n) = m(f T n

ε h).

We recall that a map F is mixing iff for any f, h ∈ L2
0,

Cf,h(n) → 0, as n → ∞.
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The correlation function can easily be measured in (numerical or real-life) experiments,
so it is often used to characterize the dynamics of a system.

To focus our attention, we will only be concerned with maps for which correlations decay
in a precise way. We assume that there exist Hölder exponents s∗, s ∈ R+, 0 � s∗ � s

together with some decreasing function �(n) = �s∗,s(n) with �(n)
n→∞→ 0, such that for any

observables f ∈ C
s∗
0 (Td), h ∈ Cs

0(T
d) and for sufficiently small ε � 0 (sometimes only for

ε = 0),

∀n ∈ N, |Cε
f,h(n)| � ‖f ‖Cs∗ ‖h‖Cs �(n). (37)

In general, such a bound can be proven only if the map F has regularity Cs+1. The reason why
we do not necessarily take the same norm for the functions f and h will be clear below.

We will be mainly interested in the following two types of decay

(i) Power-law decay: there exists C > 0, β > 0 such that,

�(n) = Cn−β. (38)

This behaviour is characteristic of intermittent maps, e.g. maps possessing one or several
neutral orbits [4].

(ii) Exponential decay: there exists C > 0, 0 < σ < 1 such that,

�(n) = Cσn. (39)

Such a behaviour was proved in the case of uniformly expanding or hyperbolic maps on
the torus (see section 6), as well as for many more general cases [4].

The central result of this section is a relationship between the decay of noisy (resp.
noiseless) correlations, on the one hand, and the small-noise behaviour of the noisy (resp.
coarse-graining) dissipation time on the other. The intuitive picture is similar to the one linking
the local expansion rate to the dissipation: namely, a fast decay of correlations is generally
due to the transition of ‘soft’ into ‘hard’ fluctuations of the observable through the evolution,
which is itself induced by large expansion rates of the map. Still, as opposed to what we
obtained in the last section, the following theorem and its corollary yield upper bounds for the
dissipation time.

Theorem 3. Let F be a volume-preserving map on Td with correlations decaying as in
equation (37) for some indices s, s∗ and decreasing function �(n), at least in the noiseless
limit ε = 0. Assume that the noise generating function g is ([s] + 1)-differentiable, and that
all its derivatives of order |α|1 � [s] + 1 satisfy

|Dαg(x)| � 1

|x|M , |x| � 1,

with a power M > d .
Then, there exist constants C̃ > 0, ε0 > 0 such that the coarse-grained propagator

satisfies

∀ε � ε0, ∀n � 0, ‖T̃ (n)
ε ‖ � C̃

�(n)

εd+s+s∗
. (40)

If the decay of correlations (37) also holds for sufficiently small ε > 0 (and assuming the
Perron–Frobenius operator PF is bounded in Cs(Td)), then the noisy operator satisfies (for
some constants C > 0, ε0 > 0):

∀ε � ε0, ∀n � 0, ‖T n
ε ‖ � C

�(n)

εd+s+s∗
. (41)
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From these estimates, we straightforwardly obtain the following bounds on both
dissipation times (the assumptions on F and the noise generating function g are the same
as in the theorem):

Corollary 4.

(I) If the correlation function satisfies the bound (37) for ε = 0, then the coarse-grained
dissipation time is well defined (τ̃∗ < ∞). Moreover,

(i) if �(n) ∼ n−β then there exists a constant C̃ > 0 such that

τ̃∗ � C̃ε−((d+s+s∗)/β),

(ii) if �(n) ∼ σn then there exists a constant c̃ such that

τ̃∗ � d + s + s∗
| ln σ | ln(ε−1) + c̃,

(II) If equation (37) holds for sufficiently small ε > 0, then

(i) if �(n) ∼ n−β , there exists a constant C > 0 such that

τ∗ � Cε−((d+s+s∗)/β),

(ii) if �(n) ∼ σn, there exists a constant c such that

τ∗ � d + s + s∗
| ln σ | ln(ε−1) + c.

Proof of the theorem
1st step. We represent the action of T n

ε (resp. T̃ (n)
ε ) on an observable f ∈ L2

0(T
d) in terms of

the correlation functions Cε(n) (resp. C(n)). To do this we Fourier decompose both T n+2
ε f

and f1 = UF f , and use equation (5):

T n+2
ε f =

∑
0 �=j∈Zd

〈ej, GεUF T n
ε Gεf1〉ej

=
∑

0 �=j∈Zd

∑
0 �=k∈Zd

f̂1(k)〈Gεej, UF T n
ε Gεek〉ej

=
∑

0 �=j∈Zd

∑
0 �=k∈Zd

f̂1(k)ĝε(j)ĝε(k)〈PF ej, T
n
ε ek〉ej

(remember that ĝ is a real function). A similar computation for the coarse-grained propagator
yields:

T̃ (n)
ε f =

∑
0 �=j∈Zd

∑
0 �=k∈Zd

f̂ (k)ĝε(j)ĝε(k)〈ej, U
n
F ek〉ej.

Taking the norms on both sides, we get in the noisy case:

‖T n+2
ε f ‖2 =

∑
0 �=j∈Z2

∣∣∣∣ ∑
0 �=k∈Zd

f̂1(k)〈PF ej, T
n
ε ek〉ĝε(j)ĝε(k)

∣∣∣∣
2

�
∑

0 �=j∈Zd

( ∑
0 �=k∈Zd

|f̂1(k)|2
) ∑

0 �=k∈Zd

|〈PF ej, T
n
ε ek〉|2|ĝε( j)ĝε(k)|2

�⇒ ‖T n+2
ε f ‖2 � ‖f1‖2

∑
0 �=j,k∈Zd

|Cε
PF e−j,ek

(n)|2|ĝ(εj)ĝ(εk)|2, (42)

and in the coarse-grained case

‖T̃ (n)
ε f ‖2 � ‖f ‖2

∑
0 �=j,k∈Zd

|Ce−j,ek(n)|2|ĝ(εj)ĝ(εk)|2. (43)
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These two expressions explicitly relate the dissipation with the correlation functions.

2nd step. We now apply the estimates (37) on correlations for the observables ek, e−j, PF e−j.
In the coarse-grained case, it yields (using simple bounds of the type in equation (59)):

∀j, k ∈ Zd \ {0}, |Ce−j,ek(n)| � C ′ |j|s |k|s∗�(n).

In the noisy case, we need to assume that the Perron–Frobenius operator PF is bounded in
the space Cs(Td). This property is, in general, a prerequisite in the proof of estimates of the
type (37), so this assumption is quite natural here.

∀j, k ∈ Zd \ {0}, |Cε
PF e−j,ek

(n)| � C ‖PF e−j‖Cs ‖ek‖Cs∗ �(n)

� C‖PF ‖Cs |j|s |k|s∗�(n). (44)

We insert these bounds on the decay of correlations in the expressions (42)–(43); for instance,
in the coarse-grained case we get

∀n � 0, ‖T̃ (n)
ε ‖2 � C �(n)2

(
ε−(s+s∗)

∑
0 �=k∈Zd

|εk|s+s∗ ĝ(εk)2

)2

. (45)

3rd step. We finally estimate the ε-dependence of the RHS of the above inequality. Up to a
factor ε−d , the sum in the brackets is a Riemann sum for the integral

∫ |ξ|s+s∗ ĝ(ξ)2dξ < ∞.
A precise connection is given in the following lemma and proved in appendix A.4:

Lemma 4. Let f ∈ C0(Rd) be symmetric w.r.t. the origin and decaying at infinity as
|f (x)| � |x|−M with M > d . Then, the following estimate holds in the limit ε → 0:

εd
∑
k∈Zd

f̂ (εk)2 =
∫

Rd

f̂ (ξ)2 dξ + O(εM). (46)

Let m ∈ N satisfy 2m � s + s∗ � 2m + 2 (note that m � [s] since we assumed s∗ � s). From
the obvious inequality

∀x > 0, xs+s∗ � x2m + x2m+2,

we may replace in the RHS of (45) the factor |εk|s+s∗ by |εk|2m + |εk|2m+2. Applying lemma 4
to the derivatives of g of order m and m + 1, we end up with the following upper bound, which
proves the first part of the theorem:

‖T̃ (n)
ε ‖2 � C �(n)2

(
1

εd+s+s∗

∫
Rd

(|ξ|2m + |ξ|2(m+1)
)
ĝ(ξ)2dξ + O(εM)

)2

� C ′ �(n)2

ε2(d+s+s∗)
‖g‖4

Hm+1 .

The computations follow identically for the case of the noisy operator, yielding the second part
of the theorem. �

6. Some examples of mixing maps

In this section, we apply the results of the last two sections to several classes of Lebesgue
measure-preserving maps which have been proven to be mixing, with various types of
correlation decays.

Remark. In general, an expanding or hyperbolic map on the torus does not preserve the
Lebesgue measure, so the first step is to specify precisely with respect to which invariant
measure one wants to study the ergodic properties. In the ‘nice’ cases, one can prove the
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existence and uniqueness of a ‘physical measure’, which is ergodic for the map F , and then
study the (noisy or noiseless) mixing properties with respect to this measure. As pointed out
in the introduction, in this paper, we only consider maps for which the physical measure is the
Lebesgue measure.

6.1. Decays of correlations

We briefly summarize the results concerning mixing maps, mostly relying on the review [4]
and the book [3].

Let us first consider the noiseless correlations. A common route to proving that a map F

is exponentially mixing consists in identifying an invariant space B of densities, on which the
Perron–Frobenius has the following spectral structure: except for the eigenvalue 1 associated
with the constant density, the rest of the spectrum (on the subspace B0 of zero-mean densities)
is contained inside a disc of radius σ < 1 centred at the origin. More precisely, the spectrum on
B0 may consist of isolated eigenvalues (called resonances) {λi} and of some essential spectrum
in the disc of radius ress < σ . PF is said to be quasicompact on B. This spectral structure
implies that there is some constant C > 0 such that for any f ∈ B0, h ∈ B∗

0 ,

∀n � 0, |Cf,h(n)| = |〈h, P n
F f 〉B∗,B| � ‖h‖B∗‖P n

F ‖B0‖f ‖B � C ‖h‖B∗‖f ‖B σn. (47)

For the maps we study, the spectrum of PF on L2
0 intersects the unit circle, so B cannot

simply be the Hilbert space L2. Depending on the properties of the map, B can be a Fréchet
space of analytic functions, a Banach space of bounded variation, Hölder or Cs functions (see
section 6.2); it may also be a space of generalized functions lying outside L2 (see section 6.3).
No matter how complicated B is, in general, there exist Hölder exponents 0 � s∗ � s such
that Cs (resp. Cs∗ ) embeds continuously in B (resp. in its dual B∗). As a result, the upper
bound (47) can be specialized to functions f ∈ Cs

0, h ∈ C
s∗
0 as follows:

∀n � 0, |Cf,h(n)| � C ‖h‖Cs∗ ‖f ‖Cs σ n. (48)

This is the form of the upper bound we used in theorem 3.
The strategy used for this proof has been applied to several types of maps, including the

(non-invertible) expanding maps and the Anosov or Axiom-A diffeomorphisms on a compact
manifold. Exponential decay of correlations has also been proven (using various methods) for
piecewise expanding maps on the interval, some nonuniformly hyperbolic/expanding maps,
and some expanding or hyperbolic maps with singularities.

Other types of decay occur as well: for instance, a polynomial decay of correlations
Cf,h(n) � n−β was shown to be optimal for some ‘intermittent’ systems, like a one-dimensional
map expanding everywhere except at a fixed ‘neutral’ point (such maps are sometimes called
‘almost expanding’ or ‘almost hyperbolic’).

There exist fewer results on the decay of correlations for stochastic perturbations of
deterministic maps, like our noisy evolution Tε . In general, one wants to prove strong stochastic
stability—that is, stability of the invariant measure and of the rate of decay of the correlations
in the small-noise limit. In our case, only the second point needs to be proved, since the
Lebesgue measure remains invariant after switching on the noise.

Stochastic stability has been proved for smooth uniformly expanding maps [5] (see next
subsection) and some nonuniformly expanding or piecewise expanding maps. It has been
shown also for uniformly hyperbolic (Anosov) maps on the two-dimensional torus [7] (see
section 6.3). In all these cases, the mixing is exponential, so the stability of the decay (48)
means that for small enough ε > 0, there exists a radius σε

ε→0→ σ such that for any f ∈ Cs
0,

h ∈ C
s∗
0 ,

∀n > 0, |Cε
f,h(n)| � C ‖h‖Cs∗ ‖f ‖Cs σ n

ε . (49)
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Here, the constant C > 0 can be taken independent of ε.
In the next two sections, we describe in more detail the cases of smooth uniformly

expanding maps and Anosov diffeomorphisms on the torus.

6.2. Smooth uniformly expanding maps

Let F be a Cs+1 map on Td (with s � 0). Assume that there exists λ > 1 such that for
any x ∈ Td and any v in the tangent space TxT

d , ‖DF(x)v‖ � λ‖v‖ (we assume that λ is
the largest such constant). Such a map is called uniformly expanding. In general, it admits
a unique absolutely continuous invariant probability measure; here, we restrict ourselves to
maps for which this measure is the Lebesgue measure.

Ruelle [26] proved that the Perron–Frobenius operator PF of such a map is quasicompact
on the space Cs(Td), and that its essential spectrum is contained inside the disc of radius
r1 = λ−s . In general, one has little information on the possible discrete spectrum outside this
disc (upper bounds on the decay rate have been obtained in the case of an expanding map of
regularity C1+η [3]). Strong stochastic stability for such maps was proved in [5], with a more
general definition of the noise than the one we gave.

For all these cases, one can take s∗ = 0, since the continuous functions are continuously
embedded in any space (Cs)∗.

Case of a linear expanding map. We describe the simplest example possible for such a map,
namely the angle-doubling map on T1 defined as F(x) = 2x mod 1. This map is real analytic,
with a uniform expansion rate λ = 2. Due to its linearity, the dynamics of this map (as well
as its noisy version) is simple to express in the basis of Fourier modes ek(x) = e2iπkx :

∀k ∈ Z, UF ek = e2k

�⇒ Tεek = ĝ(εk)e2k

�⇒ T n
ε ek =

[
n∏

j=1

ĝ(ε 2j k)

]
e2nk.

The computation is even simpler for the coarse-grained propagator:

T̃ (n)
ε ek = ĝ(k)ĝ(2nk)e2nk.

To fix the ideas, we consider the α-stable noise ĝ(ξ) = e−|ξ |α for some 0 < α � 2. One easily
checks that for any n � 1,

‖T n
ε ‖ = ‖T n

ε e1‖ = exp

{
− εα 2nα − 1

1 − 2−α

}
,

‖T̃ (n)
ε ‖ = exp{−εα(2nα + 1)}.

For any ε > 0, these decays are super-exponential: the spectrum of Tε on L2
0 is reduced to {0}

for any ε > 0 (the spectrum of UF is the full unit disc). From this explicit expression, we get
both dissipation times:

τ∗ = 1

ln 2
ln(ε−1) + O(1), τ̃∗ = 1

ln 2
ln(ε−1) + O(1). (50)

For this linear map, ‖DF‖∞ = µF = 2, so this estimate is in agreement with the lower
bounds (31), the latter being sharp if α ∈ [1, 2]. On the other hand, ln 2 is also equal to the
Kolmogorov–Sinai (K–S) entropy h(F ) of F . Therefore, for this linear map the dissipation
rate constant exists, and is equal to 1/h(F ).
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To compare these exact asymptotics with the upper bounds of corollary 4, we estimate the
correlation functions Cf,h(n) on the spaces Cs(T1). We give below a short proof in the case
s > 1

2 . We will use the following Fourier estimates [33]:

∃C > 0, ∀f ∈ Cs
0(T

1), ∀k �= 0, |f̂ (k)| � C
‖f ‖Cs

|k|s .

Therefore, writing the correlation function as a Fourier series, we get:

‖P n
F f ‖2 =

∑
0 �=k∈Z

|f̂ (2nk)|2 �
∑

0 �=k∈Z

(
C

‖f ‖Cs

|2nk|s
)2

�⇒ ‖P n
F f ‖ � C ′ ‖f ‖Cs

(2s)n
. (51)

This estimate yields a decay of the correlation function as in equation (48), with a rate σ = 2−s

and s∗ = 0. One can check that this rate is sharp for functions in Cs : indeed, any z ∈ C,
|z| < 2−s is an eigenvalue of PF on that space. Applying corollary 4, I(ii), we get that for any
s > 1

2 , there exists a constant c̃ such that

τ̃∗ � 1 + s

s ln 2
ln(ε−1) + c̃ (52)

for sufficiently small ε. The exact dissipation rate constant 1/ ln 2 is recovered only for large s.
A straightforward computation shows that the estimate (51) also holds if one replaces PF

by PF ◦ Gε ; hence, the noisy correlation function dynamics satisfies the same uniform upper
bound as the noiseless one, with the decay rate σε = 2−s . As a result, the upper bound on τ∗
given by corollary 4, II(ii) is the same as in equation (52).

6.3. Anosov diffeomorphisms on the torus

We recall that a diffeomorphism F : Td �→ Td is called Anosov if it is uniformly hyperbolic:
there exist constants A > 0 and 0 < λs < 1 < λu such that at each x ∈ Td the tangent space
TxT

d admits the direct sum decomposition TxT
d = Es

x ⊕Eu
x into stable and unstable subspaces

such that for every n ∈ N,

(DxF)(Es
x) = Es

Fx, ‖(DxF
n)|Es

x‖ � Aλn
s ,

(DxF)(Eu
x ) = Eu

Fx, ‖(DxF
−n)|Eu

x‖ � Aλ−n
u .

These inequalities have obvious consequences for the expansion rates of F and F−1; for
instance, they imply ‖DF‖n

∞ � ‖DFn‖∞ � A−1λn
u. As a consequence, the quantities of

interest in theorem 2, (i) satisfy

‖DF‖∞ ∧ ‖DF−1‖∞ � λu ∧ λ−1
s ,

µF ∧ µF−1 � λu ∧ λ−1
s .

All these expansion rates are > 1, so both noisy and coarse-grained dissipation times admit
logarithmic lower bounds as in equation (31).

Exponential mixing has been proved for Anosov diffeomorphisms of regularity C1+η

(0 < η < 1) by Bowen [8], using symbolic dynamics; the exponential decay is then valid
for Hölder observables in Cη′

for some 0 < η′ < η. Because we are also interested in the
noisy dynamics, we will refer to a more recent work [7] concerning C3 Anosov maps on
Td , which bypasses symbolic dynamics. The authors construct an invariant Banach space
B of generalized functions on the phase space, such that the Perron–Frobenius operator is
quasicompact on this space. One subtlety (compared with the case of expanding maps) is
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that B explicitly depends on the (un)stable foliations of the map F on Td . Vaguely speaking,
the elements of B are ‘smooth’ along this unstable direction Eu

x , but can be singular (‘dual of
smooth’) along the stable foliation Es

x. The space B is the completion of C1(Td) with respect
to a norm ‖ · ‖B adapted to these foliations. This norm, and therefore B, are defined in terms
of a parameter 0 < β < 1, the choice of which depends on the regularity of the unstable
foliation. In general, the latter is τ -Hölder continuous, for some exponent 0 < τ < 2. Then,
the authors prove that if one takes β < τ ∧ 1, then the essential spectrum of PF on B has a
radius smaller than rβ = max(λ−1

u , λ
β
s ). This upper bound is sharper if β can be taken close

to 1, that is, if the foliation is C1. This is the case for smooth area-preserving Anosov maps
on T2, for which the foliations have regularity C2−δ for any δ > 0 [19]. The operator PF

may have isolated eigenvalues (resonances) 1 > |λi | > rβ , corresponding to eigenstates in B0

which are genuine distributions �∈ L2
0. There is (to our knowledge) no simple general upper

bound for the largest resonance |λ1| in terms of the expansion parameters (λu, λs).
By construction, the space C1(Td) embeds continuously in both B and its dual B∗, so that

one can take s = s∗ = 1 in equation (48). Therefore, for any σβ > max(|λ1|, rβ), there is
some constant C > 0 such that for any f , h ∈ C1

0(T
d),

∀n > 0, |Cf,h(n)| � C ‖h‖C1 ‖f ‖C1 σn
β . (53)

In the proof of theorem 3 (Step 3), for the case s = s∗ = 1 we only need to assume that the
noise generating function g is C1 with fast-decaying first derivatives. The fast decay implies
that the first moment of g is finite (i.e. one can take α � 1).

The noisy propagator GεPF is also analysed in [7]. If the unstable foliation has regularity
C1+η with η > 0 (for instance, for any C3 Anosov diffeomorphism on T2), and assuming
that the noise generating function g ∈ C2(Rd) has compact support3, the authors prove the
strong spectral stability of the Perron–Frobenius operator PF on any space B defined with a
parameter β ′ < η. Note that this constraint on β ′ is stronger than in the noiseless case, where
one could take any β < 1; the spectral radius σβ ′ may accordingly be larger than σβ . Modulo
the replacement of σβ by σβ ′ , the estimate (53), therefore, applies to the noisy correlation
function Cε

f,h(n) as long as ε is small enough.
Below, we collect the results regarding the dissipation time of C3 Anosov maps on the

torus.

Theorem 4. Let F be a volume-preserving C3 Anosov diffeomorphism on Td , and let the noise
generating function be C1 with fast decay at infinity.

(I) Then, there exist µ � λu ∧ λ−1
s , 0 < σ̃ < 1 and C̃ > 0 such that the dissipation time of

the coarse-grained dynamics satisfies

1

ln µ
ln(ε−1) − C̃ � τ̃∗ � d + 2

| ln σ̃ | ln(ε−1) + C̃.

(II) If in addition F has C1+η-regular foliations, and g ∈ C2(Rd) is compactly supported,
then there exist σ̃ � σ < 1 and C such that the dissipation time of the noisy dynamics
satisfies

1

ln ‖DF‖∞
ln(ε−1) − C � τ∗ � d + 2

| ln σ | ln(ε−1) + C.

3 The condition of compact support could probably be relaxed to one of fast decrease at infinity (C Liverani, private
communication).
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6.4. Ergodic linear automorphisms of the torus

In this section, we describe examples of Anosov maps for which the dissipation time can be
precisely determined. One can even compute the dissipation rate constant; we will mention
the connection of the latter with the Kolmogorov–Sinai entropy. After the simple example of
a (generalized) cat map on the two-dimensional torus [1], we recall the results obtained in [14]
for d-dimensional ergodic automorphisms.

Throughout this section, we take a noise generating function of the type (14) for a certain
α ∈ (0, 2], with Q = I :

gε,α(x) :=
∑
k∈Zd

e−|εk|α ek(x). (54)

Note that this function is not compactly supported, therefore, it does not satisfy stricto sensu
the assumptions required in [7] to prove the strong spectral stability of PF (see the footnote
after theorem 4).

Two-dimensional cat map. We take A ∈ SL(2, Z) with |Tr A| > 2 and define the dynamics
as F(x) = FA(x) = Atx mod 1 (At is the transposed matrix of A). This map is of Anosov
type, and preserves the Lebesgue measure. The dynamics is easy to express on the Fourier
modes:

UF ek = eAk,

T n
ε ek = e− ∑n

l=1 |εAlk|α eAnk,

�⇒ ‖T n
ε ‖ = exp

(
−εα min

0 �=k∈Z2

n∑
l=1

|Alk|α
)

.

Similarly,

‖T̃ (n)
ε ‖ = exp

(
−εα min

0 �=k∈Z2
(|k|α + |Ank|α)

)
.

Let us call λ and λ−1 the eigenvalues of A, with the convention |λ| > 1. One can easily show
that there are two constants 0 < C1 < C2 such that for any n > 0,

C1 |λ|nα/2 � min
0 �=k∈Z2

n∑
l=1

|Alk|α � C2 |λ|nα/2,

C1 |λ|nα/2 � min
0 �=k∈Z2

(|k|α + |Ank|α) � C2 |λ|nα/2.

The above estimate yields the following asymptotics in the small-ε limit:

τ∗ = 2

ln |λ| ln(ε−1) + O(1), τ̃∗ = 2

ln |λ| ln(ε−1) + O(1).

As in the case of linear expanding maps, the dissipation rate constant exists, and seems related
to the K–S entropy of the linear map h(F ) = ln |λ|.

Let us compare these exact asymptotics with the bounds obtained in the previous sections.
The cat map being linear, one has ‖DF‖∞ = ‖At‖ � |λ|, ‖DF−1‖∞ = ‖(At )−1‖ � |λ| (with
equality iff A is symmetric). Since A is diagonalizable, we have ‖DFn‖∞ = ‖(At )n‖ ∼ |λ|n,
so that µF = µF−1 = |λ|. Therefore, the lower bounds for the dissipation times given in
theorem 2(i) are strictly smaller than the exact rates derived above; they differ from the latter
by a factor � 1

2 .
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To estimate the dynamical correlations, we use Fourier decomposition and proceed as
in [11]: we construct a ‘primitive subset’ S of the Fourier plane Z2 \ {0}, such that each
Fourier orbit intersects S once and only once. This subset looks like the union of four angular
sectors of the plane, and has the following crucial property:

∃c > 0, ∀k ∈ S, ∀n ∈ Z, |Ank| � c|λ||n||k|. (55)

The correlation function between two observables f, h ∈ L2
0(T

d) may be written as:

Cf,h(n) =
∑

0 �=k∈Z2

f̂ (−k)ĥ(Ank) =
∑
k∈S

∑
l∈Z

f̂ (−Alk)ĥ(Al+nk).

Let us assume s > 1, and take f ∈ Cs
0(T

2): its Fourier coefficients decrease for all
0 �= k ∈ Z2 as

|f̂ (k)| � C
‖f ‖Cs

|k|s .

Using this decrease as well as the estimate (55), we find that

|Cf,h(n)| � C2 ‖f ‖Cs ‖h‖Cs

∑
k∈S

∑
l∈Z

1

(c2|λ||l+n|+|l||k|2)s .

The sum over k converges, and the sum over l is bounded from above by C/|λ|ns . This
implies that for any s > 1, the correlation function decreases as in equation (48), with the
rate σ = |λ|−s . Actually, this decrease holds in the case 0 < s � 1 as well, but the proof is
different. Then, corollary 4, I(ii), yields the upper bound

τ̃∗ � 2 + 2s

s ln |λ| ln(ε−1) + c. (56)

This method can be straightforwardly adapted to prove that the noisy correlation function
Cε

f,h(n) decreases as fast as the noiseless one (in case s > 1). As a result, we obtain the
same upper bound for τ∗ as for τ̃∗. We note that, as in the case of the angle-doubling map,
the constant in the upper bound converges to the exact rate only in the limit s � 1, while for
s = 1 (cf the discussion preceding theorem 4), the constant is twice as large.

Toral automorphisms in higher dimensions. We consider toral automorphisms F = FA given
by matrices A ∈ SL(d, Z); such an automorphism is ergodic iff none of the eigenvalues of A

are roots of unity. The K–S entropy h(F ) of F is given by the formula [31]

h(F ) =
∑

|λj |>1

ln |λj |, (57)

where λj are the eigenvalues of F . All ergodic toral automorphisms have positive entropy. We
denote by P the characteristic polynomial of the matrix A and by {P1, . . . , Pr} the complete
set of its distinct irreducible factors (over Q). Let dj denote the degree of the polynomial Pj

and hj the K–S entropy of a toral automorphism with the characteristic polynomial Pj . For
each Pj we define its dimensionally averaged K–S entropy as

ĥj = hj

dj

. (58)

For the whole matrix F we define its minimal dimensionally averaged entropy (denoted by
ĥ(F )) as

ĥ(F ) = min
j=1,...,r

ĥj .
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Note that for an irreducible matrix A, that is a matrix admitting no proper invariant rational
subspace, this quantity reduces to h(F )/d.

Our notation regarding the noise parameter slightly differs from the one used in [14] (one
has to replace ε2α by ε); the results obtained there read as follows.

Proposition 4 ([14]). Let F = FA be a toral automorphism on Td , and assume the noise
kernel to be as in equation (54). Then, in the limit of small noise,

(i) Both dissipation times have a power-law behaviour iff F is not ergodic.
(ii) Both dissipation times have logarithmic behaviour iff F is ergodic.

(iii) If F is ergodic and A is diagonalizable then

τ∗ ≈ τ̃∗ ≈ 1

ĥ(F )
ln(ε−1).

We end this section with a remark that the small-noise asymptotics of the dissipation time
is insensitive to a super-exponential decay of the correlation functions. We illustrate this fact
by the following result on the decay of correlations for d-dimensional toral automorphisms,
which can be proved along the same lines as the above proposition.

Proposition 5. Let F be a diagonalizable ergodic toral automorphism and λ any constant
such that 0 < λ < ĥ(F ). Then, for any f, h ∈ L2

0(T
2d)

Cε
f,h(n) � ‖f ‖ ‖h‖e−ε2λn

.

Let f, h ∈ Gε(L
2
0(T

2d)) be smooth observables. Then,

Cf,h(n) � ‖G−1
ε f ‖ ‖G−1

ε h‖e−ε2λn

.

7. Conclusion

We have investigated the effect of noise or coarse-graining on the dynamics generated by a
conservative map, in particular the connection between the speed of dissipation of the noisy
dynamics and the spectral and dynamical properties of the underlying map.

We restricted ourselves to the case of volume-preserving maps on the d-dimensional
torus. The choice of the torus allowed us to use the Fourier transformation in our proofs, that
is, harmonic analysis on that manifold. Most of our results can certainly be generalized to
volume-preserving maps on other compact Riemannian manifolds. The choice of the torus was
also guided by the existence of simple volume-preserving Anosov maps on it, most notably the
linear examples presented in sections 6.2 and 6.4. As explained at the beginning of section 6,
one may also want to extend the results to maps which do not leave invariant the Lebesgue
measure, but still admit a ‘physical measure’, as is the case for uniformly expanding or Anosov
maps (the physical measure is of SRB type, that is, its projection along the unstable manifold
is absolutely continuous [3]). The noisy perturbations of these maps have been analysed as
well [5, 7], in particular the strong spectral stability of the Perron–Frobenius operator holds
under the same conditions as for the volume-preserving maps. Although the equilibrium
measure is more complicated, it might be possible to define and study a dissipation time in
this more general framework.

As we explained in corollary 3, the dissipation of a non-weakly-mixing map is governed
only by the nontrivial eigenstates of the Koopman operator, the speed of dissipation depending
on the smoothness of these eigenstates. The asymptotics of the noisy dissipation time is
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generally a power law in ε−1, while there remains a possibility of faster dissipation if all
eigenstates are singular enough (see remarks after corollary 3).

The more interesting results concern the mixing dynamics, in particular when the mixing
occurs exponentially fast. We then proved that both noisy and coarse-graining dissipation times
behaved as the logarithm of ε−1 in the small noise limit. This dependence can be understood
through the time evolution in Fourier space: a mixing map transforms long wavelength
fluctuations into short wavelength ones, the latter being damped fast by the noise operator.
This evolution in Fourier space is typical of uniformly expanding/hyperbolic maps; it is already
responsible for the fast decay of dynamical correlations. The link between this decay and the
dissipation is made explicit in theorem 3, and its application to Anosov maps is given in
theorem 4.

In this context, we were unable to solve the problem of the existence and value of the
dissipation rate constant (i.e. the prefactor in front of ln(ε−1)). We obtained lower, resp.
upper, bounds for this constant, in terms of the local expanding rate, resp. the rate of decay of
correlations. It is not clear whether this constant can, in general, be related with the measure-
theoretic (KS) entropy of the map, as is the case for linear automorphisms (modulo some
algebraic subtleties [14]).

Although we used the spectral estimates of theorem 1 mostly for the case of non-weakly-
mixing maps, it also makes sense to use that theorem in the reverse direction in the case of
mixing maps, that is, deduce (pseudo)spectral properties of the noisy propagators, starting from
the dissipation time estimates obtained in corollary 4. The analysis of the pseudospectrum
of Tε for mixing maps would complement the spectral one [7, 25]. We did not enter into this
aspect in the main text, because our attention was devoted to obtaining information on the
dissipation time.

The results of this paper concern classical (i.e. non-quantum) dynamical systems. The
quantization of both linear and nonlinear maps on a symplectic (even-dimensional) torus as
a phase space has been studied in a number of works [18, 6, 28, 20, 17, 32]. Several recent
studies deal with some form of noise, or decoherence, in discrete-time quantum dynamics
[9, 15, 24, 16, 25]. While most of these works concentrate on spectral or entropic properties of
noiseless/noisy dynamics, the long time behaviour of the quantum system can also be studied
from the dissipation time point of view. The quantum setting provides a natural framework
for extension of the present work, which we will address in a separate paper [13].
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Appendix A. Proofs of some elementary facts

Appendix A.1. Proof of lemma 1

We use the following upper bound: for any α ∈ (0, 2], there is a constant Cα such that

∀x ∈ R, 0 � 1 − cos(2πx) � Cα|x|α. (59)
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Besides, one has the asymptotics 1 − cos(x) ≈ x2/2 for small x. We simply apply these
estimates to the following integral:

1 − ĝ(ξ) =
∫

Rd

(1 − cos(2πx · ξ))g(x)dx

�
∫

Rd

Cα|x · ξ|αg(x)dx

� Cα|ξ|α
∫

Rd

|x|αg(x)dx = CαMα|ξ|α.

In the case when g admits a second moment, we have in the limit ξ → 0:∫
Rd

(1 − cos(2πx · ξ))g(x)dx ≈
∫

Rd

2π2(x · ξ)2g(x)dx

≈ 2π2|ξ|2
∫

Rd

(x · ξ̂)2g(x)dx,

where we have used the notation ξ̂ = ξ/|ξ| for any ξ �= 0. �

Appendix A.2. Proof of proposition 1

The statement (i) is standard in the context of distributions [30, p 157]. In our case, assume
that f ∈ L2 is normalized to unity and consider an arbitrary small δ > 0. Since f ∈ L2(Td),
there exists K > 0, s.t.

∑
|k|�K |f̂ (k)|2 < δ. Since ĝ is continuous and ĝ(0) = 1, there exists

η such that (1 − ĝ(ξ))2 < δ if |ξ| < η. Thus, using the spectral decomposition (5) of Gε , we
obtain for all ε < η/K

‖Gεf − f ‖2 =
∑
k∈Zd

(1 − ĝ(εk))2|f̂ (k)|2 � δ
∑

|k|<K

|f̂ (k)|2 +
∑

|k|>K

|f̂ (k)|2 � 2δ. (60)

To prove the next statement, first note that if g satisfies the estimate (12) for the exponent
α, it also satisfies it for the exponent γ ∧ α. Once again using the spectral decomposition of
Gε , and applying the estimate (12) with the latter exponent we get

‖Gεf − f ‖2 �
∑
k∈Zd

(Cγ∧αMγ∧α|εk|γ∧α)2|f̂ (k)|2

� (Cγ∧αMγ∧α)2ε2(γ∧α)
∑
k∈Zd

|k|2(γ∧α)|f̂ (k)|2

� (Cγ∧αMγ∧α)2ε2(γ∧α)‖f ‖2
Hγ∧α . (61)

To obtain the last statement, we note that any f ∈ C1(Td) is automatically in H 1(Td),
and that its gradient satisfies

‖∇f ‖2
∞ � ‖∇f ‖2 = 4π2

∑
k∈Zd

|k|2|f̂ (k)|2 � 4π2
∑
k∈Zd

|k|2(1∧α)|f̂ (k)|2.

The inequality (61) with γ = 1 then yields the desired result. �

Appendix A.3. Proof of corollary 2

We prove the limit dε(1)
ε→0→ 0 by contradiction. Assume that there is some constant a ∈ (0, 1)

such that for all ε > 0, the distance dε(1) > a. We will show that the following triangle
inequality holds:

∀ε > 0, dε(1 − a/2) > a/2. (62)
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First of all, note that the assumption dε(1) > a means that for any λ ∈ S1, ‖Rε(λ)‖ < a−1.
We apply the identity [30]

Rε(λ
′) = Rε(λ)


1 +

∑
n�1

(λ − λ′)nRε(λ)n


 ,

with λ′ = rλ, for 1 − a < r < 1. Taking the norm of both sides yields the bound
‖Rε(λ

′)‖ � 1/(r − (1 − a)), uniformly w.r.t. ε. Since this upper bound holds for any |λ′| = r ,
it shows that the spectral radius rsp(Tε) � 1 − a, and proves (62) by taking r = 1 − a/2. We
can now use (62) in the upper bound (25) of theorem 1: this ε-independent upper bound shows
that τ∗ remains finite in the limit ε → 0, which contradicts proposition 2. �

Appendix A.4. Proof of lemma 4

Considering its decay at infinity, the function f is automatically in L2(Rd). The function f̂ 2

is the Fourier transform of the self-convolution f ∗ f . Therefore, using the parity of f and
applying the Poisson summation formula to the LHS of (46) yields

εd
∑
k∈Zd

f̂ (εk)2 =
∫

f̂ 2(ξ)dξ +
∑

0 �=n∈Zd

(f ∗ f )
(n

ε

)
. (63)

A simple computation shows that (f ∗ f )(x) also decays as fast as |x|−M . This piece
of information is now sufficient to control the RHS of (63), yielding the result—namely
equation (46). �

Appendix A.5. Proof of corollary 5

It was shown in [14] that for any δ > 0, in the case of Gaussian noise

‖T n
ε ‖ � e−ε2e2(1−δ)ĥ(F )n

. (64)

Using this estimate one immediately gets

Cε
f,g(n) = 〈f̄ , T n

ε g〉 � ‖f ‖‖g‖‖T n
ε ‖ � ‖f ‖‖g‖e−ε2λn

.

Now, let f = Gεf0 and g = Gεg0. Since the estimate (64) holds also in the coarse-grained
version, we have

Cf,g(n) = 〈f̄ , Un
F g〉 = 〈Gεf̄0, U

n
F Gεg0〉 = 〈f̄0, T̃

(n)
ε g0〉

� ‖f0‖‖g0‖‖T̃ (n)
ε ‖ � ‖f0‖‖g0‖e−ε2λn

.
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