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Abstract: In this paper we construct a sequence of eigenfunctions of the “quantum
Arnold’s cat map” that, in the semiclassical limit, shows a strong scarring phenomenon
on the periodic orbits of the dynamics. More precisely, those states have a semiclassical
limit measure that is the sum of 1/2 the normalized Lebesgue measure on the torus
plus 1/2 the normalized Dirac measure concentrated on any a priori given periodic orbit
of the dynamics. It is known (the Schnirelman theorem) that “most” sequences of ei-
genfunctions equidistribute on the torus. The sequences we construct therefore provide
an example of an exception to this general rule. Our method of construction and proof
exploits the existence of special values of � for which the quantum period of the map
is relatively “short”, and a sharp control on the evolution of coherent states up to this
time scale. We also provide a pointwise description of these states in phase space, which
uncovers their “hyperbolic” structure in the vicinity of the fixed points and yields more
precise localization estimates.

1. Introduction

One of the main problems in quantum chaos is the understanding of the semiclassical
behaviour of the eigenfunctions of quantum dynamical systems having a chaotic clas-
sical limit. The main theorem in this context is the Schnirelman theorem [Sc, CdV,
Z1, HMR, BouDB]. It roughly states that “most” eigenfunctions equidistribute on the
available phase space in the classical limit. This leaves open the question of the exis-
tence of exceptional sequences of eigenfunctions with a different limit. In the case of
“hard chaos” (uniformly hyperbolic systems), numerical computations have shown the
presence of “scars” on certain eigenfunctions [He], i.e. a visual enhancement of the
wavefunction on an unstable periodic orbit. Up to now all theories of this phenomenon
have required some kind of averaging over a (semiclassically large) set of eigenfunctions
[Bog, Ber, He, KH]. In addition, scarring is often described in the physics literature as a
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weak type of localization, compatible with Schnirelman’s (measure-theoretic) equidis-
tribution, as opposed to “strong scarring” [RS], which implies that the limiting measure
has a component supported on a periodic orbit and therefore does not equidistribute. We
show in this paper that, for the quantized “Arnold’s cat map”, strongly scarred sequences
do indeed exist for any periodic orbit (more generally, for any finite union of periodic
orbits). This is, to the best of our knowledge, the first example of this kind in hyperbolic
systems. A construction of exceptional sequences of eigenfunctions not equidistributing
in the semiclassical limit was recently announced [CKS] for the quantization of certain
ergodic piecewise affine transformations on the torus, but these do not correspond to
“scars” since the systems in question have no periodic orbits.

Our construction is based on intuitively clear ideas that we now briefly sketch. For
unfamiliar notation, we refer to Sects. 2–4. Precise statements of our results will be given
below.

LetM ∈ SL(2,Z) be a hyperbolic automorphism of the 2-dimensional torus T and M̂
its quantization on the N -dimensional quantum Hilbert space HN,θ , where 2π�N = 1.
We will construct strongly scarred quasimodes of M̂ that, for certain values of N , will
be shown to be eigenfunctions. For that purpose we will use three ingredients. First, the
time-energy uncertainty relation in the following simple form (T ∈ N, φ ∈ R):

‖ (M̂ − eiφ Î )

T−1∑

t=−T
e−iφt M̂t ‖=‖ e−2iφT M̂2T − Î ‖≤ 2. (1)

Second, precise estimates on intuitively clear phase space localization properties of
coherent states. Third, a remark on the quantum period of M̂ [BonDB1] (Sect. 8).

Let x0, x1 = Mx0, . . . , xτ = Mτx0 = x0 be a periodic orbit of period τ of M . Let
|x0, c̃0, θ〉 be a “squeezed” coherent state in HN,θ centered on the point x0 and consider
M̂t |x0, c̃0, θ〉 for t ∈ Z. Note first that this state is still a squeezed coherent state and that,
for small enough t , it is localized around xt . In fact, the support of the Husimi function
of this state is an ellipse stretched along the unstable direction of the dynamics through
the point xt , with its major axis roughly of size

√
� eλt , where λ is the (positive) Lyapou-

nov exponent of the dynamics (Sect. 4). Introducing the Ehrenfest time T = | ln �|
λ

, the
support is therefore microscopic as long as t ≤ (1− ε)T /2. For longer times, between
T/2 and T , the support of the Husimi function of M̂t |x0, c̃0, θ〉 starts to wrap around
the torus and it was shown in [BonDB1] that it equidistributes on that time scale.

We shall consider the “discrete time quasimode”

|�disc
φ 〉 =

T−1∑

t=−T
e−iφt M̂t |x0, c̃0, θ〉 =

4∑

j=1

|�disc
j,φ 〉 (2)

and its “components”

|�disc
j,φ 〉 =

−T+j T2 −1∑

t=−T+(j−1) T2

e−iφt M̂t |x0, c̃0, θ〉. (3)

We note that similar states were considered before in the study of scars, see for instance
[dPBB, KH] and references therein. We shall introduce a “continuous time” version
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Fig. 1. Partition of the time interval [−T , T ] into four equal parts, and of the quasimode |�φ〉 into
corresponding components

|�cont
φ 〉 of those quasimodes later. We will write |�φ〉 in statements true for both the

discrete and continuous time quasimodes.
Let us for simplicity concentrate on the case where x0 = 0, τ = 1. Our crucial

technical estimate (Sect. 4, Proposition 1) says that there exists C > 0 so that

〈c̃0, θ | M̂t | c̃0, θ〉 = 1√
cosh(λt)

+ I (t), with |I (t)| ≤ C e−λ(T−
|t |
2 ) . (4)

This implies rather easily (Proposition 2) the existence of a smooth, strictly positive
function S1(φ, λ) so that

〈�φ | �φ〉 ∼ 2S1(φ, λ)T .

Using (1) one concludes readily that

‖ (M̂ − eiφ Î )|�φ〉n ‖≤
√

2

S1(φ, λ)T

(
1+ O(1)

S1(φ, λ)T

)
, (5)

justifying the name “quasimode”. Here we used the notation |ψ〉n = |ψ〉/√〈ψ |ψ〉 for
any non-zero |ψ〉 ∈ HN,θ .

To analyze the phase space properties of the above quasimodes, we first show as a
further consequence of (4) that the four states |�j,φ〉 have the same norm, asymptotically
proportional to

√
T as � goes to 0 and that they are asymptotically orthogonal in the

semiclassical limit. In fact, this is easily understood intuitively by noting for example
that the Husimi function of |�1,φ〉 is supported along the stable manifold of the periodic
orbit, and that of |�4,φ〉 along the unstable one, so that they have essentially disjoint
supports, which is at the origin of their orthogonality. To put it differently, since the
unstable and stable manifolds intersect at homoclinic points, our results show that the
contribution of these intersections in the phase space integral expressing the overlap
〈�1,φ |�4,φ〉 is small for small �. Note that although the homoclinic interferences do
not contribute significantly to the above integral, they are nevertheless clearly visible
on the pointwise behaviour of the Husimi distribution of |�φ〉, which is represented in
Fig. 1 and that will be further studied in Sect. 6 (for “continuous time” quasimodes).
The pointwise estimates obtained there will show that the Husimi density concentrates
along “classical hyperbolas” asymptotic to the stable and unstable manifolds; they will
at the same time provide estimates on the rate of convergence to the limit measure, as
well as other localization indicators (namely, Ls norms of the Husimi density).

It is furthermore clear from the previous discussion on the phase space localization
properties of the evolved coherent states that |�1,φ〉 and |�4,φ〉 are sums of states that
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q

p

q
p

(a) (b)
Fig. 2a, b. Husimi distribution of the state |�φ〉n, constructed for the cat map (21) on the orbit of
period 3 starting from x0 = (0, 0.5). The quantum parameters read N = 1/(2π�) = 500, φ = 0.
(a) 3D plot on a linear scale. (b) 2D plot in logarithmic scale (darker = higher values)

equidistribute on the torus, whereas |�2,φ〉 and |�3,φ〉 are sums of states that localize
on the periodic orbit. One therefore expects (and we shall prove in Sects. 5–7) that

lim
�→0

n〈�j,φ |f̂ |�j,φ〉n =
∫

T

f (x)dx if j = 1, 4,

and that

lim
�→0

n〈�j,φ |f̂ |�j,φ〉n = 1

τ

τ−1∑

i=0

f (xi) if j = 2, 3.

Here f̂ is either the Weyl or anti-Wick quantization of f ∈ C∞(T). In other words, the
Wigner and hence also the Husimi function of |�2,3,φ〉 converge (weakly) to the Dirac
measure on the periodic orbit, whereas the ones of |�1,4,φ〉 equidistribute, i.e. converge
to the Lebesgue measure. This suggests grouping these states two by two, defining:

|�erg,φ〉 = |�1,φ〉 + |�4,φ〉 and |�loc,φ〉 = |�2,φ〉 + |�3,φ〉. (6)

Using the above information we shall finally prove (Propositions 7 and 12) that, for
any φ ∈ [−π, π ],

lim
�→0

n〈�φ |f̂ |�φ〉n = 1

2

∫

T2
f (x)dx + 1

2



1

τ

τ−1∑

j=0

f (xj )



 . (7)

In other words, the semiclassical limit measure of the sequence of quasimodes |�φ〉n is
the measure

1

2
dx + 1

2



1

τ

τ−1∑

j=0

δxj



 .

This shows that the quasimodes |�φ〉n are strongly scarred.
We then conclude using a particular property of the quantum period of M̂ . We recall

that the quantum cat map M̂ has an � dependent “quantum period” P , i.e. M̂P = e−iϕ Î
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for some ϕ ∈ [0, 2π [. The eigenvalues of M̂ on HN,θ are therefore all of the form e−iφj ,
with φj = ϕ/P + 2πj/P , j = 1, . . . , P . Note that P plays the role here of the Heisen-
berg time of the system, since�φj ∼ 1/P . Since, for general �, the quantum periodP is
of order �

−1 [Ke], it is considerably longer than the Ehrenfest time T , which grows only
logarithmically in �

−1. Nevertheless, developing an argument in [BonDB1], we will
show that, for any hyperbolic matrix in SL(2,Z) there exists a subsequence (�k)k∈N of
values of � tending to zero for which P = 2T +O(1) (see also [KR2]). For those val-
ues the Heisenberg and Ehrenfest times of the system coincide and the |�φ〉n therefore
constitute a sequence of eigenfunctions of M̂ that strongly scar, provided φ = φj for
some j ∈ {1 . . . P }. It should be noted that, for the values of � considered, the number
of distinct eigenvalues φj is of order | ln �|, so that the eigenvalue degeneracy is very
large, namely of order (�| ln �|)−1.

Our main result can finally be summarized as follows:

Theorem 1. Let M and (�k)k∈N be as above. Let 0 ≤ β ≤ 1/2 and let P =
{x0, . . . , xτ−1} be a periodic orbit of M . Then there exists a sequence (ψjk )k∈N of
eigenfunctions of M̂ on HNk,θ with the property that, for all f ∈ C∞(T2),

lim
k→∞ n〈ψk|f̂ |ψk〉n = β

1

τ

τ−1∑

j=0

f (xj )+ (1− β)
∫

T2
f (x) dx. (8)

Our result helps to complete the picture of the semiclassical eigenfunction behaviour
of quantized toral automorphisms known to date. Indeed, beyond the general Schnirel-
man theorem for these models [BouDB] the following results are known. First, suppose
M is of “checkerboard form”, meaning AB ≡ 0 ≡ CD mod 2. Then all eigenfunctions
of M̂ semiclassically equidistribute, provided one takes the limit along a density one
subsequence of values of N [KR2], for which the quantum period is larger than

√
N .

Note that this sequence excludes the values Nk for which the period is very short. Sec-
ond, it is shown in [KR1, Me] that for suchM there exists a basis of eigenfunctions that
equidistribute asN tends to infinity, without restrictions onN . This basis is constructed
as a common eigenbasis for M̂ and its “quantum symmetries”, which are shown in [KR1]
to be sufficiently numerous to drastically reduce (if not to lift) the degeneracies of the
eigenvalues. Finally, one may wonder if it would be possible to construct a sequence of
eigenfunctions of M̂ that has as a limit measure

β
1

τ

τ−1∑

j=0

δxj + (1− β)dx,

with β > 1/2. It is proven in [FN1] that this is impossible, so that the above quasi-
modes are in a sense maximally localized (the bound β > (

√
5− 1)/2 ∼= 0.62 had been

previously obtained by [BonDB2]).

2. Linear Dynamics on the Plane

In this section we recall some known results we will need in the sequel. For details not
given here we refer to [F].
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2.1. Classical linear flow. The most general quadratic Hamiltonian on R
2 is (α, β, γ ∈

R):

H(q, p) = 1

2
αq2 + 1

2
βp2 + γ qp. (9)

Assuming γ 2 > αβ, H generates a hyperbolic flow x(t) = (q(t), p(t)) on R
2, given

by x(t) = M(t)x(0) (t ∈ R), where for each t �= 0, M(t) is a hyperbolic matrix in
SL(2,R). Explicitly, for t = 1,

M
def= M(1) =

(
A B

C D

)
∈ SL (2,R) , (10)

i.e. AD − BC = 1, and
{
A = cosh λ+ γ

λ
sinh λ B = β

λ
sinh λ

C = −α
λ

sinh λ D = cosh λ− γ
λ

sinh λ
, (11)

where λ =
√
γ 2 − αβ > 0 is the Lyapounov exponent. Note thatM has two real eigen-

values e±λ and hence two real eigenvectors corresponding to an unstable and a stable
direction for the dynamics. They have respective slopes s+ = tanψ+, s− = tanψ−.
Clearly, any hyperbolic matrix M ∈ SL(2,R) with TrM > 2 is of the above form for a
unique α, β, γ (the case TrM < −2 is treated by using the map −M). The expressions
in (10)–(11) still make sense in the elliptic case, when γ 2 < αβ and −2 <TrM < 2. In
terms of the complex coordinate z = 1√

2
(q + ip), the Hamiltonian in (9) reads

H = c

2
z2 + c

2
z2 + bzz, with b = 1

2
(α + β) ∈ R, c = 1

2
(α − β)− iγ ∈ C, (12)

and λ =
√
|c|2 − b2.We shall write M(c,b) for the matrix M constructed via (10)–(12),

whenever b2 �= |c|2.
We will make use of the following convenient decomposition of a general hyperbolic

matrix M (TrM > 2). We first introduce some notation. For µ ∈ R+ we define:

D(µ)
def= M(c=−iµ,b=0), B(µ)

def= M(c=−µ,b=0), R(µ)
def= M(c=0,b=−µ).

Clearly, D(µ) is hyperbolic, with the q and p axes as unstable and stable axes. B(µ) is
also hyperbolic, with eigenaxes forming angles ψ+ = 1

2 arg(−ic̄) = π
4 = −ψ− with

the horizontal. R(µ), on the other hand, is just a rotation of angle µ and hence elliptic.
Any hyperbolic matrix M(c,b) as in (10) can be decomposed as:

M(c,b) = QD(λ)Q−1, with Q = R(b1)B(b2), (13)

where b1 ∈
[−π

2 ,
π
2

]
, b2 ∈ R are defined as follows. We denote by φ1 ∈

[−π
2 ,

π
2

]
the

angle between the q axis and the bisector between the stable and unstable axes ofM(c,b),
and by φ2 ∈

]
0, π4

]
the angle between the bisector and the stable axis ofM(c,b) (Fig. 3).

In terms of those, one has:

sinh (2b2) = 1

tan (2φ2)
, b1 = φ1 − π

4
. (14)

This last decomposition has the following interpretation. The general hyperbolic map
M(c,b) is obtained from the special case D(λ) (λ =

√
|c|2 − b2 > 0) by a change of
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φ 1

φ  −π/4)R(       Boost B(    )
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1

+ψ

-ψ

Fig. 3. Decomposition of the general linear hyperbolic map M(c,b) as in (13)

coordinates Q yielding a transformation from the (q, p) frame into the unstable-stable
frame. The unstable (respectively stable) direction is given by the vectors v+ = Qeq ,
v− = Qep (which are, in general, not normalized). Above, we decomposed Q into the
transformationB(b2)which changes the angle between the stable and unstable axis, and
the rotation R(b1) which rotates the whole frame (Fig. 3).

We finally remark, for later purposes, that there exists another decomposition: given
M ∈ SL(2,R), ∃!c̃ ∈ C, µ ∈]− π, π ] so that

M = M(c̃,0)R(µ). (15)

2.2. Linear quantum dynamics. In terms of the usual annihilation and number operators
a = 1√

2�

(
q̂ + ip̂), and n̂ = 1

2

(
a†a + aa†

)
, the Weyl (or canonical) quantization of H

in (9) is defined as the self-adjoint operator Ĥ on L2(R) given by:

Ĥ = 1

2
αq̂2 + 1

2
βp̂2 + γ 1

2

(
q̂p̂ + p̂q̂) = �

(
c

2
a2 + c

2
a†2 + bn̂

)
. (16)

The quantum evolution operator for time t = 1 which corresponds to M(c,b) is then:

M̂(c,b) = exp

{
−i
Ĥ

�

}
. (17)

The quantization of the matrix −M(c,b) = M(c,b)R(π) can be defined as M̂(c,b)P̂ =
P̂ M̂(c,b), where P̂ = −iR̂(π) is the parity operator. The unitary operators M̂(c,b),
M̂(c,b)P̂ yield a projective representation of SL(2,R) (which resembles the metaplectic
representation). We will in most of the paper omit to indicate the �-dependence of the
operators Ĥ and M̂(c,b).

Let v = v1eq + v2ep ∈ R
2 and let Tv : R

2 → R
2 denote the translation on classical

phase space by v. The corresponding quantum translation operator is defined by:

T̂v = exp

(
− i

�

(
v1p̂ − v2q̂

))
. (18)

These quantum translations satisfy the algebraic identity

T̂v T̂v′ = eiS T̂v+v′ , (19)
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with S = 1
2�

(
v2v

′
1 − v1v

′
2

) = − 1
2�
v ∧ v′, so they generate an (irreducible) unitary

representation of the Heisenberg group. For any matrixM ∈ SL(2,R), one trivially has
M TvM

−1 = TMv . This intertwining persists at the quantum level:

M̂ T̂v M̂
−1 = T̂Mv. (20)

3. Classical and Quantum Automorphisms of the Torus

3.1. Classical automorphisms and their invariant manifolds. Consider the torus T =
R

2/Z2 as a symplectic manifold with the two-form dq ∧ dp. Then any M ∈ SL(2,Z)
defines a (discrete) symplectic dynamics on T in the obvious way. We are interested in
the case whereM is hyperbolic: the corresponding dynamical system is then an Anosov
system [AA]. The stable and unstable manifolds of any point x ∈ T are obtained by
wrapping the lines with slopes s± passing through x around the torus. We present here
some properties of these manifolds that we will need in subsequent sections.

A simple example we will use for numerical illustrations is the so called “Arnold’s
cat map” [AA]

MArnold =
(

2 1
1 1

)
. (21)

Its Lyapounov coefficient is λ0 = log
(

3+√5
2

)
≈ 0.9624. The stable and unstable man-

ifolds of the fixed point x = 0 are depicted in Fig. 4.
For any hyperbolic matrix M , the slopes s+ and s− of the unstable and stable direc-

tions are quadratic irrationals (i.e. the solutions of a quadratic equation with integer
coefficients). It is well known [Kh] that any quadratic irrational s satisfies the following
diophantine inequality:

∃C(s) > 0, ∀k ∈ Z, ∀l ∈ N
∗,

∣∣∣∣s −
k

l

∣∣∣∣ ≥ C(s)
1

l2
⇐⇒ |ls − k| ≥ C(s)1

l
.

This means that quadratic irrationals are poorly approximated by rationals, in the sense
that, to get an approximation with an error ε, you need a rational with a denominator of
order at least ε−1/2.

0 0.5−0.5

0

0.5

−0.5

q

p

Fig. 4. The stable and unstable axes through 0 of the mapMArnold wrap around the torus at infinity. We
have only represented the first six occurrences
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This inequality will be used in the following manner. Consider the eigenvectors v±
of M(c,b) defined as v+ = Qeq , v− = Qep (with Q the matrix defined in Eq. (13)). As
usual, their dual basis u± (defined as v+ · u+ = 1, v+ · u− = 0, etc.) can be used to
express the coordinates of a point x in the basis v±:

x = q ′(x)v+ + p′(x)v−, with q ′(x) = x · u+, p′(x) = x · u−. (22)

We call d(x,Z2∗) the distance between a point x ∈ R
2 and Z

2∗ = Z
2 \ {0}, and we will

estimate it for x on the (un)stable axis:

∃C > 0, ∀x ∈ Rv±, d(x,Z2
∗) ≥

C

‖x‖ + 1
. (23)

To prove this, first note that, for any n ∈ Z s.t. nq �= 0, we have

|p′(n)| = |n · u−| = |u−,p|
∣∣∣∣nq

u−,q
u−,p

+ np
∣∣∣∣ ≥

C(s+)|u−,p|
|nq | , (24)

where we have used the fact that u−,q/u−,p = s+ is a quadratic irrational. Interchanging
nq and np, we obtain a first set of inequalities:

Lemma 1. There is a constant C (depending on M) such that, for any integer lattice
point n �= 0,

|p′(n)| ≥ C

‖n‖ and |q ′(n)| ≥ C

‖n‖ .

We can now prove (23) as follows. For each x ∈ Rv+, there exists an n ∈ Z
2∗ so that

d(x,Z2
∗) = ‖n− x‖ ≥ |n · u−|

‖u−‖ ≥ C±
‖u−‖‖n‖ .

Since, obviously, ‖n− x‖ ≤ 1/
√

2, (23) follows easily.
We will in addition need a slightly refined statement. If the lattice point n �= 0 is in

a sufficiently thin strip around the unstable axis, it satisfies ‖p′(n)v−‖ ≤ 1/2 ≤ ‖n‖/2,
which implies the lower bound |q ′(n)| ≥ ‖n‖

2‖v+‖ . Together with the above lemma, this

entails |p′(n)| ≥ C′1
|q ′(n)| for a certain C′1. Interchanging p′ ↔ q ′, we see that the same

inequality holds for points in a sufficiently thin strip around the stable axis. Outside the
union of these strips, this inequality can be violated by at most a finite set of lattice
points; therefore, upon reducing the constant C′1 we obtain the main technical result of
this section:

Lemma 2. There exists a constant Co > 0 (depending on M) such that, for any integer
points n �= m of the plane, their coordinates along the (un)stable directions satisfy:

|q ′(n)− q ′(m)| ≥ Co

|p′(n)− p′(m)| . (25)

These inequalities precisely control the sparseness of the lattice points inside a strip
around the unstable axis: the narrower the strip, the farther successive lattice points have
to be from each other.
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3.2. Quantum mechanics on the torus. We recall as briefly as possible the basic setting
for the quantum mechanics of a system with T as phase space, as well as the quantiza-
tion of the automorphism M , referring to [HB, DE, BouDB] and references therein for
further details. In order to define the Hilbert space associated to T, we first consider the
translation operators T̂1 = T̂(1,0), T̂2 = T̂(0,1), which satisfy T̂1T̂2 = e−i/� T̂2T̂1 as a
result of (19). So for the values of � defined as:

N = 1

2π�
∈ N

∗, (26)

one has the property
[
T̂1, T̂2

]
= 0. The Hilbert space L2(R) may then be decomposed

as a direct integral of the joint eigenspaces of T̂1 and T̂2:

L2(R) =
∫ ⊕

HN,θ

d2θ

(2π)2
,

HN,θ =
{
|ψ〉 ∈ S ′(R) ∣∣ T̂1|ψ〉 = eiθ1 |ψ〉, T̂2|ψ〉 = eiθ2 |ψ〉

}
. (27)

The “angle” θ = (θ1, θ2) ∈ [0, 2π [2 thus describes the periodicity properties of the
wave function under translations by an elementary cell. HN,θ is N -dimensional.

We can define a projector P̂θ from S(R) onto the space HN,θ :

P̂θ =
∑

(n1,n2)∈Z2

e−in1θ1−in2θ2 T̂
n1
1 T̂

n2
2 =

∑

n∈Z2

e−iθ ·n+iδn T̂n. (28)

The phase δn = −n1n2Nπ comes from the decomposition T̂n = e−iδn T̂
n1
1 T̂

n2
2 .

The Weyl quantization of a function f (x) = ∑
k∈Z2 fk e2iπ(x∧k) is an operator on

HN,θ defined by

f̂ =
∑

k∈Z2

fk T̂k/N . (29)

For |ψ〉 ∈ HN,θ , its “Wigner function” Wψ(x) is the distribution implicitly defined via

〈ψ |f̂ |ψ〉 =
∫

T

f (x) Wψ(x) dx, so that W̃ψ(k) = 〈ψ |T̂k/N |ψ〉, (30)

where the W̃ψ(k) =
∫
T

e2iπ(x∧k) Wψ(x) dx are the Fourier coefficients of Wψ .
Let now M ∈ SL(2,Z), so that A,B,C,D (see Eq. (10)) are integers. One then

easily deduces from (20) and (28) that the quantum map M̂ satisfies:

M̂ P̂θ = P̂θ ′ M̂, with θ ′ = θM−1 + 2π
N

2
(CD,AB) . (31)

The constant shift on the right-hand side (RHS) is due to the phases δn appearing in
(28). M̂ will define an endomorphism in HN,θ provided θ ′ ≡ θ mod 2π , i.e. provided
θ is a fixed point of the dual map defined in (31). Given a hyperbolic matrix M , such a
fixed point exists for any N [DE]. In particular, for any matrix M the angle θ = (0, 0)
(periodic wavefunctions) is a fixed point if N is even, while θ = (π, π) (antiperiodic
wave wavefunctions) is a fixed point for N odd. We will always make this choice for
our numerical examples.
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From now on, we will assume that M = ±M(c,b) ∈ SL(2,Z) is a fixed hyperbolic
matrix defining a dynamics on the plane and on the torus. We will therefore no longer
indicate its dependence on (c, b). We will also assume that � is such that (26) holds, and
for this � we select an angle such that θ ′ ≡ θ . In general, θ can depend on �, but we will
not indicate this dependence.

4. Coherent States and Their Evolution

4.1. Standard and squeezed coherent states. With the normalized state |0〉 defined by
a|0〉 = 0, a “standard” coherent state is

|x〉 = T̂x |0〉, x = (q, p) ∈ R
2. (32)

More generally, we define for each c̃ ∈ C
∗ the “squeezed” coherent states |x, c̃〉 by

|c̃〉 = |0, c̃〉 = M̂(c̃,0)|0〉, |x, c̃〉 = T̂x |c̃〉, (33)

where the “squeezing operator” M̂(c̃,0) is defined by (17), with b̃ = 0. Note that, in view
of (15), given M ∈ SL(2,R), ∃!c̃ ∈ C, σ ∈ [0, 2π [ such that

M̂|0〉 = eiσ |c̃〉. (34)

For more details on coherent states, we refer to [Z, Pe].
To avoid confusion, we will use a tilde for the parameters of the squeezing opera-

tor M̂(c̃,0), and keep untilde notations for the parameters of the dynamics defined by

the matrix M
def= ±M(c,b) that are at any rate kept fixed throughout the further discus-

sion. In the L2(R) representation, the state |x, c̃〉 is a Gaussian wave packet with mean
position q. Its Fourier transform is centered around the mean momentum p. For any
state |ψ〉 ∈ L2 (R), we define its Bargmann function as x �→ 〈x, c̃|ψ〉, and its Husimi
function to be the positive function Hc̃,ψ defined on phase space R

2 by:

Hc̃,ψ (x) =
|〈x, c̃|ψ〉|2

2π�
, which satisfies

∫

R2
Hc̃,ψ (x) dx = ‖ψ‖2

L2(R)
. (35)

Note that for given |ψ〉, the Bargmann and Husimi functions depend on the choice of
c̃. Also, the function x �→ 〈x, c̃|ψ〉 is the product of a Gaussian factor with a function
holomorphic with respect to a c̃-dependent holomorphic structure. The term Bargmann
function is usually reserved for the holomorphic factor, but we find it convenient to adopt
here a slightly different convention.

We will need the explicit expression of the (standard) Bargmann and Husimi functions
of the squeezed coherent state |c̃〉:

〈x, 0|c̃〉 = 1√
cosh |c̃| exp

{
−i
q̃p̃ tanh |c̃|

2�

}
exp

{
−1

2

(
q̃2

�q̃2 +
p̃2

�p̃2

)}
. (36)

Here the unstable-stable frame (q̃, p̃) of the symmetric matrixM(c̃,0) is easily seen from
the formulas in Sect. 2 to be obtained from (q, p) by a rotation of angle ψ̃+ (Fig. 4.1),
and the widths are given by

�q̃2 = 2�

(1− tanh |c̃|) , �p̃2 = 2�

(1+ tanh |c̃|) . (37)
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∆
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Fig. 5a, b. Modulus square of the Bargmann function of a squeezed coherent state |c̃〉, as given in (36).

The inverse Planck’s constant N = 1/h = 40, and the squeezing parameter c̃ = −i|c̃| e−2iψ̃+ with
|c̃| = 0.962, ψ̃+ = 32◦ (this corresponds to c̃1 for the map M̂Arnold). (a) Three dimensional picture. (b)
Typical size and orientation of the distribution: ellipse “supporting” the distribution

Standard and squeezed coherent states on the torus are defined to be the images of
the previous coherent states by the projector P̂θ . We use the notation:

|x, c̃, θ〉 = P̂θ |x, c̃〉 ∈ HN,θ . (38)

These states are asymptotically normalized:

〈x, c̃, θ |x, c̃, θ〉 = 1+O(e−C(c̃)/�)
and satisfy a resolution of the identity on the Hilbert spaces HN,θ [BouDB]:

∫

T

dqdp

2π�
|x, c̃, θ〉〈x, c̃, θ | = ÎHN,θ

. (39)

Similarly as above, one defines for any |ψ〉 ∈ HN,θ its Bargmann “function” x �→
〈x, c̃, θ |ψ〉 (which is actually a section of a suitable line bundle over T, i.e. a qua-
siperiodic function on R

2, but this shall not interest us here), and Husimi function
Hc̃,ψ,θ (x) = N |〈x, c̃, θ |ψ〉|2 , a bona fide function on the torus (of which we omit to
indicate the N -dependence).

4.2. The evolution of coherent states. Before turning to quasimodes, we need to study
in detail the quantum evolution of the squeezed coherent state |c̃, θ〉 which is given

by |t; c̃, θ〉 def= M̂t |c̃, θ〉, t ∈ Z. We will extend this notation to any real time, by

|t; c̃, θ〉 def= P̂θ e−iĤ t/� |c̃〉. Due to (34), the states |t; c̃, θ〉 are again squeezed coherent
states (up to a global phase), so this evolution defines a time flow c̃(t) on the family of
squeezed coherent states centered at the origin. All squeezed states at the origin have
even parity: P̂ |c̃〉 = |c̃〉, so that the evolution of |c̃〉 through the map M̂P̂ is the same as
through M̂ (yet, these two maps might require different values for θ , see Eq. (31)).

It will turn out that |t; c̃, θ〉will be most simply described if the initial squeezed state
|c̃0, θ〉 at time t = 0 is well chosen in terms of the decomposition (13). Defining, with
the notations of (13)–(14), c̃0 = −b2 e−2ib1 , it is easy to check that |c̃0〉 = e−ib1/2 Q̂|0〉



Scarred Eigenstates for Quantum Cat Maps of Minimal Periods 461

since M̂(c̃0,0) = R̂(b1)B̂(b2)R̂(−b1) and R̂(−b1)|0〉 = e−ib1/2 |0〉. Then, with M̂ =
Q̂D̂(λ)Q̂−1,

M̂t |c̃0〉 = e−ib1/2 Q̂ D̂(λt)|0〉, 〈c̃0|M̂t |c̃0〉 = 〈0|D̂(λt)|0〉 = 1√
cosh(λt)

∈ R
+,

(40)

so the overlap 〈c̃0|M̂t |c̃0〉 is real positive for all times.
For later purposes we note that, defining, for s ∈ R, c̃s ∈ C, σs ∈ [0, 2π [ by

e−i Ĥ
�
s |c̃0〉 = eiσs |c̃s〉, (41)

(see (34)), it is clear that 〈c̃s | e−iĤ t/� |c̃s〉 is real positive for all t . In fact, it can be shown
that the c̃s are the only values of c̃ with this property. Among all s, s = 0 maximizes
|〈0|c̃s〉|2, so |c̃0〉 is in a sense the most localized state among all |c̃s〉.

In this paper, we will almost exclusively build quasimodes from coherent states with
“squeezing” c̃0; this choice is made for pure convenience, and our main semiclassical
results apply to more general squeezings as well (see Sect. 6.6 and Appendix 10.2).

Before turning to |t; c̃, θ〉 ∈ HN,θ , we first describe the evolved state |t; c̃0〉 def=
e−iĤ t/� |c̃0〉 ∈ L2(R), by studying its Husimi function on the plane, as defined in (35).
It will be convenient (but again not absolutely necessary for our results, see Sect. 10.2)
to adapt the choice of c̃ in the definition of this Husimi function to the dynamics M by
putting c̃ = c̃0. One then computes

Hc̃0,t (x)
def=

∣∣∣〈c̃0|T̂ †
x |t; c̃0〉

∣∣∣
2

2π�
=

∣∣∣〈0|Q̂†T̂
†
x Q̂D̂ (λt) Q̂

†Q̂|0〉
∣∣∣
2

2π�
=

∣∣∣〈0|T̂ †
Q−1x

D̂ (λt) |0〉
∣∣∣
2

2π�
.

(42)

It is now natural to use the coordinates
(
q ′, p′

) = Q−1 (q, p) ∈ R
2 attached to the

unstable-stable basis (v+, v−) (see Eq. (22)). In terms of these, the Husimi function is a
Gaussian drawn on the unstable and stable axes:

Hc̃0,t (x) =
1

2π� cosh(λt)
exp

(
− q ′2

�q ′2
− p′2

�p′2

)
, (43)

with

�q ′2 = 2�

1− tanh(λt)
t→∞∼ � e2λt ,

�p′2 = 2�

1+ tanh(λt)
= e−2λt �q ′2 t→∞→ �. (44)

The Husimi distribution of the evolved state |t; c̃0〉 therefore spreads exponentially (with
rate λ) in the unstable direction of the map, and has a finite transverse width

√
�. It “lives”

in an elliptic region of phase space centered on the origin and of area �q ′�p′ ∼ � eλt .
Due to conservation of the total probability, the height of the distribution decreases
exponentially.

We now turn to |t; c̃0, θ〉 = M̂t |c̃0, θ〉, t ≥ 0 and its Husimi function

Hc̃0,t,θ (x) = N |〈x, c̃0|P̂θ |t; c̃0〉|2.
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t=−6 t=−3 t=0

0

0 q

p

t=3 t=6
Fig. 6. Husimi function of the state |t; c̃0, θ〉 for the dynamics (21) and N = 1/(2π�) = 500. One has
T ≈ 8.37

It is clear from (28) that 〈x, c̃0|P̂θ |t; c̃0〉 is obtained by summing (up to some phases)
the translates of the function 〈x, c̃0|t; c̃0〉 into the different phase space cells of size 1
centered on the points of Z

2 (the cell around 0 will be called the fundamental cellF). Con-
sequently, it follows from (43)–(44) that this function is non-negligible at a point x ∈ F
only if x lies within a distance

√
� from a stretch of length �q ′ ≈ √

� eλt = eλ(t−T/2)
of the unstable manifold through 0 (Fig. 6). Here we introduced the Ehrenfest time as

T
def= | log �|

λ
. (45)

Since at time | log �|/(2λ) = T/2, �q ′ reaches the size 1 (i.e. the size of the torus),
it is clear that for shorter times the Husimi function Hc̃0,t,θ lives in an elliptic region of
shrinking diameter

√
� eλt around 0.

For times larger than T/2, this Husimi function starts to wrap itself around the
torus along the unstable axis or, equivalently, the support of some of the translates
〈x + n, c̃0|t; c̃0〉 start to enter into the fundamental cell. The diophantine properties
guarantee that the branches of the piece of length �q ′ of the unstable manifold pass-
ing through the origin are roughly at a distance 1/�q ′ = e−λ(t−T/2) from each other
(Fig. 4). Consequently, as long as�p′ << e−λ(t−T/2), i.e. as long as t ≤ (1− ε)T , the
main contribution to 〈x, c̃0|P̂θ |t; c̃0〉 and hence to the Husimi function Hc̃0,t,θ comes
from a single term 〈x + n, c̃0|t; c̃0〉 for most x ∈ F . We say there are no interference
effects. The regime (1+ ε)T /2 ≤ t ≤ (1− ε)T was studied in [BonDB1] where it was
proven that on that time scale the Husimi function equidistributes on the torus.

For longer times t ≥ (1 + ε)T , when the area �p′�q ′ occupied by the support
of Hc̃0,t becomes larger than the area of the torus itself, several terms may contribute
equally to 〈x, c̃0|P̂θ |t; c̃0〉. In the next subsection we give a detailed control on the onset
of this “interference regime” up to time 2T for the Husimi function of |t; c̃0, θ〉 evaluated
at the origin x = 0; we shall show that the interferences remain “small” up to the time
2T .

As a last remark, we point out that the above discussion is symmetric with respect to
time reversal. For negative times, Hc̃0,t,θ spreads along the stable direction, reaches the
boundary of F around −T/2, and will interfere with itself for t ≤ −T .

4.3. Estimating the interference effects. As explained in the introduction, our crucial
technical estimate concerns the autocorrelation function for the state |c̃0, θ〉, given by
〈c̃0, θ |M̂t |c̃0, θ〉. More generally, we will need control on

〈c̃s , θ |M̂t |c̃s , θ〉 = 〈c̃s |P̂θ M̂t |c̃s〉 = 〈c̃s |M̂t |c̃s〉 + I (t, s), (46)
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where we separated the contribution of the term n = (0, 0) (the “plane overlap”), from
the remaining terms:

I (t, s)
def=

∑

n∈Z2∗

e−in·θ+iδn 〈c̃s |T̂n M̂t |c̃s〉. (47)

This remainder represents the interference of the evolved plane coherent state with the
lattice-translated initial state. We will show that these contributions tend to 0 asN →∞,
uniformly for all times |t | ≤ 2(1− ε)T , for any fixed ε > 0.

A trivial upper bound is

|I (t, s)| ≤
∑

n∈Z2∗

∣∣∣〈n, c̃s | e− i
�
Ĥ t |c̃s〉

∣∣∣ def= J0(t, s), (48)

and we shall estimate the RHS. Note that we extended I (t, s) in the natural way to real
times t . The detailed proofs of the estimates below are given in Appendix 10.1; here we
limit ourselves to explaining the underlying ideas and to an instructive comparison with
a numerical example. For simplicity, we will concentrate on the case s = 0.

We define a time-dependent metric on the plane adapted to the Gaussian in (43):

‖ x ‖2
t

def= 1

2

(
q ′(x)
�q ′(t)

)2

+ 1

2

(
p′(x)
�p′(t)

)2

.

The RHS of (48) is simply the sum of this Gaussian of heightHt = (cosh λt)−1/2 eval-
uated at all nonzero integer lattice points. The diophantine properties proven in Sect. 3.1
provide information on the position of the integer lattice with respect to the ellipse
{‖x‖2

t = 1} and allow us to prove the following estimates:

• for relatively short times (meaning |t | ≤ (1 − ε)T ), all lattice points n �= 0 are far
outside the support of the Gaussian so that ‖n‖t is large. In fact, the distance ‖n‖t
reaches its minimum for a single point no (more precisely a finite number N of

points), with ‖no‖2
t > c e−λ|t |

�
>> 1. Note that, here and in the following, we write

f (�) << g(�) when lim�→0 f (�)/g(�) = 0. J0(t, 0) is dominated by the contri-
bution of this finite set of points, given by N Ht exp

{−‖no‖2
t

}
, the contributions of

farther points being much smaller. The precise bound proven in the appendix reads:

|t | ≤ T �⇒ |I (t, 0)| ≤ 2
√

2 e−λ|t |/2 exp

{
−Co

e−λ|t |

2�

} [
1+ C eλ(|t |−T )/2

]
,

(49)

where the constant Co is the parameter of the diophantine equation (25), and C can
be computed explicitly (it depends only on M).

• For times |t | ≥ T , a large number of lattice points (Nt = �q ′(t)�p′(t) ∼ eλ(|t |−T ))
are contained in the ellipse (i.e. satisfy ‖n‖t ≤ 1), and their collective contribution
dominates the RHS of (48): |I (t)| � NtHt ∼ eλ(−T+|t |/2). This is indeed essentially
what we prove:

T ≤ |t | �⇒ |I (t, 0)| ≤ 2π
√

2

Co
eλ(−T+|t |/2)

[
1+ C′ eλ(T−|t |)/2

]
, (50)

where C′ can be computed explicitly in terms of M . This upper bound becomes of
order unity for |t | � 2T .



464 F. Faure, S. Nonnenmacher, S. De Bièvre

• From the definition (46), we have trivially for any time

|I (t, 0)| ≤ 〈c̃0, θ |c̃0, θ〉 + 〈c̃0|M̂t |c̃0〉 ≤ 1+O
(

e−C(c̃0)/�
)
+ 1√

cosh(λ|t |) .

Combining these estimates (generalized to s �= 0), one obtains the following proposition:

Proposition 1. There exist positive constants C, C′, C′′ such that for all times t ∈ R,
and for all s in a bounded interval

|I (t, s)| ≤ J0(t, s) ≤ min
(
C� eλ|t |/2, 1+

√
2 e−λ|t |/2 +C′ e−C′′/�

)
. (51)

This shows that the interferences remain small until times of order 2T . The existence
of “short quantum periods” for certain values of � (see the introduction and Sect. 8)
implies that I (t, 0) is of order 1 at t = P � 2T for these values of �. This is further
illustrated in Fig. 7.

Figure 7 shows numerical calculations of log |I (t, 0)| for values of Planck’s “con-
stant” N = 9349 → 9359 and compares them to F(t), which is essentially given by
the upper bounds (49)–(50). We observe that, whereas (49) is close to optimal, the same
is not true for (50) for most values of N : there is a “plateau” log |I (t, 0)| � log(�1/2)

for t > T ′, where T ′ = log(N)/λ is a shifted Ehrenfest time. This plateau can be
explained by assuming that the phases which multiply the different terms in I (t, 0) are
uncorrelated, like independent random phases. For t >> T , the RHS of (47) could
then be replaced by a sum of many (� Nt ) terms with identical moduli Ht but random
uncorrelated phases, similar to a 2-dimensional random walk. The modulus of the sum
(i.e. the length of the random walk) has a typical value |I (t, 0)| ∼ √Nt Ht ∼ �

1/2,
independent of time: this is indeed what we see numerically.

However, for the value of N = 9349, corresponding to a “short quantum period”
P = 19, as discussed in Sect. 8, log |I (t, 0)| is close to the upper bounds (49)–(50)
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F(t)    

t

log |I(t,0)|
for 1/h=N=9350      9359

2T’T’

log |I(t,0)| for 1/h=N=9349

Fig. 7. Numerical calculations of log |I (t, 0)|, for the map (21). The heuristic upper bound F(t) (solid
line) is defined in terms of the shifted Ehrenfest time T ′ = log(N)/λ: F(t) = − λt

2 − eλ(T
′−t)−1 for

0 < t < T ′ and F(t) = λ
2

(
t − 2T ′

) + 0.5 for T ′ < t < 2T ′. The horizontal dashed line at log(h1/2)

gives the order of magnitude of the plateau for t > T ′



Scarred Eigenstates for Quantum Cat Maps of Minimal Periods 465

up to time P � 2T ′. In such exceptional cases – crucial in this paper – there appears
strong correlations between the phases in the sum I (t, 0): the random walk somehow
becomes “rigid”, which makes its total length of the same order as the sum of individual
lengths, |I (t, 0)| ∼ J0(t, 0) ∼ NtHt . This rigidity can actually by analyzed directly
from the explicit expression for the phases [FN2]: one first finds that for these special
values of Planck’s constant N = Nk and t in the interval T < t < 2T , the phases cor-
responding to the relevant ∼ Nt lattice points are all close to 2d th roots of unity, where
d = (trM)2 − 4 (in the example M = MArnold and Nk = 9349, the relevant phases are
all close to unity). Then, the sum of these ∼ Nt phases behaves like G(M,Nk)Nt for
Nt >> 1, and one can check that the prefactor G(M,Nk) (a Gauss sum) is bounded
away from zero uniformly (e.g. G(MArnold, 9349) = 1). This explains the behaviour
|I (t, 0)| ∼ J0(t, 0). This situation drastically differs from the case of a “generic” N ,
where the relevant phases are more or less equidistributed over the circle.

5. Quasimodes at the Origin

5.1. Continuous time versus discrete time quasimodes. We are now ready to study the
quasimodes (2) and (6) “associated” with the periodic orbits of the dynamics generated
byM , as discussed in the introduction. To alleviate the notations, we start with the case
where the orbit is simply the fixed point (0, 0) ∈ T. The rather straightforward general-
ization to arbitrary orbits is given in Sect. 7. Note that the Ehrenfest time T = | ln �|

λ
is

in general not an integer: whenever T or T/2 appears in a sum boundary, they should
therefore be replaced by the nearest integer.

It will be convenient to also consider slightly modified quasimodes, for which the
initial state is not the squeezed coherent state |c̃0, θ〉 as in (2), but rather the following
superposition of squeezed coherent states:

P̂θ

∫ 1

0
dt e−iφt e−

i
�
Ĥ t |c̃0〉. (52)

The “continuous time” version of the quasimodes defined in (2) then reads:

|�cont
φ 〉 def= P̂−T ,T ,φ P̂θ

∫ 1

0
dt e−iφt e−

i
�
Ĥ t |c̃0〉 (53)

= P̂θ

∫ T

−T
dt e−iφt e−

i
�
Ĥ t |c̃0〉. (54)

Here we introduced, for any φ ∈ R, t0 < t1 ∈ Z, the operator

P̂t0,t1,φ =
t1−1∑

t=t0
e−itφ M̂t , (55)

and the equality (54) follows from a trivial computation.
These quasimodes can also be decomposed into 4 parts |�cont

j,φ 〉, obtained by integrat-
ing in t over time intervals of length T/2, then projecting the obtained state in HN,θ . A
remarkable and useful property (derived from Poisson’s formula) is that we can recover
the “discrete time” quasimodes |�disc

φ 〉 defined in (2) from the “continuous time” ones:

|�disc
φ 〉 =

∑

k∈Z

|�cont
φ+2πk〉.
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Notice that the state in (52) is not 2π -periodic with respect to φ so that the quasimodes
|�cont

φ 〉 depend on the “quasienergy” φ ∈ R.
The main reason for considering continuous time quasimodes is that they are easily

connected with generalized eigenstates of the Hamiltonian Ĥ , which allows to pointwise
describe their Husimi densities, a task we turn to in Sect. 6.

In the next subsection, we start our study of the above quasimodes. We will use from
now on the notation |�φ〉 in statements that are valid both for |�disc

φ 〉 and |�cont
φ 〉 (and

similarly for |�j,φ〉).

5.2 Orthogonality of the states |�j,φ〉n at fixed φ

Proposition 2. (i) The states |�j,φ〉, j = 1, 2, 3, 4 and |�φ〉 satisfy, as � → 0

〈�j,φ |�j,φ〉 = T

2
S1(λ, φ)+O(1), 〈�φ |�φ〉 = 2T S1(λ, φ)+O(1), (56)

where the smooth function S1(λ, φ) is strictly positive for all φ ∈ R and O(1) is
uniformly bounded in φ. In particular these states do not vanish for small enough
� and the normalized quasimodes |�φ〉n satisfy (5).

(ii) Furthermore, for all φ ∈ R, the |�j,φ〉n become mutually orthogonal in the semi-
classical limit: for all j �= k ∈ {1, . . . , 4}

lim
�→0

n〈�j,φ |�k,φ〉n = 0. (57)

The limit is uniform for all φ in a bounded interval.
(iii) Consequently, for all φ ∈ R,

n〈�φ |�j,φ〉n → 1/2, n〈�φ |�erg,φ〉n → 1/
√

2 and n〈�φ |�loc,φ〉n → 1/
√

2.

Proof. (i) We first give a detailed proof for the “continuous time” quasimodes. Writing
k = j − i ∈ {0, 1, 2, 3}, a simple computation yields (see (41))

〈�cont
i,φ |�cont

j,φ 〉

=
T
2 −1∑

t=0

T
2 −1∑

t ′=0

∫ 1

0
ds

∫ 1

0
ds′ e−i(t−t ′+s−s′+kT /2)φ 〈c̃0|P̂θ e−

i
�
Ĥ (t−t ′+s−s′+kT /2) |c̃0〉.

Using (46) and (48) this becomes:

〈�cont
i,φ |�cont

j,φ 〉
=
∫ T/2

−T/2
ds

(
T

2
− |s|

)
e−i(s+kT /2)φ〈c̃0| e− i

�
Ĥ (s+kT /2) |c̃0〉 + error, (58)

where

error ≤
∫ 1

0
ds

∫ 1

0
ds′

T
2 −1∑

t=− T
2

(T
2
− |s|) J0(t + k T

2
+ s − s′, s′).

Using the bound (51), one readily finds that the second term is O(� 3−k
4 ).
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To estimate the norm of |�cont
j 〉, there remains to compute the integral in (58) in the

case i = j , that is k = 0:
∫ T/2

−T/2
ds (T /2− |s|) e−isφ〈c̃0| e− i

�
Ĥ s |c̃0〉 =

∫ T/2

−T/2
ds
(T /2− |s|) e−isφ

√
cosh(λs)

= T

2
Scont

1 (λ, φ, T /2)− Scont
2 (λ, φ, T /2),

where the (real) functions Scont
1 , Scont

2 are defined as follows:

Scont
1 (λ, φ, τ )

def=
∫ τ

−τ
dt

e−itφ

√
cosh (λt)

, Scont
2 (λ, φ, τ )

def=
∫ τ

−τ
dt

|t | e−itφ

√
cosh (λt)

. (59)

The limits of Scont
i (λ, φ, τ ) as τ → ∞ clearly exist. We only give the value for Scont

1 ,
the most relevant one for our purposes [BaTIT]:

Scont
1 (λ, φ)

def= lim
τ→∞ S

cont
1 (λ, φ, τ ) = 1

λ
√

2π

∣∣∣∣�
(

1

4
+ i

φ

2λ

)∣∣∣∣
2

. (60)

For fixed λ, this function is maximal for φ = 0 (with value≈ 5.244/λ), and decreases as√
4π
λ|φ| e−π |φ|/2λ for |φ| → ∞. A crucial property is the strict positivity of this function,

for all values λ > 0, φ ∈ R.
The computation of 〈�φ |�φ〉 is similar.

(ii) We now estimate the overlaps 〈�i,φ |�j,φ〉 for j �= i, by estimating the first integral
of (58) in the cases 3 ≥ k ≥ 1:∣∣∣∣∣

∫ T/2

−T/2
ds (T /2− |s|) e−i(s+kT /2)φ

√
cosh(λ(s + kT /2))

∣∣∣∣∣ ≤
4
√

2

λ2
e−

λ(k−1)T
4 = O(� k−1

4 ).

Taking into account the estimate of the error in (58), we see that for any i �= j , the
overlap 〈�cont

i,φ |�cont
j,φ 〉 is bounded by a constant (even by O(�1/4) for |i − j | = 2). As a

result,

∀i �= j, n〈�cont
i,φ |�cont

j,φ 〉n =
〈�cont

i,φ |�cont
j,φ 〉

〈�cont
i,φ |�cont

i,φ 〉
≤ C

T
. (61)

This proves (ii). Part (iii) is now obvious.
To treat the case of the discrete quasimodes, the integrals over time have to be replaced

by sums over integers. For instance, the expressions defined in (59) are replaced by

Sdisc
1 (λ, φ, τ )

def=
∑

|t |≤τ

e−itφ

√
cosh (λt)

,

and similarly for S2. The sum Sdisc
1 (λ, φ) = limτ→∞ Sdisc

1 (λ, φ, τ ) is also nonnegative
for all λ > 0, φ ∈ [−π, π ]. Indeed, Poisson’s formula induces the identity

Sdisc
1 (λ, φ) =

∑

k∈Z

Scont
1 (λ, φ + 2kπ).

The norms of the discrete quasimodes therefore satisfy an estimate similar to (57),
upon replacing Scont

1 by Sdisc
1 . The other estimates are identical as for the continuous

version. ��
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5.3. Quasimodes of different quasienergies. We now compare quasimodes |�φ〉 of dif-
ferent quasienergies and show:

Proposition 3. Let φ0 be an arbitrary angle in [0, 2π [, and

φk = φ0 + π

T
k, k = 1, . . . , 2T .

The 2T quasimodes |�φk 〉n become mutually orthogonal in the semiclassical limit:
∀k′ �= k, n〈�φk′ |�φk 〉n = O(1/T ).

This is an immediate consequence of the following finer estimate:

Proposition 4. Let I ⊂ R be a fixed bounded interval. There exists a constant C > 0
such that, given any semiclassically vanishing function θ(�) and n ∈ Z

∗, if φ, φ′ ∈ I ,
and if the phase shift �φ = φ′ − φ satisfies |�φ − nπ

T
| ≤ θ(�)

|n|
T

, then we have, for
small enough �, n〈�φ′ |�φ〉n ≤ C

(
θ(�)+ 1

T

)
.

Proof. As before, we write the proof for the continuous time quasimodes. The over-
lap 〈�cont

φ′ |�cont
φ 〉 is given by an expression similar to (58). Using the estimate (51) for

I (t, s), we obtain

〈�cont
φ′ |�cont

φ 〉 =
∫ T

−T
dt

∫ T

−T
dt ′

ei(t ′φ′−tφ)
√

cosh λ(t − t ′) +O(1)

=
∫ 2T

−2T
ds

eisφ̄

√
cosh(λs)

sin {�φ (T − |s|/2)}
�φ/2

+O(1),

where we introduced φ̄
def= φ′+φ

2 . This integral is bounded above by 2S1(λ,0)
|�φ| , so that

for a phase difference bounded away from zero (i.e. |�φ| ≥ c > 0), the scalar product
of the normalized states is n〈�φ′ |�φ〉n = O(T −1). We are however more interested
in the case where �φ is �-dependent and semiclassically small: �φ → 0. Inserting
| sin{�φ(T −|s|/2)}− sin{�φT }| ≤ |s|�φ/2 in the integral and using (56), we get for
� → 0, �φ→ 0:

n〈�cont
φ′ |�cont

φ 〉n = Scont(φ̄)√
Scont(φ)Scont(φ′)

sin (T �φ)

T�φ
+O(1/T ).

The first term can be as large as 1, for �φ << T −1. It will also be large for values
�φ = π(n+1/2)

T
with n an integer, |n| << T , where it takes the value ±1/T�φ. At the

opposite extreme, the term vanishes for�φ = nπ
T

, n a nonzero integer, and close to this
value it behaves like (−1)n T

πn
(�φ − nπ

T
). ��

We are now set to analyze, in the next subsections, the phase space distributions of
the quasimodes |�φ〉n and of their components.
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5.4. Localization of |�loc,φ〉n near the origin. Recall that |�loc,φ〉 = |�2,φ〉 + |�3,φ〉.
We will show the following:

Proposition 5. Let φ ∈ R. Then, for any f ∈ C∞(T2),

lim
�→0

n〈�loc,φ |f̂ |�loc,φ〉n = f (0) and lim
�→0

∫

T

f (x)Hc̃0,loc,φ,θ (x) dx = f (0),

(62)

where Hc̃0,loc,φ,θ (x) = N |〈x, c̃0, θ |�loc,φ〉n|2 is the Husimi function of |�loc,φ〉n. It
follows that the semiclassical measures Hc̃0,loc,φ,θ (x)dx and the Wigner distribution
converge to the delta measure at the origin. All limits are uniform for φ in a bounded
interval.

Using a more physical terminology, one can say that the quasimodes |�loc,φ〉n
strongly scar (or localize) on the fixed point 0 ∈ T

2 of the map M .

Proof. As before, we write the proof for |�cont
loc,φ〉, given by

|�cont
loc,φ〉 = P̂θ

∫ T/2

−T/2
dt e−iφt |t; c̃0〉.

This is a sum of evolved coherent states for times |t | ≤ T/2. At this maximal time, the

length�q ′ of the Husimi function of e−
i
�
Ĥ t |c̃0〉 reaches the size of the torus. To control

the contribution of the nonlocalized states at t ≈ T/2, we first select a function �(�)
such that in the small-� limit 1 << �(�) << T . We then split |�cont

loc,φ〉 in two pieces:

|�cont
loc,φ〉 = P̂θ

∫

|t |≤τ∗
dt e−iφt |t; c̃0〉 + P̂θ

∫

τ∗≤|t |≤ T
2

dt e−iφt |t; c̃0〉

= |�′〉 + |�′′〉,
where τ∗

def= [T/2−�(�)/λ]. From the proof of Proposition 2 it is clear that

〈�′|�′〉 ∼ 2τ∗Scont
1 (λ, φ) ∼ T Scont

1 (λ, φ) ∼ 〈�loc,φ |�loc,φ〉 when � → 0. (63)

The norm of the remainder |�′′〉 is estimated similarly:

〈�′′|�′′〉 ∼ �

λ
Scont

1 (λ, φ) ≤ C�(�) = o(T ). (64)

In the interval |t | ≤ τ∗, the ellipses supporting the states |t; c̃0〉 have lengths
√

� eλt ≤
e−�(�) → 0. Considering the diskD� centered at the origin and of radius e−�(�)/2, the
Husimi functions of these states are therefore semiclassically concentrated inside D�.
We will show below that |�cont

loc,φ〉n is also concentrated inside this disk.

Using (63) and (64), together with the obvious |a + b|2 ≤ 2(|a|2 + |b|2), one finds
∫

T\D�
N |〈x, c̃0, θ |�cont

loc,φ〉n|2 dx ≤
C

T

∫

T\D�
N
(
|〈x, c̃0, θ |�′〉|2 + |〈x, c̃0, θ |�′′〉|2

)
dx

≤ C

T

(∫

T\D�
N |〈x, c̃0, θ |�′〉|2 dx + 〈�′′|�′′〉

)
(65)

≤ C
�(�)

T
. (66)
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The last inequality comes from the observation that the Bargmann function 〈x, c̃0, θ |�′〉
is a sum of Gaussians of widths smaller than e−�(�) so simple analysis shows that the
integral in (65) is O (

N exp(−c e�(�))
)
. Consequently, (66) holds and yields the prop-

osition provided we choose log logN << � << logN . For discrete quasimodes, we
only need to replace Scont

1 by Sdisc
1 in the above estimate. ��

For later purpose, we notice that the previous proof can be applied to the states

|�cont
t1,t2

〉 = P̂θ

∫ t2

t1

eiφt |t; c̃0〉, with − T

2
≤ t1 ≤ 0 ≤ t2 ≤ T

2
. (67)

These states indeed localize at the origin in the sense of Eqs. (62) and (66). The same
is obviously true for the discrete analogues of these states: |�disc

t1,t2
〉 = P̂t1,t2 |c̃0, θ〉. Note

that |�2,φ〉 and |�3,φ〉 are of this type.

5.5. Equidistribution of |�erg,φ〉n. Recalling that |�erg,φ〉 = |�1,φ〉 + |�4,φ〉 we have

Proposition 6. Let φ ∈ R. Then, for any f ∈ C∞(T2)

lim
�→0

n〈�erg,φ |f̂ |�erg,φ〉n =
∫

T

f (x)dx = lim
�→0

∫

T

f (x)Hc̃0,erg,φ,θ (x) dx, (68)

where Hc̃0,erg,φ,θ (x) = N |〈x, c̃0, θ |�loc,φ〉n|2 is the Husimi function of |�erg,φ〉n. It
follows that the Husimi measure Herg,φ(x) dx and the Wigner distribution converge to
the Liouville measure on the torus. The limits are uniform for φ in a bounded interval.

The states |�erg,φ〉 are said to semiclassically equidistribute on the torus.

Proof. We will use the algebraic structure of the quantized automorphisms in the proof.
We will drop the index φ from the notations. It is clearly enough to show that, for each
k ∈ Z

2∗, we have

lim
�→0

〈�erg|T̂k/N |�erg〉 = 0.

For that purpose, we write

〈�erg|T̂k/N |�erg〉
= 〈�1|T̂k/N |�1〉 + 〈�4|T̂k/N |�4〉 + 〈�1|T̂k/N |�4〉 + 〈�4|T̂k/N |�1〉. (69)

We first estimate the two diagonal terms of the RHS. Using |�1〉 = eiφT M̂−T |�3〉,
|�4〉 = e−iφT M̂T |�2〉 and the intertwining property (20), we get

〈�1|T̂k/N |�1〉 + 〈�4|T̂k/N |�4〉 = 〈�3|T̂k+|�3〉 + 〈�2|T̂k−|�2〉.

Here k±
def= M±T k/N ∈ (Z/N)2 are of order 1 (see below), so that we transformed the

“microscopic” translation by k/N (of order �) into “macroscopic” ones. Each term is
therefore the overlap between the state |�2〉 or |�3〉 localized in a small disc D� cen-
tered at the origin of the torus (cf. Eqs. (65,67)), and a translated state localized in the

discD�,±
def= D�+k± centered at the point k± mod Z

2. This overlap will consequently
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be small provided k± is sufficiently far away from the integer lattice. We prove this fact
using (22):

k+ = q ′(k) eT λ /N v+ + p′(k) e−T λ /N v− = C(N)q ′(k)v+ +O(�2)v−,
k− = q ′(k) e−T λ /N v+ + p′(k) eT λ /N v− = C(N)p′(k)v− +O(�2)v+,

where 2π e−λ ≤ C(N) ≤ 2π eλ since T/2 is the closest integer to | ln �|/2λ. Now,
q ′(k) �= 0 �= p′(k) since the slopes of v± are irrational. Consequently, k± are at a finite
distance from Z

2 for small enough �, and the disks D� and D�,± do not intersect each
other. We can thus estimate the overlap:

n〈�3|T̂k+|�3〉n =
∫

T

n〈�3|x, c̃0, θ〉 〈x, c̃0, θ |T̂k+|�3〉N dxn

=
{∫

T\D�
+
∫

D�

}
n〈�3|x, c̃0, θ〉 〈x, c̃0, θ |T̂k+|�3〉n N dx.

Using the Cauchy-Schwarz inequality, the first integral is bounded as

∣∣∣
∫

T\D�
n〈�3|x, c̃0, θ〉 〈x, c̃0, θ |T̂k+|�3〉n N dx

∣∣∣

≤
√∫

T\D�
Hc̃0,3,θ (x) dx

√∫

T\D�
Hc̃0,3,θ (x − k+) dx ≤ C

√
�

T
,

where we used (65) applied to |�3〉. The integral overD� is treated similarly, exchanging
the roles of both factors: now the second factor semiclassically converges to zero due to
the inclusion D� ⊂ (T \D�,+). In the end, we get for log logN << �(�) << logN ,

n〈�1|T̂k/N |�1〉n = n〈�3|M̂T T̂k/NM̂
−T |�3〉n = O

(√
�(�)

T

)
, (70)

uniformly for φ in a finite interval. The proof goes through unaltered for the second
overlap n〈�4|T̂k/N |�4〉n and in fact for any M̂T |�t1,t2〉n as in (67), leading to:

Lemma 3. Consider a semiclassically diverging function log | log �| << �(�) <<

| log �| and k ∈ Z
2∗. Given a bounded interval, there exists a constant C so that for all

φ in the interval

∣∣
n〈�t1,t2 |M̂−T T̂k/NM̂T |�t1,t2〉n

∣∣ ≤ C
√
�(�)

T
.

As a result, the states M̂T |�t1,t2〉n equidistribute as � → 0, which implies that the
integral of their Husimi function over a fixed domain of area A converges to A. We now
use this information to finish the proof of Proposition 6.

We enlarge Fig. 1 and define the additional state |�5〉 = e−iφT M̂T |�3〉, which,
according to Lemma 3, equidistributes. Now, using the same intertwining property as
above, we rewrite the nondiagonal terms in the RHS of (69) as

〈�2|M̂T/2T̂k/NM̂
−T/2|�5〉+〈�5|M̂T/2T̂k/NM̂

−T/2|�2〉 = 〈�2|T̂k′ |�5〉+〈�5|T̂k′ |�2〉,
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with the vector k′ def= MT/2k/N . Each term is the overlap between a state localized near
the origin (e.g. 〈�2|) and an equidistributed one (e.g. T̂k′ |�5〉). It is natural to expect
that they are asymptotically orthogonal.

To prove this fact, we proceed as above:

∣∣
n〈�2|T̂k′ |�5〉n

∣∣ ≤
√∫

T\D(r)
dxHc̃0,2,θ (x)

√∫

T\D(r)
dxHc̃0,5,θ (x − k′)

+
√∫

D(r)

dxHc̃0,2,θ (x),

√∫

D(r)

dxHc̃0,5,θ (x − k′), (71)

where D(r) is the disc of radius r centered at 0. Using the semiclassical localization of
|�2〉n at the origin and the equidistribution of |�5〉n, we find

lim sup
�→0

|n〈�2|T̂k′ |�5〉n| ≤
√
πr.

Since this is true for any r > 0, lim�→0 |n〈�2|T̂k′ |�5〉n| = 0. We now control all the
terms of (69) and after taking care of the normalizations we obtain Proposition 6. ��

5.6. Semiclassical properties of |�φ〉 = |�loc,φ〉 + |�erg,φ〉. We now finally consider
the “full” quasimode |�φ〉. It is the sum of two states, one localized, the second equi-
distributed.

Proposition 7. For any φ ∈ R, (7) holds with τ = 1, x0 = 0. The limit is uniform for φ
belonging to a bounded interval.

Proof. It is again enough to study n〈�|T̂k/N |�〉n and to show

lim
�→0

n〈�|T̂k/N |�〉n = 1

2
(1+ δk,0).

The results of the previous subsections imply immediately that this reduces to showing

lim
�→0

n〈�loc|T̂k/N |�erg〉n = 0.

This in turn is proven as in the previous subsection through the use of the Cauchy-Sch-
warz inequality and cutting the integral over T into the integral over a small disc around
the origin and an integral over the complement (see (71)). ��

To conclude this section, let us remark that the semiclassical properties of the various
quasimodes we introduced are not altered if we replace T in the sum or integration
boundaries by an integer that differs from it by a finite amount, bounded as � goes to
zero. This will occasionally be useful in the sequel.
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6. Pointwise Description of the Quasimodes

In the last sections, we showed that the Husimi and Wigner functions of the quasimodes
|�φ〉n converge to the measure 1+δ0

2 in the semiclassical limit. The crucial tools of the

proof were, on the one hand, precise estimates of the overlaps 〈c̃0, θ |M̂t |c̃0, θ〉 (obtained
using the diophantine properties of the invariant axes), on the other hand the algebraic
intertwining between M̂ and the quantum translations.

Still, it would be interesting to know the speed at which this convergence takes place,
or to compute more refined “indicators” of the localization of the quasimodes.

In this section, we will use a more “direct” yet slightly more cumbersome route which
will yield more precise information on the phase space distribution of the “continuous
time” quasimodes. The main step of this route is the pointwise description of the Barg-
mann and Husimi functions of |�cont

φ 〉. This description will then provide an estimate
of the speed of convergence to the limit semiclassical measure; at the same time, it will
allow us to compute alternative localization indicators, like the Ls-norms of the Husimi
functions. The pointwise estimates will also uncover the “hyperbolic” structure of the
Husimi functions near the origin, a structure already emphasized by several authors
for finite-time quasimodes [KH, WBVB] and for spectral Wigner and Husimi functions
[ROdA].

6.1. Plane quasimodes. Our final objective is to estimate the Bargmann function
〈x, c̃0, θ |�cont

φ 〉 for x ∈ F the fundamental domain. For this purpose, we start from

quasimodes of the Hamiltonian Ĥ :

|�φ,t 〉 def=
∫ t

−t
ds e−iφs e−iĤ s/� |c̃0〉. (72)

The torus quasimode |�cont
φ 〉 is obtained by projecting |�φ,T 〉 onto HN,θ (cf. Eq. (54)).

In this subsection, we will study the Bargmann function of the plane quasimode |�φ,T 〉.
Using the rescaled variable Z

def= q ′−ip′
2
√

�
, this function is given by the following

integral:

�φ,T (x)
def= 〈x, c̃0|�φ,T 〉 = e−|Z|2

∫ T

−T
ds

e−iφs

√
cosh λs

eZ
2 tanh λs . (73)

Through the change of variables U = Z2(1 − tanh λs), and using the parameter

µ
def= 1/4+ iφ/2λ, this integral may be rewritten as

�φ,T (x) =
eZ

2−|Z|2

λ2µ+1/2Z2µ

∫ U1

U0

dU

U
Uµ e−U

(
1− U

2Z2

)−µ−1/2

, (74)

with the boundaries U0 = Z2(1 − tanh λT ) � 2Z2
�

2, U1 = Z2(1 + tanh λT ) �
2Z2(1−�

2). This function satisfies the following symmetries (with obvious notations):

�φ,T (Z) = �φ,T (−Z) = �−φ,T (iZ). (75)

The hyperbolic Hamiltonian Ĥ admits no bound state in L2(R), but for any real
energyE = −�φ, it has two independent generalized eigenstates, distinguished by their
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parity. In the limit t →∞, the quasimode |�φ,t 〉 converges (in a sense explained below)

to the even eigenstate, that we denote by |�(even)φ 〉. From the identities H(x) = λq ′p′,
Ĥ = λQ̂

q̂p̂+p̂q̂
2 Q̂−1, the Bargmann function of |�(even)φ 〉 can be expressed in terms of

parabolic cylinder functions [NV1, BaHTF]:

〈x, c̃0|�(even)φ 〉 = Cφ e−|Z|2
{
D−1+2µ(2Z)+D−1+2µ(−2Z)

}
. (76)

The normalization coefficientCφ = π (2µ cosh(πφ/λ)�(µ+ 1/2))−1 can be computed
from the value atZ = 0. For fixed φ and � small, this Bargmann function takes its largest
values close to the origin (where it takes the value Scont

1 (λ, φ)), and is otherwise con-
centrated along the hyperbola {q ′p′ = −�φ/λ}, which is the classical energy surface
{H(x) = −�φ} (see below and Sect. 6.4 for more details). The Husimi functions of
two of these generalized eigenstates are displayed in Fig. 8 in terms of the coordinates
(Q′, P ′) = (q ′,p′)√

�
.

From the integral expression (73), we see that the Bargmann functions of |�(even)φ 〉
and |�φ,T 〉 are semiclassically close to each other:

�φ,T (x)−�(even)φ (x) = O(�1/2) uniformly with respect to x and φ. (77)

This equation together with (76) yields a uniform approximation for �φ,T (x). One
cannot simplify this expression in the central region {x = O(√�)}. On the other extreme,
one can obtain asymptotic expansions for (74) in the region {|x| >> √

�} ({|Z| >> 1}).
We will give formulas uniformly valid in the “positive sector” S+ def= {Z | arg(Z) ≤
π
4 (1 − ε)}, where ε > 0 is fixed. The symmetries (75) then allow to fill the remaining
three sectors (around the angles π/4+ nπ/2, the function is exponentially small).

Fig. 8. Husimi functions of two generalized eigenstates |�(even)φ 〉, in the coordinates (Q′, P ′). The den-
sities are plotted in linear scale, the contour step depending on the plot. The classical energy hyperbolas
are drawn in thick curves
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Expanding the last factor in the integral (74) into powers of 1/Z2, we get a sum of
incomplete Gamma functions [BaHTF, Chap. 9]:

∫ U1

U0

dU

U
Uµ e−U

(
1− U

2Z2

)−µ−1/2

= (
γ (µ,U0)− γ (µ,U1)

)+ µ+ 1/2

2Z2

(
γ (µ+ 1, U0)− γ (µ+ 1, U1)

)+ . . . .
These gamma functions have simple asymptotics in two regimes:

• for U0 << 1 << U1, that is, x ∈ S+,
√

� << |x| << 1√
�

, they yield

�φ,T (x) = �(µ) eZ
2−|Z|2

λ2µ+1/2Z2µ

(
1+O

(
1

|Z|2
)
+O(

√
�Z)

)

= �(µ)

λ21/2−µ
�
µ

(q ′ − ip′)2µ
e−

p′2+iq′p′
2�

(
1+O

(
�

|x|2
)
+O(

√
�1/2|x|)

)
.

(78)

This asymptotics also holds for the Bargmann function of |�(even)φ 〉 in the sector
|Z| >> 1, Z ∈ S+: it indeed corresponds to known asymptotics of the parabolic
cylinder functions D−1+2µ [BaHTF, Chap. 8]. This gives for the Husimi function:

|�φ,T (x)|2
2π�

∼ Scont
1 (λ, φ)

2λ
√
π�

1

|q ′ − ip′| e
− p′2

�
−2 φ

λ
p′
q′ . (79)

For fixed q ′ >>
√

�, the p′-Gaussian of width
√

� is centered on the point p′ =
−�φ/λq ′, that is on the classical hyperbola. The function decreases as 1

q ′ along the
“crest”.

• in the region |x| >> 1√
�

, x ∈ S+, the Bargmann function is “dominated” by the
coherent state at time T :

�φ,T (x) =
√

2

�1/2−iφ/λ(q ′ − ip′)2
e−

p′2(1−�
2)

2�
− q′2�

2 e−i q
′p′(1−2�

2)
2�

×
(

1+O
( 1

�|x|2
)
+O(�2)

)
. (80)

The crossover between the 1√
q ′

decay and the e−
q′2�

2 decay is governed by the function

γ (µ,U0), with U0 ∼ �q ′2/2 varying from small to large values.

6.2. Pointwise description of the torus quasimodes. Using the results in the last sec-
tion, we will now derive semiclassical estimates for the Bargmann function of the torus
quasimode |�cont

φ 〉:

�φ(x)
def= 〈x, c̃0, θ |�cont

φ 〉 = 〈x, c̃0|P̂θ |�φ,T 〉
=
∑

n∈Z2

eiϑ(x,n) �φ,T (x + n), (81)

with the phases ϑ(x, n) = n · θ + iδn − iπNx ∧ n.
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From now on we restrict x to the fundamental domain F . We will split the above sum
between a few “dominant terms” and a “remainder”, which we then bound from above
by using similar methods as in Appendix 10.1. We will only provide a sketch of the
proof.

From the last subsection, we know that the function �φ,T (x) is concentrated along
the hyperbola {p′ = −�φ/λq ′}, which is itself

√
�-close to the stable and unstable axes.

We therefore define two strips Bu, Bs around these axes:

Bu =
{
x ∈ R

2, |p′(x)| ≤ 2
√

�T and |q ′(x)| ≤ Co

9
√

�T

}
, Bs = {q ′ ↔ p′}.

We call B
def= Bu ∪Bs the union of these strips, Sq = Bu ∩Bs the “central square” and

BT
u ,BT

s andBT their periodizations on T or F . The coefficientCo/9 in the above defini-
tion is chosen such that Bu (resp. Bs) does not intersect any of its integer translates (see
Eq. (25)). As a consequence, for any x ∈ F the intersection between the lattice x + Z

2

and Bu (resp. Bs) is either empty, or it contains a single point noted x + nu,x (resp.
noted x + ns,x), with nu/s,x ∈ Z

2. These (possible) points define our “dominant terms”
in (81). The remainder thus consists in the sum over n ∈ Z

2 such that (x + n) �∈ B. In
order to state the pointwise estimate, we define the “modified characteristic functions”
χu(x), χs(x) on F as

{
χu(x) = eiϑ(x,nu,x ) if x ∈ BT

u , 0 otherwise
χs(x) = eiϑ(x,ns,x ) if x ∈ BT

s \Sq, 0 otherwise

(this definition is consistent: nu,x is well-defined iff x ∈ BT
u ). The slight asymmetry

between χu and χs will prevent double counting for x in the central square.

Proposition 8. The Bargmann functions of the quasimodes |�cont
φ 〉 have the following

expression, uniformly for x ∈ F and φ in a bounded interval:

〈x, c̃0, θ |�cont
φ 〉

= χu(x) 〈x + nu,x, c̃0|�φ,T 〉 + χs(x) 〈x + ns,x, c̃0|�φ,T 〉 +O(�1/2T 1/4). (82)

On the RHS, |�φ,T 〉 may be replaced by |�(even)φ 〉.
Notice that �φ,T (x) at the “edge” of Bu or Bs is of order O(�1/2T 1/4), so that the

above estimate of the remainder is sharp.
This equation gives precise information for x ∈ BT, but also a nontrivial upper bound

in T\BT. It implies that the Bargmann (and Husimi) function of |�cont
φ 〉 is concentrated

along (a portion of) the periodized classical hyperbola, itself asymptotically close to the
invariant axes (see Fig. 9 and compare with Fig. 8). These features were not visible in
the framework of Sect. 5.

Sketch of proof. We have to find an upper bound for the sum
∑
n∈Z2,x+n�∈B |�φ,T (x+n)|.

We first consider the points x+n in the sector S+; since they satisfy |x+n| >> √
�, the

Bargmann function is described by formulas (78)–(80). As in Appendix 10.1, we split
the region S+ \B into a union of strips parallel to the unstable axis, of width δp′ = √

�.
The results of Sect. 3.1 imply that two points (x+n), (x+m) in such a strip are separated
by at least |q ′(n − m)| ≥ Co�

−1/2. Summing the estimates (78,80) in these strips, we
obtain the (x-independent) upper bound O(√�T 1/4) for points in S+. From (75), the
sum over the three other sectors leads to the same bound. ��
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(a) (b)

q
p

q

p
p

q

Fig. 9. Husimi functions of quasimodes |�cont
φ=0〉 (left: 3D linear scale; center: logarithmic scale) and

|�cont
φ=2λ0

〉 (right: logarithmic scale) of the map M̂Arnold (N = 500)

6.3. Controlling the speed of convergence. Using the pointwise formula (82), we can
now directly compute the Fourier coefficients of the Husimi function of |�cont

φ 〉:

H̃c̃0,�
cont
φ
(k)

def=
∫

F
dx e2iπx∧k N |〈x, c̃0, θ |�cont

φ 〉|2, k ∈ Z
2.

We will prove the following estimate:

Proposition 9. The Fourier coefficients of the (non-normalized) Husimi function for the

quasimode |�cont
φ 〉 satisfy, uniformly for φ in a bounded interval and k ∈ Z

2, |k| ≤ e
√
T :

H̃c̃0,�
cont
φ
(k) = Scont

1 (λ, φ)T (1+ δk,0)+O(
√
T ). (83)

This formula yields at the same time the norm of |�cont
φ 〉, the convergence of the nor-

malized quasimode to the measure 1+δ0
2 , but also the remainder O(T −1/2) in this con-

vergence (which we could not obtain with previous methods). We do not know whether
this estimate is sharp; in any case, we believe that the remainder cannot be smaller than
O(T −1). Using the same methods, we can show that the remainder in the convergence
of |�cont

loc 〉n to its limit measure δ0 behaves as F(k)T −1, with a function F(k) �≡ 0.

Proof. From Eq. (82), we split Hc̃0,�φ (x) into 3 components:

Hdiag(x) = N
(
|χu(x)�φ,T (x + nu,x)|2 + |χs(x)�φ,T (x + ns,x)|2

)
, (84)

Hinterf(x) = N
(
χu(x)χs(x)�φ,T (x + nu,x)�φ,T (x + ns,x) + c.c.

)
, (85)

Hremain(x) = O(�−1/2T 1/4)
(|χu(x)�φ,T (x + nu,x)|

+|χs(x)�φ,T (x + ns,x)|
)+O(

√
T ). (86)

We will show that the integrals over F of the “remainder” and the “interference” com-
ponents are O(T 1/2), while the integral of e2iπx∧k Hdiag(x) yields the dominant contri-
bution in (83).

The integral of Hremain on F is easy to treat. It involves
∫
B
dx |�φ,T (x)|, which we

estimate by using the asymptotics (78) in the domain x ∈ B, |x| >> √
�. This yields∫

B
dx|�φ,T (x)| = O(�1/2T −1/4), so the integral of Hremain is an O(√T ).



478 F. Faure, S. Nonnenmacher, S. De Bièvre

Homoclinic intersections. To understand the “interference component” Hinterf(x), we
have to describe a little bit the set (BT

u ∩BT
s ) \ Sq. It is composed of a large number of

small “squares” surrounding homoclinic intersections (some of them are clearly visible
in Fig. 9). Each of these squares is indexed by a couple of (nonequal) integer vectors
(nu, ns) (finitely many such couples correspond to an actual square in BT):

Sqnu,ns
def= (Bu − nu) ∩ (Bs − ns)
= {|q ′(x)+ q ′(ns)| ≤ 2

√
�T , |p′(x)+ p′(nu)| ≤ 2

√
�T }.

Since we have excluded the central square, one can use the asymptotics (78) for
�φ,T (x + nu/s). The integral of |Hinterf(x)| on Sqnu,ns is then smaller than

C

∫

Sqnu,ns

dq ′ dp′
�
−1/2

√|q ′(x + nu)p′(x + ns)|
e−

q′2(x+ns )
2� e−

p′2(x+nu)
2� ,

which admits the upper bound

C′�1/2
√|q ′(nu − ns)p′(ns − nu)|

≤ C′�1/2
(

1

|q ′(nu − ns)| +
1

|p′(ns − nu)|
)
.

We now want to sum the RHS over all homoclinic squares in BT. To compute the sum
over 1/q ′ (resp. 1/p′), we consider the squares as subsets of Bu (resp. Bs), which orders
them along the strip. Two successive squares do not overlap, so their centers in Bu (resp.
in Bs) satisfy |δq ′| ≥ 4

√
�T . As a result, the total number of squares is less than C

�T
,

and summing their contributions we get

∫

T

|Hinterf(x)| dx ≤ 4C′�1/2
C/�T∑

j=1

1

j 4
√

�T
= O

(
1√
T
| log(�T )|

)
= O(

√
T ).

Notice that we ignored the phases present in Hinterf(x), as we had done in Sect. 4.3 to
estimate I (t, s).

Diagonal contribution. We now finish the proof by computing the integral
∫

F
dx e2iπx∧k Hdiag(x) = N

∫

B

dx e2iπx∧k |�φ,T (x)|2.

The wedge product 2πx∧k is rewritten kuq ′ +ksp′ in the adapted coordinates. If k �= 0,
then ku = 2πv+ ∧ k, ks = 2πv− ∧ k are bounded away from zero (cf. Sect. 3.1).

We give some details for the computation of the integral in the positive sector S+. Let
�(�) be a semiclassically increasing function s.t. 1 << �(�) << T 1/4. The integral
of Hdiag in the central region (|q ′| < �

√
�) admits the obvious upper bound O(�2).

In the region {x ∈ S+, q ′ > �
√

�}, one can apply the asymptotics (79). After
integrating over p′, we obtain

Scont
1 (λ, φ)

2λ

∫ Co

9
√

�T

�
√

�

dq ′
eikuq ′

q ′

(
1+O(e−4T )+O

(
�

q ′2
)
+O(�k2

s )

)
.
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This integral is easy to estimate:

• for k = 0, it yields

Scont
1 (λ, φ)

2λ
log

( C

�
√
T�

)
+O(�−2) = Scont

1 (λ, φ)

2
T +O( log(�

√
T )
)
.

• for k �= 0, it has the asymptotics [BaHTF, Chap. 9]

Scont
1 (λ, φ)

2λ
| log(

√
��ku)| +O(1) = Scont

1 (λ, φ)

4
T +O(log(�ku)).

Taking the 3 remaining sectors into account, we obtain the proposition. ��

6.4. Husimi function close to the origin andLs norms. Besides providing the limit semi-
classical measure, the pointwise formula (82) allows us to compute different indicators
of localization for the quasimode |�cont

φ 〉n, namely the Ls norms of its Husimi function
[Pr, NV2]:

(s > 0) ‖H�‖s def=
(∫

T

[H�(x)]
s dx

)1/s

.

For s = 2, this defines a phase space analogy of the “inverse participation ratio” used in
condensed-matter physics; in the limit s → 1+, it yields the Wehrl entropy of the state;
for s →∞, this is sup-norm of the Husimi density.

Proposition 10. For any fixed ∞ ≥ s > 1 and φ in a bounded interval, the Ls norms
of the quasimodes |�cont

φ 〉n behave in the semiclassical limit as

∥∥∥Hc̃0,|�cont
φ 〉n

∥∥∥
s
∼ C(s, φ/λ)

�
1− 1

s | log �|
.

By comparison, the Ls-norms of a coherent state |c̃, θ〉 behave as C′(s, c̃)�−1+1/s as
� → 0, c̃ in a bounded set [NV2]. In the case of the sup-norm, we have a more precise
statement (see Fig. 8):

Proposition 11. For small enough �, the maximum of Hc̃0,|�cont
φ 〉n(x) is at the origin

for |φ|/λ < 0.5, and C(∞, φ/λ) = |�(1/4+iφ/2λ)|2
25/2π3/2 . Conversely, for |φ|/λ >> 1,

the maximum is close to the points Q′ = −P ′ = ±√φ/λ on the hyperbola, and
C(∞, φ/λ) ∼ (25/2√π |φ|/λ)−1.

Sketch of proof. For any s > 1, the decrease ∼ 1
|x|s of the Husimi function along the

hyperbola implies that most of the weight in the integral
∫
F Hs

�cont
φ

is supported near the

origin, so that this integral is close to
∫
R2 Hs

�
(even)
φ

. This yields the proposition, with the

coefficientsC(s, φ/λ) given as integrals of parabolic cylinder functions. The statements
on the maxima derive from known results about parabolic cylinder functions. ��
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6.5. Odd-parity quasimodes. The connection (82) between torus quasimodes |�cont
φ 〉

and generalized eigenstates |�(even)φ 〉 hints at a property we have not used much, namely

parity. We have already mentioned that for each energy E = −�φ, Ĥ admits two inde-
pendent generalized eigenstates, |�(even)φ 〉 of even parity, and a second one of odd parity,

which we denote by |�(odd)φ 〉. On the one hand, the Bargmann function of the latter can
be expressed similarly as in Eq. (76):

〈x, c̃0|�(odd)φ 〉 = C′φ e−|Z|2
{
D−1+2µ(2Z)−D−1+2µ(−2Z)

}
.

On the other hand, as we did for |�(even)φ 〉, we can build this odd eigenstate by propa-
gating an “odd” coherent state at the origin, i.e. replacing the initial |c̃0〉 in Eq. (72) by
the first excited squeezed state

|c̃0〉1 def= M̂(c̃0,0)a
†|0〉.

The Bargmann function of the corresponding quasimode |�φ,T 〉1 is given by an integral

similar to (73), with the integrand multiplied by the factor Q′−iP ′√
2 cosh λs

: this is therefore an

odd function of x, semiclassically close to 〈x, c̃0|�(odd)φ 〉.
Projecting this plane odd quasimode to the torus through P̂θ , one obtains a quasi-

mode |�(odd)φ 〉 of M̂ with quasiangle φ. Provided one has selected periodicity con-

ditions θ ≡ (0, 0) mod π , parity is conserved by P̂θ , so that the Bargmann function
〈x, c̃0, θ |�φ〉 (resp. 〈x, c̃0, θ |�(odd)φ 〉) is an even (resp. an odd) function of x. As a
result, these two quasimodes are mutually orthogonal. The Bargmann and Husimi func-
tions of |�(odd)φ 〉 can be described as precisely as for its even counterpart, in particular

its normalized Husimi and Wigner functions converge as well to the measure 1+δ0
2 , with

a remainder O(T −1/2).

q

p

Fig. 10. Husimi functions of the odd eigenstate |�(odd)φ=0 〉 (linear scale) and the torus quasimode |�(odd)φ=0 〉
(logarithmic scale) for N = 500. Notice the zero at the origin
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6.6. On the “robustness” of continuous quasimodes. We want to show that the con-
tinuous quasimodes |�cont

φ 〉, |�oddφ 〉 are “stable” with respect to a change of the initial
state (|c̃0〉 and |c̃0〉1, respectively). One can indeed obtain an even quasimode very close
to |�cont

φ 〉 by propagating a different initial state |ψ0〉: this state needs to be of even
parity, sufficiently localized (e.g. a finite combination of excited coherent states), and
taken away from a subspace of “bad” initial states. These remarks will be made more
quantitative in Appendix 10.2, which treats the case where |ψ0〉 is a squeezed coherent
state of arbitrary squeezing.

To explain this “robustness”, we notice that the operator

P̂cont
−∞,∞,φ

def=
∫ ∞

−∞
ds e−iφs e−iĤ s/�

projects L2(R) onto the 2-dimensional space spanned by |�(even)φ 〉 and |�(odd)φ 〉. Any

even state |ψ0〉 ∈ L2(R)will thus be projected ontoCφ(ψ0)|�(even)φ 〉, with the prefactor

Cφ(ψ0) =
〈�(even)φ |ψ0〉
〈�(even)φ |c̃0〉

.

This prefactor vanishes iff there exists a state |ϕ0〉∈L2(R) such that |ψ0〉=(Ĥ+�φ)|ϕ0〉;
such |ψ0〉 form a “bad” subspace of codimension 1 inside the space of even states.

If |ψ0〉 is localized inside a disk of radius C�
1/2+ε at the origin, one can describe the

plane quasimode P̂cont
−T ,T ,φ |ψ0〉 as in (77):

〈x, c̃0|P̂cont
−T ,T ,φ |ψ0〉 = Cφ(ψ0)〈x, c̃0|�(even)φ 〉 +O(�1/2−ε) uniformly in x ∈ R

2.

(87)

If Cφ(ψ0) is of order unity, this estimate shows that P̂cont
−T ,T ,φ |ψ0〉 resembles the quasi-

mode |�φ,T 〉. One can then show (as in Sect. 6.2) that the torus state P̂θ P̂cont
−T ,T ,φ |ψ0〉 is

close to the quasimode Cφ(ψ0)|�cont
φ 〉.

As an example, consider the case φ = 0: one can start from any (finitely) excited
coherent state of the form |c̃0〉4n ∝ M̂(c̃0,0)

(
a†
)4n|0〉 to obtain a quasimode asymptoti-

cally close to |�cont
0 〉. On the opposite, the states |c̃0〉4n+2 are “bad” initial states, because

they are in the range of Ĥ .
This discussion straightforwardly transposes to the construction of the odd quasi-

modes |�oddφ 〉 starting from odd localized states.

7. Quasimodes on a General Periodic Orbit

We have so far described the construction of quasimodes localized on the fixed point 0
of the classical map M . We will now generalize this construction to a general periodic
orbit ofM . The associated Husimi densities will be shown to be (semiclassically) partly
localized on the orbit and partly equidistributed. The proofs require some minor changes
with respect to the previous case, but no fundamentally new ingredients.

We consider a fixed periodic orbit P = {x� ∈ F}τ�=0 of (primitive) period τ , in other
words, for 0 ≤ � < τ ,Mx� = x�+1 mod Z

2 and xτ = x0. Note thatMτx� = x� mod Z
2,
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so that all x�, when viewed as points on the torus, are fixed points of M ′ def= Mτ . Fur-
thermore, for all 0 ≤ � ≤ τ , there exist m� ∈ Z

2 so that

x� = M�x0 −m�.
We will first introduce the discrete time quasimode defined in (2) and will consider its
continuous time analog below:

|�disc
φ 〉 =

T−1∑

t=−T
e−iφt M̂t P̂θ T̂x0 |c̃0〉.

Letting T be the integer multiple of τ that is closest to | ln �|/λ, and setting T ′ = T/τ ,
a simple computation yields

|�disc
φ 〉 =

τ−1∑

�=0

e−iφ� |�disc
� 〉 where |�disc

� 〉 = M̂�




T ′−1∑

k=−T ′
e−iφτk M̂ ′k



 P̂θ T̂x0 |c̃0〉.

(88)

It is easy to see that

M̂�P̂θ T̂x0 = P̂θ T̂x�+m�M̂
� = eiS� P̂θ T̂x�M̂

�, (89)

where S� = θ ·ml + iδml + iπNml ∧ xl (see (19)). This phase can partly be interpreted
in terms of the action along the classical orbit; however, the θ -term is non-classical,
akin to the quantum phase due to a pointwise magnetic flux tube on a charged particle
(Aharonov-Bohm effect) [KM]. Hence

|�disc
� 〉 = eiS�




T ′−1∑

k=−T ′
e−iφτk M̂ ′k



 P̂θ T̂x�M̂�|c̃0〉. (90)

This suggests that |�disc
� 〉 is a quasimode of quasiangle φτ for M̂ ′, associated to the

fixed point x� of M ′. This is basically the content of Proposition 12. There is another
instructive way of rewriting |�disc

� 〉 which corroborates this idea. For that purpose, we
first draw from Eq. (89),

M̂τkP̂θ T̂x0 = eikSτ P̂θ T̂x0M̂
τk and M̂τk+�P̂θ T̂x0 = ei(kSτ+S�) P̂θ T̂x�M̂

τk+�. (91)

Using this, one can write

|�disc
� 〉 = eiS� T̂x� P̂θ̃�




T ′−1∑

k=−T ′
e−i(φτ−Sτ )k M̂ ′k



 M̂�|c̃0〉, (92)

where we used P̂θ T̂x� = T̂x� P̂θ̃�
with θ̃� = θ + 2πN(p�,−q�). A simple computation

shows that, because x� is a fixed point for Mτ , θ̃� is a fixed point for the map θ → θ ′
defined in (31), with M replaced by M ′. Consequently, |�disc

φ 〉 is the x� translate of

a quasimode for M̂ ′ at the origin with quasiangle φτ − Sτ , of the type studied in the
previous sections.
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To build continuous time quasimodes, we replace in all the above formulas |c̃0〉 by

1

τ

∫ τ

0
dt e−it φ̃ e−

i
�
Ĥ t |c̃0〉, (93)

where the “quasienergy” φ̃ ∈ R is chosen so that

τ φ̃ ≡ τφ − Sτ mod 2π. (94)

Whereas the quasiangle φ is defined modulo 2π , the quasienergy φ̃ is chosen in R. The
continuous quasimode reads:

|�cont
� 〉 = eiS� T̂x� P̂θ̃�

1

τ

∫ T

−T
dt e−iφ̃t e−

i
�
Ĥ t M̂�|c̃0〉. (95)

All the above quasimodes can of course in obvious ways be split into a localized and an
equidistributing part, as before. For both the discrete and continuous time quasimodes
we have the following estimates:

Proposition 12. For all 0 ≤ �′ < � ≤ τ − 1, for all f ∈ C∞0 (T2), for all k ∈ Z,

〈��|��〉 = 2T ′S1(φτ − Sτ , τλ)+O(1), (96)

lim
�→0

n〈��|f̂ |��〉n = 1

2
f (x�)+ 1

2

∫

T2
f (x)dx, (97)

lim
�→0

n〈��′ |T̂k/N |��〉n = 0. (98)

The quasimodes |�φ〉 satisfy (7), the limit being uniform for φ, φ̃ in a bounded interval.

Starting from (95) a pointwise analysis of the continuous time quasimode |�cont
P,φ〉

can be performed as well, along the lines of Sect. 6.2. One should notice that the Husimi
function of |�cont

P,φ〉 in the
√

�-vicinity of a periodic point xl is dominated by the contri-

bution of |�cont
l 〉; it is concentrated on a hyperbola which depends on the quasienergy

φ̃ rather than on the quasiangle φ.

Proof of the proposition. We write the proof for the discrete time quasimodes only.
Equation (92) immediately implies (96) and (97) as a consequence of the results of
Sect. 5. To prove (98) when k = 0, i.e. the asymptotic orthogonality of the |��〉, we
write, using (88) and (91),

〈�disc
�′ |�disc

� 〉

=
T ′−1∑

k′=−T ′

T ′−1∑

k=−T ′
e−i(φτ−Sτ )(k−k′)+iS�−�′ 〈c̃0|T̂−x0 P̂θ T̂x�−�′ M̂

(�−�′)+τ(k−k′)|c̃0〉,

so that

∣∣〈�disc
�′ |�disc

� 〉∣∣ ≤
T ′−1∑

k′=−T ′

T ′−1∑

k=−T ′

∑

m∈Z2

|〈c̃0|T̂−x0 T̂mT̂x�−�′ M̂
(�−�′)+τ(k−k′)|c̃0〉|

≤
T ′−1∑

k′=−T ′

T ′−1∑

k=−T ′
Jr(τ (k − k′)+ �− �′, 0) ≤ C, (99)
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where r = x0 − x�−�′ , and where we used the estimate Jr(t, 0) ≤ C� eλ|t |/2 extracted
from Appendix 10.1. To prove (98) when k �= 0, one repeats the arguments of Sect. 5:
we omit the details. For continuous quasimodes, the proofs are analogous, using this
time the same estimate on Jr(t, s). The proof of (7) follows immediately. ��
Convex combinations of limit measures. We can further enlarge the set of semiclassi-
cal limit measures by taking finite convex combinations of the previous ones. Consider
a finite set of periodic orbits {P1, . . . ,Pf }, and complex coefficients {α1, . . . , αf }
satisfying

∑f
i=1 |αi |2 = 1. Let |�Pi ,φ〉 be quasimodes (discrete or continuous time)

associated to Pi , as defined above, with the same quasiangle φ. We can then combine
them into the quasimode

|�〉 def=
f∑

i=1

αi |�Pi ,φ〉n.

One readily shows along the lines of the proof of Proposition 12 that for i �= j , and for
all k ∈ Z

2, one has
lim
�→0

n〈�Pi
|T̂k/N |�Pj

〉n = 0.

This together with (7) shows that the Husimi and Wigner functions of |�〉n converge to

the limit measure 1
2

(
dx +∑f

i=1 |αi |2 δPi

)
.

8. Scarred Eigenstates for Quantum Cat Maps of Short Quantum Periods

We will now slightly extend an argument from [BonDB1] in order to show that the
quasimodes we have built and studied in the previous sections are exact eigenstates of
the quantum map M̂ for certain special values of � and we will prove Theorem 1.

For that purpose, we first recall a few facts about quantum cat maps [HB]. For a given
value of N = (2π�)−1, every quantum map M̂ has a “quantum period” P(N) defined
to be the smallest nonnegative integer such that

M̂P (N) = eiϕ(N) ÎHN,θ
for a certain ϕ(N) ∈ [−π, π [. (100)

It follows that, if φ is of the type φ = φj = ϕ(N)+2πj
P (N)

, then 1
P(N)

P̂t1,t1+P(N),φj is

independent of t1, and is the spectral projector onto the eigenspace of M̂ inside HN,θ

associated to the eigenvalue eiφj (the normalization factor 1/P (N) ensures that it is
indeed a projector). All eigenvalues of M̂ on HN,θ are necessarily of that form.

The function P(N) depends onN in an erratic way, and no closed formula exists for
it [Ke]. It satisfies the general bounds

∃C > 0, ∀N ∈ N
∗,

2

λ
logN − C ≤ P(N) ≤ C N log logN. (101)

It is moreover known that, for “almost all” integers, P(N) ≥ √
N [KR2]. We will now

give an elementary argument to show that, given any hyperbolic matrix in SL(2,Z),
there exists an infinite sequence of integers Nk for which the quantum period is very
short in the sense that it saturates the above lower bound:

P(Nk) = 2
logNk
λ

+O(1) = 2Tk +O(1), (102)

where the Ehrenfest time T was defined in (45).
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Let us first recall that, for all k ∈ N
∗, one has

Mk = pkM − pk−1, where pk =
eλk − e−λk

eλ− e−λ
, p0 = 0.

It was proven in [BonDB1] that, for all k ≥ 1, the integer Ñk = GCD(pk, pk−1 + 1)
satisfies

2

λ
log Ñk = k +O(1), (103)

and that

Mk = I + ÑkMk, with Mk an integer matrix. (104)

We now set Nk = Ñk if Ñk is odd, Nk = Ñk/2 if Ñk is even. Choosing the periodicity
angle θ = (0, 0) when Nk is even and θ = (π, π) when Nk is odd (which makes sense,
cf. the end of Sect. 3.2), we prove below the following lemma:

Lemma 4. With Nk , θ given as above, M̂k = eiϕ ÎHNk,θ
for a certain ϕ ∈ [−π, π [.

This means that the quantum period P(Nk) of M̂ on HNk,θ divides k. Comparing
(101) with (103) entails that for k large enough, P(Nk) = k and (102) holds.

Proof of the lemma. The case Ñk = 2Nk , θ = (0, 0) was treated in [HB]. We give a
different proof, which works for both cases.

From Schur’s Lemma and the irreducibility of the T̂n/Nk , it suffices to show that[
M̂k, T̂n/Nk

]
= 0 on HNk,θ , for all n ∈ Z

2. Setting Ñk = εNk , θ = ε′(π, π) and using

the definition of P̂θ , Eqs. (19) and (20), one readily computes

M̂kT̂n/Nk M̂
−kP̂θ = eiπε(n∧Mkn) T̂n/Nk T̂MknP̂θ

= (−1)ε(n∧Mkn)+εε′[(Mkn)1+(Mkn)2+(Mkn)1(Mkn)2]T̂n/Nk P̂θ .

This phase is trivial if ε = 2. In the case ε = ε′ = 1 (that is, Ñk odd), one must consider
the 6 possible values of M modulo 2: in all cases, the phase is trivial. ��

If we now consider such a value Nk together with an admissible eigenangle φjk , the
eigenstates

|�k〉 =
P(Nk)/2−1∑

t=−P(Nk)/2
e−iφjk t M̂t |x0, c̃0〉

are (discrete time) quasimodes of the quantum map as studied in the previous sections.
Indeed, as discussed at the end of Sect. 5, since T and P(Nk)/2 differ by a bounded
number of terms in the semiclassical limit, we can replace one by the other in (2), with-
out affecting any of the semiclassical properties of the quasimodes. One can similarly
construct eigenfunctions that are continuous time quasimodes.
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Proof of Theorem 1. The previous arguments settle the case β = 1/2. To treat the gen-
eral case, we recall that the Schnirelman theorem implies the existence of a sequence
of eigenfunctions |ϕk〉n of M̂ on HNk,θ (with corresponding eigenvalues (φjk )k∈N) that
equidistribute as k→∞. We then construct, for 0 ≤ α ≤ 1:

|ψk〉 = α|�k〉n +
√

1− α2|ϕk〉n.
If we show that, for all n ∈ Z

2,

lim
�→0

n〈ϕk|T̂n/Nk |�k〉n = 0,

a simple computation implies that the |ψk〉n satisfy (8) with β = α2/2. We have

lim
�→0

n〈ϕk|T̂n/Nk |�k〉n = lim
�→0

(
n〈ϕk|T̂n/Nk |�k,erg〉n + n〈ϕk|T̂n/Nk |�k,loc〉n

)
.

The second limit vanishes with an argument as in (71), whereas for the first, we use the
further decomposition |�k,erg〉 = |�k,1〉 + |�k,4〉 with |�k,1〉 = eiφjk T /2 M̂−T/2|�k,2〉,
|�k,4〉 = e−iφjk T /2 M̂T/2|�k,3〉 (see (3)). Now, since |ϕjk 〉n is an eigenfunction, we have

∣∣
n〈ϕk|T̂n/Nk |�k,4〉n

∣∣ = ∣∣
n〈ϕk|M̂−T/2T̂n/Nk M̂

T/2|�k,3〉n
∣∣.

As in the proof of Proposition 6, and more specifically Eq. (71), this tends to 0 with �.
��

For matrices M of “checkerboard structure”, the results of [KR1, Me] imply that,
given an arbitrary sequence of eigenvalues (φjk )k∈N, there exists a corresponding se-
quence of eigenvectors |ϕk〉 ∈ HNk,θ that semiclassically equidistribute. One can then
construct for the same eigenvalues eigenstates |ψk〉 satisfying Eq. (8).

The P(Nk) eigenstates with distinct eigenvalues constructed above are of course
exactly orthogonal to each other, and not just asymptotically as proven in Sect. 5.3. On
the other hand, two continuous time eigenstates of identical eigenangle φj but different
quasienergies φ̃ − φ̃′ = sπ/T , s �= 0 become orthogonal in the semiclassical limit.
This is also the case for two eigenstates with the same eigenangle supported on different
periodic orbits P �= P ′.

9. Conclusion

In this article we have constructed and analyzed a certain class of “quasimodes” of
hyperbolic quantized torus isomorphisms, which for certain values of � become exact
eigenstates. The characteristic property of these quasimodes is that their “quantum limit”,
that is the weak limit of their Husimi densities, does not yield the Liouville measure,
but contains a singular component supported on a (finite union of) periodic orbit(s). In
our case, this singular component has a relative weight β ≤ 1/2, less than or equal
to the weight of the Liouville part. As explained in the introduction, no limit measure
of eigenstates can have a “larger” singular component. We further conjecture that no
sequence of quasimodes (i.e. images of the operators ∧P−T ,T ,φ) can have a more singular
limit measure either.

The strong scarring of eigenstates exhibited in this paper is directly linked to the
very large degeneracies of the eigenvalues of M̂ for certain special values of Planck’s
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constant. Therefore, such sequences of eigenstates are very probably absent as soon as

one considers nonlinear perturbations of the dynamics, for instance M̂ε = e−iεĤ1/� M̂ ,
for any periodic HamiltonianH1(x) and ε > 0 small enough. Such a perturbation of the
classical map is known to conserve the uniform hyperbolicity, but destroys the “action
degeneracies” characteristic of the (linear) cat map. As a consequence the spectrum of
the perturbed map exhibits Random Matrix statistics, in particular “repulsion” between
eigenangles [KM], which forbids degeneracies.

The precise characterization of some weaker form of scarring for individual eigen-
states that would remain valid for M̂ε remains therefore an open problem. Nevertheless,
it might be interesting to study the phase space distribution of the “nonlinear“ quasi-
modes of the type

∑T
t=−T e−iφt M̂t

ε |x0, c̃〉, for x0 a periodic point ofMε , which may not
be as simple to describe as for the linear map.
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E. Vergini, A. Voros, D. Wisniacki. F. F. acknowledges the kind hospitality of the Service de Physique
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10. Appendices

10.1. Estimate of the interference term I (t, s). In this appendix we prove Proposition 1.
For the purpose of Sect. 7 we will at the same time give a bound for the more general
overlap (t, s ∈ R)

∣∣∣〈r, c̃s |P̂θ e−iĤ t/� |c̃s〉
∣∣∣ ≤

∑

n∈Z2

∣∣∣〈r + n, c̃s | e− i
�
Ĥ t |c̃s〉

∣∣∣ , (105)

where r ∈ F (the fundamental domain) belongs to the lattice
( 1
D

Z
)2

, with D ∈ N
∗ and

where θ ∈ [0, 2π [×[0, 2π [ is arbitrary (in other words, θ need not be equal to the fixed
point of the map (31). We define

Jr(t, s)
def=

∑

n∈Z2,r+n�=0

∣∣∣〈r + n, c̃s | e− i
�
Ĥ t |c̃s〉

∣∣∣ . (106)

We first consider the case s = 0, t ≥ 0. Since
√

� ≤ �p′ ≤ √
2� for all positive times,

only the points r + n near the unstable axis can significantly contribute. Therefore, we
subdivide the plane into strips parallel to this axis: the “outer” strips

∀l ≥ 1, S±l =
{
x | al ≤ ±p′(x) < al+1

}
,

with al = W0+(l−1)W , and the central strip S0 =
{
x �= 0 | p′(x)| < W0

}
. The widths

W0, W will be explicitly set below.
We start by estimating the contribution of the points r + n ∈ Sl with l ≥ 1. Due to

the diophantine condition (25), as long as W is small enough, two points in this strip
satisfy the property |q ′(r + n)− q ′(r +m)| > Co/W . Ordering these points according
to their abscissas: q ′(r + nj ) < q ′(r + nj+1) < q ′(r + nj+2), we have for any α > 0 :

∑

j∈Z

exp
{
−αq ′(r + nj )2

}
≤
∑

j∈Z

exp

{
−α

(
jCo

W

)2
}
. (107)



488 F. Faure, S. Nonnenmacher, S. De Bièvre

The sum on the RHS is a one-dimensional theta function, which has the upper bound
(optimal for 0 < α small enough):

∑

j∈Z

e−αj2 ≤ 1+
√
π

α
. (108)

As a result, using (43) it becomes clear that the contribution to Jr(t) of the points
r + n ∈ Sl is bounded above by

∑

r+nj∈Sl

1√
cosh λt

exp

{
−1

2

[
p′(r + nj )2
�p′2

+ q ′(r + nj )2
�q ′2

]}

≤
√

2 e−λt/2 e
− a2

l

2�p′2
[

1+
√

2π
W�q ′

Co

]
. (109)

The estimate (108) can then be applied to the sum over the strips Sl , l �= 0, to obtain

(remind |t; c̃0〉 = e−iĤ t/� |c̃0〉)
∑

l �=0

∑

r+n∈Sl
|〈r + n, c̃0|t; c̃0〉|

≤
√

2 e−λt/2 e
− W2

0
2�p′2

[
2+

√
2π�p′

W

] [
1+

√
2πW�q ′

Co

]
.

For each time t , we can minimize the RHS with respect toW by takingW 2 = Co
�p′

2�q ′ =
Co
2 e−λt , which leads to the bound

∑

l �=0

∑

r+n∈Sl
|〈r + n, c̃0|t; c̃0〉| ≤ 2

√
2 e

− W2
0

2�p′2 e−λt/2
[

1+
√
π

Co
�p′ eλt/2

]2

. (110)

Notice that this upper bound is independent of the point r .
We now estimate the contribution of the strip S0, which requires more care, and will

depend on r . For any point r ′ �= 0 on the lattice
( 1
D

Z
)2

sufficiently close to the unstable

axis, the diophantine property (25) implies |p′(r ′)| ≥ Co
D2|q ′(r ′)| . As a consequence, the

quadratic form appearing in (43) may be bounded inside S0 by

q ′(r + n)2
2�q ′2

+ p′(r + n)2
2�p′2

≥ q ′(r + n)2
2�q ′2

+ C2
o

2D4�p′2 q ′(r + n)2
def= ft (q

′(r + n)).
(111)

The function ft satisfies the scaling property ft (q) = Co e−λt
2D2�p′2 f

(
qD e−λt/2√

Co

)
, with

f (q)
def= q2 + q−2. This function f (q) is bounded below for all positive q by the

parabola g(q) = 2+ (q − 1)2, so after rescaling we get

∀q > 0, ft (q) ≥ gt (q) def= Co e−λt

D2�p′2
+ e−2λt

2�p′2
(
q −

√
Co eλt/2 /D

)2
.
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We consider the contributions of the points r+n in S0 such that q ′(r+n) > 0 (the points
with negative q ′ can be treated identically). We order these points as 0 < q ′0 < q ′1 < . . . :

each contribution is bounded above by the quantity (cosh λt)−1/2 e−gt (q
′
j ), which is max-

imal for the q ′j close to
√
Co eλt/2 /D. The diophantine inequality |q ′j −q ′j+1| ≥ Co/W0

together with the estimates (107,108) then yield

∑

r+n∈S0

|〈r + n, c̃0|t; c̃0〉| ≤ 2
√

2 exp

{
− Co e−λt

D2�p′2

}
e−λt/2

(
1+

√
2πW0�p

′ eλt

Co

)
.

(112)

This contribution now depends on the rational point r through its denominator D: the
upper bound increases with D. The full sum Jr(t) is bounded above by the sum of the
RHS in (110)–(112). For each time t , we adjust the value ofW0 to minimize that sum. We
do not search the exact minimum, but only its order of magnitude. We have to distinguish
two time intervals:

• for short times (t << T ), the behaviour of (112) is governed by the first exponen-
tial (since �p′2 ≤ 2�). We take W0 such that the first exponential in (110) is much
smaller than that factor, for instance by takingW0 = 2

√
Co e−λt/2 /D. Being careful

for times around t � T , we find

0 ≤ t ≤ T �⇒ Jr(t, 0) ≤ 2
√

2 exp

{
− Co e−λt

D2�p′2(t)

}
e−λt/2

[
1+ C eλ(t−T )/2

]
,

where the constantC is independent on the denominatorD. One may replace�p′2(t)
by its maximum 2� for positive times. The RHS increases with the denominator D.

• for times t ≥ T , the RHS of (112) is now governed by the factor between brackets,
and we want to make sure that (110) is not larger than it. Still taking W0 = e−λt/2
leads to the estimate:

T ≤ t ≤ 2T �⇒ Jr(t, 0) ≤ 2π
√

2

Co
� eλt/2

[
1+ C′ eλ(T−t)/2

]
.

The constant C′ is independent of r , so this bound applies uniformly to any point
x ∈ T: it yields aL∞-bound for the Bargmann (or the Husimi) function of M̂t |c̃0, θ〉.

The same bounds apply as well to Jr(t, s) with s �= 0. Indeed, replacing the initial
squeezing c̃0 by its s-evolved value amounts to dilating the coordinates of the points as
q ′(r + n) �→ eλt1 q ′(r + n), p′(r + n) �→ e−λt1 p′(r + n). One easily checks that this
dilation does not modify the above bounds.

The negative times are treated thanks to the identity Jr(t, s) = J−M−t r (−t, s), and
noticing that the above bounds only depend on the denominator D, common to r and
M−t r .

10.2. Changing the initial squeezing. We chose from the beginning to construct quasi-
modes starting from the coherent state |c̃0〉 defined in Sect. 4.2. The definition was
motivated by the positivity property (40) of the overlap 〈c̃0|M̂t |c̃0〉, and by choosing the
“smallest” parameter c̃ sharing this property. The simple expression (40) was then used
to control the “interferences” I (t, s) (cf. Appendix 10.1), and to obtain from there the
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asymptotic norm of the quasimode (Sect. 5.2), a crucial step for further estimates. Sim-
ilarly, we also chose to analyze the quasimodes using the c̃0-Bargmann representation,
because of the relatively simple formulas for 〈x, c̃0|M̂t |c̃0〉 (see (43)).

We want to stress (as we did in Sect. 6.6 for the continuous quasimodes) that both
these choices were made purely for convenience, and are not crucial for the results of this
paper. The construction of quasimodes can be extended in many ways. In this appendix,
we will consider discrete or continuous quasimodes starting from a squeezed state |c̃1〉,
with an arbitrary (possibly �-dependent) squeezing c̃1. We also want to analyze these
quasimodes using the Bargmann function 〈x, c̃2, θ |�〉 for some c̃2 ∈ C which could
depend on � as well.

Proposition 13. The convergence (7) holds the above quasimodes, as long as c̃1 and c̃2
stay in a fixed compact set K ⊂ C for all �.

Sketch of proof. For an initial state |c̃1〉, the overlap 〈x, c̃1| e−itĤ /� |c̃1〉, crucial in the
calculation of I (t, s), is still given by closed formulas. We only give it for the simpler
case x = 0:

〈c̃1| e−itĤ /� |c̃1〉 = 〈c̃′1|D̂(λt)|c̃′1〉 =
(

cosh(λt)+ iR(c̃′1) sinh(λt)
)−1/2

,

where |c̃′1〉 ∝ Q̂−1|c̃1〉 and R(c) = −#(c) sinh(2|c|)
2|c| . In general, this overlap is therefore

not real. However, it still decreases exponentially fast with time, and its average

S1(c̃1, λ, φ) =
∫

R

dt e−iφt 〈c̃1| e−itĤ /� |c̃1〉

can be easily related with S1(λ, φ) through a change of variable. One gets S1(c̃1, λ, φ) =
e−φτ1

√
cos(λτ1) S1(λ, φ) with the “complex time” τ1 = arctan{R(c̃′1)}/λ.

For x �= 0, the expression for 〈x, c̃1|M̂t |c̃1〉 is more cumbersome than (43). Yet,
it is still a Gaussian having an elliptic profile of width ∼ √

�, length ∼ √
� eλ|t | and

height ∼ e−λ|t |/2, and its long axis is asymptotically lined up with the unstable direc-
tion for t → ∞. As a result, the results of Sects. 4.3–5.3 still hold (replacing S1(λ, φ)

by S1(c̃1, λ, φ)). The localization property (65) holds as well, even if one replaces in
the bras c̃0 by c̃2, as long as c̃2 remains bounded. The rest of the proof to obtain (7)
(Sects. 5.5–5.6) goes through unaltered. ��

Following Sect. 6.6, the plane quasimode P̂cont
−T ,T ,φ |c̃1〉 can be analyzed pointwise

through the estimate (87); one now has explicitly Cφ(|c̃1〉) = e−φτ1
√

cos(λτ1). One
may replace c̃0 by c̃2 in that estimate. As opposed to Eq. (76), the Bargmann function
〈x, c̃2|�(even)φ 〉 is not given in terms of cylinder parabolic functions. Yet, its behaviour
“far” from the origin will be similar to (78). As a consequence, the pointwise estimate
(82) (with c̃0 → c̃2 in the bras) will apply to the torus quasimode P̂θ P̂cont

−T ,T ,φ |c̃1〉 as
well, upon taking the prefactor Cφ(|c̃1〉) into account and replacing in the bras c̃0 → c̃2
on both sides. The estimates of Sects. 6.3–6.4 may be generalized as well to the present
case.
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