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Abstract: For a class of quantized open chaotic systems satisfying a natural dynamical
assumption we show that the study of the resolvent, and hence of scattering and reso-
nances, can be reduced to the study of a family of open quantum maps, that is of finite
dimensional operators obtained by quantizing the Poincaré map associated with the flow
near the set of trapped trajectories.

1. Introduction and Statement of the Results

In this paper we show that for a class of open quantum systems satisfying a natural
dynamical assumption (see §2.2) the study of the resolvent, and hence of scattering, and
of resonances, can be reduced, in the semiclassical limit, to the study of open quantum
maps, that is of finite dimensional quantizations of canonical relations obtained by trun-
cation of symplectomorphisms derived from the classical Hamiltonian flow (Poincaré
return maps).

We first explain the result in a simplified setting. For that consider the Schrödinger
operator

P(h) = −h2� + V (x)− 1, V ∈ C∞c (Rn), (1.1)

and let �t be the corresponding classical flow on T ∗Rn � (x, ξ) (Fig 1):

�t (x, ξ)
def= (x(t), ξ(t)),

x ′(t) = 2ξ(t), ξ ′(t) = −dV (x(t)), x(0) = x, ξ(0) = ξ.
Equivalently, this flow is generated by the Hamilton vector field

Hp(x, ξ) =
n∑

j=1

∂p

∂ξ j

∂

∂x j
− ∂p

∂x j

∂

∂ξ j
(1.2)
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Fig. 1. An example of a potential, V ∈ C∞c (R2), to which the results apply: the Hamiltonian flow is hyperbolic
on the trapped set in a range of energies – see [38, App. C]. In this example each energy surface p−1(E) is
three dimensional, so the Poincaré section is two dimensional as shown in Fig. 2

associated with the classical Hamiltonian

p(x, ξ) = |ξ |2 + V (x)− 1. (1.3)

The energy shift by−1 allows us to focus on the quantum and classical dynamics near the
energy E = 0, which will make our notations easier.1 We assume that the Hamiltonian
flow has no fixed point at this energy: dp�p−1(0) �= 0.

The trapped set at any energy E is defined as

KE
def= {(x, ξ)∈T ∗Rn : p(x, ξ)=E, �t (x, ξ) remains bounded for all t ∈R}. (1.4)

The information about spectral and scattering properties of P = P(h) in (1.1) can be
obtained by analyzing the resolvent of P ,

R(z) = (P − z)−1, Im z > 0,

and its meromorphic continuation – see for instance [33] and references given there.
More recently semiclassical properties of the resolvent have been used to obtain local
smoothing and Strichartz estimates, leading to applications to nonlinear evolution equa-
tions – see [14] for a recent result and for pointers to the literature. In the physics literature
the Schwartz kernel of R(z) is referred to as the Green’s function of the potential V .

The operator P has absolutely continuous spectrum on the interval [−1,∞); never-
theless, its resolvent R(z) continues meromorphically from Im z > 0 to the disk D(0, 1),
in the sense that χR(z)χ, χ ∈ C∞c (Rn), is a meromorphic family of operators, with
poles independent of the choice ofχ �≡ 0 (see for instance [41, Sect. 3] and [39, Sect. 5]).

The multiplicity of the pole z ∈ D(0, 1) is given by

m R(z)
def= rank

∮

z
χR(w)χdw,

where the integral runs over a sufficiently small circle around z.
We now assume that at energy E = 0, the flow �t is hyperbolic on the trapped set

K0 and that this set is topologically one dimensional. Hyperbolicity means [24, Def.
17.4.1] that at any point ρ = (x, ξ) ∈ K0 the tangent space to the energy surface splits
into the neutral (RHp(ρ)), stable (E−ρ ), and unstable (E+

ρ ) directions:

Tρ p−1(0) = RHp(ρ)⊕ E−ρ ⊕ E+
ρ , (1.5)

1 There is no loss of generality in this choice: the dynamics of the Hamiltonian ξ2 + Ṽ (x) at some energy
E > 0 is equivalent with that of ξ2 + Ṽ /E − 1 at energy 0, up to a time reparametrization by a factor

√
E .

The same rescaling holds at the quantum level.
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Fig. 2. A schematic view of a Poincaré section � = � j� j for KE inside p−1(E). The flow near K E can be
described by an ensemble of symplectomorphisms between different components � j – see §2.2 for abstract
assumptions and a discussion why they are satisfied when the flow is hyperbolic on KE and KE has topo-
logical dimension one. The latter condition simply means that the intersections of KE with � j ’s are totally
disconnected

this decomposition is preserved through the flow, and is characterized by the following
properties:

∃C > 0, ∃ λ > 0, ‖d exp t Hp(ρ)v‖ ≤ C e−λ|t |‖v‖, ∀ v ∈ E∓ρ , ±t > 0. (1.6)

When K0 is topologically one dimensional we can find a Poincaré section which reduces
the flow near K0 to a combination of symplectic transformations, called the Poincaré
map F : see Fig. 2 for a schematic illustration and §2.2 for a precise mathematical for-
mulation. The structural stability of hyperbolic flows [24, Thm. 18.2.3] implies that the
above properties will also hold for any energy E in a sufficiently short interval [−δ, δ]
around E = 0, in particular the flow near KE can be described through a Poincaré
map FE .

Under these assumptions, we are interested in semiclassically locating the resonances
of the operator P(h) in a neighbourhood of this energy interval:

R(δ,M0, h)
def= [−δ, δ] + i[−M0h log(1/h),M0h log(1/h)],

where δ,M0 are independent of h ∈ (0, 1]. Here the h log(1/h)-size neighbourhood is
natural in view of results on resonance free regions in case of no trapping – see [26].

To characterize the resonances in R(δ,M0, h) we introduce a family of “quantum
propagators” quantizing the Poincaré maps FE .

Theorem 1. Suppose that�t is hyperbolic on K0 and that K0 is topologically one dimen-
sional. More generally, suppose that P(h) and�t satisfy the assumptions of §2.1–§2.2.

Then, for any δ > 0 small enough and any M0 > 0, there exists h0 > 0 such that
there exists a family of matrices,

{M(z, h), z ∈ R(δ,M0, h), h ∈ (0, h0]},
holomorphic in the variable z, and satisfying

h−n+1/C0 ≤ rank M(z, h) ≤ C0h−n+1, C0 > 1,
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such that for any h ∈ (0, h0], the zeros of

ζ(z, h)
def= det(I − M(z, h)),

give the resonances of P(h) in R(δ,M0, h), with correct multiplicities.
The matrices M(z, h) are open quantum maps associated with the Poincaré maps

FRe z described above: for any L > 0, there exist a family of h-Fourier integral operators,
{M(z, h)}, quantizing the Poincaré maps FRe z (see §2.3.2 and §3.3), and projections
�h (see §5.2.2) of ranks

h−n+1/C0 ≤ rank�h ≤ C0h−n+1,

such that

M(z, h) = �hM(z, h)�h + O(hL). (1.7)

The statement about the multiplicities in the theorem says that

m R(z) = 1

2π i

∮

z

ζ ′(w)
ζ(w)

dw

= − 1

2π i
tr

∮

z
(I − M(w))−1 M ′(w)dw. (1.8)

A more precise version of Theorem 1, involving complex scaling and microlocally
deformed spaces (see §3.4 and §3.5 respectively), will be given in Theorem 2 in §5.4. In
particular Theorem 2 gives us a full control over both the cutoff resolvent of P , χR(z)χ ,
and the full resolvent (Pθ,R − z)−1 of the complex scaled operator Pθ,R , in terms of
the family of matrices M(z, h); for this reason, the latter is often called an effective
Hamiltonian for P .

The mathematical applications of Theorem 1 and its refined version below include
simpler proofs of fractal Weyl laws [43] and of the existence of resonance free strips
[30]. The advantage lies in eliminating flows and reducing the dynamical analysis to
that of maps. That provides an implicit second microlocalization without any technical
complication (see [43, §5]). The key is a detailed understanding of the operators M(z, h)
stated in the theorem.

Relation to semiclassical trace formulæ. The notation ζ(z, h) in the above theorem hints
at the resemblance between this determinant and a semiclassical zeta function. Vari-
ous such functions have been introduced in the physics literature, to provide approxi-
mate ways of computing eigenvalues and resonances of quantum chaotic systems – see
[10,20,47].

These semiclassical zeta functions are defined through formal manipulations starting
from the Gutzwiller trace formula – see [42] for a mathematical treatment and references.
They are given by sums, or Euler products, over periodic orbits where each term, or fac-
tor is an asymptotic series in powers of h. Most studies have concentrated on the zeta
function defined by the principal term, without h-corrections, which strongly resembles
the Selberg zeta function defined for surfaces of constant negative curvature. However,
unlike the case of the Selberg zeta function, there is no known rigorous connection
between the zeroes of the semiclassical zeta function and the exact eigenvalues or reso-
nances of the quantum system, even in the semiclassical limit. Nevertheless, numerical
studies have indicated that the semiclassical zeta function admits a strip of holomorphy
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Fig. 3. This figure, taken from [34], shows the case of symmetric three disc scattering problem (left), and the
associated Poincaré section (right). The section is the union of the three coball bundles of circle arcs (in red)
parametrized by s (the length parameter on the circle, horizontal axis), and cosϕ (vertical axis), where ϕ is
the angle between the velocity after impact and the tangent to the circle. Green, blue, red strips correspond to
different regions of forward escape; they are bounded by components of the stable manifold. The trapped set,
T , shown in yellow, is the intersection of the latter with the unstable manifold

beyond the axis of absolute convergence, and that its zeroes there are close to actual
resonances [10,48].

The traces of M(z, h)k, k ∈ N admit semiclassical expressions as sums over periodic
points, which lead to a formal representation of

ζ(z, h) = exp

{
−

∞∑

k=1

tr M(z, h)k

k

}

as a product over periodic points. That gives it the same form as the semiclassical zeta
functions in the physics literature. In this sense, the function ζ(z, h) is a resummation of
these formal expressions. As will become clear from its construction below, the operator
M(z, h) is not unique: it depends on many choices which affect the remainder term
O(hL) in (1.7). However, the zeroes of ζ(z, h) in R(δ,M0, h) are the exact resonances
of the quantum Hamiltonian.

Comments on quantum maps in the physics literature. Similar methods of analysis have
been introduced in the theoretical physics literature devoted to quantum chaos. The clas-
sical case involves a reduction to the boundary for obstacle problems: when the obstacle
consists of several strictly convex bodies, none of which intersects a convex hull of any
other two bodies, the flow on the trapped set is hyperbolic. The reduction can then be
made to boundaries of the convex bodies, resulting with operators quantization Poincaré
maps – see Gaspard and Rice [17], and for a mathematical treatment Gérard [18], in
the case of two convex bodies, and [31, §5.1], for the general case. Figure 3 illustrates
the trapped set in the case of three discs. The semiclassical analogue of the two convex
obstacle, a system with one closed hyperbolic orbit, was treated by Gérard and the sec-
ond author in [19]. The approach of that paper was also based on the quantization of the
Poincaré map near this orbit.
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A reduction of a more complicated quantum system to a quantized Poincaré map
was proposed in the physics literature. Bogomolny [4] studied a Schrödinger operator
P(h) with discrete spectrum, and constructed a family of energy dependent quantum
transfer operators T (E, h), which are integral operators acting on a hypersurface in
the configuration space. These transfer operators are asymptotically unitary as h → 0.
The eigenvalues of P(h) are then obtained, in the semiclassical limit, as the roots of
the equation det(1− T (E)) = 0. Smilansky and co-workers derived a similar equation
in the case of closed Euclidean 2-dimensional billiards [13], replacing T (E) by a (uni-
tary) scattering matrix S(E) associated with the dual scattering problem. Prosen [35]
generalized Bogomolny’s approach to a nonsemiclassical setting. Bogomolny’s method
was also extended to study quantum scattering situations [16,32].

Open quantum maps have first been defined in the quantum chaos literature as toy
models for open quantized chaotic systems (see [28, §2.2], [29, §4.3] and references
given there). They generalized the unitary quantum maps used to mimic bound chaotic
systems [11]. Some examples of open quantum maps on the 2-dimensional torus or the
cylinder, have been used as models in various physical settings: Chirikov’s quantum stan-
dard map (or quantum kicked rotator) was first defined in the context of plasma physics,
but then used as well to study ionization of atoms or molecules [9], as well as transport
properties in mesoscopic quantum dots [46]. Other maps, like the open baker’s map, were
introduced as clean model systems, for which the classical dynamics is well understood
[29,36]. The popularity of quantum maps mostly stems from the much simplified numer-
ical study they offer, both at the quantum and classical levels, compared with the case of
Hamiltonian flows or the corresponding Schrödinger operators. For instance, the distribu-
tion of resonances and resonant modes has proven to be much easier to study numerically
for open quantum maps, than for realistic flows [7,25,27,28,37]. Precise mathematical
definitions of quantum maps on the torus phase space are given in [28, §4.3–4.5].

Organization of the paper. In the remainder of this section we give assumptions on the
operator P and on the corresponding classical dynamical system, in particular we intro-
duce a Poincaré section � and map associated with the classical flow. We refer to results
of Bowen and Walters [8] to show that these assumptions are satisfied if the trapped
set supports a hyperbolic flow, and is topologically one dimensional, which is the case
considered in Theorem 1.

In §3 we recall various tools needed in our proof: pseudodifferential calculus, the
concept of semiclassical microlocalization, local h-Fourier integral operators associ-
ated to canonical tranformation (these appear in Theorem 1), complex scaling (used to
define resonances as eigenvalues of nonselfadjoint Fredholm operators), microlocally
deformed spaces, and Grushin problems used to define the effective Hamiltonians.

In §4 we follow a modified strategy of [42] and construct a microlocal Grushin prob-
lem associated with the Poincaré map on �. No knowledge of that paper is a prerequisite
but the self-contained discussion of the problem for the explicit case of S1 given in
[42, §2] can illuminate the complicated procedure presented here. In [42, §2] one finds
the proof of the classical Poisson formula using a Grushin problem approach used here.

Because of the hyperbolic nature of the flow the microlocal Grushin problem cannot
directly be made into a globally well-posed problem – see the remark at the end of
§4. This serious difficulty is overcome in §5 by adding microlocal weights adapted to
the flow. This and suitably chosen finite dimensional projections lead to a well posed
Grushin problem, with an effective Hamiltonian essentially given by a quantization of
the Poincaré map: this fact is summarized in Theorem 2, from which Theorem 1 is a
simple corollary.
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2. Assumptions on the Operator and on Classical Dynamics

Here we carefully state the needed assumptions on quantum and classical levels.

2.1. Assumptions on the quantum Hamiltonian P(h). Our results apply to operators
P(h) satisfying general assumptions given in [30, §3.2] and [43, (1.5), (1.6)]. In partic-
ular, they apply to certain elliptic differential operators on manifolds X of the form

X = X R �
J⊔

j=1

(
R

n\BRn (0, R)
)
,

where R > 0 is large and X R is a compact subset of X . The reader interested in this
higher generality should consult those papers.

Here we will recall these assumptions only in the (physical) case of differential
operators on X = R

n . We assume that

P(h) =
∑

|α|≤2

aα(x, h)(h Dx )
α, (2.1)

where aα(x, h) are bounded in C∞(Rn), aα(x, h) = a0
α(x)+O(h) in C∞, and aα(x, h) =

aα(x) is independent of h for |α| = 2. Furthermore, for some C0 > 0 the functions
aα(x, h) have holomorphic extensions to

{x ∈ C
n : |Re x | > C0, | Im x | < |Re x |/C0}, (2.2)

they are bounded uniformly with respect to h, and aα(x, h) = a0
α(x) + O(h) on that set.

Let P(x, ξ) denote the (full) Weyl symbol of the operator P , so that P =
Pw(x; h D; h), and assume

P(x, ξ ; h)→ ξ2 − 1 (2.3)

when x → ∞ in the set (2.2), uniformly with respect to (ξ, h) ∈ K×]0, 1] for any
compact set K � R

n (here, and below, � means that the set on the left is a pre-compact
subset of the set on the right). We also assume that P is classically elliptic:

p2(x, ξ)
def=

∑

|α|=2

aα(x)ξ
α �= 0 on T ∗Rn\{0}, (2.4)

and that P is self-adjoint on L2(Rn) with domain H2(Rn). The Schrödinger opera-
tor (1.1) corresponds to the choices

∑
|α|=2 aαξα = |ξ |2, aα ≡ 0 for |α| = 1, and

a0(x) = V (x) − 1. The assumption (2.3) shows that we can also consider a slowly
decaying potential, as long as it admits a holomorphic extension in (2.2).

2.2. Dynamical assumptions. The dynamical assumptions we need roughly mean that
the flow �t on the energy shell p−1(0) ⊂ T ∗X can be encoded by a Poincaré section,
the boundary of which does not intersect the trapped set K0. The abstract assumptions
below are satisfied when the flow is hyperbolic on the trapped set which is assumed to
be topologically one dimensional – see Proposition 2.1.
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To state the assumption precisely, we notice that

p(x, ξ) =
∑

|α|≤2

a0
α(x)ξ

α (2.5)

is the semi-classical principal symbol of the operator P(x, h D; h). We assume that the
characteristic set of p (that is, the energy surface p−1(0)) is a simple hypersurface:

dp �= 0 on p−1(0). (2.6)

Like in the Introduction, we denote by

�t def= exp(t Hp) : T ∗X → T ∗X

the flow generated by the Hamilton vector field Hp (see (1.2)).
Our assumptions on p(x, ξ) ensure that, for E close to 0, we still have no fixed point

in p−1(E), and the trapped set KE (defined in (1.4)) is a compact subset of p−1(E).
We now assume that there exists a “nice” Poincaré section for the flow near K0,

namely finitely many compact contractible smooth hypersurfaces �k ⊂ p−1(0), k =
1, 2, . . . , N with smooth boundaries, such that

∂�k ∩ K0 = ∅, �k ∩�k′ = ∅, k �= k′, (2.7)

Hp is transversal to �k uniformly up to the boundary, (2.8)

For every ρ ∈ K0, there exist ρ− ∈ � j−(ρ), ρ+ ∈ � j+(ρ)

of the form ρ± = �±t±(ρ)(ρ),with 0 < t±(ρ) ≤ tmax <∞, such that

{�t (ρ); −t−(ρ) < t < t+(ρ), t �= 0} ∩�k = ∅, ∀ k. (2.9)

We call a Poincaré section the disjoint union

�
def= �N

k=1�k .

The functions ρ �→ ρ±(ρ), ρ �→ t±(ρ) are uniquely defined (ρ±(ρ) will be called
respectively the successor and predecessor of ρ). They remain well-defined for ρ in
some neighbourhood of K0 in p−1(0)) and, in such a neighbourhood, depend smoothly
on ρ away from �. In order to simplify the presentation we also assume the successor
of a point ρ ∈ �k belongs to a different component:

If ρ ∈ �k ∩ K0 for some k, then ρ+(ρ) ∈ �� ∩ K0 for some � �= k. (2.10)

The section can always be enlarged to guarantee that this condition is satisfied. For
instance, for K0 consisting of one closed orbit we only need one transversal component
to have (2.7)–(2.8); to fulfill (2.10) a second component has to be added.

We recall that hypersurfaces in p−1(0) that are transversal to Hp are symplectic.
In fact, a local application of Darboux’s theorem (see for instance [23, §21.1]) shows
that we can make a symplectic change of variables in which p = ξn and Hp = ∂xn . If
� ⊂ {ξn = 0} is transversal to ∂xn , then (x1, · · · xn−1; ξ1, · · · , ξn−1) can be chosen as
coordinates on �. Since ω�p−1(0)=

∑n−1
j=1 dξ j ∧ dx j , that means that ω�� is nondegen-

erate. The local normal form p = ξn will be used further in the paper (in its quantized
form).
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The final assumption guarantees the absence of topological or symplectic peculiari-
ties:

There exists a set �̃k � T ∗Rn−1 with smooth boundary, and a symplectic

diffeomorphism κk : �̃k → �k which is smooth up the boundary together

with its inverse. We assume that κk extends to a neighbourhood of �̃k in T ∗Rn .

(2.11)

In other words, there exist symplectic coordinate charts on �k , taking values in �̃k .
The following result, due to Bowen and Walters [8], shows that our assumptions are

realized in the case of 1-dimensional hyperbolic trapped sets.

Proposition 2.1. Suppose that the assumptions of §2.1 hold, and that the flow �t �K0

is hyperbolic in the standard sense of Eqs. (1.5,1.6). Then the existence of � satisfying
(2.7)–(2.11) is equivalent with K0 being topologically one dimensional.

Remark. Bowen and Walters [8] show more, namely the fact that the sets {�k} can be
chosen of small diameter, and constructed such that � ∩ K0 forms a Markov partition
for the Poincaré map. Small diameters ensure that (2.11) holds, while, as mentioned
before, (2.10) can always be realized by adding some more components.

Proposition 2.1 shows that the assumptions of Theorem 1 imply the dynamical
assumptions made in this section. The proof of [38, App. C] shows that the follow-
ing example of “three-bumps potential”,

P = −h2� + V (x)− 1, x ∈ R
2, V (x) = 2

3∑

k=1

exp(−R(x − xk)
2),

xk = (cos(2πk/3), sin(2πk/3)),

satisfies our assumptions as long as R > 1 is large enough (see Fig. 1).

2.3. The Poincaré map. Here we will analyze the Poincaré map associated with the
Poincaré section discussed in §2.2, and its semiclassical quantization.

2.3.1. Classical analysis. The assumptions in §2.2 imply the existence of a symplectic
relation, the so-called Poincaré map on �.

More precisely, let us identify �k’s with �̃k using κk given in (2.11), so that the
Poincaré section

� =
N⊔

k=1

�k �
N⊔

k=1

�̃k ⊂
N⊔

k=1

T ∗Rn−1.

Let us call

T def= K0 ∩ � =
⊔

k

Tk the reduced trapped set.

The map

f : T −→ T , ρ �−→ f (ρ)
def= ρ+(ρ)
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Fig. 4. Schematic representation of the components Fik of the Poincaré map between the sets Dik and Aik
(horizontal/vertical ellipses). The reduced trapped set Ti is represented by the black squares. The unstable/
stable directions of the map are the horizontal/vertical dashed lines

(see the notation of (2.9)) is the Poincaré map for�t�K0 . It is a Lipschitz bijection. The
decomposition T = ⊔

k Tk allows us to define the arrival and departure subsets of T :

Dik
def= {ρ ∈ Tk ⊂ �k : ρ+(ρ) ∈ Ti } = Tk ∩ f −1(Ti ),

Aik
def= {ρ ∈ Ti ⊂ �i : ρ−(ρ) ∈ Tk} = Ti ∩ f (Tk) = f (Dik).

For each k we call J+(k) ⊂ {1, . . . , N } the set of indices i such that Dik is not empty (that
is, for which Ti is a successor of Tk). Conversely, the set J−(i) refers to the predecessors
of Ti .

Using this notation, the map f obviously decomposes into a family of Lipschitz
bijections fik : Dik → Aik . Similarly to the maps ρ±, each fik can be extended to a
neighbourhood of Dik , to form a family of local smooth symplectomorphisms

Fik : Dik −→ Fik(Dik)
def= Aik,

where Dik (resp. Aik) is a neighbourhood of Dik in �k (resp. a neighbourhood of Aik
in �i ). Since our assumption on K0 is equivalent with the fact that the reduced trapped
set T is totally disconnected, we may assume that the sets {Dik}i∈J+(k) (resp. the sets
{Aik}k∈J−(i)) are mutually disjoint. We will call

Dk
def= �i∈J+(k)Dik, Ai

def= �k∈J−(k)Aik .

Notice that, for any index i , the sets Di , Ai both contain the set Ti , so they are not
disjoint.

We will also define the tubes Tik ⊂ T ∗X containing the trajectories between Dik and
Aik :

Tik
def= {�t (ρ), : ρ ∈ Dik, 0 ≤ t ≤ t+(ρ)}. (2.12)

See Fig. 4 for a sketch of these definitions, and Fig. 5 for an artistic view of Tik
The maps Fik will be grouped into the symplectic bijection F between

⊔
k Dk and⊔

k Ak . We will also call F the Poincaré map, which can be viewed as a symplectic
relation on �. We will sometimes identify the map Fik with its action on subsets of
T ∗Rn−1:

F̃ik = κ−1
i ◦ Fik ◦ κk : D̃ik −→ Ãik, D̃ik

def= κ−1
k (Dik), Ãik

def= κ−1
i (Aik).
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Fig. 5. Trajectories linking the boundaries of the departure set Dik ⊂ �k and the arrival set Aik ⊂ �i . Note
the stretching and contraction implied by hyperbolicity. These trajectories and Dik ∪ Aik form the boundary
of the tube Tik defined by (2.12)

Using the continuity of the flow �t , we will show in §4.1.1 that the above structure
can be continuously extended to a small energy interval z ∈ [−δ, δ]. The Poincaré map
for the flow in p−1(z) will be denoted by Fz = (Fik,z)1≤i,k≤N (see §4.1.1 for details).

In the case of K0 supporting a hyperbolic flow, a structural stability of Kz holds
in a stronger sense: the flows �t �Kz and �t �K0 are actually orbit-conjugate (that is,
conjugate up to time reparametrization) by a homeomorphism close to the identity.
[24, Thm. 18.2.3].

2.3.2. Quantization of the Poincaré map In this section we make more explicit the oper-
ator M(z, h) used in Theorem 1. The semiclassical tools we are using will be recalled
in §3.

Let us first focus on a single component Fik : Dik → Aik of the Poincaré map. A
quantization of the symplectomorphism Fik (more precisely, of its pullback F̃ik) is a
semiclassical (or h-) Fourier integral operator, that is a family of operators Mik(h) :
L2(Rn−1)→ L2(Rn−1), h ∈ (0, 1], whose semiclassical wavefront set satisfies

WF′h(Mik) � Ãik × D̃ik, (2.13)

and which is associated with the symplectomorphism F̃ik . (h-FIOs are defined in §3.3,
and WF′h is defined in (3.9) below).

Being associated to the symplectic map F̃ik means the following thing: for any a ∈
C∞c ( Ãik), the quantum operator Opwh (a) transforms as follows when conjugated by
Mik(h)

Mik(h)
∗Opwh (a)Mik(h) = Opwh (αik F̃∗ika) + h1−2δOpwh (b), (2.14)

where the symbol αik ∈ Sδ(T ∗Rn−1) is independent of a, αik = 1 on some neigh-
bourhood of Tk in �k , and b ∈ Sδ(T ∗Rn−1), for every δ > 0. Here Opwh denotes
the semiclassical Weyl quantization on R

2(n−1) (see Eq. (3.1), and Sδ(T ∗Rn−1) is the
symbol class defined in §3.1. The necessity to have δ > 0 in (2.14) comes from the
slightly exotic nature of our Fourier integral operator, due to the presence of some mild
exponential weights – see §3.5 below.

The property (2.14), which is a form of Egorov’s Theorem, characterizes Mik(h) as
a semiclassical Fourier integral operator associated with F̃ik (see [42, Lemma 2] and
[15, §10.2] for that characterization).
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We can then group together the Mik(h) into a single operator-valued matrix (setting
Mik(h) = 0 when i �∈ J+(k)):

M(h) : L2(Rn−1)N −→ L2(Rn−1)N , M(h) = (Mik(h))1≤i,k≤N .

We call this M(h) a quantization of the Poincaré map F .
The operators M(z, h) in Theorem 1 will also holomorphically depend on z ∈

R(δ,M0, h), such that for each z ∈ R(δ,M0, h) ∩ R the family (M(z, h))h∈(0,1] is an
h-Fourier integral operator of the above sense.

Comment on notation. Most of the estimates in this paper include error terms of the type
O(h∞), which is natural in all microlocal statements. To simplify the notation we adopt
the following convention (except in places where it could lead to confusion):

u ≡ v ⇐⇒ ‖u − v‖ = O(h∞)‖u‖,
‖Su‖ � ‖T u‖ + ‖v‖ ⇐⇒ ‖Su‖ ≤ O(1)(‖T u‖ + ‖v‖) + O(h∞)‖u‖, (2.15)

with norms appropriate to context. Since most estimates involve functions u micro-
localized to compact sets, in the sense that, u − χ(x, h D)u ∈ h∞S (Rn), for some
χ ∈ C∞c (T ∗Rn), the norms are almost exclusively L2 norms, possibly with microlocal
weights described in §3.5.

The notation u = OV ( f ) means that ‖u‖V = O( f ), and the notation T =
OV→W ( f ) means that ‖T u‖W = O( f )‖u‖V . Also, the notation

neigh(A, B) forA ⊂ B,

means an open neighbourhood of the set A inside the set B.
Starting with §4, we denote the Weyl quantization of a symbol a by the same letter

a = aw(x, h D). This makes the notation less cumbersome and should be clear from the
context.

Finally, we warn the reader that from §4 onwards the original operator P is replaced
by the complex scaled operator Pθ,R , whose construction is recalled in §3.4. Because of
the formula (3.13), that does not affect the results formulated in this section.

3. Preliminaries

In this section we present background material and references needed for the proofs of
the theorems.

3.1. Semiclassical pseudodifferential calculus. We start by defining a rather general
class of symbols (that is, h-dependent functions) on the phase space T ∗Rd . For any
δ ∈ [0, 1/2] and m, k ∈ R, let

Sm,k
δ (T ∗Rd) = {

a ∈ C∞(T ∗Rd × (0, 1]) : ∀α ∈ N
d , β ∈ N

d , ∃Cαβ > 0,

|∂αx ∂βξ a(x, ξ ; h)| ≤ Cαβh−k−δ(|α|+|β|)〈ξ 〉m−|β|},

where 〈ξ 〉 def= (1 + |ξ |2) 1
2 .

Most of the time we will use the class with δ = 0 in which case we drop the subscript.
When m = k = 0, we simply write S(T ∗Rd) or S for the class of symbols. In the paper
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d = n (the dimension of the physical space) or d = n − 1 (half the dimension of the
Poincaré section), and occasionally (as in (2.13) d = 2n− 2, depending on the context.

The quantization map, in its different notational guises, is defined as follows

awu = Opwh (a)u(x) = aw(x, h D)u(x)

def= 1

(2πh)d

∫ ∫
a

( x + y

2
, ξ

)
ei〈x−y,ξ〉/hu(y)dydξ, (3.1)

and we refer to [12, Chap. 7] for a detailed discussion of semiclassical quantization (see
also [40, App.]), and to [15, App. D.2] for the semiclassical calculus for the symbol
classes given above.

We denote by �m,k
δ (Rd) or �m,k(Rd) the corresponding classes of pseudodifferen-

tial operators. The quantization formula (3.1) is bijective: each operator A ∈ �m,k
δ (Rd)

is exactly represented by a unique (full) symbol a(x, ξ ; h). It is useful to consider only
certain equivalence classes of this full symbol, thus defining a principal symbol map –
see [15, Chap. 8]:

σh : �m,k
δ (Rd) −→ Sm,k

δ (T ∗Rd)/Sm−1,k−1+2δ
δ (T ∗Rd).

The combination σh ◦Opwh is the natural projection from Sm,k
δ onto Sm,k

δ /Sm−1,k−1+2δ
δ .

The main property of this principal symbol map is to “restore commutativity”:

σh(A ◦ B) = σh(A)σh(B).

Certain symbols in Sm,0(T ∗Rd) admit an asymptotic expansion in powers of h,

a(x, ξ ; h) ∼
∑

j≥0

h j a j (x, ξ), a j ∈ Sm− j,0 independent of h, (3.2)

such symbols (or the corresponding operator) are called classical, and make up the
subclass Sm,0

cl (T ∗Rd) (the corresponding operator class is denoted by �m,0
cl (Rd)). For

any operator A ∈ �m,0
cl (Rd), its principal symbol σh(A) admits as representative the

h-independent function a0(x, ξ), first term in (3.2). The latter is also usually called the
principal symbol of a.

In §3.5 we will introduce a slightly different notion of leading symbol, adapted to a
subclass of symbols in S(T ∗R) larger than Scl(T ∗Rd).

The semiclassical Sobolev spaces, Hs
h (R

d) are defined using the semiclassical Fourier
transform, Fh :

‖u‖2
Hs

h

def=
∫

Rd
〈ξ 〉2s |Fhu(ξ)|2dξ, Fhu(ξ)

def= 1

(2πh)d/2

∫

Rd
u(x)e−i〈x,ξ〉/hdx . (3.3)

Unless otherwise stated all norms in this paper, ‖ • ‖, are L2 norms.
We recall that the operators in �(Rd) are bounded on L2 uniformly in h, and that

they can be characterized using commutators by Beals’s Lemma (see [12, Chap. 8] and
[43, Lemma 3.5] for the Sδ case):

A ∈ �δ(X) ⇐⇒
{ ‖ ad�N · · · ad�1 A‖L2→L2 = O(h(1−δ)N )

for linear functions � j (x, ξ) on R
d × R

d ,
(3.4)

where adB A = [B, A].
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For a given symbol a ∈ S(T ∗Rd) we follow [42] and say that the essential support
is contained in a given compact set K � T ∗Rd ,

ess-supph a ⊂ K � T ∗Rd ,

if and only if

∀χ ∈ S(T ∗Rd), suppχ ∩ K = ∅ !⇒ χ a ∈ h∞S (T ∗Rd).

The essential support is then the intersection of all such K ’s. Here S denotes the
Schwartz space. For A ∈ �(Rd), A = Opwh (a), we call

WFh(A) = ess-supph a, (3.5)

the semiclassical wavefront set of A. (In this paper we are concerned with a purely
semiclassical theory and will only need to deal with compact subsets of T ∗Rd . Hence,
we won’t need to define noncompact essential supports).

3.2. Microlocalization. We will also consider spaces of L2 functions (strictly speaking,
of h-dependent families of functions) which are microlocally concentrated in an open
set V � T ∗Rd :

H(V )
def= {u = (u(h) ∈ L2(Rd))h∈(0,1], such that

∃Cu > 0, ∀ h ∈ (0, 1], ‖u(h)‖L2(Rd ) ≤ Cu,

∃χ ∈ C∞c (V ), χw(x, h Dx ) u(h) = u(h) + OS (h
∞)}. (3.6)

The semiclassical wave front set of u ∈ H(V ) is defined as:

WFh(u)=T ∗Rd\{(x, ξ)∈T ∗Rd : ∃ a ∈ S(T ∗Rd), a(x, ξ)=1, ‖aw u‖L2=O(h∞)}.
(3.7)

The condition (3.7) can be equivalently replaced with aw u = OS (h
∞), since we may

always take a ∈ S (T ∗Rd). This set obviously satisfies WFh(u) � V . Notice that the
condition does not characterize the individual functions u(h), but the full sequence as
h → 0.

We will say that an h-dependent family of operators T = (T (h))h∈(0,1] : S (Rd)→
S ′(Rk) is semiclassically tempered if there exists L ≥ 0 such that

‖〈x〉−L T (h)u‖H−L
h
≤ C h−L‖〈x〉L u‖H L

h
, h ∈ (0, 1), 〈x〉 def= (1 + x2)1/2.

Such a family of operators is microlocally defined on V if one only specifies (or consid-
ers) its action on states u ∈ H(V ), modulo OS ′→S (h

∞). For instance, T is said to be
asymptotically uniformly bounded on H(V ) if

∃CT > 0 ∀ u ∈ H(V ) ∃ hT,u > 0, ∀ h ∈ (0, hT,u), ‖T (h)u(h)‖L2(Rk ) ≤ CT Cu .

(3.8)

Two tempered operators T, T ′ are said to be microlocally equivalent on V , iff for
any u ∈ H(V ) they satisfy ‖(T − T ′)u‖L2(Rk) = O(h∞); equivalently, for any
χ ∈ C∞c (V ), ‖(T − T ′)χw‖L2→L2 = O(h∞).
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If there exists an open subset W � T ∗Rk and L ∈ R such that T maps any u ∈ H(V )
into a state T u ∈ h−L H(W ), then we will write

T = T (h) : H(V ) −→ H(W ),

and we say that T is defined microlocally in W × V .
For such operators, we may define only the part of the (twisted) wavefront set which

is inside W × V :

WF′h(T ) ∩ (W × V )
def= (W × V )\{(ρ′, ρ) ∈ W × V : ∃ a ∈ S(T ∗Rd), b∈ S(T ∗Rk),

a(ρ) = 1, b(ρ′) = 1, bw T aw = OL2→L2(h∞)}. (3.9)

If WF′h(T ) ∩ (W × V ) � W × V , there exists a family of tempered operators T̃ (h) :
L2 → L2, such that T and T̃ are microlocally equivalent on V , while T̃ is OS ′→S (h

∞)
outside V , that is

T̃ ◦ aw = O(h∞) : S ′(Rd)→ S (Rk),

for all a ∈ S(T ∗Rd) such that supp a ∩ V = ∅. This family, which is unique modulo
OS ′→S (h

∞), is an extension of the microlocally defined T (h), see [15, Chap. 10].

3.3. Local h-Fourier integral operators.. We first present a class of globally defined
h-Fourier integral operators following [42] and [15, Chap. 10]. This global definition
will then be used to define Fourier integral operators microlocally.

Let (A(t))t∈[−1,1] be a smooth family of selfadjoint pseudodifferential operators,

∀t ∈ [−1, 1], A(t) = Opwh (a(t)), a(t) ∈ Scl(T
∗
R

d;R),
where the dependence on t is smooth, and WFh(A(t)) ⊂ � � T ∗Rd , in the sense of
(3.5). We then define a family of operators

U (t) : L2(Rd)→ L2(Rd), h DtU (t) + U (t)A(t) = 0. U (0) = I d. (3.10)

An example is given by A(t) = A = aw, independent of t , in which case U (t) =
exp(−i t A/h).

The family (U (t))t∈[−1,1] is an example of a family of unitary h-Fourier integral
operators, associated to the family of canonical transformations κ(t) generated by the
(time-dependent) Hamilton vector fields Ha0(t). Here the real valued function a0(t) is the
principal symbol of A(t) (see (3.2)), and the canonical transformations κ(t) are defined
through

d

dt
κ(t)(ρ) = (κ(t))∗(Ha0(t)(ρ)), κ(0)(ρ) = ρ, ρ ∈ T ∗Rd .

If U = U (1), say, and the graph of κ(1) is denoted by C , we conform to the usual
notation and write

U ∈ I 0
h (R

d × R
d ;C ′), where C ′ = {(x, ξ ; y,−η) : (x, ξ) = κ(y, η)}.

Here the twisted graph C ′ is a Lagrangian submanifold of T ∗(Rd × R
d).

In words, U is a unitary h-Fourier integral operator associated to the canonical graph
C (or the symplectomorphism κ(1) defined by this graph). Locally all unitary h-Fourier
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integral operators associated to canonical graphs are of the form U (1), since each local
canonical transformation with a fixed point can be deformed to the identity, see [42,
Lemma 3.2]. For any χ ∈ S(T ∗Rd), the operator U (1) χw, with χ ∈ S(T ∗Rd) is still a
(nonunitary) h-Fourier integral operator associated with C . The class formed by these
operators, which are said to “quantize” the symplectomorphism κ = κ(1), depends
only on κ , and not on the deformation path from the identity to κ . This can be seen
from the Egorov characterization of Fourier integral operators – see [42, Lemma 2] or
[15, §10.2].

Let us assume that a symplectomorphism κ is defined only near the origin, which is
a fixed point. It is always possible to locally deform κ to the identity, that is construct a
family of symplectomorphisms κ(t) on T ∗Rd , such that κ(1) coincides with κ in some
neighbourhood V of the origin [42, Lemma 3.2]. If we apply the above construction
to get the unitary operator U (1), and use a cutoff χ ∈ S(T ∗Rd), suppχ � V , then
the operator U (1)χw is an h-Fourier integral operator associated with the local symp-
lectomorphism κ� V . Furthermore, if there exists a neighbourhood V ′ � V such that
χ� V ′ ≡ 1, then U (1)χw is microlocally unitary inside V ′.

For an open set V � R
d and κ a symplectomorphism defined in a neighbourhood Ṽ

of V , we say that a tempered operator T satisfying

T : H(Ṽ ) −→ H(κ(Ṽ )),

is a microlocally defined unitary h-Fourier integral operator in V , if any point ρ ∈ V
has a neighbourhood Vρ ⊂ V such that

T : H(Vρ) −→ H(κ(Vρ))

is equivalent to a unitary h-Fourier integral operator associated with κ� Vρ , as defined
by the above procedure. The microlocally defined operators can also be obtained by
oscillatory integral constructions — see for instance [30, §4.1] for a brief self-contained
presentation.

An example which will be used in §4.1 is given by the standard conjugation result, see
[42, Prop. 3.5] or [15, Chap. 10] for self-contained proofs. Suppose that P ∈ �m,0

cl (Rd)

is a semi-classical real principal type operator, namely its principal symbol p = σh(P)
is real, independent of h, and the Hamilton flow it generates has no fixed point at energy
zero: p = 0 !⇒ dp �= 0. Then for any ρ0 ∈ p−1(0), there exists a canonical trans-
formation, κ , mapping V = neigh((0, 0), T ∗Rd) to κ(V ) = neigh(ρ0, T ∗Rd), with
κ(0, 0) = ρ0 and

p ◦ κ(ρ) = ξn(ρ) ρ ∈ V,

and a unitary microlocal h-Fourier integral operator U : H(V )→ H(κ(V )) associated
to κ , such that

U∗PU ≡ h Dxn : H(V )→ H(V ).

While ξn is the (classical) normal form for the Hamiltonian p in V , the operator h Dxn

is the quantum normal form for P , microlocally in V .
The definition of h-Fourier integral operators can be generalized to graphs C asso-

ciated with certain relations between phase spaces of possibly different dimensions.
Namely, if a relation C ⊂ T ∗Rd × T ∗Rk is such that its twist

C ′ = {(x, ξ ; y,−η) ; (x, ξ ; y,−η′) ∈ C}
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is a Lagrangian submanifold of T ∗(Rd × R
k), then one can associate with this rela-

tion (microlocally in some neighbourhood) a family of h-Fourier integral operators T :
L2(Rk) �→ L2(Rd) [2, Def. 4.2]. This class of operators is denoted by I r

h (R
d ×R

k;C ′),
with r ∈ R. The important property of these operators is that their composition is still a
Fourier integral operator associated with the composed relations.

3.4. Complex scaling. We briefly recall the complex scaling method of Aguilar-Combes
[1] – see [39,41], and references given there. In most of this section, this scaling is inde-
pendent of h, and allows to obtain the resonances (in a certain sector) for all operators
P(h), h ∈ (0, 1], where P(h) satisfies the assumptions of §2.1.

For any 0 ≤ θ ≤ θ0 and R > 0, we define �θ,R ⊂ C
n to be a totally real deformation

of R
n , with the following properties:

�θ ∩ BCn (0, R) = BRn (0, R),

�θ ∩ C
n\BCn (0, 2R) = eiθ

R
n ∩ C

n\BCn (0, 2R), (3.11)

�θ = {x + i fθ,R(x) : x ∈ R
n}, ∂αx fθ,R(x) = Oα(θ).

If R is large enough, the coefficients of P continue analytically outside of B(0, R), and
we can define a dilated operator:

Pθ,R
def= P̃��θ,R , Pθ,Ru = P̃(ũ)��θ,R ,

where P̃ is the holomorphic continuation of the operator P , and ũ is an almost analytic
extension of u ∈ C∞c (�θ,R) from the totally real submanifold �θ,R to neigh(�θ,R,Cn).

The operator Pθ,R− z is a Fredholm operator for 2θ > arg(z+1) > −2θ . That means
that the resolvent, (Pθ,R − z)−1, is meromorphic in that region, the spectrum of Pθ,R in
that region is independent of θ and R, and consists of the quantum resonances of P .

To simplify notations we identify �θ,R with R
n using the map, Sθ,R : �θ,R → R

n ,

�θ,R � x �−→ Re x ∈ R
n, (3.12)

and using this identification, consider Pθ,R as an operator on R
n , defined by

(S−1
θ,R)

∗Pθ,R S∗θ,R (here S∗ means the pullback through S). We note that this identificaton
satisfies

C−1 ‖u‖L2(Rn) ≤ ‖S∗θ,Ru‖L2(�θ,R)
≤ C ‖u‖L2(Rn),

with C independent of θ if 0 ≤ θ ≤ θ0.
The identification of the eigenvalues of Pθ,R with the poles of the meromorphic

continuation of

(P − z)−1 : C∞c (Rn) −→ C∞(Rn)

from {Im z > 0} to D(0, sin(2θ)), and in fact, the existence of such a continuation,
follows from the following formula (implicit in [39], and discussed in [45]): if χ ∈
C∞c (Rn), suppχ � B(0, R), then

χ(Pθ,R − z)−1χ = χ(P − z)−1χ. (3.13)

This is initially valid for Im z > 0 so that the right-hand side is well defined, and then by
analytic continuation in the region where the left-hand side is meromorphic. The reason
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2

2

Fig. 6. The complex scaling in the z-plane used in this paper

for the Fredholm property of (Pθ,R − z) in D(0, sin(2θ)) comes from the properties of
the principal symbol of Pθ,R – see Fig. 6. Here for convenience, and for applications
to our setting, we consider Pθ,R as an operator on L2(Rn) using the identification Sθ,R
above. Its principal symbol is given by

pθ,R(x, ξ) = p(x + i fθ,R(x), [(1 + id fθ,R(x))
t ]−1ξ), (x, ξ) ∈ T ∗Rd , (3.14)

where the complex arguments are allowed due to the analyticity of p(x, ξ) outside of a
compact set — see §2.1. We have the following properties

Re pθ,R(x, ξ) = p(x, ξ) + O(θ2)〈ξ 〉2,
Im pθ,R(x, ξ) = −dξ p(x, ξ)[d fθ,R(x)

tξ ] + dx p(x, ξ)[ fθ,R(x)] + O(θ2)〈ξ 〉2. (3.15)

This implies, for R large enough,

|p(x, ξ)| ≤ δ, |x | ≥ 2 R !⇒ Im pθ,R(x, ξ) ≤ −Cθ. (3.16)

For our future aims, it will prove convenient to actually let the angle θ explicitly
depend on h: as long as θ > ch log(1/h), the estimates above guarantee the Fredholm
property of (Pθ,R − z) for z ∈ D(0, θ/C), by providing approximate inverses near
infinity. We will indeed take θ of the order of h log(1/h), see (3.31).

3.5. Microlocally deformed spaces. Microlocal deformations using exponential weights
have played an important role in the theory of resonances since [21]. Here we take an
intermediate point of view [26,43] by combining compactly supported weights with
the complex scaling described above. We should stress however that the full power of
[21] would allow more general behaviours of p(x, ξ) at infinity, for instance potentials
growing in some directions at infinity.

Let us consider an h-independent real valued function G0 ∈ C∞c (T ∗Rd ;R), and
rescale it in an h-dependent way:

G(x, ξ) = Mh log(1/h)G0(x, ξ), M > 0 fixed. (3.17)
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For A ∈ �m,0(Rd), we consider the conjugated operator

e−Gw(x,h D)/h AeGw(x,h D)/h = e− adGw(x,h D) /h A

=
L−1∑

�=0

(−1)�

�!
(

1

h
adGw(x,h D)

)�
A + RL , (3.18)

where

RL = (−1)L

L!
∫ 1

0
e−tGw(x,h D)

(
1

h
adGw(x,h D)

)L

AetGw(x,h D)dt.

The semiclassical calculus of pseudodifferential operators [12, Chap. 7],[15, Chap. 4,
App. D.2] and (3.17) show that

(
1

h
adGw(x,h D)

)�
A = (M log(1/h))� (adGw

0 (x,h D))
�A ∈ (Mh log(1/h))��−∞,0h (Rd),

∀� > 0.

Since ‖Gw
0 ‖L2→L2 ≤ C0, functional calculus of bounded self-adjoint operators shows

that

‖ exp(±tGw(x, h D))‖ ≤ h−tC0 M ,

so we obtain the bound,

RL = OL2→L2(log(1/h)L hL−2tC0 M ) = OL2→L2(hL−2tC0 M−Lδ),

with δ > 0 arbitrary small. Applying this bound, we may write (3.18) as

e−Gw(x,h D)/h AeGw(x,h D)/h ∼
∞∑

�=0

(−1)�

�!
(

1

h
adGw(x,h D)

)�
A ∈ �m,0(Rd). (3.19)

In turn, this expansion, combined with Beals’s characterization of pseudodifferential
operators (3.4), implies that the exponentiated weight is a pseudodifferential operator:

exp(Gw(x, h D)/h) ∈ �0,C0 M
δ (Rd), ∀δ > 0. (3.20)

Using the weight function G, we can now define our weighted spaces. Let Hk
h (R

d) be
the semiclassical Sobolev spaces defined in (3.3). We put

Hk
G(R

d) = eGw(x,h D)/h Hk
h (R

d), ‖u‖Hk
G

def= ‖e−Gw(x,h D)/hu‖Hk
h
, (3.21)

and

〈u, v〉Hk
G
= 〈e−Gw(x,h D)/hu, e−Gw(x,h D)/hv〉Hk

G
.

As a vector space, Hk
G(R

d) is identical with Hk
h (R

d), but the Hilbert norms are different.
In the case of L2, that is of k = 0, we simply put H0

G = HG .
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The mapping properties of P = pw(x, h D) on HG(R
d) are equivalent with those of

PG
def= e−Gw/h P eGw/h on L2(Rd), which are governed by the properties of the (full)

symbol pG of PG : formula (3.19) shows that

pG = p − i HpG + O(h2 log2(1/h)). (3.22)

At this moment it is convenient to introduce a notion of leading symbol, which is
adapted to the study of conjugated operators such as PG . For a given Q ∈ S(T ∗Rd), we
say that q ∈ S(T ∗Rd) is a leading symbol of Qw(x, h D), if

∀α, β ∈ N d , h−γ ∂αx ∂
β
<ξ>(Q − q) = Oα,β(< ξ >−|β|), (3.23)

that is, (Q−q) ∈ S0,−γ (T ∗Rd) for any γ ∈ (0, 1). This property is obviously an equiv-
alence relation inside S(T ∗Rd), which is weaker than the equivalence relation defining
the principal symbol map on �h (see §3.1). In particular, terms of the size h log(1/h)
are “invisible” to the leading symbol. For example, the leading symbols of pG and p are
the same. If we can find q independent of h, then it is unique.

For future use we record the following:

Lemma 3.1. Suppose

Qw(x, h D) : HG(R
d) −→ HG(R

d), Q ∈ S(T ∗Rd),

is self-adjoint (with respect to the Hilbert norm on HG). Then this operator admits a
real leading symbol. Conversely, if q ∈ S(T ∗Rd) is real, then there exists Q ∈ S(T ∗Rd)

with leading symbol q, such that Qw(x, h D) is self-adjoint on HG(R
d).

Proof. This follows from noting that

Qw
G

def= e−Gw/h Qw(x, h D)eGw/h

has the same leading symbol as Qw(x, h D), and that self-adjointness of Qw on HG is
equivalent to self-adjointness of Qw

G on L2: the definition of HG in (3.21) (the case of
k = 0) gives

〈Qwu, v〉HG = 〈e−Gw/h Qwu, e−Gw/hv〉L2 = 〈Qw
G(e

−Gw/hu), e−Gw/hv〉L2 .

#�
The weighted spaces can also be microlocalized in the sense of §3.2: for V � T ∗Rd ,

we define the space

HG(V )
def= {u = u(h) ∈ HG(R

d), : ∃ Cu > 0, ∀h ∈ (0, 1], ‖u(h)‖HG (R
d ) ≤ Cu

∃ χ ∈ C∞c (V ), χwu = u + OS (h
∞)}. (3.24)

In other words, HG(V ) = eGw(x,h D)/h H(V ). This definition depends only on the values
of the weight G in the open set V .
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For future reference we state the following

Lemma 3.2. Suppose T : H(V )→ H(κ(V )) is an h-Fourier integral operator associ-
ated to a symplectomorphism κ (in the sense of §3.3), and is asymptotically uniformly
bounded (in the sense of (3.8). Take G0 ∈ C∞c (neigh(κ(V ))), G = Mh log(1/h)G0.
Then the operator:

T : Hκ∗G(V )→ HG(κ(V )) (3.25)

is also asymptotically uniformly bounded with respect to the deformed norms.

Proof. Since the statement is microlocal we can assume that V is small enough, so that
T ≡ T0 A in V , where T0 is unitary on L2(Rd) and A ∈ �h . As in the proof of Lemma
3.1 the boundedness of (3.25) is equivalent to considering the boundedness of

e−Gw(x,h D)T0e(κ
∗G)w(x,h D)/h Aκ∗G : L2(Rd)→ L2(Rd),

where

Aκ∗G
def= e−(κ∗G)w(x,h D)/h Ae(κ

∗G)w(x,h D)/h .

Because of (3.19), we have uniform boundedness of Aκ∗G on L2. Unitarity of T0 means
that it is sufficient to show the uniform boundedness of

T−1
0 e−Gw(x,h D)/h T0e(κ

∗G)w(x,h D)/h

= e−M log(1/h)(T−1
0 Gw

0 (x,h D)T0)eM log(1/h)(κ∗G0)
w(x,h D)

on L2. Egorov’s theorem (see [15, §10.2]) shows that

T−1
0 Gw

0 (x, h D)T0 = Gκ(x, h D), Gκ − κ∗G0 ∈ �−∞,−1
h (Rd).

Since [Gw
κ , κ

∗G2
0] = h2 B, B ∈ �−∞,0h (Rd), the Baker-Campbell-Hausdorff formula

for bounded operators shows2 that

T−1
0 e−Gw(x,h D)/h T0e(κ

∗G)w(x,h D)/h

= e−M log(1/h)Gw
κ (x,h D) eM log(1/h)(κ∗G0)

w(x,h D)

= eM log(1/h)(−Gw
κ (x,h D)+κ∗G0)

w(x,h D))+OL2→L2 (log(1/h)2h2)

= exp OL2→L2(h log(1/h))

= Id + OL2→L2(h log(1/h)).

This proves uniform boundedness of globally defined operators T0 A, and the asymptotic
uniformly boundedness in the sense of (3.8) of T on spaces of microlocally localized
functions. #�

2 Alternatively, we can compare exp(M log(1/h)Gwκ ) with (exp(M log(1/h)Gκ ))w and use product for-
mulæ for pseudodifferential operators – see [43, App.] or [15, Sect. 8.2].
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3.6. Escape function away from the trapped set. In this section we recall the construc-
tion of the specific weight function G which, up to some further small modifications,
will be used to prove Theorems 1 and 2.

Let KE ⊂ p−1(E) be the trapped set on the E-energy surface, see (1.4), and define

K̂ = K̂δ
def=

⋃

|E |≤δ
KE . (3.26)

The construction of the weight function is based on the following result of [19, App.]:
for any open neighbourhoods U, V of K̂ , U ⊂ V , there exists G1 ∈ C∞(T ∗X), such
that

G1�U≡ 0, HpG1 ≥ 0, HpG1�p−1([−2δ,2δ])≤ C, HpG1�p−1([−δ,δ])\V≥ 1. (3.27)

These properties mean that G1 is an escape function: it increases along the flow, and
strictly increases along the flow on p−1([−δ, δ]) away from K̂ (as specified by the
neighbourhood V ). Furthermore, HpG is bounded in a neighbourhood of p−1(0).

Since such a function G1 is necessarily of unbounded support, we need to modify it
to be able to use HG -norms defined in §3.5 (otherwise methods of [21] could be used
and that alternative would allow more general behaviours at infinity, for instance a wide
class of polynomial potentials). For that we follow [43, §§4.1,4.2,7.3] and [30, §6.1]: G1
is modified to a compactly supported G2 in a way allowing complex scaling estimates
(3.16) to compensate for the wrong sign of HpG2. Specifically, [30, Lemma 6.1] states
that for any large R > 0 and δ0 ∈ (0, 1/2) we can construct G2 with the following
properties: G2 ∈ C∞c (T ∗X) and

HpG2 ≥ 0 on T ∗B(0,3R)X ,
HpG2 ≥ 1 on T ∗B(0,3R)X ∩ (p−1([−δ, δ])\V ),
HpG2 ≥ −δ0 on T ∗X.

(3.28)

Let

G
def= Mh log(1/h)G2, with M > 0 a fixed constant.

Then, in the notations of §3.5, we will be interested in the complex-scaled operator

Pθ,R : H2
G(R

n) −→ HG(R
n),

for a scaling angle depending on h:

θ = θ(h) = M1 h log(1/h), M1 > 0 fixed. (3.29)

Inserting the above estimates in (3.22), we get

|Re pθ,R,G(ρ)| < δ/2, Re ρ /∈ V, !⇒ Im pθ,R,G(ρ) ≤ −θ/C1, (3.30)

provided that we choose [30, §6.1]

M

C
≥ M1 ≥ δ0 M

C
, for some C > 0. (3.31)

Assuming that the constant M0 appearing in the statement of Theorem 1 satisfies

0 < M0 ≤ M1

for δ > 0 and h > 0 small enough, the rectangle R(δ,M0, h) is contained in the
uncovered region in Fig. 6, hence the scaling by the angle (3.29) gives us access to the
resonance spectrum in the rectangle R(δ,M0, h). In §5.3 we will need to further adjust
M0 with respect to M1.
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3.7. Grushin problems. In this section we recall some linear algebra facts related to the
Schur complement formula, which are at the origin of the Grushin method we will use
to analyze the operator Pθ,R .

For any invertible square matrix decomposed into 4 blocks, we have
(

p11 p12
p21 p22

)−1

=
(

q11 q12
q21 q22

)
!⇒ p−1

11 = q11 − q12 q−1
22 q21,

provided that q−1
22 exists (which implies that q22, and hence p11, are square matrices).

We have the analogous formula for q−1
22 :

q−1
22 = p22 − p21 p−1

11 p12.

One way to see these simple facts is to apply gaussian elimination to

P =
(

p11 p12
p21 p22

)

so that, if p11 is invertible, we have an upper-lower triangular factorization:

P =
(

p11 0
p21 1

) (
1 p−1

11 p12

0 p22 − p21 p−1
11 p12

)
. (3.32)

The formula for the inverse of p11 leads to the construction of effective Hamiltonians
for operators (quantum Hamiltonians) P : H1 → H2. We first search for auxiliary
spaces H± and operators R± for which the matrix of operators

(
P − z R−

R+ 0

)
: H1 ⊕H− −→ H2 ⊕H+,

is invertible for z running in some domain of C. Such a matrix is called a Grushin
problem, and when invertible the problem is said to be well posed.

When successful this procedure reduces the spectral problem for P to a nonlinear
spectral problem of lower dimension. Indeed, if dim H− = dim H+ <∞, we write

(
P − z R−

R+ 0

)−1

=
(

E(z) E+(z)
E−(z) E−+(z)

)
,

and the invertibility of (P − z) : H1 → H2 is equivalent to the invertibility of the finite
dimensional matrix E−+(z). The zeros of det E−+(z) coincide with the eigenvalues of
P (even when P is not self-adjoint) because of the following formula:

tr
∮

z
(P − w)−1dw = − tr

∮

z
E−+(w)

−1 E ′−+(w) dw, (3.33)

valid when the integral on the left hand side is of trace class – see [44, Prop. 4.1] or
verify it using the factorization (3.32). Here

∮
z denotes an integral over a small circle

centered at z. The above formula shows that dim ker(P − z) = dim ker E−+(z).
The matrix E−+(z) is often called an effective Hamiltonian for the original

Hamiltonian P – see [44] for a review of this formalism and many examples. In the
physics literature, this reduction is usually called the Feshbach method.

We illustrate the use of Grushin problems with a simple lemma which will be useful
later in §5.3.
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Lemma 3.3. Suppose that

P def=
(

P R−
R+ 0

)
: H1 ⊕H− −→ H2 ⊕H+,

where H j and H± are Banach spaces. If P−1 : H2 → H1 exists then

P is a Fredholm operator ⇐⇒ R+ P−1 R− : H− → H+ is a Fredholm operator,

and

ind P = ind R+ P−1 R−.

Proof. We apply the factorization (3.32) with p11 = P, p12 = R−, p21 = R+, p22 =
0. Since the first factor is invertible we only need to check the Fredhold property and
the index of the second factor:

(
1 P−1 R−
0 −R+ P−1 R−

)
,

and the lemma is immediate. #�

4. A Microlocal Grushin Problem

In this section we recall and extend the analysis of [42] to treat a Poincaré section
� ⊂ p−1(0) for a flow satisfying the assumptions in §2.2. In [42] a Poincaré section
associated to a single closed orbit was considered. The results presented here are purely
microlocal in the sense of §3.2, first near a given component�k of the section, then near
the trapped set K0. In this section P is the original differential operator, but it could be
replaced by its complex scaled version Pθ,R , since the complex deformation described
in §3.4 takes place far away from K0. Also, when no confusion is likely to occur, we will
often denote the Weyl quantization χw of a symbol χ ∈ S(T ∗Rd) by the same letter:
χ = χw.

4.1. Microlocal study near�k . First we focus on a single component�k of the Poincaré
section, for some arbitrary k ∈ {1, . . . , N }. Most of the time we will then drop the sub-
script k. Our aim is to construct a microlocal Grushin problem for the operator

i

h
(P − z),

near � = �k , where |Re z| ≤ δ, | Im z| ≤ M0h log(1/h), and δ will be chosen small
enough so that the flow on �t�KRe z is a small perturbation of �t�K0 .

4.1.1. A normal form near�k . Using the assumption (2.11) and a version of Darboux’s
theorem (see for instance [23, Theorem 21.2.3]), we may extend the map κk = κ :
�̃k → �k to a canonical transformation κ̃k defined in a neighbourhood of �̃k in T ∗Rn ,
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�̃k
def= {(x, ξ) ∈ T ∗Rn; (x ′, ξ ′) ∈ �̃k, |xn| ≤ ε, |ξn| ≤ δ},

such that

κ̃k(x
′, 0, ξ ′, 0) = κk(x

′, ξ ′) ∈ �k, p ◦ κ̃k = ξn . (4.1)

We call �k = κ̃k(�̃k) the neighbourhood of �k in T ∗X in the range of κ̃k . The “width
along the flow” ε > 0 is taken small enough, so that the sets {�k, k = 1, . . . , N } are
mutually disjoint, and it takes at least a time 20ε for a point to travel between any �k
and its successors.

The symplectic maps κ̃k allow us to extend the Poincaré section � to the neighbouring
energy layers p−1(z), z ∈ [−δ, δ]. Let us call

κk,z
def= κ̃k� (�̃k ∩ {ξn = z}).

Then, if δ > 0 is taken small enough, for z ∈ [−δ, δ] the hypersurfaces

�k(z) = κk,z(�̃k) = {̃κ(x ′, 0; ξ ′, z), (x ′, ξ ′) ∈ �̃k}
are still transversal to the flow in p−1(z). Using this extension we may continuously

deform the departure sets D jk into D jk(z)
def= κk,z(D̃ jk) ⊂ �k(z), and by consequence

the tubes Tjk into tubes Tjk(z) ⊂ p−1(z) through a direct generalization of (2.12). The
tube Tjk(z) intersects � j (z) on the arrival set A jk(z) ⊂ � j (z); notice that for z �= 0,
the latter is in general different from κ j,z( Ã jk) (equivalently Ã jk(z) = κ−1

j,z (A jk(z)) is

generally different from Ã jk(0)). These tubes induce a Poincaré map Fjk,z bijectively
relating D jk(z) with A jk(z).

The following lemma, announced at the end of §2.3.1, shows that for |z| small enough
the interesting dynamics still takes place inside these tubes: the trapped set is stable with
respect to variations of the energy.

Lemma 4.1. Provided δ > 0 is small enough, for any z ∈ [−δ, δ] the trapped set
Kz � � jk Tjk(z).

As a consequence, in this energy range the Poincaré map associated with �(z) fully
describes the dynamics on Kz.

Proof. From our assumption in §2.1, there exists a ball B(0, R) (the “interaction region”)
such that, for any E ∈ [−1/2, 1/2], the trapped set KE must be contained inside
T ∗B(0,R)X . If R is large enough, any point ρ ∈ p−1(z)\T ∗B(0,R)X, z ≈ 0, will “escape
fast” in the past or in the future, because the Hamilton vector field is close to the one
corresponding to free motion, 2

∑
j ξ j∂x j . Hence we only need to study the behaviour

of points in p−1(z) ∩ T ∗B(0,R)Rn .
Let us define the escape time from the interaction region T ∗B(0,R)X : for any ρ ∈

T ∗B(0,R)X ,

tesc(ρ)
def= inf{t > 0, max(|πx�

t (ρ)|, |πx�
−t (ρ)|) ≥ R}.

For any E ∈ [−1/2, 1/2], the trapped set KE can be defined as the set of points in
p−1(E) for which tesc(ρ) = ∞. Let us consider the neighbourhood of K0 formed by
the interior of the union of tubes, (�Tik)

◦. By compactness, the escape time is bounded
from above outside this neighbourhood, that is in p−1(0)∩ T ∗B(0,R)X\(�Tik)

◦, by some
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finite t1 > 0. By continuity of the flow �t , for δ > 0 small enough, the escape time in
the deformed neighbourhood p−1(z) ∩ T ∗B(0,R X\(�Tik(z))◦ will still be bounded from
above by 2t1: this proves that Kz � �Tik(z). #�

A direct consequence is that the reduced trapped sets T j (z)
def= �(z)∩ Kz are contained

inside D j (z).
For any set S(z) depending on the energy in the interval z ∈ [−δ, δ], we use the

notation

Ŝ
def=

⋃

|z|≤δ
S(z). (4.2)

We will extend the notation to complex values of the parameter z ∈ R(δ,M0, h), iden-
tifying S(z) with S(Re z).

4.1.2. Microlocal solutions near�. Let us now restrict ourselves to the neighbourhood
of �k , and drop the index k. The canonical transformation κ̃ can be locally quantized
using the procedure reviewed in §3.3, resulting in a microlocally defined unitary Fourier
integral operator

U : H(�̃) −→ H(�), U∗ P U ≡ h Dxn , microlocally in �̃. (4.3)

For z ∈ R(δ,M0, h), we consider the microlocal Poisson operator

K(z) : L2(Rn−1)→ L2
loc(R

n), [K(z) v+](x ′, xn) = eixn z/h v+(x
′), (4.4)

which obviously satisfies the equation (h Dxn − z)K(z) v+ = 0.
For v+ microlocally concentrated in a compact set, the wavefront set of K(z) v+ is

not localized in the flow direction. On the other hand, the Fourier integral operator U is
well-defined and unitary only from �̃ to �. Therefore, we use a smooth cutoff function
χ�, χ� = 1 in �, χ� = 0 outside �′ a small open neighbourhood of � (say, such that
|xn| ≤ 2ε inside �̃′), and define the Poisson operator

K (z)
def= χw� U K(z) : H(�̃)→ H(�′).

This operator maps any state v+ ∈ H(�̃) ⊂ L2(Rn−1), to a microlocal solution of the
equation (P− z)u = 0 in�, with u ∈ H(�′). As we will see below, the converse holds:
each microlocal solution in � is parametrized by a function v+ ∈ H(�̃).

In a sense, the solution u = K (z)v+ is an extension along the flow of the trans-
verse data v+. More precisely, K (z) is a microlocally defined Fourier integral operator
associated with the graph

C− = {(̃κ(x ′, xn, ξ
′,Re z); x ′, ξ ′), (x ′, ξ ′) ∈ �̃, |xn| ≤ ε} ⊂ T ∗(X × R

n−1). (4.5)

Equivalently, this relation associates to each point (x ′, ξ ′) ∈ �̃ a short trajectory seg-
ment through the point κ̃(x ′, 0; ξ ′,Re z) ∈ �(Re z). We use the notation C− since this
relation is associated with the operator R− defined in (4.13) below.

Back to the normal form h Dxn , let us consider a smoothed out step function,

χ0 ∈ C∞(Rxn ), χ0(xn) = 0 for xn ≤ −ε/2, χ0(xn) = 1 for xn ≥ ε/2.
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We notice that the commutator (i/h)[h Dxn , χ0] = χ ′0(xn) is localized in the region of
the step and integrates to 1: this implies the normalization property

〈(i/h)[h Dxn , χ0]K(z)v+,K(z̄)v+〉 = ‖v+‖2
L2(Rn−1)

, (4.6)

where 〈•, •〉 is the usual Hermitian inner product on L2(Rn). Notice that the right hand
side is independent of the precise choice of χ0.

We now bring this expression to the neighbourhood of� through the Fourier integral
operator χw�U . This implies that the Poisson operator K (z) satisfies:

〈(i/h)[P, χw]K (z)v+, K (z̄)v+〉 ≡ ‖v+‖2 for any v+ ∈ H(�̃). (4.7)

Here the symbol χ is such that χw ≡ U χw0 U∗ inside �, so χ is equal to 0 before
�−ε(�) and equal to 1 after �ε(�) (in the following we will often use this time-like
terminology referring to the flow �t ). In (4.7), we are only concerned with [P, χw]
microlocally near �, since the operator χw�U is microlocalized in �′ × �̃′. Hence, at
this stage we can ignore the properties of the symbol χ outside �′.

The expression (4.7) can be written

K (z̄)∗ [(i/h)P, χw]K (z) = I d : H(�̃)→ H(�̃). (4.8)

Fixing a function χ with properties described after (4.7) and writing χ = χ f (where f
is for forward), we define the operator

R+(z)
def= K (z̄)∗ [(i/h)P, χ f ] = K(z̄)∗U∗χw� [(i/h)P, χ f ] (4.9)

(from here on we denote χ = χw in similar expressions). This operator “projects” any
u ∈ H(�) to a certain transversal function v+ ∈ H(�̃). But it is important to notice that
R+(z) is also well-defined on states u microlocalized in a small neighbourhood of the
full trapped set K̂ : the operator χw� [(i/h)P, χ f ] cuts off the components of u outside
�. Hence, we may write

R+(z) : H(neigh(K̂ ))→ H(�̃).

Equation (4.8) shows that this projection is compatible with the above extension of
the transversal function:

R+(z) K (z) = I d : H(�̃)→ H(�̃). (4.10)

This shows that transversal functions v+ ∈ H(�̃) and microlocal solutions to
(P − z)u = 0 are bijectively related. Since | Im z| ≤ M0h log(1/h) and |xn| ≤ 2ε
inside �̃ (resp. |xn| ≤ ε inside �̃), we have the bounds

‖K (z)‖L2→L2 = O(h−2εM0), ‖R+(z)‖L2→L2 = O(h−εM0).

Just as K (z̄)∗, R+(z) is a microlocally defined Fourier integral operator associated with
the relation

C+ = {x ′, ξ ′; (̃κ(x ′, xn, ξ
′,Re z)), (x ′, xn, ξ

′,Re z) ∈ �̃} ⊂ T ∗(Rn−1 × X), (4.11)

namely the inverse of C− given in (4.5). In words, this relation consists of taking any
ρ ∈ � ∩ p−1(Re z) and projecting it along the flow on the section �(z).
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We now select a second cutoff function χb with properties similar with χ f , and
satisfying also the nesting property

χb = 1 in a neighbourhood of suppχ f . (4.12)

With this new cutoff, we define the operator

R−(z)u− = [(i/h)P, χb] K (z) : H(�̃)→ H(�). (4.13)

Starting from a transversal data u− ∈ H(�̃), this operator creates a microlocal solution
in � and truncates by applying a pseudodifferential operator with symbol Hpχb. Like
K (z), it is a microlocally defined Fourier integral operator associated with the graph
C−. Its norm is bounded by ‖R−(z)‖L2→L2 = O(h−εM0).

4.1.3. Solving a Grushin problem. We are now equipped to define our microlocal
Grushin problem in �. Given v ∈ H(�), v+ ∈ H(�̃), we want to solve the system

{
(i/h)(P − z)u + R−(z)u− = v,

R+(z)u = v+,
(4.14)

with u ∈ L2(X) a forward solution, and u− ∈ H(�̃).
Let us show how to solve this problem. First let ũ be the forward solution of (i/h)(P−

z)̃u = v, microlocally in �. That solution can be obtained using the Fourier integral
operator U in (4.3) and the easy solution for h Dxn . We can also proceed using the
propagator to define a forward parametrix:

ũ
def= E(z) v, E(z)

def=
∫ T

0
e−i t (P−z)/h dt. (4.15)

The time T is such that �T (�) ∩� = ∅ (from the above assumption on the separation
between the �k we may take T = 5ε). By using the model operator h Dxn , one checks
that the parametrix E(z) transports the wavefront set of v as follows:

WFh(E(z)v) ⊂ WFh(v) ∪�T (WFh(v)) ∪
⋃

0≤t≤T

�t (WFh(v) ∩ p−1(Re z)). (4.16)

In general, ũ does not satisfy R+(z)̃u = v+, so we need to correct it. For this aim, we
solve the system

{
(i/h)(P − z)̂u + R−(z)u− ≡ 0,

R+(z)̂u ≡ v+ − R+(z)̃u
(4.17)

through the Ansatz
{

u− = −v+ + R+(z)̃u,
û = −χb K (z) u−. (4.18)

Indeed, the property (P − z) K (z) ≡ 0 ensures that (i/h)(P − z)̂u = −R−(z)u−. We
then obtain the identities

R+(z)̂u = −K (z̄)∗ [(i/h)P, χ f ]χb K (z) u−
≡ −K (z̄)∗ [(i/h)P, χ f ] K (z) u−
≡ −u−.
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The second identity uses the nesting assumption (Hpχ f )χb = Hpχ f , and the last one
results from (4.8). This shows that the Ansatz (4.18) solves the system (4.17). Finally,
(u = ũ + û, u−) solves (4.14) microlocally in � × �̃, for v ∈ H(�) and v+ ∈ H(�̃)
respectively. Furthermore, these solutions satisfy the norm estimate

‖u‖ + ‖u−‖ � h−5M0ε(‖v‖ + ‖v+‖). (4.19)

The form of the microlocal construction in this section is an important preparation for
the construction of our Grushin problem in the next section. In itself, it only states that,
for v microlocalized near �, (i/h)(P − z)u = v can be solved microlocally near � in
the forward direction.

4.2. Microlocal solution near K̂ . We will now extend the construction of the Grushin
problem near each �k , described in §4.1, to obtain a microlocal Grushin problem near
the full trapped set K̂ . This will be achieved by relating the construction near �k to the
one near the successor sections � j . We now need to restore all indices k ∈ {1, . . . , N }
in our notations.

4.2.1. Setting up the Grushin problem. We recall that H(�̃k) ⊂ L2(Rn−1) is the space
of functions microlocally concentrated in �̃k (see (3.6). For u ∈ L2(X) microlocally
concentrated in neigh(K̂ , T ∗X), we define

R+(z)u = (R1
+(z)u, . . . , RN

+ (z)u) ∈ H(�̃1)× · · · × H(�̃N ), (4.20)

where each Rk
+(z) : H(neigh(K̂ )) → H(�̃k) was defined in §4.1 using a cutoff χk

f ∈
C∞c (T ∗X) realizing a smoothed-out step from 0 to 1 along the flow near �k .

Similarly, we define

R−(z) : H(�̃1)× · · · × H(�̃N )→ H(∪N
k=1�k),

R−(z)u− =
N∑

1

R j
−(z)u

j
−, u− = (u1−, . . . , uN−).

(4.21)

Each Rk−(z) was defined in (4.13) in terms of a cutoff function χk
b ∈ C∞c (T ∗X) which

also changes from 0 to 1 along the flow near �k , and does so before χk
f . Below we will

impose more restrictions on the cutoffs χk
b .

With these choices, we now consider the microlocal Grushin problem
{
(i/h)(P − z)u + R−(z)u− ≡ v,

R+(z)u ≡ v+.
(4.22)

The aim of this section is to construct a solution (u, u−) microlocally concentrated
in a small neighbourhood of

K0 × κ−1
1 (T1)× · · · × κ−1

N (TN ),

provided (v, v+) is concentrated in a sufficiently small neighbourhood of the same set.
To achieve this aim we need to put more constraints on the cutoffs χk

b . We assume
that each χk

b ∈ C∞c (T ∗X) is supported near the direct outflow of Tk . To give a precise
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Fig. 7. Schematic representation of (part of) the neighbourhoods V1 ⊂ V0 of K0 (resp. green shade and green
dashed contour), some sections �k (thick black) and arrival sets Akj ⊂ �k (red). We also show the tubes

T±±12 connecting �2 with A12 (the dashed lines indicate the boundaries of T−−12 ), the supports of the cutoffs

χk
b and χ3

f (dot-dashed line), and two trajectories in K0 (full lines inside V1). (color on-line only)

condition, let us slightly modify the energy-thick tubes T̂ jk (see (2.12), (4.2) by removing
or adding some parts near their ends:

T̂ s1s2
jk

def= {�t (ρ) : ρ ∈ D̂ jk, −s2 2ε < t < t+(ρ) + s1 2ε}, si = ±.
With this definition, the short tubes T̂−−jk do not intersect the neighbourhoods �k, � j ,

while the long tubes T̂ ++
jk intersect both (see Fig. 7).

We then assume that

χk
b (ρ) = 1 for ρ ∈

⋃

j∈J+(k)

T̂−−jk , (4.23)

and suppχk
b is contained in a small neighbourhood of that set. Furthermore, we want

the cutoffs {χk
b }k=1,...,N to form a microlocal partition of unity near K0: there exists a

neighbourhood V0 of K̂ containing all long tubes:

V0 ⊃
⋃

k, j

T̂ ++
jk , (4.24)

and such that

N∑

k=1

χk
b (ρ) ≡ 1 for ρ ∈ V0. (4.25)
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These conditions on χk
b can be fulfilled thanks to the assumption (2.10) on the section

�. A schematic representation of these sets and cutoffs is shown in Fig. 7.

4.2.2. Solving the homogeneous Grushin problem. Let us first solve (4.22) when v ≡ 0.
The wavefront set WFh(v

k
+) ⊂ �̃k is mapped through κk,z to a subset of �k(z). The

microlocal solution Kk(z)vk
+, initially concentrated inside the neighbourhood�′k , can be

extended along the flow to a larger set�+
k , which intersects the successors� j (z) of�k(z)

and contains the union of tubes
⋃

j∈J+(k) T̂ ++
jk (we recall that j �= k according to assump-

tion (2.10). This can be done by extending the symplectomorphism κ̃k , the associated
unitary Fourier integral operator Uk , and replace the cutoff function χ�k by a function
χ�+

k
supported in the set �+

k ; we can then define the extended Poisson operator as:

K +
k (z) = χw�+

k
Uk K(z) : H(�̃)→ H(�+

k ).

Assuming κk,z(WFh(v
k
+)) is contained in the departure set Dk(z) ⊂ �k(z), the extended

microlocal solution K +
k (z)v

k
+ is concentrated in the union of tubes ∪ j∈J+(k)T

++
jk (z). In

that case, we take as our Ansatz

uk
def= χk

b K +
k (z) v

k
+. (4.26)

Set

tmax
def= max{t+(ρ), ρ ∈ �k Dk(z), |Re z| ≤ δ}, (4.27)

the maximal return time for our Poincaré map. Then the above Ansatz satisfies the
estimate

‖uk‖L2 � h−M0(tmax+ε) ‖v+‖H(D̃k )
. (4.28)

Due to the assumption (4.23), the cutoff χk
b effectively truncates the solution only

near the sections�k(z) and� j (z), j ∈ J+(k), but not on the “sides” of suppχk
b . Hence,

the expression

(i/h)(P − z)uk ≡ [(i/h)P, χk
b ] K +

k (z) v
k
+ (4.29)

can be decomposed into one component Rk−(z)vk
+ supported near Dk(z), and other com-

ponents supported near the arrival sets A jk(z) ⊂ � j , due to the “step down” of χk
b near

A jk(z). The assumption (4.25) ensures that

[(i/h)P, χk
b ] ≡ −[(i/h)P, χ j

b ] microlocally near A jk(z), (4.30)

so the expression in (4.29) reads

(i/h)(P − z)uk ≡ Rk−(z)vk
+ −

∑

j∈J+(k)

[(i/h)P, χ j
b ] K +

k (z) v
k
+. (4.31)

Now, for each j ∈ J+(k) we notice that K +
k (z) v

k
+ is a solution of (P − z)u = 0 near

A jk(z), so this solution can also be parametrized by some transversal data “living” on
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the section � j (z) (see the discussion before (4.5). This data obviously depends linearly
on vk

+, which defines the monodromy operator M jk(z):

K +
k (z)v

k
+ ≡ K j (z)M jk(z)v

k
+, microlocally near A jk(z). (4.32)

The operators M jk(z) are microlocally defined from D̃k ⊂ �̃k to Ã jk(z) ⊂ �̃ j , they
are zero on H(D̃�k) for � �= j . The identity (4.8) provides an explicit formula:

M jk(z) = K j (z̄)
∗ [(i/h)P, χ j

f ]K +
k (z) = R j

+(z)K
+
k (z). (4.33)

Before further describing these operators, let us complete the solution of our Grushin
problem. Combining (4.31) with (4.32), we obtain

(i/h)(P − z)uk ≡ Rk−(z)vk
+ −

∑

j∈J+(k)

R j
−(z)M jk(z)v

k
+. (4.34)

This shows that the problem (4.22) in the case v = 0 and a single v+
k , WFh(v

k
+) ⊂ D̃k

is solved by

u ≡ χk
b K +

k (z) v
k
+, uk− = −vk

+, u j
− = M jk(z)v

k
+, j ∈ J+(k).

We now consider the Grushin problem with v = 0, v+ = (v1
+, . . . , v

N
+ ) with each vk

+
microlocalized in D̃k . By linearity, this problem is solved by

u ≡
∑

k

χk
b K +

k (z) v
k
+,

u j
− ≡ −v j

+ +
∑

k∈J−( j)

M jk(z)v
k
+.

(4.35)

From the above discussion, u is microlocalized in the neighbourhood V0 of K̂ , while u j
−

is microlocalized in D̃ j ∪ Ã j (z).
Let us now come back to the monodromy operators. The expression (4.33) shows that

M jk(z) is a microlocal Fourier integral operator. Since we have extended the solution
Kk(z) vk

+ beyond�k , the relation associated with the restriction of K +
k (z) on H(D̃ jk) is

a modification of (4.5), of the form

C jk
− = {(�t (̃κk,z(ρ)); ρ), ρ ∈ D̃ jk, −ε ≤ t ≤ tmax + ε},

such that the trajectories cross � j . On the other hand, the relation C+ associated with

R j
+(z) is identical with (4.11). By the composition rules, the relation associated with

M jk(z) is

C jk = {(ρ′, ρ), ρ ∈ D̃ jk, ρ
′ = κ−1

j,z ◦ Fjk,z ◦ κk,z(ρ) = F̃jk,z(ρ)}.
This is exactly the graph of the Poincaré map Fjk,z : D jk(z) → A jk(z), seen through
the coordinates charts κk,z, κ j,z .

When z is real, the identity (4.8) implies that M jk(z) : H(D̃ jk) → H( Ã jk(z)) is
microlocally unitary. Also, the definition (4.33) shows that this operator depends holo-
morphically on z in the rectangle R(δ,M0, h). To lowest order, the z-dependence takes
the form

M jk(z) = M jk(0)Opwh (exp(i zt̃+/h)) (1 + O(h log(1/h))),
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where t̃+ ∈ C∞c (Rn−1;R+) is an extension of the return time associated with the map
F̃jk,z on D̃ jk . For z ∈ R(δ,M0, h), this operator satisfies the asymptotic bound

‖M jk(z)‖H(D̃k )→H( Ã j (z)) = O(h−M0tmax). (4.36)

4.2.3. Solving the inhomogeneous Grushin problem. It remains to discuss the inhomo-
geneous problem

(i/h)(P − z)u + R−u− ≡ v, (4.37)

for v microlocalized in a neighbourhood V1 of K̂ , which satisfies

V1 ⊂
⋃

j,k

T̂−+
jk (4.38)

(each tube T̂−+
jk intersects �k only near D̂k , see Fig. 7).

Let us first assume that v is microlocally concentrated inside a short tube T̂−−jk . We
use the forward parametrix E(z) of (i/h)(P − z) given in (4.15) with the time

T = tmax + 5ε, (4.39)

and consider the Ansatz

u
def= χk

b E(z) v. (4.40)

According to the transport property (4.16), E(z)v is microlocalized in the outflow of
T̂−−jk , so the cutoff χk

b effectively truncates E(z)v only near A jk(z) ⊂ � j . The partition
of unity (4.25) then implies that

(i/h)(P − z)u ≡ v + [(i/h)P, χk
b ] E(z) v ≡ v − [(i/h)P, χ j

b ] E(z) v.

Also, the choice of the time T ensures that E(z)v is a microlocal solution of (P−z)u = 0
near A jk(z), so

E(z)v ≡ K j (z)R
j
+(z)E(z)v microlocally near A jk(z).

Thus, we can solve (4.37) by taking

u j
− ≡ R j

+(z)E(z)v, u�− = 0, � �= j.

The propagation of wavefront sets given in (4.16) shows that u j
− ∈ H( Ã jk(z)), and that

WFh(u) ⊂ T̂ +−
jk does not intersect the “step up” region of the forward cutoffs χ�f , so

that R�+(z)u ≡ 0 for all � = 1, . . . , N .
If v is microlocally concentrated in V1 ∩∪|t |≤ε�t (D̂k), we can replace the cutoff χk

b
in (4.40) by

χk
b +

∑

�∈J−(k)
χ�b ,

and apply the same construction. The only notable difference is the fact that Rk
+(z)u may

be a nontrivial state concentrated in ∪|t |≤ε D̂k .
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In both cases, we see that ‖u‖ + ‖u−‖ � h−M0(tmax+2ε)‖v‖. By linearity, the above
procedure allows to solve (4.37) for any v microlocalized inside the neighbourhood V0.

This solution produces a term R+u, which can be solved away using the procedure
of §4.2.2. Notice that ‖R+u‖ � h−M0(tmax+ε)‖v‖.

We summarize the construction of our microlocal Grushin problem in the following

Proposition 4.2. For δ > 0 small enough, there exist neighbourhoods of K̂ = K̂δ in
T ∗X, V+ and V−, and neighbourhoods of κ̃−1

j (T̂ j ) in �̃ j , V j
+ , and V j

−, j = 1, · · · N,
such that for any

(v, v+) ∈ H(V+)× H(V 1
+ )× · · · H(V N

+ ),

we can find

(u, u−) ∈ H(V−)× H(V 1−)× · · · H(V N− ),

satisfying

i

h
(P − z)u + R−(z)u− ≡ v, R+(z)u ≡ v+ microlocally in V+ × V 1

+ × · · · V +
N .

Here R±(z) are given by (4.20) and (4.21). Furthermore, the solutions satisfy the norm
estimates

‖u‖ + ‖u−‖ � h−M0(2tmax+2ε)(‖v‖ + ‖v+‖),
where tmax is the maximal return time defined in (4.27).

One possible choice for the above sets is

V+ = V1, V−
def= V0, V k

+ = D̃k, V k− = D̃k ∪
⋃

|Re z|≤δ
Ãk(z).

Proof. Take v ∈ H(V1), and call (̃u, ũ−) the solution for the inhomogeneous problem
(4.37). Then the propagation estimate (4.16) implies that ũ is concentrated inside the
larger neighbourhood V0 ⊂ ∪ j,k T̂ ++

jk (see (4.24)), while ũ j
− ∈ H( Ã j (z)).

We have Rk
+(z)̃u ∈ H(D̃k) so, provided the data satisfies vk

+ ∈ D̃k , the computations
of §4.2.2 show how to solve the homogeneous problem with data (v+ − R+(z)̃u). That
solves the full problem. The expressions (4.35) show that the solutions to the homoge-
neous problem (̂u, ûk−) are microlocalized, respectively, in V0 and in D̃k ∪ Ãk(z).

#�
Remark. The proof of the proposition shows that the neighbourhoods V k

+ and V k− are
different. For given data (v, v+), the solutions (u, u−) will not in general be concen-
trated in the same small set as the initial data. This, of course, reflects the fact that a
neighbourhood V of K0 is not invariant under the forward flow, but escapes along the
unstable direction. In order to transform the microlocal Grushin problem described in
this proposition into a well-posed problem, we need to take care of this escape phe-
nomenon. This will be done using escape functions in order to deform the norms on the
spaces L2(X) (as described in §3.5), but also on the auxiliary spaces L2(Rn−1).
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5. A Well Posed Grushin Problem

The difficulty described in the remark at the end of §4 will be resolved by modifying
the norms on the space L2(X) × L2(Rn−1)N , through the use of exponential weight
functions as described in §3.5. These weight functions will be based on the construction
described in §3.6.

In most of this section we will consider the scaled operator Pθ,R globally, so we
cannot replace it by P any longer. To alleviate notation, we will write this operator

P = Pθ,R, θ = M1h log(1/h), R & C0, (5.1)

where C0 is the constant appearing in (2.2), and M1 > 0 is a constant (it will be required
to satisfy (3.31) once we fix the weight G, and is larger than M0 appearing in Theorem 1).

We will first discuss the local construction near each �k and then, as in the previous
section, adapt it to construct a global Grushin problem.

Our first task is still microlocal: we explain how a deformation of the norm on L2(X)
by a suitable weight function G can be used to deform the norms on the N auxiliary
spaces L2(Rn−1), microlocally near �̃k .

5.1. Exponential weights near �k . As in §4.1, in this subsection we work microlocally
in the neighbourhood �k of one component �k (�k is the neighbourhood described
in §4.1); we drop the index k in our notations. Notice that the complex scaling has no
effect in this region, so P ≡ Pθ,R . We will impose a constraint on the weight function
G near�, and construct weight functions g on �̃. The construction of the local solution
performed in §4.1 will then be studied in these deformed spaces.

Take a function g0 ∈ C∞c (Rn−1), and use it to define G̃0 ∈ C∞(T ∗Rn), so that

G̃0(x
′, xn, ξ

′, ξn) = g0(x ′, ξ ′) in �̃′.
Then, using the Fourier integral operator U given in (4.3), one can construct a weight
function G0 ∈ S(T ∗X) such that

Gw
0 ≡ U (G̃0)

w U∗ microlocally near �.

Notice that G0 now depends on h through an asymptotic expansion

G0(h) ∼
∑

j≥0

h j G0, j , G0, j ∈ C∞c (T ∗X) independent of h. (5.2)

This weight satisfies G0,0 = G̃0 ◦ κ̃−1 in �, and the invariance property

[P(h),Gw
0 (x, h D)] ≡ 0 microlocally in �. (5.3)

As in §3.5, we rescale these weight functions by

G
def= Mh log(1/h)G0, g

def= Mh log(1/h) g0. (5.4)

Still using the model h Dxn , one can easily check the intertwining property

Gw(x, h Dx ; h) K (z) ≡ K (z) gw(x ′, h Dx ′ ; h) : H(�̃)→ H(�′),
e−Gw(x,h Dx ;h)/h K (z) ≡ K (z) e−gw(x ′,h Dx ′ ;h)/h : H(�̃)→ H(�′).

(5.5)

Using the weights G and g we define the microlocal Hilbert spaces HG(�
′) and Hg(�̃)

by the method of §3.5. We need to check that the construction of a microlocal solution
performed in §4.1.2 remains under control with respect to these new norms.
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Lemma 5.1. The operators

K (z) : Hg(�̃)→ HG(�
′), z ∈ R(δ,M0, h)

satisfy the analogue of (4.7). Namely, taking a cutoff χ jumping from 0 to 1 near � as
in §4.1.2, then any v+ ∈ Hg(�̃) will satisfy

〈[(i/h)P, χw] K (z) v+, K (z̄) v+〉HG ≡ ‖v‖2
Hg
. (5.6)

Proof. From the cutoff χ we define the deformed symbol χG through

χwG (x, h D)
def= e−Gw(x,h D)/h χw(x, h D) eGw(x,h D)/h .

The symbol calculus of §3.5 shows that χG also jumps from 0 to 1 near �, so that
(returning to the convention of using χ for χw)

〈[(i/h)P, χ ]K (z)v+, K (z̄)v+〉HG ≡ 〈e−G/h[(i/h)P, χ ]K (z)v+, e−G/h K (z̄)v+〉L2

≡ 〈K (z̄)∗[(i/h)PG, χG ] K (z) e−g/h v+, e−g/h v+〉L2

≡ 〈K (z̄)∗[(i/h)P, χG ] K (z) e−g/h v+, e−g/h v+〉L2

≡ ‖e−g/h v+‖2 ≡ ‖v+‖2
Hg
.

In the second line we used (5.5), the third line results from P ≡ PG , due to (5.3), and
the last one from (4.7) applied to χG . #�

Equation (5.5) shows that, for z ∈ R(δ,M0, h), the operators K (z) and R±(z) defined
respectively in (4.9) and (4.13), satisfy the same norm estimates with respect to the new
norms as for the L2 norms:

‖K (z)‖Hg(�̃)→HG (�)
= O(h−M0ε), (5.7)

‖R+(z)‖HG (�)→Hg(�̃)
= O(h−M0ε), ‖R−(z)‖Hg(�̃)→HG (�)

= O(h−M0ε). (5.8)

The arguments presented in §4.1 carry over to the weighted spaces, and the microlocal
solution to the problem (4.14) constructed in §4.1.3 satisfies the norm estimates

‖u‖HG + ‖u−‖Hg � h−5M0ε
(‖v‖HG + ‖v+‖Hg

)
. (5.9)

Given a function G0,0(x, ξ) satisfying HpG0,0 = 0 in �, one can iteratively construct
a full symbol G0 of the form (5.2), such that (5.3) holds. Now, the lower order terms
in G0 may change the norms only by factors (1 + O(Mh log(1/h))), so the same norm
estimates hold if we replace G0 by its principal symbol G0,0 in the definition of the new
norms. As a result, we get the following

Proposition 5.2. Take G̃0(x ′, xn, ξ
′, ξn) = g0(x ′, ξ ′),G0 ∈ C∞c (X) satisfying G0 =

G̃0 ◦ κ̃−1 in �, and

G = Mh log(1/h)G0, g = Mh log(1/h) G̃0.

Then, the estimates (5.7)–(5.9) hold in the spaces HG(�), Hg(�̃).
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5.2. Globally defined operators and finite rank weighted spaces. In this section we trans-
form our microlocal Grushin problem into a globally defined one. This will require trans-
forming all the microlocally defined operators (R±(z), M jk(z)) into globally defined
operators acting on L2(X) or L2(Rn−1). Because our analysis took place near the trapped
set K0, we will need to restrict our auxiliary operators to some subspaces of L2(Rn−1)

obtained as images of some finite rank projectors. These subspaces are composed of func-
tions microlocalized near K0. To show that the resulting Grushin problem is well-posed
(invertible), the above construction must be performed using appropriately deformed
norms on the spaces L2(X), L2(Rn−1), obtained by using globally defined weight func-
tions G, g j . Our first task is thus to complete the constructions of these global weights,
building on §3.6 and §5.1.

5.2.1. Global weight functions. We will now construct global weight functions G ∈
C∞c (X), g j ∈ C∞c (T ∗Rn−1) (one for each section � j ). For this, we will use the con-
struction of an escape function away from K0 presented in §3.6, and modify it near the
Poincaré section so that it takes the form required in Proposition 5.2, and allows us to
define auxiliary escape functions g j . These weight functions will allow us to to define
finite rank realizations of the microlocally defined operators R±(z) and M(z).

Our escape function G0 ∈ S(T ∗X) is obtained through a slight modification of the
weight G2(x, ξ) described in (3.28). The modification only takes place near the trapped
set K̂ , and in particular near the sections � j . The following lemma is easy to verify.

Lemma 5.3. Let {� j , } j=1,...,K be the neighbourhoods of � j described in §4.1.1, �′j
and �′′j be small neighbourhoods of � j , � j � �′j � �′′j , and let V be a small neigh-

bourhood of K̂δ (see (3.26)). Then there exists G0 ∈ C∞c (T ∗X) such that

HpG0 ≥ 1 on T ∗B(0,3R)X ∩ p−1([−δ, δ])\W, W
def= V ∪

N⋃

j=1

�′′j ,

HpG0 = 0 on �′j ,
HpG0 ≥ 0 on T ∗B(0,3R)X,

HpG0 ≥ −δ0 on T ∗X.

(5.10)

Besides, using the coordinate charts κ̃ j : �̃′j → �′j (see §4.1.1), we can construct G0

such that G0 ◦ κ̃ j� �̃′j is independent of the energy variable ξn ∈ [−δ, δ].
The last assumption (local independence on ξn) is not strictly necessary, but it sim-

plifies our construction below, making the auxiliary functions g j independent of z —
see Proposition 5.2.

For the set V we assume that V � V1, where V1 is the set defined in (4.38). As a
consequence, there exists a set V ′1, with V � V ′1 � V1 with the following property. Con-
sider the parametrix E(z) (4.15) with the time T = tmax + 5ε. Then there exists t1 > 0
such that, for any ρ ∈ p−1([−δ, δ])\V ′1, the trajectory segment {�t (ρ), 0 ≤ t ≤ T }
spends a time t ≥ t1 outside of W . The main consequence of this property is a strict
increase of the weight along the flow outside V ′1:

∀ρ ∈ T ∗B(0,2R)X ∩ p−1([−δ, δ])\V ′1, G0(�
T (ρ))− G0(ρ) ≥ t1. (5.11)
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(Here we use the fact that T is small enough, so that a particle of energy z ≈ 0 starting
inside T ∗B(0,2R) at t = 0 will remain inside T ∗B(0,3R) up to t = T .) The set V will be
further characterized in the next subsection.

From now on, we will take for weight function G = Mh log h G0 with such a function
G0, and use it to define a global Hilbert norm ‖ • ‖Hk

G (X)
as in (3.21). As in Proposition

5.2, we define, for each j = 1, . . . , N , the auxiliary weight

g j (x
′, ξ ′) def= Mh log(1/h)G0 ◦ κ̃ j (x

′, 0, ξ ′, 0), (x ′, ξ ′) ∈ �̃ j , (5.12)

and extend it to an element of C∞c (T ∗R(n−1)), so that the deformed Hilbert norm

‖v‖Hg j
= ‖e−gwj (x

′,h D′x )/h
v‖L2(Rn−1)

is globally well-defined. Proposition 5.2 shows that our microlocal construction near� j
satisfies nice norm estimates with respect to the spaces HG(X), Hg j .

To see the advantages of having weights which are escape functions we state the fol-
lowing lemma which results from applying Lemma 3.2 to the Fourier integral operator
exp(−i t P/h):

Lemma 5.4. Suppose that ρ1 = �t (ρ0) for some t > 0, and that

�
def= G0(ρ1)− G0(ρ0) > 0.

Suppose also that χ j ∈ C∞c (T ∗X), j = 0, 1, have their supports in small neighbour-
hoods of ρ j ’s. Then for h small enough we have

‖e−i t P/h χw0 ‖HG→HG ≤ hM�/2, ‖χw1 e−i t P/h‖HG→HG ≤ hM�/2. (5.13)

5.2.2. Finite dimensional projections. We want to construct a finite dimensional sub-
space of the Hilbert space Hg j (R

n−1), such that the microlocal spaces Hg j (V
j
±) are both

approximated by it modulo O(h∞).
For each j = 1, . . . , N , let S′j , S j be two families of open sets with smooth bound-

aries in T ∗Rn−1, satisfying

κ̃−1
j (T̂ j ) � S′j � S j ⊂ D̃ j , j = 1, . . . , N . (5.14)

In particular, each S j , S′j splits into disjoint components S′k j � Skj ⊂ D̃k j .
Once these sets are chosen, we need to adjust the set V in Lemma 5.3, making it

thinner if necessary:

Lemma 5.5. For δ > 0 small enough, there exists V = neigh(K̂δ, V1) and t0 > 0 such
that the following property holds:

For any indices j = 1, . . . , N , k ∈ J+( j), any z ∈ [−δ, δ]and any pointρ ∈ D̃k j∩S j

such that its successor F̃k j,z(ρ) does not belong to S′k , then the trajectory between κ j,z(ρ)

and Fkj,z(κ j,z(ρ)) spends a time t ≥ t0 outside of W = V ∪⋃N
j=1�

′′
j .
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V

Fig. 8. Schematic representation (inside some energy layer p−1(z)) of the neighbourhood V and the sets
Sk , S j . The departure/arrival sets Dkj , Akj are similar to the ones appearing in Fig. 4. The sets Sk , S j are
represented through their images in �k , � j through κk,z , κ j,z . We show 3 trajectories staying inside V all
the time, and one ending outside Sk

The time t0 is necessarily smaller than the maximal return time tmax of (4.27); on the
other hand, t0 increases if we decrease the width ∼ ε of the sets �′′j . See Fig. 8 for a
sketch. Now, let

Q j = Q j (x
′, ξ ′; h) ∈ S(T ∗Rn−1),

with leading symbol q j independent of h (the leading symbol is meant in the sense of
(3.23)). We choose that leading symbol to be real and have the following properties:

q j (ρ) < 0, ρ ∈ S j ,

(5.15)
q j (ρ) > 0, ρ ∈ T ∗Rn−1\S j , lim inf

ρ→∞ q j (ρ) > 0.

Lemma 3.1 shows that one can choose Q j so that

Qw
j (x

′, h Dx ′) : Hg j (R
n−1) −→ Hg j (R

n−1) is self-adjoint.

Under the assumptions (5.15), we know that Q j has discrete spectrum in a fixed neigh-
bourhood of R− when h > 0 is small enough. Let

H j
def= � j

(
Hg j (R

n−1)
)
, where � j

def= 1R−

(
Qw

j (x
′, h Dx ′)

)
, (5.16)

that is, � j is the spectral projection corresponding to the negative spectrum of Qw
j . In

particular,

‖� j‖Hg j→Hg j
= 1, dim(H j ) ∼ c j h1−n, c j > 0. (5.17)
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We group together these projectors in a diagonal matrix �h
def= diag(�1, . . . ,�N )

projecting Hg1(R
n−1)× · · · HgN (R

n−1) onto H def= H1 × · · ·HN .
The space H j will be equipped with the norm ‖•‖Hg j

. For future reference we record
the following lemma based on functional calculus of pseudodifferential operators (see
for instance [12, Chap. 7]):

Lemma 5.6. For any uniformly bounded family of states u = (u(h) ∈ L2(Rn−1))h→0,

WFh(u) � S j !⇒ ‖u −� j u‖Hg j
= O(h∞)‖u‖Hg j

.

In §5.1 we used the microlocally defined operators

R j
+(z) : HG(� j )→ Hg j (�̃ j ).

Renaming them R j
+,m(z) (where m stands for microlocal) we now define

R j
+(z)

def= � j R j
+,m : HG(X)→ H j . (5.18)

The estimate (5.8) together with the above lemma shows that

‖R j
+(z)‖HG (X)→H j = O(h−M0ε), z ∈ R(δ,M0, h). (5.19)

The operators R j
+(z) are globally well-defined once we choose a specific realization of

R j
+,m(z), which gives a unique definition mod O(h∞). We have thus obtained a family

of operators

R+(z)
def= (R1

+, . . . , RN
+ ) : HG(X) −→ H1 × · · ·HN .

In turn, the operators R j
−(z) are obtained by selecting a realization of the microlocally

defined operator R j
−,m(z) on Hg j (�̃ j ), and restricting that realization to H j :

R j
−(z) = R j

−,m(z)� j : H j −→ HG(X). (5.20)

Again, these operators are well defined mod O(h∞). Putting together (5.8) with (5.17)
ensures that

‖R j
−(z)‖H j→HG = O(h−M0ε).

We group these operators into

R−(z) : H1 × · · ·HN −→ HG(X),

(5.21)

R−(z)u− =
N∑

j=1

R j
−(z) u j

−, u− = (u1−, . . . , uN−).
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5.3. A well posed Grushin problem. With these definitions we consider the following
Grushin problem:

P(z) : H2
G ×H → HG ×H, H def= H1 × · · ·HN ,

(5.22)

P(z) def=
(
(i/h)(Pθ,R(h)− z) R−(z)

R+(z) 0

)
, z ∈ R(δ,M0, h).

Since Pθ,R(h) − z (which we will denote by P − z for short) is a Fredholm operator,
so is P(z), as we have only added finite dimensional spaces. For Im z > 0 the operator
(P − z) is invertible, so Lemma 3.3 shows that the index of P(z) is 0. Hence, in order
to prove that P(z) is bijective it suffices to construct an approximate right inverse and
then use a Neumann series. The rest of this section will be devoted to the proof of this
(approximate) right invertibility of P(z).

5.3.1. A well-posed homogeneous problem. As before we first consider the homoge-
neous problem

(i/h)(P − z)u + R−(z)u− = 0, R+(z)u = v+, (5.23)

where only one component vk
+ is nonzero (we may assume that ‖vk

+‖H1 = 1). For that we
adapt the methods of §4.2.2. We construct an approximate solution using the extended
Poisson operator K +

k (z) (that operator acts on the microlocal space Hgk (�̃k), so its action
on Hk is well-defined modulo O(h∞)), and take

u = χk
b K +

k (z) v
k
+,

where χk
b is the backwards cutoff function with properties given in (4.12),(4.23) and

(4.25). The fact that G increases along the trajectories implies that u satisfies the same
norm bound as with the “old norms” (see (4.28):

‖u‖HG (X) � h−M0(tmax+ε) ‖vk
+‖Hk .

The microlocally defined operator satisfies

Rk
+,m(z) u ≡ vk

+ + OHgk
(h∞), R j

+,m(z) u = OHg j
(h∞), j �= k.

As a result, projecting the left-hand side onto Hk has a negligible effect:

Rk
+(z) u = �k(v

k
+ + O(h∞)) = vk

+ + OHk (h
∞).

Following (4.29) we write

(i/h)(P − z)u ≡ [(i/h)P, χk
b ] K +

k (z)v+ ∈ HG(X). (5.24)

As noticed in §4.2.2, the transport properties of K +
k (z) show that u is microlocalized

inside the union of tubes ∪ j∈J+(k)T
++
jk (z), so the right-hand side in (5.24) splits into a

component concentrated near D̃k , and other components concentrated near the arrival
sets A jk(z), j ∈ J+(k). We rewrite (4.34) for the present data:

(i/h)(P − z)u ≡ Rk−,m(z)vk
+ −

∑

j∈J+(k)

R j
−,m(z)M jk(z)v

k
+. (5.25)
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Each state M jk(z)vk
+ is microlocalized inside the arrival set Ã jk(z) ⊂ �̃ j , which is not

contained in S j in general – see the remark at the end of §4 and Fig. 8.

Consequently one could fear that replacing the operators R j
−,m(z) by the truncated

operators R j
−(z) would drastically modify the above right hand side. The microlocal-

ly weighted spaces HG, Hg j have been constructed precisely to avoid this problem.
The mechanism is a direct consequence of the relative properties of the sets S j and
V explained in Lemma 5.5. Namely, a point ρk ∈ S jk is either “good”, if its image
ρ j = Fjk,z(ρk) ∈ S′j , or “bad”, in which case

G0(ρ j )− G0(ρk) ≥ t0. (5.26)

Let us choose a cutoff

χ j ∈ C∞c (S j ), χ j = 1 on S′j , χ j = 0 outside neigh (S′j , S j ). (5.27)

Since the Fourier integral operator M jk(z) : H(D̃k) → H( Ã jk(z)) is uniformly
bounded, (5.26) implies the norm estimate (see Lemma 5.4)

∀vk
+ ∈ Hk, ‖(1− χwj )M jk(z) v

k
+‖Hg j

� hMt0−M0tmax ‖vk
+‖Hk , z ∈ R(δ,M0, h).

For this estimate to be small when h → 0, we require the ratio M0/M to be small enough
to ensure the condition

t0 − M0

M
tmax ≥ t0/2 > 0.

(The bounds (3.31) and M0 ≤ M1 show that the ratio M0/M can indeed be chosen
arbitrary small.)

On the other hand, χwj M jk(z) vk
+ is microlocalized inside neigh(S′j , S j ), so

Lemma 5.6 implies that (� j − 1)χwj M jk(z) vk
+ = OHg j

(h∞). Putting these estimates
altogether, we find that

∀vk
+ ∈ Hk, M jk(z) v

k
+ = � j M jk(z) v

k
+ + O(hMt0/2) ‖vk

+‖. (5.28)

This crucial estimate shows that the projection of M jk(z) vk
+ on H j has a negligible

effect. We now define the finite rank operators

M̃ jk(z)
def=

{
� j M jk(z)�k : Hk → H j , j ∈ J+(k),
0 otherwise, in short M̃(z)=�hM(z)�h .

(5.29)

These operators satisfy the same norm bounds (4.36) as their infinite rank counterparts.
Using these operators, and remembering that the operators R j

− : H j → HG(X) are
bounded by O(h−M0ε), we rewrite (5.25) as

(i/h)(P − z)u ≡ Rk−(z)vk
+ −

∑

j∈J+(k)

R j
−(z)M̃ jk(z) v

k
+ + O(hMt0/3) ‖vk

+‖.

Generalizing the initial data to arbitrary v+ ∈ H1 × · · · ×HN , we obtain
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Proposition 5.7. Assume z ∈ R(δ,M0, h). Let v+ ∈ H. Then there exists (u, u−) ∈
H2

G(X)×H such that

(i/h)(P − z)u + R−(z) u− = O(hMt0/3)‖v+‖H in HG(X), (5.30)

R+(z)u = v+ + O(h∞) ‖v+‖H in H, (5.31)

‖u‖HG (X) � h−M0(tmax+ε) ‖v+‖H, ‖u−‖H � h−M0tmax‖v+‖H.
(5.32)

The second part of the solution, u−, is of the form

u− = (M̃(z)− I d)v+, ‖M̃(z)‖H→H � h−M0tmax ,

where M̃(z) = (M̃ jk(z)) j,k=1,...,N is the matrix of operators defined in (5.29).

We collect some properties of the operators M̃ jk(z), j ∈ J+(k), for z ∈ [−δ, δ]:
• M̃ jk(z) is uniformly bounded, and WF′h(M̃ jk(z)) ⊂ S j × Sk .
• take ρk ∈ Sk, ρ j = F̃jk,z(ρk) ∈ S j :

(1) if the trajectory segment connecting the points κk,z(ρk), κ j,z(ρ j ) is contained in
W , then microlocally near (ρ j , ρk), M̃ jk(z) is an h-Fourier integral operator of
order zero with associated canonical transformation F̃jk,z = κ−1

j,z ◦ Fjk,z ◦κk,z;
(2) if furthermore the above segment is disjoint from the support of G, then M̃ jk(z)

is microlocally unitary near (ρ j , ρk);
(3) if, on the opposite, this segment contains a part outside W , then there exist

χ j ∈ C∞c (neigh(ρ j )), χk ∈ C∞c (neigh(ρk)), equal to 1 near ρ j and ρk respec-
tively, and a time t (ρk) > 0 independent of the exponent M , such that

χwj M̃ jk(z)χ
w
k = O(hM t (ρk)) : Hgk → Hg j .

For z ∈ R(δ,M0, h) similar statements hold, modulo the fact that the symbol of the
Fourier integral operator is multiplied by exp(−i zt+/h), which modifies the order of the
operator.

5.3.2. A well-posed inhomogeneous problem. Let us now consider the inhomogeneous
problem

(i/h)(Pθ,R − z)u + R−(z)u− = v v ∈ HG(X). (5.33)

We will use a partition of unity to decompose v into several components.
Take ψδ ∈ S(T ∗X), ψδ = 1 near p−1([−δ/2, δ/2]), and ψδ = 0 outside

p−1([−δ, δ]). The operator (Pθ,R − z) is elliptic outside p−1[−δ/2, δ/2]. Taking ψ̃δ
similar with ψδ but with supp ψ̃δ ⊂ p−1([−δ/2, δ/2]), the operator

L
def= (Pθ,R − z − iψ̃wδ ) : H2

G → HG

is invertible, with uniformly bounded inverse L−1 ∈ �0
h . Hence, by taking

u = (h/ i)L−1 (1− ψwδ ) v,
we find

(i/h)(Pθ,R−z)u = (i/h)(Pθ,R−z−iψ̃wδ )u + O(h∞) ‖u‖ = (1−ψwδ ) v + O(h∞)‖v‖,
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which solves our problem for the data (1−ψwδ ) v. The first equality uses pseudodiffer-
ential calculus and the fact that ψδ ≡ 1 on the support of ψ̃δ:

ψ̃wδ L−1(1− ψwδ ) = OS ′→S (h
∞).

Let us now consider the data (ψwδ v) microlocalized in p−1([−δ, δ]). We split this
state using a spatial cutoff ψR ∈ C∞c (X), such that ψR = 1 in B(0, R), ψR = 0 outside
B(0, 2R). To solve the equation

(i/h)(Pθ,R − z)u = ṽ, ṽ = (1− ψR) ψ
w
δ v, (5.34)

we take the Ansatz

u = E(z) ṽ, (5.35)

with E(z) the parametrix of (4.15) (with P replaced by Pθ,R), for the same time T =
tmax + ε as in (4.39). It satisfies

(i/h)(Pθ,R − z)u = ṽ − e−iT (Pθ,R−z)/h ṽ. (5.36)

The time T is small enough, so that

�t
(

p−1([−δ, δ])\T ∗B(0,R)X
)
∩ T ∗B(0,R/2)X = ∅, 0 ≤ t ≤ T .

Hence, the states

ṽ(t)
def= e−i t (Pθ,R−z)/h ṽ

are all microlocalized outside T ∗B(0,R/2)X for t ∈ [0, T ]. The estimate (3.30) (adapted
to the weight G0) then implies that [30, Lemma 6.4]

∂t ‖̃v(t)‖2
HG
= 2

h
Im〈(Pθ,R − z)̃v(t), ṽ(t)〉HG

≤ (−M1/C1 + 2M0) log(1/h), ∀t ∈ [0, T ],
where C1 > 0 is independent of the choice of M1. Once more, we assume M0/M1 is
small enough so that −M1/C1 + 2M0 ≤ −M1/2C1, and hence

‖e−iT (Pθ,R−z)/h ṽ‖HG ≤ C hM1T/2C1 ‖̃v‖HG ,

so the problem (5.34) is solved modulo a remainder O(hM1T/2C1).
We now consider the component (ψRψ

w
δ v)microlocalized in T ∗B(0,2R)∩p−1([−δ, δ]).

We split it again using a cutoff ψV1 ∈ C∞c (V1), ψV1 = 1 in the set V ′1 � V1 (see the
discussion after Lemma 5.3). To solve the problem for the inhomogeneous data

ṽ = (1− ψwV1
)ψRψ

w
δ v,

we use the Ansatz (5.35), resulting in the estimate (5.36). The microlocalization of
ṽ outside of V ′1, together with the assumption (5.11), implies the norm estimate (see
Lemma 5.4)

‖e−iT (Pθ,R−z)/h ṽ‖HG ≤ C hMt1/2−M0T ‖̃v‖HG .
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Again, we assume M0/M small enough, so that Mt1/2 − M0T ≥ Mt1/3. We have
solved the problem for ṽ up to a remainder O(hMt1/3)‖̃v‖HG .

We finally consider the data ṽ = ψwV1
ψRψ

w
δ v microlocalized inside V1. For this data,

we can use the microlocal analysis of §4.2.3. If WFh (̃v) is contained inside V1 ∩ T̂−−jk ,

then WFh(χ
k
b E(z) ṽ) (see the Ansatz (4.40)) will intersect � j inside the arrival set

Ã jk(z), but not necessarily inside S j . However, the same phenomenon as in Lemma 5.5
occurs: there exists a time t3 > 0 such that, for any z ∈ [−δ, δ] and any ρ ∈ V1∩T−−jk (z),

ρ+(ρ) ∈ � j (z)\κ j,z(S
′
j ) !⇒ G0(ρ+(ρ))− G0(ρ) ≥ t3. (5.37)

If we decompose R j
+,m(z)E(z)̃v using the cutoff χ j of (5.27), the property (5.37) implies

that

‖(1− χwj ) R j
+,m(z)E(z)̃v‖Hg j

= O(hMt3/2−M0T )‖̃v‖HG .

Again we assume M0/M small enough, so that Mt3/2− M0T ≥ Mt3/3. Hence, if we
set

u j
− = R j

+(z)χ
w
j E(z)̃v

= R j
+,m(z)χ

w
j E(z)̃v + O(h∞)‖̃v‖HG

= R j
+,m(z)E(z)̃v + O(hMt3/3)‖̃v‖HG ,

we end up with a solution of (5.33) modulo a remainder O(hMt3/3)‖̃v‖HG .
We recall that M1/M is bounded by (3.31), so all the above error estimates can be

put in the form O(hcM )‖̃v‖HG , with c > 0 independent of M : we have thus shown
that the problem (5.33) admits a solution for any v ∈ HG , up to this remainder. We
may then apply Proposition 5.7 to solve the resulting homogeneous problem, and get
an approximate solution for the full problem (5.22). We summarize this solution in the
following

Proposition 5.8. Assume z ∈ R(δ,M0, h). Let (v, v+) ∈ HG × H. Then there exists
(u, u−) ∈ H2

G ×H such that
{
(i/h)(P − z)u + R−(z)u− = v + O(hcM )(‖v‖HG + ‖v+‖H) in HG(X),

R+(z)u = v+ + O(h∞) (‖v‖HG + ‖v+‖H) in H, (5.38)

‖u‖H2
G

+ ‖u−‖H � h−M0(2tmax+2ε) (‖v‖HG + ‖v+‖H
)
. (5.39)

5.4. Invertibility of the Grushin problem. We can transform this approximate solution
into an exact one. The system (5.38) can be expressed as an approximate inverse of P(z):

(
u

u−

)
= Ẽ(z)

(
v

v+

)
,

(5.40)

P(z) Ẽ(z) = I + R(h) : HG ×H −→ HG ×H, ‖R(h)‖ = O(hcM ).

For h small enough the operator I + R(h) can be inverted by a Neumann series, so we
obtain an exact right inverse of P(z),

E(z) = Ẽ(z) (I + R(z))−1.
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Since P(z) is of index zero, E(z) is also a left inverse, which proves the well-posedness
of our Grushin problem (5.22).

Theorem 2. We consider h > 0 small enough, and z ∈ R(δ,M0, h). For every (v, v+) ∈
HG ×H, there exists a unique (u, u−) ∈ H2

G ×H such that
{
(i/h)(Pθ,R − z)u + R−(z)u− = v,

R+(z)u = v+,
(5.41)

where R±(z) are defined by (5.18) and (5.20). The estimates (5.39) hold, so if we write
(

u
u−

)
= E(z)

(
v

v−

)
, E(z) =

(
E E+
E− E−+

)
,

then the following operator norms (between the appropriate Hilbert spaces) are bounded
by:

‖E‖, ‖E+‖, ‖E−‖, ‖E−+‖ = O(h−M0(2tmax+2ε)). (5.42)

Moreover, we have a precise expression for the effective Hamiltonian:

E−+(z) = −I + M̃(z) + OH→H(h
c′M )

def= −I + M(z, h), (5.43)

where M̃(z) is the matrix of “open quantum maps” defined in (5.29) and described after
Proposition 5.7.

Remark. If we restrict the parameter z to a rectangle of height | Im z| ≤ Ch instead of
| Im z| ≤ M0h log(1/h), the bounds (5.43) become ‖E∗(z)‖ = O(1).

Theorem 1 and formula (1.8) follow from this more precise result. In fact, the equality
(3.13) shows that

rank
∮

z
χR(w)χ dw = rank

∮

z
χRθ,R(w)χ dw = − 1

2π i
tr

∮

z
Rθ,R(w) dw, (5.44)

see [41, Prop. 3.6] for the proof of the last identity in the simpler case of compactly
supported perturbations, and [39, Sect. 5] for the general case.

The well-posedness of our Grushin problem means that we can apply formula (3.33)
recalled in §3.7. It shows that the right-hand side in (5.44) is equal to

1

2π i
tr

∮

z
E−+(w)

−1 E ′−+(w) dw,

which in view of (5.43) gives (1.8). The exponent L
def= c′M in the remainder of (5.43)

depends on the integer M > 0 used in the scaling of the weight function G, which can
be chosen arbitrary large, independently of c′ > 0.
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