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Abstract. Using the Bargmann–Husimi representation of quantum mechanics on a torus phase
space, we analytically study eigenstates of quantized cat maps. The linearity of these maps
implies a close relationship between classically invariant sublattices on the one hand, and the
patterns (or ‘constellations’) of Husimi zeros of certain quantum eigenstates on the other hand.
For these states, the zero patterns are crystals on the torus. As a consequence, we can compute
explicit families of eigenstates for which the zero patterns become uniformly distributed on
the torus phase space in the limit ¯h → 0. This result constitutes a first rigorous example of
a semiclassical equidistribution for Husimi zeros of eigenstates in quantized one-dimensional
chaotic systems.

AMS classification scheme numbers: 58F05, 58F06, 81Q20, 81Q50, 81S30

1. Introduction

A major question in ‘quantum chaos’, i.e. the study of quantum systems for which the
classical limit is chaotic, lies in the structure of eigenstates. Indeed, a ‘chaotic counterpart’ to
the WKB ansatz, which holds in the case of an integrable system, is still missing (this ansatz
gives simple asymptotic formulae for individual eigenstates). The only proven results so
far, collectively referred to as ‘Schnirelman’s theorem’, deal with the phase-space measures
associated to eigenstates of a classically ergodic system, in the semiclassical limit.

That is, to any quantum stateψh̄(q) there corresponds a phase-space measure density
Hψh̄(q, p) defined using coherent states, called the Husimi density ofψh̄ [2]. Now, if one
quantizes an ergodic Hamiltonian system and considers a sequence of eigenstates{ψh̄n}n∈N
such that ¯hn → 0, with eigenvaluesEn → E, then the associated Husimi measuresHψn
will almost always converge to the Liouville measureµE over the energy surface6E ; that
is, for every smooth observablef (q, p), the averages

∫
f (q, p)Hψn(q, p)dq dp tend to∫

6E
f (q, p)dµE [3, 29–31]. When the ergodic classical system is not a flow, but rather a

map, the same property holds for almost any semiclassical sequence of eigenstates of the
quantized map, the Husimi density now converging towards the Liouville measure over the
whole phase space [21, 22].

These results are very appealing in that they do not depend on the details of the system
considered, apart from its classical ergodicity. On the other hand, Schnirelman’s theorem
allows a minority of non-ergodic eigenstates (a set of asymptotic density zero), and we ignore
what these might look like: some of them could for instance show a strong concentration
along an unstable periodic orbit (a ‘scar’), even in the semiclassical limit. Furthermore,
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the information provided by this theorem remains measure theoretical, which is much
weaker than a WKB-type ansatz. For this reason, we intend to study as precisely as
possible the structure of eigenstates for a class of analytically tractable chaotic systems, the
automorphisms of the 2-torus, or generalizations of Arnold’s cat map [8]. The quantization
of these highly ergodic maps was first performed by Hannay and Berry [9], and has been
rederived in different ways since then [20, 22, 32, 23]; their spectral properties were analysed
by semiclassical means in [26, 27], and eigenstates were studied analytically by [18, 20, 21].

In this paper we exhibit a certain class of quantum cat eigenstates, directly within
the Bargmann–Husimi representation of quantum mechanics on the torus. This phase-
space formalism, together with the linearity of the classical maps, allow us to associate a
classically invariant sublattice of the unit torus with a family of eigenstates of the quantum
map. Precisely, we show that the Husimi functionsHψ of these states (for which we have
analytical expressions) are periodic with respect to the invariant sublattice. We call these
states crystalline, due to the patterns formed by the zeros ofHψ . Moreover, we can show
that in the limit of a large number of sites, these invariant sublattices (and the crystals they
support) become equidistributed over the torus. Our derivation is a first step towards a still
missing proof of the ‘uniform distribution of the Husimi zeros’, conjectured by Leboeuf
and Voros [4, 6] for one-dimensional chaotic eigenstates. This conjecture represents a more
precise statement than Schnirelman’s theorem, inasmuch as the zeros completely encode the
eigenstate. Unfortunately, they behave still unpredictably in the semiclassical limit, and are
in general not easy to catch analytically. What saves us here is the linearity of the classical
map, which yields explicit (and tractable) formulae for eigenstates.

Before proceeding further, let us sketch the plan of the paper. After recalling the basics
of quantum mechanics on the torus and describing the Bargmann and Husimi representations
in this framework (section 2), we describe the family of dynamical systems to be studied,
i.e. the quantized hyperbolic automorphisms of the 2-torus (section 3). After explaining
how to naturally build a quantum eigenstate from a classical invariant sublattice (section 4),
we try to classify these lattices as thoroughly as possible, following the seminal work of
Percival and Vivaldi [24] (section 5). We estimate the uniformity of these invariant sets in
the semiclassical limit (section 6), and then explicitly build different types of eigenstates
(sections 7 and 8) associated to these sets; the uniformity results can then be applied to the
zero patterns of their Husimi representations. Conclusions are given in section 9.

2. Quantum mechanics on the torus

The classical maps we study here are defined on the unit torus phase spaceT2. Before
quantizing such a map, we shall first define the quantum kinematics, i.e. the Hilbert space(s)
of quantum states corresponding to this classical phase space. We will not resort to geometric
quantization, as was done in [19], but use instead a more pedestrian approach, which yields
basically the same results (it amounts to a choice of polarized sections parallel to thep-
axis). Namely, we build our quantum states by imposing the following quasiperiodicity
conditions upon a one-dimensional wavefunction|ψ〉, i.e. a distribution inS ′(R) [4, 22]:

〈q + 1|ψ〉 = e2iπκ1〈q|ψ〉
〈p + 1|ψ〉 = e−2iπκ2〈p|ψ〉 (1)

with usual Dirac notations for position and momentum representations. The Floquet
parameterκ = κ1 + iκ2 can take any value on the dual torus. These conditions force
Planck’s constant to take discrete values ¯h = (2πN)−1, with N a positive integer. For
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givenN andκ, the quasiperiodic states form aN -dimensional Hilbert space of distributions
HN,κ , having for example the following basis:

|qj 〉N,κ =
∑
m∈Z

e2iπmκ1|qj +m〉 for j = 0, . . . , N − 1 (2)

where the allowed position peaks are discrete,qj = 2πh̄(κ2 + j). The Hermitian structure
on HN,κ is simply given by〈qk|qj 〉N,κ = δjk, for j, k = 0, . . . , N − 1. Through a finite
Fourier transform of|qj 〉N,κ , one obtains the basis built by periodization of momentum
eigenstates,|pm〉N,κ , with the dual discretizationpm = 2πh̄(κ1+m).

It can be helpful to work in a phase-space representation, since we are interested in
semiclassicalfeatures of states inHN,κ (which arise for large values ofN ). We will use
the Bargmann representation of quantum states on the real line [1], simply extending it
to the above distribution spaces by linearity [4]. This transformation maps a Schrödinger
wavefunction〈q|ψ〉 into an entire function〈z|ψ〉, through the integral kernel

〈z|q〉 = 1

(πh̄)1/4
e−

1
2h̄ (z

2+q2)+
√

2
h̄
zq (3)

where |z〉 is a (Weyl) coherent state, which is localized at the phase-space point(q0, p0)

given by z = q0−ip0√
2

. Although |z〉 depends on ¯h, this dependence will not be explicit in
our subsequent notations: the bra〈z| will always correspond to the value of ¯h (= 1/2πN )
labelling the attached ket|ψ〉N,κ .

The combination of equations (2) and (3) leads to the following representation of the
basis|qj 〉N,κ :

〈z|qj 〉N,κ = 1

(πh̄)1/4
e2πN(− 1

2 (z
2+q2

j )+
√

2zqj )θ3

(
iπN

(
qj − i

κ1

N
−
√

2z
) ∣∣∣∣iN) (4)

where we used Whittaker and Watson’s [10] definition for the Jacobi theta function,

θ3(Z|τ) =
∑
n∈Z

eiπτn2+2inZ for Z, τ ∈ C, =(τ ) > 0. (5)

It can be convenient to use a more general definition of theta function [14]:

2N,qj (τ, Z, t) = e−2iπNt
∑

γ∈qj+Z
eiπNτγ 2−2iπNγZ

= e−2iπNte−2iπNZqj eiπNτq2
j θ3(−πN(Z − τqj )|Nτ) (6)

in which the basis vectors ofHN,κ read as

〈z|qj 〉N,κ = 1

(πh̄)1/4
2N,qj

(
i, i
√

2z− κ1

N
, qj

κ1

N
− i
z2

2

)
. (7)

We will use the latter type of theta functions when studying the action of the symplectic
group upon biperiodic states, in the next section. On the other hand, the analytic properties
of the ‘old’ theta functionθ3 are thoroughly described in [10], and we need them too.

In the Bargmann representation, the vectors ofHN,κ are completely characterized by
the following quasiperiodicity properties [4]:

〈z+ 1/
√

2|ψ〉N,κ = e2iπκ1eπN(1/2+
√

2z)〈z|ψ〉N,κ
〈z+ i/

√
2|ψ〉N,κ = e2iπκ2eπN(1/2−i

√
2z)〈z|ψ〉N,κ .

(8)

The functions〈z|ψ〉N,κ are thus quasiperiodic with respect to the torusTC of periods
1/
√

2, i/
√

2; they actually represent particular holomorphic sections of a complex line
bundle over this torus [14, 23, 32].
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The scalar product of two vectors inHN,κ is easily computed in Bargmann’s
representation, thanks to a closure formula:

〈ψ |ψ ′〉N,κ = 2
∫
TC

d<z d=z〈z|ψ〉N,κ〈z|ψ ′〉N,κe−2πN |z|2. (9)

Meanwhile, the positions of the zeros of a function〈z|ψ〉N,κ are well defined onTC;
there are exactlyN of them, and their sum is constrained by

√
2

N∑
k=1

zk = N
(

1+ i

2

)
− iκ mod [1, i] . (10)

The knowledge of the zeros allows us to rebuild the quantum state, up to a constant factorC,
from the unique functionχ(z) = 〈z|q = 0〉N=1,κ=0: if we know the zeroszk of a Bargmann
wavefunction〈z|ψ〉N,κ (which satisfy (10)), we recover this function multiplicatively:

〈z|ψ〉N,κ = C exp

(
2πz

N∑
k=1

(
z̄k − 1− i

2
√

2

)) N∏
k=1

χ

(
z+ 1+ i

2
√

2
− zk

)
. (11)

(The whole product is independent of the determination of the zeros we have used to build
it.) This factorization property makes the Bargmann zeros a particularly interesting tool to
construct or characterize a quantum state [6, 4], especially in the semiclassical framework.
On the one hand, the set of zeros forms anexactandminimal representation of the quantum
state, on the other hand the zeros live in the classical phase space, as opposed to the usual
Schr̈odinger coefficients. This is the reason why we intend to investigate their positions for
eigenstates of quantized cat maps. This task isa priori not trivial because the quantum state
depends nonlinearly of its zeros (the difficulty is similar to that of relating the coefficients
and the roots of a polynomial).

We are however able to give a complete description of the Bargmann zeros for particular
states, namely the basis states ofHN,κ (4), since we know whereθ3(πZ|τ) vanishes [10]: it
has a unique zero in the fundamental torus of modulusτ , lying atZ = (1+τ)/2. Therefore,
theN zeros of〈z|qj 〉N,κ have the positions

√
2zk = qj + 1

2
− i
κ1

N
+ i
(k + 1

2)

N
mod [1, i] k = 0, . . . , N − 1

= 1

N

(
j − iκ + i

2

)
+ 1

2
+ i

k

N
mod [1, i] (12)

i.e. they lie along a vertical line on the torus, at maximal distance from the line{q = qj }
(see figure 1). Actually, the Bargmann function〈z|qj 〉N,κ verifies the ‘fine’ quasiperiodicity
property

〈z+ i/N
√

2|qj 〉N,κ = e2iπqj eπ(1/2N−i
√

2z)〈z|qj 〉N,κ . (13)

To close this section, let us describe the phase-space measure we can build from the
Bargmann representation, i.e. the Husimi measure density [2]. For any state|ψ〉h̄ in S ′(R),
it is defined by the positive density

Hψ(z, z̄) = |〈z|ψ〉|2e−
zz̄
h̄ . (14)

For a state|ψ〉N,κ , the Husimi density function is single valued onTC. Like the Bargmann
function, it factorizes easily in terms of its zeroszk and of the Husimi density ofχ(z):

Hψ(z, z̄) = K
N∏
k=1

Hχ

(
z+ 1+ i

2
√

2
− zk

)
. (15)
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Figure 1. Husimi function of the basis state
|q2〉N=11,κ=0, plotted both in a linear scale (grey levels;
the high values are dark) and logarithmic (contour)
scale. The linear scale shows a concentration of the
density along the line{q = q2 = 2

11}, whereas the
logarithmic plot shows the vertical string of zeros along
the line {q = q2 + 1

2}. The function has the period

i/11
√

2 in the variablez = (q − ip)/
√

2.

whereK = |C|2 is the constant which makesHψ(z, z̄) the density of a probability measure
on TC, as long as|ψ〉N,κ is normalized (cf equation (9)).

2.1. What is known about the Husimi density?

The factorization properties of Bargmann and Husimi functions mean that all the information
about them (except an arbitrary factor) is contained in the positions of their zeros. We now
roughly sketch the relation between the global features of the Husimi densities on the one
hand, the patterns of zeros on the other hand, for two different types of eigenstates.

For an integrable system (e.g. a time-independent Hamiltonian system on the torus), the
Husimi measures of a sequence of eigenstates{〈z|ψ〉N,κ}N∈N with energiesEN → E are
known to concentrate along the orbit of energyE [28]. At the same time, the zeros of these
Husimi densities line up along certain classically defined lines, far away from the classical
orbit (namely, anti-Stokes lines: see for instance [7]). These results are mere consequences
of the WKB asymptotic form of the eigenstates of integrable systems. As an example, one
can consider the position eigenstates|qj 〉N,κ (see figure 1); for anyQ ∈ [0, 1], we can
select a sequence of states{|qj(N)〉N,κ}N∈N, such thatqj(N) → Q asN → ∞. The zeros
of 〈z|qj(N)〉N,κ lie on vertical lines which converge to the line{q = Q + 1

2}, whereas the
Husimi densities concentrate semiclassically upon the line{q = Q}.

On the opposite, in the case of classically ergodic dynamics (e.g. some kicked systems,
or the quantum cat maps we will study here), the only analytical result concerning the
eigenstates is provided by Schnirelman’s theorem, described in the introduction. For almost
every sequence of eigenstates{ψN }N∈N of the corresponding quantum maps, the Husimi
measures converge to the Liouville measure onT2 in the weak-∗ sense, which means
that for any continuous functionf on the torus,

∫
T2 f (q, p)HψN (q, p)dq dp converges to

the ergodic average
∫
T2 f (q, p)dq dp asN → ∞ [21, 22] (the interested reader can find

precisions about the weak-∗ topology in [17]).
This weak-∗ convergence does not provide very precise information about the

eigenstates. Moreover, it would be convenient to obtain a direct description of the phase-
space minimal data formed by the zeros. Numerical calculations have yielded the following
conjecture [4, 6]: one expects the zeros of a chaotic eigenstate tospread uniformlyover
the whole phase space (i.e. the torus) [4, 6]; further studies showed that the zeros locally
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behave as roots of random polynomials [5] (in particular, they tend to repel each other at
short distances). This uniformity would be, in a certain sense, dual to the uniformity of
the Husimi measure itself. In the following, we will be able to prove such a semiclassical
equidistribution for very particular cat eigenstates, in which case the zero patterns are
crystalline.

3. Classical and quantum cat maps

The classical transformations we consider are the hyperbolic automorphisms of the unit
torus phase spaceT2, given by matricesS = (a b

c d

)
in SL(2,Z) with tr(S) = a+ d > 2 (this

has the useful consequencebc 6= 0). Such a matrix acts linearly on the torus:

x =
(
q

p

)
mod 1−→ Sx mod 1. (16)

These diffeomorphisms ofT2 are known to be fully ergodic and mixing [8]; in particular,
for a sufficiently smooth observable on the torusf (x), we have the property:

for almost allx ∈ T2 lim
M→∞

1

M

M∑
n=1

f (Snx) =
∫
T2
f (x) d2x (17)

where d2x is the usual Liouville measure onT2. The condition ‘for almost allx’ is not
gratuitous: in the present case, all points on the torus with rational coordinates are periodic
under the action ofS, so the ergodic property (17) does not hold for them. The periodic
orbit structure of classical cat maps was largely studied in [24–26], and we will use some
of those results in the following.

The quantization ofS can be performed in two steps [27]. First, any transformationS

in SL(2,R) acting on the whole plane can be considered as the time-one map of a certain
quadratic Hamiltonian flow, as long as tr(S) > −2. For arbitraryh̄, evolving the Weyl-
quantized Hamiltonian during a unit time yields the unitary operatorUS on L2(R), given
by the integral kernel

〈q ′|US |q〉 = 1√
2iπh̄b

e
i
h̄

[(dq ′2−2q ′q+aq2)/2b] . (18)

(This corresponds exactly to the Van Vleck quantization scheme, since the term between
brackets is the generating function of the symplectic transformationS.) The ambiguity of
the square-root sign is natural: the quantizationS −→ US only provides a representation
of SL(2,R) up to a sign, called the metaplectic representation Mp(2,R). Elements of the
group Mp(2,R) are precisely specified by both the symplectic matrixS they are built from,
and a holomorphic function on the upper half-planej (τ ) such thatj2(τ ) = bτ + d. This
function appears naturally if we write the above kernel in a mixed Bargmann–Schrödinger
representation:

〈z|US |q〉 = 1

(πh̄)1/4

1

j (i)
exp

{
1

2h̄(ib + d)(−(d − ib)z2− (a − ic)q2+ 2
√

2zq)

}
. (19)

This formula is valid for any value of ¯h. However, in the following, working on the torus
imposes the values ¯h = (2πN)−1.

Now that we have quantized the symplectic transformationS ∈ SL(2,R) into a unitary
operatorUS on L2(R), we extend the action ofUS to the distribution spacesHN,κ by
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linearity (see appendix A). Using the notationS(τ) = aτ+c
bτ+d , we obtain

〈z|US |qk〉N,κ = 〈z|US |qk〉θ3

(
πN

[
S(i)qk − i

√
2

z

ib + d +
κ1

N

] ∣∣∣∣S(i)N)
= 1

(πh̄)1/4

1

j (i)
2N,qk

(
S(i),

i
√

2z

ib + d −
κ1

N
, qk

κ1

N
− i
z2

2
− bz2

ib + d

)
. (20)

This represents a generalization (to allκ) of the action of Mp(2,Z) on theta functions,
described for instance in [14]. More precisely, the transformationUS acts onto the function
2N,qk (τ, Z − κ1/N, t) according to:

2N,qk

(
τ, Z − κ1

N
, t
)

US−→ 1

j (τ )
2N,qk

(
S(τ),

Z

bτ + d −
κ1

N
, t + bZ2

2(bτ + d)
)
. (21)

To obtain (20), i.e. the transformation rule for the basis states ofHN,κ , we only need to
select the three parameters:τ = i, Z = i

√
2z, t = −iz2/2+ qkκ1/N .

For an arbitrary transformationS ∈ SL(2,R), the transformed Bargmann function is not
an element ofHN,κ ; it is a theta function, quasiperiodic with respect to another lattice:

〈z+ a − ic√
2
|US |ψ〉N,κ = e2iπκ1eπN [ a

2+c2
2 +
√

2z(a+ic)]〈z|US |ψ〉N,κ

〈z+ −b + id√
2
|US |ψ〉N,κ = e2iπκ2eπN [ b

2+d2

2 +√2z(−b−id)]〈z|US |ψ〉N,κ .
(22)

If S is a matrix with integer entries, this lattice coincides with the period lattice ofTC by
modularity. The spaceHN,κ is then mapped byUS into HN,κ ′ , with [21, 22](

κ ′2
κ ′1

)
= S

(
κ2

κ1

)
+ 1

2

(
Nab

Ncd

)
mod 1. (23)

For simplicity, we will generally use the same notationUS for the unitary operator on
L2(R) and the unitaryN × N matrices connectingHN,κ andHN,κ ′ , since the latter are
extensions of the former to some distribution spaces. In order to avoid the inhomogeneous
term in equation (23), we choose (cf [9, 21]) to restrict ourselves to transformationsS of
the following types:(

odd even
even odd

)
or

(
even odd
odd even

)
. (24)

These transformations form a subgroup of index 3 in SL(2,Z), named01,2 in the literature
[13]. For all values ofN , the spacesHN,κ for κ = 0 (periodic wavefunctions) and
κ = 0̂ = (1+ i)/2 (antiperiodic wavefunctions) are both invariant under all operatorsUS ,
S ∈ 01,2. We thus obtain two families of (non-faithful) finite-dimensional representations
of this group. On the other hand, according to equation (23) an individual operatorUS
can act as an endomorphism onHN,κ for some other values ofκ as well (see appendix A,
equation (80)).

4. Strategy: from zeros to eigenstates

Hereafter, we give ourselves a fixed hyperbolic transformationS ∈ 01,2, and study the
eigenstates of the corresponding matricesUS on the above-mentioned invariant Hilbert
spaces, for any valueN .

Analytical expressions have already been obtained for eigenstates ofUS on HN,0
[18, 27, 21]. The following trick was used: for allN , there exists an integer periodp(N),
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such thatUp(N)

S = e2iπσ(N)1I, where 1I is the identity overHN,0, and σ(N) is a phase.
Then, starting from any state|ψ〉N,0, suitable combinations of its imagesUk

S |ψ〉N,0 for
k = 1, . . . , p(N) yield an orthogonal family of eigenvectors spanning a subspace ofHN,0,
with eigenangles regularly spaced on the unit circle. One can then repeat this construction
from a new vector|ψ ′〉N,0 orthogonal to this subspace, etc, until a complete basis is formed.
Actually, we will use a similar approach in section 8.

Unfortunately, the resulting formulae for the eigenstates are not very suggestive of their
‘shape’, in particular the limitN →∞ looks quite untractable. In contrast, the main task of
this article is to construct subfamilies of eigenstates characterized by interesting phase-space
features, namely crystalline structures, when expressed in the Bargmann representation. Our
approach will be similar to the one developed by Degli Espostiet al [21]: we will assign
to N certain values, selected according to their arithmetical properties (we generalize the
prime values considered in [21]), and for theseN we will exhibit some eigenstates showing
lattice-like, or more generally crystalline zero patterns. We will use the close link between
quantum and classical motions, due to the linearity of the classical map. Indeed, our main
tool is the following statement.

Proposition 1. The action ofUS on any basis state|qj 〉N,κ transforms the zeros of its
Bargmann function〈z|qj 〉N,κ according to the classical mapS (up to complex conjugation).

This statement follows directly from equation (20), since we know where the functionθ3

vanishes . Calling the transformed zerosz′k, let us relate the positions ofzk (equation (12))
andz′k:

√
2zk = (qj + 1

2)+ i
1

N
( 1

2 + k − κ1) mod [1, i]

√
2z′k = (a − ic)(qj + 1

2)+ (−b + id)
1

N
( 1

2 + k − κ1) mod [1, i] .
(25)

This can be written, with obvious notations:

z′k =
(
a −b
−c d

)
zk mod [1/

√
2, i/
√

2]

⇐⇒ z̄′k = Sz̄k mod [1/
√

2, i/
√

2]

(26)

(the complex conjugation is due to the conventionz = q−ip√
2
).

The above lemma can be extended tothe images of the basis states|qj 〉N,κ under
Mp(2,Z), thanks to group properties. Indeed, if we notezk, z′k, z

′′
k the zeros of〈z|qj 〉N,κ ,

〈z|US ′ |qj 〉N,κ , 〈z|US ′′US ′ |qj 〉N,κ respectively (indexing the zeros correctly), the group law
US ′′US ′ = ±US ′′S ′ combined with equation (26) imply

z̄′′k = S ′′S ′z̄k = S ′′z̄′k (27)

which shows that the zeros of〈z|US ′ |qj 〉N,κ move classically underUS ′′ .
We stress that the transformation law (26) is only valid forvery specialstates, and is

not at all generic inHN,κ . (In section 7.2, we build another type of states for which (26)
also applies, but this construction is possible only whenN is a perfect square.)

In the following, any state|ψ〉 obtained as the image of a basis state|qj 〉N,κ under
an operatorUS will be called a ‘pure theta state’, since its Bargmann function can be
written as a single theta function times an exponential factor (equation (20)). According to
equation (25), theN zeros of such a state make up a discrete ‘string’ on the torusTC, of
the form

z′k = z′0+ k(n+ im)/N
√

2 for k = 0, . . . , N − 1. (28)
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Conversely, a state for which the zero pattern takes the form (28), with coprime integers
n,m, is a pure theta state in the spaceHN,κ (κ is drawn from the sum rule (10)). For each
N , we thus have a characterization of the set of pure theta states{US |qj 〉N,κ , S ∈ SL(2,Z),
κ ∈ [0, 1)2, j = 0, . . . , N − 1} through their Bargmann zeros.

Performing a dilation of factorN
√

2 and a reflection with respect to the real axis, we
map the lattice of zeros into an affine lattice3 = v0 + 3lin , where3lin is the integer
linear lattice generated byv = ( n−m) modulo the square torus of sideN . From the above
properties, we deduce the following key property.

Proposition 2. If there exists a pure theta state|ψ〉N,κ whose corresponding affine string3
is invariant underS, then this state is an eigenstate ofUS (and automatically belongs to one
of the spacesHN,κ on whichUS acts as an endomorphism). Besides, the invariance of3

implies that of3lin by linearity.

In mathematics (see for instance [15, pp 81–4]) the two-dimensional lattice of integer
points moduloN constitutes themoduleZ2

N (hereZN denotes the ring of integers moduloN ;
in this context, the integerN is called amodulus[24]). The sublattice3lin is a submodule
of type1 (because it is generated byv alone inZN ), or principal submodule, which is free
if n,m,N are globally coprime, or, equivalently, if3lin containsN points (by definition, a
module is free if its generators are linearly independant). The submodules ofZ2

N we will
consider will be principal, unless stated otherwise.

In view of the above proposition, our first task will thus consist of identifying the integer
strings3lin invariant moduloN , which actually amounts to diagonalizingS overZ2

N . The
next section deals with the classification of these free principal eigenmodules, for a given
transformationS ∈ 01,2 and a general valueN . In a following stage, we will go back
to quantum mechanics, giving explicit formulae for the eigenstates corresponding to the
invariant strings3 translated from3lin . Finally, to obtain crystalline eigenstates, we will
use sublattices also built through translations of3lin , but not invariant underS.

5. Free eigenmodules

Given a fixed transformationS, we classify its free eigenmodules3lin for a general value
of N (in this section, we will drop the subscript lin and denote a linear string3). This
classification deeply relies on the arithmetical properties ofN . The valuesN for which
there exists at least one free eigenmodule are calledadmissible(this property obviously
depends on the matrixS). Here we use a different formalism from Percival and Vivaldi
[24], but our results highly overlap with theirs (we do not need the complete classification
of periodic orbits these authors have worked out).

When diagonalizingS as a hyperbolic matrix acting onR2, we obtain the following
formulae for eigenvalues and eigenvectors:

λ± = a + d ±
√
(a + d)2− 4

2
is associated to the eigenvector

(
1

k± = λ±−a
b

)
. (29)

The important quantity here is the argument under the square root, i.e. the discriminant ofS.
We choose to normalize this discriminant asD = ( a+d2 )2− 1 in the following (D is integer
according to equation (24)). For the case of hyperbolic maps we consider (|a + d| > 2),
the square root ofD in R is always irrational, so there is no eigenvector ofS on R2 with
rational coordinates.

On the other hand,S can have integer eigenvectors when acting onZ2
N , provided the

discriminantD admits an integer square rootmoduloN . This property is an arithmetical
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one, and we will need to factorizeN as a product ofprimary numbers (i.e. powers of a
prime).

Before proceeding further, we fix our arithmetical notations: ifM is a divisor ofN ,
we noteM|N ; the greatest common divisor (gcd) of a family of integers will be noted

(n1 ∩ n2∩, . . . ,∩nr), andNl
def= N/(N ∩ l) for any l ∈ ZN . The simplest case to deal with

is N = P a prime number;ZP is then a field, andZ2
P is a vector space. The existence

problem of a square root ofD moduloP yields a partition of the primesP > 3 [11, 12]: if
there exists an integerx coprime toP such thatx2 ≡ D modP , D is said to be a quadratic
residue ofP , or equivalently,P is said to besplitting with respect toD (this implies in
particular(P ∩D) = 1). The Legendre symbol [11, 12] is then defined as:(

D

P

)
= 1 if P splits with respect toD(

D

P

)
= 0 if P is a divisor ofD(

D

P

)
= −1 otherwise (P is said to be inert with respect toD).

(30)

(In the following, we might forget the ‘with respect toD’ when mentioning a splitting
prime.)

The case whereP is inert will not be considered since it yields no eigenmodule. We
will treat the case of splitting primes in the main text, and defer two complementary cases
(P |D andP = 2) to appendix B.

To go from prime to primary valuesN = Pβ , we will use the following lemma [11].

Lemma 1. To any solutionkP of an algebraic equationf (k) ≡ 0 moduloP such that
f ′(kP ) 6≡ 0 modP , there corresponds for anyβ > 1 a unique solutionkN moduloN = Pβ ;
moreover,kP ≡ kN modP .

Finally, we will combine these results to deal with composite values (i.e. products of
admissible primaries).

5.1. N = Pβ , a power of an odd splitting prime

We consider the caseN = Pβ , with P an odd prime number,(D
P
) = 1, andβ > 1. If

the vectorv = ( n−m) generates a free submodule3 in Z2
N , the condition(n ∩m ∩ N) = 1

implies thatn or m is coprime withP , and thus withN . In the case(n ∩ N) = 1, n
admits an inversen−1 moduloN , such thatn−1v is also a generator of3. We thus have
the following.

Lemma 2. For a primary valueN = Pβ , any free principal submodule3 of Z2
N can be

generated by a vector of the form(
1

k

)
or

(
k′

1

)
. (31)

Then3 = {nv, n ∈ ZN } is an eigenmodule ofS (which we will note3 = (v, λ), with λ
the corresponding eigenvalue) iff the coefficientk (resp.k′) is a solution of

bk2+ (a − d)k − c = 0 modN

(resp.) ck′2+ (d − a)k′ − b = 0 modN.
(32)

Generally,bc 6≡ 0 modP , so bothb and c are invertible moduloN ; we can then solve
(32) providedD has a square root inZN , using the same formulae (29) as when working
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on R. SinceP splits, there exist two such roots moduloN = Pβ , for any β > 1,
which we note±xN (cf lemma 1). Each of the above equations then has two solutions
k± = b−1{(d − a)/2 ± xN }, k′± = c−1{(a − d)/2 ± xN }, associated to the eigenvalues
λ± = (a + d)/2± xN . These solutions are of course redundant, sincek±k′± ≡ 1 modN .
By convention, we can choose to generate

the eigenmodule associated withλ+ by the eigenvector

(
1

k+

)
the eigenmodule associated withλ− by the eigenvector

(
k′−
1

)
.

(33)

In the ‘caustic case’bc ≡ 0 modP , a square root is easily extracted moduloP ,

D ≡
(
a + d

2

)2

− 1≡
(
a − d

2

)2

modP

H⇒ we can takexP ≡ a − d
2

modP

(34)

(P ∩ D) = 1 implies (P ∩ xP ) = 1. Therefore, each of equations (32) admits at least
one solution moduloP , yielding two eigenspaces3P,±, which can still be generated as
in (33): the eigenvalueλ+ = a (resp.λ− = d) is associated withk+ = c/(a − d) (resp.
k′− = b/(d−a)). The extension from the caseβ = 1 to anyβ > 1 is done through lemma 1.

Although it is very general, the choice (33) for generators is not compulsory; for
instance, ifb is coprime toN , it is possible, and sometimes more convenient, to generate
both eigenspaces by a vector of type

(1
k

)
.

In appendix B, we similarly classify the eigenmodules whenN = Pβ , first for P , an
odd prime divisor ofD (P |D ⇔ (D

P
) = 0), then in the special caseP = 2 [11]. The

analysis is slightly more involved than in the present section, but it only concerns a finite
number of primes, which makes it much less ‘generic’ in the large-N limit.

From the knowledge of free eigenmodules for primary valuesN , one easily deals with
composite values.

5.2. N composite

We treat the caseN = ∏n
i=1Ni =

∏n
i=1P

βi
i , with Pi prime. If there exists a free

eigenmodule3N = (vN, λN) moduloN , then the submodules3i = (vi , λi) moduloNi ,
given by

λi ≡ λN modNi ∀i = 1, . . . , n

vi ≡ vN modNi ∀i = 1, . . . , n
(35)

are free and invariant, hence every factorNi is admissible. The Chinese remainder theorem
[12, 11] yields the inverse property: given free eigenmodules3i = (vi , λi) modulo
Ni , equations (35) have a unique solution(vN, λN) moduloN , corresponding to a free
eigenmodule3N , which is independent of the generators we choose for the3i ’s; indeed,
3N (although notvN ) is unchanged if we replacevi by uivi , whereui is any invertible
element ofZNi .

If both (b ∩ N) > 1 and(c ∩ N) > 1, the generatorvN =
(
k′N
kN

)
cannot be written in

one of the forms (31). However, the coordinatesk′N, kN can be chosen mutually prime:
indeed, the free nature of the submodule3N is equivalent to(k′N ∩kN ∩N) = 1. Therefore,
G = (kN ∩ k′N) is invertible inZN , and3N admits as a generatorvN/G, the coordinates
of which are coprime.
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Figure 2. For the three admissible values ofN = 11, N = 33 = 11× 3, N = 121= 112,
we plot free eigenmodules3N of Sfig =

(2 1
3 2

)
, rescaled by 1/N . The generating vectors are

respectivelyv11 =
(1

6

)
, v33 =

(1
6

)
, v121 =

( 1
94

)
. We note that the string311/11 is a sublattice

of 333/33 (cf (35)), and of3121/121 (cf lemma 1).

In contrast, if(b ∩ N) = 1 (resp. (c ∩ N) = 1), then, as in the previous section,k′N
(resp.kN ) can be taken equal to 1.

5.2.1. Summary: WhichN are admissible? Let us now summarize our classification
(including the results of appendix B). If we decompose the discriminant ofS as in [24],
D = t2Dsf, where the second factor is square free, the following results hold:
• for any primeP such that(Dsf

P
) = 1, Pβ is admissible for anyβ (in the caseP = 2,

the splitting condition meansDsf ≡ 1 mod 8). We notice that(Dsf
P
) = 1 is implied by

(D
P
) = 1, but the converse is false;
• for other primes,Pβ is admissible if(D

P
) = 0 andβ is small enough; these cases only

represent a finite set of primes (see appendix B);
• a composite numberN =∏n

i=1P
βi
i is admissible iff eachPβii is.

The numbercN of invariant strings for an admissible primaryN = Pβ depends upon
(t∩P). In the simplest case,(D

P
) = 1, cN = 2 for anyβ > 0. For a compositeN =∏n

i=1Ni ,
we havecN =

∏n
i=1 cNi .

How frequent are the admissible numbers among all integers, in the semiclassical limit?
According to Hardy and Wright [12], a large numberN is typically the product of few large
primes (on the average,N containsω(N) ∼ log logN prime factors). To be admissible,
such a largeN has to factorize into exclusively splitting primes, which represent statistically
half of all primes. Therefore, admissible numbers become scarce in this limit.

To illustrate our calculations, we represent some linear-invariant strings for the
transformationSfig =

(2 1
3 2

)
, which is the simplest hyperbolic symplectic matrix in01,2

(cf [26]). Equations (32) then reduce tok2 = 3 or 3k′2 = 1 moduloN . Sinceb = 1, all
eigenvectors will be written in the formv = (1

k

)
. For the discriminantD = 3, the lowest

splitting prime is 11, but 2 and 3 are admissible, although their powers are not. In figure 2,
we show three invariant sublattices3N/N on T2, respectively forN = 11, 33, 121. These
sublattices look well distributed overT2 asN increases. This remark leads us to the next
section, where we investigate some semiclassical properties of invariant strings.

6. Asymptotic properties of invariant strings

We are interested in the way anS-invariant sublattice3N/N equidistributes overT2, for
a large admissibleN . To start with a simple case, let us assume that a generatorv of
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3N can be writtenv = (1
k

)
, wherek is a solution of (32) (this is possible, for instance, if

(b∩N) = 1). We consider a smooth observablef (x) onT2, and estimate its average over
this sublattice. We are thus led to the sum

〈f 〉3N =
1

N

N∑
n=1

f (nv/N) = 1

N

N∑
n=1

∑
p∈Z2

fpe2iπ p·nv
N (36)

by Fourier transforming the biperiodic observable. Permuting the sums, we see that

1

N

N∑
n=1

e2iπ p·nv
N =

{
1 if p · v ≡ 0 modN

0 otherwise.
(37)

Combining the above condition of ‘constructive interference’ with equation (32), we obtain

bp2
1 − cp2

2 + (d − a)p1p2
def= Q(p) ≡ 0 modN. (38)

For p 6= 0, this equation cannot hold inZ (equivalently, the isotropic setQ−1({0}) only
intersectsZ2 at the origin); indeed, multiplyingQ(p) by b leads to

bQ(p) =
(
p1b + p2

d − a
2

)2

− p2
2D (39)

and we know thatD is not a perfect square inQ (due to the hyperbolicity ofS). Therefore
equation (38) impliesp = 0 or |Q(p)| > N . If the largest eigenvalue of the quadratic
form Q is notedqS = max|(b − c/2)2 ±

√
(b − c/2)2+D |, the second condition cannot

be satisfied whenp is inside the disk of radius
√
N/qS . We then obtain the estimate

|〈f 〉3N − f0| 6
∑

|p|>√N/qS
|fp|. (40)

Equation (40) is meaningful if the Fourier transform off is in l1(Z2). However, since any
continuous functionf ∈ C(T2) can beuniformly approximated (i.e. for the‖ · ‖∞ norm) by
trigonometric polynomials (see [16, p 91]), we obtain the following result.

Proposition 3. For any infinite sequence of S-invariant sublattices{3N,N admissible},
∀f ∈ C(T2), limN→∞〈f 〉3N = f0.

The rate of convergence of this limit depends on the smoothness properties off . Indeed,
if f ∈ Cα(T2) (i.e. f is α times differentiable), its Fourier coefficients are bounded as:

|fp| 6 Cα

|p|α for |p| > 1 (41)

whereCα depends onf . If α > 3, we obtain

f ∈ Cα(T2) H⇒ |〈f 〉3N − f0| 6 2πCα
2− α

(qS
N

)α−2
2
. (42)

When the generatorv cannot be written in the form (31), the same type of estimates still
hold. We outline the few changes needed for this case. By construction (see last section),
N factorizes into two coprime numbersN = MM ′, such that the eigenmodule3N admits
a generatorv verifying

v ≡
(

1

k

)
) modM and v ≡

(
k′

1

)
modM ′. (43)

When estimating〈f 〉3N , the orthogonality conditionp · v ≡ 0 moduloN leads to:{
Q(p) ≡ 0 modM

Q(p) ≡ 0 modM ′
⇐⇒ Q(p) ≡ 0 modN. (44)
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The propertyQ(p) = 0 H⇒ p = 0 still holds, so we obtain the same estimates as in
equations (40) and (42).

Taking the average off over the lattices3N/N actually amounts to considering a set
of atomic probability measuresµN onT2; from this point of view, proposition 3 means that
such a sequence of measures converges, in the weak-∗ sense, to the Liouville measure on
the torus, asN →∞, N admissible. We are interested in these atomic measures because
they more or less correspond to the zero patterns of the quantum eigenstates we plan to
build in the next two sections. Proposition 3 shows that the zeros of such eigenstates are
uniformly distributed overT2 in the semiclassical limit, which constitutes the main result
of this paper.

Remark. We note that the above uniformity estimates were obtained quite simply, and
for all admissibleN . In contrast, the authors of [21] had to restrictN to splitting primes,
and the uniformity property they obtained for atomic measures used non-trivial estimates of
Kloosterman sums. The reason for this discrepancy is that these authors were considering
families of atomic measures supported byindividual periodic orbitsmoduloN , whereas
ours are supported bywhole eigenmodules, which are unions of ‘ideal’ periodic orbits [24].

7. From classical invariant strings to quantum eigenstates

Now that we have studied some asymptotic properties of invariant strings, we choose
one of these strings for an admissible valueN and express the quantum eigenstate with
corresponding (lattice-like) zero pattern as a pure theta state in some invariant spaceHN,κ .
We then do the same for another type of invariant sublattices, namely square sublattices,
which appear whenN is a perfect square. In the subsequent section, we will then build a
larger family of eigenstates for the sameN , allowing their zero patterns to becrystalline
instead of lattice-like.

7.1. Eigenzeros forming a lattice,N admissible

We start from an eigenmodule3lin = (v, λ), obtained in section 5. We can then search a
correspondingaffine invariant lattice3, i.e. find areal vectorv0 such that3 = v0+3lin is
itself invariant throughS. We will not make here an exhaustive list of such affine invariant
strings, but rather restrict the entries ofv0 to be integer multiples ofN/2. Each eigenstate
we will exhibit will then belong to one of the four spacesHN,κ , with κ = 0, 0̂, 1

2, i/2. We
divide the study according to the parity ofN , for reasons to become obvious.

Let us start by consideringN odd and admissible; we select a free eigenmodule3lin

with a generating vectorv = (k′
k

)
, wherek and k′ are coprime. SinceN is odd, we may

choose the entriesk, k′ to be of opposite parity. Indeed, suppose they are both odd; the
following transformations yield a new generator of3lin in the desired form,

v =
(
k′

k

)
−→

(
k′ +N
k

)
−→ v = 1

G

(
k′ +N
k

)
whereG = (k ∩ (k′ +N)). (45)

In that case, we can find two integersu, v, such that the matrix

Sv =
(
u k′

v k

)
(46)

belongs to01,2 (see equation (24)). This matrix maps the vertical string3∞ generated by
v∞ =

(0
1

)
moduloN , onto3lin . Since3∞ is associated to theantiperiodic basis state
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|q(N−1)/2 = 1
2〉N,0̂, the eigenstate associated with3lin is itself antiperiodic, and reads as

|ψ〉N,0̂ = USv | 12〉N,0̂. (47)

The zero pattern of this state consists of the lattice3lin/N
√

2, obtained from3lin through
a dilation and reflection with respect to the real axis (or complex conjugation). SinceN is
odd, the four strings

3lin 3′ = 3lin +
(
N/2

N/2

)
31 = 3lin +

(
N/2

0

)
3i = 3lin +

(
0

N/2

)
(48)

are all different. SinceS ∈ 01,2, 3′ is invariant, and yields a periodic eigenstate

|ψ ′〉N,0 = USv |q0 = 0〉N,0. (49)

If moreover S is congruent to the identity matrix modulo 2 (equivalently,S ∈ 02, the
level-2 principal congruence subgroup [13]), then31 and3i are also invariant, and yield
respectively the eigenstates

|ψ1〉N,1/2 = USv |q0 = 0〉N,1/2
|ψi〉N,i/2 = USv | 12〉N,i/2.

(50)

WhenN is evenand admissible, the coordinatesk′, k of the generatorv of 3lin can still
be chosen coprime, but we cannot modify their parity through the trick of equation (45), so
the matrixSv of equation (46) is not always in01,2. Besides, the four sublattices given in
equation (48) are not all different. For example, ifk, k′ are odd, then3lin = 3′, 31 = 3i

are invariant and the corresponding eigenstates are both antiperiodic,

|ψ〉N,0̂ = USv | 12〉N,1/2
|ψ1〉N,0̂ = USv |0〉N,1/2.

(51)

Similar phenomena occur for different parities ofk, k′. For instance, ifk′ is even, then
3lin = 31, 3′ = 3i are both invariant, and the two eigenstates are inHN,1/2.

To summarize, in the case whereN is odd admissible, we can build from any invariant
linear string3lin both a periodic and an antiperiodic eigenstate (plus two other eigenstates
iff S ∈ 02); whenN is even, we can build from3lin two eigenstates which belong to the
same spaceHN,κ , with the Floquet parameterκ depending on the invariant string3lin we
consider. In figure 3, we draw the Husimi functions of two lattice-like periodic eigenstates
of USfig , for the two admissible valuesN = 33 andN = 121; these eigenstates are built
using the invariant strings drawn on figure 2 (centre and right).

The following section deals with a slightly different type of eigenstates in the particular
case whenN is a perfect square.

7.2. Eigenzeros on a square lattice

Irrespectively of the number theory leading to free eigenmodules, a simple integer lattice
shows up whenN is a perfect square, sayN = M2: namely, the square lattice
3sq = M(Z + iZ), invariant through any modular transformationS, and containingN
points moduloN (3sq is also a submodule ofZ2

N , but of type 2 and not free). Since the
unique state ofH1,0̂ has a simple zero at the origin, the functionz 7−→ 〈Mz| 12〉1,0̂ has zeros

on the square lattice of side 1/M
√

2, i.e. on3sq/N
√

2. A straightforward calculation shows
that this function is the Bargmann representation of a state〈z|ψsq〉N,κ , periodic ifN is even,



1584 S Nonnenmacher

Figure 3. Husimi functions of twoκ = 0 pure theta eigenstates ofUSfig , for N = 33 (left) and
N = 121 (right); we show the linear density scale using grey levels and indicate the position
of the zeros by tiny circles. In both cases, the zero patterns are the rescaled affine strings
3′N/N

√
2, where3′N are translates of the eigenmodules333, resp.3121 of figure 2. For both

eigenstates, the eigenangle is−π/4, of respective degeneracies 2 and 3.

antiperiodic ifN is odd. Writing down the theta series, we easily get the decomposition of
|ψsq〉N,κ in the position basis,

|ψsq〉N,κ = 1√
M

M−1∑
µ=0

(−1)µ
∣∣∣∣∣µ+ 1

2

M

〉
N,κ

(52)

with κ = 0 (resp.κ = 0̂) for N even (resp. odd). These states are not pure theta states
according to the definition we gave in section 4, since they are not built through the action
of Mp(2,Z) onto some basis state ofHN,κ . However, they transform simply, as shown
below. Taking any transformationS ∈ 01,2, we label the operatorUS according to the space
it acts upon:

〈z|UHN,κS |ψsq〉N,κ = 〈Mz|UH1,0̂

S | 12〉1,0̂ = e2iπσ0̂〈Mz| 12〉1,0̂ (53)

with κ = 0 or κ = 0̂ according to the parity ofN . The first equality is due to the linearity of
the transformations in equation (21), the second is obvious (H1,0̂ is a one-dimensional space
on whichUS is an endomorphism). The eigenangleσ0̂ only depends on the transformation
S.

For the sameN = M2, we can build a second eigenstate associated to the invariant
lattice3′sq= 3sq+

(
M/2
M/2

)
. The quantum state can be built as above, it is periodic for allM:

|ψ ′sq〉N,0 =
1√
M

M−1∑
µ=0

|µ/M〉N,0. (54)

Proposition 4. For anyS ∈ 01,2, for any perfect squareN , the states|ψsq〉N,κ , |ψ ′sq〉N,0 are
eigenstates ofUS .

In figure 4, we draw the Husimi function of the periodic eigenstate|ψ ′sq〉121,0 for N = 121.
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Figure 4. Husimi function of theκ = 0 eigenstate ofUSfig associated with the invariant square
sublattice3′sq, for N = 121 (same representation as in figure 3). The eigenangle is−π/4,
hence this state is degenerate with the pure theta eigenstate shown in figure 3 (right).

8. Crystalline eigenfunctions

In the last section, we built eigenstates for which the zero patterns were classically invariant
lattices3, which filled the unit torus uniformly in the semiclassical limit. We would like
to find a larger class of eigenstates with the same property.

The authors of [21] derived semiclassical equidistribution properties concerning the
Wigner distribution ofcompleteorthonormal families of eigenstates, although they had to
restrictN to splitting prime values to obtain these results. Equivalently, they proved that
for these values ofN , Schnirelman’s theorem is valid forany sequence of eigenstates; their
proof relies on the bilinearity of the semiclassical measures (Wigner of Husimi) with respect
to the quantum states.

On the opposite, we are not directly concerned with the properties of the Husimi
densities, but rather with the atomic measures associated to their zero patterns. Since
these patterns arevery non-linear objects, we are not able to generalize the above
uniformity properties to complete families of eigenstates. However, we can obtain a
partial generalization from last section: whenN is not a prime, it is sometimes possible to
build eigenstates with zero patterns formingcrystals instead of lattices, whose periodicities
correspond tonon-freeeigenmodules ofZ2

N .
These crystalline states can be built through different ways, depending on the value

of N .

8.1. N admissible

To simplify the presentation, we will give details only in the case whereN is odd admissible,
and moreover we first consider an invariant linear string3 = 3lin = (v, λ) such thatv is
of the form

(1
k

)
, with eigenvalueλ = a+ bk. Therefore, the matrixSv of equation (46) can
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be written

Sv =
(

0 1
−1 k

)
. (55)

We note the vertical integer translations of3 (which are, in general, not invariant underS):

3l = 3+
(

0

l

)
= Sv

[
3∞ +

(−l
0

)]
for l ∈ ZN. (56)

By linearity, S maps the string3l into a parallel string3l′ . More precisely,3l′ = 3λ′ l ,
whereλ′ = d − bk is the inverse ofλ moduloN . To these translated strings are associated
the antiperiodic pure theta states:

|ψl〉N,0̂ = USv | 12 − l/N〉N,0̂. (57)

These states are not eigenvectors ofUS , but they form a new orthonormal basis ofHN,0̂,
on whichUS acts quite simply:

US |ψl〉N,0̂ = e2iπσ(N,l)|ψλ′l〉N,0̂. (58)

The phasesσ(N, l) can be derived by writing down explicitly the matrix elements ofUS in
this new basis. This leads to more or less complicated formulae, some of which are given
in appendix A (see also [18, 20, 21] for the caseκ = 0).

To build a basis of eigenstates, we use the partition ofZN into disjoint cosets (or
orbits)Oj = {λ′s lj , s = 0, . . . , pj − 1}: lj is an arbitrary point on the orbitOj , andpj the
period of the orbit. Using the usual notationφ(n) for Euler’s totient function [12], we have
necessarilypj |φ(Nlj ) (we recall thatNl = N/(N ∩ l)).

Starting from an elementlj of the cosetOj , we can build a family ofpj orthonormal
eigenstates ofUS . According to equation (58),|ψlj 〉N,0̂ and its successive images underUS

are all eigenstates ofU
pj
S , with the same eigenvalue exp(2iπσj ), where

σj =
pj−1∑
s=0

σ(N, λ′s lj ). (59)

We therefore obtainpj antiperiodic eigenstates|φj,r〉N,0̂ of US , with eigenvalues e2iπ(r+σj )/pj ,
for r = 0, . . . , pj − 1:

|φj,r〉N,0̂ =
1√
pj

pj−1∑
s=0

c(r)s |ψλ′s lj 〉N,0̂ (60)

with ∀r = 0, . . . , pj − 1, c
(r)

0 arbitrary, and ∀s = 0, . . . , pj − 2, c
(r)

s+1 =
e−2iπ(r+σj )/pj e2iπσ(N,λ′s l0)c(r)s . To each cosetOj thus corresponds a set ofpj orthonormal
eigenstates, with the eigenvalues written above. Two eigenstates built from different cosets
are orthogonal, since they involve disjoint sets of orthonormal states|ψl〉N,0̂. However,
they can share the same eigenvalue [21, 27]. By completing the above procedure for all
cosetsOj (including the trivial oneO0 = {0}), we obtain an orthonormal basis of (possibly
degenerate) eigenstates.

In general, these eigenstates are not pure theta states, and their zero patterns are not
known analytically. However, ifN is not a primeand(lj∩N) > 1 (this gcd does not depend
on the elementlj we have selected inOj ), then the Bargmann functions of the eigenstates
|φj,r〉, r = 0, . . . , pj − 1 inherit partial quasiperiodicity properties from their components



Crystal properties of eigenstates for quantum cat maps 1587

〈z|ψl〉. To prove this, we generalize the fine periodicity of basis states (equation (13)) to
all pure theta states:

〈z+ −b + id

N
√

2
|US |qj 〉N,κ = 〈z|US |qj 〉N,κe−π(b+id)

√
2ze

π(b2+d2)
2N e2iπqj . (61)

If we apply this formula to the components of|φj,r〉 and iterate it, we obtain〈
z+ µ−1+ ik

N
√

2

∣∣∣∣ψλ′s lj 〉
N,0̂

= 〈z|ψλ′s lj 〉N,0̂(−1)µe−πµ(1+ik)
√

2ze
µ2π(1+k2)

2N e−
2iπµλ′s lj

N . (62)

The only s-dependent factor is the last one. If we chooseµ = Nlj , this dependence is
removed, so that the eigenstates|φj,r〉N,0̂ themselves share the above periodicity property,〈
z+Nlj

−1+ ik

N
√

2

∣∣∣∣φlj ,r〉
N,0̂

= 〈z|φlj ,r〉N,0̂(−1)Nlj e−πNlj (1+ik)
√

2ze
πN2

lj
(1+k2)/2N

. (63)

As a consequence, theN zeros of〈z|φj,r〉N,0̂ form a crystal, whose lattice is generated by

the vector (in complex representation)(−1+ ik)/(N ∩ lj )
√

2, and contains(N ∩ lj ) points;
each fundamental cell containsNlj zeros, but we have no information about their locations
within the cell.

If we rename our basis of eigenstates as

|8ljλ′r 〉N,0̂
def= |φj,r〉N,0̂ (64)

we obtain a basis of orthonormal eigenstates{|8l〉N,0̂, l = 0, . . . , N − 1} such that each

zero pattern of〈z|8l〉N,0̂ is a crystal generated by(−1+ ik)/(N ∩ l)√2.
Note that if we perform the same construction of eigenstates using a different invariant

string, we will a priori obtain a different orthonormal eigenbasis; this is not inconsistent,
considering the frequent degeneracies of the spectrum [26]. There can actually be
redundancies between two eigenstate bases built from two different eigenmodules3(1),
3(2). Indeed, if, for a certain divisorg of N , we havev(1) ≡ v(2) modN/g, then the
crystals of the eigenstates|8(1)

l1
〉, |8(2)

l2
〉 with g|l1, g|l2, are both supported by the same

lattice; if these eigenstates share the same eigenvalue, nothing prevents them from being
rigorously identical.

To deal with an invariant sublattice with generatorv = (
k′
k

)
(i.e. the case where both

(b ∩ N) > 1 and (c ∩ N) > 1), we cannot restrict ourselves to vertical translations of
3, as was done so far. To build a complete eigenstate basis, we have to consider all
possible translations of3 of the form v0 + 3, with v0 being an integer vector. Thus,
v0 should take values in a fundamental cell of the sublattice3, i.e. a representative of
the quotient(NZ)2/3. Such a fundamental cell can be obtained by the same procedure
as above, i.e. bySv-transforming (using equation (46)) the vertical strings3∞ +

(
l

0

)
, for

l = 0, . . . , N−1. The construction of eigenstates then proceeds as above, using the inverse
eigenvalueλ′ = k(au+ bv)− k′(cu+ dv).

This construction can be generalized straightforwardly to obtain a basis of periodic
(κ = 0) eigenstates for the same oddN , by using integer translations of the string3′ (see
section 7.1). One obtains a basis of orthonormal eigenstates|8′l〉N,0 similar to the one
obtained above (equation (64)).

As an illustration, figure 5 shows the Husimi functions of two crystal eigenstates of
USfig for N = 33= 3× 11 (both 3 and 11 are admissible). On the left, the zero pattern is
periodic with respect to a lattice of order 11, whereas on the right, the periodicity lattice is
of order 3.
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Figure 5. Husimi functions of twoκ = 0 crystalline eigenstates ofUSfig , for N = 33. In both
cases, we use translates of the eigenmodule333 of figure 2 (centre). On the left, the cosetO1

containsl1 = 11, its period isp1 = 2; the eigenangle is 2π/3−π/4 (triply degenerate), and the
crystal has the period(−1+ 6i)/11

√
2. On the right,O2 containsl2 = 3, its period isp2 = 10;

the eigenangle is−2π/10− π/4 (non-degenerate), and the crystal has the period 1/3
√

2. The
larger circles materialize double zeros.

To deal with an even admissibleN , one just needs to take care of the Floquet parameter
κ the same way as in section 7.1.

Let us turn back to the orthonormal basis of antiperiodic eigenstates{|8l〉N,0̂, l ∈ ZN }.
Noting g = (N ∩ l), the state|8l〉N,0̂ has a zero pattern of period(−1+ ik)/g

√
2, which

generates an invariant string ofg points onTC. Through a dilation of factorg
√

2, this
linear string is mapped into a free principal eigenmodule ofZ2

g. Averaging an observable
f over the crystal of zeros, we can therefore apply equidistribution estimates identical to
equations (40) and (42), after replacingN by g in the formulae. The zero patterns of
〈z|8l〉N,0̂ are thus well distributed overTC wheng is large. Unfortunately, the eigenstates
featuring such regular patterns are not very numerous: for any divisorg of N , the number
of integersl ∈ ZN such that(N ∩ l) = g is given byφ(N/g), and Euler’s totient function
varies likeφ(n) ∼ 6n/π2 on average [12]. As a matter of fact, the eigenstates|8l〉N,0̂ with
no a priori crystal periodicity (i.e.N and l coprime) represent a non-negligible fraction
φ(N)/N of the whole basis.

Finally, we note that the quasiperiodicity of the Bargmann eigenfunction (63) is mapped
to an exact periodicityof the corresponding Husimi density. Therefore, the uniformity
estimates (40), (42) apply as well if one averagesf over the Husimi density itself. From
the above results, we therefore deduce the following proposition.

Proposition 5. Consider an infinite sequenceN = {N ∈ N, N odd admissible} and a
corresponding sequence of crystal eigenstates{|9〉N = |8l〉N,0̂}N∈N such thatg = (N ∩
l) → ∞. Then both the Husimi measures{H9N }N∈N and the atomic measures{µN }N∈N
describing the zero patterns ofH9N converge weak-∗ to the Liouville measure onT2 as
N →∞, N ∈ N .
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8.2. N a perfect square

We consider again the caseN = M2, and construct an orthonormal family of periodic
(κ = 0) eigenstates. In section 7.2, we built the eigenstate associated with the lattice
3′sq= M(Z+ iZ)+M/2(1+ i),

〈z|ψ ′sq〉N,0 = 〈Mz|q0 = 0〉1,0. (65)

We generalize the above formula to include states with zeros on translates of3′sq/N
√

2.
One easily checks that the state|ψ〉N defined by〈z|ψ〉N = 〈Mz|q0 = κ2〉1,κ belongs to
HN,0 iff κ is of the formκ = (n1+ in2)/M with n1, n2 ∈ ZM ; its zero pattern is associated
to 3′sq+

(
n2

n1

)
. This family of periodic states is globally invariant underUS , according to a

generalization of equation (53),

〈Mz|UH1,κ

S |κ2〉1,κ = e2iπσκ 〈Mz|κ ′2〉1,κ ′ with κ ′ ≡ Sκ mod [1, i] . (66)

Moreover, these states are mutually orthogonal (this can be seen by decomposing them
on both position and momentum bases inHN,0), so they form an orthonormal basis of
HN,0. Starting from a certainκ(0) of the above type, member of the cosetOj = {Siκ(0) =
κ(i), i = 0, . . . , pj − 1}, we can then buildpj periodic orthonormal eigenstates|φj,r〉N,0 of
US , involving linear combinations of〈Mz|κ(i)2 〉1,κ(i) . As in the last section, we finally obtain
an orthonormal basis of eigenstates.

If the coordinates ofκ(0) have the gcd(n1 ∩ n2 ∩M) = g, then all the states|κ(i)2 〉1,κ(i)
share the following quasiperiodicity relations:

〈M(z+ 1/g
√

2)|κ(i)2 〉1,κ(i) = e
π
2 (M/g)

2+π√2z(M2/g)〈Mz|κ(i)2 〉1,κ(i)
〈M(z+ i/g

√
2)|κ(i)2 〉1,κ(i) = e

π
2 (M/g)

2−iπ
√

2z(M2/g)〈Mz|κ(i)2 〉1,κ(i) .
(67)

Since these relations are(i)-independent, they apply to each eigenstate|φj,r〉N,0 as well,
theN zeros of which belong to a crystal supported by the square sublattice inTC of side
1/g
√

2 (each fundamental cell of the crystal contains(M/g)2 = N/g2 zeros).
In figure 6 (left) we plot the Husimi function of an eigenstate ofUSfig for the square

valueN = 81. The starting Floquet parameter isκ(0) = (3− 3i)/9, so we obtain a square
crystal of side length1

3.
In the caseN = M2 odd, a similar construction leads to antiperiodic eigenstates with

the same type of zero patterns.
As section 8.1, the crystal of zeros will be well distributed on the torus wheng is large,

which happens for relatively few eigenstates of the basis (namely, when bothn1 andn2 are
multiples ofg).

8.3. N with an admissible divisor

Since we are in search of families of eigenstates displaying semiclassical (i.e.N →
∞) properties, the admissibility ofN seems a very restrictive condition. Indeed, this
property implies that all prime divisors ofN are admissible themselves, which represents
asymptotically half of all primes. Therefore, the admissible numbers form a set of vanishing
density among all integers in the semiclassical limit. For this reason, we now use the ideas
of the former sections to build crystalline eigenstates in the case whereN is not admissible
itself, but has an admissible divisorM, sayN = Mm (M is supposed maximal). We will
build eigenstates at this valueN , for which the zero pattern verifies the same periodicities
as eigenstates built at the valueM (we restrict ourselves to oddN and antiperiodic (κ = 0̂)
states, which are the most amenable cases).
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Figure 6. Husimi functions of twoκ = 0 crystalline eigenstates ofUSfig . On the left,
for the square valueN = 81, we use a cycle of translates of the lattice3′sq, starting from

κ(0) = (3+ 3i)/9; this cycle is of period 6, the eigenangle is 2π/6− π/36 (non-degenerate),
and the zero pattern inherits a square periodicity of side 1/3

√
2. On the right, the valueN = 55

is not admissible, we use a cycle of rotations starting from a linear string30 containing the
invariant sublattice 5311 (311 is shown in figure 2 (left)). The cycle is of periodprot = 3,
yielding an eigenangle 2π/3 − 3π/4 (four times degenerate), and the crystal has the period
(−1+ 6i)/11

√
2. Moreover, the function vanishes on the string3′11/11

√
2.

The construction still uses classical results. We start from a free eigenmodule3 modulo
M, generated byv = (1

k

)
(we choose this form forv to simplify notations, so that the matrix

Sv can be written as in equation (55)). Obviously, the latticem3 is invariant moduloN
(it is a non-free principal eigenmodule ofS in Z2

N ). We now consider a free module30 in
Z2
N , which containsm3 as a submodule (for instance, we can take the string generated by

the samev moduloN ). 30 is not invariant underS, but its successive images3n = Sn30

all containm3. We noteprot the least integer such thatSprot30 = 30 (prot is typically of
orderm). This period corresponds to a cycle of ‘rotations’ of30 underS, as opposed to
the cycles of translations considered in the last sections.

Quantum mechanically, the state

|ψ0〉N,0̂ = USv | 12〉N,0̂ (68)

and its successive imagesUn
S |ψ0〉N,0̂ are pure theta states associated respectively to the

lattices3n. As a consequence, each of the statesUS
n|ψ0〉N,0̂ hasM of its zeros on the string

3/M
√

2. Besides,USprot|ψ0〉N,0̂ = e2iπσrot|ψ0〉N,0̂, the phaseσrot depending onS and30.

We can then build a family ofprot orthogonal eigenstates with eigenanglesαr = 2π(r+σrot)

prot
,

for r = 0, . . . , (prot− 1):

|φr〉N,0̂ =
1√
prot

prot−1∑
n=0

e−inαrUS
n|ψ0〉N,0̂. (69)

This equation is similar to formulae (58) and (60) we derived in the case ofN admissible.
However, as opposed to section 8.1, these orthogonal eigenstates arenot normalized, since
the componentsUn

S |ψ0〉N,0̂ are not mutually orthogonal; some of the|φr〉N,0̂ can even be null
vectors, if|ψ0〉N,0̂ is orthogonal to the corresponding eigenspaces (we expect this situation
to be non-generic).
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The Bargmann functions of theseprot eigenstates all vanish on3/M
√

2, since all their
components do. More precisely, these components (and thus all the eigenstates) possess the
same quasiperiodicity with respect to this sublattice:

∀n 〈z+m−1+ ik

N
√

2
|USn|ψ0〉N,0̂ = 〈z|USn|ψ0〉N,0̂(−1)me

π
2N m

2(1+k2)e−πm(1+ik)
√

2z.

(70)

We have therefore built a family of orthogonal eigenstates whose zero patterns are
crystals generated by−1+ik

M
√

2
. For the inverse Planck’s constantM, there was a unique state

with such a property. In figure 6 (right), we plot the Husimi function of a periodic eigenstate
of USfig in the caseN = 55 (11 is admissible, 5 is not); the invariant string3 modulo 11
is shown in figure 2 (left).

Further on, we can build eigenstates with coarser quasiperiodicities, by composing
‘rotations’ and translations of30. Classically, the integer string30 + (0

l0

) = 30 + l0v∞
moduloN is mapped under successive actions ofS into sublattices of the form3j + vj ,
wherevj are integer vectors. We know that3j will be a translate of30 iff j is a multiple
of prot.

We can then use the results of section 8.1 to describe the cycle of translates of30

under the action ofSrot
def= Sprot ; this matrix maps30+ l0v∞ into 30+ λ′rot l0v∞, whereλ′rot

is an eigenvalue ofSrot moduloN . Without deriving explicitly the matrixSrot, we know
that λ′rot ≡ λ′prot modM, whereλ′ = d − bk describes the translates of3 moduloM (cf
equation (58)). We can therefore decomposeZN into cosetsOj = {λ′srotlj , s = 0, . . . , pj−1}
(including the trivial cosetO0 = {0}). For each coset, the total period of the cycle
{Sn(30+ ljv∞)} is thusprotpj .

Considering the cosetOj , the pure theta state we start with is|ψ0
lj
〉N,0̂ = USv | 12 − lj 〉N,0̂.

Its images throughUS are associated to the lattices3j + vj , so they havea priori no
common zero with|ψ0

lj
〉N,0̂. However, as in section 8.1, these states verify some non-trivial

quasiperiodicity properties, cf equation (61),

〈z+m−1+ k
N
√

2
|USn|ψ0

lj
〉N,0̂ = 〈z|USn|ψ0

lj
〉N,0̂(−1)me

π
2N m

2(1+k2)e−πm(1+ik)
√

2ze−2iπ
λ′nlj
M (71)

and the onlyn-dependence appears in the last factor. From this sequence,protpj orthogonal
eigenstates can be built using formula (69), with initial state|ψ0

lj
〉N,0̂ and periodprotpj (the

phaseσ now also depends on the cosetOj ). A priori, some of these states could be null,
for the same non-orthogonality reasons as above. However, if such an eigenstate is not null
andg = (lj ∩M) > 1, its zero pattern is a crystal generated by(−1+ ik)/g

√
2.

For each cosetOj , we have obtained a family ofpjprot orthogonal eigenstates (some
of which can be null), with zeros on a crystal generated by(−1+ ik)/(lj ∩M)

√
2. These

crystals are based on the same lattices which appeared for the valueM, but now each
fundamental cell containsm(lj ∩M) zeros. Unfortunately, the structure of the whole family
of eigenstates is less clear than in section 8.1: on the one hand, we do not know the norms
of the eigenstates, even their very existence; on the other hand, two degenerate eigenstates
built from different cosets area priori not mutually orthogonal. Actually, this lack of
information is not surprising, since we have builtprot times too many eigenstates through
our procedure, so that dependence relations between them must exist. However, as in
the last section, equation (71) ensures that proposition 5 applies to sequences of non-zero
eigenstates|8lj 〉N,0̂ for which g = (lj ∩M)→∞.
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9. Concluding remarks

Both the linearity of the transformationS and the classical invariance of certain sublattices
(strings) ofT2 transpose to quantum mechanics, when expressed in the Bargmann–Husimi
representation. On the time-dependent side, the quantum mapUS acts classically on string-
like zero patterns (i.e. zeros of pure theta states); on the time-independent side, it admits
families of eigenstates for which the zero patterns are crystals supported by classically
invariant sublattices.

The lattices supporting these crystals (thus the crystals themselves) equidistribute on the
torus when the number of lattice sites increases to infinity, and the equidistribution of the
corresponding Husimi densities then results as a byproduct.

However, crystalline eigenstates do not emerge for all values ofN , and when they do,
they concern only isolated states, whereas eigenspaces are very often multidimensional, due
to arithmetical degeneracies ofUS . Obviously, a linear combination of two eigenstates with
crystals supported bydifferent sublattices will not be crystalline, nor will their zeros be
a priori well distributed onTC: the equidistribution of the zeros isnot a linear property.
Therefore, the eigenstates for which we have a nice zero pattern (i.e. a well distributed
crystal) only represent a few elements of the whole set of eigenstates; they do not even
form a basis (indeed, they usually span a rather small subspace). Moreover, such crystal
features certainly disappear as soon as one considers a non-linear perturbation ofS.

In contrast, for many other eigenstates ofUS that we have computed numerically,
zeros show no particular periodicity, yet remain more or less well distributed on the torus.
Surprisingly, this property persists even when the Husimi function of the eigenstate has
a ‘scar’ on a classical fixed point (see figure 7). Therefore, the equidistribution property
seems to be even more general for the zeros than for the Husimi density itself, but a proof
will probably involve a different approach from that to Schnirelman’s theorem.

Figure 7. Husimi function of twoκ = 0 eigenstates ofUSfig , for N = 33 (left) andN = 59
(right), both being admissible values. These state are built as described in section 8.1, i.e. using
translates of invariant strings. On the left, we use a translation cycleO3 of period 10 containing
l3 = 1, the eigenangle is 2π/30− π/4 (doubly degenerate); on the right, the cycle is of period
58, and the eigenangleπ/4− 2π/29 is non-degenerate. In both cases, the state presents no
particular periodicity, but rather a ‘scar’ at a classical fixed point ((1+ i)/2

√
2 on the left, 0 on

the right). Nevertheless, the zero patterns seem well distributed on the torus.
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Appendix A. Derivation of the matrices US

In this appendix, we derive the entries of theN × N matrix which represents the operator
US mapping the basis{|qj 〉N,κ , j = 0, . . . , N −1} to the basis{|qj ′ 〉N,κ ′ , j ′ = 0, . . . , N −1}
(see equation (2)). The Floquet parametersκ, κ ′ ∈ [0, 1)2 are related by(

a b

c d

)(
κ2

κ1

)
=
(
κ ′2
κ ′1

)
+
(
n0

m0

)
(72)

where the integersn0, m0 are calledwinding numbers[27]. We will only consider hyperbolic
matricesS, so the entryb cannot vanish. The formulae obtained are generally used when
US is an endomorphism, i.e.κ = κ ′, but we do not need this property in our calculations.
For the periodic case (κ = κ ′ = 0), the matrix elements were derived by Hannay and Berry
[9] for anyN . We recall how to obtain these elements for general Floquet parameters, and
write explicit formulae in two cases, first whenN is coprime tob (cf our exampleSfig),
then whenN dividesb (which is useful for section 8.1).

The Berry–Hannay approach consists of extending the action ofUS from square-
integrable functions to tempered quasiperiodic distributionsS ′(R) (see also [22]). Precisely,
from the image of a unique Dirac peak,

US |q〉 =
∫

dq ′ 〈q ′|US |q〉|q ′〉 (73)

given by the kernel (18), one derives the image of the quasiperiodic distribution|qj 〉N,κ .
From equation (2), we decompose the translation index asm = bν + k, with ν ∈ Z,
k = 0, . . . , b − 1, and obtain, using Poisson’s summation formula,

US |qj 〉N,κ = 1√
iNb

∑
n∈Z

b−1∑
k=0

e
iπ
b
(Nak2−2nk)e

iπN
b
(dq ′2−2qj q ′+aq2

j )|q ′ = aqj + bκ1/N + n/N〉.

(74)

In this equation, we already see that the image of|qj 〉N,κ is a sum of regularly spaced Dirac
peaks. We now show that this image is itself quasiperiodic. For this matter, we compare
the coefficients in front of|q ′0+ n/N〉 with |q ′0+ n/N + 1〉, notingq ′0 = aqj + bκ1/N .

To avoid too cumbersome notations, hereafter we suppose that(b ∩ N) = 1. The sum
over k then yields [9]

US |qj 〉N,κ = CN√
iN

∑
n∈Z

e−
iπ
b
aN(aN\b)2n2

e
iπN
b
(dq ′2−2qj q ′+aq2

j )|q ′ = q ′0+ n/N〉 (75)

whereCN is a number-theoretical phase (see equation (78)), and(aN\b) is the integer
inverse ofaN modulo b (this inverse exists and is unique since(aN ∩ b) = 1). The
exponents in front of|q ′0+ n/N + 1〉 and |q ′0+ n/N〉 differ by

− iπ

b
aN(aN\b)2(2nN +N2)+ iπN

b
(2d(q ′0+ n/N)+ d − 2qj )

= 2iπκ ′1+ 2iπ(cj +m0)+ iπ

b
(2n+N)(d − aN2(aN\b)2). (76)
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Finally, a simple argument shows that(d − aN2(aN\b)2)/b is an even integer. Therefore,
we obtain a finite sum of quasiperiodic distributions,

US |qj 〉N,κ = CN√
iN

N−1∑
n=0

e−
iπ
b
aN(aN\b)2n2

e
iπN
b
(dq ′2−2qj q ′+aq2

j )|q ′ = q ′0+ n/N〉N,κ ′ . (77)

To be complete, we give the value of the global factorCN ,

if b is odd CN =
(
aN

b

)
e−iπ(b−1)/4

if b is even CN =
(
b

aN

)
eiπaN/4

(78)

where( aN
b
) is the Jacobi symbol, i.e. an extension of the Legendre symbol of equation (30)

to non-primeb (see [9, 15] for details). The unitarity of the matrixUS between the Hilbert
spacesHN,κ andHN,κ ′ can be proven by decomposingL2(R) into a direct integral of spaces
HN,κ [22]: it then follows directly from the unitarity ofUS acting onL2(R).

Identifying each spaceHN,κ with CN , we now express the matrix elements between the
statesN,κ ′ 〈qj ′ | and |qj 〉N,κ for j, j ′ = 0, . . . , N − 1. Due to the assumption(b ∩ N) = 1,
b admits a unique inverseb−1 = (b\N) moduloN . With this assumption, we can also
choose the integerb−1 such thatab−1 anddb−1 are even numbers. After a few calculations,
equation (77) yields the following matrix elements,

N,κ ′ 〈qj ′ |US |qj 〉N,κ = C̃N exp

{
2iπ

N
[j ′2(d b−1/2)− j ′jb−1+ j2(ab−1/2)

+j ′(κ ′1+m0− db−1n0)+ j (b−1n0− κ1)]

}
(79)

with the prefactor

C̃N = CN√
iN

exp

{
iπ

Nb
(dκ ′22 − 2κ2κ

′
2+ aκ2

2)−
iπ

b
aN(aN\b)2n2

0

}
.

In the periodic caseκ = κ ′ = 0, we recover an expression very similar in form to the one
in the continuum, except for the prefactor (cf [9, 20]). Since we are mainly interested inUS
being an endomorphism, we apply the above formula in the caseκ = κ ′, which is possible
for a finite number of parametersκ, indexed by the winding numbersn0, m0 [20, 22]:(

κ2

κ1

)
n0,m0

= 1

2− a − d
(
d − 1 −b
−c a − 1

)(
n0

m0

)
. (80)

In the main text, we have only built eigenstates with periodicity anglesκ = 0, 1
2, i/2,

0̂= (1+ i)/2, but once given the matrixS, we can easily extend our results to all invariant
parametersκn0,m0.

From equation (75) on, the above calculations depended on the assumption(b∩N) = 1,
which for instance is true for all valuesN in the caseb = 1. If now (b ∩ N) > 1, the
image of |qj 〉N,κ is still a superposition of quasiperiodic distributions inHN,κ ′ , but now
some elementsN,κ ′ 〈q ′j |US |qj 〉N,κ vanish. We are led to consider the caseN |b in section 8.1,
in the course of deriving the matrix elements〈ψλ′l|US |ψl〉N,0̂. Indeed, group properties of
US lead to

〈ψλ′ l|US |ψl〉N,0̂ = 〈 12 − λ′l|(±US−1
v SSv

)| 12 − l〉N,0̂ (81)
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(the± sign does not depend on the bra-kets considered). For simplicity, we takeN odd,
and suppose thatSv can be writtenSv =

(0 1
−1 k

)
, with k even. According to equation (32),

the matrixS̃ = S−1
v SSv writes

S̃ =
(
λ′ = d − bk βN

−b λ = a + bk
)

(82)

whereλ is the classical eigenvalue associated withv = (1
k

)
moduloN , λ′ its inverse, and

β = [bk2+ (a − d)k − c]/N is an integer coprime toλ′. By the same type of calculations
as above, we obtain

N,κ ′ 〈qj ′ |US̃ |qj 〉N,κ =
√
β

i
e

iπ
β
(λq2

j ′−2qj ′qj+λ′q2
j )

〈
exp

{
iπ

β
[λ′m2+ 2m(qjλ

′ + βκ1− qj ′)]
}〉

m

.

(83)

Here, 〈·〉m means the average over the integerm. This average is non-vanishing iff
qjλ
′ + βκ1 − qj ′ is integer, which corresponds, for eachj , to a unique indexj ′ = jS

moduloN . Thus, the matrixUS̃ acts, up to phase factors, as a permutation between both
bases (cf equation (58)). Using the winding numbers

S̃κ = κ ′ +
(
ñ

m̃

)
(84)

the state|qj 〉N,κ is mapped byUS̃ into eiφj |qjS 〉N,κ ′ , wherejS = λ′j + ñ. The phase is given
by

N,κ ′ 〈qjS |US̃ |qj 〉N,κ = Ckeiπβλκ2
1 eiπNb(λ′q2

j −2qj ·qjS )

= Ckeiπβ(λκ2
1−2bκ1κ2)e−iπbλ′κ2

2/Ne−
iπb
N

[λ′j2+2j (ñ+κ ′2)] (85)

where the constantCk = ( λ′β )e−iπβ/4 if b (and thusβ) is odd,Ck = ( βλ′ )eiπ(λ′+1)/4 if b is
even. The formula simplifies greatly in the periodic case(κ = κ ′ = 0).

Since most of the eigenstates built in the text areantiperiodic (κ = κ ′ = 0̂), we now
link the notations above to the ones in section 8.1, i.e. we map the indicesj, jS to the
indicesl, l′ of equation (58), and adjust the sign of the image state:

on the classical side on the quantum side

j = N − 1

2
− l |qj 〉N,0̂

def= |j/N + 1/2N〉N,0̂ = | 12 − l/N〉N,0̂
jS = λ′j + ñ l′ = λ′l |qjS 〉N,0̂ = (−1)

λ′+β−1
2 |1/2− l′〉N,0̂.

(86)

Appendix B. Free eigenmodules, continued

As a complement to section 5.1, we classify the invariant strings moduloN , first whenN
is a power of a prime divisor ofD, then whenN is a power of 2. We use the results of
section 5.1, in particular lemma 2 still applies.

B.1. N = Pβ with P an odd prime,P |D
Let P > 3 be a prime divisor ofD, α > 0 be the largest integer such thatPα|D. We seek
to diagonalizeS moduloN = Pβ , for β > 1.

We first assume thatP does not divideb and c simultaneously, thereforeall
eigenmodules can be obtained by solving one of equations (32), so the problem reduces to
extracting a square root ofD moduloN = Pβ , as in section 5.1.
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For β 6 α, the roots are the elementsx = XP [(β+1)/2], where the brackets [ ] mean the
integral part,X taking any integer value.

For β > α, D = Pαδ is a square inZPβ iff α is evenand ( δ
P
) = 1. In those cases, its

square roots take the formx = ±yP α/2+XPβ− α
2 , wherey verifiesy2 ≡ δ modPβ−α, and

X can be any integer.
In both cases, to each square rootx moduloPβ there corresponds one free eigenmodule

3.
In the case whereP dividesb andc simultaneously, we decomposeS as

S = ±
(

1 0
0 1

)
+ P γ

(
e f

g h

)
= ±I2+ P γM (87)

with the conditionM 6≡ 0 modP . We obtain the following constraints onM:

detS = 1⇐⇒ (e + h) = ∓P γ (eh− gf )

(e + h) is even and D = P 2γ

[(
e + h

2

)2

− (eh− gf )
]

(88)

which implies 2γ 6 α. As long asβ 6 γ , every vector ofZ2
N is invariant moduloPβ , so

3 can be any free submodule of type one. For larger values ofβ, we need to diagonalize
M moduloPβ−γ , that is, to solve the remainders of equation (32),

f k2+ (e − h)k − g ≡ 0 modPβ−γ (89)

or

gk′2+ (h− e)k′ − f ≡ 0 modPβ−γ .

This amounts to extracting a square root of the discriminant ofM, δ′ = D/P 2γ (this
discriminant is related to theδ defined above byδ′ = δP α−2γ ).

If f or g is coprime withP , the solutions of (89) will depend upon( δ
′
P
): if

(
δ′
P

)
= 1,

we apply the results of section 5.1 and diagonalizeM for anyβ; if P |δ′ (that is,α > 2γ ),
the first case considered in this appendix provides eigenvectors
• at least up toβ = α − γ ;
• for all β iff α is even and( δ

P
) = 1.

If ( δ
′
P
) = −1, there is no eigenvector forβ > γ .

The casef ≡ g ≡ 0 modP is actually solved easily: sinceγ is maximal,e ≡ −h 6≡
0 modP , so equations (89) have two solutions for anyβ > γ , using lemma 1.

To conclude, we recall that any solution of (89) moduloPβ−γ providesP γ distinct
invariant strings moduloPβ .

B.2. N a power of 2

The prime number 2 has to be distinguished from the other primes, especially when one
considers quadratic equations [11], which play an important role in the diagonalization of
S. We separate the two possible forms ofS modulo 2.

In the caseS ≡ (0 1
1 0

)
, S admits the unique eigenvector

(1
1

)
mod 2. Sinceb, c are odd

anda − d even, eigenvectors are obtained by the extraction of a square root ofD modulo
2β , for anyβ > 1.

If (a + d)/2 is even, thenD ≡ 3 mod 4 is not a square [11], so there is no solution.
If (a + d)/2 is odd, we writeD = 2αδ, with δ odd, α > 3. As long asβ 6 α, we

have the trivial square rootsx = X 2[(β+1)/2] for any integerX. Whenβ = α+ 1, there are
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solutions iffα is even,x = 2α/2+X2α/2+1; for β = α+2, the existence of solutions requires
δ ≡ 1 mod 4, and forβ > α + 3, the condition to extract a square root isδ ≡ 1 mod 8.
In the last two cases, all square roots are of the formx = ±2α/2y + X2β−α/2−1, where
y2 ≡ δ mod 2β−α.

The alternative case

S = ±
(

1 0
0 1

)
+ 2γ

(
e f

g h

)
= ±I2+ 2γM (90)

leads to similar phenomena as for odd primes.
For β 6 γ , all vectors are trivially eigenvectors.
For β > γ , if f or g is odd, equations (89) have solutions as long as the discriminant

of M, δ′ = ( e+h2 )2 − eh+ gf , admits square roots modulo 2β−γ ; we are led to an analysis
similar to the one above concerningD = 22γ δ′.

If both f andg are even, thenS ≡ (±1+ 2γ )I2 mod 2γ+1. This case impliesα = 2γ ,
so δ = δ′. All vectors modulo 2γ+1 are eigenvectors. Forβ > γ + 2, equations (89) can
be divided by a factor of 2, leading to:

Fk2+ Ek −G ≡ 0 mod 2β−γ−1 or the analogous equation ink′

whereF = f/2 E = (e − h)/2 G = g/2. (91)

By definition,M 6= 0 mod 2, so equation (88) implies thate, h, andE are odd. Therefore,
sinceE is the derivative of polynomial (91) modulo 2, lemma 1 associates to each solution
k modulo 2 a unique solution modulo 2β−1−γ , for any β. The analysis modulo 2 is
straightforward,

(F,G) ≡ (0, 0) H⇒ k = 0 or k′ = 0

(F,G) ≡ (1, 0) H⇒ k = 0 or k = 1

(F,G) ≡ (0, 1) H⇒ k′ = 0 or k′ = 1

(F,G) ≡ (1, 1) H⇒ no solution.

(92)

Equivalently, in this last case (f, g even) there are 2γ+2 solutions for any largeβ if
δ ≡ 1 mod 8 (the first three equations), and none ifδ ≡ 5 mod 8 (the last equation),
which are the only possible values ofδ in this case.
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