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Abstract. Using the Bargmann—Husimi representation of quantum mechanics on a torus phase
space, we analytically study eigenstates of quantized cat maps. The linearity of these maps
implies a close relationship between classically invariant sublattices on the one hand, and the
patterns (or ‘constellations’) of Husimi zeros of certain quantum eigenstates on the other hand.
For these states, the zero patterns are crystals on the torus. As a consequence, we can compute
explicit families of eigenstates for which the zero patterns become uniformly distributed on
the torus phase space in the limiit— 0. This result constitutes a first rigorous example of

a semiclassical equidistribution for Husimi zeros of eigenstates in quantized one-dimensional
chaotic systems.

AMS classification scheme numbers: 58F05, 58F06, 81Q20, 81Q50, 81S30

1. Introduction

A major question in ‘quantum chaos’, i.e. the study of quantum systems for which the
classical limit is chaotic, lies in the structure of eigenstates. Indeed, a ‘chaotic counterpart’ to
the WKB ansatz, which holds in the case of an integrable system, is still missing (this ansatz
gives simple asymptotic formulae for individual eigenstates). The only proven results so
far, collectively referred to as ‘Schnirelman’s theorem’, deal with the phase-space measures
associated to eigenstates of a classically ergodic system, in the semiclassical limit.

That is, to any quantum staig;(¢) there corresponds a phase-space measure density
Hy,(q, p) defined using coherent states, called the Husimi densityzdR]. Now, if one
quantizes an ergodic Hamiltonian system and considers a sequence of eiggnstaies
such that, — 0, with eigenvaluest, — E, then the associated Husimi measufég,
will almost always converge to the Liouville measwe over the energy surfacEg; that
is, for every smooth observablg(q, p), the averagey f(q, p)Hy, (g, p)dg dp tend to
fzﬁ f(q, p)dug [3,29-31]. When the ergodic classical system is not a flow, but rather a
map, the same property holds for almost any semiclassical sequence of eigenstates of the
guantized map, the Husimi density now converging towards the Liouville measure over the
whole phase space [21, 22].

These results are very appealing in that they do not depend on the details of the system
considered, apart from its classical ergodicity. On the other hand, Schnirelman’s theorem
allows a minority of non-ergodic eigenstates (a set of asymptotic density zero), and we ignore
what these might look like: some of them could for instance show a strong concentration
along an unstable periodic orbit (a ‘scar’), even in the semiclassical limit. Furthermore,
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the information provided by this theorem remains measure theoretical, which is much
weaker than a WKB-type ansatz. For this reason, we intend to study as precisely as
possible the structure of eigenstates for a class of analytically tractable chaotic systems, the
automorphisms of the 2-torus, or generalizations of Arnold’s cat map [8]. The quantization
of these highly ergodic maps was first performed by Hannay and Berry [9], and has been
rederived in different ways since then [20, 22, 32, 23]; their spectral properties were analysed
by semiclassical means in [26, 27], and eigenstates were studied analytically by [18, 20, 21].

In this paper we exhibit a certain class of quantum cat eigenstates, directly within
the Bargmann—Husimi representation of quantum mechanics on the torus. This phase-
space formalism, together with the linearity of the classical maps, allow us to associate a
classically invariant sublattice of the unit torus with a family of eigenstates of the quantum
map. Precisely, we show that the Husimi functidiig of these states (for which we have
analytical expressions) are periodic with respect to the invariant sublattice. We call these
states crystalline, due to the patterns formed by the zerd$,ofMoreover, we can show
that in the limit of a large number of sites, these invariant sublattices (and the crystals they
support) become equidistributed over the torus. Our derivation is a first step towards a still
missing proof of the ‘uniform distribution of the Husimi zeros’, conjectured by Leboeuf
and Voros [4, 6] for one-dimensional chaotic eigenstates. This conjecture represents a more
precise statement than Schnirelman’s theorem, inasmuch as the zeros completely encode the
eigenstate. Unfortunately, they behave still unpredictably in the semiclassical limit, and are
in general not easy to catch analytically. What saves us here is the linearity of the classical
map, which yields explicit (and tractable) formulae for eigenstates.

Before proceeding further, let us sketch the plan of the paper. After recalling the basics
of quantum mechanics on the torus and describing the Bargmann and Husimi representations
in this framework (section 2), we describe the family of dynamical systems to be studied,
i.e. the quantized hyperbolic automorphisms of the 2-torus (section 3). After explaining
how to naturally build a quantum eigenstate from a classical invariant sublattice (section 4),
we try to classify these lattices as thoroughly as possible, following the seminal work of
Percival and Vivaldi [24] (section 5). We estimate the uniformity of these invariant sets in
the semiclassical limit (section 6), and then explicitly build different types of eigenstates
(sections 7 and 8) associated to these sets; the uniformity results can then be applied to the
zero patterns of their Husimi representations. Conclusions are given in section 9.

2. Quantum mechanics on the torus

The classical maps we study here are defined on the unit torus phaseT8paBefore
guantizing such a map, we shall first define the quantum kinematics, i.e. the Hilbert space(s)
of quantum states corresponding to this classical phase space. We will not resort to geometric
guantization, as was done in [19], but use instead a more pedestrian approach, which yields
basically the same results (it amounts to a choice of polarized sections parallel po the
axis). Namely, we build our quantum states by imposing the following quasiperiodicity
conditions upon a one-dimensional wavefunctjgn, i.e. a distribution inS’(R) [4, 22]:

(g + L) = ™1 (g|y)
(p+ 1Y) = e 2™ 2(p|y)

with usual Dirac notations for position and momentum representations. The Floquet
parameterk = «; + ik, can take any value on the dual torus. These conditions force
Planck’s constant to take discrete values=" (27 N)~%, with N a positive integer. For

@)
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given N and«, the quasiperiodic states formMadimensional Hilbert space of distributions
Hw «, having for example the following basis:

g v = Y €7 g; +m) for j=0,...,N—1 )
mezZ

where the allowed position peaks are discrgte= 27h(k2 + j). The Hermitian structure
on Hy . is simply given by(gklg;)n .« = 8jr, for j,k =0,..., N — 1. Through a finite
Fourier transform ofig;) ., one obtains the basis built by periodization of momentum
eigenstates,p,,) v «, with the dual discretizatiop,, = 27k (k1 + m).

It can be helpful to work in a phase-space representation, since we are interested in
semiclassicalfeatures of states ift{y , (which arise for large values ao¥). We will use
the Bargmann representation of quantum states on the real line [1], simply extending it
to the above distribution spaces by linearity [4]. This transformation maps @dobger
wavefunction(g|y) into an entire functionz|y ), through the integral kernel

_ 1 - & 2D+ YRz

(zlg) = i ” " 3)
where|z) is a (Weyl) coherent state, which is localized at the phase-space (@ginio)
given byz = ‘”’—ép(’. Although |z) depends ork, this dependence will not be explicit in
our subsequent notations: the Kea will always correspond to the value af(= 1/27 N)
labelling the attached ket/)y ..

The combination of equations (2) and (3) leads to the following representation of the

basis|g;)n «:

_ 1 N (— 2 (2249 +v/22q)) ; LK1 :
(zlgj)ni = (nﬁ)l/4e2 21T g3 | ir N (qj -y - «/éz) iN 4)
where we used Whittaker and Watson’s [10] definition for the Jacobi theta function,
Os(Z|T) =y €42 for Z,1 € C, (1) > 0. (5)
nez

It can be convenient to use a more general definition of theta function [14]:
Ong (1. Z,1) = e 27Nt N~ grNeyi=2myZ
5qj ’ ’

yeq;+7Z
— e—ziﬂNfe—ziﬂNqueiT[NTq/-ZQS(_T[N(Z _ qu)|N‘C) (6)
in which the basis vectors dfiy , read as
1 .. K1 K1 .Z2
(zlg;) N« —W®N.qf <|9|\/§Z_N,qj‘__|5 . )

We will use the latter type of theta functions when studying the action of the symplectic
group upon biperiodic states, in the next section. On the other hand, the analytic properties
of the ‘old’ theta function9; are thoroughly described in [10], and we need them too.

In the Bargmann representation, the vectorsf, are completely characterized by
the following quasiperiodicity properties [4]:

@+ UV2Y) g = Emag@NU2V) (71

(2 +i/V2) e = EENVEVE 2y

The functions(z|y)y, are thus quasiperiodic with respect to the toffys of periods
1/+/2,i/+/2; they actually represent particular holomorphic sections of a complex line
bundle over this torus [14, 23, 32].

®)
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The scalar product of two vectors ifi{y, iS easily computed in Bargmann’'s
representation, thanks to a closure formula:

(I Ive =2 diz dSZ<Z|1/f)N,K<Z|¢/>N’Ke_27-[N|Z‘2, 9)

Tc

Meanwhile, the positions of the zeros of a functiGiy )y . are well defined orft;
there are exactlyv of them, and their sum is constrained by

y .
V25 =N <¥> i mod [L1]. (10)
k=1

The knowledge of the zeros allows us to rebuild the quantum state, up to a constan€factor
from the unique functiory (z) = (z|lg = O)y=1.,=0: if we know the zerog; of a Bargmann
wavefunction(z|y) .« (Which satisfy (10)), we recover this function multiplicatively:

(zl¥) C ex (2 ﬁ:( 1_i>>ﬁ ( i ) (11)
2|V N« p JTZk:1 Zk >/> k:lX z o/ Zk ).
(The whole product is independent of the determination of the zeros we have used to build
it.) This factorization property makes the Bargmann zeros a particularly interesting tool to
construct or characterize a quantum state [6, 4], especially in the semiclassical framework.
On the one hand, the set of zeros formsaactandminimal representation of the quantum
state, on the other hand the zeros live in the classical phase space, as opposed to the usual
Schiddinger coefficients. This is the reason why we intend to investigate their positions for
eigenstates of quantized cat maps. This tagkpsori not trivial because the quantum state
depends nonlinearly of its zeros (the difficulty is similar to that of relating the coefficients
and the roots of a polynomial).

We are however able to give a complete description of the Bargmann zeros for particular
states, namely the basis states6f . (4), since we know whereés(r Z|t) vanishes [10]: it
has a unique zero in the fundamental torus of moduluging atZ = (1+1)/2. Therefore,
the N zeros of(z|g;) v, have the positions

1 s (k+3) .

«/izk_qj+§—|ﬁ+| N mod [1, ] k=0,...,N—1
1/, . i 1k .
:N(]—m+§>+§+lﬁmod[ll] (12)

i.e. they lie along a vertical line on the torus, at maximal distance from the{dine g;}
(see figure 1). Actually, the Bargmann functi¢rg;) . verifies the ‘fine’ quasiperiodicity

property
(2 +1/NV2lgj)y,c = ETugr@2N=IV2) 710y (13)

To close this section, let us describe the phase-space measure we can build from the
Bargmann representation, i.e. the Husimi measure density [2]. For anygfaten S’'(R),
it is defined by the positive density

Hy(z,2) = [(zly) %7, (14)

For a statdy) v ., the Husimi density function is single valued @p. Like the Bargmann
function, it factorizes easily in terms of its zergsand of the Husimi density of (z):

Hy(z Z)—KﬁH (z+1—+i—z) (15)
v k=1 g 22 )
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E Figure 1. Husimi function of the basis state
@ F |g2) N=11..=0, plotted both in a linear scale (grey levels;
the high values are dark) and logarithmic (contour)
@ scale. The linear scale shows a concentration of the
density along the lindg = ¢» = 1%}, whereas the
0 ‘ 5 ‘ 1 logarithmic plot shows the vertical string of zeros along
’ the line{g = ¢2 + %}. The function has the period
Re zVR=¢q i/11+/2 in the variablez = (g —ip)/~/2.

whereK = |C|? is the constant which makes, (z, Z) the density of a probability measure
on Tg, as long agy)y . is normalized (cf equation (9)).

2.1. What is known about the Husimi density?

The factorization properties of Bargmann and Husimi functions mean that all the information
about them (except an arbitrary factor) is contained in the positions of their zeros. We now
roughly sketch the relation between the global features of the Husimi densities on the one
hand, the patterns of zeros on the other hand, for two different types of eigenstates.

For an integrable system (e.g. a time-independent Hamiltonian system on the torus), the
Husimi measures of a sequence of eigenst&ted®) v . }veny With energiesEy — E are
known to concentrate along the orbit of enedg\28]. At the same time, the zeros of these
Husimi densities line up along certain classically defined lines, far away from the classical
orbit (namely, anti-Stokes lines: see for instance [7]). These results are mere consequences
of the WKB asymptotic form of the eigenstates of integrable systems. As an example, one
can consider the position eigenstates . (see figure 1); for anyQ € [0, 1], we can
select a sequence of statgg;n))n «}nen, such thatg;yy — Q asN — oo. The zeros
of (zlgjv))n .« lie on vertical lines which converge to the lijg = Q + %}, whereas the
Husimi densities concentrate semiclassically upon the{line Q}.

On the opposite, in the case of classically ergodic dynamics (e.g. some kicked systems,
or the quantum cat maps we will study here), the only analytical result concerning the
eigenstates is provided by Schnirelman’s theorem, described in the introduction. For almost
every sequence of eigenstatgsy}ycy Of the corresponding quantum maps, the Husimi
measures converge to the Liouville measure in the weak« sense, which means
that for any continuous functiof on the torus,[,. f(g. p)Hy, (g, p) dg dp converges to
the ergodic averag¢.. f(¢. p)dgdp asN — oo [21,22] (the interested reader can find
precisions about the weaktopology in [17]).

This weaks convergence does not provide very precise information about the
eigenstates. Moreover, it would be convenient to obtain a direct description of the phase-
space minimal data formed by the zeros. Numerical calculations have yielded the following
conjecture [4,6]: one expects the zeros of a chaotic eigenstapréad uniformlyover
the whole phase space (i.e. the torus) [4, 6]; further studies showed that the zeros locally
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behave as roots of random polynomials [5] (in particular, they tend to repel each other at
short distances). This uniformity would be, in a certain sense, dual to the uniformity of
the Husimi measure itself. In the following, we will be able to prove such a semiclassical
equidistribution for very particular cat eigenstates, in which case the zero patterns are
crystalline.

3. Classical and quantum cat maps

The classical transformations we consider are the hyperbolic automorphisms of the unit
torus phase spac?, given by matricesS = (* 5) in SL(2, Z) with tr(S) = a +d > 2 (this
has the useful consequenke # 0). Such a matrix acts linearly on the torus:

T = (q) mod 1— Sz mod 1 (16)
p

These diffeomorphisms df? are known to be fully ergodic and mixing [8]; in particular,
for a sufficiently smooth observable on the tortigr), we have the property:

1 XM
2 H n _ 2
for almost allz € T A}me — ,;:1 f(S"x) = /I[‘Z f(x)dx a7)

where dz is the usual Liouville measure ofi>. The condition ‘for almost alk:’ is not
gratuitous: in the present case, all points on the torus with rational coordinates are periodic
under the action of, so the ergodic property (17) does not hold for them. The periodic
orbit structure of classical cat maps was largely studied in [24—-26], and we will use some
of those results in the following.

The quantization of§ can be performed in two steps [27]. First, any transformafion
in SL(2, R) acting on the whole plane can be considered as the time-one map of a certain
quadratic Hamiltonian flow, as long ag§y > —2. For arbitrary#, evolving the Weyl-
quantized Hamiltonian during a unit time yields the unitary operatpron L,(R), given
by the integral kernel

erlda?~2q'q+aq?)/2b] (18)

/

(q'|Uslq) T
(This corresponds exactly to the Van Vleck quantization scheme, since the term between
brackets is the generating function of the symplectic transformafipriThe ambiguity of
the square-root sign is natural: the quantizattbbr— Uy only provides a representation
of SL(2, R) up to a sign, called the metaplectic representation2yiR). Elements of the
group Mp(2, R) are precisely specified by both the symplectic mafrithey are built from,
and a holomorphic function on the upper half-plahe) such thatj?(r) = bt 4+ d. This
function appears naturally if we write the above kernel in a mixed Bargmanné@noger
representation:

1 1
R4 (i) p{ 2(ib + d)
This formula is valid for any value df. However, in the following, working on the torus
imposes the values = (27 N) L.

Now that we have quantized the symplectic transformaficnSL(2, R) into a unitary
operatorUs on Ly(R), we extend the action of/s to the distribution space®(y , by

(z|Uslq) (—(d —ib)z* — (a —ic)g® + Zﬁzq)} . (19)
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linearity (see appendix A). Using the notatiSiir) = Z:j;, we obtain

(I Uslqe) v = (21Uslqe) 03 (nN [smqk - ifzﬁ + %] ’saw)
. 1 1 S, \/_ ! K1 iZ—Z B bz?
= G i e N '

ib+d NN 2 ib+d
This represents a generalization (to a)l of the action of Mg2, Z) on theta functions,
described for instance in [14]. More precisely, the transformatigracts onto the function
On.q (T, Z — k1/N, t) according to:

(20)

K1 bZZ ) (21)

O (tZ—Et>i> L ey <() S22
AN N’ jr) T bt+d N ' 2(bt+d)
To obtain (20), i.e. the transformation rule for the basis state® @f., we only need to
select the three parameters:=i, Z = iv/2z, t = —iz%/2 + qxk1/N.
For an arbitrary transformatio$i € SL(2, R), the transformed Bargmann function is not
an element ofHN,,(; it is a theta function, quasiperiodic with respect to another lattice:

( f — imagrN[ ﬂ ++/2z(a+ic)] (Z|U V).
B (22)
(z+ bf—dlUsW o = g NI V20D (g Ly

If S is a matrix with integer entries, this lattice coincides with the period latticE-oby
modularity. The spac@{y , is then mapped bys into Hy ., with [21, 22]

K K2 1/Nab
=S — dil 23
() =5(5) +3(ea) me @

For simplicity, we will generally use the same notatibiy for the unitary operator on
L,(R) and the unitaryN x N matrices connectingi{y , and Hy ., Since the latter are
extensions of the former to some distribution spaces. In order to avoid the inhomogeneous
term in equation (23), we choose (cf [9, 21]) to restrict ourselves to transformafiars

the following types:

( odd even) or (even odd) (24)
even odd odd even/®

These transformations form a subgroup of index 3 iIHZSE), namedr'; ; in the literature
[13]. For all values ofN, the spacesy, for k = 0 (periodic wavefunctions) and
k=0=@1+ i)/2 (antiperiodic wavefunctions) are both invariant under all operdits

S € I'12. We thus obtain two families of (non-faithful) finite-dimensional representations
of this group. On the other hand, according to equation (23) an individual opdvator

can act as an endomorphism #f), , for some other values af as well (see appendix A,
equation (80)).

4. Strategy: from zeros to eigenstates

Hereafter, we give ourselves a fixed hyperbolic transformafioa I';», and study the
eigenstates of the corresponding matriéés on the above-mentioned invariant Hilbert
spaces, for any valuy.

Analytical expressions have already been obtained for eigenstatés afn Hy o
[18,27,21]. The following trick was used: for aN, there exists an integer perigaN),
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such thaty?™) = emoM 1, where 1 is the identity oveHy o, ando (N) is a phase.
Then, starting from any statg))y o, Suitable combinations of its imagd$§|w)N,0 for
k=1,..., p(N) yield an orthogonal family of eigenvectors spanning a subspaéé,af,
with eigenangles regularly spaced on the unit circle. One can then repeat this construction
from a new vectoty’) y o orthogonal to this subspace, etc, until a complete basis is formed.
Actually, we will use a similar approach in section 8.

Unfortunately, the resulting formulae for the eigenstates are not very suggestive of their
‘shape’, in particular the limitv — oo looks quite untractable. In contrast, the main task of
this article is to construct subfamilies of eigenstates characterized by interesting phase-space
features, namely crystalline structures, when expressed in the Bargmann representation. Our
approach will be similar to the one developed by Degli Espefstl [21]: we will assign
to N certain values, selected according to their arithmetical properties (we generalize the
prime values considered in [21]), and for the@gave will exhibit some eigenstates showing
lattice-like, or more generally crystalline zero patterns. We will use the close link between
guantum and classical motions, due to the linearity of the classical map. Indeed, our main
tool is the following statement.

Proposition 1. The action ofUs on any basis statgg;)y . transforms the zeros of its
Bargmann functioriz|g;)~ . according to the classical ma (up to complex conjugation).

This statement follows directly from equation (20), since we know where the funéion
vanishes . Calling the transformed zetgslet us relate the positions af (equation (12))
andz;:

1
V2 = (g + ) +iﬁ(% + k — x1) mod [1, i]

(25)
. 1 .
V2o = (@ =ie)(g; + D)+ (=b+id) 2 (3 +k — 2 mod [L1].
This can be written, with obvious notations:
a —b .
Z = 2 mod [1//2,i/+/2
= (1 ))amodwvaiva 2

> 7, = Sz mod [1/+/2,1/+/2]

(the complex conjugation is due to the conventioa %).

The above lemma can be extendedth@ images of the basis statég)y, . under
Mp(2, Z), thanks to group properties. Indeed, if we netez,, z; the zeros of(z|g;)n .,
(zlUs'|gj)nr (z|Us'Us'lg;)n, respectively (indexing the zeros correctly), the group law
Us'Ug = £Ugs combined with equation (26) imply

7 =58"S%=5"% (27)
which shows that the zeros ¢f|Us |g;) v« Mmove classically undet/s..

We stress that the transformation law (26) is only valid fery specialstates, and is
not at all generic ifHy . (In section 7.2, we build another type of states for which (26)
also applies, but this construction is possible only whers a perfect square.)

In the following, any statd+) obtained as the image of a basis sthtgy . under
an operatorUs will be called a ‘pure theta state’, since its Bargmann function can be
written as a single theta function times an exponential factor (equation (20)). According to
equation (25), theV zeros of such a state make up a discrete ‘string’ on the tBrof
the form

2 = 2p+ k(n 4 im)/NV/2 fork=0,...,N—1. (28)
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Conversely, a state for which the zero pattern takes the form (28), with coprime integers
n, m, is a pure theta state in the spakg . (« is drawn from the sum rule (10)). For each

N, we thus have a characterization of the set of pure theta iEtes;)y . S € SL(2, Z),

k €[0,1)? j=0,..., N — 1} through their Bargmann zeros.

Performing a dilation of factoi+/2 and a reflection with respect to the real axis, we
map the lattice of zeros into an affine lattiee = vg + Ajin, Where Ay, is the integer
linear lattice generated by = (_"m) modulo the square torus of sidé. From the above
properties, we deduce the following key property.

Proposition 2. If there exists a pure theta staf# )y , whose corresponding affine string

is invariant unders, then this state is an eigenstatel®§ (and automatically belongs to one
of the spacediy . on whichUs acts as an endomorphism). Besides, the invarianca of
implies that ofA i, by linearity.

In mathematics (see for instance [15, pp 81-4]) the two-dimensional lattice of integer
points modulaV constitutes thenoduleZ?, (hereZy denotes the ring of integers modulg
in this context, the integeN is called amodulus[24]). The sublatticeA i, is a submodule
of typel (because it is generated byalone inZy), or principal submodulgwhich isfree
if n,m, N are globally coprime, or, equivalently, if;, containsN points (by definition, a
module is free if its generators are linearly independant). The submodu&$ ofe will
consider will be principal, unless stated otherwise.

In view of the above proposition, our first task will thus consist of identifying the integer
strings Ajin invariant moduloN, which actually amounts to diagonalizirffjover Z2,. The
next section deals with the classification of these free principal eigenmodules, for a given
transformationS € I'1; and a general valu&/. In a following stage, we will go back
to quantum mechanics, giving explicit formulae for the eigenstates corresponding to the
invariant stringsA translated fromAji,. Finally, to obtain crystalline eigenstates, we will
use sublattices also built through translationsAgf, but not invariant undes.

5. Free eigenmodules

Given a fixed transformatios, we classify its free eigenmodules;, for a general value
of N (in this section, we will drop the subscript lin and denote a linear string This
classification deeply relies on the arithmetical propertiesvof The valuesN for which
there exists at least one free eigenmodule are caltbdissible(this property obviously
depends on the matriX). Here we use a different formalism from Percival and Vivaldi
[24], but our results highly overlap with theirs (we do not need the complete classification
of periodic orbits these authors have worked out).

When diagonalizingS as a hyperbolic matrix acting oR?, we obtain the following
formulae for eigenvalues and eigenvectors:

a+dx./(a+d)?—-4
2

. . . 1
+ = is associated to the mgenvectér _ Ai_u). (29)
=75

ki
The important quantity here is the argument under the square root, i.e. the discrimi§ant of
We choose to normalize this discriminant &s= (%)2 — 1 in the following (D is integer
according to equation (24)). For the case of hyperbolic maps we considerd| > 2),
the square root oD in R is always irrational, so there is no eigenvectorSobn R? with
rational coordinates.

On the other hand§ can have integer eigenvectors when actingZgn provided the
discriminantD admits an integer square rootodulo N. This property is an arithmetical
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one, and we will need to factoriz& as a product oprimary numbers (i.e. powers of a
prime).
Before proceeding further, we fix our arithmetical notationsMifis a divisor of N,

we note M|N; the greatest common divisor (gcd) of a family of integers will be noted

(n1NnoN,...,Nn,), and N, d:‘EfN/(N N1) for anyl € Zy. The simplest case to deal with

is N = P a prime numberZp is then a field, and&Z3 is a vector space. The existence
problem of a square root d modulo P yields a partition of the prime® > 3 [11, 12]: if
there exists an integar coprime toP such that?> = D mod P, D is said to be a quadratic
residue of P, or equivalently,P is said to besplitting with respect toD (this implies in
particular(P N D) = 1). The Legendre symbol [11, 12] is then defined as:

D
(F) =1 if P splits with respect tdD
D . . .
(F) =0 if P is a divisor of D (30)
D . . . . .
(F) =-1 otherwise P is said to be inert with respect tb).
(In the following, we might forget the ‘with respect tB’ when mentioning a splitting
prime.)

The case where is inert will not be considered since it yields no eigenmodule. We
will treat the case of splitting primes in the main text, and defer two complementary cases
(P|D and P = 2) to appendix B.

To go from prime to primary value®y = P#, we will use the following lemma [11].

Lemma 1. To any solutionk, of an algebraic equationf (k) = 0 modulo P such that
f'(kp) # 0 mod P, there corresponds for ang > 1 a unique solutiorky moduloN = P#;
moreoverkp = ky mod P.

Finally, we will combine these results to deal with composite values (i.e. products of
admissible primaries).

5.1. N = P8, a power of an odd splitting prime

We consider the cas&y = P#, with P an odd prime number(%) =1 andg > 1. If
the vectorv = (" ) generates a free submodutein Z3, the condition(m Nm N N) = 1
implies thatrn or m is coprime with P, and thus withN. In the casen N N) = 1, n
admits an inversa~! modulo N, such that:~!v is also a generator ak. We thus have

the following.

Lemma 2. For a primary valueN = P#, any free principal submodula of Z3 can be
generated by a vector of the form

1 kK
(k) or <1> (32)
Then A = {nv, n € Zy} is an eigenmodule of (which we will note A = (v, 1), with A
the corresponding eigenvalue) iff the coefficiénfresp. k') is a solution of
bk?® + (a — d)k — ¢ = 0 modN
(resp.)ck’?> + (d — a)k' —b = 0 modN.

Generally,bc # 0 mod P, so bothb and ¢ are invertible modulaV; we can then solve
(32) providedD has a square root iiy, using the same formulae (29) as when working

(32)
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on R. Since P splits, there exist two such roots modud = P#, for any g > 1,
which we notexxy (cf lemma 1). Each of the above equations then has two solutions
ke = b™Y(d — a)/2 £ xy}, k. = ¢ }(a — d)/2 £ xy}, associated to the eigenvalues
Ay = (a +d)/2 £ xy. These solutions are of course redundant, sindé, = 1 modN.

By convention, we can choose to generate

1
the eigenmodule associated with by the eigenvecto( )

+

, (33)
the eigenmodule associated with by the eigenvecto( 1‘)

In the ‘caustic casebc = 0 mod P, a square root is easily extracted moduo

2
D5<a+d> —1E<a_d)2modP

a—d
= we can takecp = —5 mod P

(PN D) =1 implies(P Nxp) = 1. Therefore, each of equations (32) admits at least
one solution modulaP, yielding two eigenspacea p ., which can still be generated as
in (33): the eigenvalue., = a (resp.A_ = d) is associated witlt, = c¢/(a — d) (resp.
k' = b/(d—a)). The extension from the cage= 1 to anyB > 1 is done through lemma 1.
Although it is very general, the choice (33) for generators is not compulsory; for
instance, ifb is coprime toN, it is possible, and sometimes more convenient, to generate
both eigenspaces by a vector of ty(:;}éa.
In appendix B, we similarly classify the eigenmodules when= P#, first for P, an
odd prime divisor ofD (P|D < (%) = 0), then in the special case = 2 [11]. The
analysis is slightly more involved than in the present section, but it only concerns a finite
number of primes, which makes it much less ‘generic’ in the lavgkmit.
From the knowledge of free eigenmodules for primary vale®ne easily deals with
composite values.

5.2. N composite

We treat the caseV = [/, Ni = [[, P/, with P, prime. If there exists a free
eigenmoduleA y = (vy, Ay) modulo N, then the submodules; = (v;, ;) modulo N;,
given by

A = Ay modN; Vi=1...,n

. (35)
v; = vy modN; Vi=1...,n

are free and invariant, hence every facéris admissible. The Chinese remainder theorem
[12,11] yields the inverse property: given free eigenmodulgs = (v;, ;) modulo
N;, equations (35) have a unique solutiénwy, Ay) modulo N, corresponding to a free
eigenmoduleA y, which is independent of the generators we choose forAthis; indeed,
Ay (although notwy) is unchanged if we replace; by u;v;, whereu; is any invertible
element ofZy, .

If both (b N N) > 1 and(c N N) > 1, the generatopy = (ix) cannot be written in
one of the forms (31). However, the coordinatgs ky can be chosen mutually prime:
indeed, the free nature of the submodulg is equivalent toky, Nky NN) = 1. Therefore,
G = (ky Nk)y) is invertible inZy, and Ay admits as a generatety /G, the coordinates
of which are coprime.
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N= 11 N= 33 N=121
1 L L L 1 L Il L 1 L Il

Figure 2. For the three admissible values 8f = 11, N = 33 = 11x 3, N = 121 = 112,
we plot free eigenmoduleay of Sig = (g %) rescaled by AN. The generating vectors are

respectivelyvi; = (é) v3z = (é) V121 = (914) We note that the string\11/11 is a sublattice
of Asza/33 (cf (35)), and ofA121/121 (cf lemma 1).

In contrast, if(b N N) = 1 (resp. (c N N) = 1), then, as in the previous sectidk],
(resp.ky) can be taken equal to 1.

5.2.1. Summary: Whiclv are admissible? Let us now summarize our classification
(including the results of appendix B). If we decompose the discriminarit a in [24],
D = t?Dg;, where the second factor is square free, the following results hold:

e for any primeP such that(%) =1, P# is admissible for any8 (in the caseP = 2,
the splitting condition mean®s = 1 mod 8). We notice tha(%) = 1 is implied by
(2) =1, but the converse is false;

o for other primes,P? is admissible if(%) = 0 andg is small enough; these cases only
represent a finite set of primes (see appendix B);

e a composite numbe¥ = []’_, P/ is admissible iff eachP/ is.

The numbercy of invariant strings for an admissible primaty = P# depends upon
(tNP). Inthe simplest case&%) =1,cy = 2foranyp > 0. For a composite/ = [['_, N;,
we havecy = []i_; cn;.

How frequent are the admissible numbers among all integers, in the semiclassical limit?
According to Hardy and Wright [12], a large numk€ris typically the product of few large
primes (on the averagey containsw(N) ~ loglogN prime factors). To be admissible,
such a largeV has to factorize into exclusively splitting primes, which represent statistically
half of all primes. Therefore, admissible numbers become scarce in this limit.

To illustrate our calculations, we represent some linear-invariant strings for the
transformationSsg = (5 3), which is the simplest hyperbolic symplectic matrix i,
(cf [26]). Equations (32) then reduce &8 = 3 or %k’> = 1 moduloN. Sinceb = 1, all
eigenvectors will be written in the form = (,{) For the discriminantD = 3, the lowest
splitting prime is 11, but 2 and 3 are admissible, although their powers are not. In figure 2,
we show three invariant sublatticésy /N on T?, respectively forN = 11, 33, 121. These
sublattices look well distributed ovél?> as N increases. This remark leads us to the next
section, where we investigate some semiclassical properties of invariant strings.

6. Asymptotic properties of invariant strings

We are interested in the way ahinvariant sublatticeA y /N equidistributes ovefl?, for
a large admissiblev. To start with a simple case, let us assume that a genevatur
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Ay can be writterw = (,f) wherek is a solution of (32) (this is possible, for instance, if
(bN'N) =1). We consider a smooth observalfiéx) on T?, and estimate its average over
this sublattice. We are thus led to the sum

1 N T p/w
(Fhan =~ Zl f/N) = Zl Z fp@ (36)
n= n=1peZ
by Fourier transforming the biperiodic observable. Permuting the sums, we see that
1L L e 1 if p-v=0modN
=y = b (37)
N ~ 0 otherwise.
Combining the above condition of ‘constructive interference’ with equation (32), we obtain
bp? — cpl + (d — a)p1p2 &£ Q(p) = 0 mod . (38)

For p # 0, this equation cannot hold i (equivalently, the isotropic se®~({0}) only
intersectsZ? at the origin); indeed, multiplying? (p) by b leads to

d _ 2
bQ(p) = (Plb + p2 a) —piD (39)

and we know thab is not a perfect square i) (due to the hyperbolicity of). Therefore
equation (38) impliegp = 0 or |Q(p)| > N. If the largest eigenvalue of the quadratic
form Q is notedgs = max|(b — ¢/2)?> + /(b — ¢/2)2 + D |, the second condition cannot
be satisfied whem is inside the disk of radiug/N/gs. We then obtain the estimate

(Phay =Sl < Y 1Sl (40)
IpI>v/N/gs

Equation (40) is meaningful if the Fourier transform pfis in /1(Z?). However, since any
continuous functionf € C(T?) can beuniformly approximated (i.e. for th¢ - ||, norm) by
trigonometric polynomials (see [16, p 91]), we obtain the following result.

Proposition 3. For any infinite sequence of S-invariant sublatticgsy, N admissiblé,
Vf € C(T?), My oo(f)ay = fo

The rate of convergence of this limit depends on the smoothness properfiesrafeed,
if feC(T? (i.e. f is « times differentiable), its Fourier coefficients are bounded as:

Cq
| fpl < il for |p| > 1 (41)

whereC, depends ory. If « > 3, we obtain

o 271C o
f e T = (i, — fol < 5= () - (42)

When the generatar cannot be written in the form (31), the same type of estimates still
hold. We outline the few changes needed for this case. By construction (see last section),
N factorizes into two coprime numberé = M M’, such that the eigenmoduley admits
a generatow verifying

1 k'
v= <k>) mod M and v= <1> mod M'. (43)
When estimating ), the orthogonality conditiom - v = 0 moduloN leads to:

{ Q) =0modM 0 modn. (44)

O(p) =0 modM’
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The propertyQ(p) = 0 — p = 0 still holds, so we obtain the same estimates as in
equations (40) and (42).

Taking the average of over the latticesA 5 /N actually amounts to considering a set
of atomic probability measurgsy on T?; from this point of view, proposition 3 means that
such a sequence of measures converges, in the weakse, to the Liouville measure on
the torus, agv — oo, N admissible. We are interested in these atomic measures because
they more or less correspond to the zero patterns of the quantum eigenstates we plan to
build in the next two sections. Proposition 3 shows that the zeros of such eigenstates are
uniformly distributed ovefT? in the semiclassical limit, which constitutes the main result
of this paper.

Remark. We note that the above uniformity estimates were obtained quite simply, and
for all admissibleN. In contrast, the authors of [21] had to restriétto splitting primes,

and the uniformity property they obtained for atomic measures used non-trivial estimates of
Kloosterman sums. The reason for this discrepancy is that these authors were considering
families of atomic measures supported ipdividual periodic orbitsmodulo N, whereas

ours are supported byhole eigenmodulesvhich are unions of ‘ideal’ periodic orbits [24].

7. From classical invariant strings to quantum eigenstates

Now that we have studied some asymptotic properties of invariant strings, we choose
one of these strings for an admissible valtieand express the quantum eigenstate with
corresponding (lattice-like) zero pattern as a pure theta state in some invariantgpace

We then do the same for another type of invariant sublattices, namely square sublattices,
which appear whemv is a perfect square. In the subsequent section, we will then build a
larger family of eigenstates for the samg allowing their zero patterns to baystalline
instead of lattice-like.

7.1. Eigenzeros forming a lattic&] admissible

We start from an eigenmodul&;, = (v, 1), obtained in section 5. We can then search a
correspondingffine invariant latticeA, i.e. find areal vectorvg such thatA = vg+ Ajn IS
itself invariant throughS. We will not make here an exhaustive list of such affine invariant
strings, but rather restrict the entries«f to be integer multiples o /2. Each eigenstate
we will exhibit will then belong to one of the four spacesy ., with « = 0, 6, % i/2. We
divide the study according to the parity ®f, for reasons to become obvious.

Let us start by consideringy odd and admissible; we select a free eigenmodafg
with a generating vectoo = (’;) wherek andk’ are coprime. Sinc&V is odd, we may
choose the entriek, k' to be of opposite parity. Indeed, suppose they are both odd; the
following transformations yield a new generator &f, in the desired form,

v= <k> — <k/+N> — v = é(kleN) whereG = (kN (K" +N)).  (45)

k k k
In that case, we can find two integersv, such that the matrix
u k'
so=(4 %) (46)

belongs tol'; » (see equation (24)). This matrix maps the vertical stiig generated by
Voo = (2) modulo N, onto Aj,. Since A, is associated to thantiperiodic basis state
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lgn—1)2 = %>N,@’ the eigenstate associated witl, is itself antiperiodic, and reads as
¥)no=Us|3)yo (47)

The zero pattern of this state consists of the Iatﬁq;—e/Nﬁ, obtained fromA, through
a dilation and reflection with respect to the real axis (or complex conjugation). Sirise
odd, the four strings

2 2 0
Ajin A = Ajin + <N/ ) A1 = Ajin + (N/ > Ai = Ajin + <N/2> (48)

N/2 0
are all different. Since € I'1», A’ is invariant, and yields a periodic eigenstate
1Y) n.0 = Us,lgo = O)n.0. (49)

If moreover S is congruent to the identity matrix modulo 2 (equivalenthy,e Ty, the
level-2 principal congruence subgroup [13]), then and A; are also invariant, and yield
respectively the eigenstates

[Vr1)n,1/2 = Us, |lCIo O)n,1/2 (50)
[Yi)vij2 = Us,|15)n.ij2-
WhenN is evenand admissible, the coordinat€s k of the generatop of A, can still
be chosen coprime, but we cannot modify their parity through the trick of equation (45), so
the matrix S, of equation (46) is not always iR, ,. Besides, the four sublattices given in
equation (48) are not all different. For examplekijft’ are odd, them;, = A’, A3 = A
are invariant and the corresponding eigenstates are both antiperiodic,

1¥)no=Us,13)v.12
Y1)y o = Us,|0)n 12

Similar phenomena occur for different parities igfk’. For instance, ifk’ is even, then
Ain = A1, A’ = A are both invariant, and the two eigenstates aré(jf».

To summarize, in the case whekeis odd admissible, we can build from any invariant
linear stringAjin both a periodic and an antiperiodic eigenstate (plus two other eigenstates
iff § e 'y); whenN is even, we can build frona;, two eigenstates which belong to the
same spacéiy ., with the Floquet parameter depending on the invariant string;, we
consider. In figure 3, we draw the Husimi functions of two lattice-like periodic eigenstates
of Ug,, for the two admissible value§y = 33 andN = 121; these eigenstates are built
using the invariant strings drawn on figure 2 (centre and right).

The following section deals with a slightly different type of eigenstates in the particular
case whenv is a perfect square.

(51)

7.2. Eigenzeros on a square lattice

Irrespectively of the number theory leading to free eigenmodules, a simple integer lattice
shows up whenN is a perfect square, saW = M2 namely, the square lattice

Asq = M(Z + iZ), invariant through any modular transformatisin and containingV
points moduloN (Asq is also a submodule dt3,, but of type 2 and not free). Since the
unique state of, 5 has a simple zero at the origin, the functior— (MZ|%>L() has zeros

on the square lattice of sidg M+/2, i.e. onAsq/Nﬁ. A straightforward calculation shows
that this function is the Bargmann representation of a statle) v ., periodic if N is even,
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Figure 3. Husimi functions of twox = 0 pure theta eigenstates 0f,, for N = 33 (left) and

N = 121 (right); we show the linear density scale using grey levels and indicate the position
of the zeros by tiny circles. In both cases, the zero patterns are the rescaled affine strings
A’N/N\/E, whereA’, are translates of the eigenmoduless, resp.A12; of figure 2. For both
eigenstates, the eigenangle-ig /4, of respective degeneracies 2 and 3.

antiperiodic if N is odd. Writing down the theta series, we easily get the decomposition of
[¥sq) v« IN the position basis,

n+3
7> (52)

N,k

1 M-1
S K= T — -1+
[¥sg) v, N ,;f )

with k = 0 (resp.« = 0) for N even (resp. odd). These states are not pure theta states
according to the definition we gave in section 4, since they are not built through the action
of Mp(2, Z) onto some basis state @iy ,. However, they transform simply, as shown
below. Taking any transformatiof € I'1 », we label the operatdys according to the space

it acts upon:

N Hig o
(U5 Waghv.r = (M2IUS13), 6 = E70(M 1)y 53

withk =0ork =0 according to the parity a¥. The first equality is due to the linearity of
the transformations in equation (21), the second is obvibijg (s a one-dimensional space
on whichUy is an endomorphism). The eigenangjgonly depends on the transformation

S.
For the sameV = M2, we can build a second eigenstate associated to the invariant

lattice Ay, = Asq+ (3/2)- The quantum state can be built as above, it is periodic fabfall

1 M-1
! = — M . 54
[Weg)v.0 m;'”/ )N.0 (54)

Proposition 4. For any S e I'y 5, for any perfect squar@/, the stategysq) v «, |¢;q>N,0 are
eigenstates of/s.

In figure 4, we draw the Husimi function of the periodic eigenstazts’%)lzlo for N =121.
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Figure 4. Husimi function of thex = 0 eigenstate oUg;, associated with the invariant square
sublatticequ, for N = 121 (same representation as in figure 3). The eigenanglerist,
hence this state is degenerate with the pure theta eigenstate shown in figure 3 (right).

8. Crystalline eigenfunctions

In the last section, we built eigenstates for which the zero patterns were classically invariant
lattices A, which filled the unit torus uniformly in the semiclassical limit. We would like
to find a larger class of eigenstates with the same property.

The authors of [21] derived semiclassical equidistribution properties concerning the
Wigner distribution ofcompleteorthonormal families of eigenstates, although they had to
restrict N to splitting prime values to obtain these results. Equivalently, they proved that
for these values o, Schnirelman’s theorem is valid fany sequence of eigenstates; their
proof relies on the bilinearity of the semiclassical measures (Wigner of Husimi) with respect
to the quantum states.

On the opposite, we are not directly concerned with the properties of the Husimi
densities, but rather with the atomic measures associated to their zero patterns. Since
these patterns argery non-linear objects, we are not able to generalize the above
uniformity properties to complete families of eigenstates. However, we can obtain a
partial generalization from last section: wh&hnis not a prime, it is sometimes possible to
build eigenstates with zero patterns formicrystalsinstead of lattices, whose periodicities
correspond taoon-freeeigenmodules of3.

These crystalline states can be built through different ways, depending on the value
of N.

8.1. N admissible

To simplify the presentation, we will give details only in the case whéis odd admissible,
and moreover we first consider an invariant linear sting= Aji, = (v, ) such thatv is
of the form (}), with eigenvalue. = a + bk. Therefore, the matris,, of equation (46) can
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be written
0 1
Sy = <_ 1 k) . (55)
We note the vertical integer translations/®f(which are, in general, not invariant undg.
0 -1
A=A+ / =S| Ao + 0 forl € Zy. (56)

By linearity, S maps the string\; into a parallel stringA;. More precisely,A;y = A;/y,
where)’ = d — bk is the inverse oft modulo N. To these translated strings are associated
the antiperiodic pure theta states:

Widno=Usl3 —1/N)yo (57)

These states are not eigenvectorsUgf but they form a new orthonormal basis &, ;,
on which Uy acts quite simply:

Usl¥idy o =" V1) y o (58)

The phases (N, [) can be derived by writing down explicitly the matrix elementdgfin
this new basis. This leads to more or less complicated formulae, some of which are given
in appendix A (see also [18, 20, 21] for the case- 0).

To build a basis of eigenstates, we use the partitiorZgf into disjoint cosets (or
orbits) O; = (A" I;,s =0, ..., p; — 1}: [; is an arbitrary point on the orb®;, and p; the
period of the orbit. Using the usual notatigin) for Euler’s totient function [12], we have
necessarilyp;[¢ (N;;) (we recall thatv; = N/(N N1)).

Starting from an elemeri} of the cosetO;, we can build a family ofp; orthonormal
eigenstates of/s. According to equation (58)y,), 3 and its successive images undgy

are all eigenstates d@f’’, with the same eigenvalue e o;), where

pi—1

o = ZG(N, AL, (59)

s=0

We therefore obtaimp; antiperiodic eigenstates; ;) g of Us, with eigenvalues@ ' +o)/p;
forr=0,...,p; — L

18,
9o = > )y (60)
J s=0
with ¥r = 0,...,p; — 1, ¢ arbitrary, andVs = 0,....p; — 2, ¢} =

g 2mrtop)/pgine (VA" () - To each cose®; thus corresponds a set of orthonormal
eigenstates, with the eigenvalues written above. Two eigenstates built from different cosets
are orthogonal, since they involve disjoint sets of orthonormal statgs ;. However,
they can share the same eigenvalue [21,27]. By completing the above procedure for all
cosetsO); (including the trivial one0y = {0}), we obtain an orthonormal basis of (possibly
degenerate) eigenstates.

In general, these eigenstates are not pure theta states, and their zero patterns are not
known analytically. However, iV is not a primeand(/;NN) > 1 (this gcd does not depend
on the element; we have selected i;), then the Bargmann functions of the eigenstates
l$;-), r =0,..., pj — 1 inherit partial quasiperiodicity properties from their components
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(z|¥;). To prove this, we generalize the fine periodicity of basis states (equation (13)) to
all pure theta states:

—b + id = : 7 (b2+d? i
@+ — 75 Uslan = (2lUslg; n.ce 7 id) V22 g 5 i (61)
If we apply this formula to the components fgf; ) and iterate it, we obtain
—1+ik _” . (2rk?) 2Tl
<Z +u N2 ‘I/fw,-> =zl y p(—De w22 gy e T (62)
N.,0

The only s-dependent factor is the last one. If we chogse= N, this dependence is
removed, so that the eigenstates, ), 5 themselves share the above periodicity property,
—1+ik

z+ N, ———
< "UNVZ

As a consequence, the zeros of(z|¢; ;) y 5 form acrystal whose lattice is generated by
the vector (in complex representatiom}1 + ik) /(N mlj)ﬁ, and containgN N ;) points;
each fundamental cell containg, zeros, but we have no information about their locations

within the cell.
If we rename our basis of eigenstates as

_ i N2 (1+k?)/2N
¢W> = <Z|¢1j,r)N,@(—1)Nl-fe 7Ny (141K~ 22 T NG (1K /2N- (63)
N0

def
D)y o = 1B ) o (64)

we obtain a basis of orthonormal eigenstatgs;), 5./ = 0,..., N — 1} such that each

zero pattern ofz|®;) 5 is a crystal generated by-1+ ik)/(N N V2.

Note that if we perform the same construction of eigenstates using a different invariant
string, we will a priori obtain a different orthonormal eigenbasis; this is not inconsistent,
considering the frequent degeneracies of the spectrum [26]. There can actually be
redundancies between two eigenstate bases built from two different eigenmaddiles
AP, Indeed, if, for a certain divisog of N, we havev? = v® modN/g, then the
crystals of the eigenstate®(”), |®;”) with g|i1, gll, are both supported by the same
lattice; if these eigenstates share the same eigenvalue, nothing prevents them from being
rigorously identical.

To deal with an invariant sublattice with generatoe= (’,i) (i.e. the case where both
(bNN) > 1and(cnN N) > 1), we cannot restrict ourselves to vertical translations of
A, as was done so far. To build a complete eigenstate basis, we have to consider all
possible translations of\ of the form vy + A, with vy being an integer vector. Thus,
vo should take values in a fundamental cell of the sublaticei.e. a representative of
the quotient(NZ)?/A. Such a fundamental cell can be obtained by the same procedure
as above, i.e. by, -transforming (using equation (46)) the vertical strilgs, + (é) for
[ =0,..., N—1. The construction of eigenstates then proceeds as above, using the inverse
eigenvaluel’ = k(au + bv) — k'(cu + dv).

This construction can be generalized straightforwardly to obtain a basis of periodic
(x = 0) eigenstates for the same odd by using integer translations of the string (see
section 7.1). One obtains a basis of orthonormal eigenstdtgs o similar to the one
obtained above (equation (64)).

As an illustration, figure 5 shows the Husimi functions of two crystal eigenstates of
Us,, for N =33 = 3 x 11 (both 3 and 11 are admissible). On the left, the zero pattern is
periodic with respect to a lattice of order 11, whereas on the right, the periodicity lattice is
of order 3.
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Figure 5. Husimi functions of twox = O crystalline eigenstates @fg;,, for N = 33. In both
cases, we use translates of the eigenmoduge of figure 2 (centre). On the left, the cos@y
containg/y = 11, its period isp1 = 2; the eigenangle is2/3— 7 /4 (triply degenerate), and the
crystal has the periog-1+ 6i)/114/2. On the right®, containsl, = 3, its period isp, = 10;
the eigenangle is-27/10 — /4 (non-degenerate), and the crystal has the perj@/2. The
larger circles materialize double zeros.

To deal with an even admissiblé, one just needs to take care of the Floquet parameter
x the same way as in section 7.1.

Let us turn back to the orthonormal basis of antiperiodic eigenstétes, 4, € Zy}.
Noting ¢ = (N N1), the statg®,), 5 has a zero pattern of periqg-1 + ik)/g+/2, which

generates an invariant string @f points on7c. Through a dilation of factog+/2, this
linear string is mapped into a free principal eigenmodul@fm‘ Averaging an observable

f over the crystal of zeros, we can therefore apply equidistribution estimates identical to
equations (40) and (42), after replacidg by g in the formulae. The zero patterns of
(z|®1)y o are thus well distributed ovefc wheng is large. Unfortunately, the eigenstates
featuring such regular patterns are not very numerous: for any diyieérN, the number

of integers! € Zy such that(N Nnl) = g is given by¢(N/g), and Euler’s totient function
varies likeg (n) ~ 6n/72 on average [12]. As a matter of fact, the eigenstades, ; with

no a priori crystal periodicity (i.e.N and! coprime) represent a non-negligible fraction
¢(N)/N of the whole basis.

Finally, we note that the quasiperiodicity of the Bargmann eigenfunction (63) is mapped
to an exact periodicityof the corresponding Husimi density. Therefore, the uniformity
estimates (40), (42) apply as well if one averagesver the Husimi density itself. From
the above results, we therefore deduce the following proposition.

Proposition 5. Consider an infinite sequenck” = {N € N, N odd admissiblg and a
corresponding sequence of crystal eigenstdfds y = 1P}y plnen such thatg = (N N
[) — oo. Then both the Husimi measuréHy, } ncn and the atomic measurggy }yep
describing the zero patterns @iy, converge weak-to the Liouville measure off? as

N — oo, N e N.
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8.2. N a perfect square

We consider again the cagé = M?, and construct an orthonormal family of periodic
(x = 0) eigenstates. In section 7.2, we built the eigenstate associated with the lattice
Ayy=MZ+iZ) + M/2(1+1),

(zl¥ggn.0 = (Mzlgo = O)10. (65)

We generalize the above formula to include states with zeros on translareg/wﬁ.
One easily checks that the stdig)y defined by(z|v)y = (Mz|go = x2)1, belongs to
Huy o iff k is of the formix = (ny +in2)/M with ny, ny € Zy,; its zero pattern is associated
o Agq+ (Zi) This family of periodic states is globally invariant undég, according to a
generalization of equation (53),

(Mz|UT i) 1.c = 7% (Mz]ich)1.0 with ' = Sk mod [Li].  (66)

Moreover, these states are mutually orthogonal (this can be seen by decomposing them
on both position and momentum basesHfy o), so they form an orthonormal basis of
Hy.o. Starting from a certairn© of the above type, member of the cog@t= {S'x© =
«®,i=0,..., p; — 1}, we can then builcp; periodic orthonormal eigenstat@s; ,)n.o of
Us, involving linear combinations ofMz|«s”)1 .. As in the last section, we finally obtain
an orthonormal basis of eigenstates. '

If the coordinates ok © have the gcdny Ny N M) = g, then all the statescy”)1 o
share the following quasiperiodicity relations:

(M(z 4 1/gVD)lic) )1 o0 = €2 MOHTVZEMD) (ppc Dy
(M(z+1/gV2) k)1 o = @3 M/ VM) (g1

Since these relations axg)-independent, they apply to each eigenstétg)y o as well,
the N zeros of which belong to a crystal supported by the square sublattite @i side
1/g+/2 (each fundamental cell of the crystal contain/g)2 = N /g2 zeros).

In figure 6 (left) we plot the Husimi function of an eigenstatelaf, for the square
value N = 81. The starting Floquet parameteri® = (3 — 3i)/9, so we obtain a square
crystal of side length.

In the caseN = M? odd, a similar construction leads to antiperiodic eigenstates with
the same type of zero patterns.

As section 8.1, the crystal of zeros will be well distributed on the torus whisrlarge,
which happens for relatively few eigenstates of the basis (namely, whembaeiidn, are
multiples of g).

(67)

8.3. N with an admissible divisor

Since we are in search of families of eigenstates displaying semiclassicalV(i-ex

oo) properties, the admissibility oN seems a very restrictive condition. Indeed, this
property implies that all prime divisors a¥ are admissible themselves, which represents
asymptotically half of all primes. Therefore, the admissible numbers form a set of vanishing
density among all integers in the semiclassical limit. For this reason, we now use the ideas
of the former sections to build crystalline eigenstates in the case whésenot admissible

itself, but has an admissible divisaf, sayN = Mm (M is supposed maximal). We will

build eigenstates at this valué, for which the zero pattern verifies the same periodicities
as eigenstates built at the valie (we restrict ourselves to oddl and antiperiodick = 0)

states, which are the most amenable cases).
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N= 81
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Figure 6. Husimi functions of twox = O crystalline eigenstates dfs;,. On the left,

for the square valugv = 81, we use a cycle of translates of the Iattimgq, starting from

«© = (3 + 3i)/9; this cycle is of period 6, the eigenangle is/B — =/36 (non-degenerate),
and the zero pattern inherits a square periodicity of sjt8/2. On the right, the valug/ = 55

is not admissible, we use a cycle of rotations starting from a linear siihgontaining the
invariant sublattice &1; (A11 is shown in figure 2 (left)). The cycle is of perigelo: = 3,
yielding an eigenangle2/3 — 37 /4 (four times degenerate), and the crystal has the period
(—1+ 6i)/114/2. Moreover, the function vanishes on the strifg, /11v/2.

The construction still uses classical results. We start from a free eigenmadutaulo
M, generated by = (,f) (we choose this form foo to simplify notations, so that the matrix
S, can be written as in equation (55)). Obviously, the latiica is invariant moduloN
(it is a non-free principal eigenmodule 6fin Z2). We now consider a free modulg® in
72, which containsn A as a submodule (for instance, we can take the string generated by
the samev moduloN). A% is not invariant undes, but its successive images' = S" A°
all containmA. We notep,o the least integer such thar=A® = A° (p,y is typically of
orderm). This period corresponds to a cycle of ‘rotations’ ¢ undersS, as opposed to
the cycles of translations considered in the last sections.
Quantum mechanically, the state

¥y =UsI3)ns (68)
and its successive imagés;|y°) v.o are pure theta states associated respectively to the

latticesA”. As a consequence, each of the stdfg¥ WO)N,() hasM of its zeros on the string
A/MV2. BesidesUs"[y°), 5 = €7|y0) o, the phaser, depending ors and A°.

We can then build a family op,o; orthogonal eigenstates with eigenangles= %
forr=0,..., (prot — 1):
1 Prot—1 . 0
&)y o= e " Us" 1Y) y o (69)
N,0 m — N N,0

This equation is similar to formulae (58) and (60) we derived in the cageé afimissible.
However, as opposed to section 8.1, these orthogonal eigenstatest ax@malized since

the component#’§ |1/IO)N’() are not mutually orthogonal; some of th) , 5 can even be null
vectors, if|1p°)N,6 is orthogonal to the corresponding eigenspaces (we expect this situation
to be non-generic).
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The Bargmann functions of thegg,; eigenstates all vanish af/M+/2, since all their
components do. More precisely, these components (and thus all the eigenstates) possess the
same quasiperiodicity with respect to this sublattice:

—1+ik
N2

Voo (z+m US"10°) 0 = (@IUS" 100 o~ Dy"edi (D grmm sy,

(70)

We have therefore built a family of orthogonal eigenstates whose zero patterns are
crystals generated bg% For the inverse Planck’s constatt, there was a unique state
with such a property. In figure 6 (right), we plot the Husimi function of a periodic eigenstate
of Us, in the caseN = 55 (11 is admissible, 5 is not); the invariant stringmodulo 11
is shown in figure 2 (left).

Further on, we can build eigenstates with coarser quasiperiodicities, by composing
‘rotations’ and translations oA°. Classically, the integer string.® + (1?)) = A% + lgve
modulo N is mapped under successive actionsSahto sublattices of the form\/ + v;,
wherew; are integer vectors. We know that' will be a translate ofA® iff j is a multiple
of prot.

We can then use the results of section 8.1 to describe the cycle of translargs of
under the action oF;q def SPret: this matrix mapsA® + lpvs, into A 4 Arotloveo, Wherei,
is an eigenvalue of,,: modulo N. Without deriving explicitly the matrixSyo;, we know
that &, = 2’7 mod M, wherelx’ = d — bk describes the translates af modulo M (cf
equation (58)). We can therefore decomp@geinto coset); = {Al;, s =0, ..., p;—1}
(including the trivial cosetOy = {0}). For each coset, the total period of the cycle
{S” (AO + ljvoo)} is thUS[)rot[)j.

Considering the cos&®;, the pure theta state we start with| i&%Nﬁ = U51,|% —li)yno
Its images throughUs are associated to the lattices’ + v;, so they havea priori no
common zero withw,?)Nq@. However, as in section 8.1, these states verify some non-trivial
quasiperiodicity properties, cf equation (61),

~1+k
N2

and the onlyz-dependence appears in the last factor. From this sequegngs, orthogonal
eigenstates can be built using formula (69), with initial SWIE)N,@ and periodpqip; (the
phases now also depends on the cos®f). A priori, some of these states could be null,
for the same non-orthogonality reasons as above. However, if such an eigenstate is not null
andg = (I; N M) > 1, its zero pattern is a crystal generated(byl + ik)/g+/2.

For each cose®;, we have obtained a family g; pro: Orthogonal eigenstates (some
of which can be null), with zeros on a crystal generated-b§ + i)/(; N M)~/2. These
crystals are based on the same lattices which appeared for the Malumit now each
fundamental cell containa (/; N M) zeros. Unfortunately, the structure of the whole family
of eigenstates is less clear than in section 8.1: on the one hand, we do not know the norms
of the eigenstates, even their very existence; on the other hand, two degenerate eigenstates
built from different cosets ar@a priori not mutually orthogonal. Actually, this lack of
information is not surprising, since we have byilt; times too many eigenstates through
our procedure, so that dependence relations between them must exist. However, as in
the last section, equation (71) ensures that proposition 5 applies to sequences of non-zero
eigenstate$d;,) , o for which ¢ = (;; " M) — oo.

214k i)z i
(Z +m |USn|wl?>N,6 — <Z|Usn|1//l?>N’6(_1)m82Nm (I+k )e ﬂm(1+lk)\/ze 2ir i (71)
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9. Concluding remarks

Both the linearity of the transformatiof) and the classical invariance of certain sublattices
(strings) of T? transpose to quantum mechanics, when expressed in the Bargmann—Husimi
representation. On the time-dependent side, the quantumlUagpts classically on string-

like zero patterns (i.e. zeros of pure theta states); on the time-independent side, it admits
families of eigenstates for which the zero patterns are crystals supported by classically
invariant sublattices.

The lattices supporting these crystals (thus the crystals themselves) equidistribute on the
torus when the number of lattice sites increases to infinity, and the equidistribution of the
corresponding Husimi densities then results as a byproduct.

However, crystalline eigenstates do not emerge for all valugg,and when they do,
they concern only isolated states, whereas eigenspaces are very often multidimensional, due
to arithmetical degeneracies &f. Obviously, a linear combination of two eigenstates with
crystals supported bdifferent sublattices will not be crystalline, nor will their zeros be
a priori well distributed onT¢: the equidistribution of the zeros it a linear property.
Therefore, the eigenstates for which we have a nice zero pattern (i.e. a well distributed
crystal) only represent a few elements of the whole set of eigenstates; they do not even
form a basis (indeed, they usually span a rather small subspace). Moreover, such crystal
features certainly disappear as soon as one considers a non-linear perturbation of

In contrast, for many other eigenstates @§ that we have computed numerically,
zeros show no particular periodicity, yet remain more or less well distributed on the torus.
Surprisingly, this property persists even when the Husimi function of the eigenstate has
a ‘scar’ on a classical fixed point (see figure 7). Therefore, the equidistribution property
seems to be even more general for the zeros than for the Husimi density itself, but a proof
will probably involve a different approach from that to Schnirelman’s theorem.

-P
-P

ol o

Im zV2

Im zV2
o
\
T

\ -0.5 I
0 0.5 -0.5 0 0.5

Re zVR=q Re zVR=q

Figure 7. Husimi function of twox = 0 eigenstates of/s;,, for N = 33 (left) andN = 59

(right), both being admissible values. These state are built as described in section 8.1, i.e. using
translates of invariant strings. On the left, we use a translation &@g¢lef period 10 containing

I3 = 1, the eigenangle isi2/30 — 7 /4 (doubly degenerate); on the right, the cycle is of period

58, and the eigenangte/4 — 2 /29 is non-degenerate. In both cases, the state presents no
particular periodicity, but rather a ‘scar’ at a classical fixed paiftii)/2+/2 on the left, 0 on

the right). Nevertheless, the zero patterns seem well distributed on the torus.
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Appendix A. Derivation of the matrices Ug

In this appendix, we derive the entries of thex N matrix which represents the operator
Us mapping the basiflg;)n ., j =0, ..., N — 1} to the basi{|g; )y, j'=0,..., N -1}
(see equation (2)). The Floquet parameters’ € [0, 1) are related by

(i Z) (ﬁ) B (Z) " (:12) (72)

where the integersy, mq are calledvinding numberg$27]. We will only consider hyperbolic
matricessS, so the entryb cannot vanish. The formulae obtained are generally used when
Us is an endomorphism, i.&. = «’, but we do not need this property in our calculations.
For the periodic casec(= «’ = 0), the matrix elements were derived by Hannay and Berry
[9] for any N. We recall how to obtain these elements for general Floquet parameters, and
write explicit formulae in two cases, first whe¥ is coprime tob (cf our exampleSsg),
then whenN dividesb (which is useful for section 8.1).

The Berry—Hannay approach consists of extending the actioWwofrom square-
integrable functions to tempered quasiperiodic distributi8ii®) (see also [22]). Precisely,
from the image of a unique Dirac peak,

Uslq) =/dq/ (@'lUslg)lq") (73)

given by the kernel (18), one derives the image of the quasiperiodic distribltipn,.
From equation (2), we decompose the translation index:as bv + k, with v € Z,
k=0,...,b—1, and obtain, using Poisson’s summation formula,

b-1
i 2 iTN 2 ’ 2
Uslgiine = ——= Y _ Y _ er NekK=20e5na"=20a" 449D g = ag; + bicy /N +n/N).
e VINb 177 =0 !

(74)
In this equation, we already see that the imagg;pfy . is a sum of regularly spaced Dirac
peaks. We now show that this image is itself quasiperiodic. For this matter, we compare
the coefficients in front ofgy + n/N) with |g, +n/N + 1), noting g, = ag; + bx1/N.
To avoid too cumbersome notations, hereafter we supposéiitatv) = 1. The sum
over k then yields [9]

3 e BaN@N T -2 4D g — gt 1 /) (75)

nez

Cy
US|Qj)N,;< = \/I_W
where Cy is a number-theoretical phase (see equation (78)), (@ad\b) is the integer
inverse ofaN modulo b (this inverse exists and is unique singeN N b) = 1). The
exponents in front ofg) +n/N + 1) and|gy + n/N) differ by
im iTN
——~aN(@N\b)(@uN + N?) + ”7(2d(q6 +n/N)+d — 2g;)

= 2imk} + 2im(cj + mo) + i%(2;1 + N)(d —aN?(aN\b)?). (76)
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Finally, a simple argument shows th@t — aN?(aN\b)?)/b is an even integer. Therefore,
we obtain a finite sum of quasiperiodic distributions,

Cy N-1
USlqj)N,K = \/I_W
n=0

To be complete, we give the value of the global faafqr,

N .
if »is odd Cy = (%) g in(b-1/4

i 2,2 inN 73 o 2
g TN Q200 D g — g /N (77)

; (78)

if bis even Cy = (—) gran/4
aN

where(%) is the Jacobi symbol, i.e. an extension of the Legendre symbol of equation (30)

to non-primeb (see [9, 15] for details). The unitarity of the matii% between the Hilbert

spacesiy , andHy . can be proven by decomposifig(R) into a direct integral of spaces

Hy .« [22]: it then follows directly from the unitarity ot/s acting onL,(R).

Identifying each spac®(y , with CV, we now express the matrix elements between the

statesy . (g;/| and|g;)n. for j, j’=0,..., N — 1. Due to the assumptiofb N N) = 1,

b admits a unique inverse~! = (b\N) modulo N. With this assumption, we can also

choose the integer—* such thatzb—* anddb~! are even numbers. After a few calculations,

equation (77) yields the following matrix elements,

~ 2ir _ gy . -
V{4 |Uslgj) e = Cn exp{W[j {dbT2) = b+ jRabT2)
+j (k] +mo — db o) + j(b~ng — Kl)]} (79)

with the prefactor

= Cy iT , i

Cy = oo exp{ m(d/czz — 2ucokch + aK3) — FaN(aN\b)an} )
In the periodic case = «’ = 0, we recover an expression very similar in form to the one
in the continuum, except for the prefactor (cf [9, 20]). Since we are mainly interestég in
being an endomorphism, we apply the above formula in the easa’, which is possible
for a finite number of parameteks indexed by the winding numbersg, mq [20, 22]:

K2 . 1 d—1 —b ng
() =aaa (22 (n) ®9
no,mo

In the main text, we have only built eigenstates with periodicity angles 0, % i/2,
0=(1+ i)/2, but once given the matri&, we can easily extend our results to all invariant
parameters,, u,-

From equation (75) on, the above calculations depended on the assuptioh = 1,
which for instance is true for all value§ in the caseb = 1. If now (b N N) > 1, the
image of|¢;)wn . is still a superposition of quasiperiodic distributions %ty .-, but now
some elementg .- (qu|US|qj)N,K vanish. We are led to consider the caég in section 8.1,
in the course of deriving the matrix elemenig,;|Us|v:) 5. Indeed, group properties of

Us lead to
(W tlUsIW) y o = (3 — M (2Ug55)15 — Dy g (81)
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(the &+ sign does not depend on the bra-kets considered). For simplicity, weMabed,
and suppose that, can be writtenS, = (81 i) with k even. According to equation (32),

the matrixS = S,1S5, writes

- (N=d—-bk BN
S_< —b A:a—l—bk) (82)

whereA is the classical eigenvalue associated with- (,f) modulo N, 1 its inverse, and
B = [bk? + (a — d)k — c]/N is an integer coprime ta’. By the same type of calculations
as above, we obtain

B (g2 —24q:+3? i ,
N.K'(CIj'lU§|f]j)N,K=\/;e”wf 247744 ( exp E[Am2+2m(%‘)\ + Brr—qi)lt) -

m

(83)

Here, (-),, means the average over the integer This average is non-vanishing iff
gi) + Bk1 — qj is integer, which corresponds, for eagh to a unique indexj’ = js
modulo N. Thus, the matrix/; acts, up to phase factors, as a permutation between both
bases (cf equation (58)). Using the winding numbers

Sk =K' + (7) (84)
m
the statég;)n . is mapped byUs into d?i lgjs)n.» Wherejs =)' j +7n. The phase is given
by

N {qjs1Uslgj) v e = C
— Ckénﬂ()»xlszmez)efinbx’Kzz/Nefi”T”[szJij (fi+k})] (85)

einﬁ)mfeiﬂNb()»’qf—quﬂjs)

where the constant; = (%)e“”ﬂ/4 if b (and thusp) is odd, C; = (£)e™*+V/4 if p is
even. The formula simplifies greatly in the periodic cége= ' = 0).

Since most of the eigenstates built in the text antiperiodic (x = «' = 0), we now
link the notations above to the ones in section 8.1, i.e. we map the ingdiggsto the
indices/, I’ of equation (58), and adjust the sign of the image state:

on the classical side on the quantum side

. N-1 def | .

j=— -l 197) 5.6 = /N +1/2N)y o =13 =1/ N)y 5 (86)
. /. ~ / / Wap-1 /

Js=Nj+a U=N gye= DT 121,

Appendix B. Free eigenmodules, continued

As a complement to section 5.1, we classify the invariant strings masluffirst whenN
is a power of a prime divisor oD, then whenN is a power of 2. We use the results of
section 5.1, in particular lemma 2 still applies.

B.1. N = P# with P an odd prime,P|D

Let P > 3 be a prime divisor oD, @ > 0 be the largest integer such that|D. We seek
to diagonalizeS moduloN = P#, for g8 > 1.

We first assume thatP does not divideb and ¢ simultaneously, thereforell
eigenmodules can be obtained by solving one of equations (32), so the problem reduces to
extracting a square root d® modulo N = P#, as in section 5.1.
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For B < a, the roots are the elements= X PI(#+D/21 where the brackst] ] mean the
integral part, X taking any integer value.

For 8 > «, D = P*§ is a square irZps iff o is evenand (%) = 1. In those cases, its
square roots take the form= +yP*/2 4+ X Pf~%, wherey verifies y?> = § mod P#~*, and
X can be any integer.

In both cases, to each square reanodulo P# there corresponds one free eigenmodule

A.
In the case wheré dividesb andc¢ simultaneously, we decompos$eas
_ 10 v(e [)_ v
S_:I:<0 1>+P (g h>_:|:12+PM (87)

with the conditionM # 0 mod P. We obtain the following constraints o\ :
detS =1 <= (e+h) = FPV(eh — gf)

2
(e + h) is even and D= P%¥ [(#) — (eh — gf)] ®9

which implies 2 < «. As long asp < y, every vector ofZ? is invariant moduloP?, so
A can be any free submodule of type one. For larger valugs, @fe need to diagonalize
M modulo P#~7, that is, to solve the remainders of equation (32),

fk?>+ (e — h)k — g = 0 mod PP~7 (89)
or
gk?+ (h—e)k' — f =0 mod PP,

This amounts to extracting a square root of the discriminantofs’ = D/P? (this
discriminant is related to th& defined above by’ = § P*~%).

If f or g is coprime withP, the solutions of (89) will depend upqrii): if (%) =1,
we apply the results of section 5.1 and diagonalizdor any g8; if P|§’ (that is,a > 2y),
the first case considered in this appendix provides eigenvectors

e atleastup tg8 = o — y;

o for all g iff o is even and$) = 1.

If (‘%) = —1, there is no eigenvector fg > y.

The casef = g = 0 mod P is actually solved easily: sincg is maximal,e = —h #
0 mod P, so equations (89) have two solutions for ghy- y, using lemma 1.

To conclude, we recall that any solution of (89) modwté—” provides P” distinct
invariant strings moduldP?.

B.2. N a power of 2

The prime number 2 has to be distinguished from the other primes, especially when one
considers quadratic equations [11], which play an important role in the diagonalization of
S. We separate the two possible forms$SMmodulo 2.

In the caseS = (° }), S admits the unique eigenvectg}) mod 2. Sinceb, ¢ are odd
anda — d even, eigenvectors are obtained by the extraction of a square r@mnoddulo
28, for any 8 > 1.

If (a+d)/2is even, themD = 3 mod 4 is not a square [11], so there is no solution.

If (a +d)/2 is odd, we writeD = 2*§, with § odd,« > 3. As long asg < «, we
have the trivial square roots= X 2l#+D/2] for any integerX. Wheng = « + 1, there are
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solutions iffa is evenyx = 2%/24+ X 2*/2t1; for B = a+2, the existence of solutions requires
8 = 1 mod 4, and for8 > « + 3, the condition to extract a square rootsis= 1 mod 8.
In the last two cases, all square roots are of the farm: +£2*/2y + X2-*/2=1 where
y2 =8 mod 2.

The alternative case

_ 10 v(e J)_ %
S—j:<0 l>~|—2 (g h>_:|:12+2M (90)

leads to similar phenomena as for odd primes.

For B8 < v, all vectors are trivially eigenvectors.

For 8 > y, if f or g is odd, equations (89) have solutions as long as the discriminant
of M, 8 = (#)2 — eh + gf, admits square roots moduld2; we are led to an analysis
similar to the one above concernidy= 2%§'.

If both f andg are even, thel§ = (+1+ 2”)I, mod 2*1. This case implies = 2y,
soé = §'. All vectors modulo 2+! are eigenvectors. F@# > y + 2, equations (89) can
be divided by a factor of 2, leading to:

Fk?+ Ek — G =0mod Z-7~1 or the analogous equation i\

whereF = f/2 E=(e—h)/2 G=g/2
By definition, M # 0 mod 2, so equation (88) implies thath, and E are odd. Therefore,
sinceE is the derivative of polynomial (91) modulo 2, lemma 1 associates to each solution

k modub 2 a unique solution modulo?2—7, for any 8. The analysis modulo 2 is
straightforward,

(F,G)=(0,00= k=0 or K=0
(F,G)=(1,00—= k=0 or k=1
(F,G)=(0,1) =k =0 or K =1
(F, G) = (1, 1) = no solution.

(91)

(92)

Equivalently, in this last casef(g even) there are?2? solutions for any larges if
8 = 1mod 8 (the first three equations), and nones i= 5 mod 8 (the last equation),
which are the only possible values &in this case.
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