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Stéphane Nonnenmacher
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Abstract
We present an overview of mathematical results and methods relevant for the
spectral study of semiclassical Schrödinger (or wave) operators of scattering
systems, in cases where the corresponding classical dynamics is chaotic; more
precisely, we assume that in some energy range, the classical Hamiltonian flow
admits a fractal set of trapped trajectories, which hosts chaotic (hyperbolic)
dynamics. The aim is then to connect the information on this trapped set with
the distribution of quantum resonances in the semiclassical limit.

Our study encompasses several models sharing these dynamical
characteristics: free motion outside a union of convex hard obstacles, scattering
by certain families of compactly supported potentials, geometric scattering on
manifolds with (constant or variable) negative curvature. We also consider
the toy model of open quantum maps, and sketch the construction of quantum
monodromy operators associated with a Poincaré section for a scattering flow.

The semiclassical density of long-living resonances exhibits a fractal Weyl
law, related to the fact that the corresponding metastable states are ‘supported’
by the fractal trapped set (and its outgoing tail). We also describe a classical
condition for the presence of a gap in the resonance spectrum, equivalently a
uniform lower bound on the quantum decay rates, and present a proof of this
gap in a rather general situation, using quantum monodromy operators.

Mathematics Subject Classification: 35Q40, 37D20, 81Q50, 58C40, 35P30

(Some figures may appear in colour only in the online journal)

1. Introduction

This review paper will present some recent results and methods in the study of 1-particle
quantum or wave scattering systems, in the semiclassical/high-frequency limit, in cases where
the corresponding classical/ray dynamics is chaotic.
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Figure 1. Configuration of 3 convex obstacles in the plane satisfying the no-eclipse condition,
leading to a fractal hyperbolic trapped set. The numbering of the obstacles leads to the associated
symbolic dynamics.

The study of such systems has a long history in physics and mathematics, ranging from
mesoscopic semiconductor physics to number theory. We will focus on some mathematical
aspects, adopting a quantum chaos point of view: one wants to understand how the classical
dynamics influences the quantum one, both regarding time-dependent and time-independent
(that is, spectral) quantities. Equivalently, one searches for traces of classical chaos in the
quantum mechanical system. In this introduction, I will focus on a simple system we will be
dealing with: the scattering by three or more balls (Bj )j=1,...,J (more generally, strictly convex
bodies with smooth boundaries) in R

d , satisfying a no-eclipse condition (figure 1) [37]1. The
nature of the classical dynamics will be explained in section 2.

At the quantum level, one wants to understand the wave propagation in this geometry, that
is solve the (scalar) wave equation

∂2
t u(x, t) − ��u(x, t) = 0, (1)

with given initial conditions u(x, 0), ∂tu(x, 0). Here �� is the Laplacian outside the discs
(� = R

d \ �iDi), with Dirichlet boundary conditions. Through a Fourier transform in time,
we get the Helmholtz equation

��u(x) + k2u(x) = 0, (2)

which describes stationary waves of energy k2 (k is the wavevector, that is the inverse of the
wavelength).

If the particle propagating is a quantum one, its evolution rather satisfies the Schrödinger
equation

ih̄∂tu(x, t) = − h̄2��

2
u(x, t), (3)

where h̄ is Planck’s constant. We will see in section 3 that both equations (1), (3) can be
analysed along the same lines in the high-frequency/semiclassical limits.

This scattering system is physically relevant, and has been studied in theoretical physics
(see for instance the review paper by Wirzba [89] for the 2-dimensional scattering by J discs,
and references therein) and mathematics literature [37]. It has also been implemented in various
experimental realizations, most recently on microwave tables by the Marburg group [87].

1.1. Scattering versus metastable states

For a given wavevector k, equation (2) admits an infinite dimensional space of solutions u(x),
called scattering states, which can be parametrized by decomposing u(x), away from the

1 Namely, the convex hull of any pair of obstacles Bi, Bj does not intersect any third obstacle.
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obstacles (say, outside a ball B(0, R0)), into a basis of incoming and outgoing waves:

u(x) = uin(x) + uout(x). (4)

For instance, in dimension d = 2 the ingoing waves can be expanded in angular momentum
eigenstates: using polar coordinates x = (r, θ),

uin(x) =
∑
n∈Z

ain
n einθ H in

n (kr), (5)

where H in
n are the incoming Hankel functions, and similarly for uout(x). Any such solution

u(x) is called a scattering state. It is not L2-normalizable, reflecting the fact that the spectrum
of −�� is absolutely continuous on R+, without any embedded eigenvalue. We will briefly
address the phase space structure of these scattering states in section 9.2.

Beyond the a.c. spectrum, this system admits a discrete set of quantum resonances, or
complex generalized eigenvalues. They can be obtained as follows. The resolvent (� + k2)−1

is a bounded operator on L2(�) for Im k > 0; its norm diverges when Im k → 0, reflecting
the presence of the continuous spectrum. However, if we cut it off by a compactly supported
(or fast decaying) function χ(x), the cutoff resolvent χ(� + k2)−1χ can be meromorphically
continued from the upper half plane {Im k > 0} to the lower half plane {Im k < 0}, where
it generally admits a discrete set of poles {kj } of finite multiplicities2. These poles are called
the resonances of −��. Each pole kj (assuming it is simple) is associated with a generalized
eigenfunction uj (x), which satisfies the equation

(�� + k2
j )uj (x) = 0, with Dirichlet boundary conditions on ∂� (6)

and is purely outgoing (meaning that its decomposition (4) only contains outgoing
components). This function grows exponentially when |x| → ∞, an ‘unphysical’ behaviour,
so it is only meaningful inside a compact set (the interaction region formed by the ball
B(0, R0)). The time-dependent function

ũj (x, t)
def= uj (x)e−ikj t , t � 0 (7)

satisfies equation (1). The time decay in (7) explains why uj (x) is called a metastable state,
with lifetime

τj = 1

2|Im kj | .

One can expand the time-dependent wave u(x, t) when t → ∞ into a sum over (at least some
of) the metastable states (7). Such an expansion is less straightforward than in the case of
a closed system (it is not based on an L2 orthogonal decomposition), but often gives a good
description of the wave u(x, t) for long times [14, 32, 84].

Another application of the study of resonances: the presence of a resonance free strip below
the real axis (together with estimates of the resolvent in the strip) can be used to quantitatively
estimate the dispersion and local energy decay for the wave u(x, t), either in the case of the wave
equation (1) or that of the (nonsemiclassical) Schrödinger equation i∂tu = −��u [13, 17, 18].

1.2. Semiclassical distribution of resonances

We will not investigate these time-dependent aspects any further, but will concentrate on the
spectral one, namely the distribution of the resonances and the associated metastable states.
The first mathematical works on the subject consisted in counting resonances in large discs

2 In even dimension the continuation has a logarithmic singularity at k = 0, often represented by a cut along the
negative imaginary axis.
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Figure 2. Absolutely continuous spectrum of ��, together with the resonances below the real
axis, near some value k � 1.

D(0, k), k → ∞. Melrose [48] obtained the general Weyl type upper bound O(kd) for compact
obstacles in odd dimension; this bound was generalized to obstacles in even dimension [86]
as well as to scattering by a potential [91].

In the following we will focus on the long-living resonances, that is those kj sitting within
a fixed distance from the real axis (equivalently, the resonances with lifetimes τj uniformly
bounded from below). These resonances are the most relevant ones for the long time behaviour
of the waves. We will consider the high-frequency limit Re k � 1, which is equivalent with
the semiclassical limit in quantum mechanics (see section 3), in order to establish a connection
with the classical dynamics (figure 2).

Questions.

(1) For given width W > 0 and depth γ > 0, what is the asymptotic number of resonances
in the rectangle [k, k + W ] − i[0, γ ] when k → ∞?

(2) In particular, is there some γ > 0 such that this rectangle is empty of resonances for k

large enough? (such a γ is called a resonance gap).
(3) Given an infinite sequence of long-living resonances (kj�

), what is the spatial, or phase
space structure of the associated metastable states when Re kj�

→ ∞?

In this high-frequency limit, these spectral questions will be connected with long time
properties of the classical dynamics of the system. This dynamics consists in following
straight rays at unit speed outside the obstacles, and reflecting specularly on the obstacles.
In mathematical notations, this dynamics is a flow 	t defined on the phase space formed by
the unit cotangent bundle

S∗� = {(x, ξ), x ∈ �, ξ ∈ R
d , |ξ | = 1},

where the speed ξ is equal to the momentum. For each time t ∈ R, the flow 	t maps any
initial phase space point (x, ξ) in to its position 	t(x, ξ) at time t .

With our conditions on the obstacles, this dynamics is chaotic in the following sense: the
set of trapped trajectories

K = {ρ ∈ S∗�, 	t(ρ) uniformly bounded when t → ±∞} (8)

is a fractal flow-invariant set, and the flow on it is uniformly hyperbolic (equivalently, one says
that K is a hyperbolic set for 	t , see section 2 for details). For future use we also define the
outgoing (K+) and incoming (K−) tails of the trapped set,

K± = {ρ ∈ S∗�, 	t(ρ) uniformly bounded when t → ∓∞}, (9)

with the obvious property K = K− ∩ K+.
The question (2) above has been addressed around the same time by Ikawa [37] and

Gaspard and Rice [28] (see also [12]). Both these works establish the presence of a gap,
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provided the trapped set K is sufficiently ‘filamentary’. The precise criterion depends on a
certain dynamical quantity associated with the flow, a topological pressure defined in terms of
the unstable Jacobian ϕ+(ρ) which measures the instability of the trajectories (these quantities
will be defined in section 2, more precisely equations (14) and (13)).

Theorem 1 ([37]). Consider the obstacle scattering problem in R
d , with strictly convex

obstacles satisfying the no-eclipse condition. If the topological pressure for the flow on the
trapped set K ⊂ S∗� satisfies

P = P(−ϕ+/2, 	t �K) < 0,

then for any small ε > 0 there exists kε > 0 such that �� has no resonance in the strip

[kε,∞) − i[0, |P| − ε]. (10)

In dimension d = 2, the sign of the above topological pressure is determined by purely
geometric data, namely the Hausdorff dimension of the trapped set:

P(−ϕ+/2, 	t �K) < 0 ⇐⇒ dimH (K) < 2, (11)

which gives a precise notion of ‘filamentary’ or ‘thin’ trapped set (note that K is embedded in
the three-dimensional phase space S∗�).

In section 8.1 we will sketch the proof of the above theorem (in a more general context),
using the tool of quantum monodromy operators. The intuitive idea is the following:
wavepackets propagating along K disperse exponentially fast due to the hyperbolicity of the
trajectories; on the other hand, the wavepackets propagating on nearby trajectories could also
interfere constructively in order to recombine themselves along K . The pressure criterion
ensures that the dispersion is stronger than the possible constructive interference, leading to a
global decay of the wave near K .

The pressure P(−ϕ+/2) will appear several times in the text. Its value somehow
determines a dichotomy between the ‘very open’ scattering systems with ‘thin’ trapped sets
(P(−ϕ+/2) < 0), and the ‘weakly open’ ones with ‘thick’ trapped sets (P(−ϕ+/2) � 0). It
will be relevant also in the description of the scattering states in section 9.2.

The question (1) has first been addressed by Sjöstrand in the case of a real analytic
Hamiltonian flow with a chaotic trapped set [74], leading to the first example of fractal Weyl
upper bound. His result was generalized and sharpened in [78], see theorem 4. For the above
obstacle scattering, a similar fractal upper bound had been conjectured in [74], but proved only
recently [54].

To state the result, we recall the definition of the upper box (or Minkowski) dimension of
a bounded set K ⊂ R

n:

dim(K)
def= lim sup

ε→0

(
n − log Vol(Kε)

log ε

)
,

where Kε is the ε-neighbourhood of K . The dimension is said to be pure if Vol(Kε)

εn−dim(K)
is uniformly

bounded as ε → 0.

Theorem 2 ([54]). Consider the obstacle scattering problem in R
d , with strictly convex

obstacles satisfying the no-eclipse condition.
Let 2ν + 1 be the upper box dimension of the trapped set K ⊂ S∗�.
Then, the resonances of �� satisfy the following bound. For any γ > 0 and any ε > 0,

there exists kγ,ε, Cγ,ε > 0 such that

∀k > kγ,ε, �{kj ∈ [k, k + 1] − i[0, γ ]} � Cγ,εk
ν+ε .

If K is of pure dimension 2ν + 1, one can take ε = 0.
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In dimension d = 2, the trapped set is always of pure dimension, and its box dimension is
equal to its Hausdorff dimension. In that case, the dimension ν can be obtained through the
topological pressure of the flow on K (see section 2.2), namely ν is the (unique) real root s0

of the equation

P(−sϕ+, 	t � K) = 0.

(because P(−sϕ+) is strictly decreasing with s, this equation directly leads to the
equivalence (11)).

The question (3) has been studied only recently, in the case of a smooth Hamiltonian flow,
or a discrete time dynamics (open map). The main phenomenon is that, in the high-frequency
limit, the long-living metastable states are microlocalized near the outgoing tail K+, and can
be described in terms of semiclassical measures which are invariant through the flow, up to a
global decay (see section 9.1). Although no rigorous result on this question has been obtained
in the case of obstacles, it is very likely that theorem 10 can be adapted to the obstacles setting.

1.3. Outline of the paper

In the next section we describe the dynamical properties of the classical flows we wish to
consider, namely Hamiltonian flows for which the trapped set is a compact hyperbolic repeller.
We also define the relevant dynamical quantities associated with the flow, like the unstable
Jacobian and the topological pressure.

In section 3 we extend the above two theorems to more general systems, namely
semiclassical Schrödinger operators P(h̄) involving a compactly supported potential, and
Laplace–Beltrami operators on Riemannian manifolds, where the dynamics is only driven by
the geometry. We state the analogues of theorems 1 and 2 in these settings. The case of
hyperbolic manifolds of infinite volume (obtained as quotients of the Poincaré half-space H

d

by certain discrete groups) is particularly interesting: the quantum resonances of the Laplacian
can then be directly connected with the classical dynamics.

In section 4 we interpret the quantum resonances as the eigenvalues of a (non-self-adjoint)
operator obtained by ‘deforming’ P(h̄) into the complex plane. We then (sketchily) explain
how a further deformation, using microlocal weights, allows us to prove a fractal Weyl upper
bound for the number of resonances [78].

In section 5 we introduce the model of open (chaotic) maps and their quantizations, which
correspond to discrete time dynamics instead of flows. They have been used as a convenient
toy model for the ‘true’ scattering systems, being much more amenable to numerical studies.
We then construct quantum monodromy operators associated with a scattering Hamiltonian
P(h̄); they form a family of open quantum maps associated with the Poincaré map for the
classical flow, and can be used to characterize and study the resonances of P(h̄).

In section 6 we formulate a weak and a strong form of fractal Weyl law, and discuss
their validity for the various systems introduced above, mostly guided by numerical data. In
section 7 we give a heuristic explanation of the Weyl law for quantum maps, and provide a
proof of its upper bound, eventually leading to theorem 2 and its analogues. The proof shows
how the full quantum system can be reduced to an effective operator of minimal rank.

In section 8 we show that the pressure criterion of theorem 1 applies to all the systems
considered above. We sketch the proof of this gap in the case of open quantum maps and
monodromy operators, leading to the general case of Schrödinger operators. In section 8.2 we
discuss the sharpness of this criterion, using both analytical and numerical results.

In section 9 we briefly describe what is known about the phase space structure of metastable
states associated with the long-living resonances, in particular using the tool of semiclassical
measures. We also consider the scattering states.
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Figure 3. Hyperbolicity of the trajectory 	t(ρ): nearby orbits along the stable (respectively
unstable) directions approach 	t(ρ) exponentially fast in the future (respectively past). The
unstable Jacobian J +

t (ρ) measures this exponential divergence.

Finally, section 10 presents a brief conclusion, and mentions possible extensions of the
methods to similar non-self-adjoint spectral problems, like the case of damped waves on a
compact manifold of negative curvature.

Most of the above results have appeared elsewhere (or are bound to do so in a near future).
The spectral radius estimate for open quantum maps, theorem 9, has not been formulated
before, but it is a rather direct application of [57]. The numerics of section 8.2.2 had not been
published either.

2. Chaotic dynamics

We have already introduced the flow 	t on the phase space S∗� describing the classical
scattering system outside the obstacles: it consists in the free motion at unit speed outside the
obstacles, plus specular reflection at the boundaries. This flow is generated by the Hamiltonian
vector field Hp = ∂p

∂ξ
∂x − ∂p

∂x
∂ξ associated with the Hamilton function

p(x, ξ) = |ξ |2
2

+ V�(x), with the singular potential

{
V�(x) = 0, x ∈ �,

V�(x) = ∞, otherwise.
(12)

The unit cotangent bundle S∗� is equivalent with the energy shell p−1(1/2).
All the flows we will consider are Hamiltonian, in particular they preserve the natural

symplectic form on T ∗
R

d . The discrete time models (open maps) introduced in section 5
will be given by local diffeomorphisms on a symplectic manifold, which also preserve the
symplectic structure. All these systems are therefore conservative.

We will also make strong dynamical assumptions on these flows (or open maps), namely
an assumption of strong chaos. The chaotic properties refer to the long time properties of
the flow restricted to the trapped set K (below we keep the notations of the obstacle problem,
while the concepts apply as well to more general Hamiltonian flows or to maps). In our setting,
chaos is the mixture of two components, namely hyperbolicity and complexity (see e.g. the
textbooks [11, 41]).

2.1. Hyperbolicity

Firstly, the trapped set K is assumed to be compact, and the flow 	t � K is assumed to be
uniformly hyperbolic (figure 3). This means that there is no fixed point (Hp 
= 0), and for any
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ρ ∈ K , the tangent space Tρ(S
∗�) splits into the flow direction RHp(ρ), a stable subspace

E−(ρ), and an unstable subspace E+(ρ):

Tρ(S
∗�) = RHp(ρ) ⊕ E−(ρ) ⊕ E+(ρ).

The (un)stable subspaces are characterized as follows: there exist C, λ > 0 such that, for any
ρ ∈ K ,

v ∈ E∓(ρ) ⇐⇒ ∀t > 0, ‖d	±t v‖ � C e−λt‖v‖.
The subspaces E±(ρ) depend continuously on ρ ∈ K , and are uniformly transverse to

each other. An important quantity is the unstable Jacobian of the flow,

J +
t (ρ)

def= det(d	t �E+(ρ)), t > 0,

which measures the expansion of the flow along the unstable manifold3. This Jacobian grows
exponentially when t → ∞. The infinitesimal version of this Jacobian reads

ϕ+(ρ)
def= dJ +

t

dt
(ρ) �t=0, (13)

and it is possible to choose a metric near K such that ϕ+ is positive on K .
The (un)stable subspaces have nonlinear counterparts, namely the (un)stable manifolds

W∓(ρ) = {ρ ′ ∈ S∗�, dist(	t(ρ ′), 	t(ρ))
t→±∞−→ 0}.

The unions of these manifolds make up the incoming/outgoing tails K∓ (9).
A trapped set K hosting such dynamical properties is called a hyperbolic set, or hyperbolic

repeller.
In case of the scattering by J � 2 convex obstacles, the hyperbolicity is due to the strict

convexity (or positive curvature) of the obstacles, which defocuses incoming parallel rays at
each bounce. On the opposite, in the geometric scattering models of section 3.2, the defocusing
is due to the negative curvature of the manifold.

2.2. Complexity

The second ingredient of a chaotic flow is complexity, in the information theoretic sense. It
means that the trapped set K cannot be very simple, e.g. it cannot just consist of finitely
many periodic trajectories. Grossly speaking, complexity means that if one groups the long
segments of trajectories into ‘pencils’ of nearby segments, then the number of such pencils
grows exponentially with the length of the segments.

Let us make this notion more explicit for our obstacle problem (see figure 1). To any point
ρ ∈ K away from the obstacle, we can associate a bi-infinite sequence of symbols

ε = · · · ε−2ε−1 · ε0ε1ε2 · · · , εi ∈ {1, 2, · · · , J }
indexing the obstacles successively hit by 	t(ρ) in the future or in the past. This sequence
obviously satisfies the condition εi 
= εi+1 for all i ∈ Z.

Conversely, the assumptions we put on the obstacles imply that, for any sequence satisfying
the above condition, one can construct a trajectory with the above properties, and this trajectory
is (essentially) unique. In particular, this trajectory is periodic iff the sequence ε is so. This
description of the trapped orbits in terms of sequences of ‘symbols’ is called a symbolic
dynamics. It is a simple way to classify the trajectories of the flow, and estimate its complexity.
For instance, if one decides to group trajectories by specifying the obstacles they hit from i = 0

3 Although this Jacobian depends on the choice of coordinates and metric near ρ and 	t(ρ), its asymptotical behaviour
for t → ∞ does not.
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to i = n, then the number of such ‘pencils’ is J (J −1)n, which obviously grows exponentially
with the ‘discrete time’ n. The number of periodic orbits also grows exponentially w.r.t their
periods.

This complexity can be made quantitative through the topological pressures P(f, 	t � K)

associated with the flow on K and ‘observables’ f ∈ C(K). The pressures provide a statistical
information on the ‘pencils’ of long orbit segments. In the present case of a hyperbolic repeller,
this pressure can be defined in terms of long periodic orbits:

P(f, 	t �K)
def= lim

T →∞
1

T
log

∑
p:T −1�Tp�T

exp(f (p)), f (p) =
∫ Tp

0
f (	t(ρp)) dt. (14)

The sum runs over all the periodic orbits p of periods Tp ∈ [T − 1, T ], and ρp is any point
on p. In section 9 we will give an alternative way to compute the topological pressure for the
open baker’s map, in terms of symbolic dynamics. The pressure can also be defined through
a variational formula over the probability measures µ on K which are invariant by the flow:

P(f, 	t �K) = sup
µ

{
HKS(µ) +

∫
f dµ

}
, (15)

where HKS(µ) is the Kolmogorov–Sinai entropy of the measure µ (with respect to the flow),
a nonnegative number quantifying the ‘complexity of a µ-typical trajectory’.

If one takes f ≡ 0, the above expression measures the exponential growth rate of the
number of long periodic orbits, which defines the topological entropy of the flow:

P(0, 	t �K) = Htop(	
t �K) = sup

µ

HKS(µ). (16)

For this reason, complexity is often defined by the positivity of Htop.
If f is negative everywhere, the sum in (14) shows a competition between exponentially

decreasing terms ef (p) ∼ eT f̄ and the exponentially increasing number of terms. This is
the case, for instance, if one uses the unstable Jacobian (13) and takes f = −sϕ+ for some
parameter s > 0. In that case ef (p) = J +

Tp
(ρp)−s measures the instability of the orbit p. When

s = 1, the exponential damping exceeds the exponential proliferation, and the pressure is
negative. Actually,

γcl
def= −P(−ϕ+, 	t �K) > 0

defines the classical decay rate of the flow, which has the following physical meaning. Consider
an initial smooth probability measure µ0 = g0(ρ)dρ on S∗�, with the density g0 supported
inside the interaction region S∗B(0, R0), with g0(ρ) > 0 at some point ρ ∈ K−. If we
push forward this measure through 	t , the mass of the interaction region will asymptotically
decay as

[(	t)∗]µ0(S
∗B(0, R0)) ∼ C e−tγcl , t → ∞. (17)

Below we will mostly be interested by the pressure with observable f = −ϕ+/2. It can be
compared with the two quantities defined above. Indeed, using the variational formula (15)
for the pressure, we easily obtain

− γcl/2 � P(−ϕ+/2) � 1
2 (Htop − γcl). (18)

The upper bound embodies the fact that P(−ϕ+/2) is negative if the dynamics on K is ‘more
unstable than complex’.

In dimension d = 2 the Hausdorff dimension of K can be obtained in terms of the
topological pressure: dimH (K) = 2s0 + 1, where s0 ∈ [0, 1] is the unique root of the
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equation P(−sϕ+) = 0. In particular, one gets the equivalence (11). Hence, hyperbolicity
and complexity directly influence the (fractal) geometry of the trapped set.

In section 5 we introduce open maps κ , which are local diffeomorphisms defined on some
open subset of a symplectic manifold. The definition of the trapped set, and of hyperbolicity,
is very similar to the case of flows. Since the Jacobian J +

t only makes sense for integer times,
we take ϕ+ = log J +

1 . The topological pressure can be defined as in (14), with f (p) given by
a sum over the points in p.

3. Semiclassical formulation and more examples of chaotic flows

In the high-frequency limit (k � 1), the Helmholtz equation (2) can be rewritten using a
small positive parameter, which we call h̄ by analogy with Planck’s constant. This parameter
scales as

1

C
� h̄k � C (in short, h̄ � k−1),

so the high-frequency limit is equivalent with the semiclassical limit h̄ → 0. Equation (2) now
takes the form of a time-independent Schrödinger equation:

− h̄2��

2
u = E(h̄)u, with energy E(h̄) = h̄2k2/2 ∈

[
1

2C2
,
C2

2

]
.

Here the operator (quantum Hamiltonian)

P(h̄) = − h̄2��

2
(19)

is the quantization of the classical Hamiltonian (12).

Remark 3.1. The operator P(h̄) is also the generator of the semiclassical Schrödinger
equation (3) which describes the scattering of a quantum (scalar) particle, u(x, t) being the
wavefunction of the particle at time t . The resonant states uj (x) of (6) satisfy the equation
P(h̄)uj = zj (h̄)uj , with the correspondence

zj (h̄) = h̄2k2
j /2.

According to the Schrödinger equation (3), these states decay with a rate |Im zj (h̄)|/h̄, which
is not the same as the decay rate |Im kj | associated with the wave equation (1). Yet, if we
consider resonances in a ‘semiclassical box’ {Re (h̄kj ) ∈ [1/C, C], Im kj ∈ [−C, 0]} for
some fixed C > 1, then two decay rates are comparable: Im zj (h̄)/h̄ = Re(h̄kj ) Im kj + O(h̄).

3.1. Potential scattering

The introduction of h̄ in the obstacle problem is merely a convenient bookkeeping parameter in
the high-frequency limit. More importantly, it allows one to extend the study to more general
scattering Hamiltonian flows, typically by replacing the obstacle potential V� by a smooth
potential V ∈ C∞

c (Rd), leading to the classical Hamiltonian

p(x, ξ) = |ξ |2
2

+ V (x), (x, ξ) ∈ T ∗
R

d , (20)

which generates a smooth flow 	t on the phase space T ∗
R

d .
The h̄-quantization of this Hamiltonian (see appendix A) is the Schrödinger operator

P(h̄) = − h̄2�

2
+ V (x) (21)
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where � is the Laplacian on R
d . We say that p(x, ξ) is the semiclassical symbol of the operator

P(h̄) (see the appendix for a short reminder on h̄-quantization). If suppV is contained in a
ball B(0, R0), we will call this ball the interaction region.

As opposed to the obstacle case, the flow on the energy shell p−1(E), E > 0, is not
obtained through a simple rescaling of the flow at energy 1/2: both dynamics can be drastically
different. Similarly, at the quantum level, P(h̄) depends on h̄ in a nontrivial way. It is easy to
produce a smooth potential V (x) such that the flow on the energy shell p−1(E) is chaotic in
some range [E1, E2], in the sense that for any energy E ∈ [E1, E2] the trapped set

KE = {ρ ∈ p−1(E), 	t(ρ) is uniformly bounded for t ∈ R},
is a hyperbolic repeller. Following Sjöstrand [74, appendix C], one can for instance ‘smoothen’
the hard body potential V� associated with the above obstacle problem, and obtain a potential
with J ‘steep bumps’ (see figure 4), such that the flow is chaotic in some intermediate energy
range.

The Schrödinger operator (21) admits a continuous spectrum on R+, but like in the obstacle
problem, its truncated resolvent χ(P (h̄)− z)−1χ can be meromorphically continued from the
upper to the lower half plane. The poles {zj (h̄)} of this continued resolvent form a discrete
set, which are the resonances of P(h̄). In general these resonances depend on h̄ in a nontrivial
way.

We specifically consider the vicinity of a positive energy E for which the trapped set KE

is a hyperbolic set, and ask the same questions as in section 1.2. The following results are
direct analogues of theorems 1 and 2 in this semiclassical setting.

Theorem 3 ([57]). Consider the semiclassical Hamiltonian P(h̄) of (21), such that for some
energy E > 0 the flow generated by the Hamiltonian (20) has a hyperbolic trapped set KE .

If the topological pressure

P = P(− 1
2ϕ+, 	t �KE

) is negative,

then for any δ, ε > 0 small enough, there exists h̄δ,ε > 0 such that, for any h̄ ∈ (0, h̄δ,ε] the
operator P(h̄) does not have resonances in the strip [E − δ, E + δ] − i[0, |P| − ε].

Theorem 4 ([74, 78]). Let P(h̄) be a semiclassical Hamilton operator as in theorem 3, and
let 2νE + 1 be the upper box dimension of KE .

Then, for any C > 0, the number of resonances of P(h̄) in the disc D(E, Ch̄), counted
with multiplicities, is bounded as follows. For any ε > 0, there exists CC,ε, h̄C,ε > 0 such that

∀h̄ < h̄C,ε, �{ResP(h̄) ∩ D(E, Ch̄)} � CC,ε h̄−νE−ε .

If KE is of pure dimension, one can take ε = 0 in the above estimate.

One can generalize the above scattering problems on R
d by considering a Schrödinger operator

P(h̄) of the form (21) on an unbounded Riemannian manifold (X, g) with a ‘nice enough’
geometry near infinity. This geometry should allow to meromorphically extend the truncated
resolvent in some strip. For instance, theorem 3 applies if X is a union of Euclidean
infinities outside a compact part [57]. It has been extended by Datchev [20] and Datchev–
Vasy [21] to more complicated geometries near infinity, in particular asymptotically Euclidean
or asymptotically hyperbolic manifolds. Their strategy is to ‘glue together’ the resolvent
estimates of two model manifolds, one with the true, trapping structure in the interaction region
but a simple (say, Euclidean) structure near infinity, and the other one with the true infinity
but a simple (nontrapping) interaction region. In parallel, Vasy [85] recently developed a new
method to analyse the resolvent at high frequency, in a variety of asymptotically hyperbolic
geometries.
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x
y

V(x,y)

(X,g)

Figure 4. Left: a Riemannian surface with 3 Euclidean ends. Right: a potential V ∈ C∞
c (R2),

with Hamiltonian flow hyperbolic on the trapped set KE in a range of energies.

3.2. Geometric scattering

On a Riemannian manifold (X, g), the classical scattering in the absence of potential (one
then speaks of geometric scattering) can already be complicated, e.g. chaotic. This is the
case, for instance, when the trapped set K lies in a region of negative sectional curvature
(see figure 4, left). The operator quantizing the geodesic flow is the (semiclassical) Laplace–
Beltrami operator on X, P(h̄) = −h̄2�X/2.

One appealing class of examples consists of manifolds (X, g) obtained by quotienting
the Poincaré half-space H

n+1 (which has uniform curvature −1) by certain discrete subgroups
� of the group of isometries on H

n+1. Such a manifold X = �\H
n+1 inherits the uniform

hyperbolic geometry of H
n+1, so that all trajectories are hyperbolic. For a certain type of

subgroups � (called convex co-compact), the manifold X has infinite volume and the trapped
set is compact; this trapped set is then automatically a hyperbolic set. This definition of X

through group theory leads to remarkable properties of the spectrum of �X, which we now
summarize (a recent review of the theory in dimension 2 can be found in Borthwick’s book [9]).

The absolutely continuous spectrum of −�X consists in the half-line [n2/4,∞), leaving
the possibility of finitely many eigenvalues in the interval (0, 1/4). It is common to write the
energy variable as

k2 = s(n − s), so that the a.c. spectrum corresponds to s ∈ n/2 + iR.

This parametrization has the following advantage. The resonances of �X, parametrized by a
discrete set {sj } ⊂ {Re s < n/2}, exactly correspond to the nontrival zeros of the Selberg zeta
function [61]

ZX(s) = exp

(
−

∑
p

∑
m�1

1

m
det(1 − Pp)−1/2e−sm�(p)

)
. (22)

Here p are the primitive closed geodesics of the flow, and Pp is the linearized Poincaré return
map around p. This shows that the (quantum) resonances are solely determined by the classical
dynamics on K .

One can show that the rightmost zero of ZX(s) is located at s0 = δ, where δ > 0 is the
Hausdorff dimension of the limit set4 �(�) [60, 82], while all other zeros satisfy

∀j 
= 0, Re sj < δ. (23)

4 Fix one point x0 ∈ H
n+1. Then the limit set �(�)

def= {γ · x0, γ ∈ �} ∩ ∂H
n+1 actually only depends on the

subgroup �.
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If δ ∈ [n/2, n] (‘thick’ trapped set), δ corresponds to the eigenvalue of the ground state of the
Laplacian. There may be finitely many other eigenvalues (sj ∈ [n/2, δ)), while the resonances
will be located in the half-space {Re s < n/2}.

If δ ∈ (0, n/2) (‘thin’ trapped set), all the zeros of ZX(s) correspond to resonances of �X,
and since the a.c. spectrum corresponds to Re s = 1/2, the bound (23) shows the presence of
a resonance gap. The topological pressure of 	t �K is given by

P(−1/2ϕ+, 	t �K) = δ − n/2,

so the bound (23) is a (more precise) analogue of the semiclassical gaps in theorems 1 and 3.
In this geometric setting one can also obtain fractal upper bounds for the number of

long-living resonances:

Theorem 5 ([35, 92]). Let X = �\H
n+1 be a hyperbolic manifold of infinite volume, with � a

Schottky group5. Then the resonances of �X (counted with multiplicities) satisfy

∀ γ > 0, ∃Cγ > 0, ∀r > 1, �{sj ∈ i[r, r + 1] + [n/2 − γ, n/2]} � Cγ rδ.

Note that 2δ + 1 is the (Hausdorff or Minkowski) dimension of the trapped set K ⊂ S∗X.
A slightly weaker result was first obtained in [92] in dimension 2, using microlocal methods
similar to those of [74] (see section 4.2). The above result was obtained in [35] by analysing the
Selberg zeta function in terms of a classical expanding map on ∂H

n+1, and the corresponding
transfer operator. This possibility to rely on purely classical dynamics is specific to the locally
homogeneous spaces �\H

n+1.

4. ‘Massaging’ P (h̄ ) into a proof of the fractal Weyl upper bound

This section presents two consecutive methods, which were used in [78] to prove the fractal
Weyl upper bound of theorem 4, that is in the case of a semiclassical Schrödinger operator
(21). Both methods consist in ‘deformations’ of the original operator P(h̄), which can be
easily analysed at the level of the symbols of the operators, so as to draw consequences on the
spectra of the deformed operators.

The first method, called ‘complex scaling’, or rather ‘complex deformation’, provides
an alternative definition for the resonances of P(h̄), as the eigenvalues of a non-self-adjoint
operator. We recall that resonances were originally obtained as poles of the meromorphic
continuation of the truncated resolvent χ(P (h̄) − z)−1χ . Each resonance zj (h̄) is associated
with a metastable state uj (h̄), which is not in L2 but satisfies the differential equation
P(h̄)uj (h̄) = zj (h̄)uj (h̄).

4.1. Complex scaling: resonances as spectrum of a non-self-adjoint operator

The ‘complex scaling’ strategy [1, 36] (below we follow the presentation of [76]) consists in
deforming the configuration space R

d into a complex contour �θ ⊂ C
d , θ ∈ [0, θ0], of the form

�θ ∩ {|x| � R0} = R
d ∩ {|x| � R0}, �θ ∩ {|x| � 2R0} = {eiθx, x ∈ R

d , |x| � 2R0}.
We recall that B(0, R0) is the interaction region, which contains the support of the potential.
The differential operator P(h̄), when analytically extended on �θ , is then equivalent with an
operator Pθ(h̄) acting on R

d . Outside B(0, 2R0) this operator is simply given by −e−2iθ h̄2�
2 :

this shows that Pθ(h̄) is not self-adjoint on L2(Rd), and has essential spectrum on the half-
line e−2iθ

R+. More importantly, its spectrum in the cone {−2θ < arg(z) < 0} is discrete,

5 Schottky groups form a certain subclass of convex co-compact groups of isometries.
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Figure 5. Left: deformation of the configuration space R
d into a contour in �θ ⊂ C

d . Right: the
spectrum of the deformed operator Pθ (h̄).

with eigenvalues zj (h̄) equal to the resonances of the original operator P(h̄) (figure 5). The
associated eigenstates uj,θ (h̄) are equal to the metastable states uj (h̄) inside B(0, R0), but they
are now globally square-integrable.

Through this deformation, the study of resonances has become a spectral problem for the
non-self-adjoint differential operator Pθ(h̄). We can make advantage of pseudodifferential
calculus, that is study the spectrum of Pθ(h̄) by analysing its semiclassical symbol pθ(x, ξ).
For θ � 1, this symbol takes the form

pθ(x, ξ) = p(x, ξ), |x| � R0 (24)

pθ(x, ξ) = e−2iθ |ξ |2
2

, |x| � 2R0. (25)

In particular, for any positive energy E > 0 and δ > 0 small, the phase space region

Vθ(δ)
def={(x, ξ) ∈ T ∗

R
d , |pθ(x, ξ) − E| � δ}

is compact (it is contained inside T ∗B(0, 2R0)). This has for consequence that, for h̄ small
enough, Pθ(h̄) has discrete spectrum in D(E, Ch̄). The compactness of Vθ(δ) also provides
a rough upper bound on the number of eigenvalues near E. Heuristically, the number of
eigenvalues of Pθ(h̄) in D(E, Ch̄) is bounded from above by the number of quantum states
which can be squeezed in the region Vθ(Ch̄), each state occupying a volume ∼ h̄d . This
argument can be made rigorous [78, theorem 2], and produces the bound

#SpecPθ(h̄) ∩ D(E, Ch̄) = O
(
h̄−d VolVθ(Ch̄)

) = O(h̄−d+1). (26)

This estimate does not depend on the nature of the dynamics in the interaction region. In
case the flow on KE contains stable orbits surrounded by elliptic islands, one can show that
this estimate is optimal, by explicitly constructing sufficiently many quasimodes with quasi-
energies in D(E, Ch̄) very close to the real axis, and showing that actual eigenvalues must lie
nearby (see [83] and references therein).

Remark 4.1. When solving the Schrödinger equation ih̄∂tu = Pθ(h̄)u, the negative imaginary
part of Pθ acts as an ‘absorbing’ term. Indeed, a wavepacket u0 microlocalized near a point
(x, ξ) ∈ p−1(E), |x| � 2R0, will be absorbed fast, in the sense that its norm will be reduced
by a factor ∼etIm pθ (x,ξ)/h̄ = e−t sin(2θ)E/h̄. Hence, the complex deformation has the effect to
absorb the waves propagating outside the interaction region.

The above complex deformation can be used for any type of potential V (x). In order to
refine the counting estimate (26), one strategy [74, 78] consists in a second deformation of the
operator Pθ(h̄), obtained by conjugating it with an appropriate microlocal weight, such as to
shrink the region Vθ(Ch̄) to the close vicinity of the trapped set. Even though we will present
an alternative (yet related) proof of theorem 4 in section 7.2, we chose to sketch this strategy
below, which features the power of pseudodifferential calculus (see the appendix for a brief
introduction).
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4.2. Conjugation by an escape function

One constructs by hand an escape function G ∈ C∞
c (T ∗X), which is adapted to the flow 	t

in some energy layer p−1([E − δ, E + δ]) in the following way. The function G is required

to strictly grow along the flow outside an ε-neighbourhood K̃ε
E of K̃E

def= ∪|E′−E|�δKE′ (and
for |x| � 2R0). The microlocal weight is then obtained by quantizing this escape function
into the operator Gw = Oph̄(G), and exponentiating: for some factor t � 1 one defines the
deformed operator

Pθ,tG(h̄)
def= e−tGw

Pθ (h̄) etGw

.

Pθ,tG and Pθ obviously have the same spectrum, but the pseudodifferential calculus (see the
appendix) shows that the former has a symbol of the form

pθ,tG = pθ − ih̄ t {p, G} + O((h̄t)2), (27)

where the Poisson bracket {p, G} = HpG is the derivative of G along the flow generated by p.
From the construction of G, this symbol has a negative imaginary part outside K̃ε

E , showing
that Pθ,G(h̄) is absorbing there. The same volume argument as above then shows that

#SpecPθ,tG(h̄) ∩ D(E, Ch̄) = O
(
h̄−d VolVθ,tG(Ch̄)

)
. (28)

If ε > 0 is very small, the above bound is sharper than (26), because the set Vθ,tG(Ch̄) has a
much smaller volume than Vθ(Ch̄). Indeed, the former set is contained inside K̃ε

E ∩ Vθ(Ch̄),
the volume of which scales as6

Vol (K̃ε
E ∩ {|p(x, ξ) − E| � Ch̄}) � h̄ ε2(d−ν)−2, ε, h̄ � 1, (29)

where 2ν + 1 is the box dimension of KE inside p−1(E). In order to gain a power of h̄ in
the right-hand side of (28), we need to take ε ∼ h̄α for some α > 0, which implies that the
escape function G(x, ξ) has to be h̄-dependent. On the other hand, the pseudodifferential
calculus leading to (27) is valid only if G belongs to a ‘good’ symbol class, implying that it
cannot fluctuate very strongly. As explained in appendix A.2, the limiting class corresponds
to functions fluctuating on distances of order

ε = ε(h̄) ∼ h̄1/2. (30)

Injecting (30) into (29) leads to the fractal Weyl upper bound of theorem 4.
The construction of an optimal escape function G is a bit tricky, it uses the hyperbolicity

of the flow on K̃E . To give a schematic idea, let us consider the simple example of the model
Hamiltonian [16]

p = ξ1 + x2ξ2 on T ∗(S1 × R),

for which KE consists in a single hyperbolic periodic orbit {ξ1 = E, x2 = ξ2 = 0}. An
‘optimal’ escape function is then

G1(x, ξ) = log(ε2 + x2
2 ) − log(ε2 + ξ 2

2 ) �⇒ HpG1 = x2
2

ε2 + x2
2

+
ξ 2

2

ε2 + ξ 2
2

, (31)

with the scaling (30). Indeed, the gradient HpG1 � 1 for |(x, ξ)| � Cε, while the function
remains in a reasonable symbol class.

In the case of a fractal trapped set KE , the escape function G will locally have a structure
similar to G1 near KE , except that the coordinates x2, ξ2 are replaced by functions more or
less measuring the distance from the incoming/outgoing tails K∓

E .

6 Here we assume K̃E is of ‘pure’ Minkowski dimension. In the general case one needs to replace dim by dim +ε

for any arbitrary ε > 0.
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5. Open quantum maps and quantum monodromy operators

In this section we introduce open quantum maps, which are toy models used to study the
distribution of quantum resonances, especially in chaotic situations. These toy models present
the advantage to be easy to implement numerically. Moreover, the recent introduction of
quantum monodromy operators in the context of chaotic scattering establishes a direct link
between the resonances of a Schrödinger operator, and this particular family of open quantum
maps (quantizing a Poincaré return map of the classical flow).

5.1. Open quantum maps

In this section we introduce the open maps, and their quantizations, the open quantum maps.
An open map is a symplectic diffeomorphism κ : V �→ κ(V ), where V and κ(V ) are

bounded open subsets of a symplectic manifold Σ, which locally looks like T ∗
R

d . The map
κ is ‘open’ because we assume that κ(V ) 
= V , so there exist points ρ ∈ V such that κ(ρ) has
no further image; we interpret it by saying that κ(ρ) has ‘fallen in the hole’, or has ‘escaped
to infinity’ (this interpretation will become clearer when we specifically treat Poincaré maps).
By time inversion, the map κ−1 : κ(V ) → V is also an open map, and points in V \κ(V ) have
escaped to infinity ‘in the past’.

This escape phenomenon naturally leads to the notions of incoming/outgoing tails and
trapped set: similarly as in equations (9) and (8), we define

K∓ def={ρ ∈ V ∪ κ(V ), κ±n(ρ) ∈ V, ∀n > 0}, K = K− ∩ K+.

We will assume that K is compact and at finite distance from the boundary ∂V . As in the case
of flows, we will say that the open map κ is chaotic iff the dynamics generated by κ on K is
hyperbolic and complex, in the sense of section 2. We will see in section 5.3 that the Poincaré
return map of a chaotic scattering flow is a chaotic open map. Still, it is not difficult to directly
construct chaotic open maps, e.g. by starting from a chaotic ‘closed’ map κ̃ (diffeomorphism)
on Σ, and restricting it on a subset V .

What do we call a ‘quantization’ of the map κ? In the case Σ = T ∗
R

d , it is a family of
operators (M(h̄))h̄→0 on L2(Rd), with the following asymptotic properties when h̄ → 0.

First, M(h̄) = M(α, h̄) should be an h̄-Fourier Integral Operator (FIO) associated with
κ , with symbol α ∈ C∞

c (V ) (see appendix A.3 for more details). For any smooth observable
a ∈ C∞

c (T ∗
R

d), the quantized observable Oph̄(a) is transformed as follows when conjugated
by M(h̄)7:

M(h̄)∗ Oph̄(a) M(h̄) = Oph̄(b) + OL2→L2(h̄∞). (32)

The function b(x, ξ ; h̄) is a semiclassical symbol in S0(V ) supported on suppα, and admitting
the expansion

b = |α|2 × a ◦ κ + O(h̄). (33)

For h̄ small enough, M(α, h̄) is uniformly bounded, with

‖M(α, h̄)‖ = ‖α‖∞ + O(h̄). (34)

Equation (32) is a form of Egorov theorem (see (75)). It implies that M(α, h̄) transforms a
wavepacket u0 microlocalized at a point (ρ0) ∈ V into a wavepacket M(α, h̄)u0 microlocalized
at κ(ρ0), with a norm modified by

‖M(α, h̄)u0‖
‖u0‖ = |α(ρ0)| + O(h̄).

7 The notation A(h̄) = OL2→L2 (h̄∞) is a shorthand for the fact that for any N � 0, ‖A(h̄)‖L2→L2 = O(h̄N ) when
h̄ → 0.
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The coefficient |α(ρ0)| can be interpreted as an absorption (respectively gain) factor if
|α(ρ0)| < 1 (respectively |α(ρ0)| > 1). The compact support of α shows that the particles
outside suppα are fully absorbed.

To call M(α, h̄) an open quantum map, one furthermore requires that it is microlocally
unitary inside V . This means that the above ratio of norms should be 1+O(h̄∞), for any state u0

microlocalized inside V . For this to happen, the symbol |α(ρ)| needs to be a smoothed version
of the characteristic function 1lV on V . Typically, one can consider a family of neighbourhoods
K � Wh̄ ⊂ V converging to V , say, Wh̄ = {ρ ∈ V, dist (ρ, �V ) � r(h̄)}, e.g. with
r(h̄) ∼ | log h̄|−1, and require that the symbol α satisfies

α(ρ) = 0 outsideV, |α(ρ)| = 1 inside Wh̄,

and |α(ρ)| ∈ [0, 1] in between. (35)

Such α depends on h̄, but in a mild enough way (see appendix A.2). To insist on the regularity
of α, we will call such an operator a smooth open quantum map.

5.2. Open quantum maps of finite rank

A priori, the operators M(α, h̄) have infinite rank, even though they have a finite essential
rank, of the order of h̄−dVol(supp α), when h̄ → 0. This corresponds to the dimension of
a subspace of states which are not fully absorbed. For practical reasons it can be convenient
to replace M(h̄) by a finite rank operator M(h̄), by composing M(h̄) with a projector �(h̄)

microlocally equal to the identity in some neighbourhood of supp α, and of rank ∼ Ch̄−d . One
then obtains a family of operators

M(h̄)
def= M(h̄) �(h̄) = M(h̄) + OL2→L2(h̄∞). (36)

Such a projection onto a subspace of finite dimension will be used in the construction of
quantum monodromy operators in section 5.4.

A practical way to construct an open map is to start from a symplectomorphism κ̃ defined
on a compact phase space Σ, say the torus T

2d = R
2d/Z

2d , and then restrict it to a proper open
subset V � T

2d , that is take κ = κ̃ �V . There exist recipes to quantize the ‘closed’ map κ̃ into
a quantum map [22], that is a family (U(h̄))h̄→0 of unitary operators acting on the family of
quantum spaces (Hh̄)h̄→0 associated with T

2d , and enjoying a Egorov property similar to (32),
with α ≡ 1. The spaces Hh̄ have dimensions ∼ (2πh̄)−d due to the compactness of T

2d (with
the constraint (2πh̄)−1 ∈ N).

To ‘open’ this quantum map, one can truncate U(h̄) by a projector quantizing 1lV , and get
the operator

M(h̄) = U(h̄)�(h̄). (37)

The rank of �(h̄) then scales as h̄−dVol(V ). Once again, we speak of a smooth open quantum
map if �(h̄) is not a strict projector, but rather a ‘quasiprojector’ which is also the quantization
of a ‘good’ symbol α, like in (35). This choice allows one to avoid diffraction problems near
the boundary of V .

The above construction was implemented for various chaotic maps on the two-dimensional
torus, chosen such that the open map κ admits a hyperbolic trapped set. In all cases the
cutoff �(h̄) was a sharp projector (in position or momentum). The first such map was, to
my knowledge, the ‘kicked rotor’ with absorption [8]; it was already aimed at studying the
statistics of quantum lifetimes, defined in terms of the spectrum {λj (h̄)} of M(h̄):

e−τj (h̄)/2 = |λj (h̄)|, j = 1, . . . , rank(M(h̄)). (38)
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Figure 6. Left: schematic representation of a Poincaré section Σ near the trapped set KE . Right: the
induced return map κ = (κij ) on Σ. Vertical/horizontal axes indicate the stable/unstable directions,
and the trapped set K is sketched by the black squares.

This formula shows that the ‘long-living’ spectrum of M(h̄), say {λj (h̄)} ∩ {|λ| � r}
for some fixed r > 0, is seen as a model for the resonances of P(h̄) in some box
[E − Ch̄, E + Ch̄] − i[0, γ h̄], with the connection r ≡ e−γ . Further studies lead to the
verification of the fractal Weyl law [55, 56, 71] (see section 6.1).

Such discrete time models have several advantages. Firstly, the long time dynamics of the
classical map κ is sometimes easy to analyse; this is the case for instance for the open baker’s
map studied in [55, 56], which we will explicitly describe in section 6.1.1. Secondly, the
corresponding open quantum maps are often very explicit matrices, which can be numerically
diagonalized, much more easily than Schrödinger operators like Pθ(h̄). A variant of the
quantum baker’s map even lends itself to an analytical treatment (see section 6.1.2). Third,
the quantum monodromy operators establish a connection between a family of open quantum
maps and a ‘physical’ scattering flow. (see section 5.4). To explain the construction of the
monodromy operators we need to recall the definition of Poincaré sections associated with a
Hamiltonian flow.

5.3. Poincaré sections

We are back to the setting of section 2, with a Hamiltonian flow 	t on T ∗
R

d (more generally
T ∗X for some manifold X). Given E > 0 a noncritical energy, a Poincaré section near the
trapped set KE is a finite union of hypersurfaces Σ = �I

i=1�i in p−1(E), uniformly transverse
to the flow, such that for each point ρ sufficiently close to KE the trajectory 	t(ρ) intersects
Σ (in the future and the past) after a uniformly bounded time (figure 6). This property allows
one to define

a return map κ : V ⊂ Σ → κ(V ) ⊂ Σ, and a return time τ : V ⊂ Σ → R+,

where V is a neighbourhood of the reduced trapped set

K def= KE ∩ Σ = �I
i=1Ki .

Since the flow 	t is symplectic on T ∗X, the Poincaré section Σ can be given a natural
symplectic structure, which is preserved by κ . Note the dimensional reduction: Σ has
dimension 2d − 2. The flow 	t in the neighbourhood of KE is fully described by the pair
(κ, τ ). In particular, κ �K is hyperbolic if 	t �KE

is so. Analysing the ergodic properties
of such a hyperbolic map has proved easier than directly analysing the flow. Indeed, the
thermodynamic formalism, which allows us to construct nontrivial invariant measures, and
analyse their ergodic properties, is based on such a Poincaré reduction [10].

Since Σ is a union of disjoint hypersurfaces �i locally equivalent with T ∗
R

2d−2, the map
κ can be seen as a collection of symplectic maps κij : Dij ⊂ �j �→ �i , where Dij consists
of the points in �j , the trajectories of which next intersect �i (figure 6). An open quantum
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map associated with κ is then an operator valued matrix M(h̄) = (Mij (h̄))i,j=1,...,I , such
that Mij (h̄) = 0 if Dij = ∅, otherwise Mij (h̄) is an open map quantizing κij . The operator
M(h̄) acts on L2(Rd−1)I , and satisfies a vector-valued Egorov property similar to (32), where
a = (ai)i=1,...,I and b = (bi)i=1,...,I are observables on Σ. One can also consider open quantum
maps of finite rank M(h̄), as in (36).

5.4. Quantum monodromy operators

It turns out that, under a mild condition on the trapped set KE , there exists a family of quantum
maps (more precisely, of FIOs) associated with the Poincaré map κ , which allows to directly
recover the resonance spectrum of the quantum Hamiltonian P(h̄).

Theorem 6 ([53, 54]). Let P(h̄) be as in theorem 3, and assume that the trapped set set KE

is totally disconnected transversely to the flow8.
Alternatively, take P(h̄) = − h̄2�

2 the Dirichlet Laplacian outside J convex obstacles
satisfying the no-eclipse condition, and take E = 1/2.

Consider a Poincaré section Σ = �I
i=1�i transverse to 	t near KE . Then, there exists a

family of quantum monodromy operators (M(z, h̄))z∈D(E,Ch̄) on L2(Rd−1)I , with the following
properties:

(i) M(E, h̄) is an open quantum map quantizing κ , of finite rank � h̄−d+1.

(ii) M(z, h̄) depends holomorphically in z ∈ D(E, Ch̄), and

M(z, h̄) = M(E, h̄) Oph̄(e
−i(z−E)τ/h̄) + O(h̄1−ε), (39)

where τ is the return time (smoothly continued outside V ).

(iii) The resonances of P(h̄) in D(E, Ch̄) are the roots (with multiplicities) of the equation

det(1 − M(z, h̄)) = 0. (40)

The properties (i), (ii) ensure that for all z ∈ D(E, Ch̄), M(z, h̄) remains an FIO associated
with κ , but for z 
∈ R it is no more unitary near K.

The crucial property (iii) exhibits the connection between the spectrum of M(z, h̄) and
the resonances of P(h̄). It has transformed a linear spectral problem (Pθ (h̄) − z)u = 0,
into a problem M(z, h̄)v = v of finite rank, depending nonlinearly in z. The construction
of the monodromy operators M(z, h̄) is not unique, and rather implicit. Roughly speaking,
each component Mij (z, h̄) is obtained by expressing the microlocal solutions to the equation
(Pθ (h̄) − z)u = 0 near Kj in terms of their ‘local transverse data’ vj ∈ L2(Rd−1), using a
choice of coordinates near �i . The microlocal solutions u can be continued up to �i , where
they are analysed in terms of local transverse data vi . Mij (z, h̄) is defined as the operator
mapping vj to vi : this explains the denomination of ‘monodromy operator’ (see figure 7).
The main technical difficulty consists in transforming this microlocal characterization into a
globally defined, finite rank operator.

A monodromy operator had been constructed, and used to study the resonance spectrum
of a scattering operator P(h̄), in the case where the trapped set consists of a single hyperbolic
orbit [31]. In a different framework, a microlocal form of monodromy operator associated
with an isolated periodic orbit was used in [77] to compute the contribution of this orbit to
Gutzwiller’s semiclassical trace formula.
8 This condition is probably generic within the family of chaotic scattering flows we are considering. It can be relaxed
a bit, see [53].
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Figure 7. Schematic construction of the monodromy operator Mij (z, h̄), by ‘following’ a
microlocal solution of (P (h̄) − z)u = 0 from a neighbourhood of �j to a neighbourhood of �i .

In the physics literature, Bogomolny [5] formally defined a ‘quantum transfer operator’
T (E, h̄) associated with the Hamiltonian P(h̄) of a closed system: this operator quantizes the
return map through a certain spatial hypersurface, and in the semiclassical limit the eigenvalues
of P(h̄) are (formally) given by the roots of the equation det(1−T (E, h̄)) = 0. This approach
was adapted by Doron and Smilansky to study the spectrum of closed Euclidean billiards [25],
and was also implemented in a nonsemiclassical setting by Prosen [65].

In the case of the scattering by J convex obstacles, similar operators were constructed
[30, 37]. Here the section Σ is ‘selected’ by the setting: it consists in the union of the cotangent
bundles of the obstacle boundaries, �i = T ∗∂Oi . To each obstacle Oi one associates a Poisson
operator Hi(k) : C∞(∂Oi ) �→ C∞(Rd \ Oi ), such that

∀v ∈ C∞(∂Oi ),




(� + k2)Hi(k)v = 0 on R
d \ Oi ,

Hi(k)v is outgoing,

(Hi(k)v) �∂Oi
= v.

Then, the scattering problem by the J obstacles can be expressed in terms of the ‘quantum
boundary map’ M(k) = (Mij (k))i,j=1,...,J defined by

Mij (k) : C∞(∂Oj ) �→ C∞(∂Oi ),

{
Mij (k) = 0, i = j

Mij (k) v = (Hj (k) v) �∂Oi
i 
= j.

In the high-frequency limit k → ∞, and away from the ‘glancing orbits’, the operator
Mij (k) has the structure of an open quantum map associated with the boundary map of
the billiard flow. In [54] we show how to reduce these boundary operators M(k) to
finite rank monodromy operators M(k), which have the properties expressed in the above
theorem (as explained in section 3, the correspondence with the semiclassical formalism reads
h̄ ∼ |k|−1, z = h̄2k2/2 = 1/2 + O(h̄)).

6. From fractal Weyl upper bound to fractal Weyl law?

In our attempts to address the question (1) in section 1.2, we have so far only obtained upper
bounds for the number of resonances. Lower bounds are more difficult to derive, due to the
fact that the spectral problem we are dealing with is effectively non-self-adjoint. Upper bounds
are generally obtained by first counting the singular values of some operator related to Pθ(h̄),
which is a self-adjoint spectral problem; after controlling the distribution of singular values



Invited Article R143

one can then apply Weyl’s inequalities9 to bound (from above) the number of eigenvalues
of Pθ(h̄).

The difficulty to obtain a lower bound (that is, ensure that there are indeed about as
many eigenvalues as what is permitted by the upper bound) may be traced to the possible
high sensitivity of the spectrum w.r.t perturbations. So far, the only access to lower bound is
provided by some form of Gutzwiller’s (or Selberg’s) trace formula. Using this strategy, lower
bounds on the number of resonances have been obtained in the case of convex co-compact
manifolds X = �\H

n+1 (we use the notations of section 3.2).

Theorem 7 ([34, 62]). Let X = �\H
n+1, with � a convex co-compact and torsion-free

subgroup. Then, for any small ε > 0, there exists γε > 0 such that10

�{sj ∈ i[0, r] + [−γε, n/2]} = �(r1−ε) when r → ∞.

The proof of this lower bound uses an exact, Selberg-like trace formula, which connects the
resonance spectrum on one side, with a sum over the closed geodesics on the other side.
Applying a well-chosen test function on this trace formula, one exhibits a singularity on the
‘geodesics side’, which implies (on the ‘spectral side’) the presence of many resonances.

We note a gap between this lower bound and the upper bound of theorem 5, which implies
that the left hand side is bounded above by Cγ r1+δ , with δ > 0 the dimension of the limit set.
In [34] the authors conjecture that the actual number of resonances in the strip is of the order
of the fractal upper bound. Similar conjectures for various other systems can be split into two
forms.

Definition 6.1. Let P(h̄) be a Schrödinger operator as in (21), and assume that for some E > 0
the trapped set KE is a hyperbolic repeller of pure Minkowski dimension 1 + 2ν. We define
the weak, respectively strong form of fractal Weyl law conjecture as follows.

(i) Weak form. For C, γ > 0 large enough (for a very weak form, take C ∼ δh̄−1), there
exists Cγ > 0, h̄C,γ > 0 such that

�{ResP(h̄) ∩ [E − Ch̄, E + Ch̄] − i[0, γ h̄]} � C Cγ h̄−ν, ∀h̄ < h̄C,γ .

(ii) Strong form. There exists an increasing function F : R+ �→ R+, nonidentically vanishing,
such that, for any C, γ > 0,

�{ResP(h̄) ∩ [E − Ch̄, E + Ch̄] − i[0, γ h̄]} = C F(γ ) h̄−ν + o(h̄−ν),

when h̄ → 0. (41)

In order to test either form of the conjecture, resonance spectra have been numerically computed
for the three types of systems: the 3-bump potential [44, 45] or a modified Hénon–Heiles
Hamiltonian [66], the 3-disc scattering on the plane [47] (see figure 8), or a scattering by 4
spheres on the three-dimensional space [26], and several convex co-compact surfaces [35]11.
In all cases, the counting was compatible with the fractal Weyl law, although the convergence to
the asymptotic behaviour was difficult to ascertain. More recently, attempts have been made to
extract the long-living resonances of the 3-disc scattering system from an experimental signal
on a microwave (quasi)-2D billiard by the Marburg group [43]. Yet, computing high-frequency
resonances in such an experiment presents many difficulties: a noisy and discrete signal, the

9 Let (λi) (respectively (si )) be the eigenvalues (respectively singular values) of a compact operator, ordered by
decreasing moduli. Then, for any j � 1,

∑j

i=1 |λi | � ∑j

i=1 si .
10 The notation f (r) = �(g(r)) means that f (r)

g(r)
takes arbitrarily large values when r → ∞.

11 In the last two cases, resonances were obtained by computing the zeros of the Selberg/Gutzwiller zeta functions:
this procedure exactly provides the resonances in the convex co-compact case, while in the obstacle case the zeros are
believed to be good approximations of the actual resonances.
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Figure 8. Check of the fractal Weyl law for the scattering by 3 discs of radii a located in an
equilateral triangle of sidelength r , for 3 values of the ratio r/a. In each case a fractal exponent
ν(C) was extracted from counting the resonances in a long strip of depth C for various values of
C larger than 2γcl , and compared with the geometrical exponent ν (horizontal lines). Reprinted
figure with permission from [47]. Copyright 2003 by the American Physical Society.

presence of antennas perturbing the ideal system, the difficulties to reach sufficiently high
frequencies, and the delicate implementation of the harmonic inversion method used to extract
the ‘true’ resonances.

The fractal Weyl conjecture was actually much easier to test numerically for the toy model
of open quantum maps.

6.1. Fractal Weyl law for open quantum maps

As explained above, in the quantum map framework the distribution of long-living states is
studied by fixing some radius r > 0, and counting the number of eigenvalues λj (h̄) of M(h̄) in
the annulus {r � |λ| � 1}. This task is easy to implement numerically for operators (matrices)
M(h̄) of reasonable dimensions. Schomerus and Tworzydło implemented it on the kicked
rotor [71] in a strongly chaotic régime12, with a sharp opening along a vertical strip. A very
good agreement with the strong fractal Weyl law was observed: most eigenvalues accumulate
near λ = 0, while a small fraction of them have moduli � r . Their numerics hint at the
existence of a nontrivial profile function r ∈ (0, 1] �→ F(r) � 0, such that

∀r > 0, �{SpecM(h̄) ∩ {|λ| � r}} = F(r) h̄−ν + o(h̄−ν), (42)

with ν = dim K/2.

6.1.1. The open baker’s map. The spectra of several types of quantum open baker’s maps
were analysed in [52, 55, 56]. Let us recall the definition and basic properties of this family of
chaotic maps on T

2.
A baker’s map κ̃ is defined by splitting T

2 into D � 2 ‘Markov rectangles’ Ri = {xi �
x < xi+1, 0 � ξ < 1}, i = 0, . . . , D − 1, x0 = 0, xD = 1, and mapping the points in Ri as

12 As far as I know, the chaoticity of the kicked rotor has not been proved rigorously, but seems plausible in view of
numerics.
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Figure 9. Sketch of the symmetric 3-baker’s map, with a hole in the central rectangle.

follows:

(x, ξ) ∈ Ri �→ κ̃(x, ξ) =
(

x − xi

�i

, �iξ + xi

)
, with �i

def= xi+1 − xi. (43)

Since �i < 1, the stable/unstable directions are the vertical/horizontal axes. This map
is invertible, but discontinuous along the boundaries ∂Ri . There is an obvious symbolic
dynamics: to a point ρ = (x, ξ) one associates the sequence · · · ε−1 · ε0ε1 · · ·, εj ∈
{0, . . . , D − 1}, such that κ̃j (ρ) ∈ Rεj

for each time j ∈ Z. Conversely, to any bi-infinite
sequence corresponds a point ρ, and this map is ‘almost’ one-to-one13.

In order to take advantage of this symbolic dynamics, the opening T
2 \ V was chosen to

consist in the union of D − n of the Markov rectangles, 0 < n < D. The trapped set K is then
easy to describe (see figure 11): it consists in the sequences ε with all εj ∈ I = {i1, . . . , in} the
set of ‘kept rectangles’. This set is the Cartesian product Can × Can, where Can is a Cantor
set on the unit interval; the Hausdorff or Minkowski dimension ν of Can is explicitly given by
the only real root of the equation

�s
i1

+ �s
i2

+ · · · + �s
in

= 1.

For instance, if we keep n rectangles in the symmetric D-baker’s map, we get ν = log n

log D
.

Assume the �i are rational. For quantum dimensions N = (2πh̄)−1 such that N�i

are all integer, the ‘closed map’ κ̃ is quantized according to the recipes of Balasz-Voros or
Saraceno [4, 67], namely by the unitary matrix

U(h̄) = UN = F−1
N




FN�0

. . .

FN�D−1


 ,

where F∗ is the ∗-dimensional discrete Fourier transform. The quantization of the open map
κ is simply obtained by projecting out the D − n blocks FN�j

corresponding to the opening.
A strong form of fractal Weyl law was observed for an asymmetric baker’s map (see

figure 10). For symmetric baker’s maps (that is, taking xi = i/D, see figure 9), the fractal
scaling seems satisfied, but we observed that different profile functions occurred along different
geometric sequences (N = No Dk)k�0, a manifestation of the number theoretic properties of
such symmetric maps. Apart from these specific number theoretic issues, the form of the profile
function for both the kicked rotor and the baker maps looks similar: F(r) decays regularly
from r ≈ 0 and approximately vanishes around some value rmax < 1, with a ‘dip’ before rmax,
showing a (mild) peak of the density around some value rpeak � rmax. The position of this
peak seems close to the classical decay rate, rpeak ≈ e−γcl/2 [72].

13 The defect of injectivity comes from points with sequences ending by infinite strings of 0, on either end. For
instance, the point (0, 0) can be represented by the constant sequences 0 or D − 1.
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Figure 10. Rescaled counting function for an asymmetric (left) and a symmetric (right) open
3-baker opened by removing the central rectangle (the fractions in the title denote the contraction
factors �0, �2). In both cases the rescaling consists in dividing the counting function by the factor
Nν , where ν = dim(K)/2. Reprinted from [52].

A random matrix model Ansatz was proposed in [71] to account for the profile function
F(r), hinting at a certain ‘universality’ of this profile, but the validity of this Ansatz remains
unclear.

6.1.2. A solvable model satisfying the fractal Weyl law A ‘toy-of-the-toy’ model was studied
in [55, 56], in the form of a nonstandard quantization of the symmetric D-baker’s map. In
the case of quantum dimension N = Dk , this quantization amounts to replacing the discrete
Fourier transform FN by the Walsh–Fourier transform, that is the Fourier transform on (ZD)k .
This quantization MN = MDk of the open baker’s map then admits a very simple tensor product
representation on the Hilbert space HN ≡ (CD)⊗k .

This property allows us to explicitly compute the spectrum of MN : the latter is given in
terms of the D × D matrix �D , obtained by removing from the inverse Fourier transform F ∗

D

the (D − n) columns corresponding to the opening. Generally, this matrix has a (D − n)-
dimensional kernel and n nontrivial eigenvalues, which are the eigenvalues of the n×n square
matrix �̃D extracted from �D . This results in nk = Nν nontrivial eigenvalues (counted with
multiplicities) for MN , and proves the strong form of fractal Weyl law (42). The profile function
F(r) has the form of a step function at some value rc = | det �̃D|1/n.

Yet, we noted in [55, remark 5.2] that for some choices of parameters14, the spectrum of
�̃D may present an ‘accidental’ extra kernel. In that case, the counting function is O(h̄−ν ′

)

with ν ′ < dim(K)/2, so even the weak fractal Weyl law fails. This accidental degeneracy
seems due to the very special tensor product structure of the Walsh quantization, and should
be nongeneric. It was checked [29] that this accidental degeneracy disappears if we modify
the matrix MN by multiplying it by a diagonal matrix of random, or even deterministic phases.
Nevertheless, this problem may indicate that any attempt to prove the fractal Weyl law in
any setting might require some genericity assumption, or the introduction of some random
parameters in the system.

14 It is the case, for instance, if we kill the second and fourth rectangles from the symmetric 4-baker: in that case, MN

has a single, simple nontrivial eigenvalue. One can cook up an even more dramatic example (with D = 16, n = 2),
for which Spec(MN) = Spec(�̃D) = {0}.
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10

1

Figure 11. Construction of the trapped set (right) and its incoming (left) and outgoing (centre) tails
for the symmetric 3-baker. Each colour corresponds to a specific escape time (in the futur or past)
n = 1, . . . , 4, the trapped set (and its tails) being approximated by union of black intervals/squares.

7. Interpretation of the fractal Weyl upper bound for open quantum maps

After reviewing the numerical (and some analytical) results regarding the optimality of the
fractal Weyl upper bound, let us present some heuristics for this upper bound in the case of
open quantum maps, as well as a rigorous proof for smooth open quantum maps. Both use a
reduction of the dynamics to an effective propagator of ‘minimal rank’, which accounts for
the quantum dynamics near the trapped set.

7.1. Heuristic explanations

A semiclassical mechanism explaining the fractal Weyl upper bound for an open chaotic map
κ has been put forward in [71]. The idea is that the (essential) generalized kernel of M(h̄)

is larger than its kernel (associated with the opening), due to the presence of (approximate)
Jordan blocks reflecting the transient classical dynamics of the points which wander through
V before escaping.

For any n � 1, consider the sets Dn ∈ T
2 of points escaping before the time n. This set

consists of a union of finitely many connected components Dn,j , most of which look like ‘thin
tubes’ aligned along the stable manifolds when n � 1 (see figure 11, left). The widths of the
thin tubes decay like e−nλ, where λ is the Lyapunov exponent. For fixed n, one can associate
with each component Dn,j a quantum subspace Hh̄,n,j of dimension (2πh̄)−1Vol(Dn,j ). The
subspaces Hh̄,n,j are semiclassically almost orthogonal to each other, so that Hh̄,n = ⊕

j Hh̄,n,j

has dimension (2πh̄)−1Vol(Dn).
The semiclassical evolution implies that any state u ∈ Hh̄,n will be absorbed when iterated

up to time n:

‖M(h̄)nu‖ = O(h̄∞)‖u‖, ∀u ∈ Hh̄,n.

This property implies that the long-living eigenvalues of M(h̄) are essentially the same as those
of M(h̄) �H⊥

h̄,n
, so their number is at most (2πh̄)−1(1 − Vol(Dn)).

When n � 1 the set �Dn of the points with escape times > n is a small neighbourhood
of the incoming tail K− (see figure 11), and

Vol(�Dn) ∼ e−nγcl ,
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Figure 12. Left: spectrum of the quantum open baker’s map (D = 3 symmetric, N = 81), by
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length � 5, and solving (45) (black circles). Right: the corresponding radial countings (compared
with figure 10, the two axes should be exchanged). Reprinted figure with permission from [59].
Copyright 2009 by the American Physical Society.

where γcl > 0 is the classical decay rate. To obtain a fractal upper bound, one needs to push
the time n to infinity in a h̄-dependent way. As long as n is smaller than the Ehrenfest time

TEhr ∼ log 1/h̄

λmax
, where λmax is the largest expansion rate, (44)

the tubes Dn,j have volumes � h̄, which means that one can associate nontrivial quantum
subspaces Hh̄,n,j with Dn,j . Ignoring problems due to the boundaries of Dn,j , let us push the
above argument up to n = TEhr : the bound on the number of long-living eigenvalues then
reads

(2πh̄)−1Vol(�DTEhr
) ∼ h̄−1+ γcl

λmax .

This argument is not optimal if the hyperbolicity is not homogeneous, the exponent 1 − γcl

λmax

being larger than ν = dim(K)/2. Still, the above reasoning clearly exhibits the connection
between resonance counting and small (h̄-dependent) neighbourhoods of the trapped set K (or
its tail K−). It also shows the (approximate) Jordan structure of M(h̄), quantum analogue of
the transient dynamics before TEhr . An alternative approach to the problem was adopted by
Novaes et al [59]. There the quantum dynamics was projected by hand on a ‘minimal’ quantum
subspace microlocalized near the trapped set, resulting in an effective spectral problem of
smaller dimension. The minimal subspace was generated by a certain number (∼Ch̄−ν) of
(left and right) scar functions uL

n , uR
n , that are quasimodes of M(h̄), respectively M(h̄)∗,

microlocalized along periodic orbits of periods T � TEhr . The authors used these scar
functions to construct the generalized eigenvalue problem

det(E(λ)) = 0, Emn(λ)
def=〈uL

n , (I − λ−1 M(h̄))uR
m〉, (45)

and checked that the solutions of this problem accurately approximated the long-living
spectrum of M(h̄) (see figure 12).

The operator E(λ), representing the quantum dynamics on K, is an (approximate) effective
propagator for the quantum map M(h̄), and can be considered to be of minimal rank, meaning
that no further reduction seems possible. Another advantage of this matrix Emn(λ) is its
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sparsity: since quasimodes are localized near periodic orbits, each quasimode uR
m (respectively

iterated quasimode M(h̄)uR
m) interferes only with a few quasimodes uL

n .

7.2. A proof of the fractal Weyl upper bound

A rigorous proof of the fractal upper bound for smooth open quantum maps15 can be obtained
using similar ideas. Note that this smoothness condition excludes the open quantum maps
used in most numerical studies [57, 71, 72].

Theorem 8 ([54]). Consider κ : V �→ κ(V ) a (smooth) open map such that its trapped set
K � V is a hyperbolic repeller of upper Minkowski dimension 2ν, and a corresponding smooth
quantum map M(h̄), more generally a FIO M(α, h̄) with symbol α ∈ C∞

c (V ).
Then, for any r > 0 and any small ε > 0, there exists Cr,ε, h̄r,ε > 0 s.t.

∀ h̄ < h̄r,ε, �{Spec(M(h̄)) ∩ {|λ| � r}} � Cr,ε h̄−ν−ε .

If K is of pure dimension, one can take ε = 0.
The same estimate holds for M(h̄) an open quantum map of finite rank.

The proof is an ‘exponentiation’ of the case of Schrödinger operators presented in section 4.2.
One constructs an escape function G(x, ξ) on V ∪ κ(V ), such that

G ◦ κ − G � 1 outside an ε-neighbourhood Kε of the trapped set K. (46)

To ensure that G is a ‘nice’ symbol, this neighbourhood must have a width ε � h̄1/2. One
then quantizes this escape function into an operator Gw, and uses the latter to conjugate the
quantum map M(h̄) into

MtG(h̄)
def= e−tGw M(h̄) etGw

, t � 1.

The Egorov theorem and the pseudodifferential calculus show that MtG(h̄) is still a FIO, but
with a modified symbol αtG ≈ α e−t (G◦κ−G). For t � 1 the escape property (46) ensures that
MtG(h̄) strongly suppresses the states microlocalized outside Kε. One can thus construct a
quantum subspace Hε of dimension ∼ Ch̄−ν microlocalized on Kε, such that

‖(I − �ε)MtG‖ � 1, (47)

where �ε is the orthogonal projector on Hε.
From this remark, one can easily show that the number of long-living singular values of

MtG is O(h̄−ν), and obtain a similar bound for its eigenvalues using Weyl’s inequalities.
We present an alternative argument, which has the advantage to apply as well to the case

of monodromy operators. The property (47) shows that, for any λ ∈ C with |λ| > r , the
operator

E(λ)
def=(I − λ−1�εMtG) − λ−2 �εMtG(I − �ε)MtG[I − λ−1(I − �ε)MtG]−1 (48)

is well-defined, and the second term on the RHS is a small correction compared with the first
one. Note the similarity of the first term with the operator in (45). A little algebra shows that
the long-living eigenvalues of MtG(h̄) can be exactly obtained by solving

det(E(λ)) = 0, |λ| � r. (49)

This confers to E(λ) the role of an effective Hamiltonian for the quantum map M(h̄). This
operator ‘minimally’ captures the long time quantum evolution, which is ‘supported’ on K.
Applying Jensen’s formula, one then shows that the number of roots of (49) is bounded from
above by dim Hε ∼ Ch̄−ν .

15 See section 5.2: the map κ is smooth, and the quasiprojector �(h̄) = Oph̄(α) is a ‘nice’ pseudodifferential operator.
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The same argument can be used to count the roots of det(I − M(z, h̄)), with M(z, h̄) the
quantum monodromy operators of theorem 6. One defines an effective Hamiltonian E(z) as
in (48), replacing everywhere λ−1M(h̄) by M(z, h̄) [54]. This leads to a proof of theorems 2,
and an alternative proof for theorems 4 and 5 (under the assumption that the trapped set KE is
totally disconnected transversely to the flow).

8. Resonance gap for open quantum maps and monodromy operators

Let us now turn to question (2), namely the criterion for a resonance gap expressed in theorems 1
and 3. Below we will state the corresponding result for open quantum maps and quantum
monodromy operators, which can also be used to prove these theorems.

Theorem 9 (Spectral gap for open quantum maps). Let κ : V � Σ �→ κ(V ) be a smooth
open map with hyperbolic trapped set K, and M(α, h̄) an FIO associated with κ with symbol
α ∈ C∞

c (V ) nonzero near K.
Then, for any small enough ε > 0, there exists h̄ε > 0 such that the spectral radii of the

FIOs M(α, h̄) satisfy

∀ h̄ � h̄ε, rsp(M(α, h̄)) � exp{P(−ϕ+/2 + log |α|, κ �K) + ε}. (50)

Here ϕ+(ρ) ∈ C(K) is the logarithm of the unstable Jacobian of κ , and P(•) is the topological
pressure. The case of open quantum maps corresponds to taking α ≡ 1 on K.

The same bound holds if we replace M(α, h̄) by a finite rank truncation M(α, h̄) as in
section 5.2.

We note that the norm estimate (34) implies the bound

rsp(M(α, h̄)) � ‖α‖∞ + O(h̄). (51)

This bound may be sharper than (50), depending on both κ and α. For instance, if α ≡ 1
near K, then (50) is sharper than (51) iff the pressure P(−ϕ+/2, κ �K) is negative, a condition
satisfied only provided K is ‘thin enough’.

Before sketching the proof of this theorem in the next section, let us explain how it can be
used to prove theorems 1 and 3. Equation (39) shows that the monodromy operator M(z, h̄)

associated with a scattering operator P(h̄) (or an obstacle problem) has the form of an FIO
associated with a Poincaré return map κ , with symbol

αz(ρ) = e−iζ τ(ρ) + O(h̄) near K, ζ
def= z − E

h̄
,

where τ(ρ) is the return time. So, the relevant pressure is P(−ϕ+/2 − Imζ τ, κ �K).
Let us assume that the root s0 of the equation

P(−ϕ+/2 − sτ, κ �K) = 0 satisfies s0 < 0. (52)

Then, if we take Im ζ � s0 + ε̃ for some ε̃ > 0, the pressure P(−ϕ+/2−Imζ τ) will be negative,
and the above theorem implies that, for h̄ small enough, rsp(M(z, h̄)) < 1. In turn, this bound
implies (through theorem 6) that there are no resonance in the strip D(E, Ch̄)∩{Imζ > s0 + ε̃}.
Finally, the theory of Axiom A flows [10] shows that s0 is equal to the topological pressure of
the flow:

s0 = P(−ϕ+
	/2, 	t � KE),

where ϕ+
	 is the unstable Jacobian of the flow, equation (13). Hence, the condition s0 < 0 is

equivalent with the conditions in theorems 1 and 3.
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8.1. Proof of the resonance gap in terms of the topological pressure

The proof of the spectral bound (50) is analogous to the case of the Schrödinger flow treated
in [57]. Let us assume that the trapped set K is totally disconnected, which is the case if
we want to apply the result to monodromy operators. This restriction is not necessary, but it
simplifies the proof a little.

To obtain an upper bound on the spectral radius of M(α, h̄) (which we will denote by
M(h̄) from now on), the usual strategy is to estimate ‖M(h̄)n‖, with n � 1. Inspired by
classical dynamical methods, we will proceed by splitting M(h̄)n into many components,
each one being associated with a ‘pencil’ of classical trajectories. The topological pressure
will then naturally arise when summing over all the ‘pencils’.

Let us be more precise. Using the assumption that K is totally disconnected, for any small
ε > 0 we may consider a Markov cover (Va)a∈A1 of the trapped set, such that the open sets Va

have diameters at most ε. The Markov property means the following: the sets Va are disjoint,
and from them we may construct the transition matrix

Ta′a =
{

1, Va ∩ κ−1(Va′) 
= 0,

0, otherwise.

Then, for any sequence of symbols α = α0α1 · · ·αn−1, the set

Vα
def= Vα0 ∩ κ−1(Vα0) ∩ · · · ∩ κ−n+1(Vαn−1)

is nonempty if and only if, at all steps j = 0, . . . , n − 2, one has Tαj+1αj
= 1. The set Vα

consists of the initial points ρ which share the same ‘symbolic history’ for times 0 � j � n−1;
it makes up a ‘pencil’ of trajectories.

To each set Va we associate the weight

wa = max
ρ∈K∩Va

e−ϕ+(ρ)/2 |α(ρ)|, (53)

and consider the weighted transition matrix T w
a′a = Ta′a wa . The topological pressure appearing

in (50) is then approximated by the largest (Perron–Frobenius) eigenvalue of the matrix T w:

P(−ϕ+/2 + log |α|, κ �K) = lim
ε→0

log λPF (T w). (54)

We may complete this Markov cover into an open cover of V ,

V ⊂ ∪a∈AVa, A = A1 ∪ A+ ∪ A−, (55)

such that, for some time no, all sets Va− , a− ∈ A− (respectively Va+ , a+ ∈ A+) escape in the
hole before the time no in the backward (respectively forward) evolution, see figure 13. To
the cover (Va) we associate a smooth partition of unity of the phase space Σ, namely a finite
collection of cutoffs χa ∈ C∞

c (Va, [0, 1]), satisfying∑
a∈A

χa ≡ 1 in some neighbourhood of V,

and add a component in the hole, χ∞ = 1 − ∑
a∈A χa to get a full partition of unity. This

smooth partition of unity is then quantized into a quantum partition

Id =
∑

a∈A∪∞
Oph̄(χa),

which is used to split the iterated propagator M(h̄)n into components:

M(h̄)n =
∑
|α|=n

Mα, Mα = Mαn−1 Mαn−2 · · ·Mα0 , Ma
def= M(h̄) Oph̄(χa).
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Figure 13. Sketch of the open cover (Va)a∈A1 of the trapped set (pink), completed by the open sets
(Va)a∈A+ (cyan) and (Va)a∈A− (green) away from K. Black lines indicate the tails K± and black
circles the trapped set.

8.1.1. Analyzing the components Mα. The advantage of this decomposition is to obtain an
upper bound for the individual components Mα which is sharper than the obvious bound

‖Mα‖ � (‖α‖∞ + O(h̄))n. (56)

For this, we use our knowledge of the classical dynamics. From Egorov’s theorem, we know
that for any finite sequence α, the element Mα = O(h̄∞) unless the set Vα 
= ∅; the sequence
α is then called admissible. Also, any sequence containing a = ∞ leads to a negligible term.

As a result, since the sets Va− (respectively Va+ ) escape before the time n0 in the past
(respectively in the future), we deduce that for any n > 2n0 the only nonnegligible components
Mα must be of the form

α = α+α(1)α−, |α−| = |α+| = n0, α(1) ∈ A
n−2n0
1 admissible.

In view of this property, for n � 1 we may restrict ourselves to the admissible sequences

α ∈ An
1, that is replace M(h̄) byMA1

def= ∑
a∈A1

Ma .

8.1.2. Acting on a Lagrangian state: a hyperbolic dispersive estimate. We now want to use
the hyperbolicity of κ near K. If we apply the FIO Mα0 to a Lagrangian16 state u0 supported
by a Lagrangian manifold �α0 transverse to the stable direction E−, the state will expand along
the unstable direction. If the resulting state spreads outside Vα1 , cutting it through Oph̄(χα1)

will reduce its norm by a finite factor, while the output state will again be a WKB state along a
Lagrangian �α1α0 transverse to E−. This phenomenon repeats itself, and leads to the following
hyperbolic dispersive estimate:

‖Mαu0‖ � C wα, wα =
n−1∏
j=0

wαj
. (57)

Because the unstable Jacobian is bounded below, ϕ+(ρ) � �+ > 0, the weights satisfy

wa � e−�+‖α‖∞,

so after some time the estimate (57) becomes sharper than the bound (56).

16 If the Lagrangian � = {(x, dS(x))} for the generating function S(x), a Lagrangian (or WKB) state associated with
� has the form u0(x) = f (x) eiS(x)/h̄, with f ∈ C∞

c .
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This type of estimate first appeared in the work of Anantharaman on Anosov flows
[2]. It was extended to the case of scattering problems with a hyperbolic repeller in
[57, proposition 6.3] (see also [51, section 4]), and to situations with a nonconstant symbol α

in [68].

8.1.3. Putting the pieces together. One applies the triangular inequality to get a bound on
the sum of terms made up by Mn

A1
:

‖Mn
A1

u0‖ �
∑

α∈An
1 admis.

wα =
∑

a′,a∈A1

[(T w)n]a′a,

where we use the weighted transition matrix. For n � 1, the high power of the matrix T w

is dominated by its Perron–Frobenius eigenvalue, which, according to (54), is close to the
topological pressure, so for some ε̃ > 0 we obtain,

‖Mn
A1

u0‖ � C en(P(−ϕ+/2+log |α|)+ε̃). (58)

So far we have considered the action of the propagator on very particular Lagrangian states
u0. However, any state u microlocalized in Vα0 can be expanded into a ‘basis’ (uζ )ζ∈W of such
WKB states:

u =
∫

W

dζ

(2πh̄)(d−1)/2
û(ζ ) uζ + O(h̄∞), (59)

with W a bounded domain in R
d and

∫
W

dζ |û(ζ )| = O(1). Applying Mn
A1

to the
decomposition (59) and adding the contributions of the ‘tails’ α±, we obtain for n � 1
the norm estimate

‖M(h̄)n‖ � C h̄−d/2 en(P(−ϕ+/2+log |α|)+ε̃).

Crucially, the above estimate is valid for ‘large logarithmic times’ n ∼ ε̃−1 log(1/h̄), for which
we have h̄−(d−1)/2 � enε̃ . We thus obtain

‖M(h̄)n‖ � exp{n(P(−ϕ+/2 + log |α|) + 2ε̃)}, (60)

which proves the spectral bound (50). �

8.2. Is the pressure bound optimal?

As shown above, the pressure bound (60) is obtained by evolving Lagrangian states u0 through
the components Mα, resulting in the hyperbolic dispersive estimate (57), which is generally
sharp. Then we applied the triangular inequality to bound the norm of Mn

A1
u0, and got the

bound (58). The question is: how much does one ‘lose’ through this triangular inequality?
The square norm of Mn

A1
u0 can be written as〈 ∑

α∈An
1 admis.

Mαu0,
∑

α∈An
1 admis.

Mαu0

〉
.

If the states Mαu0 were orthogonal to each other, this scalar product would be given by a
diagonal sum∑
α∈An

1 admis.

‖Mαu0‖2 � C
∑

α∈An
1 admis.

w2
α � exp{n (P(−ϕ+ + 2 log |α|) + ε̃)}. (61)

The bound is sharper than (58), because for any nonzero test function f one has P(2f ) <

2P(f ). For instance, in the case of an open quantum map, α ≡ 1 near K, the pressure
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P(−ϕ+) = −γcl is always negative, while P(−ϕ+/2) is negative only provided K is ‘thin
enough’.

Two states Mαu0, Mα′u0 will indeed be (essentially) orthogonal if the final indices
αn−1 
= α′

n−1 (the states are localized in disjoint sets), or if they are supported on Lagrangian
leaves �α, �α′ ⊂ Vαn−1 at distance � h̄ from one another: a nonstationary phase estimate
then ensures that

〈Mα′u0, Mαu0〉 = O(h̄∞).

This essential orthogonality indeed occurs for sequences of length n � c log(1/h̄), with c > 0
sufficiently small. But for the large logarithmic times n ∼ ε̃−1 log(1/h̄) we need, many states
Mαu0 will be supported by Lagrangians h̄-close to one another, leading to nonnegligible
off-diagonal terms

〈Mαu0, Mα′u0〉 ≈ ei(θα−θα′ ) wα wα′ .

The phases θα, θα′ are the actions accumulated along the ‘paths’ α, α′; it is tempting to believe
that these phases are pseudo-random. Namely, that they behave like independent random
phases: the sum of the off-diagonal elements would then be of the same order as the sum (61)
over diagonal terms, and lead to a spectral bound

rsp(M(α, h̄)) � eP(−ϕ++2 log |α|)/2+ε̃ . (62)

8.2.1. Phase cancellations in classical dynamics. Even if true, the pseudo-randomness of
the phases θα seems very difficult to prove. What can be done rigorously? Partial phase
cancellations were exhibited by Dolgopyat in his proof of exponential mixing for contact
Anosov flows [24, 46]. In this situation the FIOs M(α, h̄) are replaced by Ruelle’s transfer
operator Ls associated with a certain expanding map T , defined on some unstable leaf W + by
projecting κ along the stable foliation:

Ls u(x)
def=

∑
y:T (y)=x

e−sτ (y) u(y), so Ln
s u(x)

def=
∑

y:T n(y)=x

e−sτn(y) u(y).

Here τ is the Poincaré return time, and τn is the time accumulated after n iterations, and the
parameter s = s0 + it , where the imaginary part t should be compared with h̄−1. Using a
nonintegrability property of the return time, Dolgopyat showed that for t large enough partial
phase cancellations occur in the above sum for Ln

s u, leading to a shrinking of the spectral
radius:

∃ε0 > 0, t0 > 0, ∀ t � t0, rsp(Ls0+it ) � rsp(Ls0) e−ε0 . (63)

Unfortunately, the improvement ε0 is hardly explicit.
A similar improvement was obtained in the case of the Laplacian on convex co-compact

hyperbolic surfaces X = �\H
2 (see section 3.2). Following [39], let us define the essential

spectral gap representing the optimal resonance free strip at high frequency:

G(X)
def= inf{σ � n/2, Res(�X) ∩ {Re s � σ } is finite}.

Here the ‘pressure’ bound (23) means that G(X) � δ. Using the characterization of the
resonances in terms of a certain Ruelle transfer operator Ls , Naud [49] proved an improved
spectral bound of the form (63) and showed that the pressure bound onG(X) could be improved:

∃ε1 > 0, G(X) � δ − ε1.

Jakobson and Naud further investigated the location of resonances for certain arithmetic convex
co-compact surfaces, in both cases of ‘thick’ (δ ∈ [1/2, 1]) and ‘thin’ (δ ∈ (0, 1/2)) trapped
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sets [39]. Analyzing Selberg’s zeta function, they managed to prove lower bounds for the
essential spectral gap:

‘thick’ K : G(X) � δ

2
− 1

4
, ‘thin’ K : G(X) � δ(1 − 2δ)

2
. (64)

They also conjecture that in both cases the essential spectral gap should be given by

G(X) = δ

2
. (65)

This conjecture is equivalent with the value P(−ϕ+)/2 = −γcl/2 appearing in (62) (in the
case α ≡ 1). Therefore, the conjecture (65) amounts to assume that the phases appearing in
Ln

s u cancel each other at least as much as if they were random.
This conjecture is inspired by the case of arithmetic surfaces of finite volume (e.g.

the modular group � = SL(2, Z)), for which the high-frequency resonances are actually
eigenvalues embedded in the absolute spectrum, with Re sj = 1/2 = δ/2.

A Dolgopyat type estimate (63) was also shown by Stoyanov in the case of classical
scattering by J convex obstacles in two dimensions [79] or higher dimensions [80] and also
for more general axiom A flows [81]. In the case of scattering by convex obstacles, there is
no exact connection between the zeros of the semiclassical (Selberg-type) zeta function and
the quantum resonances. Yet, Petkov and Stoyanov [63] were able to compare the long time
quantum evolution M(k)nu0 for some initial Lagrangian state u0, with a (modifed) evolution of
u0 through a classical transfer operator of the form Ls , s = ik. This connection allowed them
to use the improved spectral gap for Ls , |Im s| � 1, to (effectively) obtain a smaller spectral
radius for M(k) than predicted in (50), hence a wider resonance free strip than predicted in
theorem 1.

How large could the resonance gap be for such obstacle problems? Could it be as large
as γcl/2, as conjectured above for hyperbolic surfaces? As noticed in section 6, the numerics
performed for the 3-disc scattering on R

2 [47] shows a peak in the resonance density centred
near Im k = −γcl/2. These numerics are unable to predict how the peak behaves in the
high-frequency limit. If this peak remains of positive width when k → ∞, this would indicate
that the resonance gap is smaller than γcl/2.

It is very likely that this improvement on the resonance gap can be extended to the case of
semiclassical Schrödinger operators (21) with hyperbolic repellers; the main difficulty probably
resides in checking that the classical conditions for a Dolgopyat estimate to hold are met.

8.2.2. Some numerics for the open baker’s map Most numerical studies of open quantum
maps were focusing on the spectral density and the fractal Weyl law, rather than the spectral
radii. We have mentioned in section 6.1 that the numerics relative to several open maps show a
peak in the radial spectral distribution near a value rpeak ≈ e−γcl/2, which ‘pushes’ the spectral
radius to a larger value. Below we provide some numerical results for the open baker’s map
(see section 6.1.1).

We only consider symmetric baker’s map with D symbols (that is the map (43) with
xi = i/D), so that the unstable Jacobian ϕ+ ≡ log D. We let the hole consist in the union of
D − n Markov rectangles (0 < n < D). The topological pressure is then given by

P(−sϕ+) = log n − s log D.

In particular, this pressure does not depend on which rectangles are removed, but only on their
number. The baker’s map is discontinuous along the boundaries of the rectangles, and these
discontinuities are believed to induce diffraction effects at the quantum level; for this reason,
the open baker’s map does not satisfy the assumptions of theorem 9. Yet, if the leftmost
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Figure 14. Spectral radii of various quantum symmetric open baker’s maps, with n = 2 kept
rectangles. N = (2πh̄)−1 is the quantum dimension. Eigenmodes are split according to parity: even
(◦) versus odd (�). Straight lines emphasize geometric series N = NoD

k , k = 0, 1, 2, . . .. Top
left: D = 5, kept rectangles i = 1, 3. Top right: D = 5, kept rectangles i = 0, 4. Bottom: D = 3,
kept rectangle i = 0, 2. The dashed horizontal lines indicate the values eP(−ϕ+/2) > eP(−ϕ+)/2.

and rightmost rectangles both belong to the hole, the trapped set K is at finite distance from
the discontinuities, so it is reasonable to expect that the quantum spectrum should not be too
sensitive to this diffraction. We have numerially computed the spectral radii of several open
quantum baker’s maps (see figure 14). The quantum dimension N = (2πh̄)−1 was taken in
a range 10 � N � 5000. The first case (top left) is a baker with D = 5 symbols, where the
kept rectangles have indices i = 1, 3, so that the trapped set K is away from the boundaries.
The spectral radii r(N) seem to satisfy

eP(−ϕ+)/2 + ε1 < r(N) < eP(−ϕ+/2) − ε2,

for some εi > 0, but keep fluctuating for large N . The parity of the eigenmodes (w.r.t x = 0)
does not seem to play an important role.

On the opposite, in the case of the D = 5 baker with kept rectangles i = 0, 4, the trapped
set contains the axes {x = 0}, {ξ = 0}, on which the map is discontinuous. The spectral
radii of the even-parity sector satisfy the same bound as above, but the odd-parity spectral
radius rodd(N) ≈ eP(−ϕ+/2), thus barely violating the bound of theorem 9. The reason why the
spectral radius for the odd sector is larger than for the even one is unclear.

In the case D = 3 (bottom), the trapped set also touches the discontinuity set; the value
eP(−ϕ+/2) > 1 is larger than the unitarity bound. As above, odd states show larger eigenvalues
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than even ones. The radii seem to satisfy

e−P(−ϕ+)/2 + ε1 < r(N) < 1 − ε2, εi > 0 fixed,

indicating a gap below the unitarity bound.
On the figures we emphasize some geometric series N = NoD

k , k = 0, 1, 2, . . ., because
such series were shown important when studying the fractal Weyl law [55, 56]. The spectral
radii along such series indeed show some regularity, especially when taking the parity of k into
account.

In the case of the Walsh quantization of the symmetric D-baker’s map presented in
section 6.1.2, the spectral radius of MN (for N = Dk , k ∈ N) is given by the largest eigenvalue
λ of the n × n matrix �̃D , obtained by removing from the D-discrete Fourier transform the
D − n columns and lines corresponding to the hole. As a result, the spectral radius of MN is
the same for all quantum dimension N = Dk . The pressure bound

rsp(MN) � eP(−ϕ+/2) = n√
D

obviously results from the fact that all entries of �̃D have modulus 1√
D

. The various examples
we have treated in [55, 56] show that for this model the spectral radius is unrelated with the
value e−γcl/2 = √

n
D

, its values can vary across the full interval [0, min(1, n√
D

)] (including the

extremal values), depending on the explicit phases in the matrix �̃D . This situation is far from
generic, and seems to rely on the fact that the underlying harmonic analysis is associated with
the Walsh–Fourier transform.

A preliminary investigation of a smoothed version of the (standard) quantum baker’s map
apparently leads to a Dolgopyat type partial phase cancellation, which would then force the
spectral radius to be � n√

D
− ε2 for some ε2 > 0. Yet, in spite of the explicit (and relatively

simple) expressions for the phases, it seems impossible to push these cancellations such as to
recover the conjectured ‘optimal’ bound

√
n
D

.

9. Phase space structure of wavefunctions

In this last section we address question (3), that is we investigate the structure of the
‘eigenfunctions’ (in a generalized sense) of our scattering system introduced in section 1.1.

The first class of such eigenfunctions will be the metastable states uj (h̄) associated with
the (discrete) resonances zj (h̄). They satisfy the differential equation (P (h̄) − zj )uj = 0 are
purely outgoing and blow up exponentially at infinity.

On the opposite, for any real energy E the scattering functions form an infinite dimensional
space of functions satisfying (P (h̄) − E)u = 0. They are not square-integrable either, but
contain both incoming and outgoing components.

In both cases, we will focus on the structure of these functions in the interaction region,
say the ball B(0, R0).

9.1. Metastable states

Let uj (h̄) be the metastable state associated with a resonance zj (h̄) of our scattering
Hamiltonian P(h̄). We may (somewhat arbitrarily) normalize this state inside the interaction
region B(R0), by putting

‖uj (h̄)‖L2(B(R0)) = 1.

In order to connect oneself with the classical dynamics, it is natural to analyse the modes uj (h̄)

in terms of their associated phase space distributions. Let us recall that to any function u ∈ L2
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one can associate its Wigner function Wh̄
u (x, ξ), depending quadracally on u (the formula is

given in (70)). This Wigner function (or the Husimi function obtained by a smoothing on the
scale

√
h̄) is interpreted17 as a phase space probability density for the state u. The distribution

Wh̄
u = Wh̄

u (x, ξ)dx dξ will be called the Wigner distribution (or signed measure).
Describing the individual functions Wh̄

uj (h̄) seems a hopeless task. On the other hand, it
is often possible to derive some asymptotic properties of a semiclassical sequence of such
functions.

Take any sequence h̄k → 0, and for each h̄ = h̄k choose some resonance z(h̄) =
zj (h̄) ∈ D(E, Ch̄), a corresponding metastable state u(h̄) = uj (h̄), and construct its Wigner
distribution Wh̄

u(h̄). We will then be interested in the asymptotic behaviour of the sequence
(Wh̄

u(h̄))h̄=h̄k
when h̄ → 0.

Bony and Michel [7, theorem 2.1] showed that, for a general trapping potential, the Wigner
distributions Wu(h̄) are semiclassically negligible away from the outgoing tail K+

E : for any test
function a ∈ C∞

c (T ∗X) supported away from K+
E , one has

〈Wh̄
u(h̄), a〉 = O(h̄∞).

This estimate does not depend on the structure of the flow on KE .
The same type of result was also obtained in the case of the open baker’s map [42, 52],

where some Husimi measures were numerically computed, and shown to concentrate on the
outgoing tail K+ (see this set in figure 11, centre, and compare with figure 15).

A more precise asymptotic description of the Wigner (or Husimi) distributions is provided
by the concept of semiclassical measure, that is a measure µ on phase space18, obtained as
a limit (in the weak-∗ topology) of the sequence of distributions (Wh̄

u(h̄))h̄→0, equivalently
the limit of certain extracted subsequence (Wh̄

u(h̄))h̄∈S (S is some infinite subsequence of
(h̄k)). This measure describes the asymptotic phase space distribution of the metastable states
along the subsequence (u(h̄))h̄∈S . A priori, several limit measures µ may be extracted from
the original sequence, corresponding to different subsequences S. Semiclassical measures
were investigated in the case of closed chaotic system (say, the geodesic flow on a compact
Riemannian manifold of negative curvature). Any semiclassical measure associated with the
eigenstates of P(h̄) = −h̄2�X/2 must be invariant w.r.t. the classical flow. Furthermore,
the quantum ergodicity theorem states that, as long as the flow is ergodic w.r.t. the Liouville
measure, then one can extract a subsequence S of density one19, such that (Wh̄

u(h̄))h̄∈S converges
to the Liouville measure on p−1(1/2) [19, 70, 90].

In the frameworks of potential scattering [57] or open chaotic maps [42, 52], a
generalization of the above invariance property was obtained for semiclassical measures
associated with sequences of metastable states.

Theorem 10 ([57]). Consider a scattering Hamiltonian (21) such that for some E > 0 the
trapped set KE is a hyperbolic repeller. Take a sequence of resonances (z(h̄) ∈ D(E, Ch̄))h̄→0,
and extract a subsequence (Wh̄

u(h̄))h̄∈S converging to a semiclassical measure µ on T ∗B(0, R0).
Then µ will be invariant up to a decay rate � � 0:

∀ t � 0, 	t∗µ = e−t� µ inside the interaction region T ∗B(0, R0). (66)

Furthermore, the subsequence S must be such that the resonances (z(h̄))h̄∈S satisfy

lim
h̄∈S,h̄→0

Im z(h̄)

h̄
= −�

2
. (67)

17 The Wigner function generally takes both positive and negative values, which makes this interpretation a bit
questionable. On the opposite, the Husimi function is nonnegative.
18 We will only consider the restriction of this measure on the interaction region T ∗B(0, R0).
19 This means that this sequence contains ‘almost all’ the eigenstates.
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Figure 15. Husimi functions of three metastable states of the quantum symmetric open 3-baker
(logarithmic grey scale). The high intensities (black) are clearly localized on K+.

Any measure satisfying (66) (at least inside the interaction region) will be called a
�-eigenmeasure for the flow. In the case of an open map, a �-eigenmeasure is characterized
by the property

κ∗µ = e−� µ. (68)

�-eigenmeasures are easy to classify. For instance, in the case of open maps, each
�-eigenmeasure is uniquely determined by its restriction on K+ ∩ κ(V ) \ V , which can be
arbitrary. All such measures are supported on K+, and satisfy µ(K) = 0 for � > 0, while they
are supported on K iff � = 0.

The above theorem shows that any semiclassical measure is necessarily a �-eigenmeasure,
with decay rate � equal to the asymptotic quantum decay rates. In view of the quantum
ergodicity result for chaotic closed systems, the following question naturally arises: Given � �
0, and considering a sequence of resonances (z(h̄))h̄∈S satisfying (67), which �-eigenmeasures
can be obtained as semiclassical measures? Is there a ‘favoured’ limit, or even a unique one?

This question presumes that there exist sequences of resonances satisfying (67), a fact
which depends on the semiclassical distribution of resonances; in case the strong form (41) of
fractal Weyl law holds, such a sequence exists if the profile function satisfies dF

dγ
(�/2) > 0.

We have noticed before that, according to several numerical results, the density of
resonances often shows a peak near the value � = γcl . For this specific value of �, there
exists a ‘natural’ �-measure, which is obtained by iterating an initial smooth measure µ0 (with
support intersecting K−):

µnat = lim
t→∞ Nt 	

t∗µ0, respectively µnat = lim
n→∞ Nn κn∗µ0,

with Nt , Nn appropriate normalization factors (see (17)). Yet, the study of [52] did not reveal
that this measure played any particular role for the open quantum baker’s map.

In [42] the authors computed averages of the spatial densities |uj (x)|2 over a few
eigenstates with comparable decay rates, for the symmetric open 3-baker. They noted strong
self-similar properties of the densities, depending on the decay rates. Some of the individual
Husimi functions of [52] were also featuring a self-similar behaviour in both the momentum
and position directions.

Rigorous results were obtained in the case of the Walsh-quantized open baker’s map
[40, 52], using explicit formulae for the eigenstates. In this model most eigenvalues λj (h̄) have
large multiplicities, leaving a lot of freedom to construct eigenstates. In [40, 52] it was shown
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that, for the Walsh-quantized symmetric 3-baker, any semiclassical sequence of eigenstates
(u(h̄))h̄→0 with eigenvalues converging towards the outer circle |λ(h̄)| → rmax (respectively
the inner circle |λ(h̄)| → rmin) of the nontrivial spectrum, converges to a single semiclassical
measure µmax (respectively µmin), which is of Bernoulli type, therefore perfectly self-similar.
This is a form of ‘quantum unique ergodicity’ at the edges of the nontrivial spectrum. On the
opposite, for any value r ∈ (rmin, rmax), we exhibited many semiclassical measures associated
with sequences (u(h̄))h̄→0 of asymptotic decay rates |λ(h̄)| → r . For r = e−γcl/2 we showed
that the natural measure µnat is not a semiclassical measure.

9.2. Scattering states

Metastable states appear in expansions of the resolvent of P(h̄), and consequently in expansions
for the time dynamics [14, 84]. Another class of generalized eigenstates is more natural
from the point of view of scattering theory, namely the scattering states, used to define the
scattering matrix (see section 1.1). In the semiclassical setting of a scattering Hamiltonian
P(h̄) on a manifold X, a scattering state at energy E > 0 is a wavefunction uE = uE(h̄)

satisfying the differential equation (P (h̄) − E)uE = 0, and satisfying certain conditions at
infinity.

If X ≡ R
d outside the interaction region B(0, R0), one can expand uE(x) using a basis of

incoming and outgoing waves, as in equations (4) and (5). Fixing the incoming part of uE,in

near infinity uniquely determines the full wavefunction uE , and in particular determines its
outgoing part uE,out , the relation between uE,in and uE,out defining the scattering matrix S(E).
We ask the following question:

Given uE,in, what is the spatial (or phase space) structure of uE inside the interaction
region?

In the semiclassical/high-frequency limit, the usual basis states for the incoming wave
uE,in (namely the angular momentum eigenstates, see (5)) are Lagrangian states associated
with certain Lagrangian submanifolds of the energy shell, for instance a spherically symmetric
incoming wave sits on the Lagrangian manifold {(x, ξ = −√

2Ex/|x|)}. Most of the
trajectories on this manifold will be scattered inside the interaction region and then exit it
towards infinity after a short transient time. Still, a small fraction of the incoming trajectories
may be trapped during a long time in this region, travelling close close to KE , or even be
trapped for ever if they exactly belong to the incoming tail K−

E . How do these trapped (or long
transient) trajectories influence the structure of uE?

This question has been studied numerically by Ishio and Keating [38] in a different
geometry, namely the case of a 2D chaotic cavity opened by two infinite ‘leads’ (waveguides).
In this case, the incoming wave uE,in is given by plane waves inside the left lead, uE(x, y) =
sin(kny)eiklx , where the longitudinal and transverse wavevectors kl, kn satisfy

kn = πn/L, E = h̄2

2
(k2

l + k2
n), n ∈ N \ 0, L the width of the lead.

This incoming wave semiclassically corresponds to a pencil of trajectories coming out of
the lead with an angle ±θn, θn = arcsin(kn/kl). Two scattering states with such incoming
components were numerically computed in [38], one of them is shown on the left of figure 16.
In both cases the density |uE(x)|2 is strongly imprinted by short transient orbits. The authors
also derived an approximate semiclassical expression for uE(x), as a sum over classical
trajectories, and showed that this expression is quite accurate for the two examples of states they
have computed. They distinguished between two complementary situations: for weakly open
situations, the contributions of long trajectories is important (even divergent); on the opposite,
for very open systems, the contribution of long trajectories decays exponentially fast, so that
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Figure 16. Left: density plot of a scattering state |uE(x)|2, with incoming part uE,in a plane wave
in the left lead into the stadium-shaped cavity. Right: corresponding classical trajectories incoming
from the left opening with angles ±θn. Reprinted with permission from [38]. Copyright 2004 by
the Institute of Physics.

the wavefunction is mainly influenced by the short transient trajectories. This dichotomy is of
course reminiscent of the one mentioned in section 1.2.

More recently, Guillarmou and Naud [33] studied the scattering states for convex
co-compact manifolds X = � \ H

n+1, also called the Eisenstein functions in this context
(the spectral parameter is s = n/2 + it , t � 1). A convenient ‘basis’ consists in the functions
us,y(x) which become singular when x converges to a given point y of the boundary ∂X: the
incoming wave is then associated with the unstable manifold made of the geodesics issued from
y. In such a homogeneous situation, the wavefunction us,y(x) can be simply expressed by a
sum over the group �. The authors are able to precisely describe us,y provided the trapped set
is ‘thin’, that is the dimension of the limit set satisfies δ < n/2 (equivalently, P(−ϕ+/2) < 0).
This is a precise criterion for the ‘very open’ situation of [38]. One can then compute the
semiclassical measure associated with the family (un/2+it,y)t→∞: it is an invariant measure
supported by the full unstable manifold issued from y.

If one averages the densities |us,y(x)|2 over the boundary point y, one recovers the uniform
(Haar) measure on X, plus a semiclassically small correction given by a sum over periodic
orbits, similarly with Gutzwiller’s trace formula for closed systems (one difference being that
the sum over the orbits is absolutely convergent).

This description of scattering states can certainly be extended to more general geometries
or systems with a ‘thin’ hyperbolic trapped set.

10. Conclusion

We have presented several analytical methods used to analyse the spectral properties of
scattering operators in the semiclassical/high-frequency limit, in cases where the set of
classically trapped trajectories is a hyperbolic repeller. In particular, the number of long-
living resonances near some classical energy E > 0 was bounded from above by a fractal
power of the semiclassical parameter, reflecting the fact that these long-living states must be
supported on the trapped set, which is a fractal subset of the energy shell. We stated two
types of ‘fractal Weyl law’ conjectures, predicting that this upper bound should be sharp, and
presented some numerical results in favour of these laws, both for scattering flows and for the
model of open quantum maps.

A second result is the presence of a ‘resonance gap’ (or a uniform lower bound for the
quantum decay rates), provided the instability of the flow exceeds its complexity (precisely,
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provided the topological pressure P(−ϕ+/2) is negative). This criterion allows one to split such
chaotic scattering systems between ‘very open’ versus ‘weakly open’ systems. We showed
that this dichotomy was also relevant in the precise description of scattering wavefunctions.

At the technical level, we presented quantum monodromy operators associated with a
quantum scattering flow, which can be used to investigate this spectral problem. These
operators, which contain the full long-living quantum dynamics, can be deformed such as to
live in a ‘minimal’ neighbourhood of the trapped set, still faithfully representing the ‘quantum
mechanics on the trapped set’. They resemble Ruelle transfer operators appearing in classical
dynamics. Hopefully, a more precise analysis of these operators could deliver some nontrivial
information on the resonance spectrum, like a proof of the fractal Weyl law (under some
genericity assumption) or a sharper criterion for a resonance free strip.

The resonances were analysed as eigenvalues of certain non-self-adjoint pseudodifferential
operators. The techniques presented above can also be used in a different context, namely the
study of a ‘closed’ quantized chaotic systems in the presence of some ‘damping’, e.g. the case
of damped waves propagating on a manifold of negative curvature. In that case there is no
‘escape to infinity’, but the high-frequency spectral problem presents similar features [75]. For
instance, fractal Weyl upper bounds were obtained for such systems [3], and a bound for the
decay rates in terms of a topological pressure was also proved in this context [68, 69], with
applications to the stabilization of the damped waves.

The same type of ideas could also be useful when describing the scattering by a dielectric
cavity, relevant in the description of quasi-2D microlasers (see, e.g., [6, 73, 88] and references
therein). In such situations, the damping is due to the fact that a wavepacket propagating inside
the cavity loses a fraction of its energy when being reflected by the boundary of the cavity,
the rest of the energy being refracted outside to infinity. How does the shape of the cavity
influence the resonance spectrum, in particular in case the internal dynamics is chaotic? How
do the metastable states look like? To my knowledge, the rigorous studies of such cavities
have so far been restricted to strictly convex cavities with smooth boundaries [15], for which
the ray dynamics cannot be purely chaotic.
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Appendix. A brief review ofh̄-pseudodifferential calculus

We recall some definition and basic properties of Weyl’s quantization, in the semiclassical
setting. For simplicity, we will only consider operators on the Euclidean space R

d . See
[23, chapter 7] for a detailed discussion of semiclassical quantization, [27, chapter 4, part 3]

for the pseudodifferential calculus for the symbol classes presented below, and [27, chapter 13]
for its generalization to the calculus on manifolds.
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A.1. Weyl quantization and pseudodifferential calculus

Weyl’s quantization associates with a smooth phase space function a ∈ C∞(T ∗
R

d) (the
classical observable, or symbol) an operator acting on u ∈ C∞

c (Rd) as follows:

[aw u](x) = [Oph̄(a)u](x)

def= 1

(2πh̄)d

∫ ∫
a

(
x + y

2
, ξ

)
ei〈x−y,ξ〉/h̄u(y) dy dξ. (69)

In these notations, h̄ ∈ (0, 1] is Planck’s ‘constant’ (which we always assume to be ‘small’).
The integral converges absolutely only if a(x, ξ) decays fast enough w.r.t. ξ , but by integrating
by parts one can easily extend the definition to functions growing algebraically in ξ . The classes
of symbols presented below are engineered such that the above formula makes sense.

Weyl’s quantization leads to the definition of the Wigner distribution Wh̄
u associated with

a function u ∈ L2, by the following duality:

∀ a ∈ C∞
c (T ∗

R
d), 〈Wh̄

u , a〉(C∞
c )′,C∞

c

def=〈u, Oph̄(a)u〉L2 (70)

When h̄ is small, the product of two operators Oph̄(a)Oph̄(b) can be analysed through
their symbols a, b. That product is itself an operator of the form Oph̄(c), with a symbol c(x, ξ)

given by the Moyal product of a and b:

c = a�h̄b
def= a exp

(
ih

2
(〈←−D ξ,

−→
D x〉 − 〈←−D x,

−→
D ξ 〉)

)
b

∼ a b +
ih̄

2
{a, b} +

∑
j�2

(ih̄/2)j

j !
a

(
〈←−D ξ,

−→
D x〉 − 〈←−D x,

−→
D ξ 〉

)j

b, (71)

where D• = −i∂•, and {a, b} is the Poisson bracket. The above sum is a good asymptotic
expansion when h̄ → 0, in the sense that the sum up to the term j = N − 1 gives a good
approximation of c, with a remainder O(h̄N ). It is at the heart of pseudodifferential calculus.
Even if a, b are independent of h̄, the symbol c does depend on h̄. It thus makes sense to
define classes of h̄-dependent symbols, characterized by the regularity property of a(x, ξ ; h̄),
uniformly in the limit h̄ → 0.

One standard class of symbols is the following: for k ∈ R, let

Sk(T ∗
R

d) = {a ∈ C∞(T ∗
R

d
x,ξ × (0, 1]h̄) : ∀α, β ∈ N

d ,

|∂α
x ∂

β

ξ a(x, ξ ; h̄)| � Cα,β(1 + |ξ |)k−|β|}, (72)

The improved decay in ξ upon differentiation is necessary for the class to be invariant upon a
smooth change of coordinates, which is crucial when extending the formalism to manifolds.
The corresponding operator classes are denoted by �k(Rd). For instance, the Schrödinger
operator (21) is the Weyl quantization of the symbol p(x, ξ) = |ξ |2

2 + V (x) ∈ S2(T ∗
R

d).
These symbol classes are closed under composition: for a ∈ Sk , b ∈ S�, the product

operator Oph̄(a)Oph̄(b) = Oph̄(c) belongs to �k+�. An important property is the action on
L2(Rd). For a ∈ S0(T ∗

R
d), the operators Oph̄(a) are bounded on L2(Rd), with

‖Oph̄(a)‖L2→L2 = ‖a(h̄)‖L∞ + O(h̄). (73)

If a(x, ξ) is real valued, Oph̄(a) will be self-adjoint on L2. In this case, one can also analyse
functions of Oph̄(a) using their symbols: for a smooth function f : R → R, the operator
f (Oph̄(a)) belongs to �0(Rd), with symbol f (a) + O(h̄). For instance, in section 4.2 the
operators e±tGw

belong to �0(Rd), and the composition rule (71) shows that the conjugated
operator e−tGw

Pθ (h̄) etGw

belongs to �2(Rd), with a symbol of the form (27).
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A.2. Exotic symbol classes

The symbols a ∈ S0(T ∗
R

d) fluctuate on distances ∼1. For our purposes, we also needed
to consider symbols fluctuating on microscopic distances. For k ∈ R and δ ∈ [0, 1/2], we
consider the ‘exotic’ symbol classes

Sk
δ (T

∗
R

d) = {a ∈ C∞(T ∗
R

d × (0, 1]) : ∀α, β ∈ N
d ,

|∂α
x ∂

β

ξ a(x, ξ ;h)| � Cα,β h̄−δ(|α|+|β|) (1 + |ξ |)k−|β|}, (74)

which encompasses symbols fluctuating on distances � h̄δ . For δ < 1/2, the expansion (71)
makes sense, and we can still use the symbol to analyse the operator. These exotic classes
were used to construct the exponential weights of section 4.2. If we take ε = h̄δ , the escape
function G(x, ξ) must belong to the class log(1/h̄)S0

δ (T
∗X) (see the model function G1(x, ξ)

of (31)), and the corresponding functional calculus allows to analyse the operators e±tGw

and
e−tGw

P (h̄)etGw ∈ �2
δ (R

d). The symbol α of (35) also belongs to an exotic class S0
δ .

A.3. Fourier integral operators

A time-dependent Hamiltonian p(t, x, ξ) ∈ C([0, 1]t , S2(T ∗
R

d)) generates a nonautonomous
symplectic flow (κt )t∈[0,1] through Hamilton’s equations

dκt

dt
= (κt )∗Hp(t), κ0 = Id, t ∈ [0, 1].

Then, the family of unitary operators U(t) defined by

ih̄∂tU(t) = U(t) pw(t), U(0) = Id,

defines a family of quantum propagators, which are unitary Fourier Integral Operators (FIO)
associated with the diffeomorphisms κt .

Consider the propagator U = U(1) associated with κ = κ1. U maps a wavepacket
microlocalized at (x0, ξ0) to a wavepacket localized at κ(x0, ξ0). Its action on a quantum
observable satisfies a quantum-classical correspondence (called Egorov’s theorem in the
mathematical literature): for any symbol a ∈ S0(T ∗

R
d) of compact support, one has

U−1 Oph̄(a) U = Oph̄(b), b ∈ S0(T ∗
R

d), b = a ◦ κ + O(h̄). (75)

More generally, an FIO associated with κ will be an operator of the form

M(α, h̄) = U Oph̄(α), (76)

with α ∈ S0
δ (T

∗
R

d) for some δ ∈ [0, 1/2). The FIOs of section 5.2, in particular the open
quantum maps, are of this type. From there one easily shows the ‘nonunitary’ Egorov property
(32). Also, the L2 norm estimate (34) is obtained from (73).
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[36] Helffer B and Sjöstrand J 1986 Résonances en limite semi-classique Mém. Soc. Math. France (N.S.) 24/25 1–228
[37] Ikawa M 1988 Decay of solutions of the wave equation in the exterior of several convex bodies Ann. Inst. Fourier

38 113–46
[38] Ishio H and Keating J P 2004 Semiclassical wavefunctions in chaotic scattering systems J. Phys. A: Math. Gen.

37 L217–23
[39] Jakobson D and Naud F 2010 On the resonances of convex co-compact subgroups of arithmetic groups

arXiv:1011.6264
[40] Keating J P, Nonnenmacher S, Novaes M and Sieber M 2008 On the resonance eigenstates of an open quantum

baker map Nonlinearity 21 2591–224
[41] Katok A and Hasselblatt B 1995 Introduction to the Modern Theory of Dynamical Systems (Cambridge:

Cambridge University Press)

http://dx.doi.org/10.1103/PhysRevA.43.4517
http://dx.doi.org/10.1007/BF01389848
http://dx.doi.org/10.1007/s00039-010-0076-5
http://dx.doi.org/10.1007/s002200100473
http://dx.doi.org/10.1081/PDE-100107460 
http://dx.doi.org/10.1016/j.jfa.2009.06.003
http://dx.doi.org/10.1090/S0002-9939-08-09290-3
http://dx.doi.org/10.1007/BF01209296
http://dx.doi.org/10.1007/s00220-008-0684-1
http://arxiv.org/abs/1008:3964
http://dx.doi.org/10.2307/121012
http://dx.doi.org/10.1088/0951-7715/5/5/003
http://dx.doi.org/10.1103/PhysRevE.82.046201
http://math.berkeley.edu/~zworski/semiclassical.pdf
http://math.berkeley.edu/~zworski/semiclassical.pdf
http://dx.doi.org/10.1063/1.456018
http://dx.doi.org/10.1007/BF01212317
http://dx.doi.org/10.1007/s00220-008-0706-z
http://arxiv.org/abs/1107:2655
http://dx.doi.org/10.1007/s000390050110
http://dx.doi.org/10.1007/s00220-003-1007-1
http://dx.doi.org/10.5802/aif.1137
http://dx.doi.org/10.1088/0305-4470/37/22/L01
http://arxiv.org/abs/1011.6264
http://dx.doi.org/10.1088/0951-7715/21/11/007


R166 Invited Article

[42] Keating J P, Novaes M, Prado S and Sieber M 2006 Semiclassical structure of chaotic resonance eigenfunctions
Phys. Rev. Lett. 97 150406
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[75] Sjöstrand J 2000 Asymptotic distribution of eigenfrequencies for damped wave equations Publ. RIMS

36 573–611

http://dx.doi.org/10.1103/PhysRevLett.97.150406
http://dx.doi.org/10.1103/PhysRevLett.100.254101
http://dx.doi.org/10.1006/jcph.2001.6986
http://dx.doi.org/10.1016/S0009-2614(02)00212-9
http://dx.doi.org/10.4007/annals.2004.159.1275
http://dx.doi.org/10.1103/PhysRevLett.91.154101
http://dx.doi.org/10.1088/0305-4470/38/49/016
http://dx.doi.org/10.1088/0951-7715/20/6/004
http://dx.doi.org/10.1007/s00220-011-1214-0
http://arxiv.org/abs/1105.3128
http://dx.doi.org/10.1088/0305-4470/38/49/014
http://dx.doi.org/10.1007/s11511-009-0041-z
http://dx.doi.org/10.1103/PhysRevE.80.035202
http://dx.doi.org/10.1007/BF02392046
http://dx.doi.org/10.1215/S0012-7094-01-10624-8 
http://dx.doi.org/10.2140/apde.2010.3.427
http://dx.doi.org/10.1016/0001-8708(91)90054-B
http://dx.doi.org/10.1088/0305-4470/28/14/029
http://dx.doi.org/10.1103/PhysRevE.80.055201
http://dx.doi.org/10.1016/0003-4916(90)90367-W
http://dx.doi.org/10.1007/s00220-010-1105-9
http://dx.doi.org/10.1103/PhysRevLett.93.154102
http://dx.doi.org/10.1103/PhysRevE.77.015202
http://dx.doi.org/10.1103/PhysRevA.80.031801
http://dx.doi.org/10.1215/S0012-7094-90-06001-6
http://dx.doi.org/10.2977/prims/1195142811


Invited Article R167
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