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An attempt is made to clarify the ballistic nonlinear sigma model formalism re-
cently proposed for quantum chaotic systems, by looking at the spectral determi-
nantZ(s)=Det(1—sU) for quantized mapbl € U(N), and studying the correlator
wy(s)=Jd6|Z(e’%)|?. By identifying U(N) as one member of a dual pair acting

in the spinor representation of Spir{}, the expansion o (s) in powers ofs?

is shown to be a decomposition into irreducible characters df)U(In close
analogy with the ballistic nonlinear sigma model, a coherent-state integral repre-
sentation ofw(s) is developed. For generld this integral hasf(“) saddle points

and the leading-order saddle-point approximation turns out to reprody¢s)
exactly up to a constant factor. This miracle is explained by interpretipgs) as

a character of U(Rl), and arguing that the leading-order saddle-point result corre-
sponds to théVeyl character formulaUnfortunately, the Weyl decomposition be-
haves nonsmoothly in the semiclassical litNit>o0, and to make further progress
some additional averaging needs to be introduced. Several schemes are investi-
gated, including averaging over basis states and an “isotropic” average. The
saddle-point approximation applied in conjunction with these schemes is demon-
strated to give incorrect results in general, one notable exception being a semiclas-
sical averaging scheme, for which all loop corrections vanish identically. As a side
product of the dual pair decomposition with isotropic averaging, the crossover
between the Poisson and CUE limits is obtained.2@2 American Institute of
Physics. [DOI: 10.1063/1.146241]7

I. INTRODUCTION

One of the striking characteristics of a quantized chaotic Hamiltonian system is found in the
correlations inherent in its spectrum at small energy differences. Extensive numerical work has
shown that various quantitiésuch as the nearest-neighbor spacing distribution and the two-level
correlation functionof a quantum chaotic system arriversal their behavior coincides with that
of a Wigner—Dyson random matrix ensemble of the appropriate symmetry'cléss.property,
first noticed in billiards, was found to apply to many chaotic systems, including sympieatis
In contrast, if the dynamics is integralfie the sense that thef2dimensional phase space foliates
into f-dimensional submanifolds invariant under the Hamiltonian ¥/ave generic behavior of
the eigenvalues is expectem be that of independent random variables, so that their correlations
are in the Poisson universality class.

The present article will be concerned with quantum maps, i.e., with quantizations of some
canonical transformatiowy:M —M of a compact symplectic manifoll. We assume that the
problem of quantization itself has been tackled, so the phase space has been prequantized into a
Hilbert spaceH, of dimensionN~7%~1, and the quantum map acts on it as a unitary opetdtor.

With respect to a basis df this operator is represented by Brx N unitary matrixU 4 \. The
latter has a semiclassical limit, in the sense that traces of its powers can be estimated in terms of
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classical periodic pointsFor a system with one degree of freedom, the Gutzwiller-Tabor trace
formula reads

N— oo

(UG ~ X NAm®2a gNop, (1)
PCFix(¢")

wherep is one component of the set pnfperiodic points; for an Anosov system, it is an isolated
point[dim(p)=0], whereas if the dynamics conserves enemgig one-dimensionakb, andA,
are purely classical quantities related to the dynamics around the set

The quantum spectrum consists of thesigenvalue$pseudo-energiezsflé91}]- 1.
The first analytical estimates of the two-level correlation funcfighich is the Fourier transform
of the form factor Hn)= |Tr(U2,,N)|2] for such spectra were based on the above trace formula,
combined with some known ergodic properties of long periodic orhiitsthe present article we
focus attention on another statistic, namely the autocorrelation function of the spectral determi-
nant:

def 2rd¢p ) )
QU('y)I)lezf ZDet(l—ye'QSU)Det(l—e"“’UT). 2)
0

(The parametely will be a complex number close to unity, with the scaling- 1|~ 1/N.) This
correlation function has already been consid&fddr chaotic versus integrable quantum maps,
and the same universality was observed as for the form factor or the nearest-neighbor distribution.
A semiclassical analysis of this correlation function was performed using the Gutzwiller trace
formula in Ref. 7.

The computation of correlation functions from the trace forn{l)always requires some sort
of averaging. In the semiclassical theory of the form faéén) one wants to use the so-called
diagonal approximation, neglecting the off-diagonal terms in the double-sum over periodic orbits.
To justify this step one must average over energy or some family of systems: one needs slight
variations in the classical actior, to make the phase interference€™(®»~®r") average to
zero. The need for averaging was emphasized in Refs. 6 and 8, where it was pointed out that the
spectrum of an individual quantum system is too noisy to allow universality to be seen in its bare
form factor. In addition to the noise problem, there exist some quantum chaotic systems with
arithmetic symmetries, which lead to periodic orbit degeneracies and nonuniversal spectral
correlations’1? (Such systems are nongeneric, however, in any decent space of smooth maps.

Thus universal behavior is expected only in the generic case, and to make a correct math-
ematical statement about universality of the spectral correlations of a general system one ought to
define the precise meaning of the word “generidri the case of integrable systems, the spectral
correlations could sometimes be studied directly, by utilizing the explicit expressions for the
eigenvalues; two-point correlations were shown to be Poisson for a rather subtle set of
parameter$:! We can avoid the issue of genericity by averaging the correlation function over
some set of quantum maps. That is, we specify a meageyét) on the unitary group UY), and
the function to be studied then reads

<QU(7)>:fU(N)dPN(U)QU(?’)-

We want this measure to be very concentrai@d*local” ) around the quantum mag , \ (see
Secs. IV C and V. In the course of this article, we will also consider cases for which this measure
has a broader suppof8ec. V), including the case where the measure is the Haar measure on
U(N). We are then dealing with the circular unitary ensem(@I&JE), for which the determinant
correlation function has been thoroughly investiga&t&d.

The Gutzwiller trace formula has the attractive feature of relating quantum to classical prop-
erties, but its use for estimating the spectral correlation functions still raises questions. The prob-
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lem is that the formula is rigorous in general only for times shorter than the Ehrenfestrtime:
<logN (andN— ). Yet, long-time tracesr(~N) are needed to obtain spectral correlation func-
tions at the scale of the mean level spacing where universality emerges. The diagonal approxima-
tion, which assumes statistical independence of the different periodic orbits, is unsatisfactory at
large times where the exponential proliferation of periodic orbits clashes with the fidjte (
number of eigenvalues: the classical information is then overcomplete, which implies some sort of
hidden correlation between the contributions from classical orbits. A recipe to overcome this
difficulty has been devised by Bogomolny and Keatifigut so far lacks rigorous justification.

To bypass these problems, a second approach to estimate spectral correlations has recently
emerged, inspired by the study of disordered metals. It consists in expressing the correlation
function as a quantum field theofgr functional integral of the type of a nonlinear sigma model
(NLoM). One then tries to analyze the functional integral by standard field-theoretic methods such
as perturbation expansion, saddle-point analysis and the renormalization group. This approach was
first applied successfully to systems with disorder, where the dynamics is governed by a diffusion
operatort* The formalism was later extended to the “ballistic casé;**and quantum correlation
functions were put in relation with the spectrum of the Frobenius—Perron opéiaogrthe
evolution operator for classical densitiedlthough quite elegant, this approach suffered from
several drawbacks. Among these are the appearance of unwanted zero modes around the main
saddle point, and the problem of “mode lockind”Besides, the results do not exactly agree with
the correlations calculated numerically for the Riemann zeta fun¢ti@nprototype of a quantum
chaotic spectral determinarif nor do they explain the nongeneric spectral correlations featured
by systems with arithmetic symmetries. More recent treatments of the ballistd/Niave also
stressed the need for averaging over a smooth disorder if one wants to avoid the above
problemst®19

In an attempt to resolve these uncertainties, we have adapted the latter approach, which had
originally been conceived for Hamiltonian systems, to the case of quantum bhags Our
objective was to prove the universality of the determinant correlation fun€ligfy) (Sec. 11B
upon averaging wrt a suitable measure orNY( This correlation function is easier to treat than
the two-level correlation function, as it does not require the use of a supersymmetric
representatiof?"*®but can be expressed as an ordinary c-number integral over a finite-dimensional
manifold My (Sec. Il D. We write this integral in the form

ayn=| _dgesirvo, ®
N

whereS(vy,U,-) is called theeffective action

For the reasons stated, we will consider average® gfwith respect to certain probability
measures By(U). The averaged correlation function, denoted By, (7)), can still be obtained
by integrating the Boltzmann weight given by an effective action:

<Qu(7)>=fM dQe™ 5@,

To estimate these integrals, we apply the same technique that was used in Ref. 15: we expand
S.[(7,Q) up to quadratic order around its saddle-poi@ts;, and perform the Gaussian integrals.
The result obtained in this way,

(QU(Y))sp. exp= 2 {DE?*Sef( ¥, Qerp)} ~ 2™ Sak Qe (4)

crit

is called the leading-order saddle-point expansion of the integral.
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Owing to the absence of a large parameter in front of the a8ipnthe expansion ia priori
not justified mathematically. A more careful treatment should in principle include perturbative
corrections around each critical poifwe actually compute the expansion up to two loops in a
particular case, see Sec. IJ.D

We have succeeded in computing the leading-order term for a few averaging schemes. For an
individual matrixUy we can actually reproduce the exact value of the correlation fun¢sijoim
this way(Sec. Ill). In Sec. IV C we define a “semiclassical” averaging scheme, which we think is
a good candidate to obtain universality of correlati6hanfortunately, in that case we can only
compute the contributions from the two standard saddle points.

In order to test the leading-order saddle-point approximation, we selected a sequence of
statistical ensembles.e., a sequence of measureB@U)] for which the averaged correlation
function can be computed exactly, and compared the exact result with the saddle-point approxi-
mation for the corresponding effective action. All these ensembles axg-tétation invariant,
that is, we first average over all bases7f, (Sec. Vj, then possibly over the spectrum Ofy
(Secs. VC and VIA In most cases, the saddle-point expansion of these ensembles yields erro-
neous results. We still hope that the expansion is better behaved in the case of local averages, like
the semiclassical one.

These disappointing results seem to challenge the use ofMNinethods for the study of
quantum ballistic systems, unless our understanding and control of these methods significantly
improves. In Sec. VI, we introduce a Nf-isotropic local averaging scheme which we treat by an
alternative method; unfortunately, this scheme does not discriminate between the different univer-
sal behaviors that are expected for chaotic versus integrable maps. Nevertheless, we use it in Sec.
VIA to compute the correlations along a crossover between the Poisson and CUE universality
classes.

II. ALGEBRAIC MANIPULATION OF Q

A. Fourier decomposition of Q

We first remind the reader of some known results concerning the correlation fuigioh’
The spectral determinant &f e U(N) may be expanded as

N
DeI(l—sU)=kZO ska (V). (5

The unitarity ofU implies a “self-inversive” property for the secular coefficiefits:

an-(U)=Det(—U)a,(U).

Each coefficieng, may be obtained from the tracés=TrU'} by

tp tp f3 ty
1t t ... oty
k=1 Kk .
(D0 2 tp .t
—— 2+ D at | = ——— A
AT | Zla'k') kk |lo 0o 3 :
0 ... .. k-1 t,

Because this dependence is highly nonlinear, the secular coefficients inherit non-Gaussian distri-
butions in the RMT ensembl&However, to compute the ensemble averageQ gfy) one only
needs to know their variances, since
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N N/2
Qu(y)= go yN2 g, [2= go (Y N4 27Ky | 5,2, (6)

For the Poisson and the CUE ensemble of random matrices, these variances were computed in
Ref. 6, and have the following lardé-asymptotics:

N
<|ak|2>Poisson=(k)a <|ak|2>CUE=1! (7)

sin(x/2)

(Qu(€M))poissor=2",  (Qu(€™))cye~N X2

tS)

In Ref. 7, a semiclassical estimation of tfa|? was given for integrable and chaotic quantum
maps. The authors used the explicit expression in terms of the tiacasd estimated the latter by

the Gutzwiller trace formuldl). They made a generalized diagonal approximation treating the
tracest, as statistically independent variables. To obtain the correlation function, one has to
estimate thda,|? (and hence the,) up to timesk<N/2, where the Gutzwiller formula is non-
rigorous.

B. Representation-theoretic content of  Q,

We now introduce a more group-theoretic expression for the correlation function. Instead of
performing the expansiofb), we will expressQ(y) as acharacterin a certain irreducible
representation of U(I¥), which is best described using the physical language of fermions.

Let Fy be the Fock space fd¥ types of fermiond;, f!. In mathematicsF is known as the
spinor representation space of the group SAW)(2Then, for anyNX N unitary matrixU,

N
Det(1-U)=Trs (~1)2 Texp fl(logu)f.
ij=1

The exponential on the right-hand side can be shown to be well defined in spite of the multi-
valuedness of lofy. To account for both determinants, we usl Zermions, whose creation
operators are denoted HQH and fij, j=1,...N. The integration ovew) in the integral(2)

def
projects on the subspace=Ker(F, —F_), whereFi=2ifoii are the number operators for
the two types of fermions. The correlation function reads

N
Qu(9) =Tre T F-"N2exp > (logU);j(fLif,— 1t ). )
ij=1
The operator under the trace belongs to an irreducible represengtafnthe group U(d),
realized on the spacg, which has dimensiorﬁ["). This representation may be defined through its
Lie algebra version: any skew-HermitiatNX 2N matrix X = (2 g) is represented by the operator

N

R(X):”E:l allf1|f+J+b”fllft]+C|]f,|f+J+d|Jf,|ft] . (10)

By exponentiatingR(expX) =expR(X), we obtain a U(®)-representation, which we still de-
note byR. The correlation functiof) () for any NXN unitary matrixU may be recast as a
character in this representation:

Qu(y)=vy V2Det(U) " TrR(I"V) (11

where
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def
U=

U 0 1_‘def y 0 N
o ult 'Tlg 1/=Y@N):
As it stands, the construction assumesé?e U(1). It canalso be used for other values of
sinceR naturally extends to a representation of GN(2). In the following, matrices in bold print
will always be of size RIX2N.

The assignment— U embeds UN) into U(2N). By this embeddingR restricts to aeduc-
ible representation of W) on F, which we simply denote bRR(U). To express the correlation

def

function, we may also consider the N)-representatiofR_;(U) =det(U) ~*R(U).

In the next section, we decompoRéU) [or equivalentlyR_;(U)] into irreducible represen-
tations (irreps of U(N), thus expressing the correlation functiddy(y) as a sum of
U(N)-characters.

C. Q as a sum of U (N)-characters

The crucial mathematical tool to use is th#ual pair structure??> The subalgebra
{Xn®I5 [ Xyeu(N)} of u(2N) commutes with the subalgebfi,® x, [x, e u(2)}, and each is the
commutant of the other insidg 2N): they are said to form a dual pair. This means that for all
U e U(N), the operatoR(U) commutes with the set

JTZE f:ifii!

lezl f*ieri!

Jo=F.+F_—N.

The operatorsly, J! and J' generate amu(2) algebra. The equatiod,R(U)=R(U)J, im-
plies thatR(U) conserves the total number of particles and hence acts inside the subspaces
FP=FnKer(F,+F_—2p).

The dual pair structure provides us with a prescripffaio decomposeR(U). Inside the
reduced Fock spacg, we consider the subspace of lowest(SUneights,’F= 7N Kerd,, and

def

expand it according to its particle conteR#FP= 7N FP. Classical results of invariant theory,
due mostly to H. Weyf and succinctly summarized by R. Ho#eamount to the following
statements:

(i) The operatoiR(U) acts inside each spa¢P, through a certain irrepp(U) of U(N).
Equivalently,R_,;(U) acts on this space througi;)(U)=Det(U)‘1TJp(U). Furthermore,
two irrepsp, andp,, are inequivalent ip#p’.

(i)  The image of°ZFP under ¢,)* is the spacéFP**C FP*k which is either trivial (if k
>N-—2p) or carries the irrep,, (if k<N—2p). The operators;, J, J; act on this tower
of spaces according to th&(2)-irrep of dimensiorN—2p+1.

(i) The direct sum of these towers exhaugts

We summarize these statements in the following diagram. All entries in a given row are subspaces
containing the same number of fermions; all entries in a given coliantowen carry the same
U(N)-irrep. We only show the case whelM is an even integefthe oddN case being very
similan):
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fN — NfN
134
FN-1 — N-1pN-1 g N-2pN-1
: 13 13
0]:'N/2
: 4] 19 19
F2 _ 252 & 172 o 0r2 (12
T T
f’l — 1fl e Ofl
134
JTO — OJTO
U(N)—irreps: Po p1 P2 .- PNR2

The leftmost tower on the right-hand side carries the triviéiN)-irrep, so all space$FP
=(J3,)P°F° are one-dimensional.

Each irrepp, (or’pp) may be described by a Young diagrap. mixes the action o on p
fermionsf . with the action ofU on p fermionsf_ . Owing to antisymmetrization, it corresponds
to the diagram withp rows of length 2 followed byN—2p rows of length one:

1N72p]

Bp(Un)=Dett Uy pp(Up) = UK

In view of the above diagram, the dimensions of the representation sh&&é$ follow
immediately from those of the spacé&®:

N\ 2 N \?2
dim(k]-'k“’)=dim(]~'p)—dim(}'p‘1)=(p) —(p_l : (13

By doing the sum over eachy(2)-multiplet we can now express the correlation functidd) in
terms of the irrepgp,,

N/2 p—N/2_

y N/2+1-p
ﬂu<y>=p§0 Trpp(U)

Y
1—vy ’

14

or, making the substitutioy= &N,

N/2

Qu(eiX/N)szO Trpp(U) SIn{(X/Z) [1_ (Zp_l)/N]}

sin(x/2N)

For large values oN we may replace the denominator si#2N) by x/2N. A quick comparison
shows that this decomposition is actually equivalent to the pedestrian exp&@siertten down
in Sec. IIA. The squared coefficienlts,|?> now acquire a representation-theoretic meaning:

p
Vp<N/2: |ap(U)|2=Trpr,l(U)=kZO Trp(U), (15)

or, equivalently,

Trpp(U) =lay,(U)]?—|a,_1(U)|2



J. Math. Phys., Vol. 43, No. 5, May 2002 Det-Det correlations for quantum maps 2221

As it stands, the decomposition into irreducibiég) is not very informative if one takes for
U the matrix of a quantum map. We have no veagriori to estimate the characterply(Uy) from
semiclassical information, except by using the relationship, viaahg, to the original traces
Tr(Uh), as was done in Ref. 7. This decomposition will, however, allow us to obtain rigorous
results when adopting a B)-isotropic averaging centered aroubg, (see Sec. Vl

D. Q as a coherent-state integral

Instead of decomposing the characteRTg(U) into irreducibles, we can rewrite it as an
integral over the symmetric spadely=U(2N)/U(N) X U(N). This integral can be interpreted as
a variant of the nonlinear sigma model used in Ref. 15 to study the spectral statistics of quantum
chaotic Hamiltonians on infinite-dimensional Hilbert spaces. In our case the integral representation
is exact, and is well defined mathematically.

To write the charactef),(y) as an integral, one uses the coherent sta{g$|0), where|0)
is the vacuum ofF andg is any matrix in U(N).?* These coherent states provide a resolution of
unity on 7, i.e., they can be combined to build the orthogonal projectofpas

def

P]—':f dg R(9)[0)(0|R(g) "%,
U(2N)

where the Haar measudg has to be suitably normalized. Lt be the block-diagonal subgroup
U(N) X< U(N) of U(2N). Then for allhe Hy, the stateR(g)|0) andR(gh)|0) only differ by a
phase factor. Therefore, it suffices to integrate over the equivalence classeNh td¢2iuloH y; :

P=[  diglrloNolR@) ™
U2N)/Hy

It is convenient to represent they-equivalence classes.e., the points onMy) by 2NX2N
matrices. To eacge U(2N) one associate(‘?g:gigg’l, whereX ;=Iy® o3. The set of all these
matricesQ is isomorphic taMy . It is the set of all Hermitian matrices with two eigenvalued,
and —1, each with multiplicity N. This nonlinear set of matrices is naturally equipped with
U(2N)-invariant symplectic structure and metf&nd therefore an invariant measut®).

The matrix element®);; are not all independent, and for practical calculations we need to
introduce a bona fide coordinate system/ofy, . If we denote byQ45, Q,, the twoNX N blocks
in the right half of the matrixQ, the entries of the complex matr&=Q,,(Q,,— 1) ! are good
coordinates on the open subset/ofy where Q,,— 1) is invertible. Geometrically, theddx N
complex coordinates represent a certain stereographic mappitgodénto CN*N. The matrixZ
corresponding to a poir@y can be extracted from the Gaussian decompositiogt of

e o) .

lo 1/lc b

These complex coordinates also provide a simple definition of the coherent states. Indeed,
R(g)|0) is co-linear with

def

N 0 Z 1z
1Z)=exp| X fiizijff_j]|o>=exp{R(o 0)}|0)=R(0 l)|o>. (17)

i,j=1

As it stands]|Z) is not normalized, but has the following properties:

(i) The overlap between two coherent states ré@jg’')=Det(1+2'Z’). In particular, the
norm of |Z) is Det(1+2'2)%2
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(i)  The resolution of unity takes the form

S R
F— (NXN /*LN(Z!Z )Det(l_,r_z:fz)l (18)

where the measurduy(Z,Z")=Cyx Det(1+2'2) 2NMI,_,d?Z;; /7 is the expression
for dQ in the coordinateg;; . The value of the normalization fact@ is given at the end

of Appendix B.
(i)  The group U(A) acts on these coherent states as follows:

A B
R(C D) |Z)=Det(CZ+D)|(AZ+B)(CZ+D)™1). (19
The resolution of unity allows us to write the charadtEl) as

yU O
Qu(7)=y*N’2Det(U)*1fM dlgl4 <0|R(g)1R( 0 U)R(g)|0>

Det(1+yZ'uzU™Y)
_ —N2 t
4 LNXNd“N(Z'Z ) Tbet1+72)

=f dQ e S(rU.Q), (20)
My

This expression is the central result of the current section. It is an exact formula, which parallels
the “ballistic” nonlinear sigma model derived in Ref. 15 for Hamiltonian systems with an infinite-
dimensional Hilbert space. In our finite-dimensional framework, the non local @¢td ,q) of

4X 4 supermatrices on configuration space is replaced by a “lattice f@|d’j ; of 2xX 2 matrices

(with elements indexed by, 8) depending on two discrete position$. The “effective action” of

the present model,

N
S(y,U,Q)=—Tr{log(1+ yZ'UZU ) —log(1+ZZ")} + E|og Y, (21)

can be presentéflin the form

S(€”N,U,Q)=—Trlog[ cosh{H, ) —sinh(H, ;) Q],
with
defiX

1
X,U:m23+ Elog U.

H
In Ref. 17, this action was further transformed, using the Wigner representation of wave functions,
to obtain the same ballistic non-linear sigma model as in Ref. 15. We will not perform these steps,
which require some further approximations, but rather try to estimate the integral with the above
(purely quantumeffective action.

[ll. SADDLE-POINT ANALYSIS OF THE ACTION S(y,U,Q)

To estimate the field integral of their nonlinear sigma model, the authors in Ref. 15 expand the
effective action around two critical pointsisually referred to as saddle points in this context
Since there is no large parameter in front of this action, a leading-order saddle-point expansion—
see Eq(4)—is not justified mathematicallg priori. In the present section we explicitly compute
this expansion for the actiaf21) and compare it to the results of Ref. 15 and the exact correlation
function.
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The saddle points are determined by requiring the variation of the action to be zero. In the
absence of a large parameter, one first needs to understand exactly which action to vary. This point
is not entirely obvious: one might be tempted to (jfart of) the denominator Det(+ZZ") =N of
the measureluy(Z,Z") into the exponent; this modification of the effective action would yield a
different saddle-point expansion. However, the requirement of coordinate invariance tells us to
keep the U()-invariant measureQ as it is, forbidding such manipulations. With this conven-
tion the saddle-point expansion 8{y,U,Q) will turn out to yield the exacty-dependencéor
Qy(y). In particular, the problem of “unphysical zero modes” occurring in Refs. 15 and 17 is
resolved.

We now describe the saddle-point analysisSfy,U,Q) in some detail. We first use the fact
that the action is invariant under simultaneous rotations of hbt#md Q:

S(y,U,Q)=S(y,VUV 1 VQVT, (22

where we used the shorthand notatidrV®]1,, for Ve U(N). Such aV-rotation of Q is an
isometry of the Riemannian manifoldy and leaves the measud®Q invariant. It therefore
suffices to study the simpler situation wheveis diagonal U=D = diag(e’).

One sees from formulé2l) that the pointZ=0 (or equivalently,Q=23) is a saddle point,
and the quadratic approximation $for small Z reads

N
1 1 .
S(7.D,2)~5Nlogy—Tr( yZ2'DzZD *-Z7'72)~ 5Nlog y+i j§:,l |Z;;12(1— ye%i= %),

This saddle point is the only one oy which is located at a finit&. It is sometimes called
the “perturbative” saddle point in the physics literature. For a generic mafrixhere areN
directionsZ;; that have a coefficient (2 y) ~ —ix/N; these directions are called “zero mode's,”
because their coefficient vanishes»as 0. Doing the integral in this quadratic approximation
aroundZ=0 yields

—~N/2
Y

= NI e 7y

(23

We chose to separate the zero mode contributions from the others.

The existence of a second saddle point was pointediouhe context of the diffusive non-
linear sigma modglin Ref. 25. It may be exhibited through the change of variable 1/Z, which
amounts to switching to the stereographic projectiorM from the antipodal point. In terms of
the new variableZ’, the integrand reads

-1 rpp—1
ypDetl+y 1z uz'u™h
Det(1+2'72") ’

so it has the same structure as the original integrand, but for the replacemeyit®. Quadratic
expansion around’ =0 (or, equivalently, aroun®@= —23) yields

N/2
Y

02 = Oy N (1= Ty

(29)

These two saddle poinf3= =3 ; (we call them “standard) are the only ones taken into account

in the treatment of the ballistic nonlinear sigma model in Refs. 15 and 17. The problem with this
approximation is that, in the limity—1, the sum of the two contributions EQ3) and (24)
diverges at least as strongly as 14%)N "1, whereas the exact correlation function is bounded.
This phenomenon was attributed to tHe- 1 “unphysical” zero modes appearing at each saddle
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point (as opposed to the single “ergodic” zero moleZ;;). More generally, these contributions
become singular each timé and yU happen to have common eigenvalues.

We will argue below that this problem with zero modes is actually resolved by taking into
accountfurther saddle points of the effective action.

A. Weyl character formula

To identify all saddle points, we return to the expresdi@d) of the integrand. We still study
the case wher& =D is diagonal, and we writ€'D=diag(yD,D).

Let { be a complexN XN matrix. The pointQg of My is a saddle point of the integrand iff
the Taylor expansion dfZ|R(g~*I'Dg)|¢) aroundZ=0 contains no term linear iiand™. (Note
that this statement is independent of the choice of representativeQ.) Moreover, we do not
want the integrand to vanish &t 0. If we decompose the unitary matrix @s'I'Dg= (2 3), these
conditions read

b=c=0, Defd)#0. (25

This means that the matrix I'Dg [for y=¢&*Ne U(1)] belongs to the subgrougy of U(2N),
which in turn allowsg to be written as the product of@ermutation matrixg, with some element
heHy. By g, we mean the unitary matrixg();;= & ), where o is a permutation of
{1,...,N}. To each permutatiowr there corresponds a single poi@t,=g,>30, .. Moreover,
two permutationss, o' lead to the same point if= ¢’ 7 where 7 permutes indices separately
inside{1,... N} and{N+1,...,2N}; this property defines a partition of the symmetric gra®ig
into (ﬁ,“) equivalence classes, each one corresponding to a saddle point of the integrand.
These classes are in one-to-one correspondence with th&set§{1,...N}), so we can
write Q,=Qs. Qg is then the diagonal matrix with entries1 at the positionge S, and—1 at

the positionsjeS (the complement ofS in {1,...,N}). We partition the setS into S,
=3SN{1,...N} and~82=§ﬂ{N+_1,...,Z\l}. In the following we will also use the se®,={]

—NJjeS,}, and the setS§; andS, which are the complements {i1.... N} of S;, resp.S,. The
point Qg corresponds to the followingcoherent state inF:

def
1S)=R(g,)|0)== [] ijHSZ £1,]0). (26)

ieS;

The matrix g, admits a Gaussian decompositigh6) iff o is in the trivial class, i.e.,S
={1,...N}, which explains why only the perturbative saddle pd@w > ; could be exhibited
from the Z-coordinates.

We now compute the leading-order contribution from each saddle @gjnin the vicinity of
Qs the integrand in20) takes the values

(ZIR(g,'TDg,)|)/{|L),

where the entries of the matrixare “small” ({ defines a local coordinate system n€xy). We
partition the diagonal matrig;ll“ Dg, into two haIves:g;ll“Dgf,zdiag(Al,Az). The above inte-
grand then reads

Det(1+¢TA A1)

Pt peti+ 70

Expanding to quadratic order and integrating oyef™, we obtain from the saddle poi@s a
contribution similar to(23):
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QD(,y)lQS:CN,y—N/ZH ,yei(t?i—Gj)-H (1_,yei(0i—01))—1H (1_,y—1e—i(0i—0j))—l

ics €S ieS
€S €S €S
x [T (1—-e@=o)=1]] (1—e o)1, (27)
iei‘- iegz
jeSy jeSy

Note that the product contains a factor«{%) N*2", withr=#(S;N'S,). The most singular case
r=0 arises forS,=S;, i.e., saddle points of the tydé; . f;f";|0).

In the general cas&d=VDV !, the saddle points are the poir(m,,s=VQSV_1, and they
lead to the same contributiorisf. the covariance of the action and the measii@®. The two
standard saddle poin@= =25 are the only ones unaffected by thééeotations.

It is illuminating to present the result of the approximati@7) in an alternative fashion. For
that purpose, we denote the nonzero elements of the diagonal Marby €% (v=1,...,N).
The sum of contribution$27) can then be rewritten in the form

B e L
Qo =Cny "X . i) (28)

Save for the prefacto€y, the expressioni28) agrees with the result that follows from theeyl
character formuld® for the trace ofR(I'D) over F. In general, this formula expresses the char-
acter of an element of U(2) [more generally, GL(RI,C) ] in some representatidR as a sum over

all permutationsr € G,y [this being the so-called Weyl group of U{2]. In our case, the terms

from the (2N)! elements ofS,y may be grouped intoﬁﬁ") classes, according to the equivalence
relation described above. Since Weyl's formula is an exact result, the exprég8joremains

finite in the limit y—1, which means that the singularities 14%)N~2" of the various terms
cancel each other. The complete sum over saddle-point contributions thus solves the problem of
“unphysical zero modes,” i.e., the divergence problem of the two standard saddle points.

The mathematical reason behind the “almost exactness” of the leading-order saddle-point
expansion is as follows. The action Bf(g) on coherent stateZ) may be interpreted as the
equivariant action ofj on the space of holomorphic sections of a certain complex line butlle
over My .2’ This equivariant action can be extended to (inéinite-dimensional space of square-
integrable differential forms of degree (),on the bundle. On the enlarged space, the character
becomes dsupejtrace, which can still be written as an integral ovety. Owing to anN=2
supersymmetry, the integrand may be continuously deformed without changing the value of the
integral. In one limit of the deformation, one getsR{g); in the other, the integranidcalizesat
the fixed points ofgy on My, yielding Gaussian integrals around these points.

It turns out that these fixed points coincide with @y s, and their(Gaussiancontributions
are equal td27), save for the prefacto€y . As a result, the leading-order saddle-point approxi-
mation (for our nonlocalized integranddelivers the correct answéomitting the prefactor In
Sec. IV D, we investigate the higher-order terms of the expansi@=at ; up to two loops: we
find that these terms only renormalize the prefacty, without affecting theU- or
v-dependence. We speculate that thdequately resummgdull series yields the exact answer,
including the correct normalization.

To achieve agreement with the Weyl character formula, it was crucial to regard the denomi-
nator Det(1+2"2) 2N as part of the measurfas opposed to lifting it into the actiprindeed, in
order for the mechanism of equivariant localization to take effect, the integration measure must be
U(2N)-invariant—a property not enjoyed by the flat measnﬁr@jdzzij without the factor
Det(1+2'z) =2\,
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IV. WHY DO WE NEED AVERAGING?

While the Weyl character formula fdi(y) constitutes an exact result, it is of no use—at
least not as it stands—towards our goal of proving universality of the correlation function. This
formula relies on the knowledge of the eigenphaséeU, which are not givera priori. It does
not exhibit the semiclassical features of the quantum map at all. On the contrary, it is a “purely
guantum” decomposition of the correlation function, a complicated reordering of the Fourier
decomposition(6).

As was explained in the Introduction, it is not conceivable in general that a universal result for
), can be obtained without doing some kind of averaging over the madtri®iven the results of
the previous section, one might try to perform the averaging term by term in the Weyl decompo-
sition, hoping that most of the terms might average to zero. Such a hope is quickly discouraged by
a look at the expressiof23): aside from having afNth-order singularity aty=1, whose degree
increases each time sonye(%i~ %) crosses unity, this contribution () is strictly positivefor
real y<1. We know that the singularities are artifacts of the Weyl decomposition, as the correla-
tion function Qy(y) itself is uniformly bounded wrtU and vy. Unfortunately, because of the
positivity of (23) the singularities can only be removed by reorganizing the entire sum of contri-
butions, not by averaging individual terms.

For this reason, we will adopt a different strategy: we first perform fAg(d) average on the
integrandof the coherent-state integral, obtaining a new effective action

def
e—Sav(%Q):<e—S(%U,Q)>PN_ (29

We then estimate the resultin@-integral by performing a saddle-point approximation on the
action S,(Q).%°

A priori, this approximation is no more justified than the one in the previous secti&, &s
preceded by no large parameter either. The absence of a large parameter also implies that averag-
ing and making the saddle-point approximation are noncommuting operations. Therefore, the
saddle-point expansion &, will yield qualitatively different results from the direct expansion for
S(y,U,Q). We explained above that averaging the Weyl character formula is hopeless for our
aims. The other way aroun(@e., performing the expansion after averaging the agtiah prove
more interesting.

A. Where are the critical points of  S,,?

For any averaging measurég, the two pointQ= +3 ; remain saddle points &, (y,Q).
In the vicinity of 35, the integrand expands as

<Det(1+ yZ'uzu1t)

~ t o\ _7t7y — o Tr ZT(1- %(AdUY)Z
De(1+2'2) > expT{yZ'AdU-Z)-Z2'Z)=e ,

def
where AdJ-Z=UZU™ ! is the adjoint action ofJ on Z. The approximation is valid fof small.
For larger values oZ, one should add higher cumulants to the right-hand side. However, for the
time being we stick to the purely quadratic approximation, and carry out the Gaussian integral to
obtain

(Qu(7)z,=Cny “Det(1—y(AdU)) . (30)

When the averaging is absefthat is, @y is a Diracs-measure at)), we recover the contribution
(23). The saddle poinQ= —3 5 yields the same result, with— 1. On settingy=€e*N, the
sum of contributions becomes

e ix/2

Det(1—e“N(AdU)) |

(Qu(M)s,u-3,=2CR (31
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In the next section, we examine the possible occurrence of further saddle pofys of

1. Searching for other saddle points

In Sec. Il Awe located the saddle points of the funct@r>(Z(Q)|R(I'U)|Z(Q)), using the
action of the group U(R) on the coherent statéZ). This function may be interpreted as the
Husimi function (or Q-symbo) of the operatorR(I'U) acting on F, and we denote it by
Hrru)(Q). By the same procedure we can obtain the saddle poinitbzgf(Q) for any nonde-
generate matribge U(2N); in that case, the saddle poin@,;; are given in general by finite
matricesZ . andZZm, which are solutions of the saddle-point equations

d J
EijHR(Q,)(Z,ZT) =0= EHR(Q)(Z,ZT) (i,j=1,...N). (32
It is useful to extendHgg to a function of two independent complex matricggZ* (that makes
2N? complex variables The saddle-point equations pos&? constraints on the degrees of
freedomZ and Z*, which yields isolated solutionsZ(,Z;), provided that the constraints are
independent of each other.

The reality of these solutiongi.e., Z* =(Z;)") is due to a symmetry of the operatB(g),
which is not conserved if we replaé¥g) by any operatofR on F. For instance, if the represen-
tation R is extended to matrice& e GL(2N,C), one can show that the saddle points of
Hre)(Z,2*) are real iff G is a normal matrix(i.e., GG'=G'G). We are presently unable to
determine the conditions for the saddle points to be real for the most gédehalany case, the
saddle points will be real iR is a Hermitian operator. The Husimi function is then real, and Morse
theory applies to it. By Morse’s theoreffithe number of saddle pointsvhich we assume to be
isolated is at least the sum of all Betti numbers #fly, which is ¢V).%° This is exactly the
number of saddle points we found fbir(x)(Q) whenX is a 2NX 2N Hermitian matrix, so this
function is called gerfect Morse functiofor My . X can be joined t@e U(2N) by a continuous
path inside the set of nondegenerate normal matrices: this explainsHafy;), although a
complex function, still hasZ(") real saddle points.

Unlike reality, the property that the solutions @R) are isolated points is robusZ(,Z’) are
the common zeros of? polynomials inZ andZ*, so they arestablewrt perturbations of the
coefficients, as long as the equations do not become degenerate. In Sec. Il A the saddle points of
Hrru)(Q) were calledQy s. We now switch to such complex coordinatethat a saddle point
Qy s is situated at=0=¢", and perturbR(I"'U) in GL(F) to R=R(I'U)+ € §R. Then fore
small,Hz(¢,£") will have an isolated saddle point af £¥), where both?, and?* are of order
e. Evenifitis not real, this saddle point will contribute to the integral o¥éy, : starting from real
coordinatesi{j; ,J¢i; , we can locally deform the contour so as to reach the point

(R&ij) "= (L + L2512, (38 ™= (Leij— L5 5)12i,

and we can compute the saddle-point expansiofitbf(91£,3¢) around it.
The averaged integrands we want to consider are all of theHyg®), where

1
R= U(N)dPN(V) ﬁ R(FV),

and dPy(V) is a normalized measure on NJ. If this measure is very strongly peaked near a
matrix Uy, the resulting operator will be a perturbationR(fl’Uy)/DetUy, so the above stability
arguments apply: the saddle points are then isolated points near the unperturbed ones, and they are
“almost real” and hence will lie on the integration contour after a slight contour deformation.

For less concentrated measuré@®,(V), the structure of the saddle points can change. In Sec.
V we exhibit an averaging scheme for which the saddle points are real but not isolated: they form
submanifolds ofM; this is also the case fdfir if g is degenerate. We do not have a good
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estimate of the typical “width” of the measureRj(V) above which saddle points can coalesce,
spread over higher-dimensional sets, or cease to contribute to the irfegiaktance, when they
depart too far away from reality

In general, we are unable to explicitly locate these extra saddle points, even for the relatively
narrow averages described in Secs. IV C and IV F; consequently, we cannot do better than stick to
the approximatior(31) to describe the correlation function. The remaining task then is to inves-
tigate the spectrum of the operatgkdU), which depends oty and on &Py .

B. Common spectral features of  (Ad U)

The spectrum of AdU) has a few features that are independent of the averaging scheme.
Before averaging, the eigenvalue unity occurs inJAdith multiplicity N, corresponding to the
N-dimensional space spanned by tHeeigenstate projectors/;)(#;| (j=1,...N), and the re-
maining N>—N eigenvalues lie on the unit circle. After averaging, only the uniform mggde
=3|y;)(¥;| is left with eigenvalue at unity, while all other eigenvalues have moved inside the
unit disk. As a result, the sum of the contributiof@l) stays finite in the limity—1. Averaging
thus removes the “unphysical zero mode” problem associated with the two standard saddle points
in Sec. lll.

More precisely, the largdt behavior 0f(QU(eiX’N)>|t23 for finite x mostly depends on the

positions of the eigenvalues @AdU) closest to unity Within the approximation(31), these
eigenvalues aréhe relevant dynamical dataf the correlation function.

C. Semiclassical averaging

In Ref. 20, a semiclassical averaging scheme around a quantizet) pyqpvas proposed as
a promising candidate to obtain universal spectral statistics, differentiating between integrability
versus chaotic behavior of the classical napOne chooses a finite set of Hamiltonian functions
H;, corresponding to Hamiltonian vector fieI&Hj (j=1,...r), on the classical phase space.
These Hamiltonians are quantized on each of the quantum Hilbert spagcegielding operators

{I:|J-}, which are represented by Hermitidhx N matrices wrt an orthonormal basis Bfy. An
ensemble average is then introduced by

(1) composingU , y with the operator exp{iE,—tJHj /%), where the “times™t; are real numbers;
(2) averaging over the parameteysn a window around the origin of widtl using, for instance,

2
the Gaussian weightefm) "2 2itj/*,

The width € is taken to bei-dependente~7“~N~¢ for some >a>0, so that the probability
measure for the classical maps eij(EHj)w shrinks to a single pointg, in the classical limit
N—c. The set of HamiltoniangH;} is chosen once and for all, and is independenNo&nd

the map¢. The only constraint on this set is that the second-order differential operator
:EjEﬁj must beelliptic.?

As explained in the Introduction, this averaging procedure is introduced in order to suppress
the nongeneric spectral statistics of quantum chaotic systems with arithmetic symmetries. In this
respect we must mention the results obtained in Ref. 10, where the authors show how nonlinear
perturbations of quantum cat maps exhibit generic spectral statistics, as long as one perturbs in
both directions of the two-dimensional phase space; in contradistinction, perturbation in a single
direction may leave one arithmetric symmetry intact, leading to nongeneric quantum spectral
statistics. This need for “phase-space-isotropy” of the perturbations is very similar to our ellip-
ticity requirementaA is elliptic only if the vector field$S H, SPan the whole tangent space at every
point of phase space.

Some recent articlé®®! have dealt with the spectral analysis of the operdfmU)gemicias
and obtained interesting results concerning its largest eigenvalues. For a classically chaotic map,
these were shown to conver@gesN— «) to theRuelle-Pollicott resonancesf the corresponding
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Frobenius-Perron operattr. These resonances are inside the unit circle, which means that
(AdU ) semicias has afinite gap between unity and the rest of the spectrum, for. The
huge majority of eigenvalues tend to accumulate on the ofigge the discussion at the end of
Sec. VA.

These properties allow us to estimate the contribution from the two standard saddle points for
the case of a quantum chaotic map. To lowest order iy 1/

(O (y=e My N NCy sin(x/2)
Un 4 sem|c|a$t23 Deti(]l_<AdU>semiclag X2

(33

where Det means that the determinant is computed after restriction to the traceless matrices, i.e.,
to the subspace orthogonal to the uniform mdage Apart from the non-universal prefactor, the
x-dependence agrees with the CUE res8]Jtin the limit of large matrices.

In the case of an integrable map, the eigenvalué&\dfJ \)<emiciasPehave differently: some of
them populate more and more densely a few curves which connect the origin to some point on the
unit circle (including unity. For this reason, one cannot separate unity in Det(
—eN(AdU) gemiciad from the rest of the spectrum. All we can say is that the approxim&8an
does not yield the CUE formula in that caga general it does not yield the Poisson answer
eithen.

1. Warning

One might be tempted to present form(®3) as a “physicist’s proof” of a weak universality
conjecture for quantum chaotic maps. The reason why it is not a proof is clear:

(i) As was explained in Sec. IVA1, there certainly exist other saddle point2df The
calculation of their contributions is a difficult task, which we have not yet performed. It is
far from obvious why these saddle points should be less important@art 25 in the
semiclassical averaging scheme.

(i)  As was emphasized before, there is no large parameter in front of the effective action.
Without such a parameter, the correction terms of the asymptotic expansion around each
saddle point are not small, and their neglect in the forni8& seems to be unjustified.

The second worry is addressed in the next subsection.

D. Loop expansion

We are now going to investigate those corrections to the forrf88athat result from sys-
tematically expanding around the saddle p@rt 2 5. The computations will be done up to what
is called two-loop order in field-theoretic language.

As a first step, we approximate the integrand by taking the ensemble average inside the
determinant:

< Det( 1+ ’)’ZTAdU : Z)>semic|a§~" Det( 1+ ')’ZT<AdU >semiclas' Z) . (34)

Although €, the “width” of the perturbation, decreases like®, its effect is strong enough to
completely modify the spectrum of AH even in the semiclassical limit. This shows that the
above approximation is not necessarily valid if we just suppose that the mafriaes bounded
(uniformly wrt N) in the operator norm oft{y,. Using the expansion

N
Det(1+A)=1+TrA+ >, Tr(/\IA),
i=2
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Eq. (34) will hold as long as the terms fgi=2 are small compared to Ar A sufficient condition
def

for that is Tr(A|)<1, where|A|=JATA. Upon the replacemem=yZ'AdU - Z, this condition

will be met if

N
(ZTZ)— 2 |Z;|2<1, (35)

uniformly wrt N. It would be desirable to better control the error(84) for the larger set of
matricesZ satisfying(N-uniformly) || Z| ;)< const.
Taking (34) for granted, we proceed to the computation of higher loops. To simplify the
def
notation we abbreviat€= y(AdU )semiclas Next we formally introduce a parametdr (which will
be reset to unity at the end of the calculajitny making in the integrand the replacement

Det(1+2'TZ)
De(1+22)

Det(1+Z2'TZz)\M
Det(1+277)

A contribution to the perturbative saddle-point expansion is said to Imelodp order if it varies
asM ~" relative to the leading-order term. On rescaling the integration variablés /M and
{'=27"yM, the 1M expansion of the integrand looks as follows:

Det'(1+2'72) _ N dzg” ot
— T (1-T)¢ -1 -2
dun(Z.2") 5erir 7 ];[ (1+M M+ M2+

wheref, andf, are the one- and two-loop terms, respectively, and are given by

f1=%Tr( {02 ;m (T2 2NTr'e,

fo=— %m*zm %Tr(fm% % [Tr(T0)?—Tr({TTE)?)?
+2NX(TrT )2+ NTr(LT 2= NTr(LTO(Tr(L 1) 2= Tr({TTO)?).

The Gaussian integral at leading order just yields the ré80jt Using standard diagrammatic
techniques to do the one-loop integral we find the following expression:

1 CNx _ 1 1
5CM NXNDet(1—T) 1( 4N2 (1 T) +> (1 T). kJ<1_T)kI,iI

L

_i% (%)”M(%)mﬁ% (11T)” ,|(1ET)k|,kj_i% <1TT) i .|<1TT)k| kJ]

By the relation (£ T) *=1+T(1—T) ! these terms combine to yield the simple answer

N

(,, —TrgT(l ¢ t — ~NXN -1 3
CNLNXNI}L — f1(£,4N=CyM " NDet(1-T) (= N°).

We see that the dependence of the one-loop contributioh cancels completely, leaving only a
constant— N3. This cancellation is not accidental but continues to higher loop order. By a lengthy
but straightforward calculation, the complete perturbative result up to two-loop order can be
shown to be
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; DetM(1+2'T2)
LNXNd“N(Z'Z ) DetM(1+272)

1 7 1
— —NXN -1 1 m-IN3 2| Z N6 4_ 2
CuM Det(1-T) *|1-M " "N°+M 2N + 12N 12N

+O(M‘3)).

Again, all theT-dependence has disappeared from the loop correction terms. This is trueMor all
including the case of interedt) = 1.

The cancellation does not come as a total surprise. The above perturbation expansion, whose
low-order terms we have computed, is formally identical to the same expabsioreaveraging.
The latter is obtained from the former by simply substitutyadU for T= y(AdU )semicias IN the
case before averaging we know from Ref. 27 that an index-theoretic mech@uisratime called
localization) causes the perturbation expansion to be deformddylean underlyingN=2 super-
symmetry to a harmonic oscillator problertor, equivalently, a Gaussian integralt Z=0. The
process of deformation to the Gaussian limit explains why the dependengadih is exhausted
by the leading-order term. It leads to the Weyl character formula, which implies that the contri-
bution to the character fro=0 (or Q=23) is exactlygiven by

+ Det(1+Z"yAdU-2) .
JL.NdeMN(Z’Z) Det(1+212) |Z=0,al|orders: Det(l— yAdU) ™+,

where the normalization consta@t, has now been replaced by unity. The last fact provides the
raison d‘ere for theN-dependent terms produced by the loop expansion: their role is to cancel,
after proper resummation, the prefactoy . This property does not depend on the unitarity of
vAdU, so it holds as well after replacing it by its average. Thus, after summing all orders of the
perturbation expansion, we expect that the saddle pbind contributes to the correlation func-
tion as

(Qy( 7))\23,all orders V_le Det(1— 7’<AdU>)_l-

This perturbative result should be used with some care. Although the funitifiz’; T)
=Det(1+Z'TZ)/Det(1+2'Z) is locally well defined, it does not extend to a global smooth
function on the manifoldMy (in particular, this function is NOT the Husimi function of an
operator on¥). Indeed, settingZ=zG with any invertible matrixG and sendingg—« always
leads to the same poi@= —2; on My, regardless of which matri we choose, whereas the
limit of f(zG,zG™;T) asz—» does depend on the choice ® Thus, the functiorf(Z,Z";T) is
not smooth aQ=—233.

This singularity reflects the fact that the cumulants neglected by our basic approxiigBbion
are smalllcompared to the terms kepminly for small matrice& [cf. the discussion following Eq.

(34)]. If Z,Z" (or some matrix elements therg¢afre allowed to go to infinity, the approximation
clearly loses its validity. To control the error incurred near the saddle @int-3.5, one needs

to switch to another scheme, by first changing coordinZtesl/Z andZ'— 1/z" and only after-
wards repeating the above steps. The contribution fé@m— 25 can then be calculated in the
same way as the one f@=23 5. The treatment of further saddle points remains an open problem.

What makes this procedure unsatisfactory is that we are simultaneously working with several
approximation schemes, each of which is only locally controlled. To localize the integral at the
saddle points in a mathematically rigorous manner, we would need an approximation that is
globally well definedand well controlled. It is not clear whether such an approximation exists,
given the stringent requirement that the integrand should also have the index-theoretic features
that allow localization techniques to be used.
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V. AVERAGING U OVER EIGENBASES

By its definition (2) as a correlation function of spectral determinaiis;(y) is invariant
under any change of basld—VUV ™1, with V an arbitary unitary matrix. In th&-matrix
formulation, this invariance is reflected by the relat®y,U,Q)=S(y,VUV 1, VQV1). Since
the transformatior—VQV ! has unit Jacobian, we may absarhinto the integration variable
Q and compute(y) by first averaging eX*Y:Q over all rotationdJ—VUV ™1

def

1
e SvalrUQ=—__— dVexp{—S(y,VUV 1,Q)}, 36
VoI UN) gy 2V &S0y R (39

and then integrating evav overQ. We saw in Sec. lll Athat if the matri® =V UV is diagonal,

then the saddle points d&(y,U,Q) are situated on the poinl@VVS=VQSV*1. Because the
locations of these points explicitlfependon V, we expect that a smoothing mechanism takes
place and the divergences of the individual terms in the Weyl character formula disappear on
averaging oveW. In fact, as we will see, the expansion obtained by saddle-point analysis of the
effective actionS,,( y,U,Q) is qualitatively quite different from Weyl's formula.

A. Analysis around *3,

We first describeS,,(y,U,Q) near the two saddle poin®=*3; (cf. Sec. IVA). The
V-averaged adjoint operatdAd)y has a rather simple spectrum: unity is a simple eigenvalue
(associated witiy), and on the remaining\®— 1)-dimensional space the operator is proportional
to the identity:

[Tru|2—1
(AdU)y=P;+(1-P)) N1 (37

(P is the orthogonal projector aly .) We see thatAdU),, has a large gap between unity and the
second eigenvalue, and this gap has the maximal degeneracy. Assuming that this degenerate
eigenvalue is small|TrU|<N), we get the following leading-order contribution:

2NCy  sin{x(1/2— «a)}
(1—a/N)N X

(QuE™M)yis,u-s,~ ; (38)

def
with a=(|TrU|>=1)/N. (39

Within this approximation, the correlation function dependsoaU , y only through the simple
quantity | TrU|2, which can be estimated semiclassically by the Gutzwiller—Tabor trace formula
(2): typically, « is of orderO(1/N) for a chaotic map, and of ordé?(1) for an integrable one.

Notice that, due to the high degeneracy of the second eigenvalue, we do not get in general the
CUE result(8), although this eigenvalue is far inside the unit circle. This shows that, to obtain the
CUE result(33), we not only need a finite gap in the spectrum (&fdU), but also a fast
accumulation of the eigenvalues to the origin. The precise condition on the eigenvalues is

EJN:Z[AJ- /(1—X\;)] <N. In the present averaging scheme, this mea#14.

B. Critical submanifolds

We need to investigate the possible influence of other saddle poilgg,gfy,U,Q); for the
present averaging scheme, we will explicitly describe a critical set, which we believe to be
exhaustive. The effective action possesses the symn&ingQ)=Sy,(WQW 1) for all W
e U(N). Therefore, the saddle points are grouped into statiosabmanifolds each of them
invariant under UN).
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1. Description of the manifolds

In Appendix A we prove the following statement: for any initial mattix and anyvy, the
action (36) is stationary at the point®=WQ,W 1, for all rotationsW e U(N) and any permu-
tation o (see Sec. Ill A for the notations, S=S,US,, etg. Since UN) is connected, the points

def
Mg={WQsW 1 |We U(N)} form a connected submanifold @t .

Let 7 be any permutation amony indices. The se®’' = (7(S,),7(S,)) is in general different
from S, and we haveQgs# Qs ; however, Qg € Mg, or equivalently Mg= Mg . Putting
p=#S, andr=4#(S;NS,), we find thatMs contains p)(P)(\'P) different pointsQg . The
manifolds Mg are in one-to-one correspondence with the integeys)( and their total number is
(N/2+1)? for N even, and i+ 1)(N+ 3)/4 for N odd (including the isolated points 35 in the
coun).

For genericU and y# 1 [genericity means here that the matrix digg(,U) is not degener-
ate], we conjecture that the submanifolde!, ) exhaust all the critical points of the action

Sval 7,U.Q).

2. Contributions of the manifolds

The leading-order contribution of each submanifdids to the Q-integral is calculated by
separating the tangent space@ into two parts, one parallel and one transverse\i@. The
integrand in the vicinity ofQg then readgto quadratic order

e~ Sval Q) g~ Hess (Xq) + O(IXrf*)

where Hesgis the Hessian 0§, ,, around Mg, viewed as a nondegenerate quadratic form on the
transverse part of tangent spa@ordinatized byX;). The exact integral oveMg and the
Gaussian integral over the transverse directions yield the contribution

Vol M
(Qu(P)mg=Cny~ N2
vDet(Hess)

In Appendix B, we explicitly compute the volumes of the submanifoldg= M

e Sval7.Q9) (40)

(T'(1)---T(r)’T' ()T (p—n)I(1)---T(N=p=r)

VOI'A/I(IOJ)= ['(1)---T(N)

For all submanifolds\is#{+3 3} (i.e., 0<p<N), these volumes afd-exponentially small. The
quantities Hessand S,,,(Qs) depend orlJ and y; we are unable to compute them in general.
What we know for sure is thae™vaj<1, since € (Y9 has this property.

For a nondegeneraté and y=€&*'N, the Hessian around/s will possess a single eigenvalue
that vanishes witkx, while all other eigenvalues stay at least of ord¥f). This means that the
contribution fromMg goes like Ix asx— 0. However, the “particle-hole duality” between the
submanifoldsM, 1y and My, ) cancels this divergence in the sum of their two contributions
(as it does for+3.5).

As a result, we conjecture that each contributi(@u(y))VV,SUMg is x-uniformly,
N-exponentially small compared to that from2 5 for large N, owing to the small volumes of
Mp,ry- Since the number of critical submanifolds grows liké, we deduce that the leading-
order saddle-point expansion for the act®p (U, y,Q) can be truncated t(88) for large N.

C. Averaging over random matrix ensembles

We may go further and average ®not only over the conjugates of a fixed mattx but also
over the spectrurfie’i}. For instance, we can averageover all matrices in U{), with a weight
corresponding to one of the standard random matrix enseniBtasson, CUE The averaged
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action will be UN)-rotation invariant, and its saddle points will still lie on the submanifolds.

As a result, the leading-order saddle-pdin.s.p) expansion for such ensemble-averaged actions
can again be truncated to the contributi@8), upon replacing the coefficient by its average
(@) ensempieOVer the ensemble considered.

D. Conclusion: No l.0.s.p. expansion for the V-averaged actions

The contribution(38) depends in a very simple manner on the maltfixnamely only on its
first trace. This is in contradiction with the fact thaipriori, all traces up to THN?) enter into
Qu(y) [cf. Eq. (14)]. By selecting some particular cases, it becomes obvious that the l.o.s.p.
expansion(38) deviates strongly from the exact correlation function. The most immediate coun-
terexample is the Poisson ensemble, whose correlation function is given iBEd:or this
ensemble{ a)pgissor= 1, Which yields the CUE result) when inserted into the formul88). We
are hence forced to abandon the l.0.s.p. expansion fovtheeraged actions.

Nevertheless, we hope that this expansion is still meaningful when the averaginy aser
local in U(N), which is the case for the semiclassical average in Sec. (W& not for the
V-average Hopefully, a local average will still conserve some memory of the “localization”
property, which entailed the “almost exactness” of the l.0.s.p. expansioB(ferU,Q).

In the next section, we will consider a local averaging scheme different from the semi-
classical one. It possesses group-theoretic properties, which will allow us to analyze it from the
character decompositiofi4) instead of the coherent-state integral.

VI. ISOTROPIC AVERAGING

Starting from a fixed matribd, one may define aisotropic averaging aroundJ, by com-
posingU with the NX N unitary matrices e, weighted by expt TrH?/4€)dH with small e (so
that the weight is concentrated at the identitisotropy here means that the measdié is
U(N)-invariant. Note that this in sharp contrast with the semiclassical averaging of Sec. IVC,

whereH was a linear combination a;fmatricesﬂ,— , with r independent oN. In the semiclassical
case, the perturbation spanned only-dimensional submanifold, whereas in the present case the
perturbation completely fills thBl?-dimensionale-ball centered aH =0.

One can replace the Gaussian weight by any positive normalizBj-ingariant function of
H. For our purposes, it is convenient to use theat kernelon U(N), i.e., the kernel of the
regularizing operator exp-€A), whereA is the (positive Laplace—Beltrami operator on M.

The heat kernel centered @his defined as follows:
J
Ve>0:—AyK(V,U)= ﬁKE(V,U)

lim K (V,U)=38,(V).

e—+0

Owing to the compactness of NJ, the densityK (-,U) for any matrixU converges to the
uniform density on UN) ase—«. Switchinge from 0 toc therefore realizes a crossover from the
Dirac delta measuréy(-) to the Haar(or CUE) measure. For small values ef the kernel
K. (V,U)=k (VU™ 1) is concentrated around &'=VU '~1 and is approximately given by the
Gaussian weight introduced above(e ™)~ exp(—TrH?/4e).

Schur’s lemma ensures thAtis proportional to the identity on each NJ-irreducible sub-
space olL2(U(N)). As a consequence, its action on each representation mpaitiy) of Eq.(14)
is simply a multiplication by a positive factor, called the quadratic Casimir invariant, which we
denote byp,(A). In formulas,

def
J dVp, (VK (V,U)=e “Aup (U)=e Yp (U).
U(N)
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The factorp,(A) may be computed from the Young diagram mf; a more direct way is to
expressA in terms of fermionic operators acting on the Fock space

N

A|f:”2:1(foﬂ-—fijf,i)(fijfﬂ—fiif,j):(N+1)(F++F,)—(F1+F%)—2Jpl.

Applying this to any element of the subspdtEP (which carriesp,) we find
pp(A)=2p(N+1-p). (41)

On employing the decompositioiil4), the heat-kernel averaged correlation function for
y=¢&"N takes the form

Qo) eme oy ()= S, & 2N LD (1 six/2(1— (2p—1)/N)]
p=0

sin(x/2N)

(42

The effect of the averaging procedure is to damp the larg@ces, which are difficult to estimate
from the Gutzwiller trace formula. In the above equation ¢hex behavior is obvious: all traces
except the trivial one Tag(U)=1 are killed by the exponential, no matter what the maitfixs.

It is actually not necessary to seto « to get the CUE correlation. Since the irrggsare unitary,
their traces are bounded by

| Trpp(U)|=<dimpy=Trp(I).

The dimensions of the's are given in Eq.(13); for finite p, they are bounded by dim
<N?P. In the limit N,p—o with y=p/N fixed, Stirling’s formula yields

i ., iy
dim(pp—ny) ~(7N) 1me2Nf(y),

where the functionf(y)= —ylogy—(1—y)log(1—y) increases monotonically from(0)=0 to
f(1/2)=log 2.
For any sequencflU}nen, if we tunee (possibly varying withN) such that

def
e=Ne>1,

all the terms making a significant contribution(#2) satisfyp<N. Thex-dependence of all these
terms is the samfbeing given by the CUE correlation * sin(x/2)], so the averaged correlation
will also have this dependence. Only the prefactor will depend on the matligeplicitly. If €

is increased further te>1logN, the prefactor itself becomes universal.

These statements hold even in the most general case, when the sefughi® completely
arbitrary. Therefore, to be able to differentiate between integrable and chaotic quantum maps, one
must tune the “disorder strengtt¥’to smaller values, so that contributions from the “high” traces
Trp,(Uy) start to contribute. To recover the Poisson behavior for integrable maps, one actually
needs contributions t642) coming from the whole regiop=<N/2.

This puts us in a no-win situation. On the one hand, we should éunesmall enough values
so that the high tracgs~ Ny (y>0) survive and Poisson behavior stands a chance to emerge. On
the other hand, for a chaotic map we have no control over these high {raeedon’t for an
integrable map eithgr

For our purposes, the present averaging scheme is probably “too algebraic,” as opposed to the
semiclassical average presented in Sec. IV C. To motivate this statement in the spirit of Sec. IV C,
let us compare the spectra of the operatgxdU) for the two schemes:
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(i) The spectrum of AdU ) semiclasqualitativelydepends on the nature of the classical dynamics
(see Sec. IV € It has a finite gap for a chaotic map, whereas eigenvalues accumulate near
the unit circle for an integrable one.

(i) In the isotropic schemdAdU), is decomposed into the irrepg(U) @ p,(U). Therefore,
apart from the single eigenvalue unithdU), has the eigenvaluge 2%~ %)} where
{€%) are the eigenvalues &f; the eigenvalue €° is (N—1)-fold degenerate. This spec-
trum is qualitatively the same for chaotic versus integrable systems.

A. Crossover Poisson-CUE

We now present an application of the above scheme in the area of random matrices. More
precisely, we use the isotropic averaging to build a crossover between the Poisson and CUE
ensembles, and we derive the transitional determinant correlation function that interpolates be-
tween the formulag8). This crossover, as well as the method used to com{tg), can be
compared to the GOEGUE crossover studied in Ref. 7.

Our crossover is defined as follows. We start from the Poisson ensemble, then convolute it
with the isotropic(heat kernel measure of widtke:

def
<QU(7’)>Poissone: f dPPoissongu)f dV K(V,U)Qy(y).
U(N) U(N)

For =0, this is the Poisson ensemble. In the laegkmit, the second integral converges
U-uniformly to the CUE correlation function, so the outg (7)) poissone dO€S, t0O0.

To calculate the correlation function along the crossover, we will use the decompdédjon
as in the previous section: averaging being a linear operation, we only need to replace the char-
acters Tp,(U) by their Poisson averaggsee Eqs(7) and(15)]:

N
p—1)
The asymptotics of these traces in the regimi—c with y=p/N fixed, again follows easily
from Stirling’s formula:

N
<Trpp(U)>Poisson:( p) -

<Trpp(U))Poissoﬁ"(ZWN)_llzleNf(y)- (43

VY(1-y)

The sum over characters therefore approaches the following integrsl— <)

. 2N2 (12 f'(y) Sin(3X—yX)
QO e|></N ) .
< U( )>P0|Ssone \/m 0 y y(l— y) X

In the limit N—o, this integral is determined by the saddle poifriather, the maximupnof
def
f.(y)=f(y)—2ey(1—y) on[0,3]. Three cases have to be distinguished:
()If e<1, the boundary poing=3 is a maximum off, and is the only critical point of0,3].
Because of the vanishing of the integrandyat3, the saddle-point analysis requires some care.
For x of order O(N°) the result turns out to be independentxof

gN(f(y) —2ey(1-y)) (44)

<QU(eiX/N)>POissons~ 2Ne—Ns/2(1_ 8)_3/2,

which shows that the Poisson result & retrieved in the limit=—0. The correlation functions
starts depending or on scales of ordex~ O(N?).
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(i) If &>1, the maximum of_ is situated at the point, e (0,3) which solves the transcen-
dental equatiorf](y)=0. The correlation function depends & O(N°) as

sinx(3-y,)]

: (45)

<QU(éX/N)>Poisson¢ o

The flat correlation function has been replaced by an oscillatory function, with the period of
oscillation being controlled by the “frequency shify’, . Whene becomes large, the shift vanishes
asy,~e 2, so the CUE correlation function is retrieved.

(ii ) If =1, the correlation function is “critical{in the sense of a phase transitipas the two
pointsy= 3 andy, coalesce foe—1 to form a degenerate critical point. In this case the correla-

tion function varies on scales~ O(NY4).

VIl. CONCLUSIONS

In this article we have adapted the MM approach introduced in Refs. 15 and 16 to the
framework of quantized maps on a Hilbert space of dimendlens 1. We focused on the
spectral determinant correlation functiél,(y) instead of the pair correlation function, thereby
obviating the need to introduce supersymmetry; we obtaineekantexpression for the correla-
tion function as an ordinary integral oveN£-dimensional complex manifold. Because the mani-
fold is compact and the integrand uniformly bounded, no regularization needs to be introduced
(unlike in Ref. 15.

To estimate this integral we expand the integrand around its saddle points, first restricting
ourselves to the leading-order perturbative expansion around each point. Owing to the absence of
a large parameter in front of the effective action, this approximation is uncontrolled, and the
connection between its output and the exact value of the integral seems fortuitous at best.

Yet, for any matrixU e U(N), we find that the result from lowest-order saddle-point expan-
sion of the effective actio(y,U,Q) coincides with the exact correlation function, up to a global
prefactor:

Qy( 7)|I.o.s.p. exp. Cn Qu(Y)exact (46)

This remarkable coincidence is linked to a cancellation property of the higher-order terms of the
perturbation expansion, which modify only the prefactor, and is explained by the group-theoretic
structure of the integrand and the Weyl character formula. Unfortunately, the expansion is of no
use for estimating the correlation function of quantized maps in the semiclassical limit.

We argue that a decent semiclassical estimate of the correlation fuiit{jom) can only be
reached if one takes an average over a set of unitary matrices in the vicitityTaf estimate this
averaged correlation, we first average the integrant’¢”® over U, and then perform the
saddle-point expansion of the output. Because averaging and saddle-point expansion are opera-
tions that do not commute, this procedure yields an expansion different from that of the “indi-
vidual” action. At the same time, averagimagpriori breaks the group-theoretic structure, and with
it the exactnessmodulo prefactor of the leading-order saddle-point expansion. Moreover, the
explicit computation of saddle points and their contributions is, in general, a nontrivial task for a
general averaging scheme.

We have been able to locate the complete set of critical points only for a certain type of
average, namely averaging over all bases of Hilbert space. This producés) anvériant effec-
tive action, the critical points of which are grouped into submanifolds, and are independent of the
matrix U we started from(as long as its spectrum is nondegenerafe/o of these submanifolds
are isolated points; we conjectured that the contributions from these two “standard” saddle points,
which can be computed explicitly, always dominate the leading-order saddle-point expansion.

The contributions from these two points are unfortunately “too simple” to constitute a good
approximation of the correlation function, except in some exceptional cases, which we do not truly
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understand. If we average ovére U(N) with the Poisson measure, the saddle-point result
strongly differs from the exact one. We are thus led to conclude that the leading-order saddle-point
expansion of rotation-averaged effective actions does not yield a good estimate of the full integral.

What happens in the case ofaxal average, i.e., when the weight of the probability measure
is concentrated near the quantized nap, is unclear. For one thing, we are only able to exhibit
the two standard saddle points of the averaged action, but there surely exist many more.

In the case of the “semiclassical” averaging scheme, expansion around these saddle points
yields results similar to those obtained in Ref. 15, except that the “resonances” we identify are
eigenvalues of a quantum operator. Yet, these resonances foNagem related to thelassical
Ruelle—Pollicott resonancé%3! in particular they indicate whether the classical dynamics is
chaotic or integrable.

To connect these resonances with the determinant correlation function on a rigorous footing,
we need two nontrivial assumptions to be fulfilled. First, we must assume that the leading-order
saddle-point expansion of th@cal average Seemicial 7,Un,Q) makes sense, i.e., gives a good
approximation of the exact result; the two-loop calculation arott¥l; in Sec. IVD seems to
support this assumption. Second, hindered by our inability to compute the contributions from
further saddle points, we are forced to assume that the full expansion can be truncated to the two
standard saddle points, or at least that this truncation provides a reasonable approximation. We
presently see no way to prove these assumptions.

APPENDIX A: PROOF OF CRITICALITY OF THE SUBMANIFOLDS Mg

To prove that theV-averaged integrand &a{»Y.Q) is stationary on the submanifolds
MsC My, we employ the coherent-state formulation of @eéntegral. The poinQg corresponds
to the statelS)=R(g,)|0), and the points in a neighborhood Qfs may be parametrized as
R(9,)|¢), where{ runs through thed X N matrices(with small coefficientsand|¢) is the corre-
sponding coherent state. The permutatioa G,y is chosen in such a way as to interchange the
setsS; andS,=S,+N, and to keefs; andS,=S,+ N fixed.

We write the Nx 2N matrix g, 'T'Ug, in the block form £ B), and first compute the value
of the integrand in the vicinity o5 before averaging

(¢IR(g,'TUg,)[£)
(Zlo)
Then we perform thé/-average orlJ (recall thatV e U(N) acts onU € U(N) by conjugation:

U—VUV™ 1), and study its output on the right-hand side of the above equation. To first order in
Zand{", we need the averagéBet(D))y, (D *C Det(D))y and(BD 'Det(D)), . By decom-

posing the set{;l,...,N}=81U§1 and{N+1,... ,Z\I}=~SZU~SZ, theNx N matricesB,C,D may be
written in block form:

YUss, O
B= _
0 Uss,

=Det(D)(1+Tr(D"*CZ+BD M+ 0(]Z]?)).

Wss, 0 Wss, 0
, C= , D=

0 Uss, 0 Uss,
where each entr{J,y is a matrix of sizefsX #s’, whose indices take values in the ssts’.
Thus theV-averaged coefficients of the term lineardrare the following matrix elements:

(DetlUss,)Det(Us;s) (Ug 5 Us;s iy, (DetUs;s)DetUs;s) (U s U, imv.

where we have displayed only the dependence&)dand omitted the-dependende We now use
the invariance of the Haar measut¥ under(left) multiplication by any unitary matrix and any
diagonal unitary matrix=diag(;,...,0y) in particular. Under such a left translation, the above
matrix elements acquire extra factatd 6, (resp.d,/5,,). Hence
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(Det(D)(D*C)i)y=(DetD)(D 'C)y)yéi/d for any &;,5.

Sincei e§1 andke S; (resp.l e§2 andme S,) are never equal and the rat®/ 5, may take any
value in U1), weconclude

(Det(D)(D'C)y)y=0.

By the same reasoning, the terms linea¢Invanish aftetV-averaging.

We have thus shown that the poi@ on My is a critical point of theV-averaged action
Svav: EQ. (36). By the UN)-invariance ofS,,,, it follows that the whole submanifold1g is
critical for theV-averaged action, no matter whaltis.

APPENDIX B: VOLUMES OF THE CRITICAL SUBMANIFOLDS

We treat the general case withS;=#S,=N—p, #S,=#S,=p, #(SNS)=#(S5NS,)
=r, and to buildQg we use the same permutationas in the previous appendix.

The manifold Mg is given by the set of statdR(Vg,)|0)|V e U(N)}. These states may be
written (up to normalizationin the formR(g,)|{y) where the coherent stag,) is determined by
the matrix

—\,—1
Vsis,Vg s, 0 def( 0] 0)

0o (@ (BY)

v= N
0 VasVss,

according to Eqs(16) and(17). The block structure of this matrix derives from the sels,5,)
vertically, and &;,S,) horizontally.

WhenV runs through UK), the upper-left matrix*) takes all possible values itfN~P) <P
The matrix£® is not independent of(*). For a fixed{"), we need to identify the remaining
degrees of freedom i§‘®, which is quite easy to do if(Y)=0, i.e., if V has the structur&/
=diag(\/SlSl,V§1§1). The matrice3/52§2 andvgzg2 in this case block decompose as

v _<V12,1E 0 ) W-(VlZlE 0 )
2%\ 0 vpp/l 22\ oo 1212

where the index 12 refers to the &iNS,, etc. The degrees of freedom of the lower-right part of

def — def
¢y are thus two matricesg(ll)zvlz,l‘zvigllge CrN=P=0and (MW=Vvy, 1, l;zlﬁe clp=nxr,
They are independent of each other, and take all possible values in their resbective vector spaces.
Since the subgroup W{—p)xU(p) of U(N) acts transitively on the submanifolf?)=0 of
Mg, there exists a natural choice of invariant measure on that submanifold. It has the factorized

form
Det(1-+ {ITEAN=P]T 62018 7 Det( 1+ {00 P[] 20 .
i 9]

The matrix/(*) parametrizes a coset spaceN)(U(N—p)x U(p), with the corresponding in-
variant measure being Det1z™MT¢M)NIT; ;d?¢{M/ . By group invariance arguments, the vol-
ume element of\s (normalized so that it agrees with the Riemannian measure inherited from the
Riemannian manifold\ty) is the product of the measures fg), (Y, and¢(*V) above. Using

this fact and the resdft

I(m,n)= 1111 Det(1+Z'z) "=

deff T on 4%z I'(1)---T(n) T'(1)---T'(m)
CMXniZy j=1 T '(1)---I'(n+m) '
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we obtain the volume oMg:
VolMgs=1(p,N—p)I(r,p—r)I(r,N—p—r).

A similar integral yields the normalization fact@, of the measureduy(Z,Z2") on the full
manifold My :

Det(1+2'z)"2N"1=

: J T &z I'(2)-+-T(N+1)
CNXNiT= T I'(N+2)---T'(2N+1)°
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