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Abstract. We consider a class of one-dimensional nonselfadjoint semiclassical pseudodifferential
operators, subject to small random perturbations, and study the statistical properties of their (dis-
crete) spectra, in the semiclassical limit h → 0. We compare two types of random perturbation:
a random potential vs. a random matrix. Hager and Sjöstrand showed that, with high probability,
the local spectral density of the perturbed operator follows a semiclassical form of Weyl’s law,
depending on the value distribution of the principal symbol of our pseudodifferential operator.

Beyond the spectral density, we investigate the full local statistics of the perturbed spectrum,
and show that it satisfies a form of universality: the statistics only depends on the local spectral
density, and of the type of random perturbation, but it is independent of the precise law of the
perturbation. This local statistics can be described in terms of the Gaussian Analytic Function, a
classical ensemble of random entire functions.

Keywords. Spectral theory of nonselfadjoint operators, random operators, pseudodifferential op-
erators, random analytic functions
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1. Introduction

The spectral analysis of linear operators acting on a Hilbert space is much developed in
the case of selfadjoint operators: one can then use powerful tools, like the spectral the-
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orem, or variational methods. This fact has been very useful in mathematical physics,
for example in quantum mechanics, where the natural operators (quantum observables,
Hamiltonian) are selfadjoint. However, nonselfadjoint operators also appear in mathe-
matical physics, and deserve to be investigated. For instance, in quantum mechanics, the
study of scattering systems naturally leads to the concept of quantum resonances, which
appear as the (complex valued) poles of the analytic continuation of the scattering ma-
trix (or of the resolvent of the Hamiltonian) into the so-called nonphysical sheet of the
complex energy plane. These resonances may also be obtained as bona fide eigenvalues
of a nonselfadjoint operator, obtained from the initial selfadjoint Hamiltonian through a
complex dilation procedure [1, 2]. Still in quantum mechanics, when considering the evo-
lution of a “small system” in contact with an “environment", one can be led to express the
effective dynamics of the small system through a nonselfadjoint Lindblad operator [34].
In statistical mechanics, the evolution of the system may be described by a linear operator,
which is often nonselfadjoint: the Fokker–Planck, or the linearized Boltzmann equation
typically contain convective as well as dissipative terms, leading to nonselfadjoint op-
erators. In hydrodynamics, the operators appearing when linearizing the Navier–Stokes
equation in the vicinity of some specific solution are generally not selfadjoint [19].

When studying evolution problems generated by linear operators, one is naturally led
to analyze the spectrum of that operator. Yet, in the nonselfadjoint case, the connection
between the long time evolution and a spectrum of complex eigenvalues is not so ob-
vious as in the selfadjoint case, since eigenstates do not form an orthonormal family.
This difficulty of relating spectrum and dynamics is linked with a characteristics of non-
selfadjoint operators, namely the possible strong instability of their spectrum with respect
to small perturbations, a phenomenon nowadays commonly called pseudospectral effect.
Traditionally this spectral instability was considered as a drawback, since it can be at
the source of immense numerical errors [14]. However, as we will see below, analyzing
this instability can also exhibit interesting phenomena. Numerical analysis studies, e.g.
by L. N. Trefethen [47], somewhat changed the perspective of this instability problem:
they showed that considering the pseudospectrum of the (nonselfadjoint) operator—that
is the region where the norm of the resolvent operator exceeds some (large) threshold—is
often more relevant than considering its spectrum, and can reveal important dynamical
information. As an example, when studying a certain class of nonlinear diffusion equa-
tions, Sandsteede–Scheel [39], Raphael–Zworski [38] and Galkowski [18] showed that
the pseudospectrum of the (nonselfadjoint) linearization of the equation can explain the
finite time blow-up of the solutions to the full nonlinear equation, while the mere study
of its spectrum would suggest a stable evolution.

In physical situations, an “ideal” evolution operator can be perturbed by many differ-
ent sources, most of them uncontrolled by the experimentalist. Hence, it seems relevant
to set up a model of random perturbations, and to investigate how the spectrum of our
initial operator reacts to the addition of such perturbations. The spectrum of the perturbed
operator thereby becomes random; in case this spectrum is discrete, it forms a random
point process on the complex plane, which can be investigated by probabilistic methods.
This is what we will do in this article, for a particular class of nonselfadjoint operators.
Namely, we will focus on semiclassical pseudodifferential operators with complex valued
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symbols, and with some ellipticity assumption ensuring that the spectrum is discrete (at
least in some region of the complex plane). Here “semiclassical” means that our operators
depend on a parameter h ∈ ]0, 1] (often referred to as “Planck’s parameter”), and that we
will be interested in the asymptotic (semiclassical) regime h ↘ 0. This small parameter
will provide us with a natural threshold to define the pseudospectrum, and thereby to mea-
sure the spectral instability. The spectrum of these operators is in general very sensitive
to perturbations: as we will see, in many examples the spectrum of the initial operator is
localized along 1-dimensional curves in the complex plane, while the spectrum of the per-
turbed operator fills up an open domain of C (called the classical spectrum), defined by
the symbol of our unperturbed operator. This filling up of the classical spectrum through
perturbation has been studied in a series of works by Hager [24, 23], Sjöstrand [42, 41,
25] and Bordeaux-Montrieux [5] (see also [8] for a similar phenomenon in the framework
of Toeplitz operators on the 2-dimensional torus). These authors show that the spectrum
of the randomly perturbed operator satisfies, with high probability, a complex valued ver-
sion of Weyl’s law: the density of eigenvalues near a given “complex energy” z0 inside
the classical spectrum is approximately given by (2πh)−1D(z0), whereD(z0) > 0 is the
classical density at the energy z0, associated with the symbol of our initial operator.

This Weyl’s law counts the eigenvalues in any given region of C, independent of h,
it therefore describes the spectrum at the macroscopic scale. Since the spectral density
is of order h−1, it is reasonable to think that the typical distance between nearest eigen-
values should be of order h1/2, which we will call the microscopic scale. Our aim in the
present article is to investigate the distribution of eigenvalues at this microscopic scale,
from a statistical point of view; in other words, we aim at studying the local spectral
statistics, for our family of randomly perturbed operators, in particular the type of statis-
tical correlations between nearby eigenvalues. A first result on these correlations has been
obtained by the second named author [48], who computed the 2-point correlation between
the eigenvalues of our randomly perturbed operator in the case of Gaussian perturbations.

In this article we will give a full description of these local statistics, expressed in
terms of a certain Gaussian analytic function. In particular, we will prove a partial form
of universality with respect to the law of the random perturbation.

Before stating our results more precisely, and to provide some motivation, let us recall
some background on the topic of spectral statistics, from a mathematical physics perspec-
tive. In the 1950s Wigner [50] had the idea, when studying the spectra of complicated
Hamiltonian operators in nuclear physics, to replace these (very structured) operators by
large (nonstructured) random matrices. Those random matrices could not reproduce the
large scale density fluctuations of the nuclear spectra, which depend on specific features
of the system, but they could (empirically) reproduce the local statistical properties of
the spectra, at the scale of the mean spacing between eigenvalues. Wigner and Dyson
[13] understood that these local statistical properties only depend on certain global sym-
metries of the Hamiltonian, like time reversal invariance, but not on the fine details of
the Hamiltonian: these statistical properties were thus said to be universal. In the 1980s,
this universality conjecture was extended to simpler Hamiltonians, namely Laplacians on
Euclidean domains with specific shapes: Bohigas–Giannoni–Schmidt [4] observed that if
the billiard flow in the domain is “chaotic”, then the local spectral statistics of the cor-
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responding Laplacian correspond to Dyson’s Gaussian Orthogonal ensemble of random
matrices. In parallel, a large variety of non-Gaussian random Hermitian matrix ensembles
were developed and studied, notably the Wigner random matrices (all entries are i.i.d., up
to Hermitian symmetry), for which the local spectral statistics was recently shown to be
identical with that of the Gaussian ensembles [15], another manifestation of universality.

What about nonselfadjoint operators? Various random ensembles of nonhermitian ma-
trices have also been introduced in the theoretical physics literature. The main objective
has been to understand the distribution of quantum resonances for various types of scat-
tering or dissipative systems; see for instance [17, 52, 32, 21] (a short recent review can
be found in [16]). For most of these models, the focus has been to derive the mean spectral
density, without investigating the correlations between the eigenvalues. The “historical”
nonhermitian random matrix model, for which the full eigenvalue statistics has been de-
rived in closed form, is the complex Ginibre ensemble [20], where all entries are i.i.d.
complex Gaussian; the nearby eigenvalues then exhibit a statistical repulsion between
themselves, similar to the case of Dyson’s Gaussian Unitary Ensemble of Hermitian ma-
trices. For certain non-Gaussian ensembles, recent results [7, 46] have been obtained on
the eigenvalue distribution at the microscopic scale, including some partial universality
results.

Let us also mention a model studied recently by Capitaine and Bordenave [6] (see also
[10]), namely the case of a large Jordan block perturbed by a Ginibre random matrix: the
authors prove that most eigenvalues of the perturbed matrix lie close to the unit circle, but
they also show that the “outliers” (the relatively few eigenvalues away from the unit circle)
are statistically distributed like the zeros of a “hyperbolic” Gaussian analytic function
(GAF). A similar result was proved by Sjöstrand and the second named author [44] in the
case of a nonselfadjoint bi-diagonal matrix, perturbed by a small Ginibre matrix. In these
two models, GAFs appear because the perturbation is chosen to be Gaussian.

Our results will also involve Gaussian analytic functions, but of “Euclidean” type. In
our case, these GAFs will describe the bulk of the spectrum, as opposed to a few outliers;
also, in our case Gaussian functions appear in the limit, even though the perturbation
operator or potential is not necessarily Gaussian distributed.

1.1. Presentation of the results for a simple model case

Before stating our results in full generality, we will illustrate them by first focussing on a
simple case. Call h ∈ ]0, 1] Planck’s parameter, and consider the semiclassical complex
harmonic oscillator

Ph := −h
2∂2
x + ix

2 acting on L2(R). (1.1)

The (semiclassical) principal symbol of Ph is given by the function

p(x, ξ) = ξ2
+ ix2 on the phase space R2

3 ρ = (x, ξ). (1.2)

We call the set

6 := p(R2) ⊂ C the classical spectrum of Ph. (1.3)
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Here 6 is the upper right quadrant of C. The spectrum of Ph is purely discrete, and is
contained in 6 (it is explicitly given by {zn = eiπ/4h(2n + 1); n ∈ N}). Take an open
subset � b 6̊. Then, for any z = X + iY ∈ �, an important data for our construction
will be the structure of the “energy shell”1 p−1(z) ⊂ R2. Since p : R2

→ C is a local
diffeomorphism for z ∈ �, this energy shell consists of a discrete set of points; in the case
of the harmonic oscillator, p−1(z) consists of four distinct points:

ρ1
+ = (Y

1/2,−X1/2), ρ2
+ = (−Y

1/2, X1/2),

ρ1
− = (Y

1/2, X1/2), ρ2
+ = (−Y

1/2,−X1/2).
(1.4)

We have labelled those points according to the sign of the Poisson bracket {Rep, Imp}(ρ)

= 4xξ : at the points ρj+ the bracket is negative, while at the points ρj− it is positive. From
this bracket condition, one can construct [9, 11], for each z ∈ � and j = 1, 2, a semiclas-
sical family of functions (ej+(z, h) ∈ L

2(R))h∈]0,1], ‖e
j
+(z, h)‖ = 1, satisfying2

‖(Ph − z)e
j
+(z, h)‖ = O(h∞), (1.5)

and such that ej+(z, h) is microlocalized at the point ρj+(z).
3 (Here and in the entire text,

all norms without index are either norms in L2 or in B(L2), the space of bounded linear
operators L2

→ L2). We call each family (ej+(z, h)) an h∞-quasimode of P − z, or for
short a quasimode of P − z. Similarly, there exist quasimodes ej−(z, h) for the adjoint
operator (Ph − z)∗, microlocalized at the points ρj−(z). From the quasimode equation
(1.5) it is easy to exhibit an operator Q of norm 1 and a parameter δ = δ(h) = O(h∞)
such that the perturbed operator Ph + δQ has an eigenvalue at z (for instance, if we call
the error rj+ = (Ph − z)e

j
+, we may take the rank 1 operator δQ = −rj+ ⊗ (e

j
+)
∗). The

possibility to create an eigenvalue at z upon a very small (O(h∞)) perturbation indicates
that z is in a region of strong spectral instability for Ph when h� 1. Since z was chosen
arbitrarily in the interior of6, this whole region is therefore a zone of spectral instability;
for this reason, we call 6̊ the (h∞-)pseudospectrum of Ph.

Let us now explain how we construct random perturbations, following [25]. Let
{ek}k∈N denote an orthonormal basis of L2(R) consisting of the eigenfunctions of the
nonsemiclassical harmonic oscillator H = −∂2

x + x
2, and let {qjk}j,k∈N, {vj }j∈N be in-

dependent and identically distributed (i.i.d.) complex Gaussian random variables with
expectation 0 and variance 1 (that is, with distribution NC(0, 1)). Let N(h) = C1/h

2,
with C1 > 0 large enough. Using these data, we define two types of random operatorsQ:
1. A random, Ginibre-type matrix

Q = Mω =
1

N(h)

∑
0≤j,k<N(h)

qj,k ej ⊗ e
∗

k

1 We will refer to the values p(x, ξ) as “energies”, even though they are complex.
2 The notation = O(h∞) means that for any N , there exists CN > 0 such that for all h ∈ ]0, 1],

the left hand side is bounded above by CNhN .
3 This microlocalization means that the function x 7→ e

j
+
(x; z, h) is concentrated near xj

+
(z)

when h→ 0, while its semiclassical Fourier transform (Fhe
j
+
(z, h))(ξ) is concentrated near ξ j

+
(z).
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2. A random (complex valued) potential

Q = Vω =
1

N(h)

∑
0≤j<N(h)

vj ej

(more precisely, Q is the operator of multiplication by the potential Vω).

The coupling parameter δ = δ(h) will be assumed to be in the range

hM ≤ δ ≤ hκ , (1.6)

where κ > 3, and M > κ is an arbitrarily large but fixed constant. Although the random
operator Q and δ depend on h, we will omit this dependence in our notations. We are
interested in the spectrum of the perturbed operator

P δh = Ph + δQ,

where the random operator Q is either Mω or Vω. Note that since the operator Q is
bounded on L2, the spectrum of P δh remains purely discrete. More quantitatively, with
probability exponentially close to 1 as h→ 0, we have the bounds ‖Mω‖HS ≤ Ch

−1 and
‖Vω‖∞ ≤ Ch

−1 [23, 25].
Our objective will be to study the spectrum of P δh in a microscopic neighbourhood of

some given point z0 ∈ �. As explained in the previous section, the probabilistic Weyl’s
law [23, 25] shows that the typical density of eigenvalues near z0 is of order h−1, so we
expect nearby eigenvalues to be at distances ∼ h1/2 from one another. In order to test
the statistical correlations between nearby eigenvalues, we zoom to the scale h1/2 at the
point z0, by defining the rescaled spectral point process

ZQ
h,z0
:=

∑
z∈Spec(Ph+δQ)

δ(z−z0)h−1/2 .

Our main result is that, in the semiclassical limit, this rescaled point process converges in
distribution to the point process formed by the zeros of a certain random analytic function.
The building block of this random function is the (Euclidean) Gaussian analytic function
(GAF), which we now review.

1.2. The Gaussian analytic function

Let (αn)n∈N be i.i.d. normal complex Gaussian random variables, i.e. αn ∼ NC(0, 1). For
a given σ > 0, we consider the random entire series

gσ (w) :=

∞∑
n=0

αn
σ n/2wn
√
n!

, w ∈ C. (1.7)

With probability 1, this series converges absolutely on the full plane, and defines a Gaus-
sian analytic function (GAF) on C: gσ is a random entire function such that for any n ∈ N
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and any w1, . . . , wn ∈ C the random vector (gσ (w1), . . . , gσ (wn)) is a centred complex
Gaussian,

(gσ (w1), . . . , gσ (wn)) ∼ NC(0, 0), (1.8)
where the covariance matrix 0 ∈ GLn(C) has entries

0i,j = E
[
gσ (wi)gσ (wj )

]
=: Kσ (wi, wj ) = exp(σwiwj ). (1.9)

The function C2
3 (u, v) 7→ Kσ (u, v) is called the covariance kernel of the GAF gσ ;

it completely determines its distribution. As a result, Kσ also completely determines the
distribution of

Zgσ :=
∑

w∈g−1
σ (0)

δw,

the random point process defined by the zeros of the GAF gσ (see for instance [30]). In
Section 6, we will review basic notions and results concerning zero point processes of
random analytic functions, making the above statements more precise.

The GAF zero process Zgσ has interesting geometric properties. Its covariance kernel
shows that for any w0 ∈ C, the translated function gσ (w + w0) is equal in distribution
to the function eσ(ww̄0+|w0|

2)gσ (w), which has the same zeros as gσ (w); hence the zero
process Zgσ is translation invariant on C. The average density (1-point function) of Zgσ is
thus constant over the plane, it is equal to σ/π (see Section 2.5.3). The linear dependence

in σ is coherent with the scaling covariance gσ (w)
d
= g1(

√
σw): dilating the zero process

Zg1 by 1/
√
σ multiplies the average density by σ .

Let us give a short historical background of the GAF. It has appeared in the context
of holomorphic representations of quantum mechanics, when investigating the properties
of random states. In the framework of Toeplitz quantization on a compact Kähler man-
ifold M , one defines a positive holomorphic line bundle L over M , and for any integer
N ≥ 1 a “quantum” Hilbert space HN is formed by the holomorphic sections of the
bundle L⊗N ; the limit N → ∞ is interpreted as a semiclassical limit. In the case of the
1-dimensional projective space M = CP 1, which is the phase space of the spin, Han-
nay [26] defined a natural ensemble of random holomorphic sections in HN , and studied
the point process formed by their zeros (topological constraints force any section to have
exactly N zeros). He explained how to compute the k-point correlation function of this
process, and explicitly computed the limit (after microscopic rescaling) of the 2-point cor-
relation function, which coincides with the 2-point function of the GAF. A few years later,
Bleher–Schiffman–Zelditch [3] proved that, for a general Toeplitz quantization (M,L),
the zeros of random holomorphic sections converge, when N → ∞, to a universal pro-
cess depending only on the dimension of M . In dimension 1, this process is given by the
zero process of the GAF.

We are now ready to state our theorem concerning the spectrum of P δh .

Theorem 1.1 (Complex harmonic oscillator). Fix z0 = X0 + iY0 ∈ 6̊, and define the
classical density for the symbol p(x, ξ) = ξ2

+ ix2 at the points ρj± ∈ p
−1(z0):

σ(z0) :=
1

|{Rep, Imp}(ρ
j
±(z0))|

=
1

4
√
X0Y0

, j = 1, 2.
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For h ∈ ]0, 1], let the random perturbation Q be either Mω or Vω, and take δ in the
interval (1.6). Then, for any domain O b C, the rescaled spectral point process at z0
converges in distribution:

ZQ
h,z0

d
−→ ZGz0,Q on O as h→ 0.

Here ZGz0,Q is the zero point process for the random entire function Gz0,Q described
below:

(1) if Q = Vω then
Gz0,V (w) = g

1
z0
(w)g2

z0
(w), w ∈ C,

where g1
z0
, g2
z0

are two independent copies of the GAF gσ(z0);
(2) if Q = Mω then

Gz0,M(w) = det (gi,jz0 (w))1≤i,j≤2, w ∈ C,

where gi,jz0 , 1 ≤ i, j ≤ 2, are four independent copies of the GAF gσ(z0).

The convergence in distribution of point processes is described more explicitly in The-
orem 2.5. As we will explain in Section 2.5.2, this convergence implies that all k-point
measures converge as well to the limiting ones.

2. Main results—general framework

The above theorem can be generalized to a large class of 1-dimensional nonselfadjoint
h-pseudodifferential operators, and with random perturbations which are not necessarily
Gaussian. We first present the class of unperturbed operators we will be dealing with.

2.1. Semiclassical framework

We begin by recalling the definition of the pseudospectrum of an operator, an important
notion which quantifies its spectral instability.

Let P : L2
→ L2 be a densely defined closed linear operator, with resolvent set ρ(P )

and spectrum Spec(P ) = C \ρ(P ). For any ε > 0, we define the ε-pseudospectrum of P
by

Specε(P ) := Spec(P ) ∪ {z ∈ ρ(P ); ‖(P − z)−1
‖ > ε−1

}. (2.1)

When ε is small, the set (2.1) describes a region of spectral instability of the opera-
tor P , since any point in the ε-pseudospectrum of P lies in the spectrum of a certain
ε-perturbation of P [14]. Indeed, Specε(P ) can also be defined by

Specε(P ) =
⋃

Q∈B(L2)
‖Q‖<1

Spec(P + εQ). (2.2)
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A third, equivalent definition of the ε-pseudospectrum of P is via the existence of ap-
proximate solutions to the eigenvalue problem P − z:

z ∈ Specε(P )⇐⇒ ∃uz ∈ D(P ) : ‖(P − z)uz‖ < ε‖uz‖, (2.3)

whereD(P ) denotes the domain of P . Such a state uz is called an ε-quasimode, or simply
a quasimode of P − z.

Next, let us fix the type of unperturbed operators we will consider in this paper. We
will use the notation ρ = (x, ξ) ∈ R2 for phase space points. We start by considering an
order function m ∈ C∞(R2, [1,∞[), namely a function satisfying the following growth
conditions:

∃C0 ≥ 1, ∃N0 > 0 : m(ρ) ≤ C0〈ρ − µ〉
N0m(µ), ∀ρ,µ ∈ R2, (2.4)

with the usual “Japanese brackets” notation 〈ρ − µ〉 :=
√

1+ |ρ − µ|2. To this order
function is associated a semiclassical symbol class [12, 51]:

S(R2, m) = {q ∈ C∞(R2
ρ×]0, 1]h); ∀α ∈ N2, ∃Cα :

|∂αρ q(ρ;h)| ≤ Cαm(ρ), ∀ρ ∈ R2, ∀h ∈ ]0, 1]}. (2.5)

We assume that the symbol p ∈ S(R2, m) is “classical”, namely it satisfies an asymptotic
expansion in the limit h→ 0:

p(ρ;h) ∼ p0(ρ)+ hp1(ρ)+ · · · in S(R2, m), (2.6)

where each pj ∈ S(R2, m) is independent of h. In this case we call p0 the (semiclassical)
principal symbol of p. We then define two subsets of C associated with p0:

6 := p0(R2), 6∞ := {z ∈ 6; ∃(ρj )j≥1 : |ρj | → ∞, p0(ρj )→ z}. (2.7)

6 is the classical spectrum of the operator Ph defined below, while 6∞ can be called the
classical spectrum at infinity. Furthermore, we suppose that the principal symbol p0 is
elliptic at some “energy” zout ∈ C \6:

∃C0 > 0 : |p0(ρ)− zout| ≥ m(ρ)/C0, ∀ρ ∈ R2. (2.8)

For h ∈ ]0, 1] we let Ph denote the h-Weyl quantization of the symbol p,

Phu(x) = p
w(x, hDx;h)u(x) =

1
2πh

∫∫
e
i
h
(x−y)·ξp

(
x + y

2
, ξ ;h

)
u(y) dy dξ, (2.9)

which makes sense for u in S(Rd), the Schwartz space. The closure of Ph as an un-
bounded operator on L2 has the dense domainH(m) := (Ph−zout)

−1(L2(R)) ⊂ L2(R);
we will still denote this closed operator by Ph. Moreover, we will denote by ‖u‖m :=
‖(Ph − zout)u‖ the associated norm on H(m).4

4 Although this norm depends on the choice of the symbol p − zout, it is equivalent to the norm
defined from any elliptic operator in q ∈ S(m), so that the space H(m) only depends on the order
function m.
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Let �̃ ⊂ C be open simply connected, not entirely contained in 6, and such that
�̃ ∩ 6∞ = ∅. Then the spectrum of Ph inside �̃ has the following properties in the
semiclassical limit [23, 25]:

• for h > 0 small enough, Spec(Ph) ∩ �̃ is discrete,
• for all ε > 0, there is h(ε) > 0 such that

Spec(Ph) ∩ �̃ ⊂ 6 +D(0, ε), ∀0 < h < h(ε). (2.10)

Here, D(0, ε) ⊂ C denotes the open disc of radius ε > 0 centred at 0.
In this work we will study the spectrum of small random perturbations of Ph, in the

semiclassical limit h→ 0, in the interior of 6 ∩ �̃.

2.2. Pseudospectrum and the energy shell

Let �̃ be as above and let

� b �̃ ∩ 6̊ be open, simply connected. (2.11)

Recall that p0 is the principal symbol of p (see (2.6)). We assume that

for every ρ ∈ p−1
0 (�), the 1-forms dp0, dp0 are linearly independent. (2.12)

Since the dimension d = 1, this condition is equivalent to

for every ρ ∈ p−1
0 (�), {Rep0, Imp0} 6= 0, (2.13)

where {·, ·} denotes the Poisson bracket:

{p, q}(ρ) := ∂ξp(ρ) ∂xq(ρ)− ∂ξq(ρ) ∂xp(ρ), ρ = (x, ξ) ∈ R2.

It was observed by Dencker, Sjöstrand and Zworski [11] and Sjöstrand [43] that since
� is relatively compact and simply connected, (2.12), or equivalently (2.13), implies that
there exists J ∈ N∗ depending only on � such that for any z ∈ �, the “energy shell”
p−1

0 (z) consists of exactly 2J points:

p−1
0 (z) = {ρ

j
±(z); j = 1, . . . , J } with ±{Rep, Imp}(ρ

j
±(z)) < 0,

ρi±(z) 6= ρ
j
±(z) if i 6= j, (HYP)

and the points ρj±(z) = (x
j
±(z), ξ

j
±(z)) depend smoothly on z.

We shall make the further (generic) assumption

∀z ∈ �, xi±(z) 6= x
j
±(z) if i 6= j, (HYP-x)

which will play a role when studying the perturbation by a random potential.
Davies [9] and Dencker, Sjöstrand and Zworski [11] showed that (HYP) implies, for

each z ∈ � and each j = 1, . . . , J , the existence of an h∞-quasimode for Ph − z
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(resp. (Ph − z)∗), microlocalized at ρj+(z) (resp. ρj−(z)). We will denote those modes by
e
j
± = e

j
±(z;h) ∈ L

2(R) and normalize them as ‖ej±‖ = 1; they satisfy

‖(Ph − z)e
j
+‖ = O(h∞) and WFh(e

j
+) = {ρ

j
+(z)}, (2.14)

respectively

‖(Ph − z)
∗e
j
−‖ = O(h∞) and WFh(e

j
−) = {ρ

j
−(z)}. (2.15)

Recall that for u = (u(h))h∈]0,1] a bounded family in L2, its semiclassical wavefront set
WFh(u) denotes the phase space region where u is h-microlocalized:

WFh(u) := {{(x, ξ) ∈ R2
; ∃a ∈ C∞c (R2) : a(x, ξ)= 1, ‖aw(x, hDx)u(h)‖L2 =O(h∞)}

where aw denotes the Weyl quantization of a.
In view of the characterization (2.3) of the pseudospectrum, we see that the assump-

tion (2.12) implies that � is contained in the h∞-pseudospectrum of Ph, a spectrally
highly unstable region.

2.3. Adding a random perturbation

We will now consider random perturbations of the operator Ph which are given by ei-
ther a random matrix or a random potential, generalizing a little the constructions made
in Section 1.1. As in that section, we let (ek)k∈N be the orthonormal eigenbasis of the
(nonsemiclassical) harmonic oscillator H = −∂2

x + x
2.

Remark 2.1. This choice of orthonormal basis is convenient for us, but it is far from
unique. It will become clear later that what we need is a family of states (not necessarily
orthonormal) such that the first N(h) states microlocally cover a sufficiently large part
of phase space, namely a neighbourhood of p−1

0 (�). We also need to avoid states which
would have a large overlap with some of the quasimodes ej± (cf. (2.14), (2.15)). We refer
the reader in particular to the proofs of Propositions 7.3 and 8.4 below.

Let α be a complex valued random variable defined on some probability space (M,F ,P),
with the properties

E[α] = 0, E[α2
] = 0, E[|α|2] = 1, E[|α|4+ε0 ] <∞, (2.16)

where ε0 > 0 is an arbitrarily small but fixed constant. Here, E[·] denotes the expectation
with respect to the probability measure P. The Markov inequality implies the following
tail estimate: there exists a constant κα > 0 such that

P[|α| ≥ γ ] ≤ κα γ−(4+ε0), ∀γ > 0. (2.17)

Remark 2.2. For instance, the complex centred Gaussian random variable of (1.7) satis-
fies the above assumptions.
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Random matrix. Let N(h) = C1/h
2 with C1 > 0 large enough (we will be more

precise about this condition later). Let qj,k , 0 ≤ j, k < N(h), be independent copies of
the random variable α satisfying the conditions (2.16). We consider the random matrix

Mω =
1

N(h)

∑
0≤j,k<N(h)

qj,k ej ⊗ e
∗

k , (RM)

where ej ⊗ e∗ku = (u|ek)ej for u ∈ L2(R). For some coupling parameter 0 < δ � 1, we
define the randomly perturbed operator

P δM = Ph + δMω. (2.18)

Random potential. Take N(h) = C1/h
2 with C1 > 0 as above. Let vj , 0 ≤ j < N(h),

be independent copies of the random variable α. Still using the same orthonormal family
(ek)k∈N, we define the random function

Vω =
1

N(h)

∑
0≤j<N(h)

vj ej . (RP)

For 0 < δ � 1, consider the perturbed operator

P δV = Ph + δVω. (2.19)

We call this perturbation a “random potential”, even though Vω is complex valued. When
we consider this type of perturbation, we will make an additional symmetry assumption:

p(x, ξ ;h) = p(x,−ξ ;h). (SYM)

This hypothesis implies that we can group the points forming p−1
0 (z) (see (HYP)) in pairs

such that ρj± = (x
j ,±ξ j ). As a result, the centres of microlocalization of the quasimodes

e
j
+ and ej− are located on the same fibre T ∗

xj
R = {(xj , ξ); ξ ∈ R}.

Remark 2.3. We could relax the assumption (SYM) into requiring this symmetry only
at the level of the principal symbol, i.e. p0(x, ξ) = p0(x,−ξ). However, for simplicity
of presentation we prefer to make the above stronger hypothesis.

Restricting to bounded perturbations. For both types of perturbations, it will be easier
for us to restrict the random variables to large discs D(0, C/h), i.e. assume that

|vi |, |qi,j | ≤ C/h, 0 ≤ i, j < N(h), for some C > 0 sufficiently large. (2.20)

This restriction induces the boundedness of the perturbations Mω, Vω. Indeed, on this
restricted probability space we have the bound

‖Mω‖HS ≤ Ch
−1, (2.21)

where ‖Mω‖HS denotes the Hilbert–Schmidt norm of Mω. In the case of the random
potential,

‖Vω‖∞ ≤ Ch
−1. (2.22)
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We note that even for unrestricted random variables, these bounds on the perturbations
hold with high probability. Indeed, using (2.17) to estimate the probability that (2.20)
holds, we deduce that (2.21) holds with probability ≥ 1 − C2h

ε0 , and that (2.22) occurs
with probability ≥ 1− C2h

2+ε0 for some C2 > 0.
Finally, we will take the coupling parameter δ = δ(h) in the same interval as in (1.6).
We will see in Section 5 that the spectra of P δM and P δV in � are purely discrete. The

principal aim of this paper is to show that the statistical properties of these spectra, in a
microscopic neighbourhood of any z0 ∈ �, are universal, in a sense that we will specify
later on.

Since p0− z is elliptic for every z ∈ C \6, the resolvent norm satisfies ‖(Ph− z)−1
‖

= O(1), uniformly for z in compact subsets of C \ 6, as h → 0. In view of (2.21),
(2.22) and (1.6), we are considering random perturbations of size ‖δMω‖HS � h2 and
‖δVω‖∞ � h2. Therefore, in view of the characterization (2.2) of the pseudospectrum,
the spectra of P δM and P δV are contained in 6 + D(0, ε) for any given ε > 0 and h > 0
small enough. Moreover, since � b 6̊, we will not feel the effects of the boundary of 6;
we will simply say that � lies in the bulk of the spectrum of the perturbed operator.

2.4. Probabilistic Weyl’s law and local statistics

In a series of works by Hager [24, 23, 25] and Sjöstrand [42, 41], the authors considered
randomly perturbed operators P δ as given in (2.18) and (2.19). Under more restrictive
assumptions on the random variables than (2.16), they have shown the following result.

Theorem 2.4 (Probabilistic Weyl’s law). Let � be as in (2.11), (2.12). Let 0 b � be
open with C2 boundary. Let P δh be either of the randomly perturbed operators P δM or P δV
with δ as in (1.6) with κ > 0 sufficiently large. Then, in the limit h→ 0,

#(Spec(P δh ) ∩ 0) =
1

2πh

(∫∫
p−1

0 (0)

dx dξ + o(1)
)

with probability ≥ 1− Chη,

(2.23)
for some fixed η > 0.

The authors also give an explicit control over both the error term in Weyl’s law, and the
error term in the probability estimate.

This probabilistic Weyl’s law shows that, with probability close 1, the number of
eigenvalues of the perturbed operator P δh in any fixed subset of � is of order � h−1.
Hence, the spectrum of P δh will spread across�, with an average spacing between nearby
eigenvalues of order h1/2.

Figure 1 illustrates this behaviour of Ph = −h2∂2
x + e3ix acting on the torus T =

R/2πZ. We draw random perturbations Mω, Vω and plot some region of the spectra of
P δM and P δV , in the interior of6. Both spectra are grossly uniform over the plotted region,
yet in the case of P δV (right plot) the distribution of the eigenvalues seems a bit “less
uniform” than in the case of P δM (left plot), in particular it allows the presence of small
clusters of very near eigenvalues.
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Fig. 1. Numerically computed spectra of the operators −h2∂2
x + e3ix

+ δQ acting on L2(T), with
h = 10−3 and δ = 10−12. The perturbation Q is either a Gaussian random matrix Mω (left), or a
Gaussian random potential Vω (right). The region plotted is the same, it is part of the bulk (the units
on the axes are arbitrary). In the region the number of quasimodes is 2J , J = 6.

To quantify this difference of uniformity between the spectra of P δM and P δV , we study
the local statistics of the eigenvalues, that is, the statistics of the eigenvalues on the scale of
their mean level spacing. For this purpose, we fix a point z0 ∈ �. In both cases Q = Mω

and Q = Vω, we view the rescaled spectrum of the randomly perturbed operator P δQ as a
random point process

ZQ
h,z0
:=

∑
z∈Spec(P δQ)

δ(z−z0)h−1/2 , Q = Mω or Q = Vω, (2.24)

where the eigenvalues are counted according to their algebraic multiplicities.
Notice that the rescaled eigenvalues (zj −z0)h

−1/2 have a mean spacing of order� 1.
The principal aim of this paper is to show that, under the assumption (2.16) on the random
coefficients, in the limit h→ 0 the correlation functions of the processes ZM

h,z0
and ZV

h,z0
are universal, in the sense that they

• depend only on the structure of the energy shell p−1
0 (z) and on the type of random

perturbation used, either Mω or Vω;
• are independent of the law of the random variable α used to define the random pertur-

bations, as long as α satisfies (2.16).

Finally, let us stress that our results concern solely the eigenvalues in the bulk of the spec-
trum of P δh , that is, in the interior of the h∞-pseudospectrum of Ph. Near the boundary
of that pseudospectrum, we expect the statistical properties of the eigenvalues to change
drastically. It has been shown by the second author [49] in the case of a model operator
that the probabilistic Weyl’s law breaks down in the vicinity of ∂6, in fact, the density of
eigenvalues explodes near that boundary.
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2.5. Perturbation by a random potential

We begin with the case of a perturbation (2.19) by a random potential Vω. In Weyl’s law
of Theorem 2.4, the main term on the right hand side can be easily expressed in terms of
the classical spectral density, pull-back of the symplectic measure on T ∗R through the
symbol p0: ∫

p−1
0 (0)

dx dξ =

∫
0

(p0)∗(dx dξ)

(the Lebesgue measure dx dξ on R2 is also the measure induced by the symplectic form
on T ∗R ∼= R2).

From the structure (HYP) of the energy shell p−1
0 (z), the classical spectral density at

the energy z can be expressed as follows:

(p0)∗(dx dξ) =

J∑
j=1

(σ
j
+(z)+ σ

j
−(z))L(dz), σ

j
±(z) =

1

∓{Rep0, Imp0}(ρ
j
±(z))

.

(2.25)

Here L denotes the Lebesgue measure on C. In other words, each point ρj± of the energy
shell provides a density component σ j±(z) > 0, which depends smoothly on z ∈ �.

If we additionally assume the symmetry (SYM) and group the points so that ρj± =
(xj ,±ξ j ), we find that σ j+(z) = σ

j
−(z) for all j = 1, . . . , J .

2.5.1. Universal limiting point process. Let us now state our main theorem for the per-
turbed operators P δV . It provides the asymptotic behaviour of the rescaled spectral point
processes ZV

h,z0
in the semiclassical limit.

Theorem 2.5. Let p be as in (2.6) satisfying (2.12) and (SYM). Let � b 6̊ be as in
(2.11), and choose z0 ∈ �. Then, for any bounded open set O b C, the rescaled spectral
point processes at z0 converge in distribution:

ZV
h,z0

d
−→ ZGz0 in O as h→ 0.

This convergence means that for any test function φ ∈ Cc(O,R),

〈ZV
h,z0

, φ〉 =
∑

z∈Spec(P δh )

φ((z− z0)h
−1/2)

d
−→ 〈ZGz0 , φ〉 =

∑
z∈G−1

z0 (0)

φ(z) as h→ 0.

Here ZGz0 is the zero point process for the random analytic function

Gz0(z) =

J∏
j=1

g
j
z0(z), z ∈ C,

where the gjz0 are J independent GAFs gjz0 ∼ gσ j+(z0)
(see Section 1.2), with σ i+(z0) the

local spectral densities given in (2.25).
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For the reader’s convenience, in Section 6 we present a short review of the probabilistic
notions used in this paper, such as convergence in distribution. The definition and basic
properties of the GAFs have been presented in Section 1.2.

This theorem tells us that at any given point z0 ∈ � in the bulk of the pseudospectrum,
the rescaled spectral point process converges, as h→ 0, to the point process given by the
zeros of the product of J independent GAFs. This limiting point process is the superposi-
tion of J independent processes, each generated by a GAF gjz0 . The latter only depends on
the part of the classical spectral density coming from the pair of points ρj± = (x

j ,±ξ j ).
In particular, this limiting process is independent of the precise probability distribution of
the coefficients (vj ), as long as it satisfies (2.16), or of the orthonormal family (ej ) used
to generate the random potential Vω; this process only depends on the cardinality 2J of
the energy shell p−1

0 (z) and of the local spectral densities {σ j+(z0); j = 1, . . . , J }.
It is known that the zero process of a single GAF exhibits a local repulsion between the

nearby points (see Section 2.5.3). On the other hand, as a superposition of J independent
point processes, the limiting process ZGz0 authorizes the presence of clusters of at most J
points very close to one another, confirming our observations on the right plot of Fig. 1
(for the operator and plotted region considered, we have J = 6). In the next section we
will analyze this clustering by computing the correlation functions between the points of
the process.

2.5.2. Scaling limit of the k-point measures. An explicit way to quantify the statistical
correlations between k nearby eigenvalues of P δV consists in defining the k-point measures
of the point process ZV

h,z0
. These are positive measures µk,V,z0

h on Ok , where O is the
open domain as in Theorem 2.5. These measures are defined through their action on an
arbitrary test function φ ∈ Cc(Ok,R+) as follows:

E[(ZV
h,z0

)⊗k(φ)] = E
[ ∑
z1,...,zk∈Spec(P δ)

φ((z1 − z0)h
−1/2, . . . , (zk − z0)h

−1/2)
]

=:

∫
Ok
φ(w)µ

k,V
h,z0

(dw). (2.26)

In practice, one often studies these measures away from the generalized diagonal 1 =
{z ∈ Ck; ∃ i 6= j : zi = zj }, in order to avoid trivial self-correlations. Hence the test
functions we will use below will be chosen in Cc(Ok

\1,R+).
When these k-point measures are absolutely continuous with respect to the Lebesgue

measure on Ck , we call their densities the k-point functions.

Theorem 2.6. Let µk,Vh,z0
be the k-point measure of ZV

h,z0
, defined in (2.26), and let µk,Vz0

be the k-point measure of the point process ZGz0 , given in Theorem 2.5. Then, for any
domain O b C and for all φ ∈ Cc(Ok

\1,R+),∫
Ok\1

φ(w)µ
k,V
h,z0

(dw)→

∫
Ok\1

φ(w)µk,Vz0
(dw), h→ 0.
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Moreover, µk,Vz0 is absolutely continuous with respect to the Lebesgue measure on Ck . Its
density dk,Vz0 is given by

dk,Vz0
(w1, . . . , wk)

=

∑
α∈NJ∑
j αj=k

∑
τ∈Sk

1
α!

J∏
j=1

d
αj
gj (wτ(α1+···+αj−1+1), . . . , wτ(α1+···+αj )), (2.27)

where Sk is the symmetric group on k elements, and for all 1 ≤ j ≤ J and all r ∈ N∗,

dr
gj
(w) =

perm[Crj (w)−B
r
j (w)(A

r
j )
−1(w)(Brj )

∗(w)]

detπArj (w)
, while d0

gj
(w) ≡ 1. (2.28)

Here, perm denotes the permanent of a matrix; Arj , B
r
j , C

r
j are complex r × r-matrices

given by

(Arj )n,m = K
j (wn, w̄m), (B

r
j )n,m = (∂wK

j )(wn, w̄m), (C
r
j )n,m = (∂

2
ww̄K

j )(wn, w̄m),

where Kj (w, w̄) = exp(σ j+(z0)ww̄) is the covariance function of the GAFs gjz0 appear-
ing in Theorem 2.5.

The function dr
gj
(z) in (2.28) is the r-point function for the zero process of the Gaussian

analytic function gj . The limiting k-point functions are thus obtained by concatenating
the r-point functions (1 ≤ r ≤ k) of the J GAFs gj associated with the points ρj± of
the energy shell. The zeros associated with different points ρj± are uncorrelated with one
another.

A result by Nazarov and Sodin [36, Theorem 1.1] implies the following estimate for
the r-point densities of a single GAF.

Proposition 2.7 ([36]). Let O b C be a bounded domain. Let (gj = gjz0)1≤j≤J be the
GAFs appearing in Theorem 2.5, and let dr

gj
(w), 1 ≤ r ≤ k, be the corresponding r-point

functions as in (2.28). Then there exists a constant C = C(r, gj ,O) > 1 such that, for
any configuration of pairwise distinct points w1, . . . , wk ∈ O,

C−1
∏
i<j

|wi − wj |
2
≤ dr

gj
(w1, . . . , wk) ≤ C

∏
i<j

|wi − wj |
2.

This estimate shows that the zeros of a GAF enjoy a statistical (quadratic) repulsion at
short distance, namely they are very unlikely to approach one another much more than
the mean distance.

In formula (2.27) we see that if k > J , each summand has at least one factor d
αj

gj
with

αj ≥ 2. Hence, Theorem 2.6 and Proposition 2.7 lead to the following

Corollary 2.8. Let O b C be a bounded domain, let k > J , and let dk,Vz0 (w) be as in
(2.27). Then there exists a positive constant C = C(r,O) such that, for any configuration
of pairwise distinct points w1, . . . , wk ∈ O,

dk,Vz0
(w1, . . . , wk) ≤ C

∑
i<j

|wi − wj |
2.
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We have seen in Theorem 2.6 that the limiting point process of the rescaled eigenvalues is
given by the superposition of J independent processes given by the zeros of independent
Gaussian analytic functions. Due to this independence, k points, each originating from
a different GAF process, may approach each other without any statistical repulsion: this
allows the formation of clusters of at most J points. As a result, for k ≤ J the limiting
k-point functions do not decay to zero as the distances between the k points get smaller:
this allows the presence of clusters of at most J points. This behaviour is made more
explicit in the next section in the case k = 2.

On the other hand, if k > J then at least two points must originate from the same
GAF process, and therefore statistically repel each other when approaching each other.
This is exactly what Corollary 2.8 tells us: the probability to find more than J points close
together decays at least quadratically with the distance. As a result, finding small clusters
containing more than J eigenvalues is very unlikely.

2.5.3. 2-point correlation function. The 2-point correlation function of a point process
is defined by the 2-point function, renormalized by the local 1-point functions (or local
average densities):

K2,Q
z0
(w1, w2) =

d
2,Q
z0 (w1, w2)

d
1,Q
z0 (w1)d

1,Q
z0 (w2)

, w1 6= w2 ∈ O, Q = Vω, Mω.

By Theorem 2.6, the limiting local 1-point function d1,V
z0 (w) is a constant function, given

by

d1,V
z0
(w) =

J∑
j=1

σ
j
+(z0)

π
, ∀w ∈ O.

This average density of eigenvalues (at the microscopic scale near z0) exactly corresponds
to the macroscopic density predicted by the probabilistic Weyl’s law in Theorem 2.4 (see
also (2.25)).

The limiting 1-point and 2-point functions of the zero process generated by a single
GAF gσ (see Section 1.2) are given by

d1
gσ
(w1) =

σ

π
, respectively d2

gσ
(w1, w2) =

(
σ

π

)2

κ

(
σ |w1 − w2|

2

2

)
,

with the scaling function

κ(t) :=
(sinh2 t + t2) cosh t − 2t sinh t

sinh3 t
, ∀t ≥ 0. (2.29)

The function κ(σ |w1 −w2|
2/2) describes the 2-point correlation function of the zeros of

the GAF gσ . A remarkable property of this function is its isotropy: it only depends on the
distance between the pointsw1, w2. In Figure 2 we plot the function t 7→ κ(t2); it behaves
like κ(t2) = t2(1 + O(t4)) when t → 0, which reflects the quadratic repulsion between
the nearby zeros of gσ . On the other hand, when t � 1 it converges exponentially fast to
unity, showing a fast decorrelation between the zeros at large distances.
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To our knowledge, the function κ was first computed by Hannay [26], as the scaling
limit 2-point correlation function for the zeros of certain ensembles of random polynomi-
als. In the work by Bleher, Shiffman and Zelditch [3], κ describes the scaling limit 2-point
correlation function for the zeros of random holomorphic sections of large powers of a
positive Hermitian line bundle over a compact complex Kähler surface.

In the present work, κ appears as a building block for the limit 2-point correlation
function of the eigenvalues of P δV :

K2,V
z0
(w1, w2) = 1+

J∑
j=1

(σ
j
+(z0))

2

(
∑J
j=1 σ

j
+(z0))2

[
κ

(
σ
j
+(z0)|w1 − w2|

2

2

)
− 1

]
. (2.30)

Let us study this 2-point correlation function more closely:

Long range decorrelation. For |w1 − w2| � 1, as h → 0, the 2-point correlation
function converges exponentially fast to unity:

K2,V
z0
(w1, w2) = 1+O

(
e−minj σ

j
+(z0)|w1−w2|

2)
.

This shows that two points at distances |w1 − w2| � 1 are statistically uncorrelated.

A weak form of repulsion. When |w1 − w2| � 1, in the limit h → 0, there is a weak
form of repulsion between two nearby eigenvalues,

K2,V
z0
(w1, w2) = 1−

J∑
j=1

σ
j
+(z0)

2

(
∑J
l=1 σ

l
+(z0))2

[
1−

σ
j
+(z0)|w1 − w2|

2

2
+O(|w1 − w2|

4)

]
.

(2.31)

This formula shows that the probability of finding two rescaled eigenvalues w1, w2 at
distance� 1 is smaller than the one of finding them at large distances: pairs of rescaled
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Fig. 2. Plot of the function t 7→ κ(t2) (see (2.29)).
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Fig. 3. Blue points: rescaled 2-point correlation functions near the energy z0 = 1.6, obtained
by numerically computing the spectra of the operators Ph,1 (left) and Ph,3 (right) perturbed by
a Gaussian random potential δVω. Red curves: scaling limit 2-point correlation functions K2,V

z0
for both operators, as given in (2.30); the horizontal coordinate is the rescaled square distance
|w1 − w2|

2.

eigenvalues show a weak repulsion at short distance. However, the correlation func-
tion does not converge to zero when |w1 − w2| → 0, but to the positive value 1 −∑J
j=1 σ

j
+(z0)

2/(
∑J
l=1 σ

l
+(z0))

2. This weak repulsion can be explained by the fact that
the random function Gz0 is the product of J independent GAFs: two zeros w1, w2 will
not repel each other if they originate from different GAFs, while they will repel quadrati-
cally if they come from the same GAF. The net result is this weak form of repulsion. The
larger the number of quasimodes J , the weaker this repulsion becomes, since two zeros
w1, w2 chosen at random will have a smaller chance to come from the same GAF.

In Figure 3 we compare the limiting 2-point correlation functions K2,V
z0 with the one

obtained from numerical spectra of two operators on the torus T = R/2πZ:

P δh,q = −h
2∂2
x + eiqx + δVω, q = 1, 3, x ∈ T. (2.32)

We took the parameters h = 10−3, δ = 10−12, and the Gaussian random potential Vω
as in Section 1.1. We use operators defined on T because they are numerically easier to
diagonalize than operators on R. For each operator Ph,q , we drew 1000 samples of the
random potential Vω, and computed the corresponding spectra of P δV , then extracted from
these spectra the correlation function.
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The analysis of the principal symbols pq,0 shows that the classical spectrum is, in both
cases, given by 6 = R+ + U(1). At the energy z0 = 1.6 (clearly located in the “bulk”),
the operator Ph,q − z0 admits J = 2q quasimodes. Figure 3 compares the numerically
obtained 2-point correlation functions (shown as blue dots) of the operators P δh,1 (left)
and P δh,3 (right), with the theoretical scaling limit described in (2.31). For the two opera-
tors, the theoretical curve fits the numerical points quite well, including at short distances
|w1 − w2| � 1.

2.6. Perturbation by a random matrix

We now describe the situation where the operator Ph is perturbed by a small random
matrix δMω, as described in (RM) and (2.18). In this case we do not need to assume the
symmetry property (SYM) for the symbol p0.

2.6.1. Universal limiting point process. Here as well, we can prove a convergence of the
rescaled spectral point process ZM

h,z0
(see (2.24)) towards a limiting zero process when

h→ 0.

Theorem 2.9. Let p be as in (2.6) satisfying (2.12). Let � b 6̊ be as in (2.11). Choose
z0 ∈ �. Then, for any bounded open set O b C, the rescaled spectral point process
ZM
h,z0

converges in distribution towards the zero point process associated with a random

analytic function G̃z0 described below:

ZM
h,z0

d
−→ Z

G̃z0
on O as h→ 0. (2.33)

The random function G̃z0 is defined as

G̃z0(w) := det (gi,jz0 (w))1≤i,j≤J , w ∈ C,

where gi,jz0 , for 1 ≤ i, j ≤ J , are J 2 independent GAFs gi,jz0 ∼ gσ i,jz0
, for the parameters

σ
i,j
z0 =

1
2 (σ

i
+(z0)+ σ

j
−(z0)). (2.34)

The local classical densities σ i±(z0) associated with the points ρi±(z0) were defined in
(2.25).

Theorem 2.9 tells us that at any given point z0 ∈ �̃∩6̊ in the bulk of the pseudospectrum,
the local rescaled point process of the eigenvalues of P δM is given, in the limit h → 0,
by the zero process associated with the determinant of a J × J matrix, whose entries are
independent GAFs. The GAF situated at the entry i, j of the matrix only depends on the
local classical densities of the points ρi+(z0) and ρj−(z0).

The limiting point process Z
G̃z0

features some partial form of universality: it is inde-
pendent of the precise law of the entries of the perturbation Mω (2.16), but only depends
on the cardinality 2J of the energy shell p−1

0 (z), and on the local classical densities
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Fig. 4. Blue points: values of the 2-point correlation functions, obtained by numerically computing
the spectra of the operators Ph,1 (left) and Ph,3 (right) perturbed by a Gaussian random matrix
δMω. The parameters z0, h, δ are as in Figure 3. Red curves: the 2-point correlation function for
the Ginibre ensemble, K2,Gin

z0 , as given in (2.37). The horizontal coordinate is the rescaled square
distance |w1 − w2|

2.

{σ
j
±(z0); j = 1, . . . , J } (notice that in absence of the symmetry (SYM), the densities

σ
j
+(z0) and σ j−(z0) are a priori unrelated).

The limiting process Z
G̃z0

is different from the universal limit ZGz0 studied in the
previous section. In particular the function G̃z0 is not given by a simple product of GAFs,
but by a more complicated expression, namely a determinant. As we will see below, we
expect the zeros of G̃z0 to exhibit a quadratic repulsion between nearby points, as opposed
to the zeros of the function Gz0 in Theorem 2.5.

2.6.2. Scaling limit k-point measures. A direct consequence of the convergence of the
zero processes ZM

h,z0
is the convergence of their k-point measures to those of the limiting

point process.

Corollary 2.10. Let µk,Mh,z0
be the k-point measure of ZM

h,z0
, defined as in (2.26), and let

µ
k,M
z0 be the k-point measure of the point process Z

G̃z0
described in Theorem 2.9. Then,

for any open connected domain O b C and for all φ ∈ Cc(Ok
\1,R+),∫

Ok\1

φ(w)µ
k,M
h,z0

(dw)→

∫
Ok\1

φ(w)µk,Mz0
(dw), h→ 0.
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One can calculate the densities of the limiting 1-point measures µ1,M
z0 :

d1,M
z0

(w) =

J∑
i=1

σ i+(z0)+ σ
i
−(z0)

2π
, ∀w ∈ O. (2.35)

Not surprisingly, this microscopic density is exactly the rescaling of the macroscopic
spectral density at z0 predicted by the probabilistic Weyl’s law in Theorem 2.4 (see also
(2.25)). In the case of an operator Ph satisfying the symmetry assumption (SYM), this
microscopic density is equal to the one obtained for the operator perturbed by a random
potential: for such symmetric symbols, the microscopic densities d1,V

z0 and d1,M
z0 coincide,

and therefore they cannot distinguish between the type of perturbation imposed on Ph.
On the other hand, we believe that for k > 1, the k-point densities dk,Qz0 (equiva-

lently, the k-point correlation functions Kk,Q
z0 ) can distinguish between the two types of

perturbation (still assuming (SYM) for the symbol). We have not been able to compute
in closed form the densities of the limiting k-point measures dk,Mz0 associated with the
random function G̃z0 ; however, the numerical experiments presented in Figure 4, as well
as Proposition 2.7, lead us to the following

Conjecture 2.11. The k-point densities dk,Mz0 of the zero point process of the random
function G̃z0 described in Theorem 2.9 exhibit a quadratic repulsion at short distance.
Namely, for any open setO b C, there exists a constant C > 1 depending only onO and
k such that, for all pairwise distinct points w1, . . . , wk ∈ O,

C−1
∏
i<j

|wi − wj |
2
≤ dk,Mz0

(w1, . . . , wk) ≤ C
∏
i<j

|wi − wj |
2.

In Figure 4 we compare numerical values of the 2-point correlation function with the
2-point correlation function of a well-known spectral point process on C, namely the
spectrum of large Ginibre random matrices. This ensemble corresponds to random ma-
trices Mω alone, when the entries are i.i.d. Gaussian ∼ NC(0, 1), in the limit h → 0,
or equivalently the limit of large matrices. It has been known since the work of Ginibre
[20] that the eigenvalues of these matrices repel each other quadratically at short distance.
When the eigenvalues are rescaled so that the mean local density is d1(w) = σ/π , the
2-point correlation function takes the simple form

K2,Gin
σ (w1, w2) = 1− exp(−σ |w1 − w2|

2). (2.36)

Hence, in view of our local density (2.35), we draw in Fig. 4 the 2-point function

K2,Gin
z0

(w1, w2) = 1− exp
[
−

1
2

J∑
i=1

(σ i+(z0)+ σ
i
−(z0))|w1 − w2|

2
]
. (2.37)

This function is markedly different from the scaling function κ(t2) corresponding to the
zero GAF process (2.29). It seems rather close to our experimental data of Fig. 4, even
though we observe a deviation for values |w1−w2| ∼ 1. Is this deviation due to the finite
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value of h used in our numerical experiment? Or does the deviation persist when h→ 0,
that is, in the limiting correlation functionK2,M

z0 ? We conjecture that the latter correlation
function K2,M

z0 differs from the (appropriately rescaled) Ginibre function K2,Gin
z0 , but that

it becomes closer and closer to it when the number J of quasimodes increases (a property
which purely concerns the classical symbol p0). Indeed, when J � 1 the function G̃z0

is the determinant of a large matrix of independent GAFs. In any case, computing the
k-point densities for the process ZGz0 seems to us to be an interesting open problem.

Translation invariance

One easy property of the limiting point processes obtained in Theorems 2.6 and 2.9 is
that they are homogeneous and isotropic. This property is naturally inherited from the
translation invariance of the zero process of individual GAFs, as mentioned in Section 1.2.

Proposition 2.12. The limiting point processes ZGz0 and Z
G̃z0

obtained in Theorems 2.6
and 2.9 are invariant in distribution under the action of the group of translations and
rotations on C. More precisely, for arbitrary α, β ∈ C with |α| = 1 let us define the plane
isometry τ(w) = αw + β, w ∈ C. Then the zero processes of Gz0 and G̃z0 satisfy

ZGz0
d
= ZGz0◦τ , Z

G̃z0

d
= Z

G̃z0◦τ
.

2.7. Sketch and key ideas of the proof

The proof of the main results has two distinct parts. The first part uses linear algebra and
semiclassical methods to reduce the eigenvalue problem of the infinite-dimensional oper-
ator Ph to a nonlinear spectral problem expressed in terms of a finite-dimensional matrix
(called the effective Hamiltonian), which depends nonlinearly on the spectral parameter.
This reduction will be applied to the randomly perturbed operators P δQ as well. The re-
duction is based on the construction of quasimodes of the unperturbed operator, which
we perform in Section 3. In Section 5 we use these quasimodes to construct a well-posed
Grushin problem for the operators Ph or P δQ, which leads to the effective Hamiltonian.
The spectrum of the random operator P δQ is now obtained as the zero locus of the deter-
minant of the effective Hamiltonian; in the case of the randomly perturbed operator P δQ,
this determinant is a certain type of random analytic function.

In the second part of the argument, we analyze the statistical properties of this random
analytic function. First, we rescale the spectral parameter near a given point z0 to the
scale of the average spacing between eigenvalues. Then we show that, for each type of
perturbation, the determinant of the effective Hamiltonian (after some “change of gauge”)
converges in distribution to the universal random analytic function stated in Theorem 2.5,
resp. Theorem 2.9. In Section 6 we provide an overview of the notions and results from
the theory of random analytic functions used in this paper. Sections 7 and 8 then complete
the proofs of our main theorems.

Let us now give some more details on the successive steps.



Local eigenvalue statistics of pseudodifferential operators 25

2.7.1. Part I: Reduction to an effective Hamiltonian. By (2.12) for all z ∈ � and for
each point ρj±(z), j = 1, . . . , J , in the energy shell p−1(z), we can construct an h∞-
quasimode ej± for the problem Ph − z resp. (Ph − z)∗ as in (2.14)–(2.15). These quasi-
modes are microlocalized at ρj±, i.e. WFh(e

j
±) = {ρ

j
±}. The quasimodes ej+ (resp. ej−)

essentially span the space of singular values of Ph−z (resp. (Ph−z)∗) smaller than h/C.
This property will be used later to extend the operator Ph − z to a well-posed Grushin
problem.

Almost holomorphic quasimodes. The quasimodes are constructed in Section 3, their rel-
evant properties are gathered in Proposition 3.5. For this construction, near each point
ρ+ = (x+, ξ+) ∈ p

−1(z) we use the Malgrange preparation theorem (see Section 3.1)
to factorize our operator P − z, microlocally near ρ+, into a simple form P̃ = hDx +

g+(x, z). The WKB-method (see Section 3.3) then allows one to construct a state

ehol
+ (x, z;h) = a+(x, z;h)e

i
h
φ+(x,z) (2.38)

satisfying the quasimode equation

‖(Ph − z)e
hol
+ ‖ = O(h∞)‖ehol

+ ‖. (2.39)

For a fixed z this WKB construction is standard [12], but we also need to control how
the quasimodes depend on the parameter z. In [24] the author treated the case where the
symbol p in (2.6) is analytic. Here we are only assuming the symbol to be smooth, and
we take particular care in Proposition 3.5 to construct quasimodes depending on z in an
almost holomorphic way, at least near the reference point z0 where we study the spectrum.
The almost holomorphy near z0 takes the form

e−
1
h
8+(z;h)‖∂z e

hol
+ (z;h)‖ = O(h−1

|z− z0|
∞
+ h∞). (2.40)

Because we will eventually focus on z in an O(h1/2) neighbourhood of z0, the right hand
side will effectively be O(h∞).

This holomorphy implies that the states ehol
+ (z;h) are not L2 normalized for all z.

Indeed, we show that for z in a neighbourhood of z0, their norm takes the form

‖ehol
+ (z;h)‖ = e

1
h
8+(z;h) (2.41)

with a phase function

8+(z;h) = 8+,0(z)+O(h logh), 8+,0(z) := − Imφ+(x+(z), z).

The normalized quasimode for Ph − z, microlocalized at ρ+, as in (2.14), can then be
defined as e+(z;h) = e−

1
h
8+(z;h) ehol

+ (z;h).
Similarly, for the adjoint problem Ph− z

∗, we construct WKB states ehol
− (z;h) which

are almost anti-holomorphic with respect to z and their normalized version e−(z;h) =
e−

1
h
8−(z;h) ehol

− (z;h).
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Interaction between the quasimodes. In Section 4 we analyse the overlaps (“interac-
tions”) between nearby quasimodes. These interactions will be relevant when computing
the covariance of the components of the effective Hamiltonian. Since two points ρj+(z),
ρk+(z) (j 6= k) remain at finite distance, the corresponding quasimodes are essentially or-
thogonal to each other. On the other hand, we will need to control the interactions between
the quasimodes microlocalized at ρj+(z) and ρj+(w) when the energies z,w are close to
one another (in practice, |z − w| = O(h1/2)). In Propositions 4.1 and 4.3 we exploit the
almost (anti-)holomorphy of ehol,j

± to show that

(e
j,hol
+ (z)|e

j,hol
+ (w)) = e

2
h
9
j
+(z,w;h) + small, 9

j
+(z, w;h) = 9

j

+,0(z, w)+O(h logh).
(2.42)

Here 9j
+,0(z, w) is a polarization of the phase function 8+,0(z), almost z-holomorphic

and almost w-anti-holomorphic near {(z0, z0)}. In particular it satisfies the second-order
Taylor expansion

9+,0(z0 + ζ1, z0 + ζ2) =
∑
|α|≤2

(∂α1
z ∂

α2
z̄ 8+,0)(z0)

ζ
α1
1 ζ

α2
2

α!
+O(|ζ |3). (2.43)

Remark 2.13. In the case of perturbation by a random potential δVω, we will also need
to compute the interactions between the squared functions (ej−(x, z))

2, namely estimate
scalar products of the form ((e

j
−(z))

2
|(e

j
+(w)))

2 (see Section 4.2).

Grushin problem for the perturbed operator P δh . The next step in the proof is to use the
quasimodes e±(z;h) to construct a well-posed Grushin problem for the operator Ph − z.
As reviewed in [45], in order to analyze the small singular values of a z-dependent op-
erator P(z) = P − z : H1 → H2 (in particular the spectrum of P ), the general idea of
setting up a Grushin problem is to extend this operator to an operator of the form

P(z) :=
(
P(z) R−(z)

R+(z) 0

)
: H1 ⊕H−→ H2 ⊕H+,

where H± (resp. R±) are well-chosen auxiliary spaces (resp. operators). The Grushin
problem is said to be well-posed if the extended operator P(z) is bijective for the range
of z under study, with good control on its inverse. Roughly speaking, the role of R+(z) is
to map the quasi-kernel of P(z) to the auxiliary space, while R−(z) maps the latter to the
quasi-cokernel of P(z); both actions finally make P(z) invertible.

In the case where dimH− = dimH+ < ∞, one decomposes the inverse operator
blockwise as (

P(z) R−
R+ 0

)−1

=

(
E(z) E+(z)

E−(z) E−+(z)

)
=: E(z).

The key observation, going back to Schur’s complement formula, is the following: the
initial operator P(z) is invertible if and only if the finite rank operator E−+(z) : H+
→ H− is invertible, in which case both inverses are related by

P(z)−1
= E(z)− E+(z)E

−1
−+(z)E−(z).
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The finite rank operator E−+(z) is often called an effective Hamiltonian for the original
problem P(z). It depends in a nonlinear way on the spectral parameter z, but it has the
advantage of being finite-dimensional. In a sense, E−+(z) encapsulates, in a minimal
way, the spectral properties of P . If the spectrum of P is discrete in the z-range under
study, its eigenvalues can be obtained as the zeros of detE−+(z) (with multiplicities).

In our case we construct our Grushin problem using the normalized quasimodes: we
take

R+(z) : H(m)→ CJ , (R+(z)u)j = (u|e
j
+(z)), j = 1, . . . , J,

R−(z) : CJ → L2, R−(z)u− =

J∑
j=1

u−(j)e
j
−(z).

The roles of R±(z) are quite transparent: R+(z) indeed maps the quasi-kernel of P − z
(the quasimodes ej+(z)) to the auxiliary space, while R−(z) constructs the quasi-cokernel
of (P − z)∗. We thus obtain a well-posed Grushin problem P(z) (see Proposition 5.1).
Note that this construction was already performed in [24].

After restricting our random variables to discs of radius Ch−1, the perturbations δQ
of Ph are small in norm: ‖δQ‖ � 1. As a result, the Grushin problem is still well-posed
if we replace Ph by the perturbed operator P δQ (see Proposition 5.3). The eigenvalues
of P δQ − z are then given by the zeros of det(Eδ−+(z)), where Eδ−+(z) is the perturbed
effective Hamiltonian. In Section 5.2 we compute this effective Hamiltonian:

δ−J det(Eδ−+(z)) = (−1)J det
[
(Qe

j
+(z)|e

i
−(z))i,j≤J +O(δh−5/2)

]
.

A crucial feature of this expression is that the effective Hamiltonian is dominated by
the random perturbation, in spite of the fact that the latter is of size ∝ δ, which is a
small parameter. However, the unperturbed effective Hamiltonian E−+(z) is actually of
size O(h∞), allowing a perturbation of size hN to be comparatively large.

The quasimodes used in the definition of the effective Hamiltonian were normal-
ized, hence Eδ−+(z) is not holomorphic. In Section 5.2 we show that by multiplying
det(Eδ−+(z)) by an appropriate nonvanishing function of z, we obtain a holomorphic func-
tion, of the following form:

Gδ(z;h) = (1+ R1) det
[
h−1/2(Qe

j,hol
+ (z)|e

i,hol
− (z))i,j≤J + R2

]
, (2.44)

with R1, R2 some small (z-dependent) error terms. Not surprisingly, the normalized
quasimodes have been replaced by their almost (anti-)holomorphic counterparts in the ex-
pression. The entries of the matrix on the right hand side are dominated by the scalar prod-
ucts (Qej,hol

+ (z)|e
i,hol
− (z)), which represent the coupling between the quasimodes through

the perturbation operator Q. Remember that these quasimodes are microlocalized at dif-
ferent phase space points ρj+(z), ρ

i
−(z); hence, the coupling will be nonnegligible only if

the perturbation operator Q is able to “transport mass” from one point to the other.
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Remark 2.14. Here a major difference occurs between the two types of perturbations.
The random operator Mω (eq. (RM)) will typically be able to couple any pair of quasi-
modes (ej,hol

+ , e
i,hol
− ), leading to a full J × J matrix. On the other hand, multiplication

by a random potential Vω will not be able to couple quasimodes localized at different
positions xj+ 6= x

i
−. This is the reason why, in this case, we need to assume the symme-

try property (SYM), which ensures that each quasimode ej+ admits a dual quasimode ej−
with xj+ = x

j
−. The further assumption (HYP-x) ensures that no other quasimode will be

localized at xj+: this property makes the matrix (Vωe
j,hol
+ (z)|e

i,hol
− (z))i,j≤J approximately

diagonal. This diagonal structure will lead to a limiting random determinant given by the
product of J independent GAFs, each corresponding to one of the diagonal entries. On the
other hand, for a random matrix perturbation, the full matrix (Mωe

j,hol
+ (z)|e

i,hol
− (z))i,j≤J

will lead to a full matrix of GAFs.

2.7.2. Part II: Convergence to Gaussian analytic functions. In the second part we study
the point process consisting of the zeros of the random analytic function Gδ(z;h)

of (2.44). Performing the rescaling z = zw := z0 + h
1/2w, with w in some bounded

open set O b C, we are led to study the zeros of the rescaled random function

F δh (w) := G
δ(z0 + h

1/2w;h) = (1+ R1) det[(f δ,hi,j (w))i,j≤J + R2]. (2.45)

The terms R1 and R2 are small, they converge to 0 in probability sufficiently quickly (see
Corollary 7.4 and Lemma 7.5), hence the expression is dominated by det (f δ,hi,j (w))i,j≤J ,
where f δ,hi,j (w) = h

−1/2(Qe
j,hol
+ (zw)|e

i,hol
− (zw)).

In Section 6 we collect some general notions and results concerning random holo-
morphic functions and the associated zero processes. The key observation [40, Proposi-
tion 2.3] (see also Proposition 6.11) is that if a sequence of random holomorphic functions
fn converges in distribution to a random holomorphic function f (which is almost surely
6≡ 0), then the zero point processes of fn converge in distribution to the zero point process
of f .

Therefore, we need to show that the function F δh (actually, after multiplication by
appropriate “gauge” factors) converges in distribution to the random analytic function
Gz0 in the case of Theorem 2.5, resp. to G̃z0 in the case of Theorem 2.9. The first case is
treated in Section 8, the second in Section 7. In this sketch we mostly describe the second
case Q = Mω, and highlight the differences with the perturbation by a random potential.

Covariances. To show the convergence of F δh , we will need to show that the entries
f
δ,h
i,j (w) converge in distribution to J 2 independent GAFs.

The assumptions (2.16) on the coefficients of the random matrix Mω imply that at
each point w the random variable f δ,hi,j (w) is centred. The second step is to compute the
covariances

E
[
f
δ,h
i,j (v)f

δ,h
l,k (w)

]
= h−1E

[
(Mωe

j,hol
+ (zv)|e

i,hol
− (zv))(e

k,hol
− (zw)|Mωe

l,hol
+ (zw))

]
.

Expanding the random operator Mω in the orthonormal family (em)m<N(h) leads to
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E
[
f
δ,h
i,j (v)f

δ,h
l,k (w)

]
= h−1(e

j,hol
+ (zv)|5N(h)e

k,hol
+ (zw))(e

l,hol
− (zw)|5N(h)e

i,hol
− (zv)),

(2.46)
where 5N(h) is the orthogonal projector on the space spanned by (em)m<N(h). From our
assumption on this orthonormal basis, this projector is equivalent to the identity microlo-
cally near �; since all our quasimodes are microlocalized inside �, the projectors 5N(h)
may be removed from the scalar products, up to negligible errors. The covariance is hence
expressed in terms of the interations between neighbouring quasimodes.

From our analysis of these interactions, in Proposition 7.1 we deduce the following
expressions for the covariances:

E[f δ,hi,j (v)f
δ,h
l,k (w)] ≈ h

−1(e
j,hol
+ (zv)|e

k,hol
+ (zw)) (e

l,hol
− (zw)|e

i,hol
− (zv))

≈ δi,lδj,ke
2(∂2

zz̄8
j

+,0(z0)+∂
2
zz̄8

i
−,0(z0))vweFi,j (v)+Fi,j (w)

= δi,lδj,ke
1
2 (σ

j
+(z0)+σ

i
−(z0))vweFi,j (v)+Fi,j (w)

=: K i,j (v,w)eFi,j (v)+Fi,j (w). (2.47)

The Kronecker factors already hint at the fact that the random functions f δ,hi,j and f δ,hl,k are
statistically independent if (i, j) 6= (l, k). To obtain the second line, we have expanded
the phase function 9±,0 describing the interaction to second order (see the Taylor expan-
sion (2.43)), and have separated the mixed term vw̄ from the separated terms |v|2, |w|2

which we grouped in the functions Fi,j (•).
To obtain the third line of (2.47) we used the relation between the phase function8j

±,0

describing the L2 norm of the quasimode, and the local classical density σ j± (see (2.25)).
We indeed show in Section 3.5 that

∂2
zz̄8

j

±,0(z0) =
1
4σ

j
±(z0).

In the mixed term we recognize the covariance of the GAF gσ ij with parameter σ ij =
1
2 (σ

j
++σ

i
−) (see (1.9)). Hence, the whole expression corresponds to the covariance of the

modified GAF
f GAF
i,j := eFi,j gσ ij .

Remark 2.15. In the case of a random potential (see Section 8), we perform a similar
computation in Proposition 8.2. In that case the covariance will involve scalar products of
the type ((ej,hol

− (zv))
2
|(e

k,hol
− (zw))

2), which will be nonnegligible only if j = k; we also
recover the covariance of a GAF multiplied by a gauge factor.

Convergence to a Gaussian function. Computing the covariances is not sufficient to
prove the convergence in distribution of the random functions f δ,hi,j towards the modi-
fied GAFs f GAF

i,j . The entries of Mω are in general not Gaussian, so neither are the func-

tions f δ,hi,j . How does one prove the convergence of a sequence of random functions?



30 Stéphane Nonnenmacher, Martin Vogel

Prokhorov’s Theorem 6.7 shows that to prove the convergence of random functions, it
is enough to prove the convergence in the sense of finite-dimensional distributions (see
Definition 6.5): namely, for any n ∈ N∗ and any set of points (w1, . . . , wn) ∈ O

n, we
need to show that the random complex vector

(f
δ,h
i,j (w1), . . . , f

δ,h
i,j (wn)) converges in distribution to (f GAF

i,j (w1), . . . , f
GAF
i,j (wn)).

This type of convergence will be denoted by f δ,hi,j
fd
−→ f GAF

i,j . We actually need to show

that the various functions f δ,hi,j are asymptotically independent from one another, and
converge towards independent GAFs f GAF

i,j .
The random operator Mω is in general not Gaussian, so to obtain convergences to

Gaussian vectors, we need to apply a suitable version of the central limit theorem (The-
orem 6.12). The application of the CLT relies on the fact that each quasimode ej± has
nonnegligible overlaps with many of the basis states em used to construct Mω. Thanks to
this property, the higher moments of the f δ,hi,j will involve sums over many i.i.d. random
variables α, and hence to a Gaussian law (see Proposition 7.3).

Taking into account the small error terms and applying Prokhorov’s theorem, this
leads to the convergence in distribution of the full determinant

F δh (•)
d
−→ det((f GAF

i,j (•))1≤i,j≤J ) when h→ 0.

Finally, at the end of Section 7.5 we use the fact that the “gauge” functions split into
Fi,j (v) = φ

i
−(v)+φ

j
+(v). This splitting allows one to extract the gauge factors eFi,j from

the random matrix as follows:

(f GAF
i,j (v))i,j = diag(eφ

i
−(v)) (gσ ij (v))i,j diag(eφ

j
+(v)).

The determinant of the diagonal matrices never vanishes, so the zero process is that of the
determinant of the matrix of GAFs gσ ij , as in Theorem 2.9.

Remark 2.16. In the case of a random potential, the major difference lies in the fact that
the off-diagonal entries in (2.45) are negligible; this leads to a product of J independent
functions, each converging to a GAF (compare Corollaries 7.4 and 8.5).

k-correlation functions. The convergence of the point processes implies the convergence
of the k-point correlation measures. It remains to compute the latter, as given in Theo-
rem 2.6, Corollary 2.10 and Proposition 2.12; the computations are performed in Sections
7.6 and 8.4. In the case of a perturbation by a random operator, we can only compute the
1-point function, whereas in the case of a random potential we obtain explicit formulas
for the limiting k-point correlation functions.

3. Quasimodes

Our main objective in this section is the construction of the h∞-quasimodes ej±(z0) for
the operator Ph− z0 (resp. (Ph− z0)

∗), which will be used to set up the Grushin problem
in the next section.
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For this purpose we will first factorize our symbol p into a “nice” form, using semi-
classical analysis and the Malgrange preparation theorem in Section 3.1. This factorized
form will allow for very explicit expressions of our quasimodes, which will naturally
exhibit an almost holomorphic (resp. anti-holomorphic) dependence on the spectral pa-
rameter z. In Section 3.2 we recall the notion of almost holomorphy and we provide some
results needed for the construction of the quasimodes in Section 3.3. Section 3.4 contains
additional remarks on the construction of quasimodes in case we assume the symmetry
property (SYM). Finally, Section 3.5 provides a link between the quasimode phase func-
tions and the symplectic volume on T ∗R, which will be used later.

3.1. Malgrange preparation theorem

We start by Moyal-factorizing the symbol p of the operator Ph in a neighbourhood of
each of the points ρj± = (x

j
±, ξ

j
±) ∈ p

−1
0 (z0) (see (HYP)). The method presented is an

adaptation of [23].

Proposition 3.1. Let p(h) in S(R2, m) as in (2.6) satisfy (HYP), let � b C be as in
(2.11), and let z0 ∈ �. For j = 1, . . . , J , letU j± be open neighbourhoods of ρj±(z0). Then
there exists an open neighbourhood W(z0) ⊂ � of z0, open sets V j± ⊂ U± containing
ρ
j
±(W(z0)), and symbols in S(V j±, 1):

q±,j (x, ξ, z;h) ∼
∑
k≥0

hkq
±,j
k (x, ξ, z), g±,j (x, z;h) ∼

∑
k≥0

hkg
±,j
k (x, z), (3.1)

depending smoothly on z ∈ W(z0), such that for all z ∈ W(z0),

p(x, ξ ;h)− z ∼ q+,j (x, ξ, z;h) # (ξ + g+,j (x, z;h)) in S(V j+, m),

p(x, ξ ;h)− z ∼ (ξ + g−,j (x, z;h)) # q−,j (x, ξ, z;h) in S(V j−, m). (3.2)

Furthermore, the principal symbols satisfy q±,j0 (x
j
±(z), ξ

j
±(z), z) 6= 0 and g±,j0 (x

j
±(z), z)

= −ξ
j
±(z).

We recall that # indicates the Moyal product, which translates the operator composition
to the symbolic level [12, Chapter 7]: for any symbols aj ∈ S(R2, m̃j ), for j = 1, 2,

aw1 ◦ a
w
2 = (a1 # a2)

w.

The Moyal product # : S(R2, m̃1)× S(R2, m̃2)→ S(R2, m̃1m̃2) is a bilinear and contin-
uous map.

Proof of Proposition 3.1. We will focus on a single point ρj+(z), and will omit the ±
and j sub/superscripts in the proof. The case of the points ρj− can be treated identically.

The condition (HYP) implies that for any z ∈ �, we have p0(ρ(z)) − z = 0 and
∂ξp0(ρ(z)) 6= 0. Fix z0 ∈ �. By the Malgrange preparation theorem [29, Theorem
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7.5.5], there exist open neighbourhoods V ⊂ U of ρ(z0) and W(z0) ⊂ C of z0, as well
as smooth functions q0 ∈ C∞(V ×W(z0)) and g0 ∈ C∞(πx(V )×W(z0)), such that

p0(x, ξ)− z = q0(x, ξ, z)(ξ + g0(x, z)) for all (x, ξ, z) ∈ V ×W(z0), (3.3)

and q0(x(z0), ξ(z0), z0) 6= 0, while g0(x(z0), z0) = −ξ(z0). We can suppose that q0 6= 0
in V ×W(z0) by possibly shrinking V and W(z0). Up to shrinking W(z0) we may also
assume that ρ(W(z0)) ⊂ V , so that g0(x(z), z) = −ξ(z) for all z ∈ W(z0).

Next, we make the formal Ansatz

q(x, ξ, z;h) =
∑
k≥0

hkqk(x, ξ, z), g(x, z;h) =
∑
k≥0

hkgk(x, z),

and group together the terms of the Moyal product

q(x, ξ, z;h) # (ξ + g(x, z;h)) = e
ih
2 (DξDy−DxDη)q(x, ξ, z;h)(η + g(y, z;h))|y=x

η=ξ

with the same power of h. The symbols qk , gk can then be computed by induction. For
N ≥ 1, assume we already know qk , gk for 0 ≤ k < N . Equating the coefficient of hN of
the above asymptotic expansion to the symbol pN , we obtain

GN (x, ξ, z) =
qN (x, ξ, z)

q0(x, ξ, z)
(ξ + g0(x, z))+ gN (x, z), (3.4)

where

GN (x, ξ, z) =
1

q0(x, ξ, z)

(
pN (x, ξ)−

N−1∑
l=1

qN−l(x, ξ, z)gl(x, z)

+

N−1∑
k=0

(
i

2
(DξDy −DxDη)

)N−k(
qk(x, ξ, z)η +

k∑
r=0

qk−r(x, ξ, z)gr(y, z)
))∣∣∣∣y=x

η=ξ

.

(3.5)

Notice that GN only depends on qk , gk , for k < N , and on pN . We can then determine
the functions qN and gN : since

ξ(z)+ g0(x(z), z) = 0, ∂ξ (ξ + g0(x, z)) = 1,

the Malgrange preparation theorem implies the existence of smooth functions qN/q0 and
gN in V ×W(z0) satisfying (3.4). This way we obtain all symbols qk ∈ C∞(V ×W(z0)),
gk ∈ C∞(πx(V ) ×W(z0)), k ≥ 1, which allows us to construct full symbols q(x, ξ, h)
and g(x, h) by Borel summation, which satisfy (3.1) and (3.2). ut

3.2. Almost holomorphic extensions

We did not assume the symbol p(x, ξ, h) to be real analytic in the variables x, ξ , so the
functions q(ρ, z) and g(x, z) constructed in Proposition 3.1 are, a priori, not holomorphic
in z. Yet, we show below that they are almost holomorphic near the classical energy shell.
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We begin by recalling the notion of almost holomorphic extension of a smooth func-
tion. It has been introduced by Hörmander [28] and Nirenberg [37] in different contexts.

Definition 3.2. Let X ⊂ Cn be an open set and let 0 ⊂ X be closed. If f ∈ C∞(X), we
say that f is almost holomorphic on 0 if ∂zf vanishes to infinite order there, i.e. for any
N ∈ N there exists a constant CN > 0 such that for all z in a small neighbourhood of 0
in X,

|∂zf (z)| ≤ CN dist(z, 0)N .

In this case we write ∂zf (z) = O(dist(z, 0)∞). In the case 0 = X ∩ Rn, we simply say
that f is almost holomorphic.

If f, g ∈ C∞(X) are almost holomorphic at 0 and if f − g vanishes to infinite order
there, then we say that f and g are equivalent at 0. If 0 = X ∩ Rn, then we simply say
that f and g are equivalent and we write f ∼ g.

Any f ∈ C∞(X ∩ Rn) admits an almost holomorphic extension, uniquely determined
up to equivalence (see e.g. [28, 35]). Before we continue, we recall parts of a technical
lemma from [35, Lemma 1.5].

Lemma 3.3. Let � ⊂ Rd be an open set and suppose that u ∈ C∞(�). Let v(x) be a
Lipschitz continuous function on �. Suppose that for any �′ b � and all N ∈ N, we
have

|u(x)| ≤ CN,�′ |v(x)|
N , x ∈ �′.

Then for any �′ b �, any multi-index α ∈ Nd and any N ∈ N, there is a constant
CN,�′,α such that

|v(x)||α||Dαx u(x)| ≤ CN,�′,α|v(x)|
N , x ∈ �′.

We will use this lemma in the construction of almost holomorphic extensions of the func-
tion g0(x, z) from Proposition 3.1.

Lemma 3.4. Under the hypotheses and notations of Proposition 3.1, let g̃±,j0 be an al-
most x-holomorphic extension of g±,j0 for j = 1, . . . , J . Then there exists an open
bounded neighbourhood W(z0) of z0, open bounded sets Xj± ⊂ R and small complex
neighbourhoods X̃j± ofXj± such that xj±(W(z0)) ⊂ X

j
±, and such for anyN ∈ N and any

α, β, γ ∈ N, there exists a constant Cα,β,γN > 0 such that

|∂αx ∂
β
z ∂

γ+1
z̄ g̃

±,j

0 (x, z)| ≤ C
α,β,γ

N |x − x
j
±(z)|

N , z ∈ W(z0), x ∈ X̃
j
±. (3.6)

Moreover, for any higher order symbol g±,jk , k ∈ N, for any α ∈ N and any N ∈ N, there
exists a constant C±N,α,k,j > 0 such that

|∂αx ∂z̄ g
±,j
k (x, z)| ≤ C±N,α,k,j |x − x

j
±(z)|

N , x ∈ X
j
±, z ∈ W(z0). (3.7)
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In particular (3.6) implies

|∂z̄g
±,j

0 (x, z)| ≤ CN |x − x
j
±(z)|

N , x ∈ X
j
±, z ∈ W(z0). (3.8)

Proof of Lemma 3.4. Again, we focus only on the “+” case and omit the superscripts j
and +. Let q0(x, ξ, z) ∈ C∞(V ×W(z0)) and g0(x, z) ∈ C∞(πx(V ) ×W(z0)) be as in
Proposition 3.1, with V an open bounded set containing ρ+(W(z0)). As in the proof of
that proposition, we may suppose that q0(x, ξ, z) 6= 0 in V ×W(z0).

For a small bounded complex neighbourhood Ṽ of V , we construct an almost (x, ξ)-
holomorphic extension q̃0(x, ξ, z) of q0(x, ξ, z) defined on Ṽ ×W(z0) such that

q̃0(x, ξ, z) 6= 0, (x, ξ, z) ∈ Ṽ ×W(z0). (3.9)

Although z appears as a parameter in the construction, we can ensure that q̃0 is smooth
in z, and that any function ∂αz ∂

β
z̄ q̃0 is an almost (x, ξ)-holomorphic extension of ∂αz ∂

β
z̄ q0.

Similarly, we construct, for x ∈ πx(Ṽ ), an almost x-holomorphic extension g̃0(x, z)

of g0(x, z). Using these two functions to extend the equation (3.3), we obtain the function

p̃0(x, ξ, z) := q̃0(x, ξ, z)(ξ + g̃0(x, z)), (x, ξ, z) ∈ Ṽ ×W(z0). (3.10)

p̃0(x, ξ, z) is naturally an almost (x, ξ)-holomorphic extension of p0(x, ξ)− z. It is also
the case of its ∂z̄ derivative, so that

∂z̄p̃0(x, ξ, z) = O(|Im (x, ξ)|∞). (3.11)

By (HYP), we have ∂ξp0(ρ+(z)) 6= 0 for all z ∈ W(z0). By possibly shrinking V ,W(z0)

and Ṽ we can arrange that ρ+(W(z0)) ⊂ V and ∂ξ p̃0(x, ξ, z) 6= 0 for all (x, ξ, z) ∈
Ṽ ×W(z0).

Recall from Proposition 3.1 that g0(x+(z), z) = −ξ+(z) for all z ∈ W(z0). Hence,
by possibly shrinking V andW(z0) and by restricting g̃0(·, z) to an open bounded convex
complex neighbourhood X̃ of X := πx(V ) ⊂ R with X̃ b πx(Ṽ ), we can arrange that
x+(W(z0)) ⊂ X and (x,−g̃0(x, z)) ∈ Ṽ for all x ∈ X̃.

Taking ξ = −g̃0(x, z) in (3.10) and then taking the ∂z̄ derivative of that equation,
taking into account (3.11), we get, for all x ∈ X̃ and all z ∈ W(z0),

∂ξ p̃0(x,−g̃0(x, z))∂z̄g̃0(x, z)+ ∂ξ̄ p̃0(x,−g̃0(x, z))∂zg̃0(x, z) = O(|Im (x, ξ)|∞).

Since p̃0 is almost (x, ξ)-holomorphic, while ∂ξ p̃0 is bounded away from zero, we find,
for any N ∈ N,

|∂z̄g̃0(x, z)| ≤ CN ( |Im g̃0(x, z)|
N
+ |Im x|N ), x ∈ X̃, z ∈ W(z0).

Since g̃0(x+(z), z) = −ξ+(z) ∈ R, one has Im g̃0(x+(z), z) = 0; and since g̃0 is a
bounded smooth function on X̃ ×W(z0), it follows by Taylor expansion that

|∂z̄g̃0(x, z)| ≤ C
′

N |x − x+(z)|
N , x ∈ X̃, z ∈ W(z0). (3.12)
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This proves (3.6) in the case α = β = γ = 0. Now, observe that since x − x+(z) is a
smooth function of (x, z), it follows by Lemma 3.3 that after slightly shrinking X̃ and
W(z0), for any α, β, γ ∈ N,

|∂αx ∂
β
z ∂

γ+1
z̄ g̃0(x, z)| ≤ C

α,β,γ

N |x − x+(z)|
N . (3.13)

In particular, restricting x to the value x+(z) ∈ X+, we find

∀α, β, γ ∈ N, (∂αx ∂
β
z ∂

γ+1
z̄ g0)(x+(z), z) = 0, z ∈ W(z0). (3.14)

Next, using (3.3) and g0(x+(z), z) = −ξ+(z) (see Proposition 3.1), we deduce by a direct
computation of {p̄0, p0}(ρ+(z)) that

Im(∂xg0)(x+(z), z) =
{p̄0, p0}(ρ+(z))

2i|q0(ρ+(z), z)|2
< 0, (3.15)

where the last inequality is a consequence of (HYP).
Finally, by differentiating (3.10) with respect to x and z and by evaluating it at the

point (ρ+(z), z) we find (∂z̄q̃0)(ρ+(z), z) = 0. By repeated differentiation of (3.10) and
using the Leibniz rule, this generalizes to

∀η ∈ N2, ∂ηρ∂z̄q̃0(ρ, z)�ρ=ρ+(z) = 0. (3.16)

Let us now consider higher order symbols. We recall that for any N > 0, the symbols
qN ∈ C∞(V ×W(z0)) and gN ∈ C∞(πx(V ) ×W(z0)) were constructed by solving the
equation (3.4), with GN defined in (3.5) in terms of lower order symbols. We will also
construct almost holomorphic extensions of these symbols iteratively.

Assume that for all 0 ≤ k < N , we have extended qk (resp. gk) to an almost ρ-
holomorphic function q̃k (resp. almost x-holomorphic function g̃k). Injecting these exten-
sions on the right hand side (3.5) (the derivatives Dx , Dξ etc. being now understood as
holomorphic derivatives) defines G̃N , an almost holomorphic extension of GN . Then we
extend qN to q̃N . Injecting in (3.4) G̃N , q̃N and the previously defined extensions q̃0, g̃0
ends up with the definition of g̃N , which almost holomorphically extends gN .

Let us show by induction that the symbols satisfy

∀α ∈ N, ∂αx ∂z̄g̃N (x, z)�x=x+(z) = 0, (3.17)

∀η ∈ N2, ∂ηρ∂z̄q̃N (ρ, z)�ρ=ρ+(z) = 0. (3.18)

We already know from (3.13) and (3.16) that this is the case at the level N = 0. Differen-
tiating the equation (3.5) defining G̃N with respect to z̄ and ρ, one finds that

∀η ∈ N2, ∂ηρ∂z̄G̃N (ρ, z)�ρ=ρ+(z) = 0. (3.19)

As we did before, taking ξ = −g̃0(x, z) in (3.4), differentiating with respect to z̄ and x,
and evaluating the expression at x = x+(z), results in the following identities:

∀α ∈ N, ∂αx ∂z̄G̃N (ρ, z)�ρ=ρ+(z) = ∂
α
x ∂z̄g̃N (x, z)�x=x+(z).

Then (3.19) shows that the above expression vanishes, proving (3.17).
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Let us now treat the symbol q̃N . Differentiating the right hand side of (3.4) with
respect to z̄ and ρ, and evaluating at ρ = ρ+(z), we find, using (3.19) and (3.17),

∂ηρ∂z̄

(
q̃N (x, ξ, z)

q̃0(x, ξ, z)
(ξ + g̃0(x, z))

)
�
ρ=ρ+(z)

= 0.

Our knowledge of g̃0 and q̃0 at the point ρ+(z) implies the desired equation (3.18).
Using a Taylor expansion near x = x+(z) and taking into account the x-almost holo-

morpy of ∂z̄gN (x, z), the equation (3.17) leads to the property

∀α ∈ N, ∂αx ∂z̄g̃N (x, z) = O(|x − x+(z)|∞), x ∈ X̃, z ∈ W(z0).

When restricting to real arguments x ∈ X, this gives the required equation (3.7). ut

3.3. Construction of the quasimodes

From now on we will always assume that the symbol p0 satisfies the hypothesis (HYP)
(each energy shell p−1(z) consists of 2J different points). Using the factorization of
Proposition 3.1, we will construct quasimodes for the operators Ph − z and (Ph − z)∗

following the WKB method.

Proposition 3.5 (Almost holomorphic quasimodes). Let p(·;h) ∈ S(R2, m) be as in
(2.6) and satisfy (HYP). Let � b C be as in (2.11), and take z0 ∈ �. Let W(z0) and Xj±,
j = 1, . . . , J , be as in Proposition 3.1. Let χ j± ∈ C∞0 (X

j
±, [0, 1]) be such that χ j± ≡ 1 in

a small neighbourhood of xj±(W(z0)). Then there exist functions

e
j,hol
± (x, z;h) = a

j
±(x, z;h) χ

j
±(x)e

i
h
ϕ±(x,z), x ∈ R, z ∈ W(z0),

ϕ
j
+(x, z) = −

∫ x

x
j
+(z0)

g
j,+

0 (y, z)dy, ϕ
j
−(x, z) = −

∫ x

x
j
−(z0)

g
j,−

0 (y, z) dy.
(3.20)

Here g±,j0 are as in Proposition 3.1, depending smoothly on x ∈ Xj± and z ∈ W(z0). The
symbol aj±(x, z;h) ∼ (a

±,j

0 (x, z) + ha
±,j

1 (x, z) + · · · ) is also smooth in x, z, with all
derivatives uniformly bounded as h→ 0.

Moreover, the states ej,hol
± have the following properties:

(1) Their L2 norms satisfy

‖e
j,hol
± (z;h)‖ = e

1
h
8
j
±(z;h),

8
j
±(z;h) = − Imϕ

j
±(x

j
±(z), z)+ h log(h1/4A

j
±(z;h)), (3.21)

with Imϕ
j
±(x

j
±(z), z) ≤ 0, with equality iff z = z0, and Aj±(z;h) ∼ A

j,±

0 (z) +

hA
j,±

1 (z)+ · · · depending smoothly on z such that all derivatives with respect to z, z̄
are bounded when h→ 0.
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(2) The states ej,hol
± are almost z-holomorphic (resp. almost z-anti-holomorphic) at z0,

in the sense that

e−
1
h
8
j
+(z;h)‖∂z e

j,hol
+ (z;h)‖ = O(h−1

|z− z0|
∞
+ h∞), z ∈ W(z0),

e−
1
h
8
j
−(z;h)‖∂ze

j,hol
− (z;h)‖ = O(h−1

|z− z0|
∞
+ h∞), z ∈ W(z0).

(3.22)

(3) The corresponding normalized states,

e
j
±(x, z;h) := e

j,hol
± (x, z;h)e−

1
h
8
j
±(z;h), (3.23)

are h∞-quasimodes of Ph − z, resp. (Ph − z)∗:

‖(Ph − z)e
j
+(z;h)‖ = O(h∞), ‖(Ph − z)

∗e
j
−(z;h)‖ = O(h∞). (3.24)

(4) For any cutoffs ψj± ∈ C∞0 (R
2, [0, 1]) such that ψj± ≡ 1 near ρj±(W(z0)), and any

order function m′,

‖(1− (ψj±)
w)e

j
±(z;h)‖H(m′) = O(h∞), j = 1, . . . , J, z ∈ W(z0). (3.25)

In all equations above, the O(h∞) remainders are uniform in z ∈ W(z0).

For future use, we intentionally introduced two versions of quasimodes: the normalized
ones ej+(z;h), and the almost holomorphic ones ej,hol

± (z;h).

Proof of Proposition 3.5. We will give the proof only in the “+” case, since the “−”
case is similar. We will suppress the superscript j until further notice. We begin with the
following result:

Lemma 3.6. Let p(·;h) ∈ S2(R2, m) be as in (2.6) and satisfy (HYP). Let � b C
be as in (2.11), and let z0 ∈ �. Let W(z0) and X+ with x+(W(z0)) ⊂ X+ be as in
Proposition 3.1. Let g+(x, z;h) be the symbol constructed in Proposition 3.1. Then the
equation

(hDx + g
+(x))f+(x, z;h) = 0, (x, z) ∈ X+ ×W(z0), (3.26)

admits a solution f hol
+ (x, z;h) of the form

f hol
+ (x, z;h) = a+(x, z;h)e

i
h
ϕ+(x,z), (x, z) ∈ X+ ×W(z0),

with ϕ+(x) = −

∫ x

x+(z0)
g+0 (y, z) dy. (3.27)

The symbol a+(x, z;h) ∼ a+0 (x, z)+ha
+

1 (x, z)+· · · depends smoothly on x and z, with
all derivatives bounded as h→ 0. Moreover, for all z ∈ W(z0) and any α ∈ N,

(∂αx ∂z̄a
+)(x+(z), z;h) = O(|z− z0|

∞
+ h∞). (3.28)
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Proof. For any h ∈ ]0, 1] and z ∈ W(z0), the first order equation (3.26) can be easily
solved by the Ansatz

f hol
+ (x, z;h) := exp

(
−
i

h

∫ x

x0

g+(y, z;h) dy

)
,

where we choose to take the reference point x0 = x+(z0) independent of z. Taking into
account the expansion (3.1) of the symbol g+, its primitive may be expanded as

−

∫ x

x0

g+(y, z;h) dy ∼ ϕ+0 (x, z)+ hϕ
+

1 (x, z)+ · · · , ϕ+k (x, z) := −

∫ x

x0

g+k (y, z) dy.

Separating the first term ϕ+ = ϕ
+

0 from the subsequent ones, we may write

f hol
+ (x, z;h) = e

i
h
ϕ+(x,z) a+(x, z;h)

with a+(h) ∈ C∞(X+ ×W(z0)) admitting an expansion

a+(h) ∼ a+0 + ha
+

1 + h
2a+2 + · · · .

Each term a+j ∈ C∞(X+ ×W(z0)) depends on the functions {ϕ+k ; 1 ≤ k ≤ j + 1}.
Alternatively, the expansion

∑
hja+j can be constructed order by order through a

WKB construction (see e.g. [12]): one iteratively solves the transport equations

−i∂xa
+
n (x, z)+

n∑
k=0

g+n+1−k(x, z)a
+

k (x, z) = 0, n ≥ 0,

by the expressions

a+0 (x, z) = e−i
∫ x
x0
g+1 (y,z;h) dy,

a+n (x, z) = −i a
+

0 (x, z)

∫ x

x0

n−1∑
k=0

g+n+1−ka
+

k

a+0
(y, z) dy. (3.29)

Let us make some remarks about the phase function ϕ+. It is the unique solution
to the eikonal equation ∂xϕ+(x, z) + g+0 (x, z) = 0, satisfying the boundary condition
ϕ+(x0, z) = 0. By Proposition 3.1, ∂xϕ+(x+(z); z) = ξ+(z) ∈ R, therefore x+(z) is a
critical point of Imϕ+. Furthermore, by (3.15),

Im ∂2
xϕ+(x+(z), z) = − Im (∂xg

+

0 )(x+(z), z) > 0, (3.30)

showing that x+(z) is a nondegenerate critical point of Imϕ+(·, z). By possibly shrinking
W(z0) and X+, we can arrange that x+(W(z0)) ⊂ X+ and that (3.30) holds for all x ∈
X+, so that x+(z) is the unique critical point of Imϕ+(·, z) in X+.

By iteratively differentiating the equations (3.29) and using the estimates (3.7) on gk ,
we find that for any n ∈ N and any α ∈ N,

(∂αx ∂z̄a
+
n )(x, z) = O(|x − x+(z)|∞ + |x+(z0)− x+(z)|

∞), x ∈ X+, z ∈ W(z0).
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By Taylor expanding x+(z) around z = z0, at the critical points the above estimate be-
comes

(∂αx ∂z̄a
+
n )(x+(z), z) = O(|z− z0|

∞).

Summing over all the symbols, we finally control the full symbol, as in (3.28). ut

Remark 3.7. In the “−” case we construct a solution for (hDx + g−(x, z))f− = 0.
Hence, the phase function reads ϕ−(x; z) = −

∫ x
x−(z0)

g−0 (y, z) dy. Moreover, the trans-
port equations depend on g−0 (y, z), which is almost anti-holomorphic in z at the point
(x+(z), z). Hence, for any α ∈ N we obtain (∂αx ∂za

−)(x−(z), z;h) = O(|z−z0|
∞
+h∞).

Let us now proceed with the proof of Proposition 3.5. Let χ+ ∈ C∞0 (X+, [0, 1]) be such
that χ+ ≡ 1 in a small neighbourhood of x+(W(z0)). We define the function

ehol
+ (x, z) := χ+(x) f

hol
+ (x, z;h), (x, z) ∈ X+ ×W(z0),

smoothly extended by ehol
+ (x, z) = 0 for x ∈ R \ X+. Recall from (3.30) and the dis-

cussion afterwards that x+(z) is the unique critical point of Imϕ(·, z) in X+, and is a
nondegenerate minimum point. In particular Imϕ+(x, z) − Imϕ+(x+(z), z) ≥ 0 for all
x ∈ X+, with a strict inequality for x 6= x+(z). Hence, applying the method of stationary
phase, we find that

‖ehol
+ ‖ = h

1/4A+(z;h)e
1
h
8+,0(z) =: e

1
h
8+(z;h) (3.31)

with the phase function
8+,0(z) = − Imϕ+(x+(z), z)

and a symbol A+(z;h) ∼ A+0 (z) + hA
+

1 (z) + · · · depending smoothly on z, with all
derivatives in z, z̄ uniformly bounded when h→ 0. The principal symbol

A+0 (z) =

(
π |a+0 (x+(z), z)|

2

Im ∂2
xϕ+(x+(z), z)

)1/4

> 0. (3.32)

It follows from (3.30) and the property ϕ+(x+(z0), z) = 0 that 8+,0(z) ≥ 0 for any
z ∈ W(z0), with equality precisely when z = z0. Hence, for points such that |z − z0|

≥ 1/C, the norms of the states ehol
+ (z;h) are exponentially large.

Let us now prove that the state ehol
+ (z;h) is almost z-holomorphic at z0. Using the

equations (3.7), (3.20) and a Taylor expansion of x(z) at z0, we easily obtain

∀α ∈ N, (∂αx ∂z̄ϕ)(x(z), z) = O(|x(z)− x(z0)|
∞) = O(|z− z0|

∞). (3.33)

By (3.30) and the ensuing discussion, x+(z) is the unique minimum point of x 7→
Imϕ(x, z) on the support of χ+ and it is nondegenerate by (3.30). Hence, by combin-
ing (3.31), (3.33) and (3.28), we get

e−
1
h
8+‖∂ze

hol
+ ‖ ≤ e−

1
h
8+‖(∂za+)χ+e

i
h
ϕ+‖ + e−

1
h
8+‖a+χ+(ih

−1∂zϕ+)e
i
h
ϕ+‖

= O(h−1
|z− z0|

∞
+ h∞), (3.34)

which is the estimate (3.22) of Proposition 3.5.
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Let us now check point (3) of the proposition. Using Lemma 3.6, we have

(hDx + g
+)χ+f

hol
+ = [hDx, χ+]f

hol
+ . (3.35)

Using x+(z) /∈ suppχ ′+ and the fact that − Imϕ+(x, z) reaches its maximum only at
x = x+(z), we find the norm estimate

‖[hDx, χ+]f
hol
+ ‖ = O(e−1/Ch)e

1
h
8+,0(z),

which shows that

‖(hDx + g
+(z))ehol

+ (z)‖ = O(e−C/h)‖ehol
+ (z)‖. (3.36)

Next, using (3.31), we define the L2 normalized state as in (3.23): e+(x, z;h) :=
ehol
+ (x, z;h)e

−
1
h
8+(z;h). This state is in C∞c (X+), and depends smoothly on z ∈ W(z0). It

microlocalizes at the point ρ+(z), as shown in the next

Lemma 3.8. Under the assumptions of Lemma 3.6, take any order function m̃, an arbi-
trary point z ∈ W(z0), and choose a cutoff function ψ ∈ C∞0 (R

2, [0, 1]) such that ψ = 1
near ρ+(z). Then

‖(1− ψ)we+(z;h)‖H(m̃) = O(h∞). (3.37)

Proof. We smoothly extend g+ ∈ C∞(X+) to5 g̃+ ∈ C∞(R) such that g̃+(x, z;h) =
−
i
C
(x − x+(z)) for |x| ≥ C, C > 0 large enough, and such that ξ + g̃+ ∈ S(R2, 〈ρ〉)

is elliptic outside ρ+(z). This is possible due to the monotonicity property (3.30). Thus,
hDx + g̃+ = (ξ + g̃+)

w.
Since suppχ+ ⊂ X+, we have g̃+ = g+ on the support of e+(z;h). Hence, by (3.35),

η := (hDx + g̃
+)∗(hDx + g̃

+)e+, (3.38)

η = e−
1
h
8+(z;h)

(
[hDx, [hDx, χ+]]f

hol
+ − 2i Im g̃+[hDx, χ+]f

hol
+

)
.

We see that for any α, β ∈ N,

xα∂βx η(x, z;h) = dα,β(x, z;h)h
−ne−

1
h
8+(z;h)e

i
h
ϕ+(x,z)

for some symbol dα,β(x, z;h) ∼ d0
α,β(x, z)+hd

1
α,β(x, z)+· · · depending smoothly on x

and z, with all derivatives bounded as h → 0. Moreover, its support with respect to x is
contained in supp ∂χ+. Since x+(z) is not in this support, and since− Imϕ+(x, z) reaches
its maximum only at x = x+(z) (cf. (3.30)), we deduce that for any order function m̃,
‖η‖H(m̃) = O(e−C/h).

Taking into account the cutoff ψ ∈ C∞0 (R
2, [0, 1]) of the lemma, we choose a “thin-

ner” cutoff χ̃ ∈ C∞0 (R
2, [0, 1]) such that χ̃ = 1 near ρ+(z), while ψ = 1 near supp χ̃ .

We use it to define the operator

qw = (hDx + g̃
+)∗(hDx + g̃

+)+ χ̃w. (3.39)

5 This notation should not be confused with the notation g̃+0 used for the almost holomorphic
extension of g+0 in Lemma 3.4.
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The symbol of this operator,

q(x, ξ, z;h) = |ξ + g̃+0 (x, z)|
2
+ χ̃(x, ξ)+O(h)S(R2,〈ρ〉2),

is elliptic in S(R2, 〈ρ〉2). Hence, for h > 0 small enough, qw admits a bounded inverse bw

with b ∈ S(R2, 〈ρ〉−2). Notice that by (3.38) and (3.39),

e+ = b
wη + (b # χ̃)we+.

We may now apply the operator (1−ψ)w to this decomposition. Since (1−ψ)w and bw

are bounded on H(m̃), it follows that ‖((1− ψ) # b)wη‖H(m̃) = O(e−C/h).
Moreover, since our cutoff ψ is 1 near supp χ̃ , pseudodifferential calculus shows that

for any order function m̃,

(1− ψ) # b # χ̃ = O(h∞)S(R2,m̃−1),

and as a consequence ‖(1− ψ)wbwχ̃we+‖H(m̃) = O(h∞).
Adding the two contributions, we get the estimate (3.37). ut

Combining Proposition 3.1 with Lemmata 3.6 and 3.8, we may use any cutoff ψ ∈
C∞0 (R

2) with ψ = 1 near ρ+(z) to show that e+(z) is a quasimode of Ph − z:

(Ph − z)e+ = (Ph − z)ψ
we+ + (Ph − z)(1− ψ)we+

= (ψ # q+ # (ξ + g+))we+ + [Ph, ψw]e+ +O(h∞)
= O(h∞). (3.40)

Here the first term in the second line is O(h∞) by (3.36). The second term is O(h∞) by
Lemma 3.8, since the wavefront set of the commutator is disjoint from a fixed neighbour-
hood of ρ+(z). This proves the quasimode property (3.24) of the state ej+(z;h).

This concludes the proof of Proposition 3.5 in the “+” case. The “−” case can be
proved following the same steps to construct a quasimode for (Ph − z)∗, using the mi-
crolocal factorization of this operator into (q−,w)∗(hDx + g−) by Proposition 3.1. ut

3.4. Quasimodes for symmetric symbols

Let us now assume that the symbol p satisfies the symmetry property (SYM):

p(x, ξ ;h) = p(x,−ξ ;h).

Then the formal adjoint (Ph − z)∗ satisfies

(Ph − z)
∗
= 0(Ph − z)0, where we recall that (0u)(x) := u(x). (3.41)

Moreover, (SYM) implies that if ρ = (x, ξ) ∈ p−1
0 (z) with {Rep, Imp}(ρ) < 0, as in

(HYP), then (x,−ξ) ∈ p−1
0 (z) as well, with {Rep, Imp}(x,−ξ) > 0. The hypotheses

(HYP), (HYP-x) can thus be written as

p−1
0 (z) = {ρ

j
±(z) = (x

j
±(z), ξ

j
±(z)) := (x

j (z),±ξ j (z)); j = 1, . . . , J }, with

±{Rep, Imp}(ρ
j
±(z)) < 0, and xi 6= xj if i 6= j. (3.42)
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For j = 1, . . . , J , let us consider the “+” quasimode ej,hol
+ constructed in Proposition 3.5.

We may define the corresponding “−” quasimode as

e
j,hol
− (z;h) := 0e

j,hol
+ (z;h). (3.43)

It is then clear from Proposition 3.5 that for all z ∈ W(z0),

‖e
j,hol
− (z;h)‖ = ‖e

j,hol
+ (z;h)‖ = e

1
h
8
j
+(z;h). (3.44)

Moreover, by (3.40) and (3.41), it is obvious that the normalized state

e
j
−(z;h) = e

j,hol
− (z;h)e−

1
h
8
j
+(z;h) = 0e

j
+(z;h) (3.45)

is a quasimode of (Ph − z)∗:

‖(Ph − z)
∗e
j
−(z;h)‖ = O(h∞).

Using the fact that complex conjugation microlocally acts as (x, ξ) 7→ (x,−ξ), we also
find from Lemma 3.8 that for all ψ ∈ C∞0 (R

2) with ψ = 1 near ρj−(z),

‖(1− ψw)ej−(z;h)‖H(m′) = O(h∞). (3.46)

Later we will have to deal with the squared states

(e
j
+(x, z;h))

2
= χ

j
+(x)

2 a
j
+(x, z;h)

2e
2i
h
ϕ+(x,z)e−

2
h
8+(z;h).

A simple computation using (3.31) shows that theL2 norm of this state is of orderCh−1/4.
Using the same method as in Lemma 3.8, one shows that this state is microlocalized at
(x
j
+(z), 2ξ j+(z)).

Similarly, the squared state (ej−(z;h))
2 is microlocalized at the point (xj−(z), 2ξ j−(z)).

Namely, for any ψ2 ∈ C∞0 (R
2, [0, 1]) with χ2 = 1 near the point (xj−(z), 2ξ j−(z)),

‖(1− ψw2 )(e
j
−(z;h))

2
‖H(m′) = O(h∞). (3.47)

3.5. Relation to symplectic volume

In this section we will study the phase functions 8j±(z;h) governing the L2 norms of the
holomorphic quasimodes (see Proposition 3.5), and show how they are connected with
the symplectic volume in T ∗R. This link will be crucial when computing the universal
limiting GAFs described in Theorems 2.5 and 2.9, as well as for the k-point correlation
functions in Theorem 2.6 (see also (2.30)), and in Corollary 2.10 (see also (2.35)). Indeed,
we will see in Sections 7.3 and 8.1 that the covariances of these GAFs involve the “interac-
tions” between neighbouring quasimodes; these interactions will be studied in Section 4.
We will see (for instance in Proposition 4.1) that they can be described by polarizing the
phase function 8j±(z;h). After rescaling the spectral parameter to the microscale, the
dominant part of this polarization will be a term of the form ∂2

zz̄8
j
±(z0;h)zw̄ (see (7.25)
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and (8.19)), which in turn is determined (3.54) by the Lebesgue density of p0(|dξ ∧ dx|)

of (2.25).
We will strongly use the almost holomorphy of the symbol g±,j expressed in Lem-

ma 3.4. From the expression (3.21) for the phase function, let us write

8
j
±(z;h) = 8

j

±,0(z)+h log(h1/4A
j
±(z;h)), 8

j

±,0(z) := − Imϕ
j
±(x

j
±(z), z). (3.48)

From now on, we will focus on the function 8j+(z;h), and omit the super/subscript j+ on
all quantities.

By (3.33) we have

∂z80(z) = ∂z
ϕ(x, z)− ϕ(x, z)

2i

∣∣∣∣
x=x(z)

− (∂zx(z)) Im ∂xϕ(x, z)�x=x(z)

=
i

2
∂zϕ(x, z)�x=x(z) +O(|z− z0|

∞). (3.49)

To obtain the last line we have used (3.33), and the fact that x(z) is a critical point of
x 7→ Im ∂xϕ(x, z). Indeed, by Proposition 3.1 and (3.20), we have

∂xϕ(x, z) = −g0(x, z), in particular ∂xϕ(x(z), z) = ξ(z).

Differentiating this last expression with respect to z, we get

(∂2
xxϕ)(x(z), z) ∂zx(z)+ (∂

2
xzϕ)(x(z), z) = ∂zξ(z). (3.50)

Differentiating with respect to z̄ and using (3.33), we obtain

(∂2
xxϕ)(x(z), z) ∂z̄x(z)+O(|z− z0|

∞) = ∂z̄ξ(z).

Eq. (3.33) is a form of almost holomorphy of ϕ at the point (x(z0), z0). Using (3.13)
allows us to further differentiate it with respect to z:

(∂2
zz̄ϕ)(x, z)�x=x(z) = −

∫ x(z)

x(z0)
(∂2
zz̄g0)(y, z) dy = O(|z− z0|

∞),

where we have used |x(z)− x(z0)| = O(|z− z0|). Let us now fix x = x(z), and differen-
tiate ϕ(x(z), z) with respect to z, z̄. Using the above estimate, the almost holomorphy of
ϕ and expression (3.50), we compute

∂2
zz̄(ϕ(x(z), z)) = ∂zξ(z)∂z̄x(z)+ ξ(z)∂

2
zz̄x(z)+O(|z− z0|

∞).

Notice that ξ(z)∂2
zz̄x(z) ∈ R, since ξ(z) and x(z) are real-valued smooth functions and

∂2
zz̄ is a real differential operator. Thus, taking the imaginary part of the above equation

produces

2
i
∂2
zz̄80(z) = ∂zξ(z)∂z̄x(z)− ∂z̄ξ(z)∂zx(z)+O(|z− z0|

∞). (3.51)
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We now restore the +, j notations, and write this expression using 2-forms:

−dξ
j
+ ∧ dx

j
+(z) =

(
∂zξ

j
+(z)∂z̄x

j
+(z)− ∂z̄ξ

j
+(z)∂zx

j
+(z)

)
dz ∧ dz

=
(
4∂2
zz̄8

j

+,0(z)+O(|z− z0|
∞)
) dz ∧ dz

2i
. (3.52)

This expressions provides the connection between the volume form in phase space,
dξ ∧ dx, and the volume form in energy space, dz̄∧dz2i . One can perform the symmet-
ric computations for the functions 8j

−,0(z), and obtain

dξ
j
− ∧ dx

j
−(z) =

(
∂z̄ξ

j
−(z)∂zx

j
−(z)− ∂zξ

j
−(z)∂z̄x

j
−(z)

)
dz ∧ dz

=
(
4∂2
zz̄8

j

−,0(z)+O(|z− z0|
∞)
) dz ∧ dz

2i
. (3.53)

Let us now express the factor 4∂2
zz̄8

j

+,0(z) in terms of the symbol p0. Differentiating the

identity p0(ρ
j
±(z)) = z with respect to z or z̄, we obtain the linear system{

∂ξp0(ρ
j
±)∂zξ

j
± + ∂xp0(ρ

j
±)∂zx

j
± = 1,

∂ξp0(ρ
j
±)∂zξ

j
± + ∂xp0(ρ

j
±)∂zx

j
± = 0,

which can be solved by

∂zξ
j
±(z) =

−∂xp0

{p0, p0}
(ρ
j
±(z)), ∂zx

j
±(z) =

∂ξp0

{p0, p0}
(ρ
j
±(z)).

Using the fact that xj±, ξ j± are real, we deduce by (3.51), and by a similar computation for
8
j

−,0, that

4∂2
zz̄8

j

±,0(z) =

(
∓1

1
2i {p0, p0}(ρ

j
±(z))

+O(|z− z0|
∞)

)
.

It follows from (HYP) that the first term on the RHS is positive, hence the functions 8j±
are strictly subharmonic near z0.

Identifying the Lebesgue measure L(dz) on the energy plane with the volume form
dz∧dz

2i , and denoting by |dξ ∧ dx| the symplectic volume on T ∗R, the expression (3.52)
(resp. (3.53)) relates an infinitesimal volume in energy space to an infinitesimal volume
near the phase space point ρj+ (resp. ρj−). Adding the contributions of all the 2J points
in p−1

0 (z), we obtain the following expression for the push-forward of the symplectic
volume |dξ ∧ dx| through the principal symbol p0:

(p0)∗(|dξ ∧ dx|) =

J∑
j=1

(σ
j
+(z)+ σ

j
−(z))L(dz),

σ
j
±(z) := 4∂2

zz̄8
j

±,0(z)+O(|z− z0|
∞).

(3.54)

Observe that in case we assume the symmetry (SYM), we get σ j+(z) = σ
j
−(z).

Remark 3.9. The error term O(|z − z0|
∞) will be very small in the following, because

we will investigate values of z in some h1/2-neighbourhood of z0.
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4. Interaction between the quasimodes

In this section we study the “interactions” (scalar products) between nearby quasimodes.
It interactions will be fundamental in the derivation of the limiting point processes; they
will determine the covariances of the limiting Gaussian analytic functions (see Sections
7.3, 7.5 as well as 8.1, 8.3).

In our notations, the L2 scalar product (u|v) is linear in u and antilinear in v. The
assumption (HYP) implies that we may shrink the neighbourhood W(z0) (see Proposi-
tion 3.5) to ensure that

ρ
j
±(W(z0)) ∩ ρ

k
±(W(z0)) = ∅ for any j 6= k. (4.1)

Thus, from (4.1) and the microlocalization property (3.25), we have

(e
j
+(z)|e

k
+(z)) = δjk +O(h∞), (e

j
−(z)|e

k
−(z)) = δjk +O(h∞), (4.2)

uniformly for all z ∈ W(z0) (here δjk denotes the Kronecker symbol).
More generally, for any z,w ∈ W(z0) one obtains

(e
j
±(z)|e

k
±(w)) = O(h∞) for any j 6= k. (4.3)

This quasi-orthogonality reflects the fact that for j 6= k, the points ρj±(z) and ρk±(w)
remain at positive distance from each other, uniformly when z,w ∈ W(z0), as embodied
by (4.1).

The next subsection will be devoted to the computation of the “diagonal” scalar prod-
ucts (ej±(z)|e

j
±(w)).

Notice that if our symbol satisfies the further hypothesis (HYP-x), we may even as-
sume (up to shrinking W(z0)) that the cutoff functions χ j± used to construct our quasi-
modes have disjoint supports:

suppχ j± ∩ suppχk± = ∅ for any j 6= k, (4.4)

in which case the remainders O(h∞) in the above estimates vanish.

4.1. Overlaps between nearby quasimodes

The scalar product between quasimodes localized on nearby points is given in the follow-
ing propositions. The first one deals with the overlaps between the “+” quasimodes.

Proposition 4.1. Let (ej,hol
+ (z))z∈W(z0) be the quasimodes constructed in Proposition 3.5.

Recall the notation 8j
+,0(z;h) from (3.48). Then, for |z − w| ≤ c with c > 0 sufficiently

small,

(e
j,hol
+ (z)|e

j,hol
+ (w)) = e

2
h
9
j
+(z,w;h) +O(h∞)e

1
h
8
j

+,0(z)+
1
h
8
j

+,0(w) (4.5)

with
9
j
+(z, w;h) = 9

j

+,0(z, w)+
h

2
log(h1/2b

j
+(z, w;h)). (4.6)
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Here 9j
+,0(z, w) is almost z-holomorphic and almost w-anti-holomorphic at {(z0, z0)},

and bj+(z, w;h) ∼ b
+,j

0 (z, w) + hb
+,j

1 (z, w) + · · · is smooth in z and w, with any
derivative uniformly bounded as h→ 0. Moreover,

• 9
j
+(w, z;h) = 9

j
+(z, w;h),

• 9
j

+,0(z, z) = 8
j

+,0(z),

• b
j
+(z, z;h) = A

j
+(z, h)

2 with Aj+(z, h) given in Proposition 3.5,
• for |ζi | ≤ c, i = 1, 2, with c > 0 sufficiently small, and for any N ∈ N,

9+,0(z0 + ζ1, z0 + ζ2) =
∑
|α|≤N

(∂α1
z ∂

α2
z̄ 8+,0)(z0)

ζ
α1
1 ζ

α2
2

α!
+O(|ζ |N+1),

where α ∈ N2 and |α| = α1 + α2.

The second proposition, symmetric to the previous one, deals with the overlaps between
nearby “−” quasimodes.

Proposition 4.2. Let (ej,hol
− (z)z∈W(z0) be the quasimodes constructed in Proposition 3.5.

Then, for |z− w| ≤ c with c > 0 sufficiently small,

(e
j,hol
− (z)|e

j,hol
− (w)) = e

2
h
9
j
−(z,w;h) +O(h∞)e

1
h
8
j

−,0(z)+
1
h
8
j

−,0(w) (4.7)

with
9
j
−(z, w;h) = 9

j

−,0(z, w)+
h

2
log(h1/2b

j
−(z, w;h)). (4.8)

Here 9j
−,0(z, w) is almost z-anti-holomorphic and almost w-holomorphic at {(z0, z0)},

and 8j
−,0(z;h) is the function defined in (3.48). The symbol bj−(z, w;h) ∼ b

−,j

0 (z, w)+

hb
−,j

1 (z, w)+· · · is smooth in z andw, with any derivative uniformly bounded as h→ 0.
Moreover,

• 9
j
−(w, z;h) = 9

j
−(z, w;h),

• 9
j

−,0(z, z) = 8
j

−,0(z),

• b
j
−(z, z;h) = A

j
−(z, h)

2 with Aj−(z, h) as in Proposition 3.5,
• for |ζi | ≤ c, i = 1, 2, with c > 0 small enough, and for any N ∈ N,

9−,0(z0 + ζ1, z0 + ζ2) =
∑
|α|≤N

(∂
α1
z̄ ∂

α2
z 8−,0)(z0)

ζ
α1
1 ζ

α2
2

α!
+O(|ζ |N+1).

Proof of Proposition 4.1. Until further notice we drop the superscript j . By Proposition
3.5 and (3.48) we find that for z,w ∈ W(z0),

(ehol
+ (z)|e

hol
+ (w)) = e

1
h
8+,0(z)+

1
h
8+,0(w)I (z, w),

I (z, w) =

∫
χ+(x) a+(x, z;h) a+(x,w;h)e

i
h
2(x,z,w) dx,

(4.9)
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with the phase function

2(x, z,w) = ϕ+(x, z)− ϕ+(x,w)+ i8+,0(z)+ i8+,0(w)

=: 2ψ(x, z,w)+ i8+,0(z)+ i8+,0(w). (4.10)

By (3.48), (3.30) and the ensuing discussion, we have Imϕ(x, z) ≥ Imϕ(x+(z), z), with
equality only if x = x+(z). As a result, for all x ∈ suppχ+ and z,w ∈ W(z0) we have

Im2(x, z,w) ≥ 0, (4.11)

with equality on the submanifold {(x+(z), z, z)} composed of the critical points with
∂xψ(x+(z), z, z) = 0. Actually (3.30) implies that

Im (∂2
xxψ)(x, z, z) > 0 for all x ∈ suppχ+, (4.12)

To estimate the integral I (z, w)we will apply the method of stationary phase for complex
valued phase functions [35, Theorem 2.3].

Let us fix a value z ∈ W(z0), and view w ∈ W(z0) as a parameter. In the case w = z
the stationary point ∂x2 occurs at x = x+(z), with a real valued phase value. In order
to estimate I (z, w) for w 6= z, we extend ψ(·, z, w) almost holomorphically in x, to a
function ψ̃(x, z,w) defined in some complex neighbourhood x ∈ X̃ of suppχ+. From
(4.10) and (3.20), this can be done by using the almost x-holomorphic extension g̃+0 of g+0
constructed in Lemma 3.4, and then defining ϕ̃+(x, z) = −

∫ x
x0
g̃0(y, z) dy by taking as

contour of integration the straight line connecting x0 to x ∈ X̃, and then take

ψ̃(x, z,w) = ϕ̃+(x, z)− ϕ̃+(x̄, w). (4.13)

Notice that the exact relation ∂xϕ+(x, z) = −g+0 (x, z) is then replaced by an approximate
one: for any α, β ∈ N,

∂αz ∂
β
z̄ ∂x ϕ̃+(x, z) = −∂

α
z ∂

β
z̄ g̃
+

0 (x, z)+Oα,β(|Im x|∞), z ∈ W(z0), x ∈ X̃, (4.14)

with the implied constants uniform in z ∈ W(z0).
As long as |z−w| is sufficiently small (hence, up to shrinkingW(z0)), the nondegen-

eracy condition (4.12) extends to this complex neighbourhood:

∂2
xxψ̃(x, z,w) 6= 0, x ∈ X̃, z, w ∈ W(z0), ,

where ∂2
xx denotes the holomorphic derivative. This ensures that for any z,w ∈ W(z0),

ψ̃(·, z, w) admits a unique, nondegenerate critical point x = xc(z, w) ∈ X̃, satisfying

∂xψ̃(x
c(z, w), z, w) = 0, (4.15)

where ∂x denotes the holomorphic derivative. Notice that when w = z, the critical point
xc(z, z) = x(z) is real valued.

We also need almost holomorphic extensions with respect to x of the symbols
a+(·, z;h) to ã+(·, z;h), and replace a+a+ in the integral I (z, w) by the almost holo-
morphic expression ã+(x, z;h)ã+(x̄, w;h).
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We can now apply the stationary phase theorem [35, Theorem 2.3] to the integral
I (z, w), and obtain the expansion

I (z, w) = h
1
2 b+(z, w;h) e

1
h
(29+,0(z,w)−8+,0(z)−8+,0(w)) +O(h∞), z, w ∈ W(z0).

(4.16)
Here 9+,0(z, w) is given by

9+,0(z, w) = iψ̃(x
c(z, w), z, w), (4.17)

in particular on the diagonal 9+,0(z, z) = 8+,0(z).
The symbol b+(z, w;h) ∼ b+,0(z, w)+hb+,1(z, w)+ · · · can be expressed in terms

of derivatives of ã+(x, z;h)ã+(x̄, w;h) with respect to x at the point x = xc(z, w); it
depends smoothly on z and w, uniformly as h → 0. The normalization I (z, z) = 1 set
by (4.9), (3.21) shows that we may take b+(z, z;h) = A+(z;h)

2, with A+(z;h) as in
Proposition 3.5.

As explained in the proof of [35, Theorem 2.3], the arbitrariness in the almost holo-
morphic extensions ψ̃ , ã+ is absorbed in the O(h∞) remainder. Let us check the sym-
metry relations satisfied by the functions 9+,0 and 9+ := 9+,0 +

h
2 log(h1/2b+). The

symmetry between z and w̄ in (4.13) and (4.17) shows that xc(z, w) = xc(w, z), hence

9+,0(w, z) = 9+,0(z, w). (4.18)

The expression of b+ shows that this symmetry also concerns the “full” function
9+(z, w;h) = 9+(w, z;h).

Let us now show that the function 9+,0 of (4.17) is the “polarization” of the real val-
ued function 8+,0. We first show that the critical point xc(z, w) is almost z-holomorphic
and almostw-anti-holomorphic at the diagonal {(z, z); z ∈ W(z0)}. Differentiating (4.15)
with respect to z and z̄, one finds by (4.13) that

∂zx
c(z, w) =

−(∂2
xzϕ̃+)(x

c(z, w), z)+O(|Im xc(z, w)|∞)

2∂2
xxψ̃(x

c(z, w), z, w)
,

∂z̄x
c(z, w) =

−(∂2
xz̄ϕ̃+)(x

c(z, w), z)+O(|Im xc(z, w)|∞)

2∂2
xxψ̃(x

c(z, w), z, w)
,

(4.19)

where we have used that ψ̃ is almost x-holomorphic. Now, (4.14) and Lemma 3.4 imply
that

∂xz̄ϕ̃+(x
c(z, w), z) = O(|xc(z, w)− x+(z)|∞), hence
∂z̄x

c(z, w) = O(|xc(z, w)− x+(z)|∞) = O(|z− w|∞),

where for the last equality we have used the smoothness of xc in z,w.
Using (4.17), (4.13) and (3.33), we then infer that the function 9+,0(z, w) is almost

z-holomorphic at the point z = w = z0:

−i∂z̄9+,0(z, w) = (∂xψ̃)(x
c(z, w), z, w)∂z̄x

c(z, w)

+ (∂x̄ψ̃)(x
c(z, w), z, w) ∂zxc(z, w)+

1
2∂z̄ϕ̃+(x

c(z, w), z)

= O(|z− w|∞ + |z− z0|
∞),
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From the symmetry (4.18), this function is also almost w-anti-holomorphic at that point.
Taking into account the identity 9+,0(z, z) = 8+,0(z), we deduce that the Taylor expan-
sion of 9+,0 at (z0, z0) takes the following form: for any N ∈ N,

9+,0(z0 + ζ1, z0 + ζ2)

=

∑
|α|≤N

(∂α1
z ∂

α2
z̄ 8+,0)(z0)

ζ
α1
1 ζ

α2
2

α!
+O(|ζ |N+1), ζj ∈ W(z0)− z0, j = 1, 2.

It is in this sense that 9+,0 “polarizes” 8+,0. In particular, keeping the expansion up to
second order, we find the following identity:

2 Re9+,0(z, w)−8+,0(z)−8+,0(w)

= −∂2
zz̄8+,0(z0)|z− w|

2
+O((|z− z0|, |w − z0|)

3). ut

The proof of Proposition 4.2 is identical to the one of Proposition 4.1, so we omit it.

4.2. Symmetric symbols

Assuming (SYM), the additional symmetry of the symbol p(x, ξ ;h), we will also need
to compute the interaction between the squared quasimodes (ej−(z))

2, when considering
perturbations by a random potential. The construction of these quasimodes was discussed
in Section 3.4. The properties of these squared quasimodes are very similar to those of the
original e−(z), the main difference being that most quantities will now bear a subscript s
(for “squared”).

Notice that by (3.42), (3.47) and the assumption (4.4), we have, for all z,w ∈ W(z0),

((e
j
−(z))

2
|(ek−(w))

2) = 0 for j 6= k. (4.20)

As in the proof of Proposition 3.5, one obtains by the method of stationary phase

‖(e
j,hol
− (z))2‖ = e

1
h
8
j
s (z;h),

8
j
s (z;h) := 8

j

s,0(z)+ h log(h1/4A
j
s (z;h)), 8

j

s,0(z) := 28j
+,0(z),

(4.21)

where 8j
+,0(z) is as in (3.48) and, in view of (3.42), xj+ = x

j
− = xj . We recall that

8
j

+,0(z) ≥ 0, with equality if and only if z = z0, andAjs (z;h) ∼ A
j,s

0 (z)+hA
j,s

1 (z)+· · ·

depends smoothly on z, with all derivatives with respect to z and z̄ bounded when h→ 0.
Moreover,

A
j,s

0 (z) =

(
π |a+0 (x+(z); z)|

4

2 Im ∂2
xxϕ+(x+(z), z)

)1/4

> 0, (4.22)

where a+0 is as in (3.29). One may compare the expression for this norm with the one in
(3.31), (3.32) for ‖ej,hol

− (z)‖.
The following proposition describes the overlaps between nearby squared quasi-

modes. The expressions are very similar to the ones of the previous section.
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Proposition 4.3. Suppose that (SYM) holds and that the neighbourhoodW(z0) b �, as
in Proposition 3.5, satisfies (4.1), (4.4). Let 8js (z;h), z ∈ W(z0), be as in (4.21). Then,
for |z− w| ≤ c with c > 0 sufficiently small,

((e
j,hol
− (z))2|(e

j,hol
− (w))2) = e

2
h
9
j
s (z,w;h) +O(h∞)e

1
h
8
j

s,0(z)+
1
h
8
j

s,0(w) (4.23)

with
9
j
s (z, w;h) = 9

j

s,0(z, w)+
h

2
log(h1/2b

j
s (z, w;h)), (4.24)

where 9js,0(z, w) is almost z-anti-holomorphic and almost w-holomorphic at {(z0, z0)}

and bjs (z, w;h) ∼ b
s,j

0 (z, w)+hb
s,j

1 (z, w)+· · · is smooth in z andw with all derivatives
bounded as h→ 0. Moreover,

• 9
j
s (z, w;h) = 9

j
s (w, z;h),

• 9
j

s,0(z, z) = 8
j

s,0(z) = 28j
+,0(z),

• b
j
s (z, z;h) ∼ A

j
s (z, h)

2 with Ajs (z, h) as in (4.21),
• for |ζi | ≤ c, i = 1, 2, with c > 0 small enough, and for any N ∈ N,

9
j

s,0(z0 + ζ1, z0 + ζ2) = 2
∑
|α|≤N

(∂
α1
z̄ ∂

α2
z 8+,0)(z0)

ζ
α1
1 ζ

α2
2

α!
+O(|ζ |N+1).

Proof. The proof exactly mimics the one of Proposition 4.1. ut

4.3. Finite rank truncation of the quasimodes

In this section we show that the quasimodes {ej±(z); z ∈ �} essentially live in a
finite-dimensional subspace of L2(R), which we build using the orthonormal eigenba-
sis (em)m∈N of the harmonic oscillator H = −∂2

x + x
2, corresponding to the eigenvalues

λm = 2m + 1. Roughly speaking, we show that if C1 > 0 is chosen large enough, the
truncated basis (em)m≤C1/h2 microlocally covers a part of phase space which contains the
region p−1(�), inside which all our quasimodes are microlocalized.

For any N ∈ N, let5N be the orthogonal projector on the subspace of L2 spanned by
the states (em)0≤m≤N . In the following lemma we show that if N is chosen large enough,
this projection essentially does not modify our quasimodes.

Lemma 4.4. Let {ej±(z); z ∈ W(z0)} be the normalized quasimodes constructed in
Proposition 3.5. Then, if C1 > 0 is chosen sufficiently large, taking N(h) = C1/h

2

we have

∀z ∈ W(z0), ∀j = 1, . . . , J, ‖(1−5N(h))e
j
±(z)‖ = O(h∞). (4.25)

In the case of a symmetric symbol (SYM), the same estimate applies to the squared quasi-
modes:

∀z ∈ W(z0), ∀j = 1, . . . , J, ‖(1−5N(h))(e
j
±(w))

2
‖ = O(h∞). (4.26)

In both cases the O(h∞) remainder is uniform in z ∈ W(z0) and h ∈ ]0, 1].
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Proof. We will focus on proving the first estimate, the estimate for squared quasimodes
being very similar.

Let U b R2 be a bounded open set such that

J⋃
j=1

ρ
j
±(W(z0)) ⊂ U. (4.27)

Our proof will amount to showing that if C1 is chosen large enough, the projector 5N(h)
is microlocally equal to the identity in a neighbourhood of U .

Let ψ ∈ C∞c (R2, [0, 1]) be such that ψ ≡ 1 in a neighbourhood of U and suppψ ⊂
B(0, R) ⊂ R2 for some sufficiently large R > 0 . Then, by the microlocalization property
(3.25), we have

‖(1− ψw)ej±(z)‖ = O(h∞), uniformly in z ∈ W(z0). (4.28)

For our aims, it will suffice to prove that there exists a constant C1 > 0 such that

∀m > N(h) = C1/h
2, ‖ψw(x, hDx)em‖ = O(λ−∞m ), (4.29)

where the implied constants are uniform in m > N(h) and h ∈ ]0, 1]. Indeed, the above
bounds imply that

‖(1−5N(h))ψwei±(z)‖
2
=

∑
m>N(h)

|(ψwei±(z)|em)|
2
= O(h∞). (4.30)

Together with (4.28), this shows the desired estimate (4.25).
The right hand side O(λ−∞m ) in (4.29) is sharper than the standard remainder O(h∞)

produced by the h-pseudodifferential calculus (remember that λm ≥ C1/h
2). This hints

at the fact that to obtain a remainder O(λ−∞m ), we should use a semiclassical calculus
whose small parameter is

h̃ = h̃m := λ
−1
m ,

rather than h. We will do it by rescaling the coordinates appropriately (see e.g. [51, The-
orem 6.5] for a similar rescaling procedure). Namely, we let Uλm be the unitary trans-
formation on L2(R) given by Uλmu(x) = λ

1/4
m u(λ

1/2
m x). The nonsemiclassical harmonic

oscillator can be writtenH = qw(x,Dx), where q(x, ξ) = ξ2
+x2. A direct computation

shows that

Uλm(H − λm)U
−1
λm
= λm(q

w(x, λ−1
m Dx)− 1) = h̃−1(qw(x, h̃Dx)− 1). (4.31)

Let us insert the dilation Uλm in the expression we want to estimate:

‖ψw(x, hDx)em‖ = ‖Uλmψ
w(x, hDx)U

−1
λm
ẽm‖, ẽm = Uλmem. (4.32)

The rescaled state ẽ satisfies the eigenvalue equation (qw(x, h̃Dx) − 1)ẽm = 0. From
standard elliptic estimates (see e.g. [51, Theorem 6.4]), the state ẽm is h̃-microlocalized at
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the energy shell q−1(1), that is, the unit circle in R2. As a consequence, for any χ ∈ S(1)
supported inside B(0, 2/3) ⊂ R2, we will have

χw(x, h̃Dx)ẽm = O(h̃∞). (4.33)

Let us come back to (4.32), and interpret Uλmψ
w(x, hDx)U

−1
λm

as a pseudodifferential
operator in the h̃-calculus:

Uλmψ
w(x, hDx)U

−1
λm
= ψ̃w(x, h̃Dx) for the symbol ψ̃(x, ξ) = ψ(h̃−1/2x, hh̃−1/2ξ).

After this rescaling, the required estimate (4.29) has been transformed to

ψ̃w(x, h̃Dx)ẽm = O(h̃∞). (4.34)

The symbol ψ is supported in the square {|x|, |ξ | ≤ R}, so the rescaled symbol ψ̃ will be
supported in the rectangle

{|x| ≤ Rh̃1/2, |ξ | ≤ Rh̃1/2/h ≤ R(2C1)
−1/2
},

where in the second inequality we have used our assumption that λm ≥ 2C1/h
2. We

choose C1 large enough, so that this rectangle is contained inside B(0, 1/2). However,
we cannot directly apply the estimate (4.33) to our symbol ψ̃ , because the latter is not in
the class S(1), its derivatives growing, when h̃→ 0, as

|∂αx ∂
β
ξ ψ̃ | ≤ Ch̃

−(|α|+|β|)/2.

These estimates indicate that ψ̃ belongs to the exotic class S1/2(1) in the h̃-calculus (see
e.g. [51, Chapter 4]). Even though the Moyal product between two symbols in the class
S1/2(1) does not usually admit an asymptotic expansion, the Moyal product of a symbol
ψ̃ ∈ S1/2(1) and a symbol χ ∈ S(1) does admit an expansion in powers of h̃. As a result,
if we take a symbol χ̃ ∈ S(1) supported inside B(0, 2/3) with χ̃ ≡ 1 inside B(0, 1/2),
the Moyal product expansion for ψ̃ # χ̃ implies that

ψ̃(x, h̃Dx) χ̃(x, h̃Dx) = ψ̃(x, h̃Dx)+O(h̃∞). (4.35)

Since supp χ̃ ⊂ B(0, 2/3), the operator χ̃w(x, h̃Dx) satisfies (4.33). Combined with
(4.35), this finally gives the estimate (4.34), which completes the proof of the lemma. ut

The previous lemma implies that each quasimode can be essentially reconstructed by
taking linear combinations of N(h) basis states em. This number is not optimal, but the
following lemma shows that quasimodes cannot be reconstructed from only a few basis
states. This fact will be relevant in Section 7.5.

Lemma 4.5. Let ej,hol
± (z) be the quasimodes constructed in Proposition 3.5. Take as be-

fore the orthonormal eigenbasis (em)m∈N of the harmonic oscillator H , associated with
the eigenvalues {λm = 2m+ 1}. Then

∀m ≥ 0, (h−1/4e
j,hol
± (z)|em) = O(h1/4)(2m+ 1)−1/6e

1
h
8
j

±,0(z), (4.36)
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where 8j
±,0(z) is given in (3.48). Similarly, the squared quasimodes satisfy

∀m ≥ 0, (h−1/4(e
j,hol
− (z))2|em) = O(h1/4)λ

−1/6
m e

2
h
8
j

+,0(z).

In both estimates the implied constant is uniform in m ∈ N, h ∈ ]0, 1] and z ∈ W(z0).

Proof. We only handle the case of nonsquared quasimodes, the other case being similar.
By the Hölder inequality,

|(h−1/4e
j,hol
± (z)|em)| ≤ ‖h

−1/4e
j,hol
± (z)‖L1‖em‖L∞ .

Using (3.30), the method of stationary phase yields

‖h−1/4e
j,hol
± (z)‖L1 = O(h1/4)e

1
h
8
j

+,0(z),

where 8j
+,0(z) is as in (3.48). By [33, Corollary 3.2], there exists a constant C > 0 such

that for all m ∈ N,
‖em‖∞ ≤ Cλ

−1/6
m ‖em‖L2 . ut

Remark 4.6. The choice of the orthonormal basis (em)m≥0 used to define the truncation
operator is rather arbitrary, as explained in [23, 25]. What is needed is that for N = N(h)
large enough, the projection 5N(h) on the subspace spanned by a collection of N(h)
of those states is microlocally equivalent to the identity in some given bounded region
U ⊂ R2. Any orthonormal basis of L2(R) will have this property, but the number N(h)
of necessary states will depend on the choice of basis.

In [23] the author used the eigenbasis of the semiclassical harmonic oscillator
qw(x, hDx), in which case it was sufficient to include only O(h−1) eigenstates. Our
choice to use the nonsemiclassical harmonic oscillatorH requires including a larger num-
ber N(h) ≥ C1h

−2 of states. This choice was guided by the extra requirement that each
quasimode ej±(z) should essentially decompose into many basis states em (as shown by
Lemma 4.5), a fact which will be important in Section 7.5 when applying the Central
Limit Theorem.

5. Setting up the Grushin problem

We begin by giving a short refresher on Grushin problems. They have become an impor-
tant tool in spectral theory and are employed in a vast number of works, especially when
dealing with spectral studies of nonselfadjoint operators. As reviewed in [45], the central
idea is to analyze the operator P(z) = P − z : H1 → H2 by extending it into a larger
operator of the form (

P(z) R−(z)

R+(z) 0

)
: H1 ⊕H−→ H2 ⊕H+,

where H± (resp. R±(z)) are well-chosen auxiliary spaces (resp. operators). The Grushin
problem is said to be well-posed if this matrix of operators is invertible for the range of z
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under study, with good control on its inverse. In the cases where dimH− = dimH+ <∞,
one writes the inverse operator blockwise as(

P(z) R−(z)

R+(z) 0

)−1

=

(
E(z) E+(z)

E−(z) E−+(z)

)
.

The key observation, going back to Schur’s complement formula, is the following: the
operator P(z) : H1 → H2 is invertible if and only if the finite rank operator E−+(z) :
H+→ H− is invertible, in which case both inverses are related by

P(z)−1
= E(z)− E+(z)E−+(z)

−1E−(z).

For this reason, the finite rank operator E−+(z) is often called an effective Hamiltonian
for the original problem P(z). As opposed to P(z), it depends in a nonlinear way on the
variable z, but has the advantage of being finite-dimensional. E−+(z) encapsulates, in a
compact way, the spectral properties of P .

5.1. Grushin problem for our unperturbed nonselfadjoint operator

Hager [23] showed how to construct an efficient Grushin problem for our nonselfadjoint
operator Ph, using the quasimodes constructed in Proposition 3.5.

Proposition 5.1 (Unperturbed Grushin). Let p(·;h) ∈ S(R2, m) be as in (2.6) and sat-
isfy (2.8), (HYP). Let a small energy range W(z0) b C satisfy (4.1), and consider the
corresponding normalized quasimodes {ej±(z); z ∈ W(z0)}, j = 1, . . . , J , constructed
in Proposition 3.5. For z ∈ W(z0) let

P(z) =
(
Ph − z R−(z)

R+(z) 0

)
: H(m)× CJ → L2

× CJ

with

(R+(z)u)j := (u|e
j
+(z)), u ∈ H(m), R−(z)u− :=

J∑
j=1

u
j
−e

j
−(z), u− ∈ CJ . (5.1)

Then P(z) is bijective for all z ∈ W(z0), with bounded inverse denoted by

E(z) =
(
E(z) E+(z)

E−(z) E−+(z)

)
: L2
× CJ → H(m)× CJ .

The blocks E±(z) have the following forms:

(E−(z)v)j = (v|e
j
−(z))+O(h∞)v, v ∈ L2,

E+(z)v+ =

J∑
j=1

v
j
+e

j
+(z)+O(h∞)v+, v+ ∈ CJ .

(5.2)
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The blocks of E(z) admit the following bounds in the semiclassical limit:

‖E(z)‖L2→H(m) = O(h−1/2), ‖E+(z)‖CJ→L2 = O(1),
‖E−(z)‖L2→CJ = O(1), ‖E−+(z)‖CJ→CJ = O(h∞),

(5.3)

uniformly for z ∈ W(z0).

Proof. Follow [23, proof of Proposition 4.1] line by line, with obvious changes. ut

Remark 5.2. As explained in Section 2.7.1, the role of R+(z) is to “absorb” the ele-
ments in the quasi-kernel of P(z), namely the linear combinations of the quasimodes
{e
j
+(z); 1 ≤ j ≤ J }; similarly, the role of R−(z) is to “fill” the quasi-cokernel of P(z),

using the auxiliary space CJ . As a result, the extended operator P(z) has neither quasi-
kernel nor quasi-cokernel, and is thus invertible, with the norm of its inverse being under
control.

5.2. Grushin problem for the perturbed operator

We wish to study the eigenvalues of

P δ = Ph + δQ, (5.4)

where δ > 0 satisfies (1.6) and Q is given by a random matrix Mω, as in (2.18), or by a
random potential Vω, as in (2.19).

Recall from (2.20) that we want to restrict the random variables used to constructMω

and Vω, to the disc of radius C/h. If we denote by

PDN (0, R) = D(0, R)N ⊂ CN

the N -dimensional polydisc of radius R centred at 0, then the restricted probability space
Mh ⊂M in the case of the random matrix Mω, resp. of the random polynomial Vω, is
defined by the following events:

q = (qj,k)j,k<N(h) ∈ PDN(h)2(0, C/h), (5.5)

resp. v = (vj )j<N(h) ∈ PDN(h)(0, C/h). (5.6)

By the tail estimate (2.17) and the fact that N(h) = C1/h
2, this restriction holds with

high probability as h→ 0, for both the matrix and potential cases. More precisely, there
exists a constant C2 > 0 such that

P[q ∈ PDN(h)2(0, C/h)] ≥ 1− κN(h)2h4+ε0 = 1− C2h
ε0 ,

P[v ∈ PDN(h)(0, C/h)] ≥ 1− κN(h)h4+ε0 = 1− C2h
2+ε0 .

(5.7)

In their restricted spaces, the random matrix, resp. random potential, satisfy the bounds

‖Mω‖HS = N(h)
−1
( ∑
i,j<N(h)

|qi,j |
2
)1/2
≤ Ch−1, (5.8)

resp. ‖Vω‖∞ ≤ N(h)−1
∑

n<N(h)

|vn| ‖en‖∞ ≤ Ch
−1. (5.9)
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This proves the estimates (2.21) and (2.22) on the size of the perturbations in the restricted
space.

Until further notice we will work in this restricted probability space Mh, so that (5.8),
resp. (5.9) holds. Using Proposition 5.1, we obtain a well-posed Grushin problem for the
perturbed operator P δ .

Proposition 5.3 (Perturbed Grushin). Let Ph and W(z0) be as in Proposition 5.1, and
P δ be the perturbed operator as in (5.4) with δ > 0 satisfying (1.6). For any z ∈ W(z0)

let

Pδ(z) =
(
P δ − z R−(z)

R+(z) 0

)
: H(m)× CJ → L2

× CJ

with the operators R+(z), R−(z) defined in (5.1). Then, for any realization of the pertur-
bation Qω in the restricted probability space (5.7), the operator P δ(z) is bijective with
bounded inverse

Eδ(z) =
(
Eδ(z) Eδ+(z)

Eδ−(z) Eδ−+(z)

)
: L2
× CJ → H(m)× CJ .

Moreover, the perturbed blocks Eδ±, Eδ−+ are related with the unperturbed ones of Propo-
sition 5.1 as follows:

Eδ− = E− +O(δh−3/2), Eδ+ = E+ +O(δh−3/2), (5.10)

and
Eδ−+ = E−+ − δE−QE+ +O(δ2h−5/2), (5.11)

uniformly with respect to the perturbation in the restricted probability space.

Proof. The result follows from an application of the Neumann series. Let E be as in
Proposition 5.1. Then

PδE = PE +
(
δQ 0
0 0

)
E = 1+

(
δQE δQE+

0 0

)
=: 1+K.

Putting together the bounds (1.6), (5.8) (resp. (5.9)) and (5.3), we get

‖K‖ ≤ δ‖Q‖(‖E‖ + ‖E+‖) = O(δh−3/2)� 1, h→ 0.

Thus, 1 + K can be inverted by the Neumann series, which provides the inverse Eδ =
E(1+K)−1 for Pδ:

Eδ :=
(
Eδ(z) Eδ+(z)

Eδ−(z) Eδ−+(z)

)

=

 ∑
∞

n=0(−1)nE(δQE)n
∑
∞

n=0(−1)n(δEQ)nE+∑
∞

n=0(−1)nE−(δQE)n E−+ + δ
∑
∞

n=1(−1)nE−(δQE)n−1QE+

 . (5.12)

The estimates (5.10), (5.11) easily follow, which concludes the proof. ut

Using Propositions 3.5, 5.1 and (5.11), we get

(Eδ−+(z))i,j = −δ(Qe
j
+|e

i
−)+O(δh∞)+O(h∞)+O(δ2h−5/2). (5.13)
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Remark 5.4. A salient feature of the expansion (5.13) is that, with high probability, the
matrix Eδ−+ is dominated by the first term on the right hand side, namely is the random
perturbation term. This fact could appear strange, since the perturbation had a small norm
∝ δ. However, the unperturbed matrix E−+(z) is even smaller (O(h∞)), a consequence
of the strong pseudospectral effect. This dominance of the random perturbation in our
effective Hamiltonian is crucial in the analysis of the perturbed spectrum.

Using the assumption (1.6) on the size of δ and taking the determinant, we get

det[δ−1Eδ−+(z)] = (−1)J det
[
(Qe

j
+(z)|e

i
−(z))i,j≤J +O(δh−5/2)

]
. (5.14)

As explained in Section 2.7.1, the spectrum of P δ corresponds to the zero locus of the
function z 7→ det[Eδ−+(z)]. Since we used the normalized quasimodes, this function is not
holomorphic in z ∈ W(z0). Because we want to make a connection with z-analytic func-
tions, we will transform this determinant into a z-holomorphic function (without modify-
ing its zero locus), using the fact that it satisfies a ∂-equation. To see this, we take the ∂z̄
derivative of the equation PδEδ = 1L2×CJ , and get

∂z̄Eδ = −Eδ∂z̄PδEδ.

The lower right block of this matrix reads

∂z̄E
δ
−+ = −E

δ
−+(∂z̄R+)E

δ
+ − E

δ
−(∂z̄R−)E

δ
−+.

This, together with the identity ∂z̄ log(detEδ−+) = tr [(Eδ−+)
−1∂z̄E

δ
−+] then yields

∂z̄ det(Eδ−+) = −tr [(∂z̄R+)Eδ+ + E
δ
−(∂z̄R−)] det(Eδ−+)

=: −kδ det(Eδ−+). (5.15)

Let us study the factor kδ(z). Using the expressions (5.1), (5.2), (5.10), we find

((∂z̄R+)E
δ
+)jj = (e

j
+(z)|∂ze

j
+(z))+O(δh−5/2),

(Eδ−∂z̄R−))jj = (∂z̄e
j
−(z)|e

j
−(z))+O(δh−5/2).

Here, we have used the fact (easily following from the expressions for the quasimodes in
Proposition 3.5) that ‖∂ze

j
+(z)‖ = O(h−1), ‖∂z̄e

j
−(z)‖ = O(h−1); for instance,

∂ze
j
+ = e−

1
h
8
j
+(∂ze

j,hol
+ − h−1(∂z8

j
+)e

j,hol
+ ) = O(h−1)L2 . (5.16)

Putting these estimates together, we obtain

kδ =

J∑
j=1

[(e
j
+|∂ze

j
+)+ (∂z̄e

j
−|e

j
−)] +O(δh−5/2), (5.17)

uniformly in z ∈ W(z0).
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We now want to compute the function kδ(z), using the properties of the almost holo-
morphic quasimodes ej,hol

± (z) we constructed in Proposition 3.5. Taking the ∂z̄ derivative

of ‖ej,hol
+ (z)‖2 = e28j+(z)/h (see (3.21)), we get

2h−1∂z̄8
j
+ = e−

2
h
8
j
+

(
(∂z̄e

j,hol
+ |e

j,hol
+ )+ (e

j,hol
+ |∂ze

j,hol
+ )

)
= e−

2
h
8
j
+(e

j,hol
+ |∂ze

j,hol
+ )+O(h−1

|z− z0|
∞
+ h∞), (5.18)

where in the last line we have used the almost holomorphy property (3.22). Taking the
z-derivative of ej+(z) = e−8

j
+(z)/he

j,hol
+ (z) (see (3.23)), we find

∂ze
j
+ = −h

−1∂z8
j
+ e

j
+ + e−

1
h
8
j
+∂ze

j,hol
+ ,

and hence
(e
j
+|∂ze

j
+) = −h

−1∂z̄8
j
+ + e−

2
h
8
j
+(e

j,hol
+ |∂ze

j,hol
+ ).

Using this identity together with (5.18), we obtain

(e
j
+|∂ze

j
+) = h

−1∂z̄8
j
+ +O(h−1

|z− z0|
∞
+ h∞). (5.19)

A similar computation shows that

(∂z̄e
j
−|e

j
−) = −h

−1∂z̄8
j
− + e−

2
h
8
j
−(∂z̄e

j,hol
− |e

j,hol
− )

= h−1∂z̄8
j
− +O(h−1

|z− z0|
∞
+ h∞), (5.20)

which finally results in the following expression for the function kδ(z):

kδ(z) = h−1
J∑
j=1

(∂z̄8
j
+(z)+ ∂z̄8

j
−(z))+O(h−1

|z− z0|
∞
+ δh−5/2).

The function kδ(z) depends smoothly on z ∈ W(z0), and the equation ∂z̄lδ = hkδ can be
solved exactly inW(z0) (see e.g. [27, Theorems 1.2.2, 1.4.4] or [22, p. 6]) with a solution
of the form

lδ(z) = −2Jh log(h1/4)+

J∑
j=1

(
8
j
+(z;h)+8

j
−(z;h)

)
+O(|z− z0|

∞
+ δh−3/2). (5.21)

Here we have added the constant term −2Jh log(h1/4) in order to balance the behaviour
of 8j±(z0;h) = h log(h1/4) + O(1). From (5.15) we obtain the following holomorphic
function in z ∈ W(z0):

Gδ(z;h) := (−δ)−J e
1
h
lδ(z) detEδ−+(z)

= e
1
h
lδ(z) det[(Qej+(z)|e

i
−(z))i,j≤J +O(δh−5/2)]. (5.22)

It will be convenient to introduce the diagonal matrices containing the norms of the almost
holomorphic quasimodes:

3± = 3±(z) := diag (h−1/4e
1
h
8
j
±(z))j=1,...,J . (5.23)
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We infer from (5.21) that

e
1
h
lδ(z)
= det(3−3+)

(
1+O(h−1

|z− z0|
∞
+ δh−5/2)

)
.

Injecting this expression in (5.22) and using (3.23), we finally express Gδ in terms of the
almost holomorphic quasimodes:

Gδ(z;h) = (1+ R1) det
[
3−(Qe

j
+(z)|e

i
−(z))i,j≤J3+ +3−O(δh−5/2)3+

]
= (1+ R1) det

[
(Qh−1/4e

j,hol
+ (z)|h−1/4e

i,hol
− (z))i,j≤J + R2

]
, (5.24)

where the two remainder terms satisfy, uniformly for z ∈ W(z0),

R1 := R1(z;h) = O(h−1
|z− z0|

∞
+ δh−5/2),

R2 := R2(z;h) = 3−O(δh−5/2)3+. (5.25)

It seems natural that the almost holomorphic, resp. almost anti-holomorphic quasimodes
appear in the expression of the holomorphic function Gδ . Indeed, if e+j (z) (resp. e−j (z)))
were exactly holomorphic (resp. exactly anti-holomorphic), then the dominant entries
(Qe

j,hol
+ (z)|e

i,hol
− (z)) in the determinant would be holomorphic as well.

The important output of this section is that the eigenvalues of P δ in W(z0) are given
(with multiplicities) by the zeros of the holomorphic functionGδ(z;h); for this reason, we
will call this holomorphic function an effective spectral determinant for the operator P δ .
Our future task will thus be to analyze the zeros of this function. We will do it in Sections 7
and 8, after recalling general properties of random analytic functions.

6. Random analytic functions

In this section we provide background material and references concerning the theory of
random analytic functions, which are needed for the proofs in Sections 7 and 8. We be-
gin by recalling some standard notions and facts about random analytic functions and
stochastic processes, as discussed for instance in [31, 30].

Let O ⊂ C be an open, simply connected domain, and let H(O) denote the space of
holomorphic functions onO. Given an exhaustion onO by compact subsetsKj b O, we
endow H(O) with the metric

d(f, g) =

∞∑
j=1

1
2j

‖f − g‖Kj

1+ ‖f − g‖Kj
, (6.1)

where ‖f ‖Kj := maxz∈Kj |f (z)|. This metric induces the topology of uniform conver-
gence on compact sets. This makes H(O) a complete separable metric space, in other
words a Polish space, and we may equip it with its Borel σ -algebra B(H(O)). This makes
(H(O),B(H(O))) a measurable space.

Definition 6.1. Let (M,A, ν) be a probability space. Then any measurable map

f : (M,A)→ (H(O),B(H(O)))
is called a C-valued stochastic process on O with paths in H(O), or simply a random
analytic function on O.
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The Borel σ -algebra B(H(O)) is equal to the σ -algebra generated by the evaluation maps

πz : H(O)→ C, πzg := g(z), z ∈ O,

that is, it is the smallest σ -algebra in H(O) such that πz is measurable for every z ∈ O.
As a consequence, a function f : (M,A) → (H(O),B(H(O))) is measurable if and
only if πzf : (M,A)→ (C,B(C)) is measurable for all z ∈ O.

Hence, any measurable function f : M → H(O) can be regarded as well as a
measurable function from O ×M to C:

f (z, ω) = πzf (ω), (z, ω) ∈ O ×M.

Due to the above measurability property, f can be considered as a collection of random
complex variables (f (z))z∈O . The finite-dimensional distributions of f describe the joint
laws of finite vectors (f (z1), . . . , f (zk)). More precisely, for (z1, . . . , zk) ∈ O

k , the joint
distribution of the random vector (f (z1), . . . , f (zk)) ∈ Ck is the probability measure
on Ck defined by

µz1,...,zk = (f (z1), . . . , f (zk))∗(ν), z1, . . . , zk ∈ O, k ∈ N∗.

The next result states that these finite-dimensional distributions fully determine the
law of a random analytic function, i.e. the direct image measure f∗ν on H(O) (see e.g.

[31, Proposition 2.2]). Below the notation X d
= Y between two random variables denotes

equality in distribution: the laws of X and Y are equal to one another.

Theorem 6.2. Let f and g be two random analytic functions. Then

f
d
= g ⇐⇒ (f (z1), . . . , f (zk))

d
= (g(z1), . . . , g(zk)), ∀(z1, . . . , zk) ∈ O

k, ∀k ∈ N∗.

Next, let us recall that a Ck-valued random variable X is said to have a centred symmetric
complex Gaussian distribution with covariance matrix 6k ∈ GLk(C), for short X ∼
NC(0, 6k), if its distribution is given by

X∗ν = (detπ6k)−1e−X
∗6−1

k XL(dX),

where L(dX) is the Lebesgue measure on Ck . The covariance matrix 6k must be Her-
mitian and positive definite. This Gaussian distribution is characterized by its means and
variances:

E[Xi] = 0, E[XiXj ] = 0, E[XiXj ] = (6k)ij , 1 ≤ i, j ≤ k.

Definition 6.3 (Gaussian analytic function, GAF). Let O ⊂ C be an open simply con-
nected complex domain. A random analytic function f onO is called a Gaussian analytic
function onO if its finite-dimensional distributions are centred symmetric complex Gaus-
sian, i.e. for all k ∈ N∗ and all z1, . . . , zk ∈ O, we have (f (z1), . . . , f (zk)) ∼ NC(0, 6k)
for some covariance matrix 6k .
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The matrix 6k depends on (z1, . . . , zk). Each of its entries (6k)ij is given by the covari-
ance kernel

K(zi, z̄j ) := E
[
f (zi)f (zj )

]
,

which is a zi-holomorphic and zj -anti-holomorphic function on O ×O. Hence, the com-
plete distribution of the GAF is fully characterized by the covariance kernel.

For more details on the theory of Gaussian analytic functions we refer the reader
to [30].

6.1. Sequences of random analytic functions

We now review some notions and results concerning convergence of sequences of random
analytic functions.

Definition 6.4. Let Xn, n ∈ N, and X be random variables defined on probability spaces
(Mn,Fn, νn), n ∈ N, respectively (M,F , ν) and taking values in a Polish space (S, d).
We say that (Xn)n converges in distribution to X if the induced probability measures on
S converge in the weak-∗ topology:

(Xn)∗νn
w∗

−→ X∗ν, n→∞,

equivalently if for any φ ∈ Cb(S,R),∫
Mn

φ(Xn) dνn→

∫
M
φ(X) dν, n→∞.

When this is the case we simply write Xn
d
−→ X.

Definition 6.5. Let O ⊂ C be an open, simply connected domain. Let fn, n ∈ N, and
f be random analytic functions on O (not necessarily defined on the same probability
space). We say that fn converges in the sense of finite-dimensional distributions to f if
for all k ≥ 1 and all (z1, . . . , zk) ∈ O

k ,

(fn(z1), . . . , fn(zk))
d
−→ (f (z1), . . . , f (zk)), n→∞.

When this is the case we write fn
fd
−→ f .

As discussed in Theorem 6.2, the distribution of each random analytic function is uniquely
determined by its finite-dimensional distributions. However, the convergence of a se-
quence of random analytic functions in the sense of finite-dimensional distributions does
not in general imply the convergence in distribution of the sequence of random functions.
To achieve this implication, one needs to add a tightness condition, which provides the
relative compactness of the sequence.

Definition 6.6. Let (µn)n be a sequence of probability measures on some Polish space
(S,B(S)). The sequence (µn)n is said to be tight if

sup
KbS

lim inf
n→∞

µn(K) = 1,

where the supremum is taken over all compact sets K b S.
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Similarly, a sequence of random variables (Xn)n taking values in S is called tight if

sup
KbS

lim inf
n→∞

P[Xn ∈ K] = 1,

where P[Xn ∈ K] = (Xn)∗νn(K) := µn(K) is the standard notation for the probability
measure induced by Xn on S.

Tightness ensures that the probability measures µn do not “escape to infinity” when
n → ∞: for any ε > 0, there exists a compact set Kε b S and nε ∈ N such that
µn(Kε) ≥ 1− ε for any n ≥ nε .

An important result due to Prokhorov (see e.g. [31, Theorem 14.3]) is the following.

Theorem 6.7 (Prokhorov). For any sequence (Xn)n of random variables taking values
in a Polish space, tightness is equivalent to relative compactness in distribution, i.e. the
sequence (µn)n of probability measures on S induced by (Xn)n is relatively compact in
the weak-∗ topology.

Remark 6.8. As a consequence of this theorem, for a tight sequence of probability mea-
sures on a Polish space S, convergence with respect to the weak-∗ topology of Cb(S)′
(where test functions are continuous and bounded) is equivalent to convergence with re-
spect to the weak-∗ topology of Cc(S)′ (test functions are continuous with compact sup-
ports). The latter topology is sometimes referred to as the vague topology.

Shirai [40, Proposition 2.5] provides a useful criterion for the tightness of sequences of
random analytic functions:

Proposition 6.9 ([40]). Let fn, n ∈ N, and f be random analytic functions on an open
simply connected set O ⊂ C. Suppose that for any compact set K b O, the sequence
(‖fn‖L∞(K))n of random real variables is tight, i.e.

lim
r→∞

lim sup
n→∞

P[‖fn‖L∞(K) > r] = 0.

Then (fn)n is tight in the space of random analytic functions on O, and

fn
fd
−→ f as n→∞ implies fn

d
−→ f as n→∞.

This property naturally extends to a family of functions (fh)h depending on a continuous
parameter h ∈ ]0, h0]: it holds for any sequence (fhn)n such that hn→ 0 as n→∞.

6.2. Point processes given by the zeros of a random analytic function

Let us first recall the definition of a random point process. Let O ⊂ C be an open con-
nected domain, and let M(O) denote the space of complex valued, locally finite Borel
measures on O, which we endow with the vague topology of Cc(O)′. This topology is
metrizable, and it makes M(O) a Polish space, which we can equip with its Borel σ -
algebra. An M(O)-valued random variable is called a random measure on O.
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Inside M(O) we distinguish the space PM(O) of integer valued measures in M(O),
which forms a closed subspace of M(O). Any element µ ∈ PM(O) is a point measure:
it can be expressed as

µ =
∑
zi

δzi

where δzi denotes the Dirac measure on the point zi ∈ O. The points {zi}i form a finite
or countable set, which has no accumulation point (yet each zi can be repeated finitely
many times). From this characterization, a PM(O)-valued random variable is called a
point process on O.

Let f be a nontrivial analytic function on O, and let

Zf :=
∑

λ∈f−1(0)

δλ (6.2)

be the point measure defined by its set of zeros (counted with multiplicities). If f is a
random analytic function (with f 6≡ 0 a.s.), then Zf defines a point process on O, which
we will call a zero point process. This is indeed a point process: f is measurable and for
every test function ϕ ∈ Cc(O,R), the functional πϕ : H(O)\{0} → R, πϕ(f ) = 〈Zf , ϕ〉,
is continuous on (H(O) \ {0}, d), for d the metric defined in (6.1). This was observed for
instance by Shirai [40].

Remark 6.10. An easy extension is that for any M ∈ N and any tensor product function
ϕ⊗M ∈

⊗M
j=1 Cc(O,R), the linear mapping

πϕ⊗M : (H(O) \ {0})M → R, (f1, . . . , fM) 7→ 〈Zf1 , ϕ1〉 · · · 〈ZfM , ϕM 〉,

is continuous with respect to the metric d̃(f, g) =
∑M
i=1 d(f

i, gi) on H(O)M .

The following result is essentially due to Shirai [40, Proposition 2.3].

Proposition 6.11. Let O ⊂ C be an open, simply connected domain. Let fn, n ∈ N, and
f be random analytic functions on O, not necessarily defined on the same probability
space. Suppose that fn, f 6≡ 0 almost surely, and fn converges in distribution to f . Then
the zero point processes Zfn converge in distribution to Zf . Moreover, for any ϕ⊗M ∈⊗M
j=1 Cc(O,R), we have the following convergence of real random variables:

〈Zfn , ϕ1〉 · · · 〈Zfn , ϕM 〉
d
−→ 〈Zf , ϕ1〉 · · · 〈Zf , ϕM 〉.

Proof. The convergence in distribution of the point processes Zfn to Zf is equivalent to

〈Zfn , ϕ〉
d
−→ 〈Zf , ϕ〉

for all ϕ ∈ Cc(O,R). As discussed in Remark 6.10, the mapping πϕ⊗M is continuous.
Hence, the continuous mapping theorem, stating that convergence in distribution of ran-
dom variables is preserved under continuous mappings between metric spaces (see e.g.
[31, Theorem 3.27]), implies the claimed results. ut



64 Stéphane Nonnenmacher, Martin Vogel

6.3. A Central Limit Theorem for complex valued random variables

The random matrix Mω, respectively the random potential Vω forming the perturbation
are generally not Gaussian (see our general assumptions (2.16) on the law of the variables
generating Mω and Vω). In order to obtain a limiting Gaussian random analytic function,
we will need to apply some Central Limit Theorem. Below we present the version of the
CLT for complex valued random variables which we will use.

Theorem 6.12. Let σ > 0 and let ξ ∼ NC(0, σ ) be a complex Gaussian random vari-
able with mean 0 and variance σ . Let {ξnj }n∈N,1≤j≤N(n) be a triangular array, with
N(n) → ∞ as n → ∞, of row-wise independent complex-valued random variables,
satisfying

(i)
∑N(n)
j=1 |E[ξnj ]| → 0 as n→∞,

(ii)
∑N(n)
j=1 E[ξ2

nj ] → 0 as n→∞,

(iii)
∑N(n)
j=1 E[|ξnj |2] → σ as n→∞,

(iv) for any ε > 0,
∑N(n)
j=1 E[|ξnj |21{|ξnj |>ε}] → 0 as n→∞.

Then
∑N(n)
j=1 ξnj

d
−→ ξ as n→∞.

Remark 6.13. Condition (iv) is known as the Lindeberg condition for a CLT. A sim-
pler version of the above theorem was presented in [40, Proposition 4.2], assuming that
all random variables ξnj have expectation 0 and are such that the real random variables
Re ξnj and Im ξnj are independent and have the same variance. Notice that these extra
assumptions imply conditions (i) and (ii).
Proof of Theorem 6.12. The proof is standard. It can be obtained by a direct modification
of the proof of the well-known central limit theorem under the Lindeberg condition (see
[31, Theorem 4.12]) for a linear combination of the real and imaginary part of ξni . ut

7. Local statistics of the eigenvalues of Ph perturbed by a random matrix Mω

In this section we prove Theorem 2.9 and Corollary 2.10, which concern the local spectral
statistics for the randomly perturbed operator

P δ = Ph + δMω, (7.1)

whereMω is the random matrix defined in (RM). To do this we will begin by rescaling the
determinant of the holomorphic effective Hamiltonian (5.24), which describes the eigen-
values of P δ , to the scale of the average spacing between nearby eigenvalues, obtaining
the rescaled random analytic function F δh (w) in (7.12). Next, we will use the results of
Section 4 to study the covariances of the matrix elements of the effective Hamiltonian.
This will then be used to show that the random function F δh (w) is tight (see Section 7.4).
Next, we show in Section 7.5 that (after a change of gauge) the function F δh (w) con-
verges in finite-dimensional distributions to the limiting function G̃z0(w) defined in The-
orem 2.9. Together with the tightness and Prokhorov’s Theorem 6.7, this proves the con-
vergence in distribution of Theorem 2.9. In Section 7.6, we finally prove Corollary 2.10.
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7.1. On restricted random variables

We recall that we restrict ourselves to the restricted probability space Mh defined by
(5.5). This restricting leads to defining restricted random variables qh = (qhj,k)j,k≤N(h),
equipped with the conditional probability

P[qh ∈ A] = P[q ∈ A | q ∈ PDN(h)2(0, C/h)], ∀A ⊂ CN(h)
2
. (7.2)

Because the variables qj,k , j, k < N(n), are i.i.d. with the law of the variable α (2.16),
and the restriction to Mh is a product of identical restrictions, the restricted variables qhj,k
are i.i.d. as well, with common law described by the restricted variable αh:

P[αh ∈ A] = P[α ∈ A | |α| ≤ C/h] =
P[{α ∈A} ∩ {|α| ≤C/h}]

P[|α| ≤ C/h]
, ∀A ⊂ C. (7.3)

Let us study the law of the restricted variables αh. By (2.17), the denominator in (7.3)
takes values

P[|α| ≤ C/h] = 1+O(h4+ε0). (7.4)

The first two conditions in (2.16) imply that

E[αn1{|α|≤C/h}] = −E[αn1{|α|>C/h}], n = 1, 2. (7.5)

Furthermore, by Fubini’s Theorem, we have the following useful identities for n = 1, 2:

E[|α|n 1{|α|>C/h}] =
∫
∞

0
P[{|α| > t1/n} ∩ {|α| > C/h}] dt

= O(h4+ε0−n), (7.6)

where we have used the tail estimate (2.17) to obtain the last line.
Using (7.3)–(7.6), we obtain the following estimate of the average and variance of the

restricted random variable:∣∣E[(αh)n]∣∣ = 1
P[|α| ≤ C/h]

|E[αn1{|α|>C/h}]|

≤
1

P[|α| ≤ C/h]
E[|αn|1{|α|>C/h}] = O(h4+ε0−n).

Thus, the first two identities in (2.16) are replaced by

E[αh] = O(h3+ε0), E[(αh)2] = O(h2+ε0). (7.7)

Finally, using (2.16), (2.17) as well as (7.4)–(7.6), we obtain the variance

E[|αh|2] =
1

P[|α| ≤ C/h]
(
E[|α|2] − E[|α|21{|α|>C/h}]

)
= 1+O(h2+ε0). (7.8)

Finally, with (2.16) it is easy to check that the (4+ ε0)-moment of αh remains uniformly
bounded when h→ 0:

E[|αh|4+ε0 ] ≤ C, ∀h ∈ ]0, 1]. (7.9)
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7.2. Rescaling our spectral determinant

Next, let � b 6̊ be as in (2.11) and pick a z0 ∈ �. By the Grushin problem constructed
in Proposition 5.3, the eigenvalues of the perturbed operator P δ , in the small neighbor-
hood W(z0) of z0 constructed in Proposition 5.1, are precisely the zeros of the random
holomorphic function obtained in (5.24):

Gδ(z;h)

= (1+ R1(z;h)) det
[
(Mωh

−1/4e
j,hol
+ (z)|h−1/4e

i,hol
− (z))i,j≤J + R2(z;h)

]
, (7.10)

with the remainder terms estimated in (5.25).
Since the spectrum of P δ in W(z0) is discrete, Gδ(·;h) 6≡ 0 in W(z0). To compute

the local spectral statistics near the point z0, we rescale the spectral parameter z by the
average distance between nearest neighbours, which is of order � h1/2, i.e. we write

z = zw = z0 + h
1/2w, w ∈ C. (7.11)

For an eigenvalue z of P δ in W(z0), we will call the corresponding w a rescaled eigen-
value, which forms the rescaled spectrum. We will focus on the eigenvalues in a micro-
scopic neighbourhood of z0. Namely, we will consider an arbitrary open, connected and
bounded set O b C, and only consider the points w ∈ O. For h > 0 small enough, the
rescaled eigenvalues are precisely the zeros of the w-holomorphic function

F δh (w) := G
δ(zw;h)

= (1+ R̃1(w;h)) det[(f δ,hi,j (w))i,j≤J + R̃2(w;h)], w ∈ O, (7.12)

with

f
δ,h
i,j (w) := (Mωh

−1/4e
j,hol
+ (zw)|h

−1/4e
i,hol
− (zw)), 0 ≤ i, j ≤ J,

R̃1(w;h) := R1(zw;h), R̃2(w;h) := R2(zw;h).
(7.13)

We may call F δh a rescaled spectral determinant. We have F δh 6≡ 0 in O, and hence, by
the discussion in Section 6.1, the random measure

Zh :=
∑

w∈(F δh )
−1(0)∩O

δw (7.14)

is a well-defined point process on O (the zeros are repeated according to their multiplic-
ities). This is the rescaled spectral point process ZM

h,z0
of (2.24), restricted to the set O.

Our next goal is to analyze the statistical properties of this point process.

7.3. Covariance

In this section we study the covariance kernel of the random functions f δ,hi,j (w) defined
over w ∈ O b C. This kernel will be a crucial ingredient in the analysis of Zh.
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Proposition 7.1. Let σ j±(z0) be the classical densities at the point z0, as in (3.54); let
f
δ,h
i,j (•), for 0 ≤ i, j ≤ J , be the random functions as in (7.13). The covariance kernel of

those functions admits the following expression, uniformly for v,w ∈ O:

E
[
f
δ,h
i,j (v)f

δ,h
l,k (w)

]
e−Fi,j (v;h)−Fl,k(w;h)

= δi,lδj,kK
i,j (v,w)(1+O(h1/2))+O(h2). (7.15)

Here δi,j is the Kronecker symbol. The most important part of the above formula is the
kernel

K i,j (v,w) = exp
( 1

2 (σ
j
+(z0)+ σ

i
−(z0)) vw

)
. (7.16)

The other ingredients are the “gauge functions”

Fi,j (v;h) = φ
j
+(v;h)+ φ

i
−(v;h), (7.17)

where
φ
j
±(v;h) =

1
2 [logAj±(z0;h)+ (∂

2
zz8

j

±,0)(z0)v
2
], (7.18)

with Aj±(z0;h) ∼ A
j,±

0 (z0)+hA
j,±

1 (z0)+· · · as in Proposition 3.5 and8j
±,0(z) is given

in (3.48).

We already noticed that K i,j (v,w) is the covariance kernel for the GAF in Theorem 2.9
(see (2.34)). We recall from (3.32) that Aj,±0 (z0) > 0. The above proposition implies that

E
[
f
δ,h
i,j (v)f

δ,h
l,k (w)

]
e−Fi,j (v;h)−Fl,k(w;h)

h→0
−−−→ δi,lδj,k K

i,j (v,w), (7.19)

uniformly for v,w ∈ O. The “gauge factors” eFi,j (•;h) never vanish and are deterministic,
so the point process could as well be defined as the zero set of the random holomorphic
function eFi,j (•;h)f δ,hi,j (•).

Proof of Proposition 7.1. For v,w ∈ O, we have, by (7.13) and (RM),

hK
i,j,l,k
h (v,w) := hE

[
f
δ,h
i,j (v)f

δ,h
l,k (w)

]
=

∑
n,m,n′,m′

E
[
qhn,m q

h
n′,m′

]
ζ
i,j
n,m(v) ζ

l,k
n′,m′

(w), (7.20)

where all indices are summed in the range [0, N(h)), and we use the notation

ζ
i,j
n,m(w) = (e

j,hol
+ (zw)|em)(en|e

i,hol
− (zw)), (7.21)

and zw = z0+h
1/2w as in (7.11). By (7.7), (7.8) and the independence of the coefficients

qhn,m, the expression (7.20) is equal to

(1+O(h2+ε0))
(∑
m

(e
j,hol
+ (zv)|em)(em|e

k,hol
+ (zw))

)(∑
n

(e
l,hol
− (zw)|en)(en|e

i,hol
− (zv))

)
+O(h6+2ε0)

∑
n,m,n′,m′

|(e
j,hol
+ (zv)|em)| |(en|e

i,hol
− (zv))| |(e

k,hol
+ (zw)|em′)| |(en′ |e

l,hol
− (zw))|.
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From Lemma 4.4,∑
n<N(h)

|(e
j,hol
+ (zv)|en)| ≤ N(h)

1/2
‖e
j,hol
+ (zv)‖(1+O(h∞)).

Since N(h) = O(h−2), and by another application of Lemma 4.4, we get

hK
i,j,l,k
h (v,w) = (e

j,hol
+ (zv)|e

k,hol
+ (zw))(e

l,hol
− (zw)|e

i,hol
− (zv))

+O(h2+ε0)‖e
j,hol
+ (zv)‖ ‖e

i,hol
− (zv)‖ ‖e

k,hol
+ (zw)‖ ‖e

l,hol
− (zw)‖. (7.22)

Using Proposition 3.5, Proposition 4.1, (7.22) and (4.3), we get the expression

hK
i,j,l,k
h (v,w) = δi,lδj,ke

2
h
(9

j
+(zv,zw;h)+9

i
−(zw,zv;h))

+O(h2+ε0)e
1
h
(8

j
+(zv;h)+8

k
+(zw;h)+8

i
−(zv;h)+8

l
−(zw;h)). (7.23)

Now, recall from (3.20) and (3.48) that the phase functions 8j
±,0 were “centred” at

the point z0, so that

8
j

±,0(z0) = 0, ∂z8
j

±,0(z0) = 0, (∂z̄8
j

±,0)(z0) = 0.

Taking into account that ∂α logAj±(•;h) = O(1) in W(z0), the Taylor expansion of
8
j
±(•;h) around z0 gives

1
h
8
j
±(zv;h) = log(h1/4)+(∂2

zz̄8
j

±,0)(z0)vv+φ
j
±(v;h)+φ

j
±(v;h)+O(h1/2), (7.24)

where we use the notation (7.18).
Similarly, by Proposition 4.1, we have

1
h
9
j
+(zv, zw;h) = log(h1/4)+ (∂2

zz̄8
j

+,0)(z0)vw + φ
j
±(v;h)+ φ

j
+(w;h)+O(h1/2)

= log(h1/4)+ 1
4σ

j
+(z0)vw + φ

j
+(v;h)+ φ

j
+(w;h)+O(h1/2), (7.25)

where in the second line we have used (3.54). We also have

1
h
9
j
−(zw, zv;h) = log(h1/4)+ 1

4σ
j
−(z0)wv+φ

j
−(w;h)+φ

j
−(v;h)+O(h1/2). (7.26)

In all estimates the error terms are uniform in z,w ∈ O. Thus, combining (7.23) with
(7.24)–(7.25) and using the notation (7.17), we obtain

K
i,j,l,k
h (v,w) = δi,lδj,ke

1
2 (σ

j
+(z0)+σ

i
−(z0))vweFi,j (v;h)+Fl,k(w;h)+O(h

1/2)
+O(h2+ε0).

Notice that the factor h on the left hand side of (7.23) is facing four factors h1/4 on the
right hand side, so we removed them all. This estimate gives the equation (7.15) of the
proposition. ut
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7.4. Tightness of the rescaled spectral determinant

We will now show that the family (F δh (•))h→0 of random analytic functions on O, de-
fined in (7.12), is tight, namely the function F δh has a small probability to be large on O,
uniformly as h→ 0.

Proposition 7.2. There exists h0 > 0 such that the family of random analytic functions
(F δh (•))0<h≤h0 defined in (7.12) is tight in the sense of Proposition 6.9.

Proof. Recall the estimates (5.25) for the remainders R1, R2; for z ∈ O, we get |z−z0| =

O(h1/2), so all terms |z−z0|
∞
= O(h∞). Moreover, the expansion (7.24) for 1

h
8
j
±(zv;h)

implies that the diagonal matrices 3±(zv) of (5.23) are of order O(1), so that

R̃1(v;h) = O(δh−5/2) = O(h1/2), R̃2(v;h) = O(δh−5/2) = O(h1/2), (7.27)

uniformly in v ∈ O and in the restricted probability space Mh. Here we have used the
assumption (1.6) on the perturbation parameter δ.

Let K b O be some compact subset. Pick ε > 0 small enough such that the ε-
neighbourhood satisfies Kε = K + D(0, ε) b O. By Proposition 7.1, for h0 > 0 small
enough,

sup
0<h≤h0

E[‖f h,δi,j ‖
2
L2(Kε)

] ≤ C(Kε) <∞. (7.28)

Since F δh is holomorphic, Hardy’s convexity theorem [40, Lemma 2.6] implies that for
any p > 0,

‖F δh‖
p

L∞(K) ≤ (πε
2)−1

∫
Kε

|F δh (w)|
p L(dw). (7.29)

To estimate the size of F δh , we will use the following inequality, valid for any J × J
matrix M:

|det(M)| ≤ ‖M‖JHS. (7.30)

Markov’s inequality shows that for any r > 0,

sup
0<h<h0

P[‖F δh‖L∞(K) > r] = sup
0<h<h0

P[‖F δh‖
2/J
L∞(K) > r2/J

]

≤ sup
0<h<h0

r−2/JE[‖F δh‖
2/J
L∞(K)].

From (7.29), the definition (7.12) of F δh and the algebraic inequality (7.30), the expecta-
tion E[‖F δh‖

2/J
L∞(K)] is bounded above by

(πε2)−1 sup
0<h<h0

E
[
‖1+R̃1‖

2/J
L∞(Kε)

∫
Kε

2
(
‖(f

h,δ
i,j (w))i,j≤J ‖

2
HS+‖R̃2(w;h)‖

2
HS
)
L(dw)

]
.

Finally, using the estimates (7.27) on the R̃i and the uniform bounds (7.28), we get

sup
0<h<h0

P[‖F δh‖L∞(K) > r] ≤ C(K, ε)r−2/J . (7.31)

This proves the tightness of the family (F δh )0<h≤h0 . ut
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7.5. Weak convergence to a Gaussian analytic function

Next we will show that the random analytic function F δh converges in distribution to
a Gaussian analytic function when h → 0. By Proposition 6.9 and Section 7.4, it is
sufficient to prove the convergence of the finite-dimensional distributions of F δh . We recall
that, in general, the coefficients qi,j are not Gaussian distributed.

We begin with the following result:

Proposition 7.3. Let f h,δi,j be as in (7.13), and let K i,j (z, w) be as in (7.16). Then

(f
h,δ
i,j ; 1 ≤ i, j ≤ J )

fd
−→ (f GAF

i,j ; 1 ≤ i, j ≤ J ), h→ 0. (7.32)

Here f GAF
i,j are independent Gaussian analytic functions with covariance kernels

K i,j (v,w)eFi,j (v;0)+Fi,j (w;0), z, w ∈ O. (7.33)

K i,j was defined in (7.16), and the function Fi,j (w; 0) is the limit as h↘ 0 of the function
defined in (7.17)–(7.18).

Before proving this proposition, we deduce an immediate consequence. We recall the
expression (7.12) for the rescaled spectral determinant:

F δh (w) = (1+ R̃1(w;h)) det[(f δ,hi,j (w))i,j≤J + R̃2(w;h)],

where both terms R̃i are O(h1/2), uniformly on the restricted probability space.

Corollary 7.4. Under the notations of Proposition 7.3, we have

F δh
d
−→ det((f GAF

i,j )i,j ), h→ 0. (7.34)

Proof. We start by proving that the perturbation of (7.32) by R̃2 is irrelevant for the limit:

((f
h,δ
i,j + (R̃2)i,j )1≤i,j≤J

fd
−→ (f GAF

i,j )1≤i,j≤J , h→ 0. (7.35)

Equivalently, for any L ∈ N∗ and any (w1, . . . , wL) ∈ O
L, we want to show that

(f
h,δ
i,j (wl)+ (R̃2)i,j (wl))1≤i,j≤J

1≤l≤L

d
−→ (f GAF

i,j (wl))1≤i,j≤J
1≤l≤L

, h→ 0. (7.36)

Proposition 7.3 proves the convergence of the left hand side. The uniform bounds (7.27)
imply that the J 2L-vector (R̃2(wl))1≤l≤L converges to zero everywhere as h → 0,
therefore it converges in probability. The application of Lemma 7.5 below, in the case
N = J 2L, thus proves the convergence (7.36).

In a second step, from Definition 6.4, it is easy to check that the convergence in dis-
tribution is preserved under composition with a continuous function [31, Theorem 4.27].
As a result, we infer from (7.36) the convergence

Dδh(w) := det((f h,δi,j )i,j + R̃2)
fd
−→ det((f GAF

i,j )i,j ), h→ 0. (7.37)
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Third, we split
F δh = (1+ R̃1)D

δ
h = D

δ
h + R̃1D

δ
h.

For any (w1, . . . , wL) ∈ O
L, we use the tightness of (Dδh(wl)))1≤L and the uniform

decay of the R̃1(wl) to show that the CL-random vector (R̃1(wl)D
δ
h(wl))1≤l≤L converges

to zero in probability as h → 0. One more application of Lemma 7.5 then proves the
convergence of (F δh (wl))1≤L, and thus of F δh (w) to the right hand side of (7.34) in the
sense of finite-dimensional distributions.

Finally, since F δh is a tight sequence of random analytic functions (see Section 7.4),
Proposition 6.9 implies its convergence in distribution stated in the corollary. ut

Lemma 7.5. Let (Xn)n∈N,X and (RN )n∈N be random vectors in CN , such thatXn
d
−→ X,

while Rn converges in probability to zero as n→∞:

∀ε > 0 lim
n→∞

P[|Rn| > ε] = 0. (7.38)

Then Xn + Rn
d
−→ X.

Proof. By a standard result [31, Lemma 4.8], the convergence Xn
d
−→ X implies that

(Xn)n∈N is a tight sequence of random vectors. From the assumption (7.38), it also easily
follows that (Xn + Rn)n∈N is tight.

As a result, from Definition 6.4 and Remark 6.8, to test the convergence of the latter
sequence it suffices to consider compactly supported test functions. Let us thus choose
φ ∈ Cc(CN ,R) and fix some arbitrary ε > 0. Since the function φ is uniformly continu-
ous, there exists a δ > 0 such that for any |X − Y | < δ, if we split the expectation as

|E[φ(Xn + Rn)− φ(Xn)]| ≤ |E[φ(Xn + Rn)− φ(Xn) | |Rn| < δ]|P[|Rn| < δ]

+ |E[φ(Xn + Rn)− φ(Xn) | |Rn| ≥ δ]|P[|Rn| ≥ δ],

the first term is bounded above by ε/2. In turn, the assumption (7.38) allows us to choose
nδ > 0 such that for all n ≥ nδ , P[|Rn| ≥ δ] < ε/(4‖φ‖L∞); the second term is then
bounded above by ε/2. ut

Proof of Proposition 7.3. The proof is an adaptation of the proof of [40, Theorem 4.4].
Our goal is to prove the convergence (7.36), in absence of the terms R̃2. By the Cramér–
Wold Theorem [31, Corollary 5.5], it suffices to show that for any λ = (λi,jl ; 1 ≤ i, j ≤ J,
1 ≤ l ≤ L) ∈ CJ 2L, the complex valued random variable

S(λ) :=
∑
i,j,l

λ
i,j
l f

h,δ
i,j (wl)

converges in distribution, as h→ 0, to the complex Gaussian random variable

SGAF(λ) :=
∑
i,j,l

λ
i,j
l f

GAF
i,j (wl). (7.39)

Let us write S(λ) in terms of our restricted complex random variables qhn,m:

S(λ) =
∑

n,m<N(h)

qhn,mGn,m, Gn,m =
∑
i,j,l

λ
i,j
l h
−1/2ζ

i,j
n,m(wl), (7.40)
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where we have used the notation of (7.21). Since the coefficients qhn,m are not Gaussian,
to prove that S(λ)

d
−→ SGAF(λ) we will invoke the Central Limit Theorem 6.12. We

thus need to check that the family (S(λ))0<h≤h0 of random variables satisfies the four
conditions stated in the theorem.

Let us first estimate the average of S(λ): from the left of (7.7), we get

|E[S(λ)]| ≤ O(h3+ε0)
∑

n,m<N(h)

|Gn,m|

≤ Oλ(h
3+ε0)

∑
i,j,l

∑
m<N(h)

|(h−1/4e
j,hol
+ (zwl )|em)|

∑
n<N(h)

|(h−1/4e
i,hol
− (zwl )|en)|

≤ Oλ(h
3+ε0)N(h)

∑
i,j,l

‖h−1/4e
j,hol
+ (zwl )‖ ‖(h

−1/4e
i,hol
− (zwl )‖

≤ Oλ(h
1+ε0). (7.41)

Here Oλ just indicates that the implied constant depends on the vector λ. To obtain the
third line we have used twice the Cauchy–Schwarz inequality, and for the last one the
fact that ‖h−1/4e

j,hol
± (zw)‖ = O(1) uniformly when w ∈ O. This proves point (i) in

Theorem 6.12.
Let us now check condition (ii) of the theorem. Using the right relation of (7.7), we

obtain the bound∣∣∣ ∑
n,m<N(h)

E[(qhn,m)
2
]G2

n,m

∣∣∣ ≤ ∑
n,m<N(h)

|E[(qhn,m)
2
]G2

n,m| ≤ O(h2+ε0)
∑
m,n

|Gn,m|
2

≤ Oλ(h
2+ε0)

∑
i,j,l

∑
m<N(h)

|(h−1/4e
j,hol
+ (zwl )|em)|

2
∑

n<N(h)

|(h−1/4e
i,hol
− (zwl )|en)|

2

≤ Oλ(h
2+ε0). (7.42)

The computation of the variance of S(λ) needs more care. By (7.8) and (7.40),

E
[ ∑
n,m<N(h)

|qhn,mGn,m|
2
]
= E[|αh|2]

∑
n,m<N(h)

|Gn,m|
2

= (1+O(h2+ε0))
∑

i,j,l,r,s,t

λ
i,j
l λ

r,s
t

∑
n,m<N(h)

h−1ζ
i,j
n,m(wl)ζ

r,s
n,m(wt ).

By (7.21) and Lemma 4.4, this is equal to

(1+O(h2+ε0))
∑

i,j,l,r,s,t

λ
i,j
l λ

r,s
t h−1(e

j,hol
+ (zwl )|e

s,hol
+ (zwt ))

× (e
r,hol
− (zwt )|e

i,hol
− (zwl ))+Oλ(h

∞). (7.43)

To control the remainder we have used again ‖ek,hol
± (zw)‖ = O(h1/4) uniformly for

w ∈ O. From the quasi-orthogonality (4.3) we see that the only nonnegligible terms
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in (7.43) should satisfy i = r and j = s. Using the notations of Proposition 7.1, we then
obtain, as h→ 0,

E
[ ∑
n,m<N(h)

|qhn,mGn,m|
2
]
→

∑
i,j,l,t

λ
i,j
l λ

i,j
t K

i,j (wl, wt )eFi,j (wl;0)+Fi,j (wt ;0) =: σ(λ,w).

(7.44)

In order to check condition (iv) of Theorem 6.12, we use the following connection
with (4+ ε0)-moments: for any ε > 0,∑

n,m<N(h)

E[|qhn,mGn,m|
2
1{|qhn,mGn,m|>ε}

] ≤ ε−(2+ε0)
∑

n,m<N(h)

E[|qhn,mGn,m|
4+ε0 ].

From (7.9) and the Hölder inequality, the above right hand side is bounded above by

C
∑

n,m<N(h)

∣∣∣∑
i,j,l

λ
i,j
l h−1/2ζ

i,j
n,m(wl)

∣∣∣4+ε0

≤ Cλ
∑
i,j,l

( ∑
m<N(h)

|(h−1/4e
j,hol
+ (zwl )|em)|

4+ε0
)( ∑

n<N(h)

|(h−1/4e
i,hol
− (zwl )|en)|

4+ε0
)
.

Splitting | • |4+ε0 = | • |
2
| • |

2+ε0 , using the bound (4.36) of Lemma 4.5 on the individ-
ual overlaps and the fact that (em) forms an orthonormal basis, one finds that the above
quantity is bounded above by

= Oλ(h
1+ε0/2)

∑
i,j,l

‖h−1/4e
j,hol
+ (zwl ))‖

2
‖h−1/4e

i,hol
− (zwl )‖

2e
2
h
8i
−,0(zwl )e

2
h
8
j

+,0(zwl )

= Oλ(h
1+ε0/2).

In the last line we have used the fact that both the norms and the exponentials are O(1)
uniformly for w ∈ O. This checks condition (iv) of Theorem 6.12.

Remark 7.6. It is especially to control this (4+ε0)-moment that we need all the overlaps
(h−1/4e

j,hol
± (zw)|em) to be small, and for this very reason we chose our auxiliary basis

(em)m∈N to have different microlocalization properties than our quasimodes.

Havind checked that the four conditions of Theorem 6.12 are satisfied by the sum S(λ) of
(7.40), we may apply this CLT to show that S(λ) converges in distribution to the complex
Gaussian random variable NC(0, σ (λ,w)2), with variance given in (7.44). On the other
hand, since the (f GAF

i,j )i,j≤J are independent Gaussian analytic functions with covariance
kernel (7.33), the sum SGAF(λ) of (7.39) is a complex centred Gaussian variable, with
variance

E
[∣∣∣∑
i,j,l

λ
i,j
l f

GAF
i,j (wl)

∣∣∣2] = ∑
i,j,l,r,s,t

λ
i,j
l λ

r,s
t E

[
f GAF
i,j (wl)f GAF

r,s (wt )
]

=

∑
i,j,l,t

λ
i,j
l λ

i,j
t K

i,j (wl, wt )eFi,j (wl;0)+Fi,j (wt ;0)

= σ(λ,w). (7.45)
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Since a complex centred Gaussian random variable is uniquely determined by its variance,

we conclude that S(λ)
d
−→ SGAF(λ). This completess the proof of the proposition. ut

Let us come back to the result of Corollary 7.4 and Proposition 7.3. The covariance ker-
nels of the GAFs f GAF

i,j were defined (see (7.33), (7.17), (7.18)) by

K i,j (v,w)eFi,j (v;0)eFi,j (w;0), Fi,j (v; 0) = φi−(v; 0)+ φ
j
+(v; 0),

φi±(v; 0) =
1
2 [logAj,±0 (z0)+ (∂

2
zz8

j

±,0)(z0) v
2
].

Since eFi,j (•;0) is a nonvanishing deterministic holomorphic function on O, we define the
random analytic function

g
i,j
z0 (•) := f

GAF
i,j (•)e−Fi,j (•;0), i, j = 1, . . . , J.

Then {gi,jz0 ; i, j = 1, . . . , J } are independent GAFs on O, with covariance kernels
K i,j (v,w), given in Theorem 2.9. If we define the diagonal matrices

3±(v) = diag ((e−φ
i
±(v;0))1≤i≤J ),

we get equality of random analytic functions:

T (v) := det((f GAF
i,j (v))i,j ) = det(3−(v)3+(v)) det((gi,jz0 (v))i,j )

:= det(3−(v)3+(v))G̃z0(v).

Since det(3−3+)(v) never vanishes, the zero point processes associated with the random
functions T and G̃z0 coincide. Hence, from Corollary 7.4 we infer that

ZF δh
d
−→ ZT = Z

G̃z0
when h→ 0. (7.46)

Together with the discussion at the beginning Section 7 and the fact that ZF δh = ZM
h,z0

represents the set of rescaled eigenvalues of P δ , this concludes the proof of Theorem 2.9.
ut

7.6. k-point measures

In this subsection we show that the k-point measures µk of the point process ZM
h,z0

, de-
fined in (2.26), converge to the k-point measures µk of the point process Z

G̃z0
defined in

Theorem 2.9. We begin with a technical

Lemma 7.7. Let F δh (w) be as in (7.12), and let G̃z0(w) be as in Theorem 2.9, with
w ∈ O. Then, for any K b O, the distribution of the numbers nhF (K) (resp. n

G̃z0
(K)) of

zeros of F δh (resp. G̃z0) in K has exponential tail: there exist constants C1, C2 > 0 such
that for any λ > 0,

∀h ≤ h0, P[nhF (K) > λ] ≤ C1e−C2λ, P[nGz0 (K) > λ] ≤ C1e−C2λ.
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Proof. From [30, Theorem 3.2.1], to prove the first inequality it suffices to show that, for
some c, b > 0, the random analytic function F δh satisfies

E[|F δh (w)|
±c
] ≤ b uniformly for w ∈ O and h ≤ h0, (7.47)

and the second inequality requires a similar estimate for the random function G̃z0(w).
Fix w ∈ O. Recall the bounds (7.27) on R̃1(w), R̃2(w). We start with the bound:

E[|F δh (w)|
2/J
] ≤ C1E[|det((f δ,hi,j (w))i,j + R̃2(w))|

2/J
]

≤ C1E[‖(f δ,hi,j (w))i,j + R̃2(w)‖
2
HS]

≤ 2C1E[‖(f δ,hi,j (w))i,j‖
2
HS + ‖R̃2(w)‖

2
HS]

≤ 2C1

J∑
i,j=1

[K i,j (w, w̄)e2 ReFi,j (w;h)(1+O(h1/2))+O(h)]

≤ O(1) uniformly in w ∈ O and h ≤ h0, (7.48)

where in the second line we have used the inequality (7.30), and in the two last inequalities
we have used Proposition 7.1.

We also need to check that the inverse function F δh (w)
−1 is not too large on average:

E[|F δh (w)|
−1/J
] =

∫
∞

0
P[|F δh (w)|

−1/J
≥ t] dt

=

∫
∞

0
P[|F δh (w)|

1/J
≤ τ ]τ−2 dτ. (7.49)

From the convergence in distribution (7.34) and the Portmanteau Theorem [31, Theo-
rem 3.25],

lim sup
h→0

P[|F δh (w)|
1/J
≤ τ ] ≤ P[|det (f GAF

i,j (w))i,j |
1/J
≤ τ ]. (7.50)

Our next goal is to compute the probability on the right hand side. We thus fix some w ∈
O and study the random determinant at w. From (7.45), the variables (f GAF

i,j (w))1≤i,j≤J
are independent centred complex Gaussian variables, with variances

K i,j (w, w̄)e2 ReFi,j (w;0) =
(
e

1
2σ

i
−(z0)|w|

2
+2 Reφi−(w;0)

)(
e

1
2σ

j
+(z0)|w|

2
+2 Reφj+(w;0)

)
=: βi−(w)β

j
+(w) 6= 0.

Using this factorization of the variances, we set β±(w) = diag((βi±(w))1≤i≤J ), which
allows us to factorize the limiting random determinant as follows:

det(f GAF
i,j (w)) = detβ+(w) detβ−(w) det(v1(w), . . . , vJ (w)), (7.51)

vj (w) = (v1j (w), . . . , vJj (w))
T , (7.52)
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where the entries (vij (w))1≤i,j≤J are i.i.d. complex Gaussian random variables with dis-
tribution NC(0, 1) (in other words, the matrix (vij (w)) is a Ginibre random matrix of size
J × J ). Until further notice we suppress w in the notation. Each column vj is a Gaussian
vector in CJ , with the identity I as covariance matrix, i.e. with distribution NC(0, I ). As
a result, the real variable r = |vij |2 has the exponential distribution f (r)dr with

f (r) = e−rH(r), H(r) = 1[0,∞[(r), with Fourier transform f̂ (ρ) =
1

1+ iρ
.

Since the components (vij )i≤J are independent, the squared norm |vj |2 is distributed
according to the J -th convolution power f ∗· · ·∗f (r)dr = f ∗J dr . A direct computation
shows that

f ∗J (r) =
rJ−1e−r

(J − 1)!
H(r),

which is the χ2
2J distribution in the variable 2r . We now compute the law of

|det(v1, . . . , vJ )|. For this, we perform J−1 linear operations on the matrix (v1, . . . , vJ ),
setting ṽ1 = v1, and iteratively for j = 2, . . . , J , taking for ṽj the orthogonal projection
of vj onto the orthogonal complement of the space Vj−1 := spanC{v1, . . . , vj−1}. Ele-
mentary linear algebra then allows us to write

|det(v1, . . . , vJ )| = |det(̃v1, . . . , ṽJ )| =

J∏
j=1

|̃vj |.

Once v1, . . . , vj−1, hence Vj−1, are chosen, the vector ṽj is distributed as a complex
Gaussian random vector in V ⊥j ≡ CJ−j+1, with distribution NC(0, I ) (this follows from
the fact that the initial distribution NC(0, I ) is invariant under unitary transformations
on CJ ). As a result {|̃vj |2; 1 ≤ j ≤ J } are independent random variables with χ2

2(J−j+1)
distributions.

Setting η = η(w) := (detβ+(w)β−(w))1/J and using the fact that the |̃vj |2 are
independent, by (7.51) and a straightforward computation we get

P[|det(f GAF
i,j (w))|1/J ≤ τ ] = P[|det(v1, . . . , vJ )|

1/J
≤ τ/η]

= P
[( J∏
j=1

|̃vj |
2
)1/J
≤ (τ/η)2

]
= 1− P

[( J∏
j=1

|̃vj |
2
)1/J

> (τ/η)2
]

≤ 1−
J∏
j=1

P[|̃vj |2 > (τ/η)2] = 1− e
−
τ2

η2
J−1∏
j=1

J−j∑
k=0

(τ/η)2(J−j−k)

(J − j − k)!
.

Each sum on the right hand side is larger than or equal to 1, hence so is their product, and
we get

P[|det(f GAF
i,j (w))|1/J ≤ τ ] ≤ 1− e

−
τ2

η2 J
≤

τ 2

η(w)2
J.

Combining this with (7.49), (7.50) and splitting the integral into [0, 1]∪[1,∞[, we obtain

E[|F δh (w)|
−1/J
] = O(1) uniformly in w ∈ O and h ≤ h0. (7.53)
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Together with (7.48), this proves the bounds (7.47) with c = 1/J , hence the first inequal-
ity of the lemma. An easy adaptation of the above computations shows that the function
G̃z0(w) satisfies similar bounds, and hence the second inequality. ut

Using Lemma 7.7, we see that for all ϕ ∈ Cc(O,R+) and any p > 0 and h < h0,

E[|〈ZF δh , ϕ〉|
p
] ≤ ‖ϕ‖

p
∞E[(nhF (suppϕ))p] ≤ ‖ϕ‖p∞

∫
∞

0
P[(nhF (suppϕ))p ≥ t] dt

≤ C1‖ϕ‖
p
∞

∫
∞

0
e−C2t

1/p
dt ≤ C(ϕ, p) <∞.

Hence, for all ϕl ∈ Cc(O,R+), l = 1, . . . , k, the positive random variable
〈ZF δh , ϕ1〉 · · · 〈ZF δh , ϕk〉 is integrable, uniformly in h ≤ h0. By Proposition 6.11 and (7.46)
it then follows that

E[〈ZF δh , ϕ1〉 · · · 〈ZF δh , ϕk〉] → E[〈Z
G̃z0
, ϕ1〉 · · · 〈ZG̃z0 , ϕk〉] as h→ 0.

Since linear combinations of functions in
⊗k
j=1 Cc(O,R+) form a dense set in

Cc(Ok,R+), we have obtained the following

Theorem 7.8. Take any open, relatively compact connected domain O b C. Let µk,Mh,z0

(resp. µk,Mz0 ) be the k-point density measure (see (2.26)) of the point process ZM
h,z0

(resp.
Z
G̃z0
) defined on O in Theorem 2.9. Then, for any ϕ ∈ Cc(Ok,R+),∫

Ok
ϕ dµ

k,M
h,z0
→

∫
Ok
ϕ dµk,Mz0

, h→ 0.

If we choose our test functions supported away from the generalized diagonal, this theo-
rem gives Corollary 2.10.

To end this section on matrix perturbations, let us compute the formula (2.35) for the
1-point density. The Lelong formula states that, in the sense of distributions,

ZGz0 =
1
π
∂w̄∂w log |det G̃z0 |

2.

Hence, the 1-point measure is given by

µ1(dw) =
1
π
∂w̄∂wE[log |det G̃z0(w)|

2
]L(dw). (7.54)

Recall from Theorem 2.6 that for any fixedw ∈ O, the matrix elements gi,jz0 (w) of G̃z0(w)

are complex Gaussian variables with variance e
1
2 (σ

j
+(z0)+σ

i
−(z0))|w|

2
. If we consider the

diagonal matrices
3̃±(w) = diag(e

1
4σ

i
±(z0)|w|

2
; 1 ≤ i ≤ J ),

then the elements of the matrix G̃(w) := 3̃−(w)
−1G̃z0(w)3̃+(w)

−1 are i.i.d. ∼
NC(0, 1). As a consequence, E[log |det G̃(w)|2] is independent of w. When applying
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the Lelong formula (7.54), the differentiations will only act on log |det 3̃−(w)|2| +
log |det 3̃+(w)|2, and yield the 1-point density

d1,M
z0

(z) =
1

2π

J∑
i=1

(σ
j
+(z0)+ σ

i
−(z0)). ut

8. Local statistics of the eigenvalues of Ph perturbed by a random potential Vω

In this section we are interested in the local statistics of the eigenvalues of the operator
perturbed by a random potential,

P δ = Ph + δVω, (8.1)

where the symbol of the initial operator Ph satisfies the symmetry assumption (SYM),
and the random potential Vω is defined in (RP).

We will prove Theorem 2.5 on the limiting process. The steps of the proof are the
same as for the proof of Theorem 2.9 in Section 7. However, some details are different, in
particular the random potential acts locally in space, and can therefore only connect quasi-
modes localized near the same point xi . As a result, the effective Hamiltonian Eδ−+(z)
obtained through the Grushin problem is essentially a diagonal matrix, as opposed to the
case of a random matrix perturbation, leading to the factorized limiting zero process of
Theorem 2.5. Finally, we provide the proofs of Theorem 2.6 in Subsection 8.4, and of
Proposition 2.12 in Subsection 8.5.

As explained in (2.20), we restrict the random variables used in the construction of Vω
to large polydiscs:

v = (vk)k<N(h) ∈ PDN(h)(0, C/h), (8.2)

which implies the estimate (5.9). As in Section 7, consider the restricted probability
space Mh, and draw the i.i.d. restricted random variables (vhk )k<N(h), distributed accord-
ing to the law of αh, (7.3). As in Section 7, we pick a z0 ∈ �. The Grushin problem
constructed in Proposition 5.3, leading to (5.24), shows that the eigenvalues of the per-
turbed operator P δ in W(z0), a relatively compact neighbourhood of z0, are given by the
zeros of the holomorphic function

Gδ(z;h) = (1+R1(z;h)) det
[
(Vωh

−1/4e
j,hol
+ (z)|h−1/4e

i,hol
− (z))i,j≤J+R2(z;h)

]
, (8.3)

with the error terms R1, R2 satisfying the bounds (5.25):

R1(z;h) = O(|z− z0|
∞
+ δh−5/2),

(R2(z;h))i,j = e
1
h
(8i
+,0(z)+8

j

−,0(z)+O(|z−z0|
∞))O(δh−3),

(8.4)

uniformly in z ∈ W(z0) and in the restricted probability space. Since the spectrum of P δ

in W(z0) is discrete, Gδ(•;h) 6≡ 0 in W(z0).
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Recall from (3.43) that the assumption (SYM) implies that the ± quasimodes are
complex conjugate to one another:

e
i,hol
− (z;h) = e

i,hol
+ (z;h), (8.5)

The further assumptions (HYP-x), (4.4) directly imply that

∀i 6= j, ∀z, z′ ∈ W(z0), (Vωe
i,hol
+ (z)|e

j,hol
− (z′)) = 0, (8.6)

showing that the dominant matrix on the right hand side of (8.3) is diagonal.
As in the previous section, we rescale the spectral parameter around z0 by the factor

h1/2, setting z = zw = z0 + h
1/2w, and we restrict w to O b C, a bounded open

connected set. For h < h0, the rescaled eigenvalues in O are precisely the zeros of the
holomorphic function

F δh (w) := h
J/4Gδ(zw;h)

= (1+ R̃1(w;h)) det[diag(f δ,hj (zw); j = 1, . . . , J )+ R̃2(w;h)], (8.7)

with the notations

f
δ,h
j (w) := (Vω|h

−1/4(e
j,hol
− (zw))

2), 1 ≤ j ≤ J,

R̃1(w;h) := R1(zw;h),

R̃2(w;h) := h
1/4 R2(zw;h).

(8.8)

The need for the normalization by the factor of hJ/4 will become apparent later on.

Remark 8.1. A direct consequence of the locality of the random potential is that the
dominant term in (8.7) is given by a diagonal matrix. In the case of perturbation by a
random matrix, we had found a full matrix (7.12) instead.

From now on we fix the bounded open domain O b C, and take h0 > 0 small enough
such that (8.7) is well-defined for all h ≤ h0. From the above discussion, F δh 6≡ 0 is a
random holomorphic function in O, so according to Section 6.1 the random measure

Zh :=
∑

w∈(F δh )
−1(0)

δw (8.9)

is a well-defined point process on O. Our aim is to study the statistical properties of this
process in the limit h→ 0.

8.1. Covariance

In this section we study the covariance of the random functions f δ,hj .
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Proposition 8.2. Let (f δ,hi )1≤i≤J be the rescaled random functions on O, defined in
(8.8). Then, for any u,w ∈ O, the covariance kernel satisfies

E
[
f
δ,h
j (u)f

δ,h
k (w)

]
e−2φjs (u;h)−2φks (w;h) = δj,kK

j (u,w)(1+O(h1/2))+O(h2),

where
Kj (u,w) = eσ

j
+(z0)uw̄, (8.10)

with σ+(z0) the classical density defined in (3.54), and

φ
j
s (u;h) =

1
2 [logAjs (z0;h)+ 2(∂2

zz8
j

+,0)(z0)u
2
], (8.11)

with Ajs (z0;h) ∼ A
j,s

0 (z0) + hA
j,s

1 (z0) + · · · as defined in Section 4.2. The error terms
are uniform in u,w ∈ O.

Recall from (4.22) that Aj,±0 (z0) > 0, so this proposition implies that

E
[
f
δ,h
j (u)f

δ,h
k (w)

]
e−2φjs (u;h)−2φks (w;h)→ δj,kK

j (u,w) (8.12)

uniformly in v,w ∈ O as h→ 0.

Proof of Proposition 8.2. The proof parallels that of Proposition 7.1. We define the fol-
lowing function on O ×O:

h1/2K
j,k
h (u,w) := h1/2E

[
f
δ,h
j (u)f

δ,h
k (w)

]
=

N(h)−1∑
n,m=0

E
[
vhnv

h
m

]
ζ
j
n (u) ζ

k
m(w), (8.13)

where
ζ
j
n (u) = (en|(e

j,hol
− (zu))

2). (8.14)

Using the law of the restricted coefficients vhj , we estimate (8.13) by

(1+O(h2+ε0))
∑
m

((e
k,hol
− (zw)

2
|em)(em|(e

j,hol
− (zu))

2)

+O(h6+ε0)
∑
n,m

∣∣((ej,hol
− (zu))

2
|en)

∣∣ ∣∣((ek,hol
− (zw))

2
|em)

∣∣. (8.15)

Remark 8.3. Here, the correlations are only determined by the squared quasimodes
(e
j
−)

2. This is different from the case of perturbation by a random matrix, where the
covariance involved all possible combinations of interactions between the quasimodes ej−
and between the ej+ (see (7.22)).

By (4.26) in Lemma 4.4,∑
n<N(h)

∣∣((ej,hol
− (zu))

2
|en)

∣∣ ≤ N(h)1/2‖(ej,hol
− (zu))

2
‖(1+O(h∞)).
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Here, we have also used h−1/4
‖(e

j,hol
− (zu))

2
‖ � 1, which follows directly from (4.21)

and (8.18) below. Using this to estimate the term of order h6 and applying Lemma 4.4 to
the first term in (8.15), one gets

h1/2K
j,k
h (u,w) = ((e

k,hol
− (zw))

2
|(e

j,hol
− (zu))

2)

+O(h2)‖(e
k,hol
− (zw))

2
‖ ‖(e

j,hol
− (zu))

2
‖. (8.16)

Applying Proposition 4.3 and (4.20) to this equation, we obtain

h1/2K
j,k
h (u,w) = δj,k exp

(
2
h
9
j
s (zw, zu;h)

)
+O(h2) exp

(
1
h
(8ks (zw;h)+8

j
s (zu;h))

)
. (8.17)

Next, recall the expansion (4.21) for the phase functions and write, similar to (3.48),

8
j
s (z) = 28j

+,0(z)+ h logAjs (z;h), 8
j

+,0(z0) = − Imϕ
j
+(x

j
+(z), z).

By (3.20) and (3.49), at the point z0 the phase function satisfies

8
j

+,0(z0) = (∂z8
j

+,0)(z0) = (∂z̄8
j

+,0)(z0) = 0.

Moreover, by the discussion after (4.21) we see that ∂αh log(h1/4A
j
s (z;h)) = O(h) for

all α ∈ N2, uniformly in z ∈ W(z0). Thus, by Taylor expanding around z0 we have, for
u ∈ O and h < h0,

1
h
8
j
s (zu;h) = logh1/4

+ 2(∂2
zz̄8

j

+,0)(z0)uu+ φ
j
s (u;h)+ φ

j
s (u;h)+O(h1/2), (8.18)

uniformly in u ∈ O. Here φjs (u;h) is as in the statement of the proposition. Similarly, by
Proposition 4.3 and (3.54), for u,w ∈ O we have

1
h
9
j
s (zu, zw;h) = logh1/4

+ 2(∂2
zz̄8

j

+,0)(z0)uw + φ
j
s (u;h)+ φ

j
s (w;h)+O(h1/2)

= logh1/4
+

1
2σ

j
+(z0)uw + φ

j
s (u;h)+ φ

j
s (w;h)+O(h1/2), (8.19)

where the error term is uniform in u,w ∈ O. Thus, combining (8.17) with (8.18)–(8.19),
and using the fact that φjs (u;h) is uniformly bounded for u ∈ O, we obtain the estimate
of the proposition. ut

8.2. Tightness

We will follow the same arguments as in Section 7.4 to show the tightness of the sequence
(f

h,δ
j (w))h<h0 of random analytic functions defined in (8.8), in the limit h→ 0.
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Recall that the “error terms” satisfy (5.25), uniformly in z ∈ W(z0) and in the re-
stricted probability space. Similar to (7.24), it follows from Proposition 3.5 and Taylor

expansion that e
1
h
(8

j

+,0(zw)+8
j

−,0(zw)) = O(1), uniformly in w ∈ O. By (5.25), (8.8) we
deduce the bounds

R̃1(w;h) = O(δh−3/2), R̃2(w;h) = O(δh−11/4), (8.20)

uniformly in w ∈ O and in the restricted probability space.
Let K b O, and choose ε > 0 small enough that Kε = K + D(0, ε) b O. By

Proposition 8.2, for h0 > 0 small enough we have

sup
0<h<h0

E[‖f h,δj ‖
2
L2(Kε)

] < C(Kε) <∞. (8.21)

Since F δh is holomorphic, we show as for (7.29) that

‖F δh‖
p

L∞(K) ≤ CKε

∫
Kε

|F δh (w)|
p L(dw). (8.22)

Using Markov’s inequality, (8.20) and (8.7) in combination with (8.22) for p = 2/J , one
finds that for h0 > small enough,

sup
0<h<h0

P[‖F δh‖
2
L∞(K) > r] ≤ r−1/JCKε sup

0<h<h0

E
[∫

Kε

|F δh (w)|
2/J L(dw)

]

≤ r−1/J
(
C1CKε sup

0<h<h0

J∑
j=1

E[|f h,δj (w)|2]L(dw)+ C2

)
≤ O(r−1/J ), (8.23)

where all the constants are independent of r > 0. In the above we have used the algebraic
bounds

|det[diag(f δ,hj (w))j=1,...,J + R̃2(w;h)]|
2/J

≤ 2‖diag(f δ,hj (w))j=1,...,J ‖
2
HS + 2‖R̃2(w;h)‖

2
HS

≤ 2
J∑
j=1

|f
h,δ
j (w)|2 + 2‖R̃2(w;h)‖

2
HS.

Hence, in view of Proposition 6.9, we conclude that F δh is a tight sequence of random
analytic functions.

8.3. Weak convergence to a Gaussian analytic function

In this section we will show that the random analytic functions F δh (see (8.7)) converge in
distribution, when h → 0, to a product of independent Gaussian analytic functions. We
start by the following result, analogue of Proposition 7.3:
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Proposition 8.4. The random functions f h,δj defined in (8.8) satisfy

(f
h,δ
j )1≤j≤J

fd
−→ (f GAF

j )1≤j≤J , h→ 0. (8.24)

Here (f GAF
j )1≤j≤J are independent Gaussian analytic functions on O with covariance

kernels

Kj (u,w)e2φjs (u;0)+2φjs (w;0), u,w ∈ O, (8.25)

where Kj is the kernel in (8.10), while φjs (u; 0) is the quadratic polynomial from (8.11).

We have the following immediate consequence, proved similarly to Corollary 7.4:

Corollary 8.5. Under the assumptions of Proposition 8.4, we have

F δh
d
−→

J∏
j=1

f GAF
j , h→ 0. (8.26)

Proof of Proposition 8.4. The proof is similar to that of Proposition 7.3. For L ∈ N∗ let
w1, . . . , wL ∈ O and λ = (λjl ; 1 ≤ j ≤ J, 1 ≤ l ≤ L) ∈ CJ ·L. Consider the complex
valued random variable

S(λ) :=
∑
j,l

λ
j
l f

h,δ
j (wl) =

∑
n<N(h)

vhnGn, Gn =
∑
j,l

λ
j
l h
−1/4ζ

j
n (zwl ),

where ζ jn is as in (8.14). We are going to show that for any such λ, S(λ) converges in
distribution to the complex valued random variable

SGAF(λ) :=
∑
j,l

λ
j
l f

GAF
j (wl).

By the Cramér–Wold Theorem this implies the convergence (8.24).

To prove the limit S(λ)
d
−→ SGAF(λ), we will use the Central Limit Theorem 6.12.

We thus need to check that the family (S(λ))0<h≤h0 of random variables satisfies the
four conditions of the theorem, remembering that the variables vhj are distributed like αh

in (7.3).
We begin by estimating the average of S(λ). From (7.7), we get∑

n<N(h)

|E[vhnGn]| ≤ O(h3+ε0)
∑

n<N(h)

|Gn|

≤ O(h3+ε0)
∑
j,l

∑
n<N(h)

∣∣(h−1/4(e
j,hol
− (zwl )

2
|en)

∣∣
≤ O(h3+ε0)N(h)

∑
j,l

‖h−1/4(e
j,hol
− (zwl ))

2
‖

≤ O(h1+ε0). (8.27)
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In the third inequality we have used two Cauchy–Schwarz inequalities, and in the last one
the fact that ‖h−1/4(e

j,hol
− (zw))

2
‖ = O(1) uniformly when w ∈ O. This proves point (i)

in Theorem 6.12.
Let us now check condition (ii). Using again (7.7) and (4.26), we get the bound∣∣∣ ∑
n<N(h)

E[(vhn)
2G2

n]

∣∣∣ ≤ O(h2+ε0)
∑
n

|Gn|
2

≤ O(h2+ε0)
∑
j,l

∑
n<N(h)

∣∣(h−1/4(e
j,hol
− (zwl ))

2
|en)

∣∣2 ≤ O(h2+ε0). (8.28)

Next, we compute the variance of S(λ). By (7.7) and (7.8),

E
[ ∑
n<N(h)

|vhnGn|
2
]
= (1+O(h2+ε0))

∑
j,l,s,t

λ
j
l λ
s
t

∑
n<N(h)

h−1ζ
j
n (zwl )ζ

s
n(zwt ),

which, by (8.14) and Lemma 4.4 is equal to

(1+O(h2+ε0))
∑
j,l,s,t

λ
j
l λ
s
t h
−1/2((e

j,hol
− (zwt ))

2
|(e

s,hol
− (zwl ))

2)+O(h∞). (8.29)

Here, we have also used ‖h−1/4 e
k,hol
± (zwl )‖ = O(1). By (4.20) we see that the terms in

(8.29) with j 6= s vanish. Similar to the proof of Proposition 8.2, we then obtain the limit

E
[ ∑
n<N(h)

|vhnGn|
2
]
h→0
−−−→

∑
j,l,t

λ
j
l λ
j
t K

j (wl, wt )e2φjs (wl;0)+2φjs (wt ;0) := σ(λ,w), (8.30)

which settles condition (iii).
To check condition (iv), we use as in (7.5) a bound by (4 + ε0)-moments: for any

ε > 0, ∑
n<N(h)

E[|vhnGn|
2
1{|vhnGn|>ε}

] < ε−(2+ε0)
∑

n<N(h)

E[|vhnGn|
4+ε0 ] → 0. (8.31)

By (7.9) and the Hölder inequality, we find∑
n<N(h)

E[|vhnGn|
4+ε0 ] ≤ Cλ

∑
j,l

∑
n<N(h)

|h−1/4ζ
j
n (zwl )|

4+ε0

= Cλ
∑
j,l

∑
m<N(h)

∣∣(h−1/4(e
j,hol
− (zwl ))

2
|em)

∣∣4+ε0 .

Using the fact that (em) is an orthonormal basis ofL2(R), as well as the uniform estimates
O(h1/4) for the overlaps (see Lemma 4.5), one obtains∑

n<N(h)

E[|vhnGn|
4+ε0 ] = O(h(2+ε0)/4)

∑
j,l

‖(h−1/4(e
j,hol
− (zwl ))

2
‖

2e
4
h
8
j

+,0(zwl )

= O(h(2+ε0)/4).
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In the last line we have used again uniform bounds for the norms and the exponentials

e
4
h
8
j

+,0 throughout O, as in (8.18), to see that the exponentials are of order O(1).
After checking the four conditions, we may apply the Central Limit Theorem 6.12

to show that S(λ) converges in distribution to the random Gaussian variable ∼
NC(0, σ (λ,w)), with variance given in (8.30).

On the other hand, since (f GAF
j )j≤J are independent Gaussian analytic functions with

covariance kernel (8.25), it follows that
∑
j,l λ

j
l f

GAF
j (wl) is a complex centred Gaussian

variable with variance

E
[∣∣∣∑
j,l

λ
j
l f

GAF
j (wl)

∣∣∣2] = ∑
j,l,s,t

λ
j
l λ
s
t E
[
f GAF
j (wl)f GAF

s (wt )
]

=

∑
j,l,t

λ
j
l λ
j
t K

j (wl, wt )e2φjs (wl;0)+2φjs (wt ;0) = σ(λ,w), (8.32)

where in the last line we recover the expression (8.30). We conclude that S(λ)
d
−→

SGAF(λ) for any λ ∈ CJL, which implies the convergence (8.24). ut

The GAFs f GAF
j appearing in Proposition 8.4 and Corollary 8.5 have covariance kernels

Kj (u, w̄)e2φjs (u;0)e2φjs (w;0). Since e2φjs (u;0) is a nonvanishing deterministic holomorphic
function on O, we may divide by this “gauge factor” to obtain

g
j
z0(w) := f

GAF
j (w)e−2φjs (w;0),

a Gaussian analytic function on O with covariance kernel Kj (u, w̄), as in the statement
of Theorem 2.5. Moreover, the J random functions (gjz0(w))1≤j≤J are independent of
each other.

It is clear that the random holomorphic functions
∏J
j=1 f

GAF
j (w) and Gz0(w) =∏J

j=1 g
j
z0(w) admit the same zero process ZGz0 on O. Hence, by (8.26) and Proposi-

tion 6.11,

ZF δh
d
−→ ZGz0 , h→ 0.

Taking into account the discussion at the beginning of Section 7 and the expression (7.16)
for the covariance kernel, this completes the proof of Theorem 2.5.

8.4. Correlation functions

Let µhk = µ
k,V
h,z0

be the k-point density measure of the process ZV
h , and µk = µ

k,V
z0 be

the k-point density measure of the point process ZGz0 , defined in Theorem 2.6. Following
the same arguments as in Section 7.6, we obtain the first part of Theorem 2.6: for any test
function ϕ ∈ Cc(Ok

\1,R+),∫
ϕ dµhk →

∫
ϕ dµk as h→ 0.
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Recall from Theorem 2.5 thatGz0(z) =
∏J
j=1 g

j
z0(z) where the gj = g

j
z0 are independent

Gaussian analytic functions. To complete the proof of Theorem 2.6, we will show, us-
ing the simple product structure of Gz0(z), that the k-point measure µk has a continuous
Lebesgue density dkG, called the k-point density, which can be explicitly computed, using
the expressions of the k′-point densities of the GAFs gj . This is not surprising, remember-
ing that the process ZGz0 is the superposition of the J independent processes Zgj . This
contrasts with the case of the point process associated with random matrix perturbations
of Ph (see Theorem 2.9), for which the computation of the limiting k-densities remains
an open problem.

Denoting 1w = ∂w̄∂w and w = (w1, . . . , wk), the generalization of (7.54) reads

µk(dw) = (2π)−k
( k∏
i=1

1wi

)
E[log |Gz0(w1)| · · · log |Gz0(wk)|]L(dw)

=: dkG(w)L(dw), (8.33)

in the sense of distributions. This follows from the Poincaré Lelong formula and Fubini’s
theorem (see e.g. [30]). Applying the product structure of Gz0 , we obtain

dkG(w) =

J∑
β1,...,βk=1

( k∏
i=1

1wi

)
E[log |gβ1(w1)| · · · log |gβk (wk)|]. (8.34)

Since the gj are mutually independent, for each term β = (β1, . . . , βk) the expectation
in (8.34) factorizes, each factor grouping together the identical GAF gβi = gj . Upon
applying the relevant derivatives1wi , each such factor yields a certain density associated
with the GAF gj .

According to [30, Cor. 3.4.2], for any Gaussian analytic function f on an open set
U ⊂ C with covariance kernel Kf (u,w), if det(Kf (wi, wj )1≤i,j≤k) does not vanish
anywhere on U k \1, then the k-point measure of Zf has a continuous Lebesgue density
dkf (w), given by

dkf (w) = (2π)
−k
( k∏
i=1

1wi

)
E[log |f (w1)| · · · log |f (wk)|]

=
perm(C(w)− B(w)A−1(w)B∗(w))

πk detA(w)
, (8.35)

where perm(·) denotes the permanent of a matrix and A,B,C are complex k×k matrices
with entries

Ai,j (w) = K(wi, wj ), Bi,j (w) = (∂wK)(wi, wj ), Ci,j (w) = (∂wwK)(wi, wj ).

Let us investigate the k-densities dkgj associated with the individual processes Zgj . The-
orem 2.5 shows that for any j = 1, . . . , J and any k ≥ 1, the covariance kernel of the
GAF gj (w) leads to the determinant

detA(w) = det((Kj (wn, wm))1≤n,m≤k) = det((eσ
j
+(z0)wnwm)1≤n,m≤k).
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This determinant vanishes if and only if wi = wj for some i 6= j , that is, if w is in the
diagonal 1. Therefore, the k-point density functions dkgj exist, and can be expressed in
the form (8.35).

Any k-density is symmetric with respect to permutations of its entries: denoting by Sk

the permutation group of k elements,

dkf (w) =
1
k!

∑
τ∈Sk

dkf (wτ(1), . . . , wτ(k)). (8.36)

Let us come back to the decomposition (8.34). First, write

dkG(w) =
1
k!

∑
τ∈Sk

dkG(wτ(1), . . . , wτ(k)). (8.37)

Then, simple combinatorics allows us decompose the index set in (8.34) as follows:

{1 ≤ β1, . . . , βk ≤ J } =
⊔

α∈NJ , |α|=k
Aα,

Aα = {β ∈ Nk; for each j = 1, . . . , J , there are αj indices βi = j}.
(8.38)

Here |α| = α1 + · · · + αJ for α ∈ NJ . Applying the decomposition (8.38) and the
permutation symmetry to (8.34), we write

dkG(w) =
∑

α∈NJ , |α|=k

∑
β∈Aα

1
k!

∑
τ∈Sk

( k∏
i=1

1wi

)
E[log |gβ1(wτ(1))| · · · log |gβk (wτ(k))|].

Since we sum over all permutations τ ∈ Sk , and the sum over each β ∈ Aα corresponds
to all possible orderings for a fixed configuration α, it follows together with the first line
of (8.35) that

dkG(w) =
∑

α∈NJ , |α|=k

1
k!

(
k

α

) ∑
τ∈Sk

J∏
j=1

d
αj
gj (wτ(α1+···+αj−1+1), . . . , wτ(α1+···+αj )),

where
(
k
α

)
=

k!
α!
:=

k!
α1!···αJ !

is the multinomial coefficient. This is exactly the expression
(2.27), and this completes the proof of Theorem 2.6. ut

To end this presentation, we show the explicit formula (2.30) for the 2-point correlation
function of the limiting point process ZGz0 . Notice first that

d1
G(w) =

J∑
j=1

d1
gj
(w).

From (8.35) one calculates directly that

d1
gj
(w) =

1
π
∂w∂w̄ logKj (w,w) =

σ
j
+(z0)

π
.
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Hence,

d1
G(w) =

1
π

J∑
j=1

σ
j
+(z0) for all w ∈ C.

Next, as a particular case of (2.27), we find

d2(z1, z2) =

J∑
j=1

d2
gj
(z1, z2)+

J∑
i,j=1
i 6=j

d1
gi
(z1)d

1
gj
(z2).

A cumbersome but straightforward calculation, using (8.35), shows that for anyw1 6= w2,

d2
gj
(w1, w2) =

(
σ
j
+(z0)

π

)2

κ

(
σ
j
+(z0)

2
|w1 − w2|

2
)
,

where

κ(t) =
(sinh2 t + t) cosh t − 2t sinh t

sinh3 t
, t ≥ 0.

A Taylor expansion shows that κ(t) = t (1+O(t2)) as t → 0+, and κ(t) = 1+O(t2e−2t )

as t → ∞. This expression has been obtained before in [26, 3]. We then obtain the
following formula for the 2-point correlation function of ZGz0 , as stated in (2.30):

K2(w1, w2) :=
d2(w1, w2)

d1(w1)d1(w1)

= 1+
J∑
j=1

(σ
j
+(z0))

2

(
∑J
j=1 σ

j
+(z0))2

[
κ

(
σ
j
+(z0)

2
|w1 − w2|

2
)
− 1

]
.

For |w1 − w2| � 1, we have the asymptotics

K2(w1, w2) = 1+O
(
(σ
j
+(z0)|w1 − w2|

2)2e−minj σ
j
+(z0)|w1−w2|

2)
,

while for |w1 − w2| � 1,

K2(w1, w2) = 1−
J∑
j=1

(σ
j
+(z0))

2

(
∑J
j=1 σ

j
+(z0))2

[
1−

σ
j
+(z0)

2
|z1 − z2|

2(1+O(|z1 − z2|
4))

]
.

In particular, this 2-point correlation does not vanish when |w1 − w2| → 0.

8.5. Invariance by isometries

In this last subsection, we prove Proposition 2.12, which expresses the invariance of our
limiting processes with respect to the direct isometries of C, for both types of random
perturbations.
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We first show this invariance in the case of the potential perturbation, namely the case
of Theorem 2.5. A direct isometry takes the form τ(w) = αw+β with α, β ∈ C, |α| = 1.
By the continuous mapping theorem [31, Theorem 3.27] and the discussion after (6.2),
it is sufficient to show that there exists a deterministic holomorphic function 8(w) such
that

Gz0 ◦ τ
d
= Gz0e8 as random holomorphic functions on C. (8.39)

Recall thatGz0(w) =
∏J
j=1 gj (w), where (gj )1≤j≤J are J independent GAFs on C, with

covariance kernels

Kj (v,w) = eσ
j
+(z0)vw. (8.40)

Then the translated functions (gj ◦τ)1≤j≤J are J independent Gaussian analytic functions
on C, with covariance kernels

Kj (τ (v), τ (w)) = eσ
j
+(z0)vw eφ

i
+(v)+φ

i
+(w), φ

j
+(w) = σ

i
+(z0)

(
αβw + 1

2 |β|
2). (8.41)

Hence, the GAFs gj ◦ τ and gj eφ
j
+ are equal in distribution, since they have the same

covariance kernel. By the continuous mapping theorem, the random analytic functions
Gz0 ◦ τ and Gz0 e8 are equal in distribution if we take 8(w) =

∑J
j=1 φ

j
+(w).

The case of the process Z
G̃z0

of Theorem 2.9 is treated similarly. Each entry gi,j =

g
i,j
z0 of the matrix defining G̃z0 is a GAF of kernel K

σ
ij
z0
(v,w) with σ ijz0 =

1
2 (σ

i
+(z0) +

σ
j
−(z0)). Therefore, upon composing with τ , we obtain a shifted kernel

K
σ
ij
z0
(τ (v), τ (w)) = K

σ
ij
z0
(v,w)eφ

ij (v)+φij (w), φij (v) = 1
2φ

i
+(v)+

1
2φ

j
−(v),

where we have used the notation of (8.41) for φi+, and a corresponding one for φj−. There-

fore, the GAF gi,j ◦ τ has the same distribution as the GAF gi,j eφ
ij
= gi,j e

1
2φ

i
++

1
2φ

j
− .

Thanks to this product structure, the determinant G̃z0 ◦ τ can be factorized as

det((gij e
1
2φ

i
+(v)+

1
2φ

j
−)i,j ) = det(3τ+) det((gij )i,j ) det(3τ−), 3τ± = diag(e

1
2φ

i
±).

Since the matrices 3τ± are nonsingular, the zero process of the left hand side is identical
to that of det((gij )i,j ) = G̃z0 . ut
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