Construction of quasimodes for non-selfadjoint operators under finite-type dynamical conditions

Víctor Arnaiz Solórzano

CNRS and Université Paris-Saclay

$$
\text { January 18, } 2021
$$

Problèmes Spectraux en Physique Mathématique

Motivation: Why non-selfadjoint operators?

The spectral theory for selfadjoint operators on Hilbert spaces is quite confortable. We have the resolvent estimate

$$
\left\|(P-\zeta)^{-1}\right\|=(\operatorname{dist}(\zeta, \sigma(P)))^{-1}
$$

and the spectral theorem also gives very good control over functions of selfadjoint operators, so for instance if P is selfadjoint with $\sigma(P) \subset\left[\lambda_{0},+\infty\right)$, then

$$
\left\|e^{-t P}\right\| \leq e^{-\lambda_{0} t}, \quad t \geq 0
$$

Motivation: Why non-selfadjoint operators?

The spectral theory for selfadjoint operators on Hilbert spaces is quite confortable. We have the resolvent estimate

$$
\left\|(P-\zeta)^{-1}\right\|=(\operatorname{dist}(\zeta, \sigma(P)))^{-1}
$$

and the spectral theorem also gives very good control over functions of selfadjoint operators, so for instance if P is selfadjoint with $\sigma(P) \subset\left[\lambda_{0},+\infty\right)$, then

$$
\left\|e^{-t P}\right\| \leq e^{-\lambda_{0} t}, \quad t \geq 0
$$

However, non-normal operators appear frequently in different problems; Scattering poles, Convection-diffusion problems, Kramers-Fokker-Planck equation, damped wave equations, linearized operators in fluid dynamics. Typically, $\left\|(P-\zeta)^{-1}\right\|$ may be very large even when ζ is far from the spectrum.

The pseudo-spectrum

Let us consider the typical example

$$
\widehat{P}_{\hbar}:=-\hbar^{2} \Delta+V(x), \quad x \in \mathbb{R}^{d} .
$$

The semiclassical pseudo-spectrum of $P(\hbar)$ is defined as

$$
\Lambda(p)=\overline{\left\{p(x, \xi)=\xi^{2}+V(x):(x, \xi) \in \mathbb{R}^{2 d}, \Im\langle\xi, \partial V(x)\rangle \neq 0\right\}}
$$

Theorem (Davies, 1999; Zworski, 2001)

Suppose that $V \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}\right)$. Then, for any $\zeta \in\left\{\xi^{2}+V(x):(x, \xi) \in \mathbb{R}^{2 d}, \Im\langle\xi, \partial V(x)\rangle \neq 0\right\}$, there exists $\left(\psi_{\hbar}\right) \subset L^{2}\left(\mathbb{R}^{d}\right)$ with the property

$$
\left\|\left(\widehat{P}_{\hbar}-\zeta\right) \psi_{\hbar}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}=O\left(\hbar^{\infty}\right)\left\|\psi_{\hbar}\right\|_{L^{2}}
$$

Moreover, $W F_{\hbar}\left(\psi_{\hbar}\right)=\left\{\left(x_{0}, \xi_{0}\right)\right\}$ for some $\left(x_{0}, \xi_{0}\right)$ with $p\left(x_{0}, \xi_{0}\right)=\zeta$.

Idea of the proof

Take $\left(x_{0}, \xi_{0}\right) \in p^{-1}(\zeta)$ with $\Im\left\langle\xi_{0}, \partial V\left(x_{0}\right)\right\rangle<0$. Then the submanifold $p^{-1}(\zeta) \subset \mathbb{R}^{2 d}$ has codimension two. The symplectic form restricted to this submanifold is non-degenerate. One can then find a local canonical transformation $\kappa:\left(x_{0}, \xi_{0}\right) \mapsto(0,0)$ such that

$$
\kappa^{*}\left(\xi_{1}-i x_{1}\right)=u p,
$$

for some smooth function u with $u\left(x_{0}, \xi_{0}\right)>0$, and a Fourier integral operator T such that

$$
\widehat{P}_{\hbar}=T^{-1} A\left(\hbar D_{x_{1}}-i x_{1}\right) T
$$

microlocally near $\left(\left(x_{0}, \xi_{0}\right),(0,0)\right)$, where A is elliptic at $(0,0)$. Then defining

$$
\varphi_{0}^{\hbar}(x):=\frac{1}{(\pi \hbar)^{d / 4}} e^{-\frac{|x|^{2}}{2 \hbar}}
$$

one can take $\psi_{\hbar}:=T^{-1} \varphi_{0}^{\hbar}$.

Estimates on the boundary of the pseudospectrum

Consider an operator

$$
\widehat{P}_{\hbar}=\mathrm{Op}_{\hbar}(p), \quad p=V+i A, \quad V, A \in S^{N}\left(\mathbb{R}^{2 d} ; \mathbb{R}\right), \quad A \geq 0
$$

Estimates on the boundary of the pseudospectrum

Consider an operator

$$
\widehat{P}_{\hbar}=\mathrm{Op}_{\hbar}(p), \quad p=V+i A, \quad V, A \in S^{N}\left(\mathbb{R}^{2 d} ; \mathbb{R}\right), \quad A \geq 0
$$

Let $z_{0} \in \mathbb{R}^{2 d}$ such that $A\left(z_{0}\right)=0, \nabla A\left(z_{0}\right)=0$. Notice that $\{V, A\}\left(z_{0}\right)=0$. Assume the following finite-type condition:

$$
\left\langle X_{V}\left(z_{0}\right), \partial^{2} A\left(z_{0}\right) X_{V}\left(z_{0}\right)\right\rangle>0
$$

Estimates on the boundary of the pseudospectrum

Consider an operator

$$
\widehat{P}_{\hbar}=\mathrm{Op}_{\hbar}(p), \quad p=V+i A, \quad V, A \in S^{N}\left(\mathbb{R}^{2 d} ; \mathbb{R}\right), \quad A \geq 0
$$

Let $z_{0} \in \mathbb{R}^{2 d}$ such that $A\left(z_{0}\right)=0, \nabla A\left(z_{0}\right)=0$. Notice that $\{V, A\}\left(z_{0}\right)=0$. Assume the following finite-type condition:

$$
\left\langle X_{V}\left(z_{0}\right), \partial^{2} A\left(z_{0}\right) X_{V}\left(z_{0}\right)\right\rangle>0
$$

Theorem (Dencker, Sjöstrand, Zworski, 2004)

$$
\left\|\left(\widehat{P}_{\hbar}-p\left(z_{0}\right)\right)^{-1}\right\|_{\mathcal{L}\left(L^{2}\right)} \leq \frac{C}{\hbar^{2 / 3}}, \quad \hbar \leq \hbar_{0}
$$

Estimates on the boundary of the pseudospectrum

Consider an operator

$$
\widehat{P}_{\hbar}=\mathrm{Op}_{\hbar}(p), \quad p=V+i A, \quad V, A \in S^{N}\left(\mathbb{R}^{2 d} ; \mathbb{R}\right), \quad A \geq 0
$$

Let $z_{0} \in \mathbb{R}^{2 d}$ such that $A\left(z_{0}\right)=0, \nabla A\left(z_{0}\right)=0$. Notice that $\{V, A\}\left(z_{0}\right)=0$. Assume the following finite-type condition:

$$
\left\langle X_{V}\left(z_{0}\right), \partial^{2} A\left(z_{0}\right) X_{V}\left(z_{0}\right)\right\rangle>0
$$

Theorem (Dencker, Sjöstrand, Zworski, 2004)

$$
\left\|\left(\widehat{P}_{\hbar}-p\left(z_{0}\right)\right)^{-1}\right\|_{\mathcal{L}\left(L^{2}\right)} \leq \frac{C}{\hbar^{2 / 3}}, \quad \hbar \leq \hbar_{0} .
$$

Theorem (Sjöstrand, 2009)

There exists $C_{0}>0$ such that, $\forall C_{1}>0$, if $\left|p\left(z_{0}\right)-\zeta\right|<\left(C_{1} \hbar \log \frac{1}{\hbar}\right)^{2 / 3}$ then

$$
\left\|\left(\widehat{P}_{\hbar}-\zeta\right)^{-1}\right\|_{\mathcal{L}\left(L^{2}\right)} \leq \frac{C_{0}}{\hbar^{2 / 3}} \exp \left(\frac{C_{0}}{\hbar}\left|p\left(z_{0}\right)-\zeta\right|^{3 / 2}\right), \quad \hbar \leq \hbar_{0}\left(C_{0}, C_{1}\right)>0
$$

Quasimodes under finite-type dynamical conditions

Theorem (Dencker, Sjöstrand, Zworski, 2004)

Let $z_{0} \in \mathbb{R}^{2 d}$ such that $\{V, A\}\left(z_{0}\right)<0$. Then there exists a quasimode $\left(\psi_{\hbar}, p\left(z_{0}\right)\right)$ for \widehat{P}_{\hbar} of width $O\left(\hbar^{\infty}\right)$ such that $W F_{\hbar}\left(\psi_{\hbar}\right)=\left\{z_{0}\right\}$.

Quasimodes under finite-type dynamical conditions

Theorem (Dencker, Sjöstrand, Zworski, 2004)

Let $z_{0} \in \mathbb{R}^{2 d}$ such that $\{V, A\}\left(z_{0}\right)<0$. Then there exists a quasimode $\left(\psi_{\hbar}, p\left(z_{0}\right)\right)$ for \widehat{P}_{\hbar} of width $O\left(\hbar^{\infty}\right)$ such that $W F_{\hbar}\left(\psi_{\hbar}\right)=\left\{z_{0}\right\}$.

Theorem (A.; 2020)

Let $z_{0} \in A^{-1}(0)$, assume that $\nabla A\left(z_{0}\right)=0$, and

$$
\left\langle X_{V}\left(z_{0}\right), \partial^{2} A\left(z_{0}\right) X_{V}\left(z_{0}\right)\right\rangle>0
$$

Then there exists a quasimode $\left(\psi_{\hbar}, \lambda_{\hbar}\right)$ for \widehat{P}_{\hbar} of width $r_{\hbar}=O\left(\hbar^{\infty}\right)$ with quasi-eigenvalue

$$
\lambda_{\hbar}=V\left(z_{0}\right)+i \beta_{\hbar}, \quad \hbar^{2 / 3-\epsilon} \gg \beta_{\hbar} \gg\left(\hbar \log \frac{1}{\hbar}\right)^{2 / 3}
$$

such that

$$
W F_{\hbar}\left(\psi_{\hbar}\right)=\left\{z_{0}\right\} .
$$

Perturbations of the harmonic oscillator

Let us consider the harmonic oscillator

$$
\widehat{H}_{\hbar}:=\frac{1}{2} \sum_{j=1}^{d} \omega_{j}\left(-\hbar^{2} \partial_{x_{j}}^{2}+x_{j}^{2}\right), \quad \hbar>0
$$

acting on $L^{2}\left(\mathbb{R}^{d}\right)$, where $\omega=\left(\omega_{1}, \ldots, \omega_{d}\right) \in \mathbb{R}_{+}^{d}$ is called vector of frequencies.

Perturbations of the harmonic oscillator

Let us consider the harmonic oscillator

$$
\widehat{H}_{\hbar}:=\frac{1}{2} \sum_{j=1}^{d} \omega_{j}\left(-\hbar^{2} \partial_{x_{j}}^{2}+x_{j}^{2}\right), \quad \hbar>0
$$

acting on $L^{2}\left(\mathbb{R}^{d}\right)$, where $\omega=\left(\omega_{1}, \ldots, \omega_{d}\right) \in \mathbb{R}_{+}^{d}$ is called vector of frequencies.
We consider perturbations of the form:

$$
\widehat{P}_{\hbar}=\widehat{H}_{\hbar}+\varepsilon_{\hbar} \widehat{V}_{\hbar}+i \hbar \widehat{A}_{\hbar},
$$

where the symbols $A, V \in S^{0}\left(\mathbb{R}^{d} ; \mathbb{R}\right)$ are real valued and bounded together with all its derivatives. We assume that $A \geq 0$ and that $\hbar^{2} \ll \varepsilon_{\hbar} \lesssim \hbar^{\alpha}$ for some $0<\alpha<2$.

Asymptotics near the real axis

Consider sequences of (pseudo-) eigenvalues $\lambda_{\hbar}=\alpha_{\hbar}+i \hbar \beta_{\hbar}$ such that

$$
\left(\alpha_{\hbar}, \beta_{\hbar}\right) \rightarrow(1, \beta), \quad \text { as } \hbar \rightarrow 0^{+}
$$

and

$$
\begin{equation*}
\widehat{P}_{\hbar} \psi_{\hbar}=\lambda_{\hbar} \psi_{\hbar}+R_{\hbar}, \quad\left\|\psi_{\hbar}\right\|_{L^{2}}=1 \tag{1}
\end{equation*}
$$

where $r_{\hbar}=\left\|R_{\hbar}\right\|_{L^{2}}$ is the width of the quasimode, typically of order $o(\hbar)$.

Asymptotics near the real axis

Consider sequences of (pseudo-) eigenvalues $\lambda_{\hbar}=\alpha_{\hbar}+i \hbar \beta_{\hbar}$ such that

$$
\left(\alpha_{\hbar}, \beta_{\hbar}\right) \rightarrow(1, \beta), \quad \text { as } \hbar \rightarrow 0^{+}
$$

and

$$
\begin{equation*}
\widehat{P}_{\hbar} \psi_{\hbar}=\lambda_{\hbar} \psi_{\hbar}+R_{\hbar}, \quad\left\|\psi_{\hbar}\right\|_{L^{2}}=1 \tag{1}
\end{equation*}
$$

where $r_{\hbar}=\left\|R_{\hbar}\right\|_{L^{2}}$ is the width of the quasimode, typically of order $o(\hbar)$.
If there exists a quasimode $\left(\psi_{\hbar}, \lambda_{\hbar}\right)$ for \widehat{P}_{\hbar} of with r_{\hbar}, then

$$
\left\|\left(\widehat{P}_{\hbar}-\lambda_{\hbar}\right)^{-1}\right\|_{\mathcal{L}\left(L^{2}\right)} \geq \frac{1}{r_{\hbar}} .
$$

Geometric control (I)

Let

$$
H(x, \xi)=\frac{1}{2} \sum_{j=1}^{d} \omega_{j}\left(\xi_{j}^{2}+x_{j}^{2}\right)
$$

For any $a \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2 d}\right)$, we define

$$
\langle a\rangle(x, \xi)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} a \circ \phi_{t}^{H}(x, \xi) d t
$$

Geometric control (I)

Let

$$
H(x, \xi)=\frac{1}{2} \sum_{j=1}^{d} \omega_{j}\left(\xi_{j}^{2}+x_{j}^{2}\right)
$$

For any $a \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2 d}\right)$, we define

$$
\langle a\rangle(x, \xi)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} a \circ \phi_{t}^{H}(x, \xi) d t
$$

Proposition

Let $\lambda_{\hbar}=\alpha_{\hbar}+i \hbar \beta_{\hbar}$ be a sequence of quasi-eigenvalues for (1) with $r_{\hbar}=o(\hbar)$. Then

$$
\beta \in\left[\min _{(x, \xi) \in H^{-1}(1)}\langle A\rangle(z), \max _{z \in H^{-1}(1)}\langle A\rangle(z)\right] .
$$

In particular, if $\langle A\rangle \geq a_{0}>0$ (GC), then $\beta>0$.

Geometric control (II)

We assume that $\min _{(x, \xi) \in H^{-1}(1)}\langle A\rangle(x, \xi)=0$ but one still has a Weak Geometric Control (WGC):

$$
\forall z=(x, \xi) \in H^{-1}(1) \cap\langle A\rangle^{-1}(0), \quad \exists t \in \mathbb{R}: \quad\langle A\rangle \circ \phi_{t}^{\langle V\rangle}(z)>0
$$

Geometric control (II)

We assume that $\min _{(x, \xi) \in H^{-1}(1)}\langle A\rangle(x, \xi)=0$ but one still has a Weak Geometric Control (WGC):

$$
\forall z=(x, \xi) \in H^{-1}(1) \cap\langle A\rangle^{-1}(0), \quad \exists t \in \mathbb{R}: \quad\langle A\rangle \circ \phi_{t}^{\langle V\rangle}(z)>0
$$

Some properties of the harmonic oscillator

The dimension of the minimal invariant tori by ϕ_{t}^{H} depends on the arithmetic relations between components of the vector of frequencies $\omega=\left(\omega_{1}, \ldots, \omega_{d}\right)$. The resonant set $\Lambda_{\omega}=\left\{k \in \mathbb{Z}^{d}: k \cdot \omega=0\right\}$ determines the maximal dimension d_{ω} of the Kronecker tori reached by ϕ_{t}^{H}. Precisely,

$$
d_{\omega}=d-\operatorname{rk} \Lambda_{\omega}
$$

In particular, in the case $d_{\omega}=d$, conditions (GC) and (WGC) are equivalent.

Some properties of the harmonic oscillator

The dimension of the minimal invariant tori by ϕ_{t}^{H} depends on the arithmetic relations between components of the vector of frequencies $\omega=\left(\omega_{1}, \ldots, \omega_{d}\right)$. The resonant set $\Lambda_{\omega}=\left\{k \in \mathbb{Z}^{d}: k \cdot \omega=0\right\}$ determines the maximal dimension d_{ω} of the Kronecker tori reached by ϕ_{t}^{H}. Precisely,

$$
d_{\omega}=d-\operatorname{rk} \Lambda_{\omega}
$$

In particular, in the case $d_{\omega}=d$, conditions (GC) and (WGC) are equivalent.

We will say that ω is partially Diophantine if

$$
|k \cdot \omega| \geq \frac{C}{|k|^{\nu}}, \quad k \in \mathbb{Z}^{d} \backslash \Lambda_{\omega}, \quad \nu \geq d_{\omega}-1
$$

Some results

Theorem (A., Rivière; 2018)

Assume (WGC) and $\varepsilon_{\hbar} \gg \hbar^{2}$.
Then, for every sequence $\lambda_{\hbar}=\alpha_{\hbar}+i \hbar \beta_{\hbar}$ satisfying (1) with $r_{\hbar} \ll \hbar \varepsilon_{\hbar}$,

$$
\begin{equation*}
\liminf _{\hbar \rightarrow 0^{+}} \frac{\beta_{\hbar}}{\varepsilon_{\hbar}}=+\infty \tag{2}
\end{equation*}
$$

As a consequence, for every $R>0$, there exists $\delta_{R}>0$ s.t.

$$
\frac{\operatorname{Im} \zeta}{\hbar} \leq R \varepsilon_{\hbar} \Longrightarrow\left\|\left(\widehat{P}_{\hbar}-\zeta\right)^{-1}\right\|_{L^{2} \rightarrow L^{2}} \leq \frac{1}{\delta_{R} \hbar \varepsilon_{\hbar}}
$$

Some results

Theorem (A., Rivière; 2018)

Assume (WGC) and $\varepsilon_{\hbar} \gg \hbar^{2}$.
Then, for every sequence $\lambda_{\hbar}=\alpha_{\hbar}+i \hbar \beta_{\hbar}$ satisfying (1) with $r_{\hbar} \ll \hbar \varepsilon_{\hbar}$,

$$
\begin{equation*}
\liminf _{\hbar \rightarrow 0^{+}} \frac{\beta_{\hbar}}{\varepsilon_{\hbar}}=+\infty \tag{2}
\end{equation*}
$$

As a consequence, for every $R>0$, there exists $\delta_{R}>0$ s.t.

$$
\frac{\operatorname{Im} \zeta}{\hbar} \leq R \varepsilon_{\hbar} \Longrightarrow\left\|\left(\widehat{P}_{\hbar}-\zeta\right)^{-1}\right\|_{L^{2} \rightarrow L^{2}} \leq \frac{1}{\delta_{R} \hbar \varepsilon_{\hbar}}
$$

Theorem (Asch, Lebeau, 2003; A., Rivière, 2018)

Let A, V be real analytic, and ω partially Diophantine. Assume (WGC), $\varepsilon_{\hbar} \geq \hbar$ and $r_{\hbar} \equiv 0$. Then

$$
\beta>0 .
$$

Construction of quasimodes

Question: Under the hypothesis of the second theorem, there exist quasimodes of width $r_{\hbar}=o\left(\varepsilon_{\hbar} \hbar\right)$ such that $\varepsilon_{\hbar} \ll \beta_{\hbar} \rightarrow 0$?

Construction of quasimodes

Question: Under the hypothesis of the second theorem, there exist quasimodes of width $r_{\hbar}=o\left(\varepsilon_{\hbar} \hbar\right)$ such that $\varepsilon_{\hbar} \ll \beta_{\hbar} \rightarrow 0$?

Theorem (A.; 2020)

Let $\varepsilon_{\hbar}=\hbar$. Assume that ω is partially Diophantine, (WGC) and let \mathcal{T}_{0} be a minimal invariant torus for ϕ_{t}^{H} such that $\left.\langle A\rangle\right|_{\mathcal{T}_{0}}=0$. Suppose also that

$$
\left\langle X_{\langle V\rangle}\left(z_{0}\right), \partial^{2}\langle A\rangle\left(z_{0}\right) X_{\langle V\rangle}\left(z_{0}\right)\right\rangle>0, \quad z_{0} \in \mathcal{T}_{0}
$$

Then there exists a quasimode $\left(\psi_{\hbar}, \lambda_{\hbar}\right)$ for \widehat{P}_{\hbar} of width $r_{\hbar}=O\left(\hbar^{\infty}\right)$ with quasi-eigenvalue

$$
\lambda_{\hbar}=1+\hbar\langle V\rangle\left(z_{0}\right)+i \hbar \beta_{\hbar}, \quad \hbar^{2 / 3-\epsilon} \gg \beta_{\hbar} \gg\left(\hbar \log \frac{1}{\hbar}\right)^{2 / 3}
$$

such that

$$
W F_{\hbar}\left(\psi_{\hbar}\right)=\mathcal{T}_{0}
$$

Strategy of proof

- We first conjugate the operator $\widehat{P}_{\hbar}=\widehat{H}_{\hbar}+\hbar \mathrm{Op}_{\hbar}(V)+i \hbar \mathrm{Op}_{\hbar}(A)$ into a normal form

$$
\widehat{P}_{\hbar}^{\dagger}=\widehat{H}_{\hbar}+\hbar \mathrm{Op}_{\hbar}(\langle V\rangle)+i \hbar \mathrm{Op}_{\hbar}(\langle A\rangle)+O\left(\hbar^{2}\right) .
$$

Strategy of proof

- We first conjugate the operator $\widehat{P}_{\hbar}=\widehat{H}_{\hbar}+\hbar \mathrm{Op}_{\hbar}(V)+i \hbar \mathrm{Op}_{\hbar}(A)$ into a normal form

$$
\widehat{P}_{\hbar}^{\dagger}=\widehat{H}_{\hbar}+\hbar \mathrm{Op}_{\hbar}(\langle V\rangle)+i \hbar \mathrm{Op}_{\hbar}(\langle A\rangle)+O\left(\hbar^{2}\right) .
$$

- We next construct (following A., Macià 2020) a sequence of eigenfunctions $\left(\Psi_{\hbar}, E_{\hbar}\right)_{\hbar}$ for \widehat{H}_{\hbar} which concentrates on \mathcal{T}_{0} of the form:

$$
\Psi_{\hbar}(x):=\left(\frac{\left|d H\left(z_{0}\right)\right|}{\sqrt{\pi \hbar} T_{\omega}}\right)^{1 / 2} \int_{0}^{T_{\omega}} e^{\frac{i t}{\hbar} E_{\hbar}} e^{\frac{-i t|\omega|_{1}}{2}} \varphi_{\phi_{t}^{H}\left(z_{0}\right)}^{\hbar}(x) d t,
$$

where $E_{\hbar} \rightarrow H\left(z_{0}\right)=1$, and

$$
\varphi_{z}^{\hbar}(x)=\frac{1}{(\pi \hbar)^{d / 4}} e^{\frac{-\left|x-x_{0}\right|^{2}}{2 \hbar}} e^{\frac{i}{\hbar} \xi_{0} \cdot\left(x-\frac{x_{0}}{2}\right)}, \quad z_{0}=\left(x_{0}, \xi_{0}\right) .
$$

Strategy of proof

- We first conjugate the operator $\widehat{P}_{\hbar}=\widehat{H}_{\hbar}+\hbar \mathrm{Op}_{\hbar}(V)+i \hbar \mathrm{Op}_{\hbar}(A)$ into a normal form

$$
\widehat{P}_{\hbar}^{\dagger}=\widehat{H}_{\hbar}+\hbar \mathrm{Op}_{\hbar}(\langle V\rangle)+i \hbar \mathrm{Op}_{\hbar}(\langle A\rangle)+O\left(\hbar^{2}\right)
$$

- We next construct (following A., Macià 2020) a sequence of eigenfunctions $\left(\Psi_{\hbar}, E_{\hbar}\right)_{\hbar}$ for \widehat{H}_{\hbar} which concentrates on \mathcal{T}_{0} of the form:

$$
\Psi_{\hbar}(x):=\left(\frac{\left|d H\left(z_{0}\right)\right|}{\sqrt{\pi \hbar} T_{\omega}}\right)^{1 / 2} \int_{0}^{T_{\omega}} e^{\frac{i t}{\hbar} E_{\hbar}} e^{\frac{-i t|\omega|_{1}}{2}} \varphi_{\phi_{t}^{H}\left(z_{0}\right)}^{\hbar}(x) d t
$$

where $E_{\hbar} \rightarrow H\left(z_{0}\right)=1$, and

$$
\varphi_{z}^{\hbar}(x)=\frac{1}{(\pi \hbar)^{d / 4}} e^{\frac{-\left|x-x_{0}\right|^{2}}{2 \hbar}} e^{\frac{i}{\hbar} \xi_{0} \cdot\left(x-\frac{x_{0}}{2}\right)}, \quad z_{0}=\left(x_{0}, \xi_{0}\right)
$$

- We then average the eigenmode Ψ_{\hbar} also by the propagator of a suitable polynomial approximation of $\mathrm{Op}_{\hbar}(\langle V\rangle+i\langle A\rangle)$ near \mathcal{T}_{0} to obtain our quasimode ψ_{\hbar}.

Propagation of wave-packets

Self-adjoint operators:

- Hagedorn (1985).
- De Bièvre, Houard, Irac-Astaud (1992-1993).
- Paul, Uribe (1993).
- Combescure, Robert (1996).
- Eswarathasan, Nonnenmacher (2015).
- A., Macià (2020).

Non-selfadjoint operators:

- Graefe, Schubert (2011, 2012).
- Dietert, Keller, Troppmann (2016).
- Lasser, Schubert, Troppmann (2018).
- Pravda-Starov (2018).

Beginning of the proof. Propagation of wave-packets

Let us consider a wave packet centered at $z_{0}=\left(x_{0}, \xi_{0}\right)$ and with Lagrangian frame $Z_{0}=\left(P_{0}, Q_{0}\right)=\left(i \operatorname{Id}_{d}, \operatorname{Id}_{d}\right) \in \mathbb{C}^{2 d \times d}$:

$$
\varphi_{0}^{\hbar}\left[Z_{0}, z_{0}\right](x)=\frac{\operatorname{det}\left(Q_{0}\right)^{-1 / 2}}{(\pi \hbar)^{d / 4}} e^{\frac{i}{2 \hbar} P_{0} Q_{0}^{-1}\left(x-x_{0}\right) \cdot\left(x-x_{0}\right)} e^{\frac{i}{\hbar} \xi_{0} \cdot\left(x-\frac{x_{0}}{2}\right)}
$$

Beginning of the proof. Propagation of wave-packets

Let us consider a wave packet centered at $z_{0}=\left(x_{0}, \xi_{0}\right)$ and with Lagrangian frame $Z_{0}=\left(P_{0}, Q_{0}\right)=\left(i \operatorname{Id}_{d}, \operatorname{Id}_{d}\right) \in \mathbb{C}^{2 d \times d}$:

$$
\varphi_{0}^{\hbar}\left[Z_{0}, z_{0}\right](x)=\frac{\operatorname{det}\left(Q_{0}\right)^{-1 / 2}}{(\pi \hbar)^{d / 4}} e^{\frac{i}{2 \hbar} P_{0} Q_{0}^{-1}\left(x-x_{0}\right) \cdot\left(x-x_{0}\right)} e^{\frac{i}{\hbar} \xi_{0} \cdot\left(x-\frac{x_{0}}{2}\right)}
$$

When we apply the propagator $e^{\frac{i t \hat{P}_{\hbar}}{\hbar}}$ of \widehat{P}_{\hbar} to $\varphi_{0}^{\hbar}\left[Z_{0}, z_{0}\right]$, the center of the wave-packet evolves approximately according to the evolution equation (Graefe-Schubert, 2011):

$$
\begin{aligned}
\dot{z}_{t} & =-\Omega \nabla V\left(z_{t}\right)-G_{t}^{-1} \nabla A\left(z_{t}\right) \\
\dot{G}_{t} & =G_{t} \Omega \partial^{2} V\left(z_{t}\right)-\partial^{2} V\left(z_{t}\right) \Omega G_{t}-\partial^{2} A\left(z_{t}\right)-G_{t} \Omega \partial^{2} A\left(z_{t}\right) \Omega G_{t}
\end{aligned}
$$

This system is well-posed for $\left.z_{t}\right|_{t=0}=z_{0}, G_{0}=\operatorname{Id}_{2 d}, 0 \leq t \leq T$.

Evolution by quadratic Hamiltonian

We split $p(z)=p_{2}(t, z)+R(t, z)$, where

$$
\begin{aligned}
p_{2}(t, z) & =p\left(z_{t}\right)+\left(z-z_{t}\right) \cdot \nabla p\left(z_{t}\right)+\frac{1}{2}\left(z-z_{t}\right) \cdot \partial^{2} p\left(z_{t}\right)\left(z-z_{t}\right) \\
R(t, z) & =\sum_{|\beta|=3} \frac{|\beta|}{\beta!}\left(z-z_{t}\right)^{\beta} \int_{0}^{1}(1-s)^{|\beta|-1} D^{\beta} p\left(z_{t}+s\left(z-z_{t}\right)\right) d s .
\end{aligned}
$$

The evolution of Hagedorn wave packets (and more generally excited states) by the propagator of $\mathrm{Op}_{\hbar}\left(p_{2}(t, z)\right)$ has been characterized by Lasser, Schübert and Troppmann (2018). We also need to estimate the contribution of the remainder term $R(t, z)$.

Hagedorn wave-packets

A matrix $Z=(Q, P) \in \mathbb{C}^{2 d \times d}$ is called normalized Lagrangian frame if:

$$
Z^{T} \Omega Z=0, \quad \frac{i}{2} Z^{*} \Omega Z=\operatorname{Id}_{d}
$$

If Z is a normalized Lagrangian frame, then $L=$ range Z is a positive Lagrangian space, meaning that

$$
L=\left\{\left(P Q^{-1} x, x\right): x \in \mathbb{C}^{d}\right\}, \quad \Im\left(P Q^{-1}\right)>0
$$

With Z one can associate ladder operators:

$$
A[Z, z]=\frac{i}{\sqrt{2 \hbar}} Z \cdot \Omega(\hat{z}-z), \quad A^{\dagger}[Z, z]=-\frac{i}{\sqrt{2 \hbar}} \bar{Z} \cdot \Omega(\hat{z}-z)
$$

Proposition

The set of states:

$$
\varphi_{k}^{\hbar}[Z, z](x)=\frac{1}{\sqrt{k!}} A_{k}^{\dagger}[Z, z] \varphi_{0}^{\hbar}[Z, z](x), \quad k \in \mathbb{N}^{d}
$$

defines an orthonormal basis of $L^{2}\left(\mathbb{R}^{d}\right)$.

Quadratic evolution (selfadjoint case)

In the selfadjoint case the evolution of a Hagedorn excites state is determined by the system of differential equations

$$
\begin{array}{rr}
\dot{z}_{t}=-\Omega \nabla p\left(z_{t}\right), & \left.z_{t}\right|_{t=0}=z_{0} \\
\dot{S}_{t}=\partial^{2} p\left(z_{t}\right) S_{t}, & S_{0}=\mathrm{Id}
\end{array}
$$

We have:

$$
e^{\frac{i t \hat{P}_{2, \hbar}}{\hbar}} \varphi_{k}\left[Z_{0}, z_{0}\right](x)=e^{\frac{i}{\hbar} \Lambda_{t}\left(z_{0}\right)} \varphi_{k}^{\hbar}\left[Z_{t}, z_{t}\right](x), \quad k \in \mathbb{N}^{d}
$$

where $Z_{t}=S_{t} Z_{0}$ and

$$
\Lambda_{t}\left(z_{0}\right)=-\int_{0}^{t}\left(\frac{\dot{\xi}_{s} \cdot x_{s}-\dot{x}_{s} \cdot \xi_{s}}{2}-p\left(z_{s}\right)\right) d s
$$

Quadratic evolution (selfadjoint case)

In the selfadjoint case the evolution of a Hagedorn excites state is determined by the system of differential equations

$$
\begin{array}{cr}
\dot{z}_{t}=-\Omega \nabla p\left(z_{t}\right), & \left.z_{t}\right|_{t=0}=z_{0} \\
\dot{S}_{t}=\partial^{2} p\left(z_{t}\right) S_{t}, & S_{0}=\mathrm{Id}
\end{array}
$$

We have:

$$
e^{\frac{i t \widehat{P}_{2, \hbar}}{\hbar}} \varphi_{k}\left[Z_{0}, z_{0}\right](x)=e^{\frac{i}{\hbar} \Lambda_{t}\left(z_{0}\right)} \varphi_{k}^{\hbar}\left[Z_{t}, z_{t}\right](x), \quad k \in \mathbb{N}^{d}
$$

where $Z_{t}=S_{t} Z_{0}$ and

$$
\Lambda_{t}\left(z_{0}\right)=-\int_{0}^{t}\left(\frac{\dot{\xi}_{s} \cdot x_{s}-\dot{x}_{s} \cdot \xi_{s}}{2}-p\left(z_{s}\right)\right) d s
$$

In this case, the metric G_{t}, given by $G_{t}=S_{t}^{-T} S_{t}^{-1}$, satisfies the Ricatti equation

$$
\dot{G}_{t}=G_{t} \Omega \partial^{2} p\left(z_{t}\right)-\partial^{2} p\left(z_{t}\right) \Omega G_{t}
$$

Quadratic evolution (non-selfadjoint case)

Let S_{t} be the complex symplectic matrix satisfying:

$$
\dot{S}_{t}=\Omega \partial^{2} p\left(z_{t}\right) S_{t}, \quad S_{0}=\operatorname{Id}_{d}
$$

and define

$$
N_{t}:=\left(\frac{1}{2 i}\left(S_{t} Z_{0}\right)^{*} \Omega\left(S_{t} Z_{0}\right)\right)^{-1 / 2}
$$

Theorem (Lasser, Schubert, Troppmann (2018))

$$
e^{\frac{i t \widehat{P}_{2, \hbar}}{\hbar}} \varphi_{k}^{\hbar}\left[Z_{0}, z_{0}\right](x)=e^{\frac{i}{\hbar} \Lambda_{t}\left(z_{0}\right)+\varrho_{t}} \sum_{|l| \leq|k|} b_{k l}(t) \varphi_{l}^{\hbar}\left[Z_{t}, z_{t}\right], \quad 0 \leq t \leq T
$$

where $Z_{t}=S_{t} Z_{0} N_{t}$ is a normalized Lagrangian frame, and

$$
\begin{aligned}
\Lambda_{t}\left(z_{0}\right) & =-\int_{0}^{t}\left(\frac{\dot{\xi}_{s} \cdot x_{s}-\dot{x}_{s} \cdot \xi_{s}}{2}-p\left(z_{s}\right)\right) d s \\
\varrho_{t} & =-\frac{1}{4} \int_{0}^{t} \operatorname{Tr}\left(G_{s}^{-1} \partial^{2} A\left(z_{s}\right)\right) d s
\end{aligned}
$$

An infinite-matrix equation

We look at the equation:

$$
\begin{equation*}
i \hbar \partial_{t} \varphi_{\hbar}(t, x)+\widehat{P}_{\hbar} \varphi_{\hbar}(t, x)=0, \quad \varphi_{\hbar}(0, x)=\varphi_{0}^{\hbar}\left[Z_{0}, z_{0}\right](x) \tag{3}
\end{equation*}
$$

Making the ansatz

$$
\varphi_{\hbar}(t, x)=\sum_{k \in \mathbb{N}^{d}} c_{k}(t, \hbar) \varphi_{k}^{\hbar}\left[Z_{t}, z_{t}\right](x)
$$

equation (3) can be viewed as an equation on the coefficients:

$$
\dot{c}_{k}(t, \hbar)=\sum_{l \in \mathbb{N}^{d}}\left(\frac{i \dot{\Lambda}_{t}}{\hbar}+\dot{\varrho}_{t}+p_{k l}(t)+r_{k l}(t, \hbar)\right) c_{l}(t, \hbar), \quad k \in \mathbb{N}^{d}
$$

The coefficients $p_{k l}(t)$ correspond to the quadratic part $p_{2}(t, z)$, while the coefficients $r_{k l}(t, \hbar)$ correspond to the remainder term $R(t, z)$.

Matrix elements

Lemma

The matrix elements $p_{k l}(t)$ corresponding with the quadratic part satisfy

$$
\begin{aligned}
p_{0 l}(t) & =0, \quad \forall l \in \mathbb{N}^{d} \\
p_{k l}(t) & =0, \quad \text { if }|k-l|>2 \\
\sup _{0 \leq t \leq T}\left|p_{k l}(t)\right| & \leq C|k|
\end{aligned}
$$

Lemma

The matrix elements $r_{k l}(t, \hbar)=\hbar^{-1}\left\langle\varphi_{k}^{\hbar}\left[Z_{t}, z_{t}\right], \mathrm{Op}_{\hbar}(R(t)) \varphi_{l}^{\hbar}\left[Z_{t}, z_{t}\right]\right\rangle$ satisfy

$$
\begin{aligned}
\sup _{0 \leq t \leq T}\left|r_{k, k+l}(t, \hbar)\right| & \leq C \sqrt{\hbar}(1+|k|)^{N / 2}, \quad|l| \leq N \\
r_{k, k+l}(t, \hbar) & =0, \quad|l|>N .
\end{aligned}
$$

Propagation of coefficients (I)

Let us consider the Banach spaces:

$$
\ell_{\rho}^{N}\left(\mathbb{N}^{d}\right)=\left\{\vec{c}=\left(c_{k}\right):\|\vec{c}\|_{\rho}:=\sum_{k \in \mathbb{N}^{d}}\left|c_{k}\right| e^{\rho|k|^{N / 2}}<+\infty\right\}
$$

Given the two evolution equations

$$
\begin{aligned}
& \text { (1) } \frac{d}{d t} \vec{c}(t)=\left(\frac{i \dot{\Lambda}_{t}}{\hbar}+\dot{\varrho}_{t}\right) \vec{c}(t)+\left(p_{k l}(t)\right) \vec{c}(t) \\
& \text { (2) } \frac{d}{d t} \vec{c}(t)=\left(\frac{i \dot{\Lambda}_{t}}{\hbar}+\dot{\varrho}_{t}\right) \vec{c}(t)+\left(p_{k l}(t)+r_{k l}(t, \hbar)\right) \vec{c}(t)
\end{aligned}
$$

there exist propagators satisfying, for $0 \leq s \leq t \leq T$ small enough,

$$
U_{j}(t, s): \ell_{\rho}^{N}\left(\mathbb{N}^{d}\right) \rightarrow \ell_{\rho-\sigma}^{N}\left(\mathbb{N}^{d}\right), \quad j=1,2
$$

Propagation of the coefficients (II)

This allows us to compare the coefficients of the whole solution with those of the quadratic evolution; by Duhamel's principle:

$$
U_{1}(t, s)-U_{2}(t, s)=\int_{s}^{t} U_{2}(t, \tau)\left(r_{k l}(\tau, \hbar)\right) U_{1}(\tau, s) d \tau=O(\sqrt{\hbar})
$$

Therefore, given $\vec{c}(0):=(1,0, \ldots) \in \ell_{\rho}^{N}\left(\mathbb{N}^{d}\right)$, we obtain, for $0 \leq t \leq T$,

$$
\begin{aligned}
& c_{0}(t, \hbar)=e^{\frac{i}{\hbar} \Lambda_{t}+\varrho_{t}}(1+O(\sqrt{\hbar})), \\
& c_{k}(t, \hbar)=e^{\frac{i}{\hbar} \Lambda_{t}+\varrho_{t}} O\left(\sqrt{\hbar} e^{-(\rho-\sigma)|k|^{N / 2}}\right), \quad k \neq 0 .
\end{aligned}
$$

Averaging

We define our quasimode as:

$$
\begin{aligned}
\psi_{\hbar}(x) & :=\sqrt{C_{\hbar}} \int_{\mathbb{R}} \chi_{\hbar}(t) e^{-\frac{i t \lambda_{\hbar}}{\hbar}} \varphi_{\hbar}(t, x) d t \\
& =\sqrt{C_{\hbar}} \sum_{k \in \mathbb{N}^{d}} \int_{\mathbb{R}} \chi_{\hbar}(t) e^{-\frac{i t \lambda_{\hbar}}{\hbar}} c_{k}(t, \hbar) \varphi_{k}^{\hbar}\left[Z_{t}, z_{t}\right](x) d t
\end{aligned}
$$

where $\chi_{\hbar} \in \mathcal{C}_{c}^{\infty}(\mathbb{R})$ satisfies

$$
\begin{aligned}
& \operatorname{supp} \chi_{\hbar} \subset\left\{-\hbar^{1 / 3} \leq t \leq \hbar^{1 / 3-\delta}\right\} \\
& \operatorname{supp} \chi_{\hbar}^{\prime} \subset\left\{-\hbar^{1 / 3} \leq t \leq-\hbar^{1 / 3}(1-c)\right\} \cup\left\{\hbar^{1 / 3}\left(\hbar^{-\delta}-c\right) \leq t \leq \hbar^{1 / 3-\delta}\right\}
\end{aligned}
$$

$$
\text { and } \lambda_{\hbar}=V\left(z_{0}\right)+i \beta_{\hbar}
$$

Normalization

We compute, for $a \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{2 d}\right)$:

$$
\begin{aligned}
& \left\langle\psi_{\hbar}, \mathrm{Op}_{\hbar}(a) \psi_{\hbar}\right\rangle_{L^{2}\left(\mathbb{R}^{d}\right)} \\
& =C_{\hbar} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2 d}} \chi_{\hbar}(t) \chi_{\hbar}\left(t^{\prime}\right) e^{-\frac{i}{\hbar}\left(t \lambda_{\hbar}-t^{\prime} \bar{\lambda}_{\hbar}\right)} W_{\hbar}\left[\varphi_{\hbar}(t), \varphi_{\hbar}\left(t^{\prime}\right)\right](z) a(z) d z d t d t^{\prime}
\end{aligned}
$$

The cross-Wigner functions $W_{\hbar}\left[\varphi_{k}^{\hbar}\left[Z_{t}, z_{t}\right], \varphi_{k^{\prime}}^{\hbar}\left[Z_{t^{\prime}}, z_{t^{\prime}}\right]\right]$ can be computed explicitely. Using a stationary-phase argument near $\left|t-t^{\prime}\right|=0$, and expanding by Taylor in t near $t=0$, we obtain the leading term:

$$
\left\langle\psi_{\hbar}, \mathrm{Op}_{\hbar}(a) \psi_{\hbar}\right\rangle_{L^{2}\left(\mathbb{R}^{d}\right)} \sim \frac{C_{\hbar} \sqrt{\pi} \hbar^{1 / 2}}{\left|V\left(z_{0}\right)\right|} a\left(z_{0}\right) \int_{\mathbb{R}} \chi_{\hbar}(t)^{2} e^{\frac{1}{\hbar}\left(2 t \beta_{\hbar}-\frac{c_{0} t^{3}}{3}\right)} d t
$$

where

$$
c_{0}=\left\langle X_{V}\left(z_{0}\right), \partial^{2} A\left(z_{0}\right) X_{V}\left(z_{0}\right)\right\rangle>0
$$

Leading term

Making the change $t=\hbar^{1 / 3} s$, we get

$$
\left\langle\psi_{\hbar}, \mathrm{Op}_{\hbar}(a) \psi_{\hbar}\right\rangle_{L^{2}\left(\mathbb{R}^{d}\right)} \sim \frac{C_{\hbar} \sqrt{\pi} \hbar^{5 / 6}}{\left|V\left(z_{0}\right)\right|} a\left(z_{0}\right) \int_{\mathbb{R}} \chi_{\hbar}\left(\hbar^{1 / 3} s\right)^{2} e^{\frac{2 s \beta_{\hbar}}{\hbar^{2 / 3}}-\frac{s^{3} c_{0}}{3}} d s
$$

With of the quasimode

We take $C_{\hbar}:=\frac{\hbar^{N}\left|V\left(z_{0}\right)\right|}{\sqrt{\pi} \hbar^{5 / 6}}$ and β_{\hbar} so that the above integral converges to $a\left(z_{0}\right)$. We obtain

$$
\left(C_{N} \hbar \log \frac{1}{\hbar}\right)^{2 / 3} \leq \beta_{\hbar} \ll \hbar^{2 / 3-\epsilon}, \quad \forall \epsilon>0
$$

Similarly, applying \widehat{P}_{\hbar}, integrating by parts in t, and repeating the argument, we obtain

$$
\begin{aligned}
\left\langle\psi_{\hbar}, \widehat{P}_{\hbar} \psi_{\hbar}\right\rangle_{L^{2}\left(\mathbb{R}^{d}\right)} & =\lambda_{\hbar}\left\|\psi_{\hbar}\right\|^{2}+C_{\hbar} \int_{\mathbb{R}} \chi_{\hbar}^{\prime}(t) \chi_{\hbar}(t) e^{\frac{1}{\hbar}\left(2 t \beta_{\hbar}-\frac{c_{0} t^{3}}{3}\right)} d t \\
& =\lambda_{\hbar}\left\|\psi_{\hbar}\right\|^{2}+O\left(\hbar^{N}\right)
\end{aligned}
$$

Therefore, we get a quasimode of width $O\left(\hbar^{N}\right)$.

What with Hörmander-bracket-condition?

Assuming that $\lambda_{0}=\{A, V\}\left(z_{0}\right)<0$, we obtain the leading term:

$$
\int_{\mathbb{R}} \chi_{\hbar}\left(\hbar^{1 / 2} s\right)^{2} e^{\frac{2 s \beta_{\hbar}}{\hbar^{1 / 2}}-\frac{s^{2} \lambda_{0}}{2}} a\left(z_{0}\right) d s
$$

Then it is sufficient to take $\beta_{\hbar} \equiv 0$ to obtain a quasimode of with $O\left(\hbar^{\infty}\right)$.

Thank you for your attention!

