Eigenvalue spacings for 1D singular Schrödinger operators

Luc Hillairet (Université d'Orléans)

Séminaire tournant, 2021

Joint work with J. Marzuola (UNC)

A general question

Consider a (self-adjoint) 1D semiclassical Schrödinger operator

$$
\begin{aligned}
& P_{h} u=-h^{2} u^{\prime \prime}+V(x) u, \text { and } E \in \operatorname{spec} P_{h} . \\
& d_{h}(E) \stackrel{\text { def }}{=} \inf \left\{|E-\tilde{E}|, \tilde{E} \in \operatorname{spec} P_{h}, \tilde{E} \neq E\right\} .
\end{aligned}
$$

Q : Lower bounds on $d_{h}(E)$? uniform within a subset $\Omega \subset(0,+\infty) \times \mathbb{R}$ of pairs (h, E) ?

Old question, some regimes are well-known and can be extracted from the literature on Sturm-Liouville problems and then semiclassical analysis (Titchmarsch, Olver, Hörmander, Maslov Helffer-Robert, Dimassi-Sjöstrand, Zworski).

Non-critical energies

On the half-line $[0,+\infty)$, Dir. $/$ Neu. b.c. at 0 . We set $\left.\Omega=] 0, h_{0}\right] \times[a, b], 0<a_{0}<a<b<b_{0}$ and make the following assumptions on V.
1 The potential V is smooth, non-negative, $V(0)=0$, $\liminf _{+\infty} V(x)>b_{0}$.
ฉ $\exists \delta^{\prime}>0, \forall x>0, V(x) \in\left[a_{0}, b_{0}\right] \Longrightarrow V^{\prime}(x) \geqslant \delta^{\prime}$.

There exists $h_{0}, \mathrm{c}>0$ such that

$$
\begin{gathered}
\forall h \leqslant h_{0}, \quad \forall E \in \operatorname{spec} P_{h} \\
(h, E) \in \Omega \Longrightarrow d_{h}(E) \geqslant \mathrm{c} \cdot h .
\end{gathered}
$$

- Energy surface is connected (no tunnel effect).
- Q : uniformity of the constant c with respect to V ?

On the half-line $[0,+\infty)$, Dir. $/$ Neu. b.c. at 0 . Assume
1 There exist a smooth W and $\gamma>0$ such that $V(x)=x^{\gamma} W(x), x>0$.
$2 W$ is positive on $[0,+\infty)$ and $\lim \inf _{+\infty} V(x)>0$.
Fix $M>0$ and set

$$
\Omega \stackrel{\text { def }}{=}\left\{(h, E), h \leqslant h_{0}, E \leqslant M \cdot h^{\frac{2 \gamma}{\gamma+2}}\right\} .
$$

Then there exists $\mathrm{c}, h_{0}>0$ such that

$$
\begin{gathered}
\forall h \leqslant h_{0}, \quad \forall E \in \operatorname{spec} P_{h} \\
(h, E) \in \Omega \Longrightarrow d_{h}(E) \geqslant \mathrm{c} \cdot h^{\frac{2 \gamma}{\gamma+2}} .
\end{gathered}
$$

Idea of proof : use a h dependent scaling. (See Friedlander-Solomyak for a related result)

- What about non-critical energies for singular potentials?
- What about the intermediate regime ? Estimate $d_{h}\left(E_{h}\right)$ if

$$
E_{h} \rightarrow 0, \quad h^{-\frac{2 \gamma}{\gamma+2}} E_{h} \rightarrow+\infty
$$

- What about potentials of the form $x \mapsto x^{\gamma} W(x)$ on the half-line $[-B,+\infty)$? This question is related to the adiabatic Ansatz in a stadium billiard.

Theorem

Assume that $\gamma>0$ and W is smooth and positive on $[0,+\infty)$. Let $V=x^{\gamma} W$ and P_{h} the Dirichlet or Neumann realization of $-h^{2} u^{\prime \prime}+V$ on $[0,+\infty)$. If $\lim \inf _{x \rightarrow+\infty} V(x)>0$, there exist $\varepsilon, h_{0}, \mathrm{c}>0$ such that
11 For all $h \leqslant h_{0}$, $\operatorname{spec} P_{h} \cap[0, \varepsilon]$ is purely discrete,
2 For any $h \leqslant h_{0}$ and any E in spec $P_{h} \cap[0, \varepsilon]$,

$$
d_{h}(E) \geqslant c h \cdot E^{\frac{\gamma-2}{2 \gamma}}
$$

The proof follows from

- the spacing of order h at non-critical energies, uniformly w.r.t. W,
- The bottom of the well computation,
- A contradiction argument.

$$
\text { Uniform spacing : } d_{h}(E) \geqslant c h \cdot E^{\frac{\gamma-2}{2 \gamma}} \text {. }
$$

- The estimate is coherent with the non-critical energies and the bottom of the well.
E_{h} of order $1 \Longrightarrow d_{h}\left(E_{h}\right)$ of order h,
E_{h} of order $h^{\frac{2 \gamma}{\gamma+2}} \Longrightarrow \quad d_{h}\left(E_{h}\right)$ of order $h^{1+\frac{\gamma-2}{\gamma+2}}=h^{\frac{2 \gamma}{\gamma+2}}$.
- If $\gamma=2$ then the spacing is everywhere of order h. This is coherent with the harmonic oscillator computation.
- Compared to h the spacing between low lying eigenvalues is large if $\gamma<2$ and small if $\gamma>2$.
- We also prove Bohr-Sommerfeld rules for singular potentials on a half-line (will be needed for the gluing case).

Other related works in the semiclassical literature :

- Semi-excited states (using Birkhoff Normal form techniques, starting with Sjöstrand).
- Diffraction by conormal potential (Gannot-Wunsch).
- Anharmonic oscillator (Voros)

Dealing with the intermediate regime

Choose a sequence $\left(E_{h}, u_{h}\right)_{h \geqslant 0}$ in the intermediate regime:

$$
E_{h} \rightarrow 0, \quad h^{-\frac{2 \gamma}{\gamma+2}} E_{h} \rightarrow+\infty .
$$

and perform a E-dependent scaling : $\tilde{v}_{h}(\cdot)=\tilde{u}_{h}\left(E^{\frac{1}{\gamma}} \cdot\right)$.

$$
\begin{array}{r}
-h^{2} \tilde{u}_{h}^{\prime \prime}+\left(x^{\gamma} W(x)-\tilde{E}\right) \tilde{u}_{h}=0 \\
-h^{2} E_{h}^{-1-\frac{2}{\gamma}} \tilde{v}_{h}^{\prime \prime}+\left(z^{\gamma} W\left(E_{h}^{\frac{1}{\gamma}} z\right)-\frac{\tilde{E}_{h}}{E_{h}}\right) \tilde{v}_{h}=0
\end{array}
$$

- $W\left(E_{h}^{\frac{1}{\gamma}} \cdot\right)$ converges to the constant function $W(0)$ (uniformly on every compact set),
$\triangleright \bar{h} \stackrel{\text { def }}{=} h E_{h}^{-\frac{2+\gamma}{2 \gamma}}$ tends to 0 . New semiclassical parameter.

$$
\begin{gathered}
-\bar{h}^{2} \tilde{v}_{h}^{\prime \prime}+\left(z^{\gamma} \tilde{W}_{h}(z)-\frac{\tilde{E}_{h}}{E_{h}}\right) \tilde{v}_{h}=0 . \\
\frac{\tilde{E}_{h}}{E_{h}} \longrightarrow 1 .
\end{gathered}
$$

We now work near the energy 1 which is non-critical. Spacing of order h at non-critical energies + uniformity w.r.t. potential will imply

$$
\left|\frac{\tilde{E}_{h}}{E_{h}}-1\right| \geqslant c \bar{h} \Longrightarrow\left|\tilde{E}_{h}-E_{h}\right| \geqslant c h \cdot E^{\frac{\gamma-2}{2 \gamma}}
$$

Spacing of order h : a general strategy

For any $h>0$, there is a unique function $G_{h}(\cdot ; E)$ such that

$$
\begin{gathered}
\left(P_{h}-E\right) G_{h}(\cdot ; E)=0 \\
\int_{0}^{+\infty}\left|G_{h}(x ; E)\right|^{2} d x=1 \\
\forall x \geqslant c, G_{h}(x ; E)>0
\end{gathered}
$$

The spacing is obtained by showing that if $\left|E_{h}-\tilde{E}_{h}\right|=o(h)$ then $G_{h}\left(\cdot ; E_{h}\right)$ and $G_{h}\left(\cdot ; \tilde{E}_{h}\right)$ cannot be orthogonal.

- (Non-)concentration estimates, semiclassical measures.
- Exponential estimates in the classically not-allowed region.
- WKB expansions in classically allowed region.
- Dealing with the turning point : Maslov Ansatz, Airy approximations.
Revisit these techniques to gain uniformity w.r.t. the energy and the potential.

We fix $\gamma>0,0<b<c<d, \mathcal{K}$ a compact set in $C^{\infty}([0, d])$ equipped with its Fréchet topology and K a compact set in $(0,+\infty)$. We denote by \mathcal{V} the set of potentials such that

- There exists W smooth and positive on $[0, \infty)$ such that $\forall x>0, V(x)=x^{\gamma} W(x)$.
- $\forall x \geqslant d, V(x) \geqslant V(d)$.
- $\forall x \in(0, d], V^{\prime}(x)>0$.
- The restriction of W to $[0, d]$ belongs to \mathcal{K}.
- The following estimates hold

$$
\begin{aligned}
& \forall(V, E) \in \mathcal{V} \times K, \forall x \in[0, b], E-V(x)>0 \\
& \forall(V, E) \in \mathcal{V} \times K, \forall x \in[c, d], V(x)-E>0
\end{aligned}
$$

For any $(V, E) \in \mathcal{V} \times K$, the assumptions imply

- There is a unique solution x_{E} to the equation $V\left(x_{E}\right)=E$ (the turning point).
- $[0, b]$ is in the classically allowed region and $(E-V)$ is uniformly bounded below on it.
- $[c,+\infty)$ is in the classically not allowed region.
- The turning point x_{E} always belong to $[b, c]$. Since, on $[b, c]$, V^{\prime} is uniformly bounded below, it is non-degenerate.
- Finally, for any $\ell, W^{(\ell)}$ is, uniformly on $[0, d]$, bounded above by some C_{ℓ}.
- If γ is an integer, $W^{(\ell)}$ can be replaced by $V^{(\ell)}$ in the latter statement.

Let $\left(V_{h}, E_{h}\right)_{h \geqslant 0}$ be a family in $\mathcal{V} \times K$, then up to extracting a subsequence, there exists (V_{0}, E_{0}) and a measure μ such that for any smooth function with compact support in $(0, d) \times \mathbb{R}$,

$$
\left\langle\mathrm{Op}_{h}(a) G_{h}, G_{h}\right\rangle \rightarrow \int a(x, \xi) d \mu
$$

Then the semiclassical measure is supported by $\left\{\xi^{2}+V_{0}(x)=E_{0}\right\}$ and is invariant under the hamiltonian flow.

Moral : The estimates that are obtained using semiclassical measures and the standard contradiction argument are uniform when the potential varies in a compact set.

We first extract a subsequence so that W_{h} converges in $C^{\infty}([0, d])$ to W_{0}, and E_{h} to E_{0}.

$$
\begin{aligned}
\frac{h}{i}\left\langle\mathrm{Op}_{h}\left(\left\{p_{0}, a\right\}\right) G_{h}, G_{h}\right\rangle & =\left\langle\left[P_{0}, \mathrm{Op}_{h}(a)\right] G_{h}, G_{h}\right\rangle \\
& =\left\langle\left[P_{h}, \mathrm{Op}_{h}(a)\right] G_{h}, G_{h}\right\rangle \\
& +\left\langle\left[V_{h}-V_{0}, \mathrm{Op}_{h}(a)\right] G_{h}, G_{h}\right\rangle \\
& =\frac{h}{i}\left\langle\operatorname{Op}_{h}\left(\left\{V_{h}-V_{0}, a\right\}\right) G_{h}, G_{h}\right\rangle
\end{aligned}
$$

We now use the fact that the norm of a pseudodifferential operator on L^{2} depends on the uniform norm of a finite number of derivatives of the symbol and that $\left\{V_{h}-V_{0}, a\right\}$ and all its derivatives converge uniformly to 0 on the support of a.

- In dimension 1, μ is thus determined up to a factor. This gives a way to address the turning point.

Dealing with the turning point

Lemma

$$
\begin{aligned}
& \forall \varepsilon>0, \exists \eta, h_{0}>0 \forall(V, E) \in \mathcal{V} \times K, \forall h \leqslant h_{0} \\
& \int_{x_{E}-\eta}^{x_{E}+\eta}\left|G_{h}(x ; E)\right|^{2} d x \leqslant \varepsilon \int_{0}^{b}\left|G_{h}(x ; E)\right|^{2} d x
\end{aligned}
$$

Sketch of proof : take a cutoff that is localized near the turning point and use the invariance to relate it to a cutoff in the classically allowed region.

- It can also be proved using Airy approximation near the turning point (e.g. Yafaev '11).
- Using this estimate, we are able to compute $\left\langle G_{h}(\cdot, E), G_{h}(\cdot, \tilde{E})\right\rangle$ by looking only in the classically allowed region where we have standard WKB expansions.

Uniform spacing for smooth potential

- Perform WKB expansion on $\left[0, x_{E}-\eta\right]$.
- Prove that any solution admits such a WKB expansion, and thus also $G_{h}(\cdot ; E)$. (still 2 degrees of freedom).
- Reduce to 1 degree of freedom by using the Maslov Ansatz and a Wronskian argument to pass above the turning point.

$$
\begin{gathered}
\exists c_{h} \neq 0, \forall x \in\left[0, x_{E}-\eta\right], \\
G_{h}(x ; E)= \\
c_{h}(E-V(x))^{-\frac{1}{4}} \cos \left[\frac{1}{h} \int_{x}^{+\infty}(E-V(y))_{+}^{\frac{1}{2}} d y-\frac{\pi}{4}\right]+O(h)
\end{gathered}
$$

- This yields the estimate

$$
c_{h}^{-1} G(x ; h)-\tilde{c}_{h}^{-1} G(x ; \tilde{E})=O\left(\frac{E-\tilde{E}}{h}\right)+O(h)
$$

- Estimate c_{h} by the mass and compute the needed scalar product
- It follows that this scalar product cannot be 0 when $\frac{E-\tilde{E}}{h}$ is too small.

We need to make sure that all the mass does not concentrate at the origin. We will match the WKB expansion to a boundary layer near 0 .
Recall the WKB Ansatz on $I_{h}=\left[a_{h}, b\right]$:

$$
u_{h}(x) \sim \exp \left(\frac{i}{h} S(x)\right) \sum_{k \geqslant 0} h^{k} A_{k}(x) .
$$

The method leads to

- The eikonal equation :

$$
\forall x \in I_{h}, S^{\prime}(x)^{2}=E-V(x)
$$

- The homogeneous transport equation :

$$
\forall x \in I_{h}, 2 S^{\prime}(x) A_{0}^{\prime}(x)+S^{\prime \prime}(x) A_{0}(x)=0
$$

- The inhomogeneous transport equations:

$$
\forall k \geqslant 0,2 S^{\prime} A_{k+1}^{\prime}+S^{\prime \prime} A_{k+1}=i A_{k}^{\prime \prime}
$$

The eikonal and the transport equations can be solved on I_{h} because $E-V$ is positive on I_{h}. We choose the following solution:

$$
\begin{gathered}
\forall x \in I_{h} \\
S^{\prime}(x)=\sqrt{E-V(x)} \\
A_{0}(x)=\left[S^{\prime}(x)\right]^{-\frac{1}{2}}=[E-V(x)]^{-\frac{1}{4}} \\
\forall k \geqslant 0, A_{k+1}(x)=-\frac{i}{2} A_{0}(x) \cdot \int_{x}^{b} A_{k}^{\prime \prime}(y) A_{0}(y) d y
\end{gathered}
$$

We see that for large k, A_{k} will involve high order derivatives of A_{0} that blow-up when x goes to 0 . We need to track this behaviour in the construction to determine α such that WKB approximation holds on $\left[h^{\alpha}, b\right]$

Generalized Taylor expansions

Let \mathcal{A} be a discrete set of exponents. We consider the smooth functions on ($0, b$] that admits, near 0 an asymptotic expansion

$$
\sum_{\alpha \in \mathcal{A}} a_{\alpha} x^{\alpha}
$$

We prove that for any $k, \ell, A_{k}^{(\ell)}$ admits such an expansion with

$$
\begin{gathered}
\mathcal{A}_{k, 0}=\{m \gamma+n-k, m \geqslant 1, n \geqslant 0\} \cup\{0\} \\
\mathcal{A}_{k, \ell}=\{m \gamma+n-k-\ell, m \geqslant 1, n \geqslant 0\}, \quad \ell \geqslant 1
\end{gathered}
$$

It follows that WKB expansions hold on $\left[h^{\alpha}, b\right]$ for any $\alpha<1$.

On $\left[0, h^{\beta}\right]$, we solve

$$
-h^{2} u_{h}^{\prime \prime}+\left(x^{\gamma} W(x)-E\right) u_{h}=0
$$

by treating the term $x^{\gamma} W(x) u_{h}$ as a inhomogeneous term. Applying the variation of constants leads to a system of equations that can be solved by a Banach-Picard iteration scheme provided that

$$
\beta>\frac{1}{\gamma+1}
$$

- If $\beta>\frac{1}{\gamma+1}$ and $\beta<\alpha<1$ then the intervals $\left[0, h^{\beta}\right]$ and [$\left.h^{\alpha}, b\right]$ overlap.

We can implement the Banach-Picard iteration scheme and understand how the Cauchy data at 0 and at h^{α} are related. Using WKB, we understand how the Cauchy data at h^{α} and at b are related.
The Cauchy data at b is well understood using the Maslov Ansatz that allows to go beyond the turning point.
In the end, we are able to write an asymptotic expansion for the Cauchy data at 0 of $G_{h}(\cdot ; E)$.

- We can then estimate the mass near 0 and obtain the spacing by the same method as above.
- We can also write down Bohr-Sommerfeld rules for singular potentials on the half-line $[0,+\infty)$.

The Gluing problem

- When the halfline is $[-B,+\infty)$ then we have to write a collinearity equation for the Cauchy data at 0 of the function $G(\cdot ; E)$ that we have constructed on $[0,+\infty)$ and the explicit solution on $[-B, 0]$.
- New regimes appear. E.g. for the potential x_{+}^{2} there are eigenvalues of order h^{2}, whereas on $[0,+\infty)$, the lowest energy is of order h.

