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Motivation and plan of the talk

Barry Simon: Fifteen problems in mathematical physics (1984)

4. Transport Theory: At some level, the fundamental
difficulty of transport theory is that it is a steady state rather
than equilibrium problem, so that the powerful formalism of
equilibrium statistical mechanics is unavailable, and one does
not have any way of precisely identifying the steady state and
thereby computing things in it.

...

Problem 4 B (Kubo Formula) Either justify Kubo’s formula
in a quantum model, or else find an alternate theory of
conductivity.

Plan of the talk:

1. Linear response at zero temperature: setup and ideas

2. Adiabatic theorem for fermions in the thermodynamic limit with
3. a gap in the bulk
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Linear response and Kubo’s formula

In the context of Hamiltonian quantum systems, the linear response
formalism answers the following question:

How does a system described by a Hamiltonian H0 that is initially in
an equilibrium state ρ0 respond to a small static perturbation εV ?

Or somewhat more precisely:

What is the change

tr(ρεA)− tr(ρ0A) = ε · σA + o(ε)

of the expectation value of an observable A caused by the perturbation
εV at leading order in its strength ε ?

Here ρε denotes the state of the system after the perturbation has
been turned on and σA is called the linear response coefficient for A.

The answer clearly hinges on the problem of determining ρε.
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Linear response and Kubo’s formula

Modelling the switching process: Let

Hε(t) := H0 + f (t) εV

with a switch function f : R→ R such that f (t) = 0 for t ≤ −1 and
f (t) = 1 for t ≥ 0.

Let ρ(t) be the solution of the time-dependent Schrödinger equation

i
d

dt
ρ(t) = [Hε(ηt), ρ(t)]

with ρ(t) = ρ0 for t ≤ −1/η and adiabatic parameter η � 1.

Then ρ(0), or actually ρ(t) for any t ≥ 0, is the natural candidate for
the “state of the system after the perturbation has been turned on”.
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Linear response and Kubo’s formula

Approximating ρε := ρ(0) by first order time-dependent perturbation
theory

ρε = ρ0 − ε i
∫ 0

−∞
f (ηt) eiH0t [V , ρ0] e−iH0tdt + Rε,η,f ,

one obtains

tr(ρεA)− tr(ρ0A) = ε σ̃η,fA + tr(Rε,η,f A)

with

σ̃η,fA = i

0∫
−∞

f (ηt)
〈[

V , e−iH0t A eiH0t
]〉

ρ0

dt .

One hopes to obtain a universal result independent of η and f in the
adiabatic limit η → 0. Choosing f = exp this results in “Kubo’s
formula” for the linear response coefficient

σKubo
A := lim

η→0
σ̃η,exp
A = lim

η→0
i

0∫
−∞

eηt
〈[

V , e−iH0t A eiH0t
]〉

ρ0

dt .
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...

one obtains

tr(ρεA)− tr(ρ0A) = ε σ̃η,fA + tr(Rε,η,f A)

One hopes to obtain a universal result independent of η and f in the
adiabatic limit η → 0. Choosing f = exp this results in “Kubo’s
formula” for the linear response coefficient

σKubo
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η→0
σ̃η,exp
A = lim

η→0
i

0∫
−∞

eηt
〈[

V , e−iH0t A eiH0t
]〉

ρ0

dt .

“Justifying Kubo’s formula” can mean two different things now:

I Show existence of the limit and compute σKubo
A = limη→0 σ̃

η,exp
A .

I Show that tr(Rε,η,f A) = o(ε) uniformly in η and that

σKubo
A = limη→0 σ̃

η,f
A for any switching function f .
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Linear response and Kubo’s formula

Why should this work?

Two possible mechanisms:

(a) During the switching process the state of the system remains
(approximately) in an instantaneous equilibrium state of the
perturbed Hamiltonian.

(b) During the switching process the state of the system remains
(approximately) in an instantaneous non-equilibrium (almost)
steady state of the perturbed Hamiltonian.

For a quantum system with Hamiltonian H0 starting in the gapped
ground state ρ0 scenario (a) occurs, whenever the perturbation does
not close the spectral gap.

Then, according to the adiabatic theorem, the state ρ(t) for times
t ≥ 0, i.e. when the perturbation is fully switched on, is

ρε = ρε0 +O(ε) ,

where ρε0 denotes the ground state of the perturbed Hamiltonian Hε.

(e.g. Elgart, Schlein CPAM ’04; Bachmann et al. CMP ’18)
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Interacting fermions on the lattice

First consider systems of interacting fermions on finite sets X ⊂ Zd .

The N-particle Hilbert space for such a system is

hX ,N := `2(X ,Cs)∧N

and it is convenient to work on Fock space FX :=

s|X |⊕
N=0

hX ,N .

The algebra L(FX ) of bounded operators on FX is generated by the
fermionic creation and annihilation operators a∗x ,i and ax ,i .
By AX ⊂ L(FX ) we denote the sub-algebra of operators that
commute with the number operator NX :=

∑
x∈X a∗x ,iax ,i .

A typical physical Hamiltonian is of the form

HX
0 =

∑
(x ,y)∈X 2

a∗x ,i T
X
ij (x − y) ay ,j +

∑
x∈X

a∗x ,iφ
X
ij (x)ax ,j

+
∑

(x ,y)∈X 2

a∗x ,iax ,i W
X (x − y) a∗y ,jay ,j − µNX .



Interacting fermions on the lattice

First consider systems of interacting fermions on finite sets X ⊂ Zd .

The N-particle Hilbert space for such a system is

hX ,N := `2(X ,Cs)∧N

and it is convenient to work on Fock space FX :=

s|X |⊕
N=0

hX ,N .

The algebra L(FX ) of bounded operators on FX is generated by the
fermionic creation and annihilation operators a∗x ,i and ax ,i .
By AX ⊂ L(FX ) we denote the sub-algebra of operators that
commute with the number operator NX :=

∑
x∈X a∗x ,iax ,i .

A typical physical Hamiltonian is of the form

HX
0 =

∑
(x ,y)∈X 2

a∗x ,i T
X
ij (x − y) ay ,j +

∑
x∈X

a∗x ,iφ
X
ij (x)ax ,j

+
∑

(x ,y)∈X 2

a∗x ,iax ,i W
X (x − y) a∗y ,jay ,j − µNX .



Interacting fermions on the lattice

First consider systems of interacting fermions on finite sets X ⊂ Zd .

The N-particle Hilbert space for such a system is

hX ,N := `2(X ,Cs)∧N

and it is convenient to work on Fock space FX :=

s|X |⊕
N=0

hX ,N .

The algebra L(FX ) of bounded operators on FX is generated by the
fermionic creation and annihilation operators a∗x ,i and ax ,i .
By AX ⊂ L(FX ) we denote the sub-algebra of operators that
commute with the number operator NX :=

∑
x∈X a∗x ,iax ,i .

A typical physical Hamiltonian is of the form

HX
0 =

∑
(x ,y)∈X 2

a∗x ,i T
X
ij (x − y) ay ,j +

∑
x∈X

a∗x ,iφ
X
ij (x)ax ,j

+
∑

(x ,y)∈X 2

a∗x ,iax ,i W
X (x − y) a∗y ,jay ,j − µNX .



Interacting fermions on the lattice

First consider systems of interacting fermions on finite sets X ⊂ Zd .

The N-particle Hilbert space for such a system is

hX ,N := `2(X ,Cs)∧N

and it is convenient to work on Fock space FX :=

s|X |⊕
N=0

hX ,N .

The algebra L(FX ) of bounded operators on FX is generated by the
fermionic creation and annihilation operators a∗x ,i and ax ,i .
By AX ⊂ L(FX ) we denote the sub-algebra of operators that
commute with the number operator NX :=

∑
x∈X a∗x ,iax ,i .

A typical physical Hamiltonian is of the form

HX
0 =

∑
(x ,y)∈X 2

a∗x ,i T
X
ij (x − y) ay ,j +

∑
x∈X

a∗x ,iφ
X
ij (x)ax ,j

+
∑

(x ,y)∈X 2

a∗x ,iax ,i W
X (x − y) a∗y ,jay ,j − µNX .



Interacting fermions on the lattice

First consider systems of interacting fermions on finite sets X ⊂ Zd .

The N-particle Hilbert space for such a system is

hX ,N := `2(X ,Cs)∧N

and it is convenient to work on Fock space FX :=

s|X |⊕
N=0

hX ,N .

The algebra L(FX ) of bounded operators on FX is generated by the
fermionic creation and annihilation operators a∗x ,i and ax ,i .
By AX ⊂ L(FX ) we denote the sub-algebra of operators that
commute with the number operator NX :=

∑
x∈X a∗x ,iax ,i .

A typical physical Hamiltonian is of the form

HX
0 =

∑
(x ,y)∈X 2

a∗x ,i T
X
ij (x − y) ay ,j +

∑
x∈X

a∗x ,iφ
X
ij (x)ax ,j

+
∑

(x ,y)∈X 2

a∗x ,iax ,i W
X (x − y) a∗y ,jay ,j − µNX .



Interacting fermions on the lattice

In order to describe infinite systems of interacting fermions one takes
the thermodynamic limit of a sequence of finite systems e.g. on
cubes Λk := {−k , . . . , k}d ⊂ Zd , k ∈ N.

We consider a sequence of Hamiltonians that are sums of local terms,

HΛk
0 =

∑
X⊂Λk

ΦΛk (X ) ,

where ΦΛk (X ) ∈ AX and ‖ΦΛk (X )‖ is small if diamX is large.

A family B = {BΛk} of self-adjoint operators BΛk indexed by the
domain Λk and possibly other parameters that is a sum of local
terms,

BΛk =
∑
X⊂Λk

ΦΛk
B (X )

is called an “SLT operator family”. The map ΦΛk
B : P(Λk)→ AΛk

is
called its interaction. Typically

‖BΛk‖ ∼ |Λk | = (2k + 1)d .
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Interacting fermions on the lattice

To quantify locality of SLT operators, one defines spaces Bζ of SLT
operators with norm

‖Φ‖ζ := sup
k∈N

sup
x ,y∈Λk

∑
{x ,y}⊂X⊂Λk

‖ΦΛk (X )‖
ζ(dΛk (x , y))

=: sup
k∈N
‖Φ‖ζ,Λk

,

where ζ : [0,∞)→ (0,∞) is a rapidly decaying function, e.g.
ζ(r) = e−ar
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Definition

One says that an SLT operator in Bζ has a thermodynamic limit , if
for all M ∈ N and δ > 0 there exists K ≥ M such that for all l , k ≥ K∥∥∥ΦΛl − ΦΛk

∥∥∥
ζ,ΛM

≤ δ .
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‖Φ‖ζ,Λk

,

where ζ : [0,∞)→ (0,∞) is a rapidly decaying function, e.g.
ζ(r) = e−ar

Definition

We say that an SLT operator in Bζ has a rapid thermodynamic limit
with exponent γ ∈ (0, 1), if there exist λ,C > 0 such that for all
M ∈ N and for all l , k ≥ M + λMγ∥∥∥ΦΛl − ΦΛk

∥∥∥
ζ,ΛM

≤ C ζ(Mγ) =: C ζγ(M) .

However, there is no limiting Hamiltonian for the infinite system!
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Interacting fermions on the lattice

Since for Y ⊂ X we have AY ⊂ AX , one can define the algebra of
local obsevarbles as

Aloc :=
⋃

X⊂Zd , |X |<∞

AX .

The quasi-local algebra is the C ∗-algebra

A := Aloc
‖·‖

In order to regain control on the localisation properties of elements
of A, one defines sub-algebras Dζ ⊂ A with norm

‖B‖ζ := ‖B‖+ sup
k∈N

(
‖ (1− EΛk

) (B)‖
ζ(k)

)
<∞ ,

where ζ : [0,∞)→ (0,∞) is again a rapidly decaying function and
EΛk

: A → AΛk
denotes the conditional expectation.
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Interacting fermions on the lattice

Proposition

Let H0 ∈ Bζ have a thermodynamic limit.

Then for any B ∈ Aloc the limit

Ut(B) := lim
k→∞

eiH
Λk
0 t B e−iH

Λk
0 t ∈ A

exists and defines a one-parameter family t 7→ Ut of automorphisms
of the algebra A with densely defined generator LH0 : D(LH0)→ A.
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Interacting fermions on the lattice

Proposition

Let H0 ∈ Bζ have a thermodynamic limit.

Then for any B ∈ Aloc the limit

Ut(B) := lim
k→∞

eiH
Λk
0 t B e−iH

Λk
0 t ∈ A

exists and defines a one-parameter family t 7→ Ut of automorphisms
of the algebra A with densely defined generator LH0 : D(LH0)→ A.

If H0 ∈ Bζ has a rapid thermodynamic limit with exponent
γ ∈ (0, 1), then there exist λ1 > 0, λ2 ∈ (0, 1), and C <∞, such
that for all l , k ∈ N with l ≥ k, X ⊂ Λk and B ∈ AX∥∥∥(UΛl

t − UΛk
t

)
(B)
∥∥∥ ≤ C ‖B‖ diam(X )d+1 e2Cζ |t−s|‖ΦH0

‖ζ |t − s|

× ζγ
(
distΛl (X ,Λl \ Λmax{dk−λ1kγe,dλ2·ke})

)



Adiabatic theorem

From now on we consider a time-dependent SLT Hamiltonian
H0(t) ∈ Be−a · , t ∈ I ⊂ R, possibly perturbed by a time-dependent
operator εV (t), where V (t) = Vv (t) + H1(t) is the sum of an SLT
operator H1(t) and a Lipschitz potential Vv (t), i.e.

V Λk
v (t) =

∑
x∈Λk

v(x) a∗xax .

Let
Hε(t) := H0(t) + εV (t) .

Similar results as before hold for the corresponding adiabatic
evolution family Uη,εt,t0

generated by the time-dependent Liouvillian
1
ηLHε(t) with adiabatic parameter η > 0, i.e.

Uη,εt,t0
(B) := lim

k→∞
Uη,ε,Λk
t,t0

(B) ∈ A
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Adiabatic theorem

Standard gap assumption

Assume that smallest eigenvalue EΛk
0 (t) (ground state) of HΛk

0 (t) is
separated from the rest of the spectrum uniformly in the volume |Λk |,

inf
Λk

dist
(
EΛk

0 (t), σ(HΛk
0 (t)) \ {EΛk

0 (t)}
)

=: g > 0 .
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I Electrons in a Chern-trivial insulator, i.e. with the chemical
potential µ in a “band gap”.

I Electrons in a Chern-nontrivial insulator with periodic boundary
conditions.

I The filled Dirac sea.
.
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Assume that smallest eigenvalue EΛk
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separated from the rest of the spectrum uniformly in the volume |Λk |,

inf
Λk

dist
(
EΛk

0 (t), σ(HΛk
0 (t)) \ {EΛk

0 (t)}
)

=: g > 0 .

Adiabatic theorems under the “standard gap assumption” in finite
volumes with error estimates that are uniform in the volume were
shown by Bachmann, De Roeck, Fraas CMP ’18, Monaco, T.,
RMP ’19 and T., CMP ’20.

In Henheik, T. ’20 we prove an adiabatic theorem for Ut,t0 on A
and apply it to linear response.



Adiabatic theorem with a gap in the bulk

Motivation: Response of Chern-nontrivial systems (e.g. quantum
Hall systems), where the Hamiltonian has no spectral gap due to
edge states.

Idea: Require the spectral gap only for the infinite system.

Problem: There is no limiting Hamiltonian for the infinite system.

A state ρ on A is called a LH0-ground state, iff

ρ(B∗LH0(B)) ≥ 0 for all B ∈ D(LH0).

Let ρ be a LH0-ground state and (Hρ, πρ,Ωρ) be the corresponding
GNS triple. Then there exists a unique densely defined, self-adjoint
positive operator Hρ ≥ 0 on Hρ satisfying

πρ(eisLH0 (B)) = eisHρπρ(B)e−isHρ and e−isHρΩρ = Ωρ

for all B ∈ A and s ∈ R.

Hρ is called the bulk Hamiltonian associated with ρ.
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Adiabatic theorem with a gap in the bulk

Gap assumption in the bulk (cf. Moon, Ogata, JFA ’19)

There exists g > 0 such that for each t ∈ I the Liouvillian LH0(t) has
a unique ground state ρt and

σ(Hρt ) \ {0} ⊂ [ g ,∞) .



Adiabatic theorem with a gap in the bulk

Adiabatic theorem

Let the Hamiltonian Hε(t) = H0(t) + εV (t) satisfy the previous
assumptions and denote by Uε,ηt,t0

the Heisenberg time-evolution it
generates on A.

Then for any ε, η ∈ (0, 1] and t ∈ I there exists a near-identity
automorphism βε,η(t) of A such that the super-adiabatic NEASS
defined by

Πε,η
t := ρt ◦ βε,ηt

has the following properties:
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automorphism βε,η(t) of A such that the super-adiabatic NEASS
defined by

Πε,η
t := ρt ◦ βε,ηt

has the following properties:

(1) It almost intertwines the time evolution: For any n ∈ N and any
f ∈ S, there exists a constant Cn such that for any t ∈ I and B ∈ Df∣∣(Πε,η

t0
◦ Uε,ηt,t0

− Πε,η
t

)
(B)
∣∣

≤ Cn
εn+1 + ηn+1

ηd+1

(
1 + |t − t0|d+1

)
‖B‖f .
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(3) It is stationary whenever the Hamiltonian is stationary: if Hε is
constant on an interval J ⊂ I then Πε,η

t = Πε,0
t is constant for t ∈ J.

(4) Πε,0
t has an explicit asymptotic expansion in powers of ε.
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Adiabatic theorem with a gap in the bulk

Adiabatic theorem

Let the Hamiltonian Hε(t) = H0(t) + εV (t) satisfy the previous
assumptions and denote by Uε,ηt,t0

the Heisenberg time-evolution it
generates on A.

Then for any ε, η ∈ (0, 1] and t ∈ I there exists a near-identity
automorphism βε,η(t) of A such that the super-adiabatic NEASS
defined by

Πε,η
t := ρt ◦ βε,ηt

has the following properties:

(5) It equals the ground state of H0 whenever the perturbation
vanishes and the Hamiltonian is stationary: if for some t ∈ I all
time-derivatives of Hε vanish at time t and V (t) = 0, then
Πε,η
t = Πε,0

t = ρt .



Remark on time-scales

For ε 6= 0, the right hand side of∣∣(Πε,η
t0
◦ Uε,ηt,t0

− Πε,η
t

)
(B)
∣∣

≤ Cn
εn+1 + ηn+1

ηd+1

(
1 + |t − t0|d+1

)
‖B‖f

shows that the admissible adiabatic time scales η are coupled to the
strength ε of the perturbation:

The adiabatic parameter η needs to be small, but not too small. The
adiabatic switching must occur on time-scales that are fast compared
to the life-time of the NEASS, i.e. η & εm for some m ∈ N.



Remark on finite domains

Under an additional assumption on the rate of convergence in

ρΛk → ρ

we show that a similar adiabatic theorem holds also for finite systems
up to an additional error term that decays faster than any inverse
polynomial in the system size.

There exists λ > 0 such that for any n ∈ N there exists a constant
Cn and for any compact K ⊂ I and m ∈ N there exists a constant
C̃n,m,K such that for all k ∈ N, all finite X ⊂ Λk , all B ∈ AX , and all
t, t0 ∈ K∣∣∣(Πε,η,Λk

t0
◦ Uε,η,Λk

t,t0
− Πε,η,Λk

t

)
(B)
∣∣∣

≤ Cn
εn+1 + ηn+1

ηd+1

(
1 + |t − t0|d+1

)
‖B‖ |X |2

+ C̃n,m,K

(
1 + η dist(X , Γ \ Λbk−λkγc)

)−m ‖B‖ diam(X )2d .
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Elements of the proof: the local inverse of the Liouvillian

In finite volume Λ, where ρ is the ground state projection, the
construction of the (stationary) NEASS proceeds as follows:

With Π := eiεSρ e−iεS and S :=
∑n

µ=1 ε
µ−1Aµ we have

[H,Π] =
[
H0 + εV , eiεSρ e−iεS

]
= i ε eiεS

[
LH0(A1)− iV , ρ

]
e−iεS +O(ε2) .

We thus need to choose A1 such that[
LH0(A1)− iV , ρ

]
!

= 0
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Elements of the proof: the local inverse of the Liouvillian

Assuming a spectral gap for H0, Bachmann, Michalakis,
Nachtergaele, Sims, CMP ’12 (based on Hastings, Wen, PRB
’05) constructed a linear map

IΛ
H0,g : AΛ → AΛ

that maps SLT operators to SLT operators and satisfies

IΛ
H0,g |AOD

Λ
= iL−1

H0
|AOD

Λ
.

Thus, for all A ∈ AΛ,
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Elements of the proof: the local inverse of the Liouvillian

Based on techniques of Moon, Ogata, JFA ’19 we show that

IH0,g := lim
k→∞

IΛk
H0,g

exists as a bounded operator from Df1 to Df2 and satisfies:

Lemma

Let H0 have a gap in the bulk.
Then for all A ∈ A with IH0,g (A) ∈ D(LH0) and all B ∈ D(LH0)

ρ
([
LH0 ◦ IH0,g (A)− iA,B

])
= 0 .

Problem: V /∈ A.
Solution: Take the thermodynamic limit for H0 and the perturbation
V independently.
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Concluding remarks

I Proving uniqueness of the ground state ρ of LH0 and “fast
convergence” of ρΛk → ρ, e.g.

|(ρ− ρΛ)(B)| ≤ Cn‖B‖dist(X , ∂Λ)−n

for all B ∈ AX , are difficult problems that have not yet been
achieved for interacting fermionic systems.

For weakly interacting spin systems such a result has been
shown by Yarotzky, JSP ’05.

For non-interacting fermionic systems this can bee shown, but I
know no reference.

I A similar justification of linear response for systems with
mobility gap instead of spectral gap is a difficult open problem
even for non-interacting systems.
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