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Abstract

This expository note is an expanded version of the first Section of
[GM15] about fibrations in contact topology.

1 The Cerf-Palais fibration criterion

The following basic criterion will be convenient to prove that maps are fibrations
by constructing local sections of group actions. It appeared independently in
[Cer61, Lemma 2 of Section 0.4.4 p. 240] and [Pal60, Theorem A], see also
[Cer68, Lemma 1 in the appendix].

Lemma 1.1 (Cerf-Palais fibration criterion). Suppose G is a topological group
acting continuously on two topological spaces E and B. A continuous map
p : E → B is a fibration as soon as it is G-equivariant and, for every x in
B, the map g 7→ gx has a continuous section near x: there is an open set U
containing x and a map s : (U, x) → (G, e) such that s(x′)x = x′ for all x′ in
U .

Proof. A local trivialization is given by (x′, v) 7→ s(x′)v from U × p−1(x) to
p−1(U).

Remark 1.2. In the preceding lemma, asking that s(x) = e does not cost
anything. If s is a any section then one can replace it by s̄ : x′ 7→ s(x′)s(x)−1.
All sections we will construct automatically enjoy this property and we won’t
comment further on it.

2 Contact structures and contact transforma-
tions

For any topological group G, we denote by Go the neutral component of G. If
G acts on a space X and x is in X then the stabilizer of x is denoted by Gx.

Until the end of this section, we fix a compact oriented manifold V and
denote by D the group of diffeomorphism of V which restrict to the identity
on a neighborhood of the (maybe empty) boundary of V , endowed with the
compact-open topology. This group is homotopically equivalent to the group of
diffeomorphisms relative to the boundary and will be technically more conve-
nient.
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We denote by G the group of isotopies of V . Its elements are paths (ϕt)t∈[0,1]

in D starting at Id. Those paths are required to be smooth in the sense that the
associated map of V × [0, 1] defined by (x, t) 7→ (ϕt(x), t) is a diffeomorphism1.
The space G will be endowed with the topology and group structure induced by
Diff(V × [0, 1]). In particular (ϕϕ′)t = ϕt ◦ ϕ′t.

We fix a reference positive cooriented contact structure ξ0 on V . We denote
by Ξ the space of positive cooriented contact structures on V which coincide
with ξ0 near the boundary of V . It is equipped with the quotient topology
coming from the space of 1-forms on V .

Let F be a compact orientable surface properly embedded in V . The char-
acteristic foliation ξ0F printed by ξ0 on F is the singular foliation tangent to
ξ0 ∩TF . More precisely, a (cooriented) singular foliation is an equivalence class
of 1-forms modulo multiplication by positive functions. The foliation ξ0F is the
equivalence class of the restriction to F of any contact form for ξ0.

The stability of contact structures [Gra59] give rise to several natural fibra-
tions in contact geometry. Beware that none of those fibrations are surjective
in general. The stability statement precisely give local sections of group actions
needed to apply Lemma 1.1.

Lemma 2.1 (Stability lemma). The push forward action of G on Ξ has local
sections. More precisely:

1. For any ξ in Ξ, there is a neighborhood UΞ of ξ and a map s : UΞ → G
such that s(ξ) = e the identity isotopy and

∀ξ′ ∈ UΞ, s1(ξ′)∗ξ = ξ′.

2. If F is a surface properly embedded in V and ι the inclusion map, then
one can construct s such that, in addition:

ξ′F = ξF =⇒ ∀t ∈ [0, 1], st(ξ
′)|F = ι.

Proof. Using an auxiliary Riemannian metric, one can smoothly assign a contact
form αξ to any ξ in Ξ. Because the contact condition is open in the space of
1-forms, any ξ has a neighborhood UΞ in Ξ made of contact structures ξ′ such
that, for any t ∈ [0, 1], αt = (1 − t)αξ + tαξ′ is a contact form. The proof
of Gray’s theorem using Moser’s method then gives the desired local section
UΞ → G. More explicitly, s(ξ′) is the flow of the unique time-dependant vector
field Xt such that

• Xt ∈ kerαt

• ιXt
(dαt)| kerαt

= −α̇| kerαt

If a surface F is fixed, the construction can be modified as follows. First
one picks up contact forms such that ι∗αξ′ = ι∗αξ whenever ξ′F = ξF and ξ′ is
sufficiently close to ξ. Then we fix a tubular neighborhood F ×R and a cut-off
function ρ : R → [0, 1] which equals one near the origin and vanishes outside
some compact set. We denote by s the real coordinate in this neighborhood.

1Of course V × [0, 1] has corners if V has non-empty boundary, see [Cer61] for a description
of the topology of manifolds with corners and their diffeomorphisms groups.
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Given a contact form αξ′ we construct αt as above and we set H = −sρ(s)α̇(∂s).
Since all forms αt are contact, there is a unique time dependant vector field
Yt ∈ kerαt such that

ιYt
(dαt)| kerαt

= −(dH + α̇)| kerαt
.

We then set Xt = HRt + Yt where Rt is the Reeb vector field of αt. This
vector field vanishes as soon as α̇ does so it vanishes near ∂V . It generates an
isotopy pushing ξ to ξ′. In addition, H vanishes along F and, for all ξ′ such
that ξ′F = ξF , dH + α̇ also vanishes because ι∗α̇ = 0. So Xt vanishes along F
and st(ξ

′)|F = ι.

In view of the fibration criterion of Lemma 1.1, an immediate corollary of
the preceding lemma is the following fibration result.

Corollary 2.2. The map D → Ξ sending φ to φ∗ξ0 is a fibration.

The usual statement of Gray stability (with any number of parameters)
follows from the this fibration statement together with the homotopy lifting
property of fibrations. A priori the fibration statement is much stronger but
we saw that its proof costs exactly the same modulo the elementary fibration
criterion.

Moving our attention from contact structures to contact transformations,
we can also use the preceding lemma to prove that (D,Dξ0) is a good pair of
topological spaces.

Corollary 2.3. There is a neighborhood UD of the group of contactomorphisms
Dξ0 inside D and a deformation retraction r : UD → Dξ0 .

Given a surface F properly embedded in V , one can construct r such that,
in addition, if ϕ ∈ UD satisfies (ϕ∗ξ0)F = ξ0F then, for all t ∈ [0, 1], rt(ϕ)|F =
ϕ|F .

Proof. Let UΞ be a neighborhood of ξ0 on which the stability lemma constructs
a map s to G. Define UD as the inverse image of UΞ under the pull-back map
ϕ 7→ ϕ∗ξ0. For any ϕ in UD, we set rt(ϕ) = ϕ◦st(ϕ∗ξ0). In particular r0(ϕ) = ϕ
and r1(ϕ)∗ξ0 = ϕ∗s1(ϕ∗ξ0)∗ξ0 = ϕ∗ϕ

∗ξ0 = ξ0. The property relative to surfaces
comes directly from the corresponding property of s.

3 Surfaces in contact manifolds

Suppose F is a surface properly embedded in V . We denote by P(F ) the space
of proper embeddings of F in V which coincide with the inclusion near ∂F .
Note that elements of P(F ) are therefore parametrized copies of F in V . We
denote by Po(F ) the connected component of the inclusion in P(F ).

There is a natural map D → P(F ) given by composing the inclusion with
any diffeomorphism. Palais [Pal60] and Cerf in a more general setup [Cer61]
proved independently that this map is a fibration. They used the fibration
criterion with the isotopy group G. For the sake of completeness, we sketch
the construction of local sections of the G-action. Fix some metric on V and
a reference embedding j0 ∈ P(F ). If j is close enough to j0 then, for all x
in F , there is a unique minimizing geodesic from j0(x) to j(x). Hence there
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is a unique section X(j) of TV|j0(F ) such that j(x) = expj0(x)(X(j)). Using a
tubular neighborhood of j0(F ) one can continuously extend X(j) to a smooth
vector field on V still small enough to exponentiate to a diffeomorphism (recall
that D is open in the space of smooth maps from V to V ). The isotopy pushing
j0 on j is then t 7→ exp(tX(j)).

Returning to contact geometry, we denote by P(F, ξ0) the subset of em-
beddings j endowing F with the same characteristic foliation as inclusion:
ξ0j(F ) = j∗ξ0F . We set Po(F, ξ0) = Po(F ) ∩ P(F, ξ0). Combining Palais-Cerf
sections with the retraction of Corollary 2.3, we get a new fibration.

Corollary 3.1. If F is a surface properly embedded in V then the map Dξ0 →
P(F, ξ0) composing the inclusion of F with a contactomorphism relative to a
neighborhood of ∂V is a fibration.

Proof. We will use the fibration criterion with G = Dξ0 acting by left composi-
tion on both spaces. So we fix j0 in P(F, ξ0) and seek a local section of the map
from Dξ0 to P(F, ξ0) defined by ϕ 7→ ϕ ◦ j0. Let s be a section of the action of
D on P(F ) near j0. Let r : UD → Dξ0 be a retraction given by Corollary 2.3
with respect to the surface j0(F ). We set UP = s−1(UD) ∩ P(F, ξ0) and define
s̄ : UP → Dξ0 as r ◦ s.

For any j ∈ UP , we have s(j) ◦ j0 = j and, because both j0 and j endow
F with the same characteristic foliation as the inclusion, ξ0 and s(j)∗ξ0 print
the same characteristic foliation on j0(F ). Hence r(s(j))|j0(F ) = s(j)|j0(F ). So
r(s(j)) ◦ j0 = j and the map s̄ = r ◦ s is a section of Dξ0 → P(F, ξ0) on UP .

Remark 3.2. The above corollary is one place where it’s more convenient to
work relative to a neighborhood of the boundary and not only relative to the
boundary. Indeed any diffeomorphism which is relative to ∂V and to some
properly embedded surface F is tangent to identity along ∂F so we wouldn’t
have a fibration in this setting.

However, this technical point has no impact on our study of the topology
of contactomorphism groups because the inclusion of the space of contactomor-
phisms relative to a neighborhood of ∂V into the space of those relative to ∂V
is a homotopy equivalence. So we are free to restrict our attention to the most
convenient class.

The path lifting property of the fibration of Corollary 3.1 allows to convert
isotopies of embeddings with “constant” characteristic foliations into contact
isotopies. However, it is rather hard to control directly the characteristic folia-
tion. In addition, the map pF : P(F )→ F (F ) which sends an embedding j to
the foliation j−1(ξ0j(F )) on F is not a fibration. Although it has local sections
defined near ξ0F (which send ξ0F to the inclusion), one cannot hope to lift long
paths in general. For instance, in the standard sphere S3, let F be an unknotted
prelagrangian torus. The space of linear foliations on a torus is connected yet
the Bennequin inequality forbids the existence of embeddings realizing linear
foliations whose direction is meridian viewed from either one of the solid tori
bounded by F .

We will now explain how the theory of ξ0-convex surfaces introduced in
[Gir91] still gives a way to understand and control characteristic foliations. From
now on, we assume that F has empty or Legendrian boundary. We say that F
is ξ0-convex whenever there is a contact vector field X which is transverse to
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F and tangent to ∂V . In that case there is a unique isotopy class of properly
embedded one-dimensional submanifolds Γ which divide ξ0F . A foliation σ is
divided by Γ if it is transverse to Γ and, on each connected component of F \Γ,
there is a vector field directing σ which either dilates an area form and points
outward along Γ or contracts an area form and points inward. To any contact
vector field X as above, on can associate the curve ΓX where X belongs to
ξ0 along F . The space of curves dividing a given foliation is contractible (if
non-empty). Among those, the curves coming from a contact vector field as X
are exactly those intersecting ∂F at the points where ξ0 is tangent to ∂V .

Proposition 3.3 ([Gir91,Gir01]). Let F be a ξ0-convex surface and X a contact
vector field transverse to F and tangent to ∂V . Let U be the image of F under
the flow of X. Let ΓX be the dividing set defined by X on F and denote by
F (F,ΓX) the space of foliations on F which are divided by ΓX and tangent to
∂F . Denote by P(F,ΓX) the preimage of F (F,ΓX) under pF . One has the
following properties:

1. F (F,ΓX) is an open contractible neighborhood of ξ0F in F (F )

2. There is section σ 7→ ψσ of pF defined on F (F,ΓX) with the additional
properties:

(a) ψξ0F is the inclusion of F into V ;

(b) for any σ, the surface ψσ(F ) is contained in U and transverse to X.

3. The inclusion of P(F, ξ0) into P(F,ΓX) is a homotopy equivalence.

The second point of the above proposition is a version of the so-called real-
ization lemma for ξ0-convex surfaces (sometimes called the flexibility lemma).
This version supports any number of parameters.
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