
C
en

tr
e d

e Mathématiques 

 Laurent Schwartz

Université Paris-Sud

École doctorale de mathématiques Hadamard (ED 574)
Centre de mathématiques Laurent Schwartz (UMR 7640 CNRS)

Mémoire présenté pour l’obtention du

Diplôme d’habilitation à diriger les recherches
Discipline : Mathématiques

par

Patrick MASSOT

Quelques applications de la convexité en topologie de contact

Rapporteurs :
Frédéric BOURGEOIS
Yakov ELIASHBERG
Alexandru OANCEA

Date de soutenance : 12 décembre 2016

Composition du jury :

Frédéric BOURGEOIS (Rapporteur)
Hansjörg GEIGES (Examinateur)
Alexandru OANCEA (Rapporteur)
Pierre PANSU (Examinateur)
Claude VITERBO (Président)
Jean-Yves WELSCHINGER (Examinateur)





Contents
Prologue 5

1. Introduction 9

I. A history of convexity in contact topology 19

2. Prehistory 23

3. Contact convexity 39

4. Interactions with gauge theory and Floer homologies 69

5. Higher dimensions 79

II. Personal contributions 91

6. Prelagrangian tori and Heegaard-Floer homology 93

7. Weak and strong fillings in higher dimensions 103

8. From geometry to topology 125

9. Contact mapping class groups 141

III. Ongoing work 161

10.Exotic tight contact structures on ℝ2𝑛−1 163

11.Open books and invariant norms 165

12.Towards contact homeomorphisms 171

3





Prologue
En 1991, Y. Eliashberg et M. Gromov dégagent la notion de convexité en géométrie

symplectique en tant qu’objet d’étude à part entière. La dernière section de leur article
concerne une proposition de définition des structures de contact convexes. Voici la toute
dernière phrase de cet article :

« We think that the understanding of contact convexity is essential for the
symplectic geometry.» (Eliashberg et Gromov 1991)

Puis, au moins provisoirement, ils passent le relai à un étudiant en thèse qui rassemble
ses premières réflexions sur le sujet dans un article dont voici la toute première phrase :

« Cet article aborde l’étude de la convexité en géométrie de contact, telle
qu’elle a été définie dans [EG] : une structure, symplectique ou de contact, est
dite convexe si elle est conformément invariante par le gradient d’une fonction
de Morse propre.» (Giroux 1991)

Le but de ce mémoire est de décrire mes travaux mathématiques dans le contexte des
vingt-cinq années de convexité en topologie de contact qui ont suivi ces deux citations.
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Structure du mémoire

Ce mémoire se décompose en quatre ensembles de styles assez différents. Le premier
chapitre est une introduction très rapide à la topologie de contact en général et à mes
travaux en particulier. Son but est d’amener un lecteur qui ne sait pas ce qu’est une
variété de contact (mais qui sait ce qu’est une variété) à avoir une idée du thème de mes
travaux, avec un énoncé par article depuis ma thèse.

La partie I est une présentation (biaisée) de l’histoire de la convexité en topologie de
contact et ses interactions avec le reste la topologie différentielle et symplectique.

La partie II est une description plus précise de mes travaux avec des énoncés tech-
niques, des plans de démonstrations et quelques indications de développements possibles.
Les chapitres qui la constituent peuvent être lus (presque) indépendamment les uns des
autres.

La partie III décrit mes travaux en cours, plus ou moins avancés selon les chapitres.
Cette partie ne contient pas de théorème mais des questions qui me fascinent.
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1. Introduction

1.1. Exemples et définition des structures de contact
Les structures de contact sont des champs d’hyperplans qui apparaissent naturelle-

ment au bord de variétés holomorphes ou symplectiques sous certaines hypothèses de
«convexité». Sur le bord 𝑉 d’un domaine convexe (au sens le plus élémentaire du terme)
dans ℂ𝑛, le champ d’hyperplans considéré est la donnée, pour tout 𝑣 dans 𝑉 , de l’unique
hyperplan complexe 𝜉 inclus dans 𝑇𝑣𝜕𝑉 . D’un point de vue symplectique, on peut voir
𝜉 comme le noyau de la restriction à 𝑉 de 𝜄𝑋𝜔 où 𝜔 est la forme symplectique standard
sur ℂ𝑛 et 𝑋 est un champ de vecteurs radial transverse à 𝑉 . Les notions de convexité
holomorphe et symplectique sont des généralisations de cet exemple ne faisant intervenir
que la structure holomorphe (resp. symplectique). Par exemple, on trouve des structures
de contact à l’infini des variétés des Stein, les variétés complexes qui admettent un plon-
gement holomorphe propre dans ℂ𝑛. On en trouve aussi sur le fibré cotangent unitaire
d’une variété quelconque, en lien avec la structure symplectique de Liouville.

À dimension fixée, tous les champs d’hyperplans mentionnés ci-dessus sont localement
isomorphes et on dispose d’une caractérisation simple de ce modèle local, indépendam-
ment de l’existence d’une variété dont le bord porte le champ d’hyperplans. On peut
donc définir les structures de contact «abstraitement» comme les champs d’hyperplans
admettant ce modèle au voisinage de tout point. La figure 1.1 représente un modèle
local en dimension 3. Le modèle local est caractérisé par le théorème de Darboux : un

Fig. 1.1. : Modèle de structure de contact en dimension 3. Ce champ de plans est inva-
riant par translation dans la direction qui n’est pas dessinée.

champ d’hyperplans coorientable sur une variété de dimension 2𝑛 + 1 est une structure
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1. Introduction

de contact s’il admet une équation 𝛼 qui est une 1-forme pour laquelle 𝛼 ∧ 𝑑𝛼𝑛 est
une forme volume. Dans ce cas toutes ses équations vérifient cette condition. La topolo-
gie de contact est l’étude des propriétés globales de ces structures, considérées modulo
isomorphisme. Par isomorphisme entre 𝜉1 et 𝜉2, on entend un difféomorphisme de la
variété ambiante qui pousse 𝜉1 sur 𝜉2. S’il existe un tel difféomorphisme qui est de plus
homotope à l’identité alors on dit que 𝜉1 et 𝜉2 sont isotopes.

Avant de discuter de propriétés possibles pour une classe d’isomorphisme ou d’isotopie
de structures de contact, on note que chaque structure de contact est accompagnée d’une
classe privilégiée de champs de vecteurs, appelés ses champs de Reeb. Dans le cas du
fibré unitaire tangent, les flots géodésiques en sont des exemples. Plus généralement,
on les trouve comme restriction d’un flot hamiltonien à tout niveau d’énergie vérifiant
l’hypothèse de convexité adéquate. Dans le contexte de l’analyse complexe, si 𝜑 est
une fonction strictement pluri-sous-harmonique alors les niveaux réguliers de 𝜑 sont des
variétés de contact pour lesquelles 𝑖∇𝜑 est parallèle à un champ de Reeb.

1.2. Les questions primaires
La présentation ci-dessus fait émerger trois grandes questions (ou classes de questions)

que l’on peut appeler primaires car elles découlent directement des définitions. Elles sont
bien sûr toutes de nature globales puisque deux structures de contact en dimension fixée
sont toujours localement isomorphes.

La question des remplissages Existe-t-il une variété symplectique ou complexe ayant
pour bord naturel une variété de contact donnée ? Si oui, en existe-t-il beaucoup qui
soient essentiellement différentes ? Une version relative de cette question s’intéresse aux
cobordismes entre variétés de contact. Pour les variétés de contact de dimension 3 il existe
aussi une notion de remplissage symplectique faible. Les remplissages symplectiques
venant de la géométrie complexe sont toujours forts.

La question de la classification Une variété de dimension impaire admet-elle toujours
une structure de contact ? Si elle en admet, peut-on les classifier à isomorphisme près ?
Cette question comporte un versant purement homotopique sous la forme d’obstructions
homotopiques à l’existence et, dans les cas d’existence, d’un «foncteur d’oubli» à valeur
dans les classes d’homotopie de champs d’hyperplans munis de structures complexes. La
question peut ainsi être formulée plus précisément comme l’étude de ce qui est oublié
par ce foncteur, ce qui n’est pas vu par la théorie homotopique. Un autre versant de la
question concerne le groupe des automorphismes d’une structure de contact. Il s’agit d’un
«groupe de Lie de dimension infinie» dont on peut chercher à comprendre la structure
algébrique, la topologie et la géométrie.

La question dynamique Quelles sont les propriétés dynamiques communes à tous les
champs de Reeb ? Est-ce que les champs d’une structure de contact donnée ont des
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1.2. Les questions primaires

propriétés communes supplémentaires ? Quelles informations la donnée d’un champ de
Reeb permet d’obtenir sur une structure de contact ?

A priori, les trois questions ci-dessus sont complètement indépendantes. Cependant,
les réponses sont étonnamment imbriquées et certaines classes de structures de contact
ont des propriétés spéciales vis-à-vis des trois questions.

Le premier exemple de telle classe est apparu en dimension 3 dès la fin des années 80.
On dit qu’une structure de contact en dimension 3 est vrillée si elle contient un disque
vrillé, c’est à dire un disque plongé de sorte que son espace tangent coïncide avec la
structure de contact le long du bord. Ces structures ne sont jamais remplissables, même
faiblement. Elles forment une classe de structures de contact flexibles : il n’y a aucune
obstruction à leur existence et la restriction du foncteur d’oubli à cette classe n’oublie
rien, c’est-à-dire que deux structures de contact vrillées qui sont homotopes parmi les
champs de plans sont homotopes parmi les structures de contact. Enfin tout champ de
Reeb d’une structure de contact vrillée admet une orbite périodique contractile. De plus,
la démonstration de cette dernière propriété passe par la symplectisation de la variété
de contact, qu’on peut voir comme un cobordisme symplectique de la variété vers elle-
même, et les courbes (pseudo)-holomorphes, et donc la géométrie (presque)-complexe,
y jouent un rôle crucial. La symplectisation de (𝑀, 𝜉) est l’ensemble des covecteurs 𝜆
dans 𝑇 ∗𝑀 ayant pour noyau 𝜉 (avec une coorientation prescrite). C’est une sous-variété
symplectique de 𝑇 ∗𝑀 .

Les structures de contact vrillées forment donc une classe très bien comprise et re-
marquablement homogène. Par contraste, la classe complémentaire, celle des structures
dites tendues, est beaucoup plus mystérieuse et hétérogène. On sait en particulier que
les structures de contact tendues sont rares. Elles sont parfois remplissables et parfois
non. En général elles ne sont pas flexibles et elle peuvent admettre des champs de Reeb
sans orbite périodique contractile.

Exemple emblématique. Sur le tore 𝕋3 = ℝ3/ℤ3, on peut définir, pour chaque entier
strictement positif 𝑛, la structure de contact

𝜉𝑛 = ker(cos(2𝑛𝜋𝑧)𝑑𝑥 − sin(2𝑛𝜋𝑧)𝑑𝑦).

Ces structures sont toutes tendues et :

• elles ne sont pas flexibles car deux à deux non isomorphes bien qu’homotopes parmi
les champs de plans.

• elles ne sont pas fortement symplectiquement remplissables à l’exception de 𝜉1

• elles admettent toutes des champs de Reeb sans orbite périodique contractile.

Certaines propriétés apparaissant dans l’exemple précédent ont peu à peu reçu comme
explication l’existence de «domaines de torsion de Giroux»: des plongements de tores
épais 𝕋2 × [0, 2𝑛𝜋] munis de la structure de contact ker(cos(𝑧)𝑑𝑥 − sin(𝑧)𝑑𝑦). Ceux-
ci permettent de définir la torsion de Giroux d’une variété de contact de dimension 3
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1. Introduction

comme le supremum des entiers 𝑛 pour lesquels un tel plongement existe ou bien zéro s’il
n’en existe aucun. Les structures vrillées sont toujours de torsion infinie, toute torsion
non-nulle est une obstruction à la remplissabilité forte et, à torsion finie fixée, il n’y a sur
chaque variété qu’un nombre fini de classes d’isomorphismes de structures de contact.

Pour finir ce bref tour d’horizon, signalons que, comme indiqué dans la question dy-
namique, on peut s’interroger sur les propriétés communes à tous les champs de Reeb
d’une structure de contact donnée. En dimension quelconque, on dispose d’une théorie
qui décrit une manière de «compter» les orbites périodiques d’un champ de Reeb d’une
façon qui ne dépende que de la structure de contact. Plus précisément, pour toute struc-
ture de contact 𝜉, on peut construire une algèbre, l’homologie de contact de 𝜉, définie à
partir des orbites d’un champ de Reeb mais qui ne dépend que de 𝜉. Il s’agit d’une situa-
tion analogue à celle de l’homologie simpliciale d’une triangulation qui ne dépend que
de la variété sous-jacente. Cette théorie fait partie de la grande famille des homologies
de Floer.

1.3. La correspondance de Giroux
Assez indépendamment de l’étude de classes remarquables de structures de contact, la

topologie de contact a progressé de façon spectaculaire lorsque Emmanuel Giroux a décrit
une correspondance inattendue entre les structures de contact et les décompositions en
livres ouverts symplectiques.

Une décomposition en livre ouvert d’une variété 𝑉 est un couple (𝐾, 𝜃) où 𝐾 est une
sous-variété de codimension 2 et 𝜃 est une fibration du complémentaire de 𝐾 sur 𝕊1 qui
se comporte joliment près de 𝐾. La sous-variété 𝐾 est appelée reliure du livre ouvert et
les fibres de 𝜃 sont appelées pages. Ces structures sont toujours isomorphes au résultat
de la construction suivante. Partant d’une variété Σ à bord non vide (qui sera la page)
et d’un difféomorphisme 𝜑 relatif au bord de Σ, on peut épaissir Σ en Σ × [0, 1], recoller
Σ × {0} et Σ × {1} en utilisant 𝜑 puis coller 𝜕Σ × 𝐷2 le long de 𝜕Σ × 𝕊1. On obtient
alors un livre ouvert avec 𝐾 = 𝜕Σ × {0} et 𝜃 provenant de la projection de Σ × [0, 1] sur
le second facteur.

Giroux montre que, partant d’une page Σ munie d’une forme symplectique exacte à
bord convexe et d’un difféomorphisme symplectique 𝜑 relatif au bord, one obtient une
variété qui porte une structure de contact étroitement liée au livre ouvert : la reliure est
une sous-variété de contact et il existe un champ de Reeb transverse aux pages. Bien
plus, il démontre que toutes les classes d’isotopies de structures de contact s’obtiennent
ainsi et qu’on peut imposer à la page d’être un domaine de Stein. En dimension 3, il
parvient même à décrire comment sont reliés les couples (Σ, 𝜑) donnant lieu à la même
classe.

Cette correspondance introduit un point de vue très différent sur les structures de
contact. Elle permet de traduire toutes les questions portant sur les structures de contact
en questions portant sur les difféomorphismes symplectiques (tout cela à isotopie près).
Ceci est particulièrement efficace en dimension 3, puisque les variétés symplectiques
concernées sont alors de dimension 2 donc beaucoup plus accessibles.
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1.4. Structures de contact en grande dimension

Cette théorie de Giroux des livres ouverts est le sommet d’un programme débuté en
1991 : l’étude de la convexité en topologie de contact. On dit qu’une structure de contact
est convexe si elle est invariante par un flot de gradient d’une fonction de Morse. L’exis-
tence d’un livre ouvert portant la structure de contact est équivalente à sa convexité. En
plus de cet aspect global, de nombreux lemmes semi-locaux ont eu une influence déci-
sive sur la topologie de contact en dimension 3. Ces lemmes portent sur la géométrie de
contact d’un niveau régulier d’une fonction ayant un gradient de contact, ou sur le pas-
sage des valeurs critiques. J’ai beaucoup travaillé à les exposer, dans ma thèse d’abord
mais ensuite surtout lors d’écoles thématiques, à La Llagonne en janvier 2008, à Nantes
en juin 2011 et à Bonn en juillet 2013 (mon cours à l’école d’été de Londres en juillet
2014 concerne un autre sujet). Des notes abondamment illustrées de mon cours à Nantes
sont publiées dans Massot 2014. La partie I du présent mémoire raconte l’histoire de
cette théorie.

1.4. Structures de contact en grande dimension

La topologie de contact en grandes dimensions est beaucoup moins bien comprise
qu’en dimension 3 mais progresse rapidement ces dernières années. En particulier il existe
maintenant une définition des structures de contact vrillées en dimension quelconque et
une démonstration de leur flexibilité.

L’article Massot, Niederkrüger et Wendl 2013 vise à démontrer l’existence en
grandes dimensions d’un certain nombre de phénomènes connus en dimension 3 et décrit
dans la section 1.2. Le premier outil introduit est une notion de remplissage symplec-
tique faible en grandes dimensions. Outre l’intérêt intrinsèque d’avoir une notion plus
faible mais toujours non triviale, cette étude permet de démontrer indirectement que
certaines variétés de contact ne sont pas fortement (ou a fortiori holomorphiquement)
remplissables. La stratégie consiste à montrer que tout remplissage fort pourrait être
étendu par un cobordisme symplectique en remplissage faible d’une nouvelle variété de
contact qui est vrillée.

On ouvre ainsi la possibilité de montrer que certaines structures de contact ne sont
pas fortement remplissables bien que n’ayant pas d’autre caractéristique des structures
vrillées puisqu’elles ne sont pas flexibles et ont des champs de Reeb sans orbite périodique
contractile. En cela la référence évidente en dimension 3 est l’exemple emblématique
décrit dans la section 1.2. Pour construire des exemples analogues en grandes dimensions,
nous faisons un détour par les groupes de Lie et la théorie des nombres. Avant l’énoncé,
rappelons qu’un sous-corps de ℂ contient nécessairement ℚ et que son degré est, par
définition, sa dimension en tant que ℚ-espace vectoriel. Un corps de nombres est un
sous-corps de ℂ qui est de degré fini. Le corps ℝ contient des corps de nombres de degré
arbitrairement grand.

Theorem 1.1. À tout corps de nombres 𝕜 de degré 𝑑, on peut associer canoniquement
une variété de contact 𝑀𝕜 de dimension 2𝑑 − 1. Si 𝕜 peut se plonger dans ℝ alors 𝑀𝕜
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1. Introduction

porte deux 1–formes 𝛼+ et 𝛼− telles que la formule :

𝜉𝑛 ∶= ker (1 + cos 𝑛𝑠
2 𝛼+ + 1 − cos 𝑛𝑠

2 𝛼− + sin 𝑛𝑠 𝑑𝑡)

(avec (𝑠, 𝑡) ∈ 𝕋2) définisse, pour 𝑛 ∈ ℕ∗, une famille de structures de contact sur 𝕋2×𝑀𝕜
ayant les propriétés suivantes :

1. elles ne sont pas flexibles car elles sont homotopes mais pas isomorphes ;

2. seule 𝜉1 est fortement remplissable ;

3. elles admettent toutes un champ de Reeb sans orbite périodique contractile.

On retrouve l’exemple emblématique de la dimension 3 pour 𝕜 = ℚ. On a ainsi ob-
tenu l’existence de domaines généralisant les domaines de torsion de Giroux en grandes
dimensions. Notons que, dans le premier point du théorème, on distingue les classes
d’isomorphisme par un calcul d’homologie de contact, donc via un invariant dynamique.

Au fil de la construction de ces exemples, on répond à la question de l’existence
de variétés symplectiques exactes dont le bord n’est pas connexe mais dont chaque
composante est convexe (au sens symplectique du terme). De tels exemples ne peuvent
pas exister dans la catégorie des variétés de Stein et, dans le cadre plus large des variétés
symplectiques, les seuls exemples compacts connus étaient en dimension 4 et 6. Dans
notre travail, ces variétés symplectiques exotiques apparaissent plongées dans les variétés
de contact étudiées. On peut les qualifier d’internes pour les distinguer des variétés
«externes» apparaissant comme remplissages ou cobordismes. Traditionnellement les
résultats utilisant les variétés symplectiques internes et externes étaient essentiellement
disjoints, au moins si l’on exclue le cas de la dimension 3 pour laquelle les variétés
internes sont des surfaces donc des variétés symplectiques très dégénérées. Ici on a une
interaction directe entre la présence d’exemples internes exotiques et la non-existence de
variété symplectique externe.

1.5. Invariants d’Ozsváth-Szabó
Une des application majeures de la théorie des livres ouverts en dimension 3 est la

construction de l’invariant d’Ozsváth–Szabó. Il s’agit d’un invariant de classe d’isotopie
de structures de contact à valeurs dans l’homologie d’Heegaard–Floer de la variété. Cette
homologie associe à toute variété de dimension 3 des groupes abéliens par une construc-
tion qui mélange des aspects analytiques, topologiques et combinatoires. Dès le début,
il a été démontré que l’invariant d’Ozsváth–Szabó des structures de contact vrillées est
trivial, ce qui n’est pas surprenant au vu de leur flexibilité : il n’y a rien de subtil à
voir donc les invariants subtils ne voient rien. Plus généralement, cet invariant s’annule
pour les structures de contact dont la torsion de Giroux est strictement positive. Au
contraire, il n’est jamais nul pour une structure de contact symplectiquement remplis-
sable, on retrouve ainsi la non-existence de remplissages pour les structures vrillées ou,
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plus généralement, de torsion strictement positive. Par contraposition, la propriété d’an-
nulation pour les structures vrillées a permis de montrer que de nombreuses structures
de contact étaient tendues alors qu’aucun autre outil ne semblait en mesure de le faire.
De même l’invariant d’Ozsváth–Szabó est le seul outil connu pour distinguer certaines
classes d’isotopies de structures de contact.

Malgré les succès de l’invariant d’Ozsváth–Szabó, son contenu topologique et ses re-
lations avec d’autres informations restent assez mystérieux. Comme indiqué plus haut,
on savait que les structures de contact dont la torsion de Giroux est strictement positive
ont un invariant d’Ozsváth–Szabó trivial et la réciproque semblait possible. Dans mon
article Massot 2012, j’ai démontré que la réalité est plus subtile.

Theorem 1.2. Il existe une infinité de variétés de dimension 3 portant chacune une
infinité de classes d’isotopie de structures de contact tendues dont l’invariant d’Ozsváth–
Szabó est trivial bien que leur torsion de Giroux soit nulle.

Il existe en fait plusieurs variantes de l’homologie d’Heegaard–Floer, en particulier liées
au choix d’un anneau de coefficients pour les complexes de chaînes. Le choix de l’anneau
ℤ/2 est techniquement le plus léger et il était suffisant pour toutes les applications
connues en topologie de contact. De plus la version à coefficients dans ℤ souffre d’une
ambigüité de signe dont on ne savait pas si elle était un artefact de difficultés techniques
ou quelque chose de plus essentiel.

Sur le tore 𝕋3, il existe un invariant de classes d’isotopies de structures de contact
introduit par Giroux. J’ai montré dans ibid. comment il est lié à l’invariant d’Ozsváth–
Szabó. En plus d’éclairer le contenu topologique de dernier, cela a donné un premier
exemple de variété sur laquelle sa version à coefficient dans ℤ permet de distinguer
une infinité de classes d’isotopies de structures de contact, au contraire de sa version
à coefficients dans ℤ/2 qui vit dans un ℤ/2-espace vectoriel de dimension finie, donc
un ensemble fini. Enfin l’ambigüité de signe est très naturelle dans cet exemple puisque
l’invariant de Giroux est la classe d’homologie dans 𝐻2(𝕋3) de certains tores n’ayant pas
d’orientation naturelle.

Le thème majeur de ibid. est donc les interactions entre différents types d’invariants
de classes d’isotopies de structures de contact. Bien que s’appuyant sur la classification
de certaines structures de contact tendues, les démonstrations de cet article sont essen-
tiellement combinatoires et algébriques. Certains des résultats obtenus ont depuis été
redémontrés par d’autres, de façon encore plus algébrique ou bien via de la topologie
algébrique plus classique. Cette diversité d’approches montre bien la richesse des objets
étudiés.

1.6. Groupes d’automorphismes en géométrie de contact
Comme en présence de tout type de structure mathématiques, il est naturel de s’in-

téresser au groupe des symétries d’une structure de contact. Du fait de l’absence de
rigidité locale, ces groupes sont de dimension infinie et agissent transitivement sur les
𝑛-uplets de points pour tout 𝑛. En ce sens ils sont bien plus proche du groupe de tous
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les difféomorphismes que d’un groupe de Lie. Ainsi la comparaison la plus tentante se
fait avec la théorie des groupes de difféotopies (mapping class groups). Ainsi on notera
π0𝒟(𝜉) le groupe des classes d’isotopies de difféomorphismes préservant une structure
de contact 𝜉. À l’intérieur de ce groupe, on s’intéresse plus particulièrement au noyau
de π0𝒟(𝜉) → 𝜋0𝒟, le sous groupe des classes qui sont topologiquement triviales. C’est
ce dernier sous-groupe qui est le plus intéressant, il mesure les obstructions à relier deux
difféomorphismes de contact par un chemin de tels difféomorphismes lorsqu’un chemin
existe parmi les difféomorphismes quelconques.

Dans l’article Giroux et Massot 2015, nous explorons les liens généraux entre les
groupes de difféotopies de contact et la classification des structures de contact et nous
calculons ce groupe pour quelques exemples de variétés de contact.

Les résultats généraux découlent de l’existence de fibrations localement triviales liant
des espaces de difféomorphismes, de structures de contact et de plongements de surfaces.
La fibration la plus facile à décrire est la suivante. On fixe une structure de contact 𝜉
sur une variété 𝑉 compacte sans bord. On note Ξ l’espace des structures de contact
sur 𝑉 . L’application 𝜋 ∶ 𝒟(𝑉 ) → Ξ qui envoie 𝜑 sur 𝜑∗𝜉 est une fibration localement
triviale. La suite exacte en homotopie provenant de cette fibration montre en particulier
l’isomorphisme

ker (π0𝒟(𝜉) → π0𝒟) ≃ 𝜋1(Ξ, 𝜉)/𝜋1(𝒟(𝑉 ), Id).
Nos résultats spécifiques concernent les structures de contact qui sont tangentes aux

fibres d’un fibré en cercles au-dessus d’une surface. Ils reposent sur les considérations
générales mentionnées ci-dessus et sur les techniques topologiques introduites par Giroux.
Theorem 1.3. Soit 𝑉 une variété fibrée en cercles au-dessus d’une surface orientable
compacte sans bord et de genre strictement positif. Si 𝜉 est une structure de contact
tangente aux fibres de 𝑉 et qui fait 𝑑 tours le long de chaque fibres par rapport aux fibres
voisines alors ker (π0𝒟(ξ) → π0𝒟) est isomorphe à ℤ/𝑑ℤ. De plus le groupe fondamental
de l’espace des structures de contact isotopes à 𝜉 est infini cyclique.

Dans l’article Massot et Niederkrüger 2016, nous étendons une partie de cette
étude en dimension plus grande, en utilisant cette fois des techniques de courbes holo-
morphes et en s’appuyant sur les constructions de Massot, Niederkrüger et Wendl
2013 évoquées dans la Section 1.4.
Theorem 1.4. Soit 𝕜 un corps de nombres admettant un plongement réel et soient
(𝕋2×𝑀𝕜, 𝜉𝑛) les variétés de contact du Théorème 1.1. Pour tout 𝑛 > 1 et tout 1 ≤ 𝑚 < 𝑛,
la transformation de contact

Ψ𝑛,𝑚 ∶ (𝕋2 × 𝑀𝕜, 𝜉𝑛) → (𝕋2 × 𝑀𝕜, 𝜉𝑛), (𝑠, 𝑡, 𝜃) ↦ ( �𝑠 + 2𝜋𝑚𝑛 , 𝑡, 𝜃) �

est topologiquement isotope à l’identité mais pas parmi les transformations de contact.

1.7. Interactions avec la géométrie riemannienne
En dimension trois, l’hétérogénéité de la classe des structures de contact tendues

pousse à chercher des sous-classes privilégiées. J’ai exploré plusieurs classes définies en

16



1.7. Interactions avec la géométrie riemannienne

terme de géométrie riemannienne. Le but est de trouver des conditions géométriques
assurant des propriétés topologiques, en particulier l’absence de disque vrillé. Il s’agit
d’un champ de recherches très ouvert.

La première piste suivie était suggérée depuis longtemps, en particulier par Étienne
Ghys. Il s’agit de l’étude des structures de contact dites géodésibles, c’est à dire pour
lesquelles il existe une métrique telle que toute géodésique qui part tangente à la struc-
ture de contact le reste à jamais. Il s’agit d’une relation locale entre la métrique et
la structure de contact qu’on peut exprimer comme l’annulation d’une «seconde forme
fondamentale», comme dans le cas des sous-variétés. Durant ma thèse j’ai étudié cette
classe. Des travaux antérieurs rendaient cette étude essentiellement équivalente à celle
des structures de contact transversales aux fibres d’une variété de Seifert. On peut en dé-
duire que les structures de contact concernées sont toutes tendues et symplectiquement
remplissables. En particulier la condition riemannienne locale qui est imposée entraîne,
par une voie assez indirecte, des propriétés globales de la structure de contact et des
interactions avec la géométrie symplectique, cf. Massot 2008a.

J’ai ensuite exploré d’autres interactions avec la géométrie riemannienne en essayant
de mélanger plus intiment les techniques provenant des différentes branches. Le contexte
de cet étude est celle des métriques riemanniennes «compatibles» avec une structure de
contact 𝜉, ce qui signifie qu’il existe une structure complexe 𝐽 sur 𝜉, une équation 𝛼 de
𝜉 et une constante 𝜃′ telles que 𝑔 = 1/𝜃′𝑑𝛼(𝜋·, 𝐽𝜋·) + 𝛼2 où 𝜋 est la projection sur 𝜉
parallèlement à l’unique champ de Reeb 𝛼 sur lequel 𝛼 vaut un. Le résultat principal de
Etnyre, Komendarczyk et Massot 2012 est un analogue du théorème de la sphère
pour la géométrie de contact en dimension 3.

Theorem 1.5. Soit (𝑀, 𝜉) une variété de contact de dimension 3 et 𝑔 une métrique
riemannienne complète sur 𝑀 qui est compatible avec 𝜉. Si la courbure sectionnelle
de 𝑔 est strictement positive et 4/9–pincée (son minimum est au moins 4/9 fois son
maximum) alors le revêtement universel de (𝑀, 𝜉) est isomorphe à 𝕊3 munie de sa
structure de contact standard.

L’intérêt principal de ce travail, à mon avis, réside moins dans l’énoncé que dans la
façon dont différents outils s’agencent dans la démonstration. Quitte à passer au re-
vêtement universel, on peut supposer que 𝑀 est simplement connexe. Le théorème de
la sphère classique montre alors que 𝑀 est difféomorphe à 𝕊3 (sans passer par Perel-
man). Les techniques topologiques d’Eliashberg garantissent que toutes les structures de
contact tendues sur 𝕊3 sont isomorphes, il suffit donc de démontrer l’absence de disque
vrillé. La géométrie riemannienne développée pour montrer le théorème de la sphère
classique fournit un recouvrement par deux boules riemanniennes plongées dont l’une
est convexe. Puis on montre, en utilisant des calculs de géométrie différentielle et des
techniques analytiques de courbes pseudoholomorphes, que la boule convexe est tendue
et que tout disque vrillé pourrait être poussé dans l’autre boule. On utilise alors un peu
de géométrie et des techniques topologiques de Giroux pour montrer que la présence d’un
disque vrillé dans une boule riemannienne force l’existence de tels disques arbitrairement
près du bord, en contradiction avec l’étude de la boule convexe.
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Les méthodes topologiques intervenant dans la démonstration que l’on vient d’es-
quisser n’ont pas d’analogue en dimension supérieure. Cependant la partie consistant à
contrôler la structure de contact dans des boules de taille contrôlée a un sens en toute di-
mension. Dans Etnyre, Komendarczyk et Massot 2016, nous étudions cette question
par deux techniques très différentes. La première affine l’étude du lien entre convexités
riemannienne et complexe entamée dans Etnyre, Komendarczyk et Massot 2012
et utilise les courbes pseudoholomorphes pour garantir l’absence d’analogues du disque
vrillé en grande dimension. Cependant la technologie actuelle ne permet pas d’affirmer
que les boules ainsi contrôlées se plongent dans le modèle local de structure de contact
sur ℝ2𝑛+1. Pour obtenir de telle garanties (pour des boules plus petites) on utilise des
méthodes purement géométriques basées sur les champs de Jacobi. La version la plus
lisible du résultat (mais pas la plus fine) est l’énoncé suivant, dans lequel intervient aus-
si le tenseur de Nijenhuis [𝐽 , 𝐽], une obstruction à provenir d’un plongement dans une
variété holomorphe.

Theorem 1.6. Soit (𝑀, 𝜉) une variété de contact de dimension 2𝑛 + 1 munie d’une
métrique riemannienne complète compatible avec 𝜉: 𝑔 = 1/𝜃′𝑑𝛼(𝜋·, 𝐽𝜋·) + 𝛼2. Si la
courbure sectionnelle de 𝑔 est comprise entre −𝐾 et 𝐾 pour une constance strictement
positive 𝐾 alors toute boule riemannienne se plonge dans ℝ2𝑛+1 muni de sa structure
de contact standard tant que son rayon est inférieur à

𝑟 = min ( inj(𝑔)
2 , 1

208𝑛2 max(
√

𝐾, ‖[𝐽, 𝐽]‖, 𝜃′)
) .

Dans ce résultat le fait important n’est pas tant la valeur précise de la borne que le
fait qu’elle est explicite et ne dépend que des longueurs obtenues à partir de 𝐾, 𝜃′ et
[𝐽 , 𝐽] et de la dimension.
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Caveat
This part is a biased survey of convexity in contact topology, and its interactions with
other aspects of the theory. This order is roughly chronological but not completely,
partly because a strict chronological order would cut the story in too many pieces, and
partly because it was sometimes convenient to explain things from a modern perspective.
The most striking example is probably the appearance of ideal Liouville domains in
Sections 2.7 and 3.1.2, fifteen years early. We think this notion is really helpful and not
yet used enough.

An important bias comes from the fact that this part is meant to motivate my own
work, described in the following part. Hence I emphasize the most relevant aspects
from this perspective, especially the history of Giroux torsion and symplectic cobordism
constructions as well as the study of thickened spheres and tori. For instance the whole
subject of Legendrian and transverse knots benefited strongly from contact convexity,
but does not feature prominently in my work, so it only makes a brief appearance here.
Also, the aspects that interact strongly with convexity but are not strictly part of the
story are treated more briefly, especially holomorphic curves theory and gauge theory.
Of course the level of details is also influenced by my level of understanding (for instance
I could not give many more details about gauge theory) and what I feel is the general
level of understanding (for instance it seems many people do not have a clear vision of
where are the difficulties in Giroux’s proof of the open book decomposition theorem in
dimension 3). For all these reasons, the level of detail oscillates quite a lot.

This discussion involves many geometrical objects whose definitions are not always
laid out in a dedicated paragraph. The index on Page 187 should be helpful here.

There are no full proofs in this historical survey. Instead I tried to give hints of why
things are true, and how different ideas interact. I also tried to state what I think are
the starting points of each result. These are called “key observations” in the text and are
almost always easy to explain, or at least motivate. Of course many theorems described
are deep and technically difficult, I certainly do not mean that the “key observations”
are all it takes to prove them.
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2. Prehistory

This chapter explains what came before contact convexity was defined, from the earliest
non-tautological constructions of contact manifolds to the advent of holomorphic curves
in symplectic manifolds and symplectic convexity.

2.1. Early constructions
2.1.1. Principal circle bundles
After the examples mentioned in Chapter 1, the first non-trivial examples of contact
manifolds were constructed (and characterized) in Boothby and H.-C. Wang 1958. A
Boothby-Wang structure is a contact structure 𝜉 on a principal 𝕊1 bundle 𝑉 → 𝐵 which
is 𝕊1-invariant and transverse to fibers. This means that the vector field generating the
𝕊1 action is Reeb for 𝜉 or, equivalently, that 𝜉 = ker 𝛼 for some connection 1-form 𝛼.

Key observation 2.1. A connection 1-form 𝛼 on a 𝕊1-bundle 𝑉 → 𝐵 is contact if and
only if the associated curvature 2-form on 𝐵 is symplectic.

Indeed the tangent space to 𝐵 is isomorphic to ker 𝛼 at any point above it, and the
curvature form is the projection of the restriction of 𝑑𝛼 to ker 𝛼. Conversely one can
start with a symplectic form 𝜔 on 𝐵 such that the cohomology class [𝜔]/2𝜋 admits a
lift to 𝐻2(𝐵; ℤ), and build 𝐵 and 𝛼 from there. These circle bundles will come back in
Section 2.6.2 and Section 5.1.1.

Of course the space of contact connection 1-forms on such a 𝑉 is convex hence the
Boothby-Wang contact structure is determined by the 𝕊1-bundle structure uniquely up
to 𝕊1-invariant isotopy.

Lutz 1977 dropped the transversality condition from Boothby and H.-C. Wang 1958
to study all 𝕊1-invariant contact structures on 3-dimensional circle bundles. His motiva-
tion was to exhibit manifolds carrying infinitely many pairwise non-isomorphic contact
structures.

Key observation 2.2. On a principal 𝕊1-bundle 𝜋 ∶ 𝑉 → 𝐵 over a compact orientable
surface, let 𝜉 be any 𝕊1-invariant contact structure. The set Γ of points 𝑏 in 𝐵 such that
𝜉 is tangent to 𝜋−1(𝑏) is a multi-curve on 𝐵: a collection of smooth properly embedded
curves.

Indeed, if 𝑋 is the vector field generating the 𝕊1 action and 𝛼 is an invariant contact
form then 𝛼(𝑋) is an invariant function whose zero set projects to Γ, and the contact
condition ensures that it is a submersion.
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The multi-curve Γ from Key observation 2.2 is now called a dividing set for 𝐵 because
it divides the base 𝐵 into regions 𝐵± over which 𝜉 is positive or negatively transverse
to fibers. Conversely, Lutz 1977 proved that any properly embedded multi-curve in
𝐵 which divides it into two subsurfaces is the dividing set of an 𝕊1-invariant contact
structure. In addition, two invariant contact structures which agree near 𝜕𝑉 and have
the same dividing set are isotopic relative to 𝜕𝑉 , and this condition is also necessary if
one restricts to 𝕊1-equivariant isotopies. This discussion can clearly be seen as an early
precursor of the theory of 𝜉-convex surfaces discussed in Section 3.1.2, although it seems
that Giroux was unaware of this paper when he wrote Giroux 1991.

2.1.2. The Thurston-Winkelnkemper construction

W. P. Thurston and Winkelnkemper 1975 is another early paper constructing contact
structures which turned out to be important in retrospect. The goal of that paper was
to reprove that any closed orientable 3-manifold carries a contact structure. Inspired
by constructions of foliations (before Thurston revolutionized this subject), the starting
point of that paper is an open book decomposition of the manifold.

Recall that an open book decomposition of a closed manifold 𝑉 is a pair (𝐾, 𝜃) where
𝐾 is a codimension 2 submanifold of 𝑉 called the binding, 𝜃 is a locally trivial smooth
fibration from 𝑉 ∖ 𝐾 to 𝕊1, and there is a neighborhood 𝐾 × 𝔻2 of 𝐾 in 𝑉 where 𝜃 is
the angular coordinate in 𝔻2. Each fiber 𝜃−1(∗) has closure 𝜃−1(∗) ∪ 𝐾 which is called
a page of the open book. In dimension 3, a link is called fibered if it is the binding of
an open book.

Let 𝑃 be the page of an open book and denote by 𝐿(𝑃) the space of 1-forms 𝛽 on
𝑃 that are positive on 𝜕𝑃 and such that 𝑑𝛽 is symplectic. These forms will be called
Liouville forms (there will be many more starting from Section 2.6.2).

Key observation 2.3. If dim(𝑃)2, the space 𝐿(𝑃) of Liouville forms on 𝑃 is non-empty
and convex.

Indeed, one can start with a model near 𝜕𝑃 and extend it in a random way to get a 1-
form 𝛽1. Stokes’ theorem ensures that ∫ 𝑑𝛽1 is positive and we can choose a (non-exact)
area form 𝜔 which coincides with 𝑑𝛽1 in the model and has the same integral over 𝑃 .
Poincaré and de Rham then offer some 𝛽2 vanishing along 𝜕𝐵, so that 𝜔 − 𝑑𝛽1 = 𝑑𝛽2,
hence 𝛽 = 𝛽1+𝛽2 is Liouville. Convexity of these conditions is obvious. This observation
allows to construction a 1-form 𝛼 away from the binding of an open book that induces
Liouville forms on each page. Then one can add a large multiple of the 1-form defining
the fibration to 𝕊1 to get a contact form away from the binding. In a neighborhood
𝐾 × 𝔻2 of the binding, the resulting contact structure is transverse to each 𝐾 × {𝑧}
–where defined– and this allowed ibid. to extend it.

24



2.2. Riemannian metrics on contact manifolds

2.2. Riemannian metrics on contact manifolds
2.2.1. Instantaneous rotation
Interaction between Riemannian metrics and contact structures were studied at least as
early as Chern and Hamilton 1985. The case of foliations was studied even before, and
some notions actually apply to any kind of plane fields.

One can first observe how to detect if a plane field 𝜉 is contact using any Riemannian
metric on a 3–manifold. Recall that the Frobenius integrability criterion says that 𝜉 is
integrable if and only if the flow of a (local) non-zero vector field tangent to 𝜉 preserves 𝜉.
Given a Riemannian metric 𝑔 one can (locally) choose an oriented orthonormal moving
frame 𝑢, 𝑣, 𝑛 where 𝑢, 𝑣 is an oriented basis for 𝜉 and 𝑛 is a unit normal vector to 𝜉.
Denote by 𝜙𝑡 the flow of 𝑢 and define 𝜃(𝑡) to be the angle between (𝜙−𝑡)∗𝑣 and 𝑛. That
is

cos 𝜃(𝑡) = 𝑔((𝜙−𝑡)∗(𝑣), 𝑛)
‖(𝜙−𝑡)∗(𝑣)‖ .

One may compute that 𝜃′(0) = −𝑔([𝑢, 𝑣], 𝑛). Setting 𝛼(·) = 𝑔(𝑛, ·), one can then char-
acterize 𝜃′(0) by 𝛼 ∧ 𝑑𝛼 = 𝜃′(0)vol𝑔. In particular, 𝜃′(0) depends on 𝑔 and 𝜉 but not on
𝑢, 𝑣.

The function 𝜃′(0) is denoted by by 𝜃′ and called the instantaneous rotation of 𝜉 with
respect to 𝑔. The Frobenius condition implies that 𝜉 is a (positive) contact structure if
and only if 𝜃′ > 0.

2.2.2. Second fundamental form
In analogy with foliations, any hyperplane field has a second fundamental form. This
notion goes back at least as far as Reinhart 1977. The second fundamental form of 𝜉 is
the quadratic form on 𝜉 defined as follows: for vectors 𝑢 and 𝑣 in 𝜉𝑝 = 𝑇𝑝𝑀 ∩ 𝜉,

II(𝑢, 𝑣) = 1
2 ⟨∇𝑢𝑣 + ∇𝑣𝑢, 𝑛⟩ , (2.1)

where 𝑛 is the oriented unit normal to 𝜉. (Note that 𝑢 and 𝑣 need to be extended to
vector fields tangent to 𝜉 in a neighborhood of 𝑝 to compute II(𝑢, 𝑣), but the value of
II(𝑢, 𝑣) is independent of this extension i.e. II is tensorial.)

One has the following geometric interpretation of II (see Giroux 1994a; Massot 2008b).
For any point 𝑝 ∈ 𝑀 and a unit vector 𝑣 ∈ 𝜉 let 𝑃𝑣 denote the plane spanned by 𝑣 and
the oriented unit normal to 𝜉. There is a neighborhood 𝑁 of the origin in 𝑇𝑝𝑀 such
that the exponential map pulls 𝜉 back to a plane field (exp|𝑁)∗𝜉 that is transverse to
𝑃𝑣 ∩ 𝑁 . This plane field induces a foliation on 𝑃𝑣 ∩ 𝑁 and II(𝑣, 𝑣) is the curvature of
the leaf of this foliation through the origin (measured by the flat metric on 𝑇𝑝𝑀 given
by 𝑔𝑝).

The following curvatures derive from II. The extrinsic curvature, 𝐾𝑒, of 𝜉 is the
determinant of the quadratic form II with respect to 𝑔. The mean curvature, 𝐻, of 𝜉
is the mean of the eigenvalues of II. It is clear that when 𝜉 is an integrable plane field,
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then II is the standard second fundamental form of the leaves of the foliation associated
to 𝜉 and the quantities 𝐾𝑒 and 𝐻 are their classical curvatures. In all cases, II vanishes
if and only if the plane field is totally geodesic: any geodesic which starts tangent to 𝜉
stays tangent forever. In the standard Euclidean ℝ3, the integrable plane field ker 𝑑𝑧 is
obviously totally geodesic, but the same holds for the contact structure ker(𝑑𝑧 + 𝑟2𝑑𝜃).

2.2.3. Compatibility

A metric 𝑔 and a contact structure 𝜉 are compatible if there is a contact form 𝛼 for 𝜉
and a complex structure 𝐽 on 𝜉 such that 𝑔(𝑢, 𝑣) = 1

𝜃′ 𝑑𝛼(𝑢, 𝐽𝑣) for all 𝑢, 𝑣 ∈ 𝜉, where
𝜃′ is some positive constant, and for which the Reeb vector field 𝑅𝛼 is the unit normal
to 𝜉.

Compatible metrics metrics always exist in abundance, one can start with 𝛼, a suitable
𝐽 , and 𝜃′, and build 𝑔 from there. The canonical Riemannian metric on 𝕊2𝑛−1 is
compatible with the standard contact structure. Allowing that 𝜃′ be any constant rather
than fixing one gives a class of compatible metrics that is stable under homothety. This
is slightly different from Chern and Hamilton 1985 where 𝜃′ = 2.

Key observation 2.4. If 𝑔 is compatible with 𝛼, then 𝑅𝛼 is a totally geodesic and
divergence free vector field.

This follows from local tensor computations. In the sphere example, 𝑅𝛼 is the Hopf
vector field: 𝑅𝛼(𝑧) = 𝑖𝑧 in 𝕊2𝑛−1 ⊂ ℂ𝑛. As a consequence of Key observation 2.4, the
mean curvature 𝐻 of 𝜉 with respect to a 𝑔 always vanishes.

In dimension 3, the geometric setup simplifies and one can check that a contact form 𝛼
and a Riemannian metric 𝑔 on a 3–manifold 𝑀 are compatible if and only if ‖𝛼‖ = 1 and
∗𝑑𝛼 = 𝜃′𝛼 for some positive constant 𝜃′, where ∗ is the Hodge operator coming from 𝑔
and the orientation. It is equivalent to saying that the instantaneous rotation of 𝜉 with
respect to 𝑔 is constant and the Reeb vector field 𝑅𝛼 is unit length and orthogonal to 𝜉.

A more important specificity of dimension 3 is that, given any metric 𝑔𝜉 on a contact
structure 𝜉, there is a canonical way to extend it to all of 𝑀 so that it is compatible with
𝜉. The metric 𝑔𝜉 induces an area form on 𝜉. Since, for any contact form 𝛼0 and positive
function 𝑓 , 𝑑(𝑓𝛼0)|𝜉 = 𝑓(𝑑𝛼0)|𝜉, there is a unique function 𝑓 such that 𝑑(𝑓𝛼0)|𝜉 agrees
with the area form given on 𝜉 by 𝑔𝜉. Setting 𝛼 = 𝑓𝛼0 allows to extend 𝑔𝜉 to 𝑀 by
demanding that the Reeb vector field 𝑅𝛼 is of unit length and orthogonal to 𝜉.

The study of compatible metrics can be used in fluid mechanics, plasma physics and
other subjects, see for example Etnyre and Ghrist 2000. In addition, it has produced
a great many questions from the Riemannian geometry perspective, especially in con-
structions of Einstein metrics, see Blair 2002; Boyer and Galicki 2008.

The definition above clearly shows that compatible metrics are also linked with com-
plex geometry. They naturally appear on the boundary of some domains in complex
manifolds. Studying this relation is part of (strictly pseudoconvex) CR geometry, where
the basic object is a pair (𝜉, 𝐽) where 𝜉 is a contact structure and 𝐽 is a complex structure
on 𝜉, which is not seen as an auxiliary structure. In order to have a chance of coming
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from a complex manifold, such a pair needs to satisfy some infinitesimal constraint. Re-
call the Nijenhuis torsion [𝑇 , 𝑇 ] of a (1, 1)–tensor field 𝑇 is a skew–symmetric tensor
field of type (1, 2) defined as

[𝑇 , 𝑇 ](𝑋, 𝑌 ) = 𝑇 2[𝑋, 𝑌 ] + [𝑇 𝑋, 𝑇 𝑌 ] − 𝑇 [𝑇 𝑋, 𝑌 ] − 𝑇 [𝑋, 𝑇 𝑌 ]. (2.2)

A pair (𝜉, 𝐽) is a strictly pseudoconvex integrable 𝐶𝑅–structure) if and only if 𝐽 is tamed
by CS𝜉 –ie 𝑑𝛼(𝑣, 𝐽𝑣) > 0 for all non-zero 𝑣 in 𝜉– and the Nijenhuis torsion [𝐽 , 𝐽] of 𝐽
on 𝜉 vanishes. One can check that [𝐽 , 𝐽] is well defined as a (1, 2)–tensor field on 𝜉, and
it automatically vanishes in dimension three.

Compatible metrics will be the main objects of Chapter 8.

2.3. Flexibility and rigidity
The ℎ-principle question can be vaguely formulated as follows. Given a geometric con-
struction problem, suppose there is no homotopic obstruction to its solution, does there
exist a solution? If yes then the problem is said to satisfies the ℎ-principle or to be on
the flexible side. If not then the problem is on the rigid side. This dichotomy appeared
gradually in immersion theory between 1950 and 1970 but really took off when Gromov
systematized, and expanded, and invented, several general ways of proving ℎ-principles,
see Gromov 1986; Eliashberg and Mishachev 2002.

From the ℎ-principle point of view, the subject of symplectic and contact geometry is
very interesting because it features problems on both sides and the border is surprisingly
rich. In contact geometry, the first rigidity result is Bennequin’s inequality from Ben-
nequin 1983: for any Legendrian knot 𝐿 in ℝ3 or 𝕊3 equipped with its standard contact
structure 𝜉

tb(𝐿) + |𝑟(𝐿)| ≤ −𝜒(𝐿).
In this inequality, tb(𝐿) is the Thurston-Bennequin invariant, it measures how many
turns 𝜉 rotates along 𝐿 compared to the tangent space of any Seifert surface of 𝐿 (i.e.
an embedded surface whose boundary is 𝐿). More generally one can define a Thurston-
Bennequin invariant for any Legendrian knot endowed with a framing, a trivialization
of its normal bundle. The rotation number 𝑟(𝐿) is the degree of the oriented tangent
to 𝐿 in 𝜉 measured against a global trivialization of 𝜉. And 𝜒(𝐿) is the maximal Euler
characteristic of a Seifert surface of 𝐿.

Bennequin reduced this inequality to analogous inequalities, first for knots transverse
to the contact structure (by pushing slightly the Legendrian knot by the flow of a Legen-
drian vector field transverse to it), and then for braids, after proving that any transverse
knot can be braided. Note that a braid is a knot (or link) that is positively transverse
to all pages of the canonical open book of 𝕊3, whose pages are disks and whose binding
is the unknot. In order to prove the inequality for braids, Bennequin first proved that
any Seifert surface with minimal genus bounding a given braid Γ is isotopic, relative
to Γ, to what he calls a Markov surface Σ: a surface transverse to the binding of the
canonical open book and whose tangencies with pages are all saddles. He then studied
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the family of intersections between Σ and pages, and the foliation printed by pages on Σ.
Bennequin’s inequality was then proved as a combinatorial constraint on these objects.
Somewhat related constraints reappeared in Eliashberg 1992; Giroux 2000.

Bennequin’s inequality proves in particular that there can be no embedded disk in
the standard contact ℝ3 looking like Figure 2.1. Since Eliashberg 1989, such disks and

Figure 2.1.: An overtwisted disk

the contact manifolds containing them are called overtwisted and characterize a flexible
class of contact manifolds.

The main topological tool to study contact 3-manifold is the characteristic foliation.
The characteristic foliation of a surface 𝑆 in a contact 3–manifold (𝑉 , 𝜉) is the singular
foliation 𝜉𝑆 tangent to 𝑇 𝑆 ∩ 𝜉, see Figure 2.2. This foliation completely determines

Figure 2.2.: A characteristic foliation, showing a singular point on top, a closed leaf and
spiraling.

the germ of 𝜉 along 𝑆. In higher dimension, the characteristic foliation is the singular
foliation tangent to the CS𝜉-orthogonal of 𝑇 𝑆.

The main result of ibid. states that two overtwisted contact structures that are ho-
motopic among plane fields are homotopic among contact structures. Our goal here
is to describe the main geometric construction because a related phenomenon will be
crucial in Chapter 8. But we need to explain (very roughly) its context. Starting with a
homotopy of plane fields between two contact structures, one can first ensure that there
is a fixed disk as in Figure 2.1 all along the homotopy. Then one uses ideas coming from
Thurston’s study of foliations to get a homotopy of contact structures outside a ball, and
make sure that, near the boundary of this ball the plane field is “almost constant”. After
taking an embedded connected sum of this ball and a neighborhood of an overtwisted
disk, one gets to the situation of the following observation.
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Key observation 2.5. Let ℱ be a singular foliation printed by a plane field on a sphere
which has exactly two singularities 𝑝± where 𝜉 = ±𝑇 𝑆 and 𝜉 is cooriented towards 𝑝+
along all closed leaves in 𝜉𝑆 except for two closed leafs near 𝑝−. There a contact structure
on a ball which prints ℱ on the boundary. This contact structure is sufficiently canonical
to be built continuously with respect to any number of parameters.

Indeed, assume for instance that we try to fill the singular foliations of Figure 2.3.
Then one can use the restriction of ker(cos(𝑟)𝑑𝑧 + 𝑟 sin(𝑟)𝑑𝜃) to the ball obtained by

Figure 2.3.: A typical movie of foliations 𝜉𝑠𝐵′. First 𝐵 has a North-South dynamics
hence contributes nothing, and we see only the foliation of a neighborhood
of the overtwisted disk. Then a closed leaf appears in 𝜉𝑠𝐵 then a whole
interval of them. Then it disappears the same way it came.

rotating the half disks of Figure 2.4 around the 𝑧-axis.

Figure 2.4.: The family of spheres corresponding to Figure 2.3. The solid vertical line is
the rotation axis. The dashed one indicates the cylinder where 𝜉 is horizontal
again.

2.4. Holomorphic curves in symplectic manifolds
Despite the early successes of variational methods, Eliashberg’s 𝐶0-rigidity of symplectic
diffeomorphisms (discussed in Section 5.3.3), and Bennequin’s theorem, one can say that
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the rigid side of symplectic topology took off with the introduction of holomorphic curves
in Gromov 1985. Gromov sought to extend to symplectic manifolds the usefulness of
holomorphic curves on complex manifolds, especially Kähler manifolds (that are both
complex and symplectic). The natural object from the Kähler point of view is a pair
(𝜔, 𝐽) where 𝜔 is symplectic and 𝐽 is an almost complex structure compatible with 𝜔,
ie. 𝜔(·, 𝐽·) is a Riemannian metric. From the point of view of Key observation 2.8 below,
it is natural to relax this condition and ask that 𝐽 is tamed by 𝜔, ie. 𝜔 is positive on
(oriented) complex lines: for every non-zero vector 𝑣, 𝜔(𝑣, 𝐽𝑣) > 0.

Key observation 2.6. On every symplectic manifold (𝑋, 𝜔), the space of almost complex
structures tamed by 𝜔 is non-empty and contractible. The same holds for compatible
almost complex structures.

Indeed, if we fix an auxiliary Riemannian metric 𝑔 then 𝜔 = 𝑔(𝐴·, ·) for some skew-
symmetric endomorphism 𝐴, and 𝐽0 = (

√
𝐴𝐴∗)−1𝐴 is an almost complex structures

compatible with 𝜔. Other almost complex structures tamed by 𝜔 can be analysed using
the Cayley transform 𝐽 ↦ (𝐽 + 𝐽0)−1(𝐽 − 𝐽0) which sends tamed and contractible
complex structures to sections of bundles with contractible fibers (this proof is not quite
the one in ibid., it comes from Sévennec).

The next crucial point is that holomorphic curves live in finite dimensional families.

Key observation 2.7. Holomorphic curves that are closed or have suitable boundary
or asymptotic constraints are solutions of a Fredholm elliptic PDE problem.

Here Gromov was inspired by the Bers-Vekua theory of equations related to the
Cauchy-Riemann or Beltrami operators. A key aspect is that, in order to study the
local properties of the holomorphic curves equation, one can zoom near any point until
one barely sees the difference with an integrable complex structure.

Inspiration for the next ingredient came from algebraic geometry and also Sacks and
Uhlenbeck 1981 studying minimal surfaces.

Key observation 2.8. Spaces of holomorphic curves with bounded area for a tamed
almost complex structures can be compactified using other spaces of holomorphic curves.

Indeed the taming condition allows to control the 𝐿2 norm of the gradient of the
derivative of a holomorphic curve by its area. Together with 𝐶0 bounds, and elliptic
regularity, this is almost sufficient to control everything. Compactness can fail only
because energy concentrates more and more near finitely many points to create broken
holomorphic curves.

Gromov 1985 contains many spectacular results obtained in the general setup roughly
sketched above but, for our purposes, the main ones concern the definition of the Gromov
width: the supremum of radii of Darboux balls that can be symplectically embedded into
a given manifold which later inspired the definition of Giroux torsion ; the absence of
exact Lagrangian submanifolds in ℂ𝑛 which will come back in Chapter 9 ; tightness
of fillable contact manifolds explained in Section 2.7.2 ; and ideas about foliation by
spheres which will appear in Sections 3.5 and 4.3.
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2.5. Floer homologies
After the Big Bang of ibid., the next revolution came from Floer 1988c introducing Floer
theory, which we need to briefly describe. The story starts with Morse theory on (finite
dimensional) closed manifolds. Given a Morse function 𝑓 with distinct critical value,
the homotopy type of sublevel sets {𝑓 ≤ 𝑎} changes in a controlled way when 𝑎 moves
through a critical value, and this allows to tie the topology of the manifold to critical
point theory. This is still useful in infinite dimension when the index of critical points is
finite, the main example arises in Riemannian geometry with the energy function, which
characterizes geodesics. Several problems in symplectic geometry are also characterized
by some variational property. The most emblematic one is existence of contractible
periodic orbits of a Hamiltonian vector field 𝑋𝐻. Those are critical points of the action
functional on the space of loops 𝛾 ∶ 𝕊1 → 𝑋 having some extension 𝑢 ∶ 𝔻2 → 𝑋, for a
symplectically aspherical manifold (𝑋, 𝜔):

𝓐𝐻(𝛾) = − ∫
𝔻2

𝑢∗𝜔 − ∫
𝕊1

𝐻𝑡(𝛾(𝑡))𝑑𝑡.

This action functional (or its opposite) does not have finite index critical points. How-
ever, it was realized by Thom 1949; Smale 1960; Witten 1982 that homological conse-
quences of Morse theory do not really need the detailed description of topology changes
at critical points, they only depend on spaces of gradient trajectories between critical
points. This observation is not enough to handle the case of the action functional tough,
because the natural candidate gradient flow is not well defined (at least not in useful
function spaces). Floer overcame all these difficulties.

Key observation 2.9. Although both the negative and the positive eigenspace of the
Hessian of the action functional at a critical point are infinite dimensional, and its
gradient has no flow, there are well-defined finite dimensional spaces of trajectories
between any two given critical points.

Part of the explanation is that, although indices are infinite, there is a notion of finite
relative indices, which play the role of the difference of indices between two critical points.
Regarding the absence of flow, the key paradigm shift is to stop looking for solutions
of an evolution problem, but rather consider the complete trajectory as solution of an
elliptic PDE, which is more or less directly a holomorphic curve equation.

This allows to use variations on Gromov’s compactification of spaces of holomorphic
curves by other spaces of holomorphic curves, with additional inspiration from the be-
havior of spaces of gradient trajectories in finite dimensional manifolds. In contrast
with the closed curve theory, the compactification is obtained by adding codimension
one pieces (instead of codimension 2), and this gives rise to homological theories, as in
Morse theory.

Key observation 2.10. Suppose we have a set 𝑆, and manifolds ℳ(𝑥, 𝑦) for each pair
of objects 𝑥 and 𝑦 in 𝑆. On the ℤ/2 vector space spanned by 𝑆, let 𝜕 be the linear map
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sending 𝑥 in 𝑆 to the sum of |ℳ(𝑥, 𝑦)|𝑦 over all 𝑦 such that ℳ(𝑥, 𝑦) has dimension
zero. Assume that, whenever ℳ(𝑥, 𝑦) has dimension 1, it can be compactified to a
manifold with boundary by adding the union of all ℳ(𝑥, 𝑧) × ℳ(𝑧, 𝑦) such that ℳ(𝑥, 𝑧)
and ℳ(𝑧, 𝑦) have dimension zero. Then 𝜕 ∘ 𝜕 vanishes so that it defines a homology
vector space.

Indeed one then have:

𝜕𝜕𝑥 = ∑
𝑦

(∑
𝑧

|ℳ(𝑥, 𝑧)| |ℳ(𝑧, 𝑦)|) 𝑦

and, by assumption, the coefficient appearing is the number of boundary components of a
compact 1-manifolds, which vanishes modulo two. With more work, one can often replace
|ℳ(𝑥, 𝑦)| with signed count of elements and get a homology theory over ℤ coefficients.

Early applications of Floer theory dealt with periodic orbits of Hamiltonian flows
in Floer 1988c, intersection between Lagrangian submanifolds in Floer 1988b and 3-
manifold topology in Floer 1988a.

2.6. Complex and symplectic convexity
2.6.1. From periodic orbits to convexity
Some notion of convexity for the boundary of a symplectic manifold first arose in the
study of periodic orbits of Hamiltonian systems.

Key observation 2.11. If two autonomous Hamiltonians on a symplectic manifold
admit the same hypersurface 𝑆 as a regular level set then their flows on 𝑆 are the same
up to parametrization.

Indeed if two functions 𝐻 and 𝐾 have 𝑆 as a common regular level set then their
differential are colinear along 𝑆.

In Weinstein 1979, the author tried to understand what kind of intrinsically symplectic
geometric feature of hypersurfaces allowed to prove existence of periodic orbits on a fixed
energy level, especially in Rabinowitz 1979:

“ Our principal discovery is that a simple geometric feature is common to
all the situations in which the existence of periodic orbits has been proven by
variational methods.” (Weinstein 1979)

Weinstein then defines contact type hypersurfaces in a symplectic manifold and char-
acterize them by what is now the standard definition: 𝑆 is a contact type hypersurface
in (𝑋, 𝜔) if, near 𝑆, there is vector field 𝑍 transverse to 𝑆 and dilating 𝜔: ℒ𝑍 𝜔 = 𝜔.

Such fields 𝑍 were later called Liouville fields, because a canonical example is the
radial field in the cotangent fibers which is transverse to sphere bundles. The other
canonical example is the radial vector field in a symplectic vector space. In both cases,
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convex subset containing the origin (in fibers) have contact type boundary, so we have
a first hint of the etymology of “symplectic convexity”.

In this situation, the common line field of Key observation 2.11 is the line field spanned
by the Reeb vector field of the contact form 𝜄𝑍𝜔|𝑇𝑆. This paper ends with the famous
statement of the Weinstein conjecture (with an extra 𝐻1 = 0 hypothesis which is now
believed to be unnecessary caution): Reeb vector fields on closed contact manifolds
should always have closed orbits.

Fifteen years later, a lot of further work on periodic orbits in Hamiltonian and Reeb
dynamics yielded further insight on this topic. In particular, some results gave existence
of periodic orbits on almost every energy level. In the contact type case, this is enough
to get existence on a fixed level because the dynamics on levels transverse to a given
Liouville field are conjugated. Hofer and Zehnder 1994 then defined stable hypersurfaces
to be those where this last property hold and remarked that contact type hypersurfaces
are not the only examples. This will play a role in Chapter 7.

2.6.2. From Stein to Weinstein
From the point of view of holomorphic curves described in Section 2.4, it is natural to
consider how notions of convexity in complex geometry can be adapted to symplectic
manifolds.

Before turning to convexity in complex geometry, we need to recall some notions in
Riemannian geometry (which will also play a key role in Chapter 8). The most direct
analog of elementary convexity in Riemannian geometry is to say that a subset 𝐴 of a
Riemannian manifold 𝑀 is convex if, between every pair of points 𝑝 and 𝑞 in 𝑀 , there
is a geodesic 𝛾 ⊂ 𝐴 which is the only length minimizing geodesic between 𝑝 and 𝑞 in
𝑀 (see e.g. Chavel 2006). Since we are interested in contact boundaries of symplectic
manifolds, we assume that 𝐴 is a codimension 0 submanifold with smooth boundary, and
turn to some weaker convexity requirement about the boundary of 𝐴. We say that 𝜕𝐴 is
convex if every geodesic 𝛾 which is tangent to 𝜕𝐴, say at time 0, is locally outside 𝐴 for
times close to 0. More precisely, if 𝑓 is a regular equation of 𝜕𝐴 which is positive outside
𝐴 then (𝑓 ∘ 𝛾)″(0) should be positive, i.e. the restriction of 𝑓 to the geodesic 𝛾 should
be subharmonic. Equivalently, the second fundamental form II of 𝜕𝐴 with outward
coorientation should be positive definite. If 𝑓 is normalized to have ‖∇𝑓‖ = 1 along
𝜕𝐴 then II = Hess 𝑓|𝑇𝜕𝐴 and, maybe after post-composing 𝑓 with a suitable convex
function from ℝ to ℝ, convexity of 𝜕𝐴 is equivalent to positivity of Hess 𝑓 along 𝜕𝐴,
including the transverse direction. In other words, the restriction of 𝑓 to any geodesic
should be subharmonic.

In complex geometry, we want holomorphic curves to play a role which is at least
partially analogous to geodesics. So we are interested in domains 𝐴 (say in ℂ𝑛 for
simplicity) such that any holomorphic curve tangent to 𝜕𝐴 is locally outside 𝐴. In order
to understand what this implies on the 2-jet of 𝜕𝐴, recall that holomorphic curves are
area minimizing and their tangent space (at immersed points) is a complex line. Hence,
for every vector field 𝑉 tangent to an immersed holomorphic curve 𝐶 and vector field 𝑌
orthogonal to 𝐶, ⟨𝐷𝑉 𝑉 + 𝐷𝑖𝑉 𝑖𝑉 , 𝑌 ⟩ = 0 (see e.g. Gallot, Hulin, and Lafontaine 2004,
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Section 5.C.1). The simplest case is when 𝜕𝐴 contains an immersed holomorphic curve
passing through some point 𝑝. Then we learn that, at 𝑝, the mean curvature II(𝑣)+II(𝑖𝑣)
vanishes for some non-zero 𝑣 in 𝜉 = 𝑇 𝜕𝐴 ∩ 𝑖𝑇 𝜕𝐴 which is the union of all complex lines
contained in the real subspace 𝑇 𝜕𝐴 (and also the maximal complex subspace of 𝑇 𝜕𝐴).
On this complex subspace we saw the role of the quadratic form 𝐿𝜕𝐴(𝑣) = II(𝑣) + II(𝑖𝑣)
called the (normalized) Levi form of 𝜕𝐴. The cooriented hypersurface 𝜕𝐴 is called
𝑖-convex if 𝐿𝜕𝐴 is a positive definite quadratic form.

Turning to the functional point of view, we see that 𝜕𝐴 is 𝑖-convex if its regular
equations are subharmonic when restricted to any holomorphic curve tangent to 𝜕𝐴.
Again, composing with a suitable convex function allows to get this condition for all
holomorphic curves near 𝜕𝐴. From an Euclidean perspective this is written as positivity
of 𝐿𝑓(𝑣) = Hess 𝑓(𝑣, 𝑣) + Hess 𝑓(𝑖𝑣, 𝑖𝑣) but it is better to rewrite 𝐿𝑓(𝑣) = 𝑖𝜕 ̄𝜕𝑓(𝑣, 𝑖𝑣) =
−𝑑(𝑑𝑓∘𝑖)(𝑣, 𝑖𝑣). A short computation proves that, if 𝜑 is holomorphic then 𝐿𝑓∘𝜑(𝑥)(𝑣) =
𝐿𝑓(𝜑(𝑥))(𝜑′(𝑥)𝑣) so positivity of 𝐿𝑓 is an intrinsic condition in complex geometry. We
record all this discussion in the following.

Key observation 2.12. The notion of 𝑖-convex hypersurfaces and functions is invariant
under biholomorphic maps. A holomorphic curve in a domain 𝐴 cannot be tangent to
the boundary 𝜕𝐴 if the latter is 𝑖-convex.

We now discuss one way this notion of 𝑖-convexity is important from the complex point
of view. In complex analysis, a special role is played by complex manifolds that have
“many holomorphic functions”. Those complex manifolds are the one where most of
one-dimensional complex analysis results carry through, see the introduction of Grauert
and Remmert 1979.

The most obvious example is ℂ𝑛 and its analytic submanifolds. After a long quest
(summarized in a symplectic friendly way in Eliashberg and Cieliebak 2012, Chapters 2
and 5), it was proved that they are essentially the only ones.

We want to explain how this is linked to convexity. Again for simplicity we mention
only open subsets of ℂ𝑛. An real valued function 𝜑 on an open subset Ω in ℂ𝑛 allows
to endow the trivial line bundle Ω × ℂ with the hermitian metric ‖ · ‖𝜑 = 𝑒−𝜑‖ · ‖𝑒𝑢𝑐. If
𝜑 is exhausting and 𝑖-convex then the Chern connexion of ‖ · ‖𝜑 has positive curvature.
Hörmander’s 𝐿2 theory of ̄𝜕 then allows to produce holomorphic functions embedding
Ω as a proper analytic submanifold of some ℂ𝑁. We will use this as a definition.

Definition 2.13. A Stein manifold is a complex manifold that admits an exhausting
𝑖-convex function.

The link with the discussion of hypersurfaces is that the boundary of the corresponding
disk bundles {(𝑧, 𝑣); ‖𝑣‖𝜑 ≤ 𝑟} are then 𝑖-concave (i.e. its complement has 𝑖-convex
boundary). This is consistent with the existence of holomorphic sections since those
provide many (local) holomorphic curves tangent to the boundary of disk bundles from
the inside. This story is parallel to the Kodaira embedding theorem where positive
curvature of a line bundle over a closed manifold allows to build enough holomorphic
sections to get an embedding into some projective space.
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These positive curvature ideas will come back to the symplectic world in Section 5.1.1,
but here we only want to see how this influences the definition of convex symplectic
manifolds.

Let 𝜑 be an 𝑖-convex function on a Stein manifold. An equivalent reformulation of
𝑖-convexity is that the 2-form 𝜔𝜑 ∶= −𝑑(𝑑𝜑 ∘ 𝑖) is non-degenerate. So we get an exact
symplectic form on 𝑋. In addition we get a Riemannian metric 𝑔𝜑 ∶= 𝜔𝜑(·, 𝐽·) and the
gradient of 𝜑 with respect to 𝑔𝜑 is a Liouville vector field.

One of the insights of Eliashberg and Gromov 1991 is that different exhausting 𝑖-convex
functions on the same Stein manifold yield isomorphic symplectic structures (it basically
comes from convexity of the 𝑖-convexity condition but one must be careful with critical
points that escape towards infinity). This common isomorphism class should see at least
some complex geometry, and provide interesting examples of symplectic manifolds.

The first result in this direction is a very geometric new proof of the Lefschetz-Thom-
Andreotti-Frankel theorem: an 𝑖-convex Morse function on a complex manifold 𝑋 has
critical points of index at most dimℂ 𝑋. Note that 𝑖-convexity is an open condition in
𝐶2-topology so assuming Morse singularity does not cost anything.

Key observation 2.14. Let (𝑋, 𝑑𝜆) be an exact symplectic manifold and let 𝑍 be the
vector field 𝑑𝜆-dual to 𝜆: 𝜄𝑍𝑑𝜆 = 𝜆. The form 𝜆 vanishes on the stable manifold
𝑊 𝑠(𝑍, 𝑝) of any hyperbolic fixed point 𝑝 of 𝑍.

Indeed the flow of 𝑍 exponentially dilates 𝜔 = 𝑑𝜆 since ℒ𝑍 𝜔 = 𝜔 and any vector
tangent to such a stable manifold is crushed by the differential of this flow. In particular
𝑊 𝑠(𝑋, 𝑝) has dimension at most dimℝ(𝑋)/2. Applying this observation to the gradient
of a 𝐽 -convex function 𝜑 with respect to 𝑔𝜑 yields the announced constraint on Morse
indices.

Definition 2.15. A Weinstein manifold is a symplectic manifold (𝑊, 𝜔) equipped with
an exhausting Morse function 𝜑 and a Liouville pseudogradient 𝑍: 𝑑𝜑(𝑍) ≥ 𝑐‖𝑑𝜑‖ and
ℒ𝑍 𝜔 = 𝜔. A Liouville manifold is an exact symplectic manifold (𝑊, 𝜔) with equipped
with some complete Liouville vector field 𝑍 for which there an exhaustion by compact
domains 𝑊𝑘 whose boundaries are transverse to 𝑍.

2.6.3. Morse theory and Weinstein handles
In Section 2.6.2, Key observation 2.14 about stable manifolds of Liouville vector fields was
not fully used. There we used isotropy but not the stronger conclusion that the Liouville
form vanishes (which follows from isotropy and the fact that the Liouville field is tangent
to the stable manifold). One extra information coming from this strengthening is that
such stable manifolds intersects regular level sets in submanifolds which are isotropic
for the contact structure induced by the Liouville form. Using standard neighborhood
techniques, one can then prove that a neighborhood of a stable manifold cut off by a
regular level set is a Weinstein handle, introduced in Eliashberg 1990b; Weinstein 1991.

In particular all Weinstein handles in dimension 2𝑛 have index at most 𝑛. This
is a strong constraint on the topology of a Weinstein manifold. In particular it implies
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vanishing homology starting from dimension 𝑛+1. Another topological constraint comes
from the existence of an almost complex structure, which can be checked by obstruction
theory. Eliashberg 1990b proved that, starting from dimension 6, those two necessary
conditions for existence of a Weinstein structure are sufficient and one can even build a
corresponding integrable complex structure. In dimension 4 there are additional framing
conditions for 2-handles. In all cases this is an example of validity of the ℎ-principle
without parameter. Adding parameters is not possible in general if there are handles of
index 𝑛, but see Section 5.2.2 for important special cases.

The next natural question was to understand whether similar topological constraints
existed for Liouville manifolds. This was settled in dimension 4 by McDuff 1991a which
constructed a Liouville form on Σ×[−1, 1] for any closed orientable surface Σ with genus
at least 2. This construction had no obvious analog in higher dimensions and prompted
the following question.

“ Does there exist a complete convex symplectic manifold of dimension 2𝑛 > 4
with non-trivial (2𝑛 − 1)-dimensional homology? ” (Eliashberg and Gromov
1991, Question 3.2.B)

This question was quickly answered in dimension 6 by Geiges 1994 but then had stalled
for almost twenty years. It will be answered in every dimension in Chapter 7.

2.7. Fillable contact manifolds
2.7.1. Contact manifolds at infinity
In a Weinstein manifold (𝑋, 𝜔, 𝑍, 𝜑), every regular sublevel set of 𝜑 has contact type
boundary, the contact structure being the kernel of the restriction of 𝜆 = 𝜄𝑍𝜔. If we
assume that 𝜑 has only finitely many critical points, then eventually all those contact
manifolds are isomorphic, and one would like to see this all those manifolds as incarna-
tions of a single contact manifold living “at infinity of 𝑋”.

However we would like everything but 𝜔 to play only an auxiliary role. For a long
time it was an open question whether the symplectic structure alone would be enough
to recover a contact manifold at infinity. This changed with the breakthrough of Courte
2014. In every dimension at least 6 there are examples of Liouville (or even Stein)
manifolds admitting a pair of complete finite type Liouville vector fields whose associated
contact manifolds at infinity are not even homeomorphic.

There is however a better solution to this “problem” than fixing a Liouville form. This
solution was invented by Giroux (at a time when he probably suspected the existence of
the Courte phenomenon but before Courte actually exhibited it).

Definition 2.16. Let Σ be a compact manifold with boundary and 𝜔 a symplectic form
on the interior Σ̊ of Σ. The pair (Σ, 𝜔) is an ideal Liouville domain if there exists an
auxiliary 1-form 𝛽 on Σ̊ such that:

• 𝑑𝛽 = 𝜔 on Σ̊,
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• For any smooth function 𝑓 ∶ Σ → [0, ∞) with regular level set 𝜕Σ = 𝑓−1(0), the
1-form 𝑓𝛽 extends smoothly to 𝜕Σ such that its restriction to 𝜕Σ is a contact form.

In this situation, 𝛽 is called a Liouville form for (Σ, 𝜔).

One important point of the above definition, compared to the definition in the previous
section, is that the primitive (or its dual vector field) is not part of the data. And still
we have the following result from Courte 2015, refining an earlier result by Giroux.

Key observation 2.17. The space of Liouville forms of an ideal Liouville domain
(Σ, 𝜔) is contractible and there exists a single contact structure 𝜉 on 𝜕Σ (not only an
isotopy class thereof) such that, for every regular equation 𝑓 of 𝜕Σ and every Liouville
form 𝛽, 𝑓𝛽 restricts to 𝜕Σ as an equation for 𝜉.

Indeed one can check that 𝜉 = ker(𝑓2𝜔|𝑇𝜕Σ) for any equation 𝑓 , and the other
properties are obvious.

So the minimal relevant information (in addition to 𝜔) is not contained in a choice of
𝛽 but rather in the diffeomorphism type of the compactification going from Σ̊ to Σ.

2.7.2. Holomorphic curves and flavors of convexity
In the setup of compact symplectic manifolds with contact type boundary or ideal Liou-
ville domains, one can choose an almost complex structure compatible with the symplec-
tic structure, and such that holomorphic curves cannot escape through the boundary.
Indeed one can build a compatible 𝐽 so that there is a collar neighborhood (−1, 0] × 𝜕𝑋
where the projection onto (−1, 0] is 𝐽 -convex (as defined in Section 2.6.2).

Eliashberg and Gromov 1991 analysed the symplectic origin of this construction as
follows. Every co-oriented contact structure 𝜉 carries a natural conformal class CS𝜉 of
symplectic structures: if 𝜆 is any contact form for 𝜉, then 𝑑𝜆|𝜉 defines a symplectic
bundle structure that is independent of the choice of 𝜆 up to scaling. If (𝑊, 𝜔) is a
symplectic manifold and 𝑉 = 𝜕𝑊 carries a positive contact structure 𝜉, one says that
𝜔 dominates 𝜉 if the restriction 𝜔|𝜉 belongs to CS𝜉. This is obviously the case if 𝑉 is a
contact type hypersurface.

In dimension three this domination condition is strictly weaker than the contact type
condition. However, McDuff 1991a, Lemma 2.1 states that, from dimension 5 upward,
the domination condition already implies that (𝑊, 𝜔) is a strong filling. Even without
this proof, one can see that the domination condition on 𝜔 is open in dimension 3 but
not in higher dimensions. Then higher dimensional contact topology lacked a definition
of weak fillings for twenty years, until the results surveyed in Chapter 7. In the mean
time, terminology stabilized in dimension 3 as follows: (𝑊, 𝜔) is a strong symplectic
filling of (𝜕𝑊, 𝜉) is there is a primitive 𝜆 of 𝜔 defined near 𝜕𝑊 , whose 𝜔-dual vector
field points outward and such that 𝜉 = ker 𝜆|𝑇𝜕𝑊 , an exact or Liouville filling if such
a 𝜆 exists on the whole 𝑊 and a weak filling if 𝜔 dominates 𝜉. All these condition are
a priori weaker than existence of a Weinstein or Stein filling. The latter two conditions
are equivalent according to Eliashberg 1990b, see Section 2.6.3.
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All those fillability conditions imply tightness. This was proved in Gromov 1985, Sec-
tion 2.4.𝐷′

1 –at least under the extra assumption that (𝑊, 𝜔) is symplectically aspherical:
for all 𝑣 ∶ 𝕊2 → 𝑊 , ∫ 𝑣∗𝜔 = 0. We now sketch the argument since it will play a major
role in Chapters 7 and 10.

Key observation 2.18. Let 𝑆 be a surface in a contact 3-manifold (𝑉 , 𝜉). We fix a
trivialization 𝑆𝜉 ≃ ℝ × 𝑀 . Assume that 𝜉𝑆 has an elliptic singularity at some point 𝑝,
i.e. we have the situation at the center of Figure 2.1. Then there is an almost complex
structure 𝐽 on ℝ×𝑀 and a family of Bishop disks: 𝐽-holomorphic disks 𝑢𝑐 ∶ 𝐷2 → ℝ×𝑀 ,
𝑐 ∈ [0, 1) such 𝑢𝑐(𝜕𝐷2) ⊂ {0} × 𝑆 goes once around the singularity, and 𝑢𝑐 converges
uniformly to 𝑝 when 𝑐 goes to one.

Indeed one can consider the model case where 𝑉 is the unit sphere in ℂ2, 𝑆 is a
neighborhood of 𝑝 = (0, 1) in 𝑉 ∩{ℑ𝑧2 = 0}, and the image of 𝑢𝑐 is 𝑉 ∩{ℜ𝑧2 = 𝑐, ℑ𝑧2 =
0}.

Key observation 2.7 applies in this case to prove that, after perturbation of 𝐽 and re-
moving reparmetrization degrees of freedom, 𝐽 -holomorphic curves homotopic to 𝑢𝑐
(with the same boundary condition) form a 1-dimensional manifold ℳ. One then
proves the existence of a neighborhood 𝑈 of (0, 𝑝) such that any 𝐽 -holomorphic disk
𝑢 ∶ (𝐷2, 𝜕𝐷2) → (𝑆𝜉, {0} × 𝑆) which intersects 𝑈 is, up to parametrization, one of the
𝑢𝑐’s. The uniqueness ensures that the moduli space ℳ has at least one end. Assume
for contradiction that (𝑉 , 𝜉) is overtwisted and filled by some (𝑊, 𝜔). Then we can use
the center of an overtwisted disk to start a Bishop family. Almost complex convexity
of 𝜕𝑊 guarantees these holomorphic disks cannot escape 𝑊 and their boundary stays
transverse to 𝜉. The geometry of the setup also ensures an energy bound so that Key
observation 2.8 ensures that the Bishop family is the only possible end of this family
of holomorphic curves. This is a contradiction since there is no 1-dimensional manifold
with exactly one end.

The other early highlight of the study of symplectic fillings is ibid., Section 2.4.𝐴″
2

proving that any symplectic manifold containing no symplectic 2-sphere and having an
end symplectomorphic to the standard ℝ4 is globally symplectomorphic to it. This
can be seen as a result about the classification of symplectic fillings of the standard
contact structure on 𝕊3. It was proved using holomorphic spheres in a compactification
containing two spheres whose union has a neighborhood isomorphic to a neighborhood
of (𝕊2 × {∗}) ∪ ({∗} × 𝕊2) in 𝕊2 × 𝕊2.

This filling classification theorem was improved using holomorphic disks in Eliashberg
1990a, Theorem 5.1 which removed the hypothesis that the contact structure is standard.
This information then became part of the conclusion, ibid., Corollary 5.3. Note that it
was not known at the time that all tight contact structures on 𝕊3 are isotopic to the
standard one. Actually several tools from ibid. were generalized from the setup of fillable
contact structure to tight ones in Eliashberg 1992, and this was important in order to
get uniqueness of tight contact structures up to isotopy on 𝕊3.

38



3. Contact convexity

3.1. Convex contact structures
3.1.1. From symplectic convexity to contact convexity
We have seen what led to the definition of a Liouville manifold as a symplectic manifold
(𝑊, 𝜔) admitting a complete vector field 𝑋 dilating the symplectic form: ℒ𝑋 𝜔 = 𝜔.
Such a manifold is called Weinstein if in addition 𝑋 is pseudogradient for some exhaust-
ing Morse function and, in that case we get a nice symplectic handle decomposition.

We are now ready to discuss the last section of Eliashberg and Gromov 1991. The
authors wanted to extend the above definitions to the case of contact manifolds. In order
to get a definition which depends on a contact structure only and not a choice of contact
form, they consider contact vector fields as the analogue of a Liouville vector field. Since
contact vector field always exist, they skipped the Liouville case, and defined a contact
manifold to be convex if there is a contact vector field which is pseudogradient for some
exhausting Morse function.

They noticed immediately that the standard sphere is convex and asked the following
questions:

“ Do there exist non-convex contact manifolds? If they do, what is their
relationship with convex symplectic manifolds? For instance, let (𝑉 , 𝜉) be a
fillable contact manifold. Is it convex? Is the converse true? ” (ibid.)

The “most fillable” contact manifold 𝑉 would be a regular level set of a Weinstein
structure (𝑊, 𝜆, 𝜑). But, the Morse function 𝜑 restricts to a constant function on 𝑉 , and
this does not seem to be a very good starting point to prove that the induced contact
structure is convex…

Faced with this obvious problem, Giroux turned the question inside out. Starting with
a convex contact manifold (𝑉 , 𝜉), he exhibited convex symplectic manifolds inside 𝑉 .

3.1.2. Convex hypersurfaces
Let (𝑉 , 𝜉) be a convex contact manifold with Morse function 𝑓 and a contact pseudo-
gradient 𝑋. Regular level sets of 𝑓 are hypersurfaces transverse to 𝑋 along which we
want to attach some model handles. This motivates the following definition where we
do not impose existence of any globally defined (𝑓, 𝑋) pair.

Definition 3.1 (Giroux 1991). A hypersurface 𝑆 in a contact manifold (𝑉 , 𝜉) is 𝜉–
convex if it is transverse to a contact vector field or, equivalently, if it has a so called
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homogeneous neighborhood: a tubular neighborhood 𝑆 × ℝ where the restriction of 𝜉 is
ℝ–invariant.

For instance, in (ℝ2𝑛+1, ker(𝑑𝑧 + ∑ 𝑥𝑖𝑑𝑦𝑖 − 𝑦𝑖𝑑𝑥𝑖)), any round sphere around the
origin is 𝜉-convex since it is transverse to the contact vector field 2𝜕𝑧 +∑ 𝑥𝑖𝜕𝑥𝑖

+𝑦𝑖𝜕𝑦𝑖
.

In (𝕋3, ker(cos(𝑧)𝑑𝑥 − sin(𝑧)𝑑𝑦)), the tori {𝑥 = cst} are 𝜉-convex because they are
transverse to 𝜕𝑥.

In a homogeneous neighborhood 𝑆×ℝ of 𝑆, 𝜉 admits a contact form 𝛼 = 𝑢𝑑𝑡+𝛽 where
𝑡 is the coordinate in ℝ so that 𝑋 = 𝜕𝑡 in 𝑆×ℝ, 𝑢 = 𝛼(𝑋) is a function on 𝑆, and 𝛽 is the
restriction of 𝛼 to 𝑆 (neither 𝑢 nor 𝛽 depend on 𝑡). The set Γ𝑋 = {𝑢 = 0} ⊂ 𝑆 is called
the dividing set of 𝑆 associated to 𝑋. It is the intersection of 𝑆 with the characteristic
hypersurface of 𝑋: Σ𝑋 = {𝑋 ∈ 𝜉}. Generically Σ𝑋 is cut out transversely by the
equation 𝜄𝑋𝛼 = 0 and we will always assume this property in the following.

The following is Giroux 1991, Proposition 3.4(i) rewritten in the modern language of
ideal Liouville domains.

Key observation 3.2. Let 𝑆± be the closure of {±𝑢 > 0} in 𝑆. Both 𝑆+ and 𝑆− are
(maybe disconnected) domains in 𝑆 with smooth boundary Γ𝑋 and (𝑆±, 𝑑(±𝛽/𝑢)) are
2𝑛-dimensional ideal Liouville domains.

Indeed, one compute that 𝛼 ∧ 𝑑𝛼𝑛 = 𝜃 ∧ 𝑑𝑡 where 𝜃 ∶= (𝑑𝛽)𝑛−1 ∧ (𝑢𝑑𝛽 + 𝑛𝛽 ∧ 𝑑𝑢) is
therefore a volume form on 𝑆. Along Γ𝑋, 𝜃 becomes 𝑛𝛽 ∧ 𝑑𝛽𝑛−1 ∧ 𝑑𝑢 so we learn that
Γ𝑋 is transversely cut-out by 𝑢 and that 𝛽 induces a contact form on Γ𝑋. Outside Γ𝑋
one compute that 𝜃 = 𝑢𝑛+1𝑑(𝛽/𝑢)𝑛 and the observation follows.

Conversely, in order to prove that a hypersurface 𝑆 is 𝜉-convex with dividing set
Γ = {𝑢 = 0} for some function 𝑢 ∶ 𝑆 → ℝ, it is enough to find a contact form 𝛼 whose
restriction 𝛽 to 𝑆 leads to ideal Liouville domain structures (𝑆±, 𝑑(𝛽/𝑢)). Away from Γ
we can assume 𝑢 = ±1 and we are led to the following question: given a manifold 𝑃 and
a 1-form 𝛽 on 𝑃 , does there exist a positive function 𝑓 such that 𝑑(𝑓𝛽)𝑛 is a volume
form? Let Ω be an auxiliary volume form on 𝑃 and let 𝑌 be the unique vector field on
𝑃 such that 𝜄𝑌 (𝛽 ∧𝑑𝛽𝑛−1) = Ω. Note that when 𝛽 is the restriction of a contact form to
𝑃 then 𝑌 directs the characteristic foliation ker(𝑑𝛽) which depends only on the contact
structure. In the general case we can still see that multiplying 𝛽 by 𝑓 multiplies 𝑌 by
ℎ ∶= 𝑓𝑛. And we can compute 𝑑(𝑓𝛽)𝑛 = (𝑑ℎ(𝑌 ) + ℎ div 𝑌 )Ω. So 𝑓 exists if and only if
there exists a function ℎ∶ 𝑃 → ℝ such that

ℎ > 0 and ± (𝑑ℎ(𝑌 ) + ℎ div 𝑌 ) > 0. (3.1)

This problem can be obstructed by the dynamics of 𝑌 and its divergence, e.g. if 𝑌 has
vanishing divergence along a closed orbit 𝛾 then a solution ℎ would have no critical point
on the circle 𝛾. On the other hand if 𝑌 has an orbit 𝛾 travelling between two singular
points 𝑝 and 𝑞 and div 𝑌 is positive at 𝑝 and 𝑞 then there is a solution along 𝛾: any
positive function ℎ which grows sufficiently fast along 𝛾 will do. Similar considerations
prove that the region near Γ is not a problem as long as the characteristic foliation
transversely exits {𝑢 > 0} to enter {𝑢 < 0}.
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This discussion is especially useful in dimension 3 because it uncovers a very convenient
low dimension degeneracy: every closed surface can be approximated in 𝐶∞ topology by
a 𝜉 convex one. Here, the key feature of dimension two is the fact proved in Peixoto 1962
that any vector field on a surface can be approximated by a vector field whose dynamics
is sufficiently simple to solve Equation (3.1) (see Section 3.2.3 for more discussion of
obstructions in this dimension).

For instance, in (𝕋3, ker(cos(𝑧)𝑑𝑥 − sin(𝑧)𝑑𝑦)), the torus {𝑧 = 0} is not 𝜉-convex.
However it can be perturbed to 𝑇𝑘,𝜀 = {𝑧 = 𝜀 sin(𝑘𝑥)} which is 𝜉-convex. Indeed for
small 𝜀, the characteristic foliation of 𝑇𝑘,𝜀 has 2𝑘 closed leaves and all other leaves
spiral between closed leaves, without Reeb component. This foliation is divided by 2𝑘
curves parallel to the closed leaves, which cut the surface into annuli where the foliation
alternatively contracts or expands an area form.

It is also useful to consider surfaces with Legendrian boundary. The approximation
property still holds, provided the Thurston-Bennequin invariant of the boundary is non-
positive, and after some 𝐶0-small isotopy near the boundary. On the other hand Mori
2011 proved that 𝜉-convex approximations of hypersurfaces do not always exist in higher
dimensions.

In order to analyse contact structures near a 𝜉-convex hypersurface, it is fruitful to
turn the construction inside out and start with an ideal Liouville domain (Σ, 𝜔). Any
choice of Liouville form 𝛾 and function 𝑢 which is positive on Σ̊ and vanishes transversely
along 𝜕Σ give a contact structure ker(𝑢𝑑𝑡+𝑢𝛾) on Σ×ℝ. Over the interior, of Σ we can
divide this contact form by 𝑢 to get the usual contactization ker(𝑑𝑡 + 𝛾) whereas, along
𝜕Σ, we get ker(𝑢𝛾) = 𝜉𝜕Σ ⊕ 𝑇 ℝ. Because the space of choices (𝑢, 𝛾) is contractible and
the result along the boundary depends on no choice, we have a notion of contactization of
an ideal Liouville domain which is well defined modulo isotopy relative to the boundary.

Key observation 3.2 can then be rephrased as saying that 𝑆 × ℝ is made of contactiza-
tions of ideal Liouville domains glued along their boundary. Because of the isotopy result
of the previous paragraph, we get a version of Giroux’s realization lemma: starting from
an invariant contact structure 𝜉 = ker(𝑢𝑑𝑡 + 𝛽) on 𝑆 × ℝ, for any other choice 𝑢′𝑑𝑡 + 𝛽′

with the same ideal Liouville domains ({𝑢′ = 0} = {𝑢 = 0} and 𝑑(𝛽′/𝑢′) = 𝑑(𝛽/𝑢)
elsewhere), there is a compactly supported isotopy 𝛿 in 𝑆 × ℝ such the germ of 𝜉 along
𝛿1(𝑆) is the same as the germ of 𝜉′ along 𝑆.

This is especially powerful in dimension 3 because the relevant ideal Liouville domains
become surfaces, so they are completely determined by their topology, and the only
remaining condition in the above paragraph is equality of the dividing sets. In this
dimension we can rewrite the preceding discussion in the following terms.

Definition 3.3. A singular foliation ℱ of a surface 𝑆 is divided by a multi-curve Γ if
there is some area form Ω on 𝑆 and a vector field 𝑌 directing ℱ such that the divergence
of 𝑌 does not vanish outside Γ –we set 𝑆± = {𝑝 ∈ 𝑆; ± divΩ 𝑌 (𝑝) > 0}– and the vector
field 𝑌 goes transversely out of 𝑆+ and into 𝑆− along Γ.

The dividing set Γ𝑋 introduced above indeed divided 𝜉𝑆 and existence of a dividing
set for 𝜉𝑆 is also sufficient for 𝜉-convexity as we have seen. The fact that the dividing
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set essentially determines the germ of contact structure is then precisely stated as the
following observation, which is also valid parametrically.

Key observation 3.4 (Realization Lemma). Let 𝑆 be a 𝜉–convex surface divided by
some multi-curve Γ. For any singular foliation ℱ divided by Γ, there is an isotopy 𝛿𝑡
with support in an arbitrarily small neighborhood of 𝑆 and such that 𝜉′ = 𝛿∗

1𝜉 satisfies
𝜉′𝑆 = ℱ. Equivalently, one has 𝜉𝛿1(𝑆) = 𝛿1(ℱ).

3.1.3. Characteristic hypersurfaces and convex contact structures
The above discussion holds for a hypersurface transverse to any contact vector field. Note
however that, for a general contact vector field, it could be that no closed transverse
hypersurface exists, this happens to every Reeb fields.

We now come back to the special case of pseudogradients. Suppose 𝑋 is a contact
vector field on (𝑉 , 𝜉) which is pseudogradient for some Morse function 𝑓 ∶ 𝑉 → ℝ. In
particular there is a function 𝑐 ∶ 𝑉 → ℝ such that ℒ𝑋 𝛼 = 𝑐𝛼. Let 𝛽 be the 1-form
induced by 𝛼 on Σ𝑋.

Key observation 3.5. The vector field 𝑋 is tangent to its characteristic hypersurface
Σ𝑋, and directs its characteristic foliation. In particular all critical points of 𝑓 belong to
Σ𝑋. At each critical point of 𝑓, ℒ𝑋|Σ𝑋

𝑑𝛽 = 𝑐𝑑𝛽 and the eigenvalue of the linearization
of 𝑋 whose eigendirection is transverse to Σ𝑋 has the sign of 𝑐. If 𝑖 denotes the index
of 𝑓 at 𝑝 then the index of 𝑓|Σ𝑋

at 𝑝 is 𝑖 if 𝑖 ≤ 𝑛 and 𝑖 − 1 otherwise.

Indeed the flow of 𝑋 preserves 𝜉 and 𝑋 itself so it preserves Σ𝑋 and one easily check
that it is 𝑑𝛽-orthogonal to 𝜉 ∩ 𝑇 Σ𝑋. At each critical point of 𝑓 we have 𝜉 = 𝑇 Σ𝑋
hence 𝑑𝛽 is non-degenerate. The index discussion is then parallel to the one concerning
Weinstein manifolds in Key observation 2.14.

This parallel is not a coincidence. Assume that 𝑓 is ordered (i.e. 𝑓(𝑝) < 𝑓(𝑝′)
whenever 𝑝 and 𝑝′ are critical points and ind(𝑝) < ind(𝑝′)). Let Σ = 𝑓−1(𝑎) be a
regular level set of 𝑓 separating critical points of index 𝑛 and 𝑛 + 1. We will see that
Σ𝑋 is then a 𝜉-convex surface divided by Σ𝑋 ∩ Σ into (Σ𝑋)± = {±(𝑓 − 𝑎) > 0}. Let 𝑌
be the restriction of 𝑋 to Σ𝑋. The above observation implies that ± div 𝑌 is positive at
each singular point in (Σ𝑋)± (recall that the divergence does not depend on the volume
form at singular point so we can use ±𝑑𝛽𝑛 there). In addition, 𝑌 has no closed orbit,
or any other form of recurrence, and orbits leaving critical points in (Σ𝑋)+ either go
to (Σ𝑋)− or to another critical point with positive divergence. Hence the discussion
surrounding Equation (3.1) applies, and Σ𝑋 ∖ Σ is Weinstein.

From a topological point of view, the pair (𝑓, 𝑋) gives a simultaneous handle decom-
position of 𝑉 and Σ𝑋 (where indices in 𝑉 and Σ𝑋 are shifted by one for high indices).
One says that Σ𝑋 is an 𝑓-essential hypersurface. The main result of Giroux 1991 is a
converse in dimension 3: starting with a Morse function 𝑓 , and a pseudogradient 𝑋, it
modifies (𝑓, 𝑋) until there is an 𝑓-essential surface Σ, and it builds a contact structure
invariant under the flow of 𝑋 (and such that Σ = Σ𝑋). Historically the first goal of
the realization lemma (Key observation 3.4) was thus to inductively modify the contact
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structure near a regular level in order to be able to extend it to the next handle. Key
observation 3.5 also implies that Σ𝑋 cuts 𝑉 into handlebodies, i.e. each component of
the complement of Σ𝑋 retracts onto a 1-complex, and that Σ𝑋 cuts each regular level
𝑆 of 𝑓 into subsurfaces 𝑆± having the same Euler characteristic.

The modification of (𝑓, 𝑋) to ensure existence of Σ is itself non-trivial. There is no
obstruction coming from handles of index 0 and 1. A 2-handle can be attached along
a circle only if this circle intersects exactly twice the dividing set of the attaching level
set. When this cannot be arranged by isotopy, Giroux inserts a finite sequence of pair
of critical points which are topologically in elimination position. The topology of the
manifold does not change but the dividing set undergoes controlled surgery. This is the
first instance of what later became bypass attachements (see Section 3.2.3). Finally, 3-
handles can be attached only to a sphere with connected dividing set and this is arranged
by the same trick (applied somehow backwards).

The story of this construction and the mysterious definition of 𝑓-essential hypersur-
faces will be taken up in Section 3.3, from the perspective of open book decompositions.

3.2. Topological methods in dimension 3

3.2.1. Early results

Shortly after ibid., Eliashberg 1992 completed the foundations to study tight contact
structures on 3-manifolds by proving uniqueness of tight contact structures on balls
and the Eliashberg-Bennequin inequality on Euler class of a tight contact structure 𝜉
evaluated against a surface 𝑆:

|⟨𝑒(𝜉), [𝑆]⟩| ≤ −𝜒(𝑆) if 𝑆 has positive genus
⟨𝑒(𝜉), [𝑆]⟩ = 0 if 𝑆 is a sphere.

Although that paper “got inspiration from the work Giroux 1991” it uses barehanded
manipulations of characteristic foliations instead of the technology of 𝜉-convex surfaces.
The key point is the elimination lemma which states that, whenever two singularities of
𝜉𝑆 have the same sign and are related by a regular leaf 𝛾 of 𝜉𝑆 they can be eliminated
as in Figure 3.1 by a 𝐶0-small isotopy of 𝑆 supported arbitrarily close to 𝛾. This lemma

Figure 3.1.: Elimination of a pair of singular points.
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of Giroux (with contributions by Fuchs) is of course inspired by Smale’s elimination
lemma in classical Morse theory, but also by earlier work of Eliashberg on surfaces
inside complex surfaces.

Contrasting with the explicit use of the elimination lemma, the Eliashberg-Bennequin
inequalities were reproved using the technology of 𝜉-convex surfaces as soon as Giroux
1993, and what is now called (half of) the Giroux criterion.

Key observation 3.6. Let 𝑆 be a closed 𝜉-convex surface and let Γ be a dividing set
for 𝑆. If a component of 𝑆 ∖ Γ is a disk then the realization lemma can be used to exhibit
an overtwisted disk, unless 𝑆 is a sphere and Γ is connected.

Indeed it is sufficient to find a characteristic foliation divided by Γ and exhibiting an
overtwisted disk. Let 𝑆′ be a component of 𝑆 ∖ Γ which is a disk and denote by 𝛾 its
boundary. Let 𝑆″ be the other component containing 𝛾 in its boundary. Since Γ is not
connected, 𝑆″ has more boundary components. Using this, one can construct a foliation
ℱ on 𝑆 which is divided by Γ, has a circle of singularities 𝐿 in 𝑆″, is radial inside a disk
bounded by 𝐿 and coincides with 𝜉𝑆 outside 𝑆′ ∪ 𝑆″, see Figure 3.2.

Figure 3.2.: Characteristic foliations for Key observation 3.6. The dividing set Γ is
dashed. On the left-hand side one has the simplest case when 𝑆″ is an
annulus. On the right hand side one sees a possible foliation when 𝑆″ has
one more boundary component (on the right). Note that the disk bounded
by the small component of Γ on the right may contain more components of
Γ. The extension to more boundary components uses the same idea.

Hence both subsurfaces 𝑆+ and 𝑆− (defined in Section 3.1.2) have non-positive Euler
characteristic. Since ⟨𝑒(𝜉), [𝑆]⟩ = 𝜒(𝑆+) − 𝜒(𝑆−) and 𝜉-convex surfaces are generic, this
observation can be used to evaluate the Euler class 𝑒(𝜉) against any homology class of
surface and get the inequality.

The classification of tight contact structures on balls (hence also on 𝕊3) was also
based on the elimination lemma, keeping track of singularities in a way reminiscent of
Bennequin 1983; Eliashberg 1990a. Besides its role as the fundamental building block of
almost every later classification result, this result played a key role in Colin 1999b which
proved 𝐶0 stability of contact structures on 3-manifolds: for every contact structure 𝜉
on a closed 3-manifold, every contact structure sufficiently 𝐶0-close to 𝜉 is isotopic to
it (not necessarily among 𝐶0-close contact structures a priori). Recently I found a new
proof of this stability result using existence of supporting open book decomposition (a
result which was not yet available in 1999).

44



3.2. Topological methods in dimension 3

In the particular case of tori in tight contact manifold, the Eliashberg-Bennequin
inequality, seen as in Key observation 3.6, only leaves as possible dividing sets collections
of 2𝑘 isotopic essential curves. The realization lemma then allows to get a non-singular
characteristic foliation which has 2𝑘 closed leaves and all other leaves spiral from one to
another, as in the example of Section 3.1.2.

This was the crucial ingredient in Giroux 1994b to turn rigidity results for Lagrangian
in cotangent bundle into rigidity results for tight contact structures on 𝕋3 (the use of
Lagrangian rigidity builds on ideas from Eliashberg 1991a).

This strategy gives a special role to surfaces in contact manifold that can be lifted
to Lagrangian surfaces in the symplectization. In any dimension, for any submanifold
𝑃 𝜄

↪−→ (𝑀, 𝜉), a lift of 𝑃 is a submanifold 𝐿 in 𝑆𝜉 which is transverse to the ℝ-action and
projects onto 𝑃 . Any lift of 𝑃 can be seen as 𝛼(𝑃) for some contact form 𝛼. Because the
Liouville form 𝜆 has the tautological property 𝛼∗𝜆 = 𝛼 for any 𝛼, we get that 𝛼(𝑃) is
an isotropic submanifold of 𝑆𝜉 if and only if 𝜄∗𝛼 is closed. This motivates the following
definition (attributed to Bennequin in Eliashberg, Hofer, and Salamon 1995): an (𝑛+1)-
dimensional submanifold 𝑃 ⊂ 𝑀 is pre-Lagrangian if there is a contact form for 𝜉 whose
restriction to 𝑃 is closed.

A pre-Lagrangian submanifold is everywhere transverse to the contact structure since
otherwise its tangent space would be an (𝑛+1)-dimensional isotropic subspace of 𝜉. In the
3-dimensional case, this implies that closed orientable pre-Lagrangian surfaces are tori.
One easily prove they have a tubular neighborhood isomorphic to (𝕋2×[−𝜀, 𝜀], ker(cos(𝑧−
𝑧0)𝑑𝑥 − sin(𝑧 − 𝑧0)𝑑𝑦)) where (𝑥, 𝑦) is in 𝕋2 and 𝑧 in [−1, 1].

One of the key lessons of Eliashberg 1991a; Giroux 1994b is that, while pre-Lagrangian
tori exits near any curve transverse to the contact structures, incompressible ones are
rare and play an important structural role.

At least as early as July 1994 (according to Thomas, Eliashberg, and Giroux 1996)
Giroux observed the following rigidity result, and its consequences discussed below, that
eventually got published in Giroux 1999.

Key observation 3.7. In 𝕋2 × ℝ equipped with an ℝ-invariant tight contact structure,
all regular closed leaves of the characteristic foliation of an incompressible torus are
isotopic.

Key observation 3.2 ensures that the dividing set Γ associated to the splitting 𝕋2 × ℝ
is made of 2𝑘 parallel essential circle. Let 𝐿 be a regular closed leaf of 𝜉𝑇 for some
incompressible torus 𝑇 in 𝕋2 ×ℝ. In particular 𝑇 and 𝜉 endow 𝐿 with the same framing.
Classical topology ensures that 𝑇 is isotopic to 𝕋2 × {0}. If the homology class of the
projection of 𝐿 onto 𝕋2 × {0} were not the one of the components of Γ then one could
embed 𝕋2 × ℝ into the standard ℝ2 × 𝕊1 in such a way that 𝐿 would bound a disk
transverse to the image of 𝑇 . This would contradict Bennequin’s theorem.

This argument was among the first of a series of geometric arguments reducing many
rigidity results to Bennequin’s foundational results. In particular, after two more itera-
tions, the above reasoning became the final form of the so-called semi-local Bennequin
inequality of Giroux 2001a. Let 𝜉 be a ℝ-invariant contact structure on 𝑈 = 𝐹 × ℝ
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where 𝐹 is a closed oriented surface of positive genus ; let 𝐶 be a simple closed curve
on 𝐹 = 𝐹 × {0}, and Γ a dividing set for 𝜉𝐹 . For any isotopy 𝜑 in 𝑈 which brings 𝐶
to a Legendrian curve 𝐿 = 𝜑1(𝐶), the Thurston-Bennequin invariant of 𝐿, compared to
𝜑1(𝐹), is at most −i(𝐶, Γ)/2 where i(𝐶, Γ) is the minimal number of intersection points
between Γ and a curve isotopic to 𝐶. This inequality is sharp.

Right now we only want to explain how to deduce from Key observation 3.7 the fact
that, in

(𝕋3, 𝜉𝑛 = ker(cos(𝑛𝑧)𝑑𝑥 − sin(𝑛𝑧)𝑑𝑦))

all incompressible pre-Lagrangian tori are isotopic to the obvious ones {𝑧 = ∗}. This
result will play an important role in Chapters 6 and 9. Let 𝑇 be an incompressible
pre-Lagrangian torus. Again, classical topology ensure that 𝑇 is isotopic to some torus
𝑇0 which is linear (i.e. 𝑇0 is the image of an affine subspace of ℝ3 in 𝕋3 = ℝ3/2𝜋ℤ3).
One observes that, if 𝑇0 is not a constant 𝑧 torus, there is an 𝕊1 action preserving the
contact structure and transverse to 𝑇0. Hence 𝕋3 is covered by 𝑇0 × ℝ equipped with a
tight ℝ-invariant contact structure and 𝑇 lifts to a pre-Lagrangian torus there. Because
of the local model described above, there are several isotopy classes of regular closed
characteristics of tori close to 𝑇 , contradicting Key observation 3.7.

Note that the same observation also allows to prove that 𝜉𝑛 is not isomorphic to 𝜉𝑚
unless 𝑛 = 𝑚. Assume that some diffeomorphism 𝜑 sends 𝜉𝑛 to 𝜉𝑚. The preceding
paragraph ensures that 𝜑 preserves the homology class of {𝑧 = ∗} (defined up to sign).
One explicitly check that this implies 𝜑 is smoothly isotopic to a diffeomorphism 𝜓 which
preserves 𝜉𝑚. Hence we can replace 𝜑 by 𝜑∘𝜓−1 and assume that 𝜑 is smoothly isotopic
to the identity. It can then be lifted to ℝ2 × 𝕊1 where 𝑧 remains in 𝕊1 but 𝑥 and 𝑦 are
now real valued. The complement of {0} × 𝕊1 is again some thickened torus with an
invariant contact structure. The values of 𝑛 and 𝑚 control the isotopy class of regular
closed leaves of incompressible tori, so we can apply Key observation 3.7 again to get
𝑛 = 𝑚.

Another important early result about these contact structures on 𝕋3 had to do with
symplectic fillings. As discussed in Section 2.7.2, Gromov 1985 proved that any symplec-
tic manifold containing no symplectic 2-sphere, and symplectomorphic to the standard
ℝ4 at infinity, is globally symplectomorphic to it. This was used in Eliashberg 1996
which described a symplectic cobordism between (𝕋3, 𝜉𝑛) and a disjoint union of 𝑛
copies of 𝕊3 with its standard contact structure. This cobordism could be glued to a
strong symplectic filling of (𝕋3, 𝜉𝑛) to get, after some more work, a contradiction to
Gromov’s result when 𝑛 is greater than one. This proves that only 𝜉1 admits a strong
symplectic filling.

Gluing a symplectic filling is always possible for strong fillings but not always for weak
fillings. And indeed Giroux 1994b constructed many weak symplectic fillings of (𝕋3, 𝜉𝑛)
for all 𝑛. Each 𝜉𝑛 is isotopic to ker(𝑑𝑧 + cos(𝑛𝑧)𝑑𝑥 − sin(𝑛𝑧)𝑑𝑦) which is transverse to
𝜕𝑧. The later spans the kernel of the restriction to 𝕋3 of any product symplectic form
on 𝕋2 × 𝔻2. Actually one can replace 𝔻2 by any surface whose boundary is 𝕊1 to get
infinitely many weak symplectic fillings, none of which contains symplectic spheres.
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3.2.2. The Eliashberg-Thurston approximation theorem

In the early 90’s, an important source of interesting contact structures came from the
approximation theorem in Eliashberg and W. P. Thurston 1998, stating that a 𝐶2 fo-
liation by surfaces on a closed 3-manifold can be approximated in 𝐶0 topology by a
contact structure with either orientation, unless it is the foliation of 𝕊2 × 𝕊1 by spheres.
If the foliation is taut then the corresponding contact structure is tight because of the
Eliashberg-Gromov tightness criterion and the following observation.

Key observation 3.8. If ℱ is taut then 𝑉 × [−1, 1] has a symplectic structure Ω
with weakly convex boundary. Any pair 𝜉± of positive and negative contact structures
sufficiently 𝐶0-close to ℱ is weakly filled by Ω.

Indeed, taut foliations on 𝑉 are characterized by the existence of a closed 2–form 𝜔
whose restriction to each leaf is non-degenerate. Then we can use Ω = 𝜔 + 𝜀𝑑(𝑡𝛼) where
𝛼 is a 1-form whose kernel is tangent to ℱ.

We will see that this result, combined with techniques originating in Gabai 1983 to
construct taut foliations, had a deep impact on the developments of gluing techniques and
topological applications. About the proof we only mention what is probably the starting
point of this story. It uses an important intermediate class of geometric object introduced
in Altschuler 1995; Eliashberg and W. P. Thurston 1998: a positive confoliation on an
oriented 3-manifold is a plane field 𝜉 = ker 𝛼 with 𝛼 ∧ 𝑑𝛼 ≥ 0.

Key observation 3.9. Let 𝛾 be a closed curve inside a leaf of some 𝐶𝑘 foliation
ℱ. If 𝛾 has non-trivial linear holonomy then 𝑇 ℱ can be perturbed in 𝐶𝑘 topology to
a positive confoliation 𝜉 which is contact is a neighborhood of 𝛾 and coincides with
𝑇 ℱ outside a slightly larger neighborhood. In coordinates (𝑥, 𝑦, 𝑧) ∈ 𝕊1 × [−1, 1]2 such
that 𝛾 = 𝕊1 × {(0, 0)} and 𝜕𝑦 is tangent to 𝓕, one can push down 𝓕 in 𝕊1 × [−1 +
𝜀, −1 + 3𝜀] × [−1 + 𝜀, 1 − 𝜀] and replace it by a contact structure tangent to 𝜕𝑦 in
𝕊1 × [−1 + 3𝜀, 1 − 3𝜀] × [−1 + 𝜀, 1 − 𝜀], see Figure 3.3.

Figure 3.3.: Eliashberg-Thurston perturbation near a holonomy curve
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Indeed, we can assume that 𝑇 𝓕 = ker(𝑑𝑧 + 𝑧𝑑𝑥) and push it by 𝜑(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, 𝑧 −
𝜌(𝑦, 𝑧)) where 𝜌 ≥ 0 is 𝐶𝑘+1-small, has support in [−1 + 𝜀, 1 − 𝜀]2, is positive along
{−1 + 3𝜀} × [−𝜀, 𝜀] and 𝜕𝑦𝜌 has support in [−1 + 𝜀, −1 + 2𝜀] × [−1 + 𝜀, 1 − 𝜀]. So near
{−1 + 3𝜀} × [−𝜀, 𝜀] we have 𝜑∗(𝑑𝑧 + 𝑧𝑑𝑥) = 𝑑𝑧 + (𝑧 − 𝜌)𝑑𝑥 with 𝑧 − 𝜌 < 𝑧 so we can
extend it by 𝑑𝑧 + (𝑧 − 𝜒(𝑦)𝜌(−1 + 3𝜀, 𝑧))𝑑𝑥 with 𝜒′(𝑦) ≤ 0 and 𝜒′(𝑦) < 0 near 𝛾.

3.2.3. Bifurcations and bypasses
Births, deaths, and crossings

Although individual 𝜉-convex surfaces can be used to distinguish isotopy classes of con-
tact structures (e.g. as in Section 3.2.1), full classification results require to understand
sweeping families of surfaces 𝑆𝑡 ∶= 𝑆 × {𝑡} in 𝑆 × [0, 1] ⊂ 𝑉 , where one expects 𝜉-
convexity to fail at least for a finite number of surfaces 𝑆𝑡. In this discussion all surfaces
and contact structure are cooriented and the orientation of the ambient manifold is
prescribed by the contact structure. In particular all characteristic foliations and their
transversal arcs are oriented. Singular points also get a sign: they are points where
𝑇 𝑆 coincides 𝜉, and are positive if those planes have the same coorientation, negative
otherwise.

A special feature of families of foliations coming from sweeping surfaces in contact
manifolds is that certain bifurcations are forced by the contact condition. The easiest
example, which will play a major role in Chapter 8, is the birth/death lemma, Giroux
2000, Lemma 2.12. We will explain a weak version of this lemma, which is sufficient for
our purposes.

Key observation 3.10. Let 𝐿 be regular close leaf of 𝑆0 ∶= 𝑆 × {0} in 𝑆 × [−1, 1].
Assume that 𝐿 is weakly degenerate: the first return map of 𝜉𝑆0 on some arc 𝐶 transverse
to 𝐿 is tangent to the identity at order one at 𝐶 ∩ 𝐿 but its second derivative is positive.
Then there is an annulus 𝐴 around 𝐿 and some positive 𝜀 such that there is no closed
leaves in 𝐴 for 𝑡 in (−𝜀, 0) and at least two for 𝑡 in (0, 𝜀).

Indeed, the middle picture in Figure 3.4 shows a positive degenerate orbit 𝐿 in 𝜉𝑆0.
Let 𝐴 be a small annulus around 𝐿. Along 𝐿, the slope of 𝜉𝑆0 is zero and it is positive
in 𝐴 ∖ 𝐿. Because 𝜉 is a positive contact structure this slope decreases when 𝑡 increases
(maybe after some modification of the product structure of 𝑆 × [−1, 1]). So, for 𝑡 < 0 it
was everywhere positive in 𝐴, and there were no closed leaf at all in 𝐴. For 𝑡 > 0, the
slope becomes negative along 𝐿, and stays positive along the boundary of 𝐴. Then the
complement of 𝐿 in 𝐴 is made of two (half-open) annuli whose boundaries are transverse
to 𝜉𝑆, see Figure 3.4. The Poincaré-Bendixson theorem guaranties that each of these
two sub-annuli contain at least one closed leaf for 𝑡 > 0 sufficiently close to 0.

We now turn to the second important cause of non-convexity.

Key observation 3.11. Let 𝑆 be a 𝜉-convex surface, let Γ be the dividing set associated
to some contact vector field transverse to 𝑆 and let 𝑆± be the subsurfaces bounded by Γ
as in Key observation 3.2. All positive (resp. negative) singularities of 𝜉𝑆 are in 𝑆+
(resp. 𝑆−). There is no leaf connecting a negative singularity to a positive one.
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Figure 3.4.: Birth of at least a pair of periodic orbits. The annulus 𝐴 is obtained by
gluing left and right. The circle 𝐿 is at mid-height of each annulus.

Indeed, any ℝ-invariant plane field on 𝑆 × ℝ can be written as ker(𝑢𝑑𝑡 + 𝛽) for some
function 𝑢 and 1-form 𝛽 on 𝑆 and 𝑡 is the ℝ coordinate. Such a plane field is a positive
contact structure if and only if:

𝑢𝑑𝛽 + 𝛽 ∧ 𝑑𝑢 > 0

At any singular point 𝑝 of 𝜉𝑆, this condition becomes 𝑢𝑑𝛽(𝑝) > 0 and 𝑑𝛽 defines the
orientation of 𝜉. So singularities are positive in 𝑆+ and negative in 𝑆−. The last assertion
then follows from the fact that leaves are transverse to Γ and always exit 𝑆+ to enter
𝑆−.

In the characteristic foliation of a surface, a retrograde connection is a leaf which goes
from a negative singularity to a positive one. The discussion above proves that 𝜉–convex
surfaces have no retrograde connections.

ibid., Lemma 2.14 is the crossing lemma which asserts that a retrograde connection
is always isolated, and always looks like Figure 3.5 rather than the other way around.

Figure 3.5.: Retrograde saddle connection in a thickened torus 𝕋2×[−1, 1]. The left-hand
side and right-hand side picture show 𝜉𝕋2

−1 and 𝜉𝕋2
1 which are topologically

stable. The middle picture has a retrograde saddle connection. The contact
condition forces this orbit to turn to its right when 𝑡 increases.

The bifurcation lemmas (birth/death and crossing), together with generic properties
of one-parameter families of contact structures, the elimination lemma, and suitable
versions of the realization lemma with parameters, can be applied to foliations by spheres
to reprove Bennequin and Eliashberg’s foundational results about tightness of the model
contact structures and uniqueness of tight contact structures on balls.

We now explain a cartoon version of Giroux’s proof of Bennequin’s theorem because
it was a very important inspiration for a key ingredient of Chapter 8. The first point
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is to restate the theorem in a way parallel to Reeb’s theorem which characterizes the
sphere in term of Morse functions. Giroux’s version of Bennequin’s theorem is indeed:
if a contact structure 𝜉 on a closed manifold is invariant under the flow of a vector field
which is gradient for some Morse function 𝑓 admitting only two critical points then 𝜉 is
tight. One can perturb any potential overtwisted disk to disjoin it from critical points
of 𝑓 . We know from Morse theory that all regular level sets of 𝑓 are spheres transverse
to 𝑋. We denote these spheres –away from two small open balls containing the critical
points– by 𝑆𝑡, 𝑡 ∈ [−1, 1]. The local model near critical points shows that the dividing
set Γ𝑡 of each 𝑆𝑡 associated to 𝑋 is connected. If we assume that 𝜉 is overtwisted then
there is a smooth isotopy 𝜑 relative to critical points and such that 𝜉𝜑1(𝑆0) has a regular
closed leaf. In [−1, 1]×[0, 1] let Σ be the set of pairs (𝑡, 𝑠) such that 𝜉𝜑𝑠(𝑆𝑡) has a closed
leaf. By assumption, Σ intersects [−1, 1] × {1} but not [−1, 1] × {0}. Let (𝑡∗, 𝑠∗) be a
point of Σ which minimizes the 𝑠 coordinate in Ω. Because of the birth death lemma
there is some small non-zero 𝜀 such that 𝜉𝜑𝑠∗

(𝑆𝑡∗+𝜀) has at least two stable closed leaves,
contradicting minimality of 𝑠∗. Of course this argument is not really correct because, the
projection of Σ onto [0, 1] may be open and have no minimum. But it still explain how
bifurcations enforced by the contact condition may be relevant. The actual proof uses
also retrograde connections and information about the direction of bifurcation. This
was sketched in Giroux 2000 and there are details in Massot 2014. Note that, in this
situation, one can also easily prove that 𝜉 is isotopic to the standard contact structure
(without using that all tight contact structures on 𝕊3 are isotopic).

Normal forms on thickened tori

After the discussion of families of spheres, families of tori were used in Giroux 2000
to give normal forms for tight contact structures on torus bundles over the interval or
the circle, lens spaces, and solid tori. Massot 2008b, Part 2 is a detailed introduction to
these techniques. In Giroux 2000, tight contact structures on thickened tori are described
using two types of building blocks: rotation sequences and orbit flips that we now briefly
review.

Recall that a foliation 𝜎 on a torus 𝑇 is called a suspension if there is a circle which
transversely intersects all leaves. It then has an asymptotic direction 𝑑(𝜎) which is a line
through the origin in 𝐻1(𝑇 ; ℝ) spanned by limits of renormalized very long orbits of a
directing vector field. For instance, if 𝜎 has a closed leaf the its homology class spans
𝑑(𝜎).

Let 𝜉 be a contact structure on 𝑇 × [0, 1] and set 𝑇𝑎 = 𝑇 × {𝑎}. A interval 𝐽 ⊂
[0, 1] is called a rotation sequence for 𝜉 if all characteristic foliations 𝜉𝑇𝑡, 𝑡 ∈ 𝐽 are
suspensions. We say that 𝐽 is minimally twisting if the directions 𝑑(𝜉𝑇𝑡) do not sweep
out the full projective line 𝑃(𝐻1(𝑇 ; ℝ)). Theorem 3.3 from ibid. guaranties that two
contact structures on 𝑇 × 𝐽 which agree along the boundary, and have 𝐽 as a minimally
twisting rotation sequence, and have a non-constant asymptotic direction, are isotopic
on 𝑇 × 𝐽 relative to boundary.

An interval [𝑎, 𝑏] ⊂ [0, 1] is an orbit flip sequence for 𝜉 with homology class 𝑑 ∈
𝐻1(𝑇 ; ℤ) if: 𝜉𝑇𝑎 is a Morse-Smale suspension with two closed orbits whose homology
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Figure 3.6.: Orbit flip. All squares have opposite edges glued to make tori. The hori-
zontal lines are regular closed leaves in the first and last pictures while they
are circles of singularities in the middle picture.

class is 𝑑 ; 𝜉𝑇𝑏 is a Morse-Smale suspension with two closed orbits whose homology class
is −𝑑 ; there is a multi-curve which divides all 𝜉𝑇𝑡, 𝑡 ∈ 𝐽 . See Figure 3.6 for an explicit
model.

The strategy of ibid. is to prove, using in particular the elimination lemma and the
parametric realization lemma, that any tight contact structure on a thickened torus can
be decomposed into rotation sequences and orbit flips, then study how to go from one
decomposition to another and, conversely, understand which sets of pieces can be stacked
together to get a tight contact structure.

This strategy allows to get the list of isotopy classes of tight contact structures on this
manifold, at least when both boundary components are 𝜉-convex and divided by only
two curves. Better, Giroux was able to describe complete invariants of isotopy classes.
It turns out that, besides homotopical data, only one subtle invariant was needed. The
Giroux torsion of a contact manifold (𝑉 , 𝜉) is the supremum of all integers 𝑛 ≥ 1 such
that there exists a contact embedding of

(𝑇 2 × [0, 1], ker (cos(2𝑑𝜋𝑧)𝑑𝑥 − sin(2𝑑𝜋𝑧)𝑑𝑦)) , (𝑥, 𝑦, 𝑧) ∈ 𝑇 2 × [0, 1]

into the interior of (𝑉 , 𝜉) or zero if no such integer 𝑛 exists. This number is invariant
under isomorphisms, not only isotopies. Its definition is clearly modelled on the one
of the Gromov width in symplectic geometry (see Section 2.4). Like this symplectic
counterpart, the Giroux torsion is easy to bound from below but hard to bound from
above, or compute exactly, without already having full classification results in terms of
ad hoc invariants –like the decomposition in rotation sequences and orbit flips above.
For instance ibid. proved that the torsion of 𝜉𝑑 on 𝕋3 is 𝑑 − 1, but this needs the full
classification of universally tight contact structures on thickened tori.

Bypasses

From the point of view of convex contact structures, 𝜉-convex surfaces correspond to
regular level sets of a (local) Morse function 𝑓 equipped with a contact pseudogradient.
Hence the bifurcations described above should correspond to critical values. A single
critical value changes the topology of level sets hence does not correspond to sweeping
surfaces. However one can prove that the elementary bifurcations above correspond to

51



3. Contact convexity

pair of critical points of index 1 and 2 that are topologically in elimination position. A
special case of this situation was already used in Section 3.1.3.

Yet another equivalent way of looking at those bifurcations was introduced in Honda
2000a, shortly after Giroux announced the classification results that would eventually
appear in Giroux 2000. Honda defined a bypass as a smooth half-disk 𝐷 in a contact
manifold whose boundary is the union of two smooth Legendrian curves 𝛾1 and 𝛾2 from
one corner to the other and such that, for some orientation, 𝐷 has positive elliptic
tangencies at the corners, one negative elliptic tangency on the interior of 𝛾1 and only
positive tangencies along 𝛾2, see Figure 3.7.

Figure 3.7.: A bypass

The name bypass comes from the fact that the contact structure rotates a full turn
compared to the tangent space of the disk along the attachement arc 𝛾1, but does not
rotate along 𝛾2, which is then considered to be a faster road.

A bypass 𝐷 which intersects a surface 𝑆 transversely along 𝛾1 is said to be attached to
𝑆 along the attachement arc 𝛾1. Honda observed that 𝑆 ∪𝐷 has a regular neighborhood
whose boundary consists of two 𝜉-convex surfaces 𝑆′ and 𝑆″ isotopic to 𝑆 and such that
𝑆′ is contact isotopic to 𝑆 while 𝑆″ has a dividing set which is obtained from a dividing
set of 𝑆 by an explicit surgery along the attaching 𝛾1, as in Figure 3.8. This surgery

Figure 3.8.: Effect of a bypass attachement. On the left-hand side, the three horizontal
lines are part of the dividing set. The right-hand side shows the new dividing
set.

will be a major ingredient in Chapter 6. The main tool to detect existence of bypasses
is Honda’s imbalance principle.
Key observation 3.12. Let Σ = 𝕊1 × [0, 1] be a 𝜉-convex annulus with Legendrian
boundary inside a tight contact manifold. Assume that Σ has a dividing set Γ which has
more intersection points with 𝕊1 × {0} than with 𝕊1 × {1}. Then Σ is isotopic, relative
to its boundary, to a surface which contains a bypass whose attaching arc is contained
in 𝕊1 × {0}.

Indeed, the hypothesis forces Γ to contain at least one arc going from 𝕊1 × {0} to
itself. At least one of those arcs bounds a half disk with 𝕊1 ×{0} which contain no other
component of Γ. The realization lemma then allows to isotope this half disk to a bypass.
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This observation allows to decompose thickened surfaces into layers obtained by a
single bypass attachement. This is especially efficient for thickened tori.

In general, existence of bypasses attached to a given Legendrian arc is difficult to check.
In particular, going from 𝛾1 to 𝛾2 increases the Thurston-Bennequin invariant, hence
the Bennequin inequality forbids existence of certain bypasses. The other extreme case
is overtwisted contact structures, where every Legendrian arc can be connect summed
with an overtwisted disk to get a bypass. This provides a new explanation of flexibility
of overtwisted contact structures, see Huang 2013.

Circle bundles

Using classification results on thickened and solid tori, Giroux 2001b and Honda 2000b
independently moved on to circle bundles over surfaces 𝜋 ∶ 𝑉 → 𝑆 whose topology
is still dominated by tori. In view of Chapters 6 and 9, we note that, in particu-
lar, they revisited Lutz’s study of 𝕊1-invariant contact structures on circle bundles,
which we discussed in Section 2.1. Recall that Lutz proved that, up to 𝕊1-equivariant
isotopy, those structures are characterized by the isotopy class of their dividing sets
Γ = {𝑥 ∈ 𝑆; 𝜋−1(𝑥) is Legendrian}. Flexibility of overtwisted contact structures shows
that equivariance cannot be dropped from the classification in general.

Let 𝜉 be such a contact structure. One can check that, for any properly embedded
curve 𝛾 in 𝑆 which intersects the dividing set Γ transversely (along a non-empty subset),
the surface 𝜋−1(𝛾) is 𝜉-convex and divided by 𝜋−1(𝛾 ∩Γ). Giroux 2001a proved that 𝜉 is
universally tight if and only if Γ has no homotopically trivial component or 𝑆 is a disk
or a sphere and Γ is connected (this is a generalization of Key observation 3.6). Finally,
the semi-local Bennequin inequality, and Thurston characterization is isotopy classes of
curves in terms of geometric intersection numbers, prove that two tight 𝕊1-invariant
contact structures on 𝑉 are isotopic (relative to 𝜕𝑉 ) if and only if their dividing sets are
isotopic (relative to 𝜕𝑆). This is stated only for closed surfaces in ibid. but the proof
is only easier if the boundary of 𝑆 is not empty, since template matching techniques
explained below are then available.

In addition to the internal analysis using sweeping surfaces which give normal forms,
methods were needed to distinguish isotopy or isomorphism classes of contact struc-
tures. An idea used both in Giroux 2000, 2001b and Honda 2000a,b was called template
matching by Honda. Suppose that 𝑉 is a 3–manifold with non-empty boundary endowed
with two tight contact structures 𝜉0 and 𝜉1 with the same germ along 𝜕𝑉 . In order to
distinguish 𝜉0 and 𝜉1, it suffices to find a 3–manifold 𝑉 ′ containing 𝑉 and a contact
structure 𝜉 on 𝑉 ′ ∖𝑉 that 𝜉0 ∪𝜉 is tight whereas 𝜉1 ∪𝜉 is overtwisted. This idea was later
turned into an algebraic one using sutured Heegaard-Floer homology, see Section 4.2.3
and Chapter 6. We will also use this idea in its original topological form in Chapter 9.

Circle bundles, and more generally Seifert manifolds, have other interesting classes of
contact structures. Tight contact structures are completely classified on circle bundles
and there are many partial results on general Seifert manifolds. Of particular interest
is the case of contact structures transverse to the fibers, especially since they have the
strong property of being totally geodesic for some Riemannian metric. This aspect was
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studied in Massot 2008a.

3.2.4. Gluing and classifying
Classification results explained in the preceding section give building blocks (balls and
thickened tori) to understand tight contact structures on 3-manifolds. It is then nec-
essary to develop tools to guarantee that gathering several tight blocks yields a tight
contact structure. Another motivation for such gluing results was to try to reprove ex-
istence results for tight contact structure that followed from Gabai’s constructions of
taut foliation and Eliashberg-Thurston’s approximation theorem, as explained in Sec-
tion 3.2.2, without going through foliations (this goal was eventually reached in Honda,
Kazez, and Matić 2002).

The precursor of all gluing criteria is Colin 1997 proving that the connected sum of two
tight contact manifolds is tight. Let (𝑉1, 𝜉1) and (𝑉2, 𝜉2) be two tight 3-manifolds and
let 𝑆 be a sphere separating the connected sum 𝑉 = 𝑉1#𝑉2. Assume for contradiction
that there is an overtwisted disk 𝐷 in (𝑉 , 𝜉 = 𝜉1#𝜉2). Of course there is a smooth
isotopy disjoining 𝑆 from 𝐷. Colin’s first observation is the following.

Key observation 3.13. Any isotopy of embeddings of a surface 𝑆 in a 3-manifold
is homotopic (with fixed end points) to a concatenation of isotopies which sweep out
products 𝑆 × [0, 1].

Indeed if 𝑗𝑡, 𝑡 ∈ [0, 1], is an isotopy of embeddings of 𝑆 then each 𝑗𝑡(𝑆) has a tubular
neighborhood which contains 𝑗𝑡′(𝑆) for 𝑡′ in a neighborhood of 𝑡. By compactness one
can find a finite cover of [0, 1] by such neighborhoods, and use their boundary components
as intermediate surfaces in the concatenation.

Hence, in order to prove tightness of connected sums of tight contact structures, it is
enough to prove that, whenever we have a decomposition 𝑉 = 𝑉 ′∪(𝑆×[0, 1])∪𝑉 ″ where
𝜕𝑉 ′ = 𝑆 × {0} and 𝜕𝑉 = 𝑆 × {1} are 𝜉-convex and both 𝑉 ′ and (𝑆 × [0, 1]) ∪ 𝑉 ″ are
tight then 𝑉 ′ ∪ (𝑆 × [0, 1]) is also tight (recall that 𝜉-convexity can always be enforced
after perturbation). Colin actually proves the stronger result that there is a contact
isotopy sending 𝑆 × {0} to 𝑆 × {1} (using the uniqueness of tight contact structures on
thickened spheres with standard boundary). The same idea can be used for disks whose
boundary is Legendrian with Thurston-Bennequin invariant −1.

This idea was taken up systematically to prove tightness gluing in Honda 2000b,
2002, without necessarily having the stronger contact isotopy result at the end, but
still controlling what can change in each step given by Key observation 3.13. Here it
is crucial to be able to break each step into finitely many elementary steps involving
only one bifurcation (or bypass attachement). This finiteness result is called Giroux’s
discretization lemma and follows from the study of generic properties of 1-parameter
families of foliations in Sotomayor 1974, the bifurcation lemmas from Section 3.2.3, and
careful trading of degenerate orbits against retrograde saddle connections in Giroux
2001c.

Honda calls this technique state traversal. It can also be used to distinguish isotopy
classes of tight contact structures by proving that some ad hoc quantity is preserved
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under each possible elementary step. When the moving surface is not a sphere, there
is no hope to prove that all bifurcations have no effect on the isotopy class of dividing
set. Indeed one can always fold the surface to create pairs of dividing curves. Hence
it would be useful to have general strategies to simplify a sequence of bifurcations. We
will explain in Section 9.2.3 why no such strategy can exist in full generality. However,
it can exist in specific examples. The most relevant one for us is Ghiggini’s torus trick.
In Ghiggini 2005b, there are two incompressible 𝜉-convex tori 𝑇 and 𝐹 intersecting
transversely along a single Legendrian curve and a smooth isotopy 𝜑. The goal is to
replace 𝜑 with fixed end point by an isotopy which moves 𝑇 among 𝜉-convex surfaces
only. The trick is to apply Key observation 3.13 and the discretization lemma to 𝐹
(without getting rid of bifurcations of 𝐹 ) and construct the new isotopy of embeddings
of 𝑇 along the way. This idea was generalized in Massot 2008a, and will come back in
Chapter 9.

Another gluing question that is directly in line with the connected sum result is the
Legendrian surgery question. Attaching a Weinstein 1-handle on top of a piece of sym-
plectization replaces a neighborhood of a Legendrian knot with another one glued differ-
ently. It follows immediately from the handle picture that strong fillability is preserved
by this operation. Hofer 1993 implies that hypertightness (existence of a Reeb vector
field without contractible closed orbit) is also preserved. But this does not obviously say
anything about preservation of tightness. This is a subtle question since Honda 2002 has
a example of a tight manifold with boundary which become overtwisted after Legendrian
surgery (tightness being proved by careful state traversal). But no one could embed this
manifold into a closed tight contact manifold, and the question had to wait ten years
before being settled, see Section 3.4.4.

In the mean time, focus shifted towards gluing along incompressible tori. This is the
natural next step after connected sums because of structure theorems for 3-manifold (the
so-called JSJ decomposition). Colin 1999a proved that universal tightness (i.e. tightness
of the universal cover) is preserved under gluing along an incompressible pre-Lagrangian
torus. All hypotheses (pre-Lagrangian, incompressible and universal tightness) are nec-
essary in general. Note that, again, pre-Lagrangian tori play a special role.

This theorem and techniques adapted from Eliashberg and W. P. Thurston 1998 were
used in Colin 2002 to construct universally tight contact structures on all toroidal 3-
manifolds: manifolds 𝑉 containing a torus whose fundamental group injects into 𝜋1(𝑉 ).
Then infinitely many of those were construct in Colin 2001b, often distinguished by
their Giroux torsion in Colin 2001a. An alternative construction can be found in Honda,
Kazez, and Matić 2002.

The gluing problem has later been reexamined in the context of sutured Heegaard-
Floer theory, see Section 4.2.3.

3.2.5. The coarse classification theorem
The Eliashberg-Bennequin inequality on the Euler class of tight contact structures dis-
cussed in Section 3.2.1, and classification and gluing results discussed in Sections 3.2.3
and 3.2.4 led to the conjecture that, on a given closed 3-manifold, only finitely many
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homotopy classes of plane plane fields should contain tight contact structures, and the
Giroux torsion should be responsible for all cases where there are infinitely many iso-
morphism classes of tight contact structures. In addition atoroidal 3-manifold should
have only finitely many isotopy classes of tight contact structures. The homotopy finite-
ness was proved for fillable contact structure using gauge theory in Kronheimer and
Mrowka 1997, see Section 4.1.1. Then Colin, Giroux, and Honda 2009 (announced in
Colin, Giroux, and Honda 2003) proved the expected homotopy finiteness, the isotopy
finiteness on atoroidal manifolds and the fact that for any closed 3-manifold 𝑉 and any
finite value 𝑛, there are finitely many isomorphism classes of tight contact structure with
torsion 𝑛. However we still don’t know whether every tight contact structure has finite
Giroux torsion. The proofs of the main results in Colin, Giroux, and Honda 2009 are
rather technical but we would like to sketch how the Giroux torsion enters the story.

The strategy of ibid. is to fix a triangulation 𝓣 on a given closed 3-manifold 𝑉 and
normalize every isotopy class of tight contact structure with respect to (the same de-
formation of) 𝓣. The first normalization step makes sure that each isotopy class is
represented by a contact structure such that all edges of 𝑉 are Legendrian, and all faces
are 𝜉-convex. There are many possible choices here and, for each isotopy class, one
selects a representative which maximizes the sum of Thurston-Bennequin invariants of
all edges.

In particular each face has some dividing set and, because of uniqueness on balls and
the realization lemma, each isotopy class is characterized by the combinatorics of these
dividing sets.

Key observation 3.14. The maximality enforced on Thurston-Bennequin invariants
constrains the combinatorics of dividing curves. There are no dividing arc from an edge
to itself (except maybe closest to vertices) and following dividing arcs around a 3-cell
always lead to the same amount of spiraling.

Stating and proving a precise version of this observation is technical, but the contra-
diction in case a conclusion is violated always come from finding a bypass attached to
some edge, and allowing to increase the Thurston-Bennequin invariant.

Figure 3.9.: Prisms in a triangulation

This observation, together with the realization lemma and uniqueness on balls, allows
to find, for each representative 𝜉 selected above, prisms 𝑌 × [0, 1] where 𝑌 is a triangle
or a quadrilateral as in Figure 3.9 such that the contact structure is tangent to 𝐼 = [0, 1]
and all dividing curves are contained in prisms except for a couple of them, whose
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number has an upper bound depending only on the triangulation. Because there are only
five isotopy classes of embeddings of a prism in a tetrahedron, and only finitely many
tetrahedra, we can assume when proving finiteness results that all contact structures
use the same prisms. Those prisms glue together into some domain with boundary and
corners fibered in intervals and the isotopy classes of contact structures tangent to this
fibration are characterized by the Thurston-Bennequin invariants of these Legendrian
intervals. Those invariants are bounded if the Giroux torsion is bounded otherwise one
could find copies of 𝕋2 × 𝐼 where the interval fibration is compatible with the fibered
domain and the torsion is too large.

3.2.6. Knots in contact 3-manifolds

The proof of the main theorem of Bennequin 1983 relied on a careful study of knots in
ℝ3 which are transverse to the standard contact structure. It then implies constraints on
Legendrian knots: knots that are tangent to the contact structure. So those two types of
knots are sensitive to global properties of the contact structure. Their study grew as an
important branch of contact topology once the topological methods of convexity theory
got sufficiently developed. Early stages of these methods were used in Eliashberg and
Fraser 1998 to completely understand the case of topologically trivial knots. More com-
plete classification results from Giroux 2000; Honda 2000a could then be used to extend
the class of fully understood knots, starting with Etnyre and Honda 2001. The coarse
classification theorem of Colin, Giroux, and Honda 2009 also has a relative version which
proves that homotopical data is enough to classify Legendrian knots in the standard 𝕊3

up to a finite ambiguity. Of course this finite ambiguity is the most interesting part of
the story, and was investigated using both 𝜉-convex surface theory and Floer theoretic
methods, starting with Eliashberg 1998; Chekanov 2001, and Ozsváth, Szabó, and D. P.
Thurston 2008.

3.3. From convexity to open books
We take up the story of global convexity for contact structures where we left it in Sec-
tion 3.1.3. The existence of an essential surface remained a rather mysterious condition
(even after Giroux proved that all closed contact 3–manifolds are convex) until Torisu
2000 noticed it is linked to open book decompositions.

Let 𝐿 be a fibered link with page 𝑅 in a closed 3-manifold 𝑉 . Let Σ be a smooth surface
which is the union of two pages. In particular Σ separates 𝑉 into two handlebodies 𝐻0
and 𝐻1. Torisu’s crucial observation was the existence of an ordered Morse function 𝑓
on 𝑉 admitting Σ as an essential surface. Using Colin’s gluing results, he also proved
that the contact structure constructed using 𝑓 as in Giroux 1991 is tight in restriction
to both handlebodies, and characterized by this property. The characterization relied
on the realization lemma and Eliashberg’s uniqueness theorem on balls.

This path through classification results cannot be used in higher dimensions but it
was enough to inspire the following to Giroux. Recall that any Morse function equipped
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with a Morse-Smale pseudogradient 𝑋 can be ordered without changing 𝑋, see e.g. Lau-
denbach 2014.

Key observation 3.15. Let (𝑉 , 𝜉) be a closed contact manifold. Assume that 𝜉 is
invariant under the flow of a vector field 𝑋 which is pseudogradient for some ordered
Morse function 𝑓. Let Σ be a regular level set of 𝑓 separating critical points of index 𝑛 and
𝑛+1. Then the characteristic hypersurface Σ𝑋 is 𝜉-convex and divided by 𝐾 ∶= Σ𝑋 ∩Σ.
The part 𝑃 of Σ𝑋 below Σ is a Weinstein manifold, which is a page of an open book
with binding 𝐾.

Indeed the existence of the open book follows easily from Key observation 3.5 describ-
ing the indices of the restriction of 𝑓 to Σ𝑋. Below (resp. above) Σ, the flow of 𝑋
pushes away from (resp. towards) Σ𝑋 at critical points, as in Figure 3.10, hence the

Figure 3.10.: Characteristic hypersurface Σ𝑋 and middle level set Σ in the case of an
ordered Morse function

union of level sets below and above Σ are both foliated by copies of 𝑃 which form the
pages of an open book. The fact that 𝑃 is Weinstein was already mostly explained after
Key observation 3.5.

The above observation, as well as the previous work of W. P. Thurston and Winkelnkem-
per 1975; Torisu 2000, all leave out the crucial question of the relation between the open
book and the contact structure. In the following definitions the manifold is oriented
so, together with the canonical orientation of 𝕊1 which coorient pages of open books, it
gives an orientation to pages, and then to the binding.

Definition 3.16 (Giroux). An open book (𝐾, 𝜃) supports a positive contact structure 𝜉
if:

• 𝜉 induces a positive contact structure on the binding

• there is a contact form 𝛼 for 𝜉 such that 𝑑𝛼 is symplectic on all fibers, with positive
orientation.

The second condition of this definition does depend on 𝛼, and can be rephrased as
saying that the Reeb field 𝑅𝛼 is positively transverse to pages. So the structure induced
on pages need some clarification. Again the cleanest statement is in terms of ideal
Liouville domains. Let 𝐹 ∶ 𝑉 → ℂ be a function defining (𝐾, 𝜃): 𝐾 is the regular zero
level of 𝐹 and 𝜃 = 𝐹/|𝐹 |. Such an 𝐹 is unique up to multiplication by a smooth positive
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function. A compatible 1-form 𝛼 being fixed, there is a non-empty convex subset of
defining functions 𝐹 such that 𝑑(𝛼/|𝐹 |) restrict to an ideal Liouville domain structure
on all pages. The induced contact structure on 𝐾 is always the structure induced by
𝜉, it depends neither on 𝐹 nor on 𝛼. This allows one to use Moser stability for ideal
Liouville domains (see Courte 2015, Proposition 2.9) to prove that the ideal Liouville
domain obtained on any given page is well defined up to isotopy relative to the boundary.
In addition, Giroux proved that all contact structures supported by the same open book
with isotopic ideal Liouville pages are isotopic. One can also construct a vector field
vanishing along the binding, positively transverse to all fibers, and whose first return
map is symplectic. The symplectic isotopy class of this so called monodromy map is well
defined.

Conversely, starting with an ideal Liouville domain (Σ, 𝜔) and a diffeomorphism 𝜑
supported in its interior which is symplectic, Giroux constructed a contact manifold 𝑉
and an open book (𝐾, 𝜃) in 𝑉 with page (Σ, 𝜔) and whose monodromy is represented by
𝜑. Again working with ideal Liouville domain avoids tweaking things near the binding.

The first lemma is that, for any Liouville form 𝜆 for (Σ, 𝜔), one can isotope 𝜑 among
compactly supported symplectomorphisms until there is some function ℎ such that 𝜑∗𝜆−
𝜆 = 𝑑ℎ. Without loss of generality, we can assume ℎ is positive and consider the quotient
of the symplectization Σ×ℝ by the ℤ-action generated by (𝜎, 𝑡) ↦ (𝜑(𝜎), 𝑡−ℎ(𝑡)), which
preserve the contact form associated to 𝜆 and any equation for 𝜕Σ which is constant
on the support of 𝜑. The boundary of the resulting contact manifold is 𝜕Σ × 𝕊1, along
which the contact structure is 𝜉𝜕Σ ⊕ 𝑇 𝕊1.

Here we borrow some convenient terminology from Massot, Niederkrüger, and Wendl
2013, and say that 𝜕Σ × 𝕊1 is a 𝜉-round hypersurface. An hypersurface 𝐻 in a contact
manifold (𝑉 , 𝜉) is a 𝜉-round hypersurface modeled on some closed contact manifold
(𝑀, 𝜉𝑀) if it is transverse to 𝜉 and admits an identification with 𝕊1 × 𝑀 such that
𝜉 ∩ 𝑇 𝐻 = 𝑇 𝕊1 ⊕ 𝜉𝑀. In this definition, the word “round” is used as in “round handle”.
Observe that in dimension three, a 𝜉-round hypersurface is simply a pre-Lagrangian
torus with closed characteristic leaves.

One can easily check that such an hypersurface 𝐻 has a neighborhood 𝐻 × [0, 𝜀) (or
𝐻 × (−𝜀, 𝜀) if it is in the interior of the ambient manifold) where 𝜉 = ker(𝛼𝑀 + 𝑠𝑑𝑡)
(𝑡 ∈ 𝕊1, 𝑠 ∈ [0, 𝜀), 𝜉𝑀 = ker 𝛼𝑀). When, as in the open book construction, 𝐻 is a
boundary component of 𝑉 , we can blow down 𝐻 to 𝑀 . Let 𝐷 be the disk of radius

√𝜀
in ℝ2. The map Ψ∶ (𝑟𝑒𝑖𝜃, 𝑚) ↦ (𝑟2, 𝜃, 𝑚) is a diffeomorphism from (𝐷 ∖ {0}) × 𝑀 to
(0, 𝜀) × 𝕊1 × 𝑀 which pulls back 𝛼𝑀 + 𝑠𝑑𝑡 to the contact form 𝛼𝑀 + 𝑟2𝑑𝜃. Thus we
can glue 𝐷 × 𝑀 to 𝑉 ∖ 𝐻 to get a new contact manifold in which 𝐻 has been replaced
by 𝑀 .

This allows one to finish the construction of the contact manifold associated to an
ideal Liouville domain and a compactly supported symplectomorphism. Compared to
the old fashioned construction with Liouville manifolds but without ideal Liouville do-
mains, there is no need to extend the contact structure near the binding because the
contactization of the ideal Liouville domain already involves all the needed rotation. It
then suffices to blow down, without using any cut-off function.
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In retrospect, one can say that W. P. Thurston and Winkelnkemper 1975 constructed
contact structures compatible with open books in dimension 3, but their construction
is actually not specific enough to guarantee this (they allow too much freedom in their
extension near the binding).

Contact handlebodies

The contact open book picture can be seen from a slightly different perspective that is
also useful, and closer to Giroux 1991.

A contact handlebody is a compact contact manifold (𝐻, 𝜉) which admits a Morse
function 𝑓 (constant on 𝜕𝐻) and a pseudogradient vector field 𝑋 for 𝑓 whose flow 𝜑𝑡
preserves 𝜉 and whose limit set ∩𝑡≥0𝜑𝑡(𝐻) is a Legendrian complex 𝐿, ie a compact union
of smoothly embedded isotropic submanifolds called a Legendrian spine of (𝐻, 𝜉) (one
should say a bit more about how these submanifolds fit together of course). The smooth
hypersurface 𝑅 = {𝑋 ∈ 𝜉} is called a characteristic hypersurface of (𝐻, 𝜉). As we saw, it
naturally is a Weinstein manifold with Lagrangian skeleton 𝐿. The terminology comes
from dimension 3 where it is customary to reserve the word handlebody for manifolds
having a handle decomposition with indices at most 1. Here (𝐻, 𝜉) has a decomposition
into standard contact handles of index at most 𝑛 in dimension 2𝑛 + 1.

A contact Heegaard splitting for (𝑉 , 𝜉) is a triple (𝐻, 𝐻∗, Σ) such that 𝑉 = 𝐻 ∪ 𝐻∗,
Σ = 𝜕𝐻 = 𝜕𝐻∗ and (𝐻, 𝜉|𝐻) and (𝐻∗, 𝜉|𝐻∗) are contact handlebodies. The hypersurface
Σ is then called a contact Heegaard hypersurface.

The same considerations as in the discussion of Key observation 3.15 and Figure 3.10
prove that ordered Morse function with a contact pseudogradient lead to a contact
Heegaard splittings, where the Heegaard hypersurface is a regular level set separating
index 𝑛 and 𝑛 + 1 critical points.

3.4. Open books in dimension 3
Uniqueness in the correspondance between contact structures and open books is better
understood in dimension three.

In a 3-manifold 𝑀 , let 𝐹 ⊂ 𝑀 be a compact surface with boundary and 𝐶 ⊂ 𝐹
a proper simple arc. We say that a compact surface 𝐹0 ⊂ 𝑀 is obtained from 𝐹 by
Hopf plumbing along 𝐶 if 𝐹0 = 𝐹 ∪ 𝐴 where 𝐴 is an annulus in 𝑀 with the following
properties: the intersection 𝐴 ∩ 𝐹 is a tubular neighborhood of 𝐶 in 𝐹 ; the core curve
of 𝐴 bounds a disk in 𝑀 ∖ 𝐹 ; and the linking number of the boundary components of
𝐴 is equal to ±1. Such a plumbing is called positive or negative depending on the sign
of the linking number.

According to Stallings 1978, if 𝐹 is a page of an open book (𝐾, 𝜃) in 𝑀 then any
surface 𝐹0 obtained from 𝐹 by Hopf plumbing is also a page of an open book (𝐾0, 𝜃0) in
𝑀 . We will say that the open book (𝐾0, 𝜃0) itself is obtained from (𝐾, 𝜃) by plumbing.
The new monodromy is obtained by first extending the old one over 𝐴∖𝐹 by the identity,
and then composing with a positive or negative Dehn twist in 𝐴, depending on the sign
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of the plumbing. A stabilization of an open book (𝐾, 𝜃) is an open book (𝐾0, 𝜃0) that
can be obtained from (𝐾, 𝜃) by finitely many successive Hopf plumbings.

Giroux’s open book decomposition theorem in dimension 3 states that, on a closed 3-
manifold 𝑀 , there is a bijective correspondence between contact structures up to isotopy
and open book decompositions up to isotopy and positive stabilizations. In particular
any open book decomposition carries a contacts structure, unique up to isotopy. And
two open books carrying isotopic contact structures become isotopic after finitely many
positive Hopf plumbing of both of them. In the next two sections, we will explain some
aspects of Giroux’s proof, trying to highlight a few pitfalls usually not described in
leisurely accounts.

3.4.1. Existence
Both the existence and uniqueness parts of the proof of the open book decomposition
theorem use the contact Heegaard splitting point of view rather than directly thinking
in terms of open book. Therefore we need tools to recognize contact handlebodies. Let
𝐿 be a Legendrian graph, ie a union of Legendrian arcs and circles such that any vertex is
contained in a Darboux chart (ℝ3, ker 𝑑𝑧 + 𝑟2𝑑𝜃) where edges are rays in the horizontal
plane {𝑧 = 0}. A Legendrian ribbon for 𝐿 is a compact surface 𝑅 with boundary which
contains 𝐿 in its interior, and such that one can coorient 𝜉 and 𝑅 so that 𝜉 has no
negative tangency with 𝑅, there is a flow tangent to 𝜉𝑅 which retracts 𝑅 onto 𝐿, and
𝜉 is transverse to the boundary of 𝑅. In practice, up to shrinking the surface, it is
sufficient to check that 𝑅 contains 𝐿 in its interior and has no negative tangency with 𝜉
along 𝐿.

An elementary, but useful, observation is that any Legendrian graph 𝐿 has a ribbon 𝑅,
and any such ribbon is the characteristic surface of a contact handlebody retracting on
𝐿. This is a local way of recognizing contact handlebodies, in contrast to the following
observation, essentially equivalent to the main result of Torisu 2000.

Key observation 3.17. Let 𝐻 be a handlebody, Σ its boundary and 𝜉 a contact structure
on 𝐻. The contact manifold (𝐻, 𝜉) is a contact handlebody if and only if:

• Σ is 𝜉–convex and there are a dividing set Γ and a set of compression disks 𝐷1,…,
𝐷𝑛 for 𝐻, such that each 𝜕𝐷𝑖 intersects Γ exactly twice (transversely) ;

• the complement of the union of all compression disks is tight.

Indeed any contact handlebody embeds into the tight ℝ3 using a Weinstein neigh-
borhood type of argument, and direct inspection gives the required compression disk.
Conversely, the intersection hypothesis and the realization lemma allow to assume that
all 𝜕𝐷𝑖 are Legendrian with Thurston Bennequin invariant −1, and then to normalize
the contact structure along all compression disks. The complement of the union of all
these disks is then a union of balls (by definition of compression disks) with controlled
characteristic foliations, and we assumed they are tight so uniqueness from Eliashberg
1992 seals the characterization.
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It is crucial to emphasize that the criterion is in terms of actual number of intersections,
not homological number of intersections, or even number of intersections up to isotopy.
This should be clear from the above sketch of proof. Overlooking this subtlety leads to
very efficient “proofs” of the open book decomposition theorem.

(a) A Legendrian graph whose comple-
ment is a smooth handlebody.

(b) Good compression disk.

Figure 3.11.: Constructing a contact Heegaard splitting for (𝕋3, 𝜉1) (I).

In principle, the existence of contact Heegaard splittings is then rather straightforward.
Starting with any smooth Heegaard splitting (𝐻0, 𝐻1) (given by a triangulation say) we
see one handlebody as a regular neighborhood of a graph 𝐿. We first deform 𝐿 until
it becomes Legendrian, starting with an explicit model near vertices and then using
Legendrian approximation for the interior of edges. For instance, starting with 𝕋3 seen
as a cube with opposite faces glued by translation, we have a Heegaard splitting where
one handlebody is a regular neighborhood of edges of the cube. One easily turn this
graph into a Legendrian one as in Figure 3.11(a). This Legendrian 𝐿 has a ribbon and
a regular neighborhood 𝐻′

0 which is a contact handlebody smoothly isotopic to 𝐻0.
In particular the complement 𝐻′

1 of 𝐻0 is a smooth handlebody which has a system
of compression disks. Maybe after stabilizing the Legendrian 𝐿′, we can assume these
disks all meet a dividing set Γ of 𝜕𝐻′

1. We want all compression disk to intersect Γ only
twice, as in Figure 3.11(b), in order to apply Key observation 3.17. If there are more
than two intersections, as in Figure 3.12(a), we subdivide the guilty disk into smaller
one by adding more Legendrian arcs to 𝐿, as in Figure 3.12(b).

Figures 3.11 and 3.12 hide two difficulties of the general case. The minor one is that,
because we know that the full (𝕋3, 𝜉1) is tight, we did not worry about the tightness
assumption in Key observation 3.17. This is easily arranged by starting with a graph
which is the 1-skeleton of a sufficient fine triangulation so that all 3-cells are contained in
Darboux charts. The serious one is we used a miracle in the subdivision of Figure 3.12(b).
The miracle is not that our disk contained a convenient Legendrian arc, this actually is
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(a) Bad compression disk with 4 intersec-
tion points (red balls).

(b) Disk subdivision.

Figure 3.12.: Constructing a contact Heegaard splitting for (𝕋3, 𝜉1) (II).

automatic. The miracle is that the obvious ribbon for 𝐿′ already contains this convenient
arc, hence can be easily extended without disrupting anything. In general, the current
working ribbon is isotopic to a ribbon containing the convenient arc, but this isotopy
creates intersections between the boundary of the ribbon (which is the dividing set Γ) and
other compression disks. This catastrophe is especially likely to happen if the convient
arc has an end point which is a vertex of 𝐿′. The actual proof of existence of supporting
open books first carefully cleans up neighborhoods of vertices, and then very carefully
selects convenient subdivision arcs.

As discussed in Section 4.2.2, one can be tempted to rather start with a global descrip-
tion of the contact manifold given by a contact surgery diagram. However there does
not seem to be any idea about how this could be continued to also prove the uniqueness
part of the open book theorem, in contrast to the above discussion.

3.4.2. Uniqueness

The uniqueness part of the proof of the open book decomposition is a relative version
of the existence part. Given two contact Heegaard splittings and associated Legendrian
graphs 𝐿1 and 𝐿2, as in the existence proof, one rather easily constructs a third graph 𝐿3
containing both 𝐿1 and 𝐿2 and whose complement is a handlebody. Then two difficulties
must be addressed. First one needs to run the existence proof on 𝐿3 with extra care
to avoid disrupting 𝐿1 or 𝐿2 (we will ignore this problem below). Then one needs to
carefully order the way new edges are added to go from 𝐿1 or 𝐿2 to 𝐿3 in such a way
that each move corresponds to an open book stabilization.

The first thing to explain is what is the Heegaard splitting perspective on stabi-
lizations. A contact Heegaard splitting (𝐻2, 𝐻∗

2, Σ2) is an elementary stabilization of
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another one (𝐻1, 𝐻∗
1, Σ1) if there are disks 𝐷 and 𝐷∗ properly embedded in 𝐻2 and 𝐻∗

2
respectively and such that 𝐷 and 𝐷∗ intersect transversely at one point and there is a
bicollar neighborhood 𝑁 of 𝐷∗ in 𝐻∗

2 such that the boundary of 𝐻∗
2 ∪ 𝑁 is smooth and

isotopic to Σ1 through 𝜉-convex surfaces.
The following is the key example where stabilizations appear. Let (𝐻1, 𝐻∗

1, Σ1) be
a contact Heegaard splitting for (𝑉 , 𝜉), 𝐻1 retracting on some Legendrian graph 𝐺1.
Let 𝐺2 be another Legendrian graph with ribbon 𝑅2 and let 𝐷 be a disk with smooth
interior and piecewise smooth boundary. Suppose that 𝐺1 ∩ 𝐷 is a non-empty subset
of 𝜕𝐷, 𝐺1 ⊂ 𝐺2 ⊂ 𝐺1 ∪ 𝐷 and 𝐺2 ∩ 𝐷 divides 𝐷 into disks which all intersect 𝜕𝑅2
twice transversely. Then there is a contact Heegaard splitting (𝐻2, 𝐻∗

2, Σ2) which is a
stabilization of (𝐻1, 𝐻∗

1, Σ1) and such that 𝐻2 retracts on 𝐺2. Note again the discussion
is in terms of actual numbers of intersections between actual ribbons and disks, not in
terms of homological intersection numbers or intersections after isotopy.

Given two contact Heegaard splittings, one can first stabilize them until they are
associated to cell decompositions as in the existence part. In particular we have two
Legendrian graphs 𝐿1 and 𝐿2 which are the 1-skeletons of two cell decompositions.
These cell decompositions are not quite smooth at vertices (all edges come to the vertex
in the same plane) but one can refine them to smooth cell decompositions and, after
some small contact isotopy, assume these decompositions are in general position relative
to each other. An easy variation on the uniqueness theorem from Whitehead 1940 guar-
antees that those decompositions can be perturbed, relative to their 1-skeleton, until
they have a common refinement. Recall that a (linear) cell complex 𝐿 is a subdivision of
𝐾 if they coincide as subsets of ℝ𝑁 and any cell of 𝐿 is contained in a cell of 𝐾. A refine-
ment of a cell decomposition is the cell decomposition induced on a subdivision of the
parametrizing linear cell complex. This common refinement obtained from Whitehead
can be used as in the existence part to get a new contact Heegaard splitting. However,
without further information on the refining process, there is no reason why the latter
splitting should a stabilization of the original ones. The key notion here is subdivision
by bissection, whose relevance to Heegaard splittings was (re-)discovered by Siebenmann
1979.

Here we will use the following ad hoc technical definition. A special subdivision of a cell
complex 𝐾 is a subdivision obtained by a finite sequence of face subdivision and 3-cell
bissections. A 𝑘-cell bissection of a cell complex 𝐾 replaces a 𝑘-cell 𝜎 by a (𝑘 − 1)-cell
𝐹 and two 𝑘-cells 𝜎+ and 𝜎− such that 𝜎+ ∩ 𝜎− = 𝐹 , 𝜎+ ∪ 𝜎− = 𝜎 and the boundary of
𝐹 is a union of cells of 𝐾.

The following observation, which is the key to orderly subdivide until proving Giroux’s
uniqueness theorem, belongs to purely PL topology.

Key observation 3.18. Any two cell complexes having a common refinement have a
common refinement obtained by special subdivisions from both.

Suppose 𝐾 is a cell complex which is special subdivision of another one 𝐾0. Then
there is sequence of cell complexes 𝐾1, ⋯, 𝐾𝑁 such that 𝐾𝑁 = 𝐾 and, for all 𝑖 ≥ 0:

• 𝐾2𝑖+1 is obtained by subdivisions of faces of 𝐾2𝑖 (or 𝐾2𝑖+1 = 𝐾2𝑖)
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• 𝐾2𝑖+2 is obtained by bisections of 3-cells of 𝐾2𝑖+1 (or 𝐾2𝑖+2 = 𝐾2𝑖+1)

• every face of 𝐾2𝑖+1 is a face of 𝐾.

Indeed, the first point can be proved assuming that one cell complex is a single cell
and looking at Figure 3.13 which explains the 2-dimensional case. The construction of

Figure 3.13.: Subdivision by bissection. On the left is a 2-cell and a complex subdividing
it. On the right we have a cell complex obtained by bissections from both.

the sequence of cell complexes is done by induction on the number of steps, subdividing
faces or bissecting 3-cells, that are needed to go from 𝐾0 to 𝐾.

Using this Key observation 3.18 ensures that one can repeatedly use the key example
of contact Heegaard splitting stabilization described above to finish Giroux’s proof.

3.4.3. The Harer conjecture
The most direct application of the open book decomposition theorem in pure topology
is the proof of Harer’s conjecture announced in Giroux 2002, and detailed in Giroux and
Goodman 2006. Two open books in a closed oriented three-manifold 𝑉 admit isotopic
stabilizations if and only if their associated oriented plane fields are homologous (ie
their images in 𝑆𝑇 ∗𝑉 are homologous). Besides the open book decomposition theorem
(existence and uniqueness), the proof relies on the classification of overtwisted contact
structures in Eliashberg 1989.

3.4.4. Tightness criterion
In principle, the open book decomposition theorem turns any question about contact 3-
manifolds into a question about open books up to stabilization. In particular, questions
about isomorphism classes of contact 3-manifolds are turned into questions about map-
ping classes of surface diffeomorphisms up to stabilization. The latter is a completely
combinatorial object, and mapping class groups are much studied, but the stabilization
equivalence relation is very difficult to work with. One would like to detect properties
of a contact manifold by looking at any given open book decomposition. But this is
not how early results looked like. The most basic ones are directly due to Giroux who
proved that a contact 3-manifold is overtwisted if and only if it has some compatible
open book which is a negative stabilization, and that it is Weinstein fillable if and only
if it has an open book whose monodromy is a product of positive Dehn twists.

Later worked tried to improve on the above overtwisted criterion by finding less strin-
gent condition ensuring overtwistedness. After some initial work in Goodman 2005,
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Honda, Kazez, and Matić 2007 proved that a contact manifold is tight if and only if all
its supporting open books are right veering: every arc in the page is “sent to its right”
by the monodromy.

The above criterion can be used to prove that a contact manifold is overtwisted but
not to prove tightness since the latter would require to check all supporting open books.
An ongoing program by Andy Wand aims to give a characterization of tightness in
term of any given single open decomposition. An intermediate step in this program is
to give a criterion that involves any given open book and its stabilizations, but not its
destabilizations. This is explained in Wand 2015 and was enough to settle the Legendrian
surgery conjecture: any contact manifold obtained by Legendrian surgery on a tight one
is tight.

3.5. From open books to symplectic caps
3.5.1. Construction
In order to study contact manifolds and their various flavors of symplectic fillings, it is
desirable to be able to embed any filling 𝑋 into a closed manifold 𝑋′. The manifold
𝑋′ ∖ 𝑋 is then called a symplectic cap for 𝑋 (or for 𝜕𝑋 when this causes no ambiguity).
Symplectic caps allow one to use tools and results about closed manifolds.

Lisca and Matić 1997 constructed symplectic caps for Stein fillable contact manifolds
(in all dimensions). Using existence of supporting open books Etnyre and Honda 2002a
constructed caps that could be glued to strong fillings of contact 3-manifolds. Still using
existence of supporting open books, Eliashberg 2004 and independently Etnyre 2004a
proved that any weak filling of a contact 3–manifold can be capped off.

Key observation 3.19. Attaching 2-handles along the binding of an open book using
the page framing produces a 3–manifold which is a surface bundle over the circle.

Eliashberg proved that the smooth cobordism corresponding to this handle attachment
can be endowed with a symplectic form which can be glued to any weak filling. The
new 3–manifold does not have any natural contact structure in this situation and is
not a convex boundary component of the cobordism (not even weakly). But it is a
stable hypersurface and, using that every surface diffeomorphism of a closed surface is
a product of left-handed Dehn twist, Eliashberg was able to cap off this cobordism by a
Lefschetz fibration over the disk.

3.5.2. Planar contact structures
The construction of symplectic caps explained in the previous section opened the road
to applications of symplectic topology of closed manifolds to contact manifolds. Etnyre
2004b is probably the first example of this, and highlighted the importance of planar
contact manifolds, those contact manifolds supported by an open book whose pages
embed into the plane.
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Key observation 3.20. Assume that (𝑉 , 𝜉) is a contact manifold supported by an open
book with planar pages. In Eliashberg’s symplectic cap, all pages can be extended to
symplectic spheres with trivial normal bundle.

Indeed Eliashberg’s surgery construction turns the open book into a fibration by closed
surfaces obtained by capping all binding components by disks. By definition of a sup-
porting open book, there is a contact form 𝛼 for 𝜉 such that 𝑑𝛼 is positive on the interior
of pages and, while 𝛼 does not extend to a contact form on the surgered manifold, 𝑑𝛼
extends to a symplectic form positive on fibers.

As mentioned in Section 2.4, Gromov 1985 and McDuff 1990 proved that symplectic
spheres with trivial normal bundle give rise to foliation by holomorphic spheres and this
has strong topological consequences. Here Etnyre 2004b proved that any symplectic
filling of a planar contact manifold has negative definite intersection form and connected
boundary. This proves for instance that the manifold of contact elements of a closed
hyperbolic surface is not planar, since McDuff 1991a proved the existence of a Liouville
manifold with disconnected boundary, one of whose components is this contact elements
bundle. In contrast, Etnyre 2004b proved that all overtwisted manifolds are planar. This
story will continue in Section 4.3.

3.5.3. Giroux torsion and symplectic fillings
Remember from Section 2.7.2 that Eliashberg 1996 proved that, among all structures 𝜉𝑛
on 𝕋3, only the first one admits a strong symplectic filling and this proof went through
a symplectic cobordism construction. It seems that, already at that time, Giroux and
Eliashberg conjectured that positive Giroux torsion always obstructs strong fillability.
This conjecture received further support from classification efforts, culminating in the
coarse classification theorem described in Section 3.2.5, that highlighted the role of
Giroux torsion.

After several preliminary results, eg Lisca and Stipsicz 2007a, Gay 2006 managed to
prove the conjecture. It used toric symplectic geometry to build cobordisms with corners
that contain a nice pair of symplectic spheres and could be glued on top of any strong
filling of a contact manifold with positive Giroux torsion. Then it used the symplectic
cap construction of Etnyre 2004a to get a symplectic 4-manifold which is a connected
sum of two manifolds, each having positive 𝑏+

2 . But this contradicts results proved in
Taubes 1994 using gauge theory, as described in Section 4.1.1 below (a variation on this
construction could probably get a contradiction to McDuff 1990 instead).

Besides settling an important conjecture tying the coarse classification to fillability
question, this proof provided strong motivation for Wendl’s cobordisms constructions
described in Section 4.3 and then for Chapter 7.
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4. Interactions with gauge theory and Floer
homologies

4.1. Gauge theory

4.1.1. Gauge theory and symplectic geometry

Seiberg-Witten theory builds, for each smooth closed 4-manifold 𝑋, a map SW𝑋 ∶
Spinc(𝑋) → ℤ “counting” solutions of some elliptic PDE. Right from the beginning,
Witten 1994 noticed that, when 𝑋 is a Kähler surface, the space of solutions to this
PDE is in bijective correspondance with representations of certain homology classes by
sums of holomorphic curves. Taubes 1995 then proved a (much harder) version of this
relation for all closed symplectic manifolds. In particular there is a canonical Spinc

structure 𝔰𝜔 attached to 𝜔 with SW𝑋(𝔰𝜔) = ±1 as well as contraints on other Spinc

structures with non-vanishing SW𝑋 invariant.

4.1.2. Early applications to contact topology

The work of Taubes was extended to the case of symplectic 4-manifold with weakly
convex boundary in Kronheimer and Mrowka 1997, where a contact structure gives a
boundary condition for the Seiberg-Witten PDE. The first application of this work was
finiteness of homotopy classes of plane fields containing a fillable contact structure—a
precursor of the coarse classification theorem discussed in Section 3.2.5—and the cor-
responding result for smooth taut foliations, via the Eliashberg-Thurston theorem dis-
cussed in Section 3.2.2.

At the same time, this technology was applied to prove existence of manifolds which
admit no fillable contact structure in Lisca 1998. In conjunction with progress of topo-
logical methods to prove tightness discussed in Section 3.2.4, this led to the first examples
of tight non-fillable contact structures in Etnyre and Honda 2002b. In view of Chapter 7,
we note right away that there is no analogue of gauge theory in higher dimensions, hence
existence of tight non-fillable contact structures in higher dimension will have to rely of
other techniques.

The last early application of gauge theory to contact topology was a tool developed
in Lisca and Matić 1997 to distinguish isotopy classes of Stein fillable contact manifolds:
if 𝐽0 and 𝐽1 are two Stein complex structures on the same smooth manifold 𝑋 then the
contact structures 𝜉0 and 𝜉1 induced on 𝜕𝑋 can be isotopic only if 𝑐1(𝐽0) = 𝑐1(𝐽1). In
order to prove this result, Lisca and Matić proved a precursor of later capping theorems:
any Stein domain has a symplectic embedding into a closed projective variety. This
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generalizes the case of smooth affine algebraic manifolds that embed into desingularisa-
tions of their projective compactifications. The proofs uses ideas from Eliashberg and
Gromov 1991 about the symplectic geometry of Stein manifolds, but also techniques
from Demailly, Lempert, and Shiffman 1994 to approximate holomorphic maps by alge-
braic ones. This embedding result allowed Lisca and Matić to use the Seiberg-Witten
equations on closed manifolds, but the same result was also proved in Kronheimer and
Mrowka 1997 using their variant with contact boundary.

The Lisca-Matić rigidity of the Chern class of Stein fillings was used to prove several
rigidity results, distinguishing isotopy classes of contact structures that are homotopic
as plane fields. Later it was upgraded in Plamenevskaya 2004 to a proof that those
contact structures are distinguished by Heegaard-Floer theory with, in dimension 4, an
embedding construction using open books which was a another precursor to the capping
construction of Eliashberg 2004 discussed in Section 3.5

4.2. Floer homologies

4.2.1. Flavors of Floer homology for contact manifolds

Symplectic field theory

We saw in Section 2.6.1 that Reeb fields dynamics is strongly related to Hamiltonian
dynamics, therefore it was natural to try to extend Hamiltonian Floer homology to
symplectizations of contact manifolds. However a new phenomenon appears. We saw
in Section 2.7.2 that symplectic convexity prevents holomorphic curves to escape. But
the symplectization has two ends and one of them is not convex. This difficulty was
addressed in Hofer 1993.

Key observation 4.1. For a suitable class of almost complex structures on a sym-
plectization, the only lack of compactness arising from the non-convex end is explosion
towards cylinders over homotopically trivial closed Reeb orbits.

The immediate application of this observation was the proof of the Weinstein conjec-
ture for overtwisted contact structures. Starting with the same family of holomorphic
disks with boundary on an overtwisted disk as in Section 2.4, the only way to avoid
contradiction was explosion towards closed Reeb orbits.

Even after ibid., setting up a Floer theory in symplectizations is far from obvious
both from the structural point of view and because of technical issues. The structure
issue is to find an algebraic way to encode the geometry of compactified moduli spaces
of holomorphic curve. The technical issue is to get around the fact that those moduli
spaces are not smooth objects. The structure of this theory stabilized under the name
of symplectic field theory in Eliashberg, Givental, and Hofer 2000 (see also Cieliebak and
Latschev 2009 for an alternative algebraic view of the same story). The technical issues
are still the topic of very active work, see Hofer 2006; Pardon 2016, 2015. This theory
has rich interactions with its symplectic counterparts, see Bourgeois and Oancea 2009.
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In the mean time Hofer, Wysocki, and Zehnder 1996, 1995, 1999 refined the study
of punctured holomorphic curves in symplectizations, not only pursuing Floer theoretic
goals, but also more direct geometric constructions, which later resounded with contact
open book decompositions. Before open books were used as a tool to study foliations
and then contact structures, they appeared in dynamical systems. A surface of section
for a flow on a 3 manifold is a surface whose boundary is preserved by the flow, and
whose interior is transverse to it. Poincaré and Birkhoff observed that such a surface
reduces the study of the continuous time dynamics of the flow to the discrete time study
of the dynamics of the first return map on the surface of section. In this situation, the
surface of section is the page of an open book. In Hofer, Wysocki, and Zehnder 1998,
the authors proved that the Reeb flow of a strictly convex hypersurface in ℝ4 admits
a surface of section diffeomorphic to a disk. Pages of the corresponding open book are
obtained as projections of holomorphic curves in the symplectization.

From the other direction, one can start with a compatible open book decomposition
and hope to understand enough holomorphic curves to compute Floer theoretic data.
This was indeed done, under some assumption, in Colin and Honda 2013.

Seiberg-Witten-Floer homology and embedded contact homology

Instanton Floer homology belongs to SU(2) gauge theory, on “Donaldson’s side of gauge
theory”. The “Seiberg-Witten” side of this story was much longer to put on a firm basis
and appeared in final form only in Kronheimer and Mrowka 2007. These Seiberg-Witten-
Floer homology groups are defined by counting solution to some Seiberg-Witten type
equations hence they can be used to guarantee existence of solutions to these equations.
This was used in Taubes 2007 to prove the Weinstein conjecture in dimension three,
in the spirit of Taubes’s work relating Seiberg-Witten equations to holomorphic curves
in dimension 4 (see Section 4.1.1). The idea is to consider a sequence of solutions
to deformed Seiberg-Witten equations. The deformation involves a contact form and,
under some hypotheses, the spinor component of solutions is nearly zero only on a set
that closely approximates a closed Reeb orbit.

The above sketch does not directly use the algebraic structure of SWF homology
groups. However, one can also recast the constructions of Kronheimer and Mrowka 1997
in this context to get invariants of isotopy classes of contact structures living in those
groups.

Also, Taubes’s work relating Seiberg-Witten monopoles to holomorphic curves can
be adapted more fully to this context to prove that Seiberg-Witten-Floer homology is
isomorphic to some homology theory counting holomorphic curves in symplectizations of
contact 3–manifolds. This theory is called embedded contact homology and was sketched
in Hutchings 2002. This name comes from its resemblance to contact homology, a part
of symplectic field theory, and the fact that it mostly counts embedded holomorphic
curves, but the full story is much more subtle than what this etymology suggests. The
isomorphism between SWF homology and ECH was eventually fully established in a
series of papers starting with Taubes 2010.
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Heegaard-Floer homology

The deformation of Seiberg-Witten equations used in Taubes 2007 is not the only inter-
esting one. Even before SWF homology was fully established, it inspired the development
of Heegaard-Floer homology, which was meant to be some Atiyah-Floer deformation of
SWF homology, but whose foundations were built in Ozsváth and Szabó 2004b without
relying on any gauge theory.

Here the starting point is a Heegaard diagram for a 3-manifold 𝑉 . Given an ordered
Morse function 𝑓 on 𝑉 and a Morse-Smale pseudogradient 𝑋 for 𝑓 , the corresponding
Heegaard diagram (Σ, 𝛼, 𝛽) is a surface Σ which is a level set separating critical points
of indices 1 and 2, and circles 𝛼1, … , 𝛼𝑔 (resp. 𝛽1, … , 𝛽𝑔) that are the intersections of
Σ and unstable manifolds of index 1 critical points (resp. stable manifolds of index 2
critical points). The surface Σ is indeed a Heegaard surface: it separates 𝑉 into two
handlebodies. The 𝛼 circles bound disks (called compression disks) in one of them and
the 𝛽 circles in the other one. Hence the manifold 𝑉 can be reconstructed from (Σ, 𝛼, 𝛽)
by thickening Σ × [0, 1], attaching thickened disks to each 𝛼𝑖 × {0} and 𝛽𝑖 × {1} and
filling the resulting boundary by balls. The Heegaard-Floer homology group 𝐻𝐹(𝑉 ) is (a
variant of) Lagrangian Floer theory for the tori 𝑇𝛼 = 𝛼1 ×⋯×𝛼𝑔 and 𝑇𝛽 = 𝛽1 ×⋯×𝛽𝑔
inside the symmetric product of 𝑔 copies of Σ.

Instead of coefficients in ℤ or ℤ/2, one can use coefficients in any module 𝕄 over
the group ring ℤ[𝐻1(𝑌 , ℤ)]. The resulting homology is called Heegaard-Floer homology
with twisted coefficients in 𝕄 and denoted by 𝐻𝐹(𝑉 ; 𝕄).

Heegaard-Floer theory is functorial with respect to cobordisms. For every pair of
closed 3-manifolds 𝑌1 and 𝑌2, every 4-manifold 𝑋 whose boundary is −𝑌1 ⊔𝑌2 gives rise
to a map 𝐹𝑋 ∶ 𝐻𝐹(𝑌1) → 𝐻𝐹(𝑌2). A related construction gives an invariant of closed
4-manifolds which is conjecturally the same as the Seiberg-Witten invariant.

From the beginning, this theory was meant to be an alternative construction of
Seiberg-Witten-Floer homology but, even after the latter was rigorously established
in Kronheimer and Mrowka 2007, proving that they give isomorphic theory was very
challenging. This was eventually proved in two independent series of papers starting
with Kutluhan, Lee, and Taubes 2010 and Colin, Ghiggini, and Honda 2011. The latter
crucially uses open book decompositions.

4.2.2. Contact class in Heegaard-Floer theory

Heegaard-Floer homology appeared at roughly the same time as the Giroux correspon-
dance. In particular they were both discussed during a workshop in Oberwolfach in July
2001, where it seems that the idea of using open book decompositions to define contact
invariants in 𝐻𝐹 was born. Of course existence of these invariants was conjectured
earlier, since they exist in the gauge theoretic counter part of Heegaard-Floer homology.

Ozsváth and Szabó 2005 gave two descriptions of the contact class 𝑐(𝜉) ∈ 𝐻𝐹(𝑉 )/{±1},
in terms of knot Floer homology and using maps induced by cobordism to a fibered man-
ifold. But its most convenient construction is due to Etnyre and Honda and is explained
in Honda, Kazez, and Matić 2009a.
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Key observation 4.2. Any open book decomposition give rise to Heegaard diagrams
with the following properties: the surface Σ is obtained by gluing two pages 𝑃 and 𝑃 ′

along their boundary and 𝛼𝑖 ∩ 𝛽𝑗 ∩ 𝑃 ′ is empty if 𝑗 ≠ 𝑖 and a single point 𝑥𝑖 if 𝑖 = 𝑗.

Indeed, as discussed in Section 3.4, open book decomposition give rise to Heegaard
splittings. Starting from a page 𝑃 of the open book, one can consider a family of
disjoint arcs 𝑎𝑖 cutting 𝑃 into a disk and follow them around the open book. The span
compression disks in both handlebodies whose boundary share a common arc on the
page opposite 𝑃 ′ to 𝑃 . After some perturbation, one obtains a Heegaard diagram as
described.

The point 𝑥 = [𝑥1, …, 𝑥𝑔] ∈ 𝑇𝛼 ∩ 𝑇𝛽 is a cycle which represents the contact class. Of
course one needs to prove that this class does not depend on the choice of open book
and system of arcs. In particular, the uniqueness part of the open book decomposition
theorem is therefore crucial.

Right from the beginning in Ozsváth and Szabó 2005, it was proved that overtwisted
contact structures have vanishing contact class, because they are supported by open
books that are negative stabilizations. It was also proved that Stein fillable contact
structure have non-vanishing invariant. This proof used the handle decomposition dis-
cussed in Section 2.6.3. Indeed a Stein filling can be seen as a Weinstein cobordism from
the standard sphere to the filled contact manifold and the associated cobordism map has
to send the unknown contact invariant to the non-vanishing invariant of the standard
sphere.

Compared to other Floer theories, Heegaard-Floer theory has a very topological and
combinatorial flavor (according to Sarkar and J. Wang 2010, it can indeed be computed
combinatorially). This is the reason why it plays nicely with open book decompositions
and Weinstein handle decompositions. The non-vanishing result for Stein fillable struc-
tures was extended to weakly fillable contact structures in Ozsváth and Szabó 2004a.
Here the topological description is given by Donaldson’s Lefschetz fibration theorem
(see Section 5.1.1) applied after capping the weak filling as explained in Section 3.5.
The non-vanishing result holds only with suitably twisted coefficients, depending on the
cohomology class of the restriction of the symplectic structure. For strong fillings this
cohomology class vanishes, and integer coefficients are enough. This last case was also
handled independently in Ghiggini 2006b.

Another topological description which interacts nicely with Heegaard-Floer theory is
contact surgery diagrams. The topological effect of surgery on a knot is determined
by a framing of the knot: a trivialization of its normal bundle. The space of framings
of a cooriented knot is canonically a ℤ-torsor –one can add a multiple of a meridian–
and Legendrian knots have a natural choice of framing given by the contact structure.
Ding and Geiges 2004a proved that every contact 3-manifold can be obtained from
the standard contact structure on 𝕊3 by a sequence of surgeries on Legendrian knots,
which are either Legendrian surgery, also called −1-contact surgery and described in
Section 3.2.4, or the opposite operation called +1-contact surgery (here ±1 refers the
difference of framing compared to the contact one). Indeed the corresponding result in
the smooth setting (without contact structure) is well known, so we have a sequence
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of surgery relating the given manifold to 𝕊3 but with unknown framings. The authors
use classification results from Section 3.2.3 to turn this sequence into a longer one with
framing coefficients ±1. This allows to carry along the contact structure but the end
result on 𝕊3 has no reason to be the standard contact structure. This is fixed by using
Eliashberg’s classification of contact structure on 𝕊3, both in the tight and overtwisted
case. Admittedly, that last step is not a overly satisfying. But one can instead use
the existence of a supporting open book and the fact that any surface diffeomorphism
is isotopic to a product of Dehn twists to produce the required surgery diagram. The
reverse strategy (going from a surgery diagram to a supporting open book) also works,
see Avdek 2013 for information on both directions.

Combined with purely topological methods from Section 3.2.3, and often with contact
surgery diagrams, the contact class in Heegaard-Floer turned out to be a powerful tool
to distinguish tight contact structures and exhibit many tight but not fillable contact
structures, e.g. in Lisca and Stipsicz 2004, 2007b; Ghiggini, Lisca, and Stipsicz 2007.
It was also a crucial ingredient in Ghiggini 2005a to prove existence of strongly but not
Stein fillable contact structures.

The contact class was also applied to investigate the topological content of Heegaard-
Floer homology, constructing interesting elements in 𝐻𝐹 as contact classes. Of course
this strategy requires construction of interesting contact structures, and those often
came from the work on Gabai constructing taut foliations, which were then turned into
contact structure using the Eliashberg-Thurston approximation theorem. This theorem
produces weakly fillable contact structures from taut foliations, hence it can be combined
with the non-vanishing result described above. This strategy was used in Ozsváth and
Szabó 2004a to prove that Heegaard-Floer homology detects the Thurston norm and the
genus of knots.

A similar application of contact topology to pure topology appears in Kronheimer
and Mrowka 2004 which proved the famous property P conjecture for knots: surgery
with slope 1 on a knot 𝐾 in 𝕊3 cannot give back 𝕊3 unless 𝐾 is the unknot. In that
case the homology theory was Floer instanton homology, but again the construction
of symplectic caps for weak fillings, and the Eliashberg-Thurston perturbation theorem
(using Key observation 3.8) were crucial.

Still perturbing taut foliations to contact structures and using the contact invariant,
Ghiggini 2008 proved that Heegaard-Floer homology detects genus one fibered knots.
A purely topological consequence was that the left-handed trefoil knot is the only knot
on which surgery can produce the Poincaré sphere. Ghiggini’s fiberedness criterion was
quickly extended to all genus in Ni 2007

4.2.3. Sutured Heegaard-Floer homology
All those results going through Gabai’s construction of taut foliations from sutured
hierarchies, the Eliashberg-Thurston perturbation theorem, and contact topology, mo-
tivated the development of a direct route from sutured manifolds to Heegaard-Floer
homology. This route started, after Ozsváth and Szabó 2004a but before Ghiggini 2008,
with Juhász 2006 which defined sutured Heegaard-Floer homology SFH. The initial goals
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were reached in Juhász 2008, which succeeded in reproving detection of the Thurston
norm and fibered knots without using contact topology.

While SFH started as an effort to reduce the need for contact topology in Heegaard-
Floer theory, it actually also benefited to contact topology since it allows to work on
contact manifold with 𝜉-convex boundary.

Gabai 1983 defined sutured manifolds as pairs (𝑀, Γ) where 𝑀 is a compact, oriented,
not necessarily connected 3-manifold 𝑀 with boundary, and Γ is an oriented embedded
1-manifold in 𝜕𝑀 which bounds a subsurface of 𝜕𝑀 . More precisely, there is an open
subsurface 𝑅+(Γ) ⊂ 𝜕𝑀 (resp. 𝑅−(Γ)) on which the orientation agrees with (resp. is
the opposite of) the orientation on 𝜕𝑀 induced from 𝑀 , and Γ = 𝜕𝑅+(Γ) = 𝜕𝑅−(Γ)
as oriented 1-manifolds. A sutured manifold (𝑀, Γ) is balanced if 𝑀 has no closed
components, 𝜋0(Γ) → 𝜋0(𝜕𝑀) is surjective, and 𝜒(𝑅+(Γ)) = 𝜒(𝑅−(Γ)) on the boundary
of every component of 𝑀 . This definition was initially introduced in order to inductively
construct taut foliations, but Gabai’s notion of sutures and Giroux’s notion of dividing
curves are clearly equivalent (it seems that Giroux was not aware of Gabai’s definition
in 1991, and Gabai was not aware of Lutz’s work in 1983).

Sutured Floer homology is an invariant of balanced sutured manifold which is the
analogue of 𝐻𝐹 . Actually one can recover 𝐻𝐹 by deleting a ball from a closed manifold
and endowing the resulting boundary sphere with a connected suture. Honda, Kazez,
and Matić 2009b extended the definition of the contact class to the setup of sutured
Heegaard-Floer theory. As in the closed case, one can use twisted coefficients. Whenever
there is no ambiguity on the manifold 𝑀 we are considering, we denote ℤ[𝐻2(𝑀; ℤ)] by
𝕃. We denote the universally twisted contact class by 𝑐(𝜉), it lives in SFH(−𝑀, −Γ)/𝕃×.
If a contact invariant vanishes with coefficients in 𝕃 then it vanishes for all coefficients
rings.

Of course the ultimate goal of sutured invariant would be to reconstruct the contact
class of closed contact manifold from the sutured contact class of pieces of the manifold.
In general this is too much to hope for, there is not enough information in SFH. Even
without the contact structure, reconstructing 𝐻𝐹 from information on pieces requires
the much heavier technology of bordered Heegaard-Floer theory from Lipshitz, Ozsváth,
and D. P. Thurston 2011. However, Honda, Kazez, and Matić 2008 introduced gluing
maps in SFH, and they were extended to twisted coefficients in Ghiggini and Honda
2008. If (𝑀′, Γ′) is a sutured submanifold of (𝑀, Γ) and 𝜉 is a contact structure on
(𝑀 ∖ 𝑀′, Γ ∪ Γ′), then there exists a linear map

Φ𝜉 ∶ SFH(−𝑀′, −Γ′) → SFH(−𝑀, −Γ)

such that, for any contact structure 𝜉′ on (𝑀′, Γ′), one has

𝑐(𝜉 ∪ 𝜉′) = Φ𝜉(𝑐(𝜉′)).

If every connected component of 𝑀 ∖ 𝑖𝑛𝑡(𝑀 ′) intersect 𝜕𝑀 then there are analogous
maps over ℤ coefficients. They are denoted without underlines.

In particular, vanishing of 𝑐(𝜉′) implies vanishing of 𝑐(𝜉 ∪ 𝜉′). This allows to reprove
vanishing of the contact class for overtwisted contact structures, simply by computing

75



4. Interactions with gauge theory and Floer homologies

the sutured contact class of a neighborhood of an overtwisted disk. The same idea
allowed Ghiggini, Honda, and Van Horn-Morris 2007 to prove that contact structures
with positive Giroux torsion have vanishing untwisted contact class. Combined with the
non-vanishing result for strongly fillable contact structures, this reproves Gay’s theorem
that positive Giroux torsion obstructs strong fillability. More refined information about
Giroux torsion was then obtained in Ghiggini and Honda 2008 with twisted coefficients.

Given the importance of torsion in the coarse classification and as a strong filling
obstruction, one could optimistically believe that it explains all cases of tight contact
structure with vanishing untwisted contact class. This belief was disproved over ℤ/2
coefficients in Honda, Kazez, and Matić 2008 and over ℤ coefficients in Chapter 6.

4.3. Foliations by holomorphic curves
Isolated intersections between two holomorphic curves in a 4-dimensional almost complex
manifold contribute positively to their homological intersection number. This is obvious
from linear algebra when we consider two immersed holomorphic curves intersecting
transversely, but it also holds in general according to Gromov 1985; McDuff 1991b;
Micallef and White 1995. This property is very useful in order to guarantee that spaces
of holomorphic curves faithfully describe a closed symplectic manifold, and was used
from the beginning in Gromov 1985; McDuff 1990.

In particular, if an embedded holomorphic curve 𝐶 has topologically trivial normal
bundle and belong to a 2-dimensional family, then this family foliates a neighborhood
of 𝐶 thanks to positivity of intersection. In order to use this observation, one needs
holomorphic curves to start with. The following elementary observation provide some.

Key observation 4.3. A smooth surface 𝑆 in a symplectic manifold (𝑋, 𝜔) is symplectic
if and only if there exists an 𝜔-tame almost complex structure 𝐽 such that 𝑆 is the image
of an (embedded) 𝐽-holomorphic curve.

However, this observation is almost never useful if one cannot guarantee that this
holomorphic curve (or a small deformation thereof) persists under perturbations of the
almost complex structure that could be needed to enforce other useful properties.

This is where enters a second specifically 4-dimensional phenomenon: automatic
transversality.

Key observation 4.4. Let (𝐸, 𝐽) → (Σ, 𝑗) be a complex line bundle over a Riemann
surface and let 𝐷 be a Cauchy-Riemann type operator on 𝐸. If 𝑐1(𝐸) > −𝜒(Σ), then 𝐷
is automatically surjective.

Indeed, the cokernel of 𝐷 is the kernel of an adjoint operator 𝐷∗ attached to a bundle
𝐸′ having negative first Chern class. The local analysis of holomorphic curves ensures
that elements of ker 𝐷∗ behave like holomorphic sections of (integrable) complex man-
ifolds, hence zeros of a non-zero section would contribute all contribute positively to
𝑐1(𝐸).
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We already saw in Section 3.5.2 that foliations by closed holomorphic curves can be
used to study contact manifolds. But it was clear from Hofer 1993 and Hofer, Wysocki,
and Zehnder 1998 that extensions of this story to punctured holomorphic curves would
be desirable, especially in relation with open book decompositions.

The first result proved using open book based punctured holomorphic curves was the
Weinstein conjecture for planar contact structures in Abbas, Cieliebak, and Hofer 2005.
Starting with a planar open book (𝐾, 𝜃) and a compatible contact form 𝛼, a construction
eventually published in Abbas 2011; Wendl 2010b gives an almost complex structure on
the symplectization 𝑆(ker 𝛼) and a foliation by 𝐽 -holomorphic curves which is invariant
under the action of translations and whose leaves project either onto 𝐾 or onto fibers of
𝜃 (this actually holds after some isotopy of (𝐾, 𝜃)). In order to deduce existence of Reeb
orbits for all contact form, one studies what happens to these curves when the almost
complex structure changes.

In the above argument the holomorphic open book doesn’t survive the deformation,
only existence of periodic orbits does. In cases were the actual goal is to keep a foliation
by holomorphic curves, we need analogues of the positivity and automatic transversality
arguments. Wendl 2010a extended the automatic transversality criterion to punctured
holomorphic curves. Siefring 2011 defines a suitable intersection product between punc-
tured holomorphic curves, accounting for intersection points hidden at infinity.

Inspired by Etnyre 2004b and Abbas, Cieliebak, and Hofer 2005, and using the tech-
nology of intersection theory and automatic transversality, Wendl 2010c reproved that
positive Giroux torsion obstructs strong fillability (from Gay 2006), obstructions to pla-
narity from Etnyre 2004b and much more. The point is that foliations by holomorphic
curves form actual geometric structures, that do not necessarily lead to contradictions.
As seen in Gromov 1985; McDuff 1990, when they bring no contradiction, these foli-
ation tell a lot about the geometry of their home symplectic manifold. In particular
Wendl 2010c used this to prove that any minimal strong symplectic filling of a planar
contact manifold has the structure of a Lefschetz fibration over the disk, which restricts
to any given planar open book on the boundary. In particular such a filling is actu-
ally Weinstein. In addition, this provides one of the prime examples where open book
decompositions turn a geometrical problem into a combinatorial one. Indeed Wendl’s
theorem proves that, in the case of planar contact structures, Weinstein fillings are in
one to one correspondence with factorizations of the monodromy of any given planar
open book into products of positive Dehn twists. The latter problem is purely about
mapping class groups and has received quite a bit of attention since then, see e.g. Wand
2012.

Wendl 2010c was extended to weak fillings in Niederkrüger and Wendl 2011, under
certain cohomological conditions that guarantee energy bounds. This paper also gave yet
another proof of the Giroux torsion obstruction, and its refined version from Ghiggini,
Honda, and Van Horn-Morris 2007, using holomorphic annuli with moving boundary
conditions.

In the cases described above, the starting point was an already known special topo-
logical feature of the contact manifold, that gave rise to interesting holomorphic curves,
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and those curves in turn give topological information about symplectic fillings. The
next step was to extract the minimal part required by holomorphic curves, and turn it
into new definitions of topological properties. This was accomplished in Wendl 2013a
which defined partially planar domains as filling obstructions. The holomorphic curves
emitted by those domains were used in the context of SFT in Latschev and Wendl 2011
where they provided obstructions to strong symplectic cobordisms. Again this had been
turned inside out in Wendl 2013b which took inspiration from the capping construc-
tion of Eliashberg 2004, and expected properties of holomorphic curves, to construct
weak symplectic cobordisms based on partially planar domains. This is an example of
holomorphic curve driven differential topology: holomorphic curves are not used in the
construction of the symplectic structure on these cobordisms, but they strongly guide
the intuition. Indeed the symplectic structure is built in such a way that it allows the
holomorphic curves which obstruct the existence of a strong symplectic cobordism.

A special case of these constructions proved that any contact manifold with positive
Giroux torsion is weakly symplectically cobordant to an overtwisted one, a result which
was essentially proved in Gay 2006. This construction will be generalized to higher
dimension in Chapter 7, with some suitable generalization of Giroux torsion.

The foliation by holomorphic curves associated to partially planar domains were also
used in Wendl 2013a to compute contact classes in embedded contact homology. Those
computations can be compared to the computations explained in Chapter 6 that ap-
peared at the time on the Heegaard-Floer side.
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5.1. Higher dimensional open books

5.1.1. Transversality and fibrations

While Gromov 1985 revolutionized symplectic topology through holomorphic maps from
complex curves into symplectic manifolds, Donaldson 1996 took a somewhat dual ap-
proach and studied maps from symplectic manifolds to line bundles. An easy dimension
count shows that one cannot hope for such maps to be holomorphic when the almost
complex structure on the source is not integrable (on the other extreme, integrability of
the complex structure obviously ensures existence of local holomorphic functions). How-
ever, Donaldson observed that holomorphicity is not strictly required to get symplectic
information.

Key observation 5.1. Let 𝐴 ∶ ℂ𝑛 → ℂ be a ℝ-linear map with complex linear (resp.
antilinear) part 𝐴1,0 (resp. 𝐴0,1). If ‖𝐴0,1‖ < ‖𝐴1,0‖ (w.r.t the Euclidean metric on
ℂ𝑛) then ker 𝐴 is a codimension 2 symplectic subspace.

Indeed one can consider the adjoint map 𝐴∗ ∶ ℂ → ℂ𝑛 and compute that 𝜔0(𝐴∗1, 𝐴∗𝑖) =
‖𝐴1,0‖2 − ‖𝐴0,1‖2 so the assumption implies that im 𝐴 = Span(𝐴∗1, 𝐴∗𝑖) is symplectic
hence so is ker 𝐴 = 𝑖(im 𝐴∗)𝜔0 .

So, building so-called approximately holomorphic sections of line bundles is enough to
get codimension two symplectic submanifolds as vanishing loci. We saw in Section 2.6.2
that, in the integrable situation, existence of holomorphic sections is related to posi-
tivity of the line bundle. The model situation is on ℂ𝑛 equipped with a hermitian line
bundle which is trivial but with connection 1-form 𝐴 = 1

4 ∑𝑛
𝛼=1 (𝑧𝛼𝑑 ̄𝑧𝛼 − ̄𝑧𝛼𝑑𝑧𝛼). This

connection has curvature positive curvature 𝜔0 and defines the Cauchy-Riemann type
operator: ̄𝜕𝐴 = ̄𝜕 + 𝐴0,1 which admits the holomorphic peak section 𝑓 = 𝑒−|𝑧|2/4.

The next key observation from ibid. is that, as in Gromov 1985, non-integrability of
almost complex structure mostly disappear if one zooms in sufficiently. If ̃𝐽 = 𝛿∗

𝑘𝐽 ,
where 𝛿𝑘 is the dilation 𝑧 ↦ 𝑘−1/2𝑧, then | ̄𝜕𝐴, ̃𝐽𝑓| ≤ 𝐶𝑘−1/2|𝑧|2𝑒−|𝑧|2/4.

Assume now that (𝑋, 𝜔) is a closed symplectic manifold and 𝜔 is rational: some integer
multiple of the cohomology [𝜔/2𝜋] admits a lift to 𝐻2(𝑋; ℤ). Then one can consider
the associated line bundle 𝐿 → 𝑋 and use the previous observations to construct many
approximately holomorphic sections of 𝐿⊗𝑘 for 𝑘 large enough. The most difficult part,
which does not come from non-integrability, is then to find sections 𝑠𝑘 with the additional
property that the complex linear part of the derivative is not too small along 𝑠−1

𝑘 (0), so
that Key observation 5.1 applies. This so-called quantitative transversality construction
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relies on local results on the complexity of real algebraic sets, and a clever globalization
process.

The main output of this work is thus a codimension 2 symplectic submanifold Σ whose
homology class is Poincaré dual to 𝑘[𝜔/2𝜋] for some large 𝑘. Convexity already played
a role in the construction by allowing the existence of (approximately) holomorphic
sections, but it also came back in the conclusion when Giroux 2002 proved that, for 𝑘
large enough, the complement of Σ is Weinstein.

This decomposition gives structure to an otherwise locally homogeneous symplectic
manifold, and allows to hope for inductive arguments since Σ has lower dimension, and its
complement has extra structure coming from Weinstein handle decompositions. These
techniques were pushed further by Donaldson and Auroux, especially in dimension 4. In
particular Donaldson 1999 proved that a closed manifold with integral symplectic form
can be blown up until it admits the structure of a symplectic Lefschetz fibration over ℂP1,
and this result was crucial in Ozsváth and Szabó 2004a, as explained in Section 4.2.1.

Those ideas were adapted to the contact setting in Ibort, Martínez Torres, and Presas
2000 to construct codimension 2 contact submanifolds. In the mean time Giroux had
reformulated contact convexity in terms of symplectic open book decompositions, and
the result from ibid. was quickly strengthened to existence of supporting open books
in all dimensions. The setup is as follows. Let (𝑉 , 𝜉) be a closed contact manifold.
Let 𝐿 = 𝑉 × ℂ → 𝑉 be the trivial hermitian complex line bundle over 𝑉 equipped
with the unitary connection defined by −𝑖𝛼 for some contact form 𝛼 on 𝑉 . Let 𝑔 be a
Riemannian metric on 𝑉 compatible with 𝜉. For any section 𝑠 of 𝐿, denote by 𝜕𝜉𝑠 and

̄𝜕𝜉𝑠 the complex linear and complex antilinear parts of 𝑑𝑠|𝜉.

Key observation 5.2. Let 𝑠𝑘 be a sequence of sections of 𝐿⊗𝑘 such that, for some
constants 𝐶 and 𝜂:

• at every point of 𝑉 , |𝑠𝑘(𝑝)| ≤ 𝐶,
|𝑑𝑠𝑘 − 𝑖𝑘𝑠𝑘𝛼| ≤ 𝐶𝑘1/2 and ∣ ̄𝜕𝜉𝑠𝑘∣ ≤ 𝐶 ;

• at every point 𝑝 where |𝑠𝑘(𝑝)| ≤ 𝜂, ∣𝜕𝜉𝑠𝑘(𝑝)∣ ≥ 𝜂𝑘1/2 .

Then, for sufficiently large 𝑘, 𝐾 ∶= 𝑠−1
𝑘 (0) is a contact submanifold of (𝑉 , 𝜉), arg 𝑠𝑘 ∶

𝑉 ∖ 𝐾 → 𝕊1 is fibration and 𝑑𝛼 is symplectic on its fibers.

Indeed those inequalities prove that, for 𝑘 large enough 𝑠𝑘 is transverse to zero, and
𝑇 𝐾 ∩𝜉 is close to a 𝐽 -complex subspace, hence 𝑑𝛼-non degenerate, hence 𝐾 is a contact
submanifold. Next these estimates imply that 𝑑𝑠𝑘(𝑅𝛼) is close to 𝑖𝑘𝑠𝑘, and this implies
the claim about fibers.

Related ideas were used in Giroux and Pardon 2014 in order to prove existence of
Lefschetz fibrations on Stein domains.

As in dimension 3, supporting open books are not unique up to isotopy and there is a
standard stabilization procedure. However, one does not have a full strength uniqueness
up to stabilization. Before describing this procedure, we need to recall the construction
of the symplectic Dehn twist in the disk cotangent bundle 𝐷𝑇 ∗𝕊𝑛. Let 𝑢 be a vector
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tangent in 𝐷𝑇𝑞𝕊𝑛 for some point 𝑞. There is a unique vector 𝑣 normal to 𝕊𝑛 at 𝑞,
inward pointing, and such that 𝑤 = 𝑢 + 𝑣 has unit norm. One can move in ℝ𝑛+1 in the
direction of 𝑤 until one hits again 𝕊𝑛 at some point 𝑞′. The projection of 𝑤 onto 𝑇𝑞′𝕊𝑛

is the image of 𝑢 under the positive Dehn twist, see Figure 5.1 for a picture with 𝑛 = 1.

Figure 5.1.: The Dehn twist on 𝐷𝑇 𝕊1

The stabilization procedure starts with a Lagrangian disk 𝐿 properly embedded in the
page 𝑃 of a supporting open book, with Legendrian boundary Λ in the binding. One can
attach a Weinstein handle to the page 𝑃 along Λ to get a new page 𝑃 ′. The Lagrangian
disk 𝐿 can then be extended by the Lagrangian core of the handle to get a Lagrangian
sphere 𝐿′ in 𝑃 ′. The new monodromy is obtained from the obvious extension of the old
one to 𝑃 ′ by composition with a positive Dehn twist in a Weinstein neighborhood of 𝐿′.

If one uses instead a negative Dehn twist then the new open book is called a negative
stabilization of the original one. Based on the 3-dimensional case, Giroux conjectured
that contact manifolds supported by negatively stabilized open books could be the cor-
rect generalization of overtwisted contact 3-manifolds. Evidence in support of this con-
jecture came in Bourgeois and Koert 2010 that proved that such contact manifolds have
vanishing contact homology (provided that contact homology exists). This story will
continue in Section 5.2.2.

5.1.2. The existence quest
A fundamental but difficult question in contact geometry is to understand which man-
ifolds admit contact structures. An obvious necessary condition is the existence of a
almost contact structure: a hyperplane field equipped with a symplectic structure. It is
necessary since any contact form 𝛼 determines a symplectic structure 𝑑𝛼 on ker 𝛼. Key
observation 2.6 ensures that a vector bundle admits a symplectic structure if and only
if it admits a complex structure, hence this condition can also be used to characterize
almost contact structures. These structures are also equivalent to reductions of the
structure group of the tangent bundle to 𝑈(𝑛) hence it can be decided using obstruction
theory and its characteristic classes. In the late sixties, general techniques explained in
Gromov 1986; Eliashberg and Mishachev 2002 allowed Gromov to prove that, on open

81



5. Higher dimensions

manifolds, these conditions are sufficient, and any almost contact structure is homo-
topic to a contact structure. Lutz 1970 and Martinet 1971 extended this result to closed
3-manifolds. Then the question stalled for a very long time.

We saw in Section 3.1.3 that, in dimension 3, contact convexity can guide the construc-
tion of a contact structure. Starting with a suitable Morse function and pseudogradient,
Giroux 1991 built a contact structure by induction over handles. For each new handle,
one needed to modify the contact structure provided by the induction hypothesis before
being able to solve the handle extension problem. This modification was the histori-
cal motivation for the realization lemma (Key observation 3.4). In higher dimensions,
one can still describe model contact handles, but the required modifications are much
harder to perform, because the hypotheses from the realization lemma become genuinely
symplectic and not only topological. This prevented this strategy to construct contact
structures on higher dimensional manifolds.

The situation seemingly improved a lot when contact convexity was reformulated in
terms of symplectic open book decompositions. Indeed it was already known, from
Lawson 1978; Quinn 1979, that any 2𝑛 + 1-dimensional closed orientable manifold has
an open book decomposition where pages have a handle decomposition with handles
of index at most 𝑛. Giroux then proved that, under the assumption that the manifold
admits a hyperplane field equipped with a complex structure, those pages can be assumed
to admit an almost complex structure. These results allow one to use the topological
characterization of Stein manifolds from Eliashberg 1990b to get a Stein structure on
the page. Hence the comment in Giroux 2002: “Toute la difficulté serait donc vraiment
de réaliser la monodromie par un difféomorphisme symplectique...”.

At the same time, Frédéric Bourgeois was reading old papers constructing explicit
examples of contact structures in higher dimensions, in order to find examples where he
could compute contact homology using his Morse-Bott techniques from Bourgeois 2002a.
Reading Lutz 1979 in this atmosphere, he realized that an open book decomposition for
a contact manifold (𝑀, 𝜉) could be used to construct a contact structure on 𝑀 × 𝕋2.

Key observation 5.3. Let 𝛼 be a contact form compatible with an open book (𝐾, 𝜃).
Let 𝐾 × 𝔻2 be a tubular neighborhood of the binding 𝐾 where the projection 𝜃 is the
angular coordinate. For a suitable function 𝑓, the 1-form 𝛼 + 𝑓(𝑟)(𝑐𝑜𝑠𝜃𝑑𝑥1 − 𝑠𝑖𝑛𝜃𝑑𝑥2),
𝑥 = (𝑥1, 𝑥2) ∈ 𝕋2, is contact on 𝕋2 × 𝑀 .

This follows from a short computation in Bourgeois 2002b but was quite a surprise at
that time. In addition, the contact structure obtained has quite a lot of structure. It is
invariant under the obvious 𝕋2 action (this is what Lutz was interested in) and defines
a contact connection on the contact fibration 𝑀 × 𝕋2 → 𝕋2. The latter means that each
fiber 𝑀𝑥 is equipped with a contact structure 𝜉𝑥, and there is an Ehresmann connection
𝐻 such that parallel transport preserve the contact structure on fibers. Such contact
fibrations were systematically studied in Lerman 2004. They are easy to construct, here
one can use 𝐻 = 𝑇 𝕋2, but the special property obtained in Bourgeois’s construction is
that 𝜉 = 𝜉𝑥 ⊕ 𝐻 is a contact structure on the total space.

In particular, since the fibers are codimension 2 contact submanifolds, one can perform
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contact branched covering, as described in Gromov 1986; Geiges 1997b, to get contact
structures on 𝑀 × Σ for any closed orientable surface Σ of positive genus.

Thanks to the existence of supporting open book for all closed contact manifolds, the
above construction can be applied inductively. In particular it settled the old question
of existence of contact structures on all odd dimensional tori.

Donaldson’s transversality techniques and contact fibrations were used, in combination
with flexibility of overtwisted 3-manifolds, to prove in Casals, Pancholi, and Presas 2015
that any almost contact structure on a closed 5-manifold is homotopic to a contact
structure. However, the general existence criterion stayed out of reach until the events
described in Section 5.2.2.

5.2. Overtwisted contact structures in higher dimensions
5.2.1. Plastikstufes
We saw, in Sections 2.4 and 4.2.1, that holomorphic disks with boundary on an over-
twisted disk played a great role to prove non-fillability and the Weinstein conjecture for
overtwisted 3-manifolds. Gromov 1985, Section 2.4.𝐷′

2 actually alludes to possible exten-
sions of this non-fillability proof. Independently from this source, this idea was tackled
in Niederkrüger 2006 which proposed a definition of overtwisted contact structures in
higher dimension guided by requirements of holomorphic curves.

Key observation 5.4. Let (𝑉 , 𝜉) be a contact manifold, 𝛼 a contact form for 𝜉 and 𝐽
an almost complex structure on 𝑆𝜉 which is compatible with 𝛼: if one identify 𝑆𝜉 to ℝ×𝑉
using 𝛼 then 𝐽 preserves 𝜉 and is tamed by CS𝜉, sends 𝜕𝑡 to 𝑅𝛼 and is ℝ-invariant. Let
𝑁 be a submanifold in 𝑉 . If 𝜉 induces a foliation on 𝑁 then the lift 𝛼(𝑁) is totally real
in (𝑆𝜉, 𝐽).

Indeed, if 𝛼(𝑁) is not totally real then there exists a non-zero 𝑢 in 𝑇 𝑁 such that 𝐽𝑢
is also in 𝑇 𝑁 . Since 𝐽𝑅𝛼 = −𝜕𝑡, these 𝑢 and 𝐽𝑢 are necessarily in 𝜉 so the tameness
condition gives 𝑑𝛼(𝑢, 𝐽𝑢) > 0, contradicting the Frobenius integrability criterion for
𝑇 𝑁 ∩ 𝜉.

More generally, one says that a submanifold 𝑁 in (𝑉 , 𝜉 = ker 𝛼) is maximally foliated if
the restriction of 𝛼∧𝑑𝛼 to 𝑇 𝑁 vanishes and 𝑁 has the maximal dimension (dim 𝑉 +1)/2
allowed by this property. In this case 𝜉 induces a singular foliation on 𝑁 and the lifts
considered in Key observation 5.4 is totally real outside singular points of this foliation.
Suitable codimension two singularities emit holomorphic disks as in Section 2.4 and
suitable codimension one singularities block them. All these properties were combined
in the definition of a plastikstufe. A plastikstufe with singular set 𝑆 in (𝑉 , 𝜉) is an
embedding of 𝔻2 × 𝑆 on which 𝜉 prints a singular foliation which is a product of the
overtwisted disk foliation on 𝔻2 by 𝑆. Contact manifolds containing a plastikstufe were
later called PS-overtwisted.

This definition is crafted so that holomorphic disk attached to the lifted plastikstufe
exist and have very controlled properties. Because the lifted manifold is totally real but
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not Lagrangian, one must also carefully control energy of these holomorphic curves, but
this follows from geometric control coming from the maximum principle, and the fact
that the symplectic structure of a (strong) symplectic filling would restrict to 𝑑𝛼 on 𝑉 .
The contradiction is then essentially the same as in dimension 3.

The proof of the Weinstein conjecture for overtwisted contact structures in Hofer 1993
was generalized to PS-overtwisted manifolds in Albers and Hofer 2009. More generally,
Bourgeois and Niederkrüger 2010 announced that PS-overtwisted manifolds have van-
ishing SFT.

All these results provided a strong hint that the definition of PS-overtwisted contact
manifold, or a variation thereof, could be the correct extension to overtwistedness to
higher dimensions. However it was initially unclear whether closed PS-overtwisted man-
ifolds existed in higher dimensions. The first example were constructed in Presas 2007
using contact fibrations.

Key observation 5.5. Let 𝑉 → Σ be a contact fibration with fiber (𝑀, 𝜉𝑀) and let 𝜉
be a contact structure on 𝑉 which is a contact connection. If (𝑀, 𝜉𝑀) is an overtwisted
3-manifold, and there is an embedded loop 𝛾 ⊂ Σ with trivial holonomy, then (𝑉 , 𝜉) is
PS-overtwisted.

Indeed one can parallel transport an overtwisted disk over 𝛾 to get a plastikstufe. This
construction was used as the starting point of Niederkrüger and Koert 2007 to construct
PS-overtwisted contact structures on all spheres. Hence, using connected sums, any
manifold carrying some contact structure carries a PS-overtwisted one.

The above parallel transport construction requires some definite amount of space
around the fiber, it cannot be performed in a small standard neighborhood (𝑀 ×
𝔻2

𝜀, ker(𝛼𝑀 + 𝑟2𝑑𝜃)). This observation, together with the hunt for plastikstufes in nega-
tive stabilizations, motivated Niederkrüger and Presas 2010 to investigate large standard
neighborhoods of overtwisted submanifolds. That paper proved that such neighbor-
hood contain some special kinds of immersed plastikstufes that were already obstructing
symplectic fillability (this kind of objects will be subsumed in Chapter 7). It also led
Niederkrüger 2013 to conjecture that large neighborhoods of 3-dimensional overtwisted
disks should be the correct definition of overtwistedness in higher dimensions.

5.2.2. Loose Legendrian submanifolds and overtwisted disks
We saw in Section 5.1.1 that the construction of contact manifolds out of an symplec-
tic open book and the topological characterization of Weinstein manifolds reduced the
question of existence of contact structures in higher dimensions to a question of isotopy
of diffeomorphisms to symplectic one. One particularly optimistic version of this would
be to ask whether any diffeomorphism with compact support in the interior of an ideal
Liouville domain is smoothly isotopic to a symplectomorphism, through compactly sup-
ported diffeomorphisms (more realistic version would allow preliminary modifications of
the open book).

Already in Eliashberg and Gromov 1991, it was noted that, thanks to some ℎ-principles
from Gromov 1986, all the rigidity of Weinstein manifolds comes from handles of maximal
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index. Those handles, called critical handles are attached to Legendrian submanifolds in
the boundary of previous stages of the handle attachment process. Weinstein manifolds
having a handle decomposition without critical handles are called subcritical. Hence
it is crucial for the study of Weinstein manifolds, and possibly for the existence of
contact structures, to understand the classification of Legendrian spheres up to contact
isotopy. In dimension 3, Fuchs and Tabachnikov 1997 proved that any two smoothly
isotopic Legendrian knots become contact isotopic after sufficiently many stabilizations,
an explicit local modification which does not have much to do with stabilization of
open books. In November 2010, during the EdiFest conference in Zürich, Giroux talked
about the current status of the existence problem and asked Eliashberg whether this
stabilization result holds in higher dimensions.

The question led to Murphy 2012 which uncovered the following phenomenon. Start-
ing from dimension 5, there exists a class of Legendrian embeddings, called loose, which
satisfy an ℎ-principle completely analogous to the 3-dimensional overtwisted ℎ-principle.
Indeed there is a notion of formal Legendrian isotopy between Legendrian embeddings,
which is analogous to a homotopy of plane fields, and such that any Legendrian embed-
ding is formally isotopic to a loose one, and two loose Legendrian embeddings which are
formally isotopic are isotopic.

We will not give the precise definition of loose Legendrian embeddings but note that
it is analogous to the notion of large neighborhoods of (3-dimensional) overtwisted disks
from Niederkrüger and Presas 2010 (see Section 5.2.1).

Although this flexibility theorem didn’t allow to unlock Giroux’s program to prove the
existence of contact structure through open book, it did allow Eliashberg and Cieliebak
2012 to extend flexibility results for Weinstein manifolds from the realm of subcriti-
cal Weinstein manifolds to the much larger class of Weinstein manifolds whose critical
handles are attached to loose Legendrian spheres (with some extra technical condition).
Murphy et al. 2013 then brought together the theory of loose Legendrians and plas-
tikstufes by proving that any Legendrian submanifold in the complement of a suitable
plastikstufe is loose. This allowed to exhibit further hints of flexibility of PS-overtwisted
manifolds.

Stimulated by all these developments, Borman, Eliashberg, and Murphy 2015 finally
solved the existence problem for contact structures in higher dimensions. Based on
general tools from Gromov 1986 and new specific ingredients, they proved the existence
of a class of overtwisted contact manifolds in higher dimensions, satisfying a parametric
ℎ-principle.

Because of its flexibility, the class of overtwisted contact structures contain all previous
attempts at defining overtwisted contact structures in higher dimensions: variations
on the plastikstufe definition, large neighborhoods of overtwisted disks and negative
stabilizations. Even, better Casals, Murphy, and Presas 2015 proved that almost all those
definitions are actually equivalent. Thus there is now a very satisfactory understanding
of overtwisted contact structures in higher dimensions.
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5.3. Contact transformation groups
5.3.1. The contact mapping class group
Contact structures, like any other mathematical structure, naturally invite to study their
groups of automorphisms. A contact transformation, or contactomorphism, of contact
manifold (𝑉 , 𝜉) is a diffeomorphism preserving 𝜉. They form a subgroup 𝒟(𝑉 ; 𝜉) in-
side the full diffeomorphism group 𝒟(𝑉 ). Banyaga and McInerney 1995 proved that
this group completely remembers the contact manifold. Every group isomorphism
Φ∶ 𝒟𝑜(𝑉1, 𝜉1) → 𝒟𝑜(𝑉2, 𝜉2) (not necessarily continuous) is induced by a contact isomor-
phism: there exists 𝜑 ∶ 𝑉1 → 𝑉2 such that 𝜑∗𝜉1 = 𝜉2 and Φ(𝑔) = 𝜑𝑔𝜑−1 for every 𝑔 in
𝒟𝑜(𝑉1, 𝜉1).

Local homogeneity of contact manifolds implies that these groups are very large. They
are infinite dimensional Lie groups that act transitively on 𝑘-tuples of points. While this
is also true in symplectic geometry, the contact case is even more flexible since there is
no volume constraint. Indeed one can prove that contact automorphisms act transitively
on 𝑘-tuple of disjoint embeddings of the standard ℝ2𝑛+1.

One is therefore led to compare the topology of contact transformation groups 𝒟(𝑉 ; 𝜉)
to the topology of the full diffeomorphism group 𝒟(𝑉 ). On closed manifolds, Gray
stability strongly relates these two groups and the space of Ξ(𝑉 ) of contact structures
on 𝑉 , on which 𝒟(𝑉 ) acts by push-forward.

Key observation 5.6. Let (𝑉 , 𝜉) be a compact contact manifold. The natural map

𝒟(𝑉 ) → 𝒟(𝑉 ) • 𝜉, 𝜑 ↦ 𝜑∗𝜉,

is a locally trivial fibration whose fiber is the contact transformation group 𝒟(𝑉 ; 𝜉) ⊂
𝒟(𝑉 ).

Indeed, the Palais-Cerf fibration criterion ensures that one only needs to prove that
the action of 𝒟(𝑉 ) on Ξ(𝑉 ) admits local sections near any given point. These local
sections are easily constructed using Moser’s path method.

The first consequence of the homotopy exact sequence of this fibration is that the
comparison of the contact mapping class group 𝜋0𝒟(𝑉 ; 𝜉) and the smooth mapping
class group 𝜋0𝒟(𝑉 ), which is the study of the homomorphism 𝜋0𝒟(𝑉 ; 𝜉) → 𝜋0𝒟(𝑉 ),
splits in two part. The image of this map is the subgroup of classes of diffeomorphisms
𝜑 such that 𝜑∗𝜉 is homotopic to 𝜉 among contact structures (this is the usual version
of Gray’s theorem, and corresponds to the path lifting property of the fibration). The
kernel of this map is isomorphic to the fundamental group of Ξ(𝑉 ) based at 𝜉 quotiented
by loops of contact structures coming from loops of diffeomorphisms.

The fundamental building block of the study of these questions on contact 3-manifolds
is the contractibility of the component of the standard structure on Ξ(𝔹3) (with stan-
dard boundary condition). This was proved in Eliashberg 1992. Together with the
contractibility of 𝒟(𝔹3, 𝜕𝔹3) proved in Hatcher 1983 and the above fibration, it proves
that 𝒟(𝔹3, 𝜕𝔹3; 𝜉) is contractible.
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As explained above, results on the classification of contact structures immediately
imply results on the image of 𝜋0𝒟(𝑉 ; 𝜉) → 𝜋0𝒟(𝑉 ). For instance the study of incom-
pressible pre-Lagrangian tori in Giroux 1994b led to information on the contact mapping
class group of contact structures on 𝕋3 that were first explicitly mentioned in Eliashberg
and Polterovich 1994. Giroux 2001c tackled the full study of 𝜋0𝒟(𝑉 ; 𝜉) → 𝜋0𝒟(𝑉 ) for
contact element bundles, but the proofs in that paper contains a gap that will be fixed
in Chapter 9, using even more technology coming from contact convexity.

In the topological study of diffeomorphism groups in higher dimensions, an impor-
tant role was played by a coarser equivalence relation that isotopy. One says that two
diffeomorphisms 𝜑− and 𝜑+ of some manifold 𝑉 are pseudoisotopic if there is a diffeo-
morphism Φ of 𝑉 ×ℝ such that Φ(𝑣, 𝑡) = (𝜑−(𝑣), 𝑡) for 𝑡 ≪ 0 and Φ(𝑣, 𝑡) = (𝜑+(𝑣), 𝑡) for
𝑡 ≫ 0. Eliashberg and Cieliebak 2012, Section 14.5 introduced a symplectic version of
this relation. Let 𝜋 ∶ 𝑆𝜉 → 𝑀 be the symplectization of some contact manifold (𝑀, 𝜉),
equipped with its canonical Liouville form 𝜆, its symplectic structure 𝜔 = 𝑑𝜆, and its
ℝ-action. We denote by 𝑆−∞𝜉 its negative end and by 𝑆+∞𝜉 its positive end. By defi-
nition, a neighborhood of 𝑆±∞𝜉 is a set containing an open set which is invariant under
the action of ℝ±. A symplectic pseudoisotopy 𝐹 of (𝑀, 𝜉) is a symplectomorphism

𝐹 ∶ (𝑆𝜉, 𝜔) → (𝑆𝜉, 𝜔)

that restricts on a neighborhood of the negative end 𝑆−∞𝜉 to the identity, and that
preserves the Liouville form 𝜆 on a neighborhood of the positive end.

Figure 5.2.: A pseudoisotopy commutes with the ℝ-action on neighborhoods of 𝑆±∞𝜉,
but not necessarily in between.

Key observation 5.7. A symplectic pseudoisotopy induces a contact transformation.

Indeed, because a symplectic pseudoisotopy 𝐹 preserves the canonical 1-form 𝜆 on
some ℝ+-invariant neighborhood 𝑈+ of 𝑆+∞𝜉, it also preserves the vector field 𝑋 gen-
erating the ℝ-action, which is characterized by 𝑑𝜆(𝑋, ·) = 𝜆. Hence it commutes on 𝑈+
with the ℝ+-action and induces a contactomorphism of (𝑀, 𝜉) as follows: for any 𝑥 in 𝑀
choose any 𝑝 in 𝑈+ above 𝑥 and define 𝜑(𝑥) = 𝜋(𝐹(𝑝)). Such a contactomorphism is said
to be symplectically pseudoisotopic to the identity. One can prove that this condition is
implied by contact isotopy, by cutting off the lifted Hamiltonian isotopy.

Ibid. proved that, starting from dimension 5, any pseudoisotopy of a closed contact
manifold is homotopic to a symplectic pseudoisotopy. In Chapter 9 we will describe, in
every dimension, examples of contact transformation that are smoothly isotopic to the
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identity but not symplectically pseudoisotopic to the identity. In particular their contact
mapping classes are in the kernel of 𝜋0𝒟(𝑉 ; 𝜉) → 𝜋0𝒟(𝑉 ).

5.3.2. Geometry of contact transformation groups

The contact mapping class group from the preceding section is, by definition, the quotient
of 𝒟(𝑉 ; 𝜉) by its neutral component 𝒟𝑜(𝑉 ; 𝜉). According to Libermann 1959, the latter
is the contact analogue of the group of Hamiltonian diffeomorphisms of a symplectic
manifold. It is known since Hofer 1990 that an important manifestation of symplectic
rigidity is the existence of an interesting bi-invariant distance of the latter group. This
rich theory prompted the search for analogue distances, or other geometric structures,
on 𝒟𝑜(𝑉 ; 𝜉).

Eliashberg and Polterovich 2000 uncovered the existence of a bi-invariant cone on
the universal cover of 𝒟𝑜(𝑉 ; 𝜉). They say that a contact isotopy 𝜑 is positive if the
vector field 𝑑𝜑𝑡/𝑑𝑡 is everywhere positively transverse to the contact structure. Hence
positive isotopies are something like time-dependent Reeb flows. From any invariant
cone on a group, one can try to define an invariant partial order. Here, two elements
𝑔 and ℎ of the universal cover of 𝒟𝑜(𝑉 ; 𝜉) satisfy 𝑔 ≤ ℎ if 𝑔−1ℎ is represented by a
positive contact isotopy. In general this may fail to define an partial order for lack of
antisymmetry. This failure happens exactly when there is a positive loop of contact
transformations which is homotopically trivial (not necessarily among positive loops).
A contact manifold is called orderable if there is no such failure. The first examples of
orderable contact manifolds, discovered in ibid., were certain contact element bundles,
certain Boothby-Wang manifolds, and the standard ℝ𝑃 2𝑛+1.

The study of orderability continued in Eliashberg, Kim, and Polterovich 2006 which
proved surprising links between orderability and contact versions of Gromov’s non-
squeezing theorem. That paper also proved that the standard 𝕊2𝑛+1 is not orderable, a
surprising result that proved that the relation between orderability and rigidity is subtle.

Although the Eliashberg-Polterovich partial order is clearly a geometric structure on
the universal cover of some contact transformation groups, it is not directly analogous
to the Hofer distance. Sandon 2011 reproved the non-squeezing part of Eliashberg, Kim,
and Polterovich 2006 using generating functions, and part of the technology developed
there was later reused in Sandon 2010 to build a bi-invariant distance on some of these
groups. This triggered quite a bit of activity in this direction, which is surveyed in
Sandon 2015. In Chapter 11, we will see how the study of these invariant distances is
linked to convexity.

5.3.3. Contact homeomorphisms

As in the symplectic case, Eliashberg proved in the early 80’s that the contact transfor-
mation group is closed in the full diffeomorphism group equipped with the 𝐶0 topology
(see Müller and Spaeth 2014 for a written account of a later proof, also due to Eliash-
berg). In particular, one can define contact homeomorphisms of a contact manifold
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(𝑉 , 𝜉) as the closure of 𝒟(𝑉 ; 𝜉) inside Homeo(𝑉 ) without getting extraneous diffeomor-
phisms. This is especially appealing in dimension 3 where we saw that contact topology
has a very topological flavor. However it seems that no further result has been obtained
in this direction, despite a lot of recent activity on the symplectic side of this story,
especially Humilière, Leclercq, and Seyfaddini 2015; Buhovsky and Opshtein 2014.

Actually, even the definition of contact homeomorphism above hides considerable dif-
ficulties. It is completely unclear, even in dimension 3, whether this definition is local.
If 𝜑 is a homeomorphism which is locally a 𝐶0-limit of contact transformation then no
method is known to prove or disprove that it is globally such a limit.

There is a rather different thread of ideas that starts with Gromov 1996 and leads to
a (probably different) definition of contact homeomorphisms. Starting with a contact
manifold (𝑉 , 𝜉), one can choose an auxiliary Riemannian metric 𝑔 and define the Carnot-
Carathéodory distance between two points of 𝑉 as the minimal length of a Legendrian
curve relating them. This distance depends on 𝑔 but, provided that 𝑉 is compact, its
bi-Lipschitz equivalence class depends only on 𝜉. This is analogous to the fact that
the usual Euclidean notion of bi-Lipschitz homeomorphism between compact manifolds
depends only on their smooth structure.

Key observation 5.8. A diffeomorphism of (𝑉 , 𝜉) is bi-Lipschitz for some Carnot-
Carathéodory distance associated to 𝜉 if and only if it preserves 𝜉.

Indeed a diffeomorphism which does not preserve 𝜉 sends some small curve tangent
to 𝜉 to a curve transverse to 𝜉, but these curves have different Hausdorff dimension for
the induced distance. The other direction is obvious.

The above observation leads to the definition of contact homeomorphisms as those
homeomorphisms which are bi-Lipschitz for some (hence every) Carnot-Carathéodory
distance associated to 𝜉. One can also play this game with two different contact man-
ifold and the central question becomes to decide whether the existence of a contact
homeomorphism between two contact manifolds implies the existence of a smooth iso-
morphism. Chapter 12 will explain how contact convexity could shed light on these
questions.
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6. Prelagrangian tori and Heegaard-Floer
homology

This chapter is a summary of Massot 2012. We saw in Part I the importance of Giroux
torsion on one hand, and the contact class in Heegaard-Floer homology in the other
hand. In particular Giroux torsion obstructs the existence of strong symplectic fillings,
whereas the latter imply non-vanishing contact class over ℤ coefficients. It is therefore
natural to investigate relations between these two invariants. Ghiggini, Honda, and Van
Horn-Morris 2007 proved that, whenever the Giroux torsion is non zero, the contact
invariant over ℤ coefficients vanishes. In Massot 2012, we gave a new proof of this result
and, more importantly, we proved that the converse does not hold.

Theorem 6.1. Every Seifert manifold whose base has genus at least three supports in-
finitely many (explicit) isotopy classes of universally tight torsion free contact structures
whose Ozsváth–Szabó invariant over ℤ coefficients vanishes.

In the above theorem, the genus hypothesis cannot be completely dropped because,
for instance, on the sphere 𝕊3 and the torus 𝕋3, all torsion free contact structures have
non vanishing Ozsváth–Szabó invariants. However, it may hold for genus two bases.
Note that the class of Seifert manifolds is the only one where isotopy classes of contact
structures are pretty well understood. So the theorem says that examples of universally
tight torsion free contact structures with vanishing Ozsváth–Szabó invariant exist on
all manifolds we understand, provided there is enough topology (the base should have
genus at least three). In this statement, isotopy classes cannot be replaced by conjugacy
classes because of the finiteness properties explained in Section 3.2.5. Along the way we
proved Conjecture 7.13 of Honda, Kazez, and Matić 2008.

It is interesting to compare the above theorem (and its proof) with the results in Wendl
2013a which appeared shortly after the first version of Massot 2012. Wendl 2013a dealt
with embedded contact homology, at a time when it was only conjecturally isomorphic
to Heegaard–Floer theory. There he gets examples of universally tight torsion free con-
tact structures with vanishing ECH invariants (and even some examples with vanishing
twisted ECH invariants). It is intriguing to compare his list of examples with ours since,
while the intersection is non empty, neither is contained in the other. Also both papers
seem far from explaining clearly when Ozsváth–Szabó invariant vanish. We now have
a lot of seemingly harmless contact structures with vanishing invariants but the global
picture is unclear. This contrasts with the situation after Ghiggini, Honda, and Van
Horn-Morris 2007 where one could have naively hoped that torsion explained all van-
ishings. Note however that, thanks to sutured Heegaard-Floer homology, vanishing still
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comes from localized parts of the manifolds: we have example of contact manifold with
boundary such that any contact manifolds containing these have vanishing invariant.

Our examples also provide a corollary in the world of Legendrian knots. Ozsváth–
Szabó theory provides invariants for Legendrian or transverse knots in different (related)
ways, see Stipsicz and Vértesi 2009 and references therein. In the standard contact 3–
spheres there are still two seemingly distinct ways to define such invariants but, in general
contact manifolds, the known invariants all come from the sutured contact invariant of
the complement of the knot according to the main theorem in ibid. In this paper they
call strongly non loose those Legendrian knots in overtwisted contact manifolds whose
complement is tight and torsion free. Corollary 1.2 of that paper states that a Legendrian
knot has vanishing invariant when it is not strongly non loose. We prove that the converse
does not hold.
Theorem 6.2. There exists a specific example of overtwisted contact manifold containing
a null-homologous strongly non loose Legendrian knot whose sutured invariant vanishes.

After studying the relationship between Ozsváth–Szabó invariants and Giroux tor-
sion, we now turn to a more specific relation between these invariants and an invariant
defined only on the 3–torus. Recall from Section 3.2.1 that Giroux proved that any two
incompressible pre-Lagrangian tori of a tight contact structure 𝜉 on 𝕋3 are isotopic. We
can then define the Giroux invariant 𝐺(𝜉) ∈ 𝐻2(𝕋3)/ ± 1 to be the homology class of its
pre-Lagrangian incompressible tori. Note that there is a sign ambiguity because these
tori are not naturally oriented. Translated into this language, Giroux proved that two
tight contact structures on 𝕋3 are isotopic if and only if they have the same Giroux in-
variant and the same Giroux torsion. This invariant is clearly 𝒟(𝕋3)–equivariant. Since
this group acts transitively on primitive elements of 𝐻2(𝕋3), we see that all these ele-
ments are attained by 𝐺. This also proves that all tight contact structures on 𝕋3 which
have the same torsion are isomorphic. This classification of tight contact structures on
𝕋3 and the results of Section 2.7.2 show that torsion free contact structures on 𝕋3 are
exactly the Stein fillable ones.
Theorem 6.3. There is a unique up to sign 𝐻1(𝕋3)–equivariant isomorphism between
𝐻𝐹(𝕋3) and 𝐻1(𝕋3) ⊕ 𝐻2(𝕋3) (on the ordinary cohomology side, 𝐻1 sends 𝐻1 to zero
and 𝐻2 to 𝐻1 by slant product). Under this isomorphism, the Ozsváth–Szabó invariant
of a torsion free contact structure on 𝕋3 is sent to the Poincaré dual of its Giroux
invariant.

Note that, on 𝕋3 = ℝ3/ℤ3, cohomology classes can be represented by constant dif-
ferential forms and 1–dimensional homology classes by constant vector fields. The slant
product of the above theorem is then identified with the interior product of vector fields
with 2–forms.

The statement about torsion free contact structures is based on the interaction between
the action of the mapping class group and first homology group of 𝕋3 on its Ozsváth–
Szabó homology and ordinary cohomology. It sheds some light on the sign ambiguity
of the contact invariant since the sign ambiguity of the Giroux invariant is very easy to
understand.
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Corollary 6.4. There are infinitely many isomorphic contact structures whose isotopy
classes are pairwise distinguished by the Ozsváth–Szabó invariant.

Theorem 6.3 proves, via gluing, a conjecture of Honda, Kazez and Matić about the
sutured invariants of 𝕊1–invariants contact structures on toric annuli. This conjecture
is stated in Honda, Kazez, and Matić 2008, top of page 35.

Theorem 6.3 also have some consequence for the hierarchy of coefficients because ℤ/2
coefficients can distinguish only finitely many isotopy classes of contact structures (since
𝐻𝐹(𝑌 ; ℤ/2) is always finite).

Corollary 6.5. There exists a manifold on which the Ozsváth–Szabó invariant over
integer coefficients distinguishes infinitely many more isotopy classes of contact structures
than the invariant over ℤ/2 coefficients.

In the same spirit, we prove that twisted coefficients are more powerful than ℤ coeffi-
cients even when the latter give non vanishing invariants.

Proposition 6.6. There exist a sutured manifold with two contact structures having the
same non vanishing Ozsváth–Szabó invariant over ℤ coefficients but which are distin-
guished by their invariants over twisted coefficients.

6.1. Contact structures on the three torus
The proof of Theorem 6.3 relies on the action of SL3(ℤ) = 𝜋0𝒟(𝕋3) on 𝐻𝐹(𝕋3). At the
time of writing of Massot 2012, the status of mapping class group actions on Heegaard-
Floer homology was a bit unclear and caution was needed. Fortunately the relevant
setup in 𝕋3 was safe. Partly because of questions that I kept asking, the situation was
clarified, in full generality, in Juhász and D. P. Thurston 2012.

The action of SL3(ℤ) first allowed to prove the following easy lemma, which is the key
algebraic trick to prove Theorem 6.3.

Lemma 6.7. If an isomorphism Φ ∶ 𝐻𝐹(𝕋3) → 𝐻1(𝕋3)⊕𝐻2(𝕋3) is 𝐻1(𝕋3)–equivariant
then it conjugates the SL3 actions of both sides.

Proof. In this proof we drop 𝕋3 from the notations. We denote by 𝜌 the canonical action
of SL3 on 𝐻1. Let 𝜌1 and 𝜌2 be two representations of 𝑆𝐿3 on 𝐻1 ⊕ 𝐻2 which are
compatible with the 𝐻1 action, that is:

∀𝑔 ∈ SL3, 𝛾 ∈ 𝐻1, 𝑚 ∈ 𝐻1 ⊕ 𝐻2, (𝜌(𝑔)𝛾) 𝜌𝑖(𝑔)𝑚 = 𝜌𝑖(𝑔) (𝛾𝑚) .

We want to prove that 𝜌1 = 𝜌2 since this, applied to the standard action and to the
action transported by Φ, will prove the proposition.

We first prove that, for all 𝑔 ∈ SL3, 𝜌1(𝑔) and 𝜌2(𝑔) agree on 𝐻2. The key property
of the 𝐻1 action is that it separates all elements of 𝐻2: for all 𝑚 ≠ 𝑚′ ∈ 𝐻2, there
exists 𝛾 in 𝐻1 such that 𝛾𝑚 = 0 and 𝛾𝑚′ ≠ 0.
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Suppose by contradiction that there exists some 𝑔 ∈ SL3 and 𝑚 ∈ 𝐻2 such that
𝜌1(𝑔)𝑚 ≠ 𝜌2(𝑔)𝑚. According to the separation property, there exists 𝛾′ in 𝐻1 such that
𝛾′𝜌1(𝑔)𝑚 = 0 and 𝛾′𝜌2(𝑔)𝑚 ≠ 0. Setting 𝛾 = 𝜌(𝑔)−1(𝛾′), we get 𝜌(𝑔)𝛾𝜌1(𝑔)𝑚 = 0 and
𝜌(𝑔)𝛾𝜌2(𝑔)𝑚 ≠ 0, so 𝜌1(𝑔)(𝛾𝑚) = 0 and 𝜌2(𝑔)(𝛾𝑚) ≠ 0, which is absurd since 𝜌1(𝑔)
and 𝜌2(𝑔) are both isomorphisms.

We now prove that the representations agree on 𝐻1. For all 𝑚′ ∈ 𝐻1, there exists
𝑚 ∈ 𝐻2 and 𝛾 ∈ 𝐻1 such that 𝑚′ = 𝛾𝑚. So for any 𝑔 ∈ 𝑆𝐿3 and 𝑖 = 1, 2, we get
𝜌𝑖(𝑔)𝑚′ = 𝜌𝑖(𝑔)(𝛾𝑚) = 𝜌(𝑔)𝛾𝜌𝑖(𝑔)𝑚 and we know that 𝜌1(𝑔)𝑚 = 𝜌2(𝑔)𝑚 thanks to the
first part so 𝜌1(𝑔)𝑚′ = 𝜌2(𝑔)𝑚′.

Proof of Theorem 6.3. The existence of such an isomorphism is Proposition 8.4 of Ozsváth
and Szabó 2003. The above lemma proves that, for any Φ as in the statement and any
𝑥 ∈ 𝐻𝐹 , 𝑥 and Φ(𝑥) have the same stabilizer under the action of SL3. The uniqueness
of Φ follows since primitive elements of 𝐻1 ⊕ 𝐻2 are characterized up to sign by their
stabilizers. Indeed, suppose Φ1 and Φ2 are both isomorphisms as in the statement of
the proposition. Then Φ12 ∶= Φ1 ∘ Φ−1

2 is an automorphism such that, for any primitive
𝑥, there exists 𝜀𝑥 ∈ {±1} such that Φ12(𝑥) = 𝜀𝑥𝑥. We now consider a ℤ-basis 𝑒1, … , 𝑒6
of 𝐻1 ⊕ 𝐻2 and compute

∑ 𝜀∑ 𝑒𝑖
𝑒𝑗 = 𝜀∑ 𝑒𝑖

∑ 𝑒𝑗 = Φ12 (∑ 𝑒𝑗) = ∑ Φ12(𝑒𝑗) = ∑ 𝜀𝑒𝑗
𝑒𝑗

so we get that all 𝜀𝑒𝑗
agree with 𝜀∑ 𝑒𝑖

and Φ12 = 𝜀∑ 𝑒𝑖
Id. So Φ1 and Φ2 agree up to a

global sign.
We now prove that the Poincaré dual of the Giroux invariant and the image of the

Ozsváth–Szabó invariant coincide on torsion free contact structures. First remark that
the Ozsváth–Szabó invariant belongs to 𝐻𝐹 −1/2 ≃ 𝐻1 because the Hopf invariant of
tight contact structures on 𝕋3 is 1/2. So both invariants are primitive elements of 𝐻1.
We prove that the stabilizer of 𝐺(𝜉) is contained in that of 𝑐(𝜉) using equivariance of
both invariants and the fact that 𝐺 is a total invariant. For any 𝑔 in SL3 and 𝜉 a torsion
free contact structure, we have

𝑔𝐺(𝜉) = 𝐺(𝜉) ⟺ 𝐺(𝑔𝜉) = 𝐺(𝜉)
⟺ 𝑔𝜉 ∼ 𝜉
⇒ 𝑐(𝑔𝜉) = 𝑐(𝜉)
⟺ 𝑔𝑐(𝜉) = 𝑐(𝜉)

so we have the announced inclusion of stabilizers and this gives 𝑐(𝜉) = 𝐺(𝜉).

6.2. The contact TQFT
We now review the contact TQFT of Honda–Kazez–Matić. Let Σ be a non necessarily
connected compact oriented surface with all components having non empty boundary.
Let 𝐹 be a finite subset of 𝜕Σ whose intersection with each component of 𝜕Σ is non
empty and consists of an even number of points. We assume that the components of
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𝜕Σ ∖ 𝐹 are labelled alternatively by + and −. This labelling will always be implicit in
the notation (Σ, 𝐹). The contact TQFT associates to each (Σ, 𝐹) the graded group

𝑉 (Σ, 𝐹) = 𝑆𝐹𝐻(−(Σ × 𝕊1), −(𝐹 × 𝕊1))

(strictly speaking, one should replace 𝐹 by a small translate of 𝐹 along 𝜕Σ in this
formula).

In this construction one can use coefficients in ℤ/2 or twisted coefficients (including
the trivial twisting which leads to ℤ coefficients). We denote by 𝑉 (Σ, 𝐹) the version
twisted by ℤ[𝐻2(Σ × 𝕊1)].
Proposition 6.8. Let (Σ, 𝐹) be a surface with marked boundary points as above and 𝕄
be any coefficient module for the sutured manifold (Σ × 𝕊1, 𝐹 × 𝕊1). We have, for any
coherent orientations system:

𝑉 (Σ, 𝐹 ; 𝕄) ≃ (𝕄(−1) ⊕ 𝕄(1))⊗(#𝐹/2−𝜒(Σ)).

The subscripts (−1) and (1) refer to the grading.

The analogous statement over ℤ coefficients was proved in Honda, Kazez, and Matić
2008 using product annuli decomposition and Friedl, Juhász, and Rasmussen 2011,
Proposition 7.13. This technology has never been extended to twisted coefficients so,
in Massot 2012, we actually drew explicit admissible sutured Heegaard diagrams with
vanishing differential for these sutured manifolds.

A dividing set for (Σ, 𝐹) is a multi-curve 𝐾 in Σ. The complement of a dividing set in
Σ splits into two (non connected) surfaces 𝑅± according to the sign of their intersection
with 𝜕Σ. The graduation of a dividing set is defined to be the difference of Euler
characteristics 𝜒(𝑅+) − 𝜒(𝑅−).

The following definition from Honda, Kazez, and Matić 2008 is crucial to understand
contact invariants of 𝕊1-invariant contact structures.

Definition 6.9. A dividing set 𝐾 is said to be isolating if there is a connected component
of the complement of 𝐾 which does not intersect the boundary of Σ.

To each dividing set 𝐾 for (Σ, 𝐹) is associated the contact invariant of the Lutz contact
structures associated to 𝐾 in Section 2.1. All such contact structures are isotopic so
they have the same invariant. These invariants belong to the graded part given by the
graduation of 𝐾.

Theorem 6.10 (ibid.). Over ℤ/2 coefficients, the following are equivalent:

1. 𝑐(𝐾) ≠ 0

2. 𝑐(𝐾) is primitive

3. 𝐾 is non isolating

Over ℤ coefficients, (3) ⇒ (2) ⇒ (1).
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Honda, Kazez, and Matić 2008, Conjecture 7.13 stated that the assertions in this
theorem are equivalent over ℤ coefficients. What remained to be proved is that isolating
dividing sets have vanishing invariant. This (and more) was proved in Massot 2012 and,
combined with explicit constructions and classification results, implies Theorem 6.1. We
will try to give the flavor of the proof in the next section.

6.3. Vanishing results
Using the definitions and notations of the previous section, we want to discuss part of
the proof of the following result.

Theorem 6.11. If 𝐾 is isolating then 𝑐(𝐾) = 0 over ℤ–coefficients.

Note that the analogous statement over twisted coefficients is known to be false. For
instance if we consider on 𝕋3 a contact structure divided by four essential circles and
remove a small disk meeting one of these circles along an arc then we get an isolating
dividing set on a punctured torus whose twisted invariant is sent to a non vanishing
invariant since the corresponding contact structures on 𝕋3 are weakly fillable.

The key definition is inspired from Section 3.2.3.

Definition 6.12. We say that dividing sets 𝐾0, 𝐾1 and 𝐾2 are bypass-related if they
coincide outside a disk 𝐷 where they consists of the dividing sets of Figure 6.1.

Figure 6.1.: Bypass relation

The following lemma is essentially proved, with ℤ coefficients, in Honda, Kazez, and
Matić 2008 in the combination of proofs of Lemma 7.4 and Theorem 7.6. We reproduce
the full proof from Massot 2012 as it illustrate how the template matching strategy,
discussed in Section 3.2.3, was adapted to the algebraic setting of SFH.

Lemma 6.13. If 𝐾0, 𝐾1 and 𝐾2 are bypass-related then, for any representatives ̃𝑐𝑖 ∈
𝑐(𝐾𝑖), there exist 𝑎, 𝑏 ∈ 𝕃× such that ̃𝑐0 = 𝑎 ̃𝑐1 +𝑏 ̃𝑐2. The same holds over ℤ coefficients.

Proof. The first part of the proof concentrate on the disk where the dividing sets differ.
Let ̃𝑐𝐷

𝑖 be representatives of the contact invariants of the three dividing sets on a disk
𝐷 involved in Definition 6.12. Note that 𝐻2(𝐷 × 𝕊1) is trivial so we now work over ℤ
coefficients and suppress the underlines.
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Because the 𝑐𝐷
𝑖 ’s all belong to the same rank 2 summand of 𝑉 (𝐷, 𝐹𝐷) there are

integers 𝜆, 𝜇 and 𝜈 not all zero such that

𝜆 ̃𝑐𝐷
0 = 𝜇 ̃𝑐𝐷

1 + 𝜈 ̃𝑐𝐷
2 . (6.1)

We denote by 𝐾± the dividing sets of Figure 6.2 and by 𝑐± their contact invariants.

Figure 6.2.: Dividing sets used to prove Lemma 6.13

Label the points of 𝐹𝐷 clockwise by 1, … , 6 starting with the upper right point. Let
Φ𝑗, 𝑗 = 1, 2, 3, denote a HKM gluing map obtained by attaching a boundary parallel arc
between points 𝑗 and 𝑗 + 1. The gluing maps have the following effects:

Φ1 ∶ 𝑐𝐷
0 ↦ 𝑐+, 𝑐𝐷

0 ↦ 𝑐+, 𝑐𝐷
0 ↦ 0 (6.2)

Φ2 ∶ 𝑐𝐷
0 ↦ 0, 𝑐𝐷

0 ↦ 𝑐−, 𝑐𝐷
0 ↦ 𝑐− (6.3)

Φ3 ∶ 𝑐𝐷
0 ↦ 𝑐+, 𝑐𝐷

0 ↦ 0, 𝑐𝐷
0 ↦ 𝑐+ (6.4)

Using these equations and the facts that 𝑐± are non zero in a torsion free group (see
Proposition 6.8), we get

(6.2) ⇒ 𝜆 = ±𝜇
(6.3) ⇒ 𝜇 = ±𝜈
(6.4) ⇒ 𝜆 = ±𝜈

and they are all non zero so we can divide equation (6.1) by 𝜆 to get

̃𝑐𝐷
0 = 𝜀1 ̃𝑐𝐷

1 + 𝜀2 ̃𝑐𝐷
2 . (6.5)

with 𝜀1 = 𝜇/𝜆 and 𝜀2 = 𝜈/𝜆.
We now return to our full dividing sets. Let 𝐷 be the disk where the 𝐾𝑖’s differ.

Denote by 𝐹𝐷 the (common) intersection of the 𝐾𝑖’s with 𝜕𝐷. Let 𝜉0, 𝜉1 and 𝜉2 be
contact structures divided by 𝐾0, 𝐾1 and 𝐾2 respectively and coinciding with some 𝜉𝑏
outside 𝐷 × 𝕊1.

Let Φ ∶ 𝑉 (𝐷, 𝐹𝐷) → 𝑉 (Σ, 𝐹) be a HKM gluing map associated to 𝜉𝑏. The gluing
property gives invertible elements 𝑎𝑖 of 𝕃 such that Φ( ̃𝑐𝐷

𝑖 ) = 𝑎𝑖 ̃𝑐𝑖 for all 𝑖. We now
apply Φ to equation (6.5) and put 𝑎 = 𝜀1𝑎1𝑎−1

0 and 𝑏 = 𝜀2𝑎2𝑎−1
0
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This lemma is crucial for all computations of Massot 2012. Admittedly, most of
them are rather technical. So we will only sketch how this lemma was combined with
classification results on thickened and solid tori to reprove the main result of Ghiggini,
Honda, and Van Horn-Morris 2007.

Proposition 6.14 (ibid.). Contact structures with positive Giroux torsion have vanish-
ing contact invariant over ℤ coefficients.

Figure 6.3.: Dividing sets for Proposition 6.14. Left and right sides of each squares
should be glued to get annuli.

Proof. Let (𝐴, 𝐹𝐴) be an annulus with two marked points on each boundary component
and consider the dividing sets of Figure 6.3. We will denote by 𝜉0, 𝜉1 and 𝜉2 contact
structures divided by the corresponding 𝐾𝑖. Using the disk whose boundary is dashed,
one sees that 𝐾0 is bypass-related to 𝐾1 and 𝐾2. We denote (𝐴 × 𝕊1, 𝐹𝐴 × 𝕊1) by
(𝑁, Γ).

The study of normal forms of tight contact structures on thickened tori, discussed in
Section 3.2.3, shows that there is a thickened torus 𝑁 ′ with sutures Γ′ and an explicit
contact structure 𝜉𝑏 on (𝑁 ′, Γ′) such that a contact manifold has positive Giroux torsion
if and only if it contains a copy of 𝜉0 ∪𝜉𝑏. Therefore we only need to prove that 𝑐(𝜉0 ∪𝜉𝑏)
vanishes.

Let Φ = Φ𝜉𝑏
be a HKM gluing map from SFH(𝑁, Γ) to SFH(𝑁 ∪ 𝑁 ′, ΓΔΓ′). Normal

form theory proves that 𝜉1 ∪ 𝜉𝑏 and 𝜉2 ∪ 𝜉𝑏 are isotopic, relative to the boundary. Using
invariance under isotopy, we get 𝑐(𝜉1 ∪𝜉𝑏) = 𝑐(𝜉2 ∪𝜉𝑏). Let ̃𝑐𝑏 be a representative of this
common contact invariant. Let ̃𝑐1 and ̃𝑐2 be representatives of 𝑐(𝐾1) and 𝑐(𝐾2) such
that ̃𝑐𝑏 = Φ( ̃𝑐1) = Φ( ̃𝑐2). Such representatives exist according to the gluing property.
We also take any representative ̃𝑐(𝐾0) ∈ 𝑐(𝐾0) and denote by ̃𝑐(𝜉0 ∪𝜉𝑏) its image under
Φ. This image belong to 𝑐(𝜉0 ∪ 𝜉𝑏) according to the gluing property.

Lemma 6.13 gives 𝜀1, 𝜀2 ∈ {±1} such that

̃𝑐(𝐾0) = 𝜀1 ̃𝑐1 + 𝜀2 ̃𝑐2.

We then apply Φ to this equation to get:

̃𝑐(𝜉0 ∪ 𝜉𝑏) = (𝜀1 + 𝜀2) ̃𝑐𝑏. (6.6)

Let (𝑊, 𝜉𝑊) be a standard neighborhood of a Legendrian knot (𝑊 is a solid torus).
We now glue (𝑊, 𝜉𝑊) along the boundary component of 𝑁 ∪ 𝑁 ′ which is in 𝜕𝑁 so
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that meridian curves have slope 0. The structure 𝜉𝑊 ∪ 𝜉0 ∪ 𝜉𝑏 is overtwisted whereas
𝜉𝑊 ∪ 𝜉1 ∪ 𝜉𝑏 (and 𝜉𝑊 ∪ 𝜉2 ∪ 𝜉𝑏 which is isotopic to it) is a standard neighborhood of a
Legendrian curve so can be embedded into Stein fillable closed contact manifolds. Let
Φ𝑊 be a gluing map associated to 𝜉𝑊 . Applying Φ𝑊 to equation (6.6) and using the
vanishing property of overtwisted contact structures, we get

0 = (𝜀1 + 𝜀2)Φ𝑊( ̃𝑐𝑏).

Using that Φ𝑊( ̃𝑐𝑏) is non zero and the fact that the relevant SFH group has no torsion
(see Juhász 2008, Proposition 9.1) we get 𝜀1 + 𝜀2 = 0. Returning to Equation (6.6), we
then get 𝑐(𝜉0 ∪ 𝜉𝑏) = 0.

6.4. Later developments and prospects
The computations from Massot 2012, including the most technical ones that are not
stated above, have been re-examined from a more algebraic point of view in the series
of papers Mathews 2011, 2013, 2014a,b and, over ℤ/2 coefficients, from yet another
point of view in Fink 2012. As already mentioned, they can also be compared with
computation in embedded contact homology from Wendl 2013a. As far as geometric
applications are concerned –mainly symplectic filling obstructions– most of those results
should be superseded by work in progress on so-called spinal open books by Lisi, Van
Horn-Morris and Wendl. So I do not intend to return to these kind of computations in
Heegaard-Floer homology, although I would be mildly interested in seeing a computation
of fully twisted contact classes for all tight contact structures on 𝕋3, including ones with
positive Giroux torsion.

The main point of Massot 2012 was really to finish the exploration of interactions
between Giroux torsion and Heegaard-Floer homology, and this was done. However
there is still a big mystery about Giroux torsion: the finiteness conjecture. We still do
not know whether all tight contact structure have finite torsion. It follows from the
classification of overtwisted contact structures, or a careful study of neighborhood of an
overtwisted disk, that overtwisted manifolds have infinite Giroux torsion. The coarse
classification recalled in Section 3.2.5 proves that a finite value of Giroux torsion on a
given manifold determines a contact structure up to isomorphism and finite ambiguity.
So the finiteness conjecture is really the missing piece of the coarse classification picture.
The hope to prove this conjecture is to be able to normalize a thickened torus with respect
to a triangulation such as the ones appearing in the coarse classification (Section 3.2.5),
and then apply classification results on thickened tori (Section 3.2.3). Here normalize is
meant as in Haken’s theory of normal surface but with extra information about dividing
sets. This requires to prove isotopy results for 𝜉-convex or pre-Lagrangian tori as in
Section 3.2.4, but avoiding all traps described in Section 9.2.3 below.
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7. Weak and strong fillings in higher
dimensions

7.1. Introduction
We saw in Part I that the study of symplectic fillings of contact 3-manifolds had a
rich history, with many flavors of fillings, and interactions with the flexibility question
and Reeb dynamics, especially via the concept of Giroux torsion. In contrast, nothing
was known in higher dimensions until Niederkrüger 2006 proved existence of non-fillable
contact structures in higher dimensions, see the discussion in in Section 5.2.1. But it said
nothing about weaker versions of fillability, and interactions with flexibility and Reeb
dynamics. And there were no proposed definition of Giroux torsion in higher dimensions.
This chapter is a summary of Massot, Niederkrüger, and Wendl 2013 which studied all
these questions. We will not give the technical details of constructions and holomorphic
curves needed to prove the main results. But we will try to describe how definitions and
constructions fit together.

Let us begin by recalling the phenomenon of contact structures that are tight but not
(strongly) fillable. The emblematic example, in dimension 3, is the family of contact
structures on 𝕋3 defined for 𝑘 ∈ ℕ by

𝜉𝑘 ∶= ker (cos 𝑘𝑠 𝑑𝜃 + sin 𝑘𝑠 𝑑𝑡) ,

where we define 𝕋3 as (ℝ/2𝜋ℤ)3 with coordinates (𝑠, 𝑡, 𝜃). These contact structures are
all tight due to Bennequin 1983, since they are covered by the standard contact structure
on ℝ3, but Eliashberg 1996 showed that only 𝜉1 has a strong symplectic filling. Despite
this lack of fillability, they share other important properties that are incompatible with
overtwistedness. For example, they are hypertight, i.e. they allow Reeb vector fields
without contractible closed orbits, in contrast to Hofer 1993 proving that such orbits
always exist in the overtwisted case. More importantly, Giroux 1999 proved they are
not flexible, meaning they are all homotopic as plane fields yet not isotopic, whereas
overtwisted contact structures are maximally flexible due to Eliashberg 1989.

Although Massot, Niederkrüger, and Wendl 2013 was written before Borman, Eliash-
berg, and Murphy 2015, which solved the fundamental question of defining overtwisted
contact structures in higher dimensions, flexibility and contractible Reeb orbits were
already easy to define. Strong fillability was also defined of course. This allows us to
compare the properties of the contact structures 𝜉𝑘 on 𝕋3 discussed above with the
following statement.
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Theorem 7.1. Identify the torus 𝕋2 with (ℝ/2𝜋ℤ)2 with coordinates (𝑠, 𝑡). In any odd
dimension, there is a closed manifold 𝑀 carrying two contact forms 𝛼+ and 𝛼− such
that the formula

𝜉𝑘 ∶= ker (1 + cos 𝑘𝑠
2 𝛼+ + 1 − cos 𝑘𝑠

2 𝛼− + sin 𝑘𝑠 𝑑𝑡)

for 𝑘 ∈ ℕ defines a family of contact structures on 𝕋2 × 𝑀 with the following properties:

1. They all admit Reeb vector fields without contractible closed orbits.

2. They are all homotopic as almost contact structures but not contactomorphic.

3. (𝕋2 × 𝑀, 𝜉𝑘) is strongly fillable only for 𝑘 = 1.

We recover the 3-dimensional case discussed above by taking 𝑀 = 𝕊1 ∶= ℝ/ℤ and
𝛼± = ±𝑑𝜃 in the theorem.

As explained in Section 3.5.3, the non-fillability of the above contact structures on 𝕋3

was later recognized to be a consequence of the positivity of their Giroux torsion, and
we’d next like to generalize this fact.

Our key insight is that, although the classification of contact structures on thickened
tori uncovered Giroux torsion domains as torus bundles over the interval, and the coarse
classification theorem have them appear as interval bundle over the torus, the vision
relevant to fillability question is that of a circle bundle over an annulus with its ideal
Liouville domain structure. Indeed, on the ideal Liouville domain

Σ = 𝕊1 × [0, 𝜋], 𝜔 = 1
sin2 𝑠 𝑑𝜃 ∧ 𝑑𝑠

where 𝑠 is the coordinate in [0, 𝜋] and 𝜃 the coordinate in 𝕊1, we can choose the Liouville
form 𝛽 = cot 𝑠 𝑑𝜃. Using the equation 𝑓(𝜃, 𝑠) = sin 𝑠 for the boundary, we get the contact
form 𝑓(𝜃, 𝑠) · (𝛽 + 𝑑𝑡) = cos 𝑠 𝑑𝜃 + sin 𝑠 𝑑𝑡 on Σ × 𝕊1. Thus the contactization of this
ideal Liouville domain is a Giroux 𝜋-torsion domain.

Because of this observation, we decided to refer to contactizations of ideal Liouville
domains as Giroux domains. The fact that Giroux torsion is an obstruction to strong
fillability is then generalized to the following theorem.

Theorem 7.2. If a contact manifold contains a connected codimension 0 submanifold
with nonempty boundary obtained by gluing together two Giroux domains, then it is not
strongly fillable.

Observe that at least one of the Giroux domains in Theorem 7.2 must always have
disconnected boundary. As discussed in Section 2.6.2, the existence of Liouville domains
with disconnected boundary in dimensions four and higher is itself a nontrivial fact.
Inspired by a construction from Geiges 1994, we introduce the following notion.
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Definition 7.3. A Liouville pair1 on an oriented (2𝑛 − 1)-dimensional manifold 𝑀 is
a pair (𝛼+, 𝛼−) of contact forms such that ±𝛼± ∧ 𝑑𝛼𝑛−1

± > 0, and the 1-form

𝛽 ∶= 𝑒−𝑠𝛼− + 𝑒𝑠𝛼+

on ℝ × 𝑀 satisfies 𝑑𝛽𝑛 > 0.

A Liouville pair allows us to construct Liouville domains with two boundary compo-
nents (in fact, by attaching Stein 1-handles to these examples, one can obtain examples
with any number of boundary components). These manifolds can then be used to build
Giroux domains of the form [0, 𝜋] × 𝕊1 × 𝑀 with contact form

𝜆GT = 1 + cos 𝑠
2 𝛼+ + 1 − cos 𝑠

2 𝛼− + sin 𝑠 𝑑𝑡 , (7.1)

which can be stacked together to produce the examples described in Theorem 7.1.
In order to state an existence result for Liouville pairs, recall that a number field of

degree 𝑛 is a field that is an 𝑛-dimensional vector space over ℚ. Recall also that ℝ
contains number fields of arbitrary degree.

Theorem 7.4. To any number field 𝕜 of degree 𝑛, one can associate canonically a
(2𝑛−1)-dimensional closed contact manifold (𝑀𝕜, 𝜉𝕜). If 𝕜 can be embedded into ℝ, then
𝑀𝕜 also admits a Liouville pair, hence ℝ × 𝑀𝕜 is Liouville.

Corollary 7.5. There exist Liouville domains with disconnected boundary in all even
dimensions.

This corollary provides a source of examples that can be plugged into Theorem 7.2 to
construct non-fillable contact manifolds in all dimensions, and a special case of this leads
to the examples of Theorem 7.1. The proof of Theorem 7.2 is in fact a generalization
to higher dimensions of the construction mentioned in Section 4.3 to show that every
contact 3-manifold with Giroux torsion is weakly symplectically cobordant to one that is
overtwisted. In higher dimensions, the overtwistedness will come from a generalization of
Mori 2009. Note that, already in dimension three, the cobordism argument requires the
fact that overtwistedness obstructs weak (not only strong) fillability, a notion that has
not previously been defined in any satisfactory way in higher dimensions. In dimension
three of course, the subtle differences between weak and strong fillings are of interest in
themselves, not only as a tool for understanding strong fillability.

As preparation for the definition of weak fillability that we will propose here, let us
first have a look at the realm of (almost) complex manifolds.

Definition 7.6. One says that a contact manifold (𝑉 , 𝜉) is the tamed pseudoconvex
boundary of an almost complex manifold (𝑊, 𝐽) if 𝑉 = 𝜕𝑊 and

• 𝜉 is the hyperplane field 𝑇 𝑉 ∩ 𝐽𝑇 𝑉 of 𝐽-complex tangencies,

1. This is not what is called a Liouville pair in Weinstein 1991 but, fortunately, Eliashberg and Gromov
1991 essentially renamed those as Weinstein structures!
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• 𝑊 admits a symplectic form 𝜔 taming 𝐽 , and

• 𝑉 is 𝐽-convex.

The last point means that if we orient 𝑉 as the boundary of 𝑊 , then for any 1-form 𝜆
defining 𝜉 (i.e. 𝜆 is a 1-form with 𝜉 = ker 𝜆 as oriented hyperplanes), we have 𝑑𝜆(𝑣, 𝐽𝑣) >
0 for every nonzero vector 𝑣 ∈ 𝜉.

Note that there is no direct relation in the definition between the taming form 𝜔 and
the contact structure 𝜉. It must also be pointed out that the existence of (𝑊, 𝐽) is
not very restrictive without the taming condition. For instance, the overtwisted contact
structure on 𝕊3 that is homotopic to the standard contact structure can be realized
as a pseudoconvex boundary of the ball for some almost complex structure, but the
Eliashberg-Gromov theorem from Section 2.7.2 implies that this structure can never be
tamed.

Sections 2.4, 2.6.2 and 2.7.2 explained the relevance of this definition to the study of
holomorphic curves on manifolds with boundary. It also explained the definition of strong
symplectic fillings and how the seemingly weaker definition of symplectic domination was
irrelevant in higher dimensions.

We propose the following weak filling condition for all dimensions.

Definition 7.7. Let 𝜉 be a co-oriented contact structure on a manifold 𝑉 . Denote by CS𝜉
the canonical conformal class of symplectic structures on 𝜉. Let (𝑊, 𝜔) be a symplectic
manifold with 𝜕𝑊 = 𝑉 as oriented manifolds and denote by 𝜔𝜉 the restriction of 𝜔 to
𝜉. We say that (𝑊, 𝜔) is a weak filling of (𝑉 , 𝜉) (and 𝜔 weakly dominates 𝜉) if 𝜔𝜉 is
symplectic and 𝜔𝜉 + CS𝜉 is a ray of symplectic structures on 𝜉.

The weak filling condition is thus equivalent to the requirement that

𝛼 ∧ (𝑑𝛼 + 𝜔𝜉)𝑛−1 and 𝛼 ∧ 𝜔𝑛−1
𝜉

should be positive volume forms for every choice of contact form 𝛼 for 𝜉. If one fixes
a contact form 𝛼, then this is equivalent to requiring 𝛼 ∧ (𝜔𝜉 + 𝜏 𝑑𝛼)𝑛−1 > 0 for all
constants 𝜏 ≥ 0, and it holds for instance whenever

𝛼 ∧ 𝑑𝛼𝑘 ∧ 𝜔𝑛−1−𝑘
𝜉 > 0

for all 𝑘 ∈ {0, 1, … , 𝑛 − 1}. In dimension three, weak domination is equivalent to domi-
nation, hence our definition of weak filling reduces to the standard one.

The first important result to state about this new definition is that it is the purely
symplectic counterpart of tamed pseudoconvex boundaries.

Theorem 7.8. A symplectic manifold (𝑊, 𝜔) is a weak filling of a contact manifold (𝑉 , 𝜉)
(Definition 7.7) if and only if it admits a smooth almost complex structure 𝐽 that is tamed
by 𝜔 and makes (𝑉 , 𝜉) the tamed pseudoconvex boundary of (𝑊, 𝐽) (Definition 7.6).

The key to the above theorem is the following result in bilinear algebra:
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Proposition 7.9. Let 𝐸 be a real vector space equipped with two symplectic forms 𝜔0
and 𝜔1. The following properties are equivalent:

1. the linear segment between 𝜔0 and 𝜔1 consists of symplectic forms

2. the ray starting at 𝜔0 and directed by 𝜔1 consists of symplectic forms

3. there is a complex structure 𝐽 on 𝐸 tamed by both 𝜔0 and 𝜔1.

When complex structures tamed by both 𝜔0 and 𝜔1 exist, they form a contractible space.
Starting from dimension 4, there are examples where such 𝐽 exist, but none of them is
compatible with 𝜔0 or 𝜔1.

Contrasting to the equivalence of weak fillings and tamed pseudoconvex boundaries,
weak fillings are not automatically strong fillings. Indeed, weak domination of a fixed
𝜉 is an open condition on 𝜔, so one can easily construct weak fillings that are non-
exact at the boundary by taking small perturbations of strong fillings. Less trivial
examples of weak fillings non-exact at the boundary come from the generalization of the
construction of weak fillings in Giroux 1994b for the tight contact structures 𝜉𝑘 on 𝕋3.
Indeed, starting from some contact manifold (𝑉 , 𝜉) weakly filled by some (𝑊, 𝜔), one can
check that any contact structure on 𝑉 × 𝕋2 obtained through Bourgeois’s construction
(Key observation 5.3) is weakly filled by (𝑊 × 𝕋2, 𝜔 ⊕ 𝜔𝕋2), where 𝜔𝕋2 is an area form
on 𝕋2.

The next result extends the fact that weak fillability is strictly weaker than strong
fillability beyond dimension three. Though we prove this only for dimension five, it is
presumably true in all dimensions.

Theorem 7.10. There exist 3-manifolds 𝑀 with Liouville pairs (𝛼+, 𝛼−) such that the
contact manifolds (𝕋2 × 𝑀, 𝜉𝑘) of Theorem 7.1 are all weakly fillable. In particular,
there exist contact 5-manifolds that are weakly but not strongly fillable.

Of course all this discussion is interesting only provided there are examples of con-
tact manifolds that are not weakly fillable. We wrote Massot, Niederkrüger, and Wendl
2013 before the notion of overtwisted contact structures in higher dimensions stabilized
in Borman, Eliashberg, and Murphy 2015; Casals, Murphy, and Presas 2015. How-
ever plastikstufes and their immersed cousins already existed. We potentially extended
the class of PS-overtwisted manifolds by introducing the bLob, for reasons described in
Section 7.2, and proved the following.

Theorem 7.11. If (𝑉 , 𝜉) is a closed contact manifold that either

(i) contains a contractible 𝑃𝑆-overtwisted subdomain, or

(ii) is obtained as the negative stabilization of an open book,

then (𝑉 , 𝜉) has no (semipositive2) weak filling.

2. Here and elsewhere, we write the word semipositive in parentheses: this means that the condition
is presently necessary for technical reasons, but should be removable in the future, see Section 7.7. Note
that in dimensions 4 and 6, symplectic manifolds are always semipositive.
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Hence any contact structure on a closed manifold 𝑉 with dim 𝑉 ≥ 3 can be modified
within its homotopy class of almost contact structures to one that admits no (semipositive)
weak fillings.

In the mean time, many potential definitions of overtwistedness were proved to be
equivalent in Casals, Murphy, and Presas 2015. However the contractibility requirement
from the above statement can be replaced by much weaker cohomological requirements,
especially if one want to obstruct only strong fillings, see Section 7.3.2. Hence it is still
unclear whether all flavor of PS-overtwistedness are equivalent and the precise version
of the filling obstruction in Section 7.3.2 did not become obsolete. However the part
concerning negative stabilization, which was based on ideas from Bourgeois and Koert
2010 but without needing conjectural aspects of SFT, did become redundant since Casals,
Murphy, and Presas 2015.

We also proved that the weak filling condition is conveniently amenable to defor-
mations near the boundary. An often used fact in dimension three, due originally to
Eliashberg 1991b, is that any weak filling which is exact near the boundary can be de-
formed to a strong filling. This was extended in Niederkrüger and Wendl 2011 to show
that every weak filling can be deformed to make the boundary a stable hypersurface, so
that weak fillings can be studied using the machinery of SFT. Extending this idea to
higher dimensions led to the notion of a stable symplectic filling defined in Latschev and
Wendl 2011, and we proved:

Proposition 7.12. Any weak filling can be deformed near its boundary to a stable filling.
Moreover, if the symplectic form is exact near the boundary, then it can be deformed to
a strong filling.

The fact that weak fillings can be “stabilized” means that they are obstructed by the
invariants defined in ibid., known as algebraic torsion.

Corollary 7.13. If (𝑉 , 𝜉) has fully twisted algebraic torsion in the sense of ibid., then
it is not weakly fillable. In particular, this is the case if (𝑉 , 𝜉) has vanishing contact
homology with fully twisted coefficients.

The above corollary, which was not used in Massot, Niederkrüger, and Wendl 2013,
was conditional because existence of contact homology was not fully established at that
time. According to Pardon 2015, Page 14, it is now fully proved.

The contact structures defined in (7.1) can be used to define a higher dimensional
version of the standard 3-dimensional Lutz twist along a pre-Lagrangian torus. Notably,
whenever (𝑉 , 𝜉) contains a hypersurface 𝐻 that is isomorphic to one of the boundary
components of the domain [0, 2𝜋]×𝕊1 ×𝑀 with the contact structure given by 𝜆GT, we
can cut 𝑉 open along 𝐻 and glue in an arbitrary number of such domains to modify the
contact structure on 𝑉 . The contact structure obtained from this operation will never
be strongly fillable, and in some cases it is not even weakly fillable:

Theorem 7.14. By inserting contact domains of the form ([0, 2𝜋𝑘] × 𝕊1 × 𝑀, ker 𝜆GT)
for various 𝑘 ∈ ℕ, one can construct closed manifolds in any dimension 2𝑛 − 1 ≥ 3
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which admit infinite families of hypertight but not weakly fillable contact structures that
are homotopic as almost contact structures but not contactomorphic.

We also discussed in Massot, Niederkrüger, and Wendl 2013 a “blown down” version
of the above operation, which generalizes both the classical Lutz twist along transverse
knots in dimension three and a 5-dimensional version introduced in Mori 2009. This
operation always produces a contact structure that is in the same homotopy class of
almost contact structures, but is 𝑃𝑆-overtwisted and thus not weakly fillable. Etnyre
and Pancholi 2011 introduced a completely different generalization of the Lutz twist to
higher dimensions but, in the mean time, a gap appeared in their proof.

Organization

Here is an outline of the remainder of this chapter.
In Section 7.2, we introduce the bLob as a natural generalization of the plastikstufe

and briefly describe how to adapt the standard “Bishop family of holomorphic disks”
argument to prove the remainder of Theorem 7.11.

The next three sections discuss the proof of Theorem 7.2, defining the first higher
dimensional filling obstruction that is distinct from any notion of overtwistedness. In
Section 7.3, we discuss ideal Liouville domains and Giroux domains, and state a more
precise version of Theorem 7.2 that can also be applied to weak fillings. The proof
requires a surgery construction explained in Section 7.4, which is inspired by the con-
struction in Wendl 2013b of symplectic cobordisms from any contact 3-manifold with
Giroux torsion to one that is overtwisted. In our case, we consider a contact manifold
(𝑉 , 𝜉) which contains a region with nonempty boundary consisting of two Giroux do-
mains 𝐺0 = Σ0 ×𝕊1 and 𝐺1 = Σ1 ×𝕊1 glued together. It turns out that one can attach
along 𝐺0 a symplectic “handle” of the form Σ0 × 𝔻2, the effect of which is to replace
𝐺0 ∪ 𝐺1 with a region that is 𝑃𝑆-overtwisted, thus a weak filling of (𝑉 , 𝜉) with suitable
cohomological properties at the boundary gives rise to a larger weak filling of something
𝑃𝑆-overtwisted and hence a contradiction. Note that since the new boundary is only
weakly filled in general, the new notion of weak fillability plays a crucial role even just
for proving that (𝑉 , 𝜉) is not strongly fillable.

In Section 7.6 we switch gears and address the existence of Liouville pairs in all
dimensions, proving Theorem 7.4.

The main things from Massot, Niederkrüger, and Wendl 2013 that are not described
here are the proof of Theorem 7.8, the part about negative stabilizations in Theorem 7.11
which became redundant since Casals, Murphy, and Presas 2015, the proof that contact
structures in Theorem 1.1 are homotopic as almost contact structure (this is a rather
technical computation), and the proof that they are not isotopic (this combines algebraic
considerations about their fundamental groups and a contact homology computation).
We also skip the variations leading to Theorem 7.14.
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7.2. Bordered Legendrian open books
In this section, we will first introduce a generalization of the plastikstufe that is more
natural and less restrictive than the initial version introduced in Niederkrüger 2006.
Subsequently we will state that these objects, under a certain homological condition
(which is trivially satisfied for the overtwisted disk), represent obstructions to weak
fillability.

Definition 7.15. Let 𝑁 be a compact manifold with nonempty boundary. A relative
open book on 𝑁 is a pair (𝐵, 𝜃) where:

• the binding 𝐵 is a nonempty codimension 2 submanifold in the interior of 𝑁 with
trivial normal bundle;

• 𝜃 ∶ 𝑁 ∖𝐵 → 𝕊1 is a fibration whose fibers are transverse to 𝜕𝑁 , and which coincides
in a neighborhood 𝐵 × 𝔻2 of 𝐵 = 𝐵 × {0} with the normal angular coordinate.

Definition 7.16. Let (𝑉 , 𝜉) be a (2𝑛 + 1)-dimensional contact manifold. A compact
(𝑛 + 1)-dimensional submanifold 𝑁 ↪ 𝑉 with boundary is called a bordered Legendrian
open book (abbreviated bLob), if it has a relative open book (𝐵, 𝜃) such that:

(i) all fibers of 𝜃 are Legendrian;

(ii) the boundary of 𝑁 is Legendrian.

A contact manifold that admits a bLob is called 𝑃𝑆-overtwisted.

The binding 𝐵 of a Legendrian open book is automatically isotropic because its tangent
space is contained in the tangent space of the closure of all pages. Similarly, the fibers
of 𝜃 and the boundary of 𝑁 meet transversely in 𝑁 , and saying that they are both
Legendrian implies that the induced foliation on 𝑁 is singular on 𝐵 and 𝜕𝑁 .

A bLob is an example of a maximally foliated submanifold of (𝑉 , 𝜉), as in Section 5.2.1.
Note that the definition of the bLob is topologically much less restrictive than the initial
definition of the plastikstufe. For example, a 3-manifold admits a relative open book if
and only if its boundary is a nonempty union of tori. On the other hand, a plastikstufe
in dimension 5 is always diffeomorphic to a solid torus 𝕊1 × 𝔻2.

In this chapter we will discuss one setting where we can find bLobs and are unable to
find plastikstufes: in Proposition 7.19, we show that bLobs always exist in certain sub-
domains that are naturally associated to Liouville domains with disconnected boundary,
a special case of which produces the Lutz-type twist from Mori 2009.

Some bLobs also arise in relation to the results of Niederkrüger and Presas 2010, where
it is shown that sufficiently large neighborhoods of overtwisted submanifolds in higher
dimensional contact manifolds give a filling obstruction. In ibid. this required a rather
technical argument involving holomorphic disks with an immersed boundary condition,
but it can be simplified and strengthened by showing (using arguments similar to those of
Proposition 7.19) that such neighborhoods always contain a bLob. Since Casals, Murphy,
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and Presas 2015, we also know that these neighborhood contains a plastikstufe, but it
has not been exhibited explicitly, contrasting with the bLob.

Of course, finding a bLob would be useless without the following theorem.

Theorem 7.17. If a closed contact manifold is 𝑃𝑆-overtwisted, then it does not have
any (semipositive) weak symplectic filling (𝑊, 𝜔) for which 𝜔 restricted to the bLob is
exact.

If dim 𝑉 ≥ 3, then any contact structure 𝜉 on 𝑉 can be modified using Presas 2007;
Niederkrüger and Koert 2007 to produce one that is 𝑃𝑆-overtwisted. In both cases,
the change produces a small plastikstufe: a plastikstufe contained in a ball. Hence
Theorem 7.17 and the preceding section imply Theorem 7.11 stated in the introduction.

In the proof of Theorem 7.17, the general strategy is the same as in the plastikstufe
case from Gromov 1985; Eliashberg 1990a; Niederkrüger 2006, but there are differences
coming from two sources: the need to handle weak rather than strong fillings, and bLobs
rather than plastikstufes. Working with weak fillings complicates the question of energy
bounds because the integral of 𝜔 on a holomorphic curve no longer has a direct relation
to the integral of 𝑑𝛼. This is where the homological condition comes in. Further, it is no
longer obvious that we can choose our almost complex structure to be both adapted to a
contact form near the binding and boundary of the bLob and tamed by 𝜔, this is where
the characterization of Theorem 7.8 is crucial. As far as the differences between the
plastikstufe and the bLob are concerned, the first is the singularity along the boundary,
which makes energy control easier but makes it harder to ensure that holomorphic curves
cannot escape through the boundary. This difference can be handled similarly to the
analogous work in Niederkrüger and Presas 2010, which dealt with the case where the
fibration of the bLob becomes trivial at the boundary. The general case additionally
requires somewhat technical lemmas. The second difference is of course that pages are
more complicated and the interior monodromy can be anything, but this plays no role
in the proof; what matters is the existence of a fibration over 𝕊1.

7.3. Giroux domains

7.3.1. Round hypersurfaces and blow down

Let 𝑀 be a union of connected components of the boundary of a Giroux domain Σ×𝕊1.
These components are 𝜉-round hypersurfaces and can thus be blown down, as explained
in Section 3.3. We shall denote the resulting manifold by (Σ × 𝕊1)//𝑀 . It inherits
a natural contact structure for which each of the blown down boundary components
becomes a codimension two contact submanifold.

Example 7.18. Continuing the annulus example from Section 7.1, a Giroux 𝜋-torsion
domain with one boundary component blown down is a so-called Lutz tube, i.e. the solid
torus that results from performing a (half) Lutz twist along a transverse knot. With both
boundary components blown down, it is the standard contact structure on 𝕊2 × 𝕊1.
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In the above example, when one boundary component is blown down but not the
other, the resulting domain contains an overtwisted disk. Note here how crucial it is
that we use ideal Liouville domains instead of their interior, which are complete Liouville
manifolds. Going all the way to infinity is needed to fully turn up to the boundary of an
overtwisted disk. This motivate the definition of ideal Liouville domains independently
from the Courte phenomenon. We now generalize this to higher dimensions.

Proposition 7.19. Suppose (𝑉 , 𝜉) is a contact manifold containing a subdomain 𝐺
with nonempty boundary, obtained from a Giroux domain by blowing down at least one
boundary component. Then (𝑉 , 𝜉) contains a ball containing a bLob.

The bLob in the above proposition comes from a Lagrangian submanifold in an ideal
Liouville domain (Σ, 𝜔). We first need a technical definition describing how these sub-
manifolds are allowed to approach the boundary. We say that a submanifold 𝐿 properly
embedded inside Σ and transverse to the boundary is a Lagrangian with cylindrical end
if: 𝐿̊ is Lagrangian in Σ̊, 𝜕𝐿 is Legendrian in 𝜕Σ, and there is a Liouville form 𝛽 whose
𝜔-dual vector field is tangent to 𝐿 near 𝜕Σ.

The key lemma to prove the above proposition is then as follows. The proof relies
essentially on Tischler’s construction of fibration after some perturbation and Moser
type arguments.

Lemma 7.20. Let (Σ, 𝜔) be an ideal Liouville domain. If 𝐿 is a Lagrangian with
cylindrical end in Σ, then 𝐿 ∶= 𝐿 × 𝕊1 inside the contactization Σ × 𝕊1 is isotopic to a
maximally foliated submanifold whose singular set is its boundary and whose foliation is
otherwise defined via a fibration

𝜗∶ 𝐿 → 𝕊1, (𝑙, 𝑡) ↦ 𝐹(𝑙) + 𝑡 ,

for some smooth function 𝐹 ∶ 𝐿 → 𝕊1 that is constant on a neighborhood of 𝜕𝐿.

Proposition 7.19 is proved using this lemma and Lagrangian constructed from trivial
disks and Lagrangian surgery.

7.3.2. Obstructions to fillability
We now want to state a non-fillability result. As preparation, note that any embedding
of the interior of a Giroux domain 𝐼Σ ∶= Σ̊×𝕊1 into a contact manifold (𝑉 , 𝜉) determines
a distinguished subspace 𝐻1(Σ; ℝ) ⊗ 𝐻1(𝕊1; ℝ) ⊂ 𝐻2(𝑉 ; ℝ). We call its annihilator in
𝐻2

dR(𝑉 ) the space of cohomology classes obstructed by 𝐼Σ, and we denote it by 𝒪(𝐼Σ).
Classes in 𝒪(𝐼Σ) are exactly those whose restriction to 𝐼Σ can be represented by closed
2-forms pulled back from the interior of Σ. If 𝑁 ⊂ (𝑉 , 𝜉) is any subdomain resulting
from gluing together a collection of Giroux domains 𝐼Σ1

, … , 𝐼Σ𝑘
and blowing down some

of their boundary components, then we define its obstructed subspace 𝒪(𝑁) ⊂ 𝐻2
dR(𝑉 )

to be 𝒪(𝐼Σ1
) ∩ ⋯ ∩ 𝒪(𝐼Σ𝑘

). We will say that such a domain is fully obstructing if
𝒪(𝑁) = 𝐻2

dR(𝑉 ).
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Example 7.21. If Σ is homeomorphic to [−1, 1] × 𝑀 for some closed manifold 𝑀 , and
𝑁 is the result of blowing down one boundary component of the Giroux domain 𝐼Σ, then
any embedding of 𝑁 is fully obstructing. Indeed, any class in 𝐻1(Σ; ℝ) ⊗ 𝐻1(𝕊1; ℝ)
can be represented by a cycle in the 𝑀 × 𝔻2 part of the blown down Giroux domain
and, of course, 𝐻1(𝕊1; ℝ) becomes trivial in 𝐻1(𝔻2; ℝ). For instance, a Lutz tube (see
Example 7.18) in a contact 3-manifold is always fully obstructing, and the same is true
for the higher dimensional generalization that we introduced in Massot, Niederkrüger,
and Wendl 2013.

The following is the refined version of Theorem 7.2 obstructing some weak fillings in
addition to strong fillings.
Theorem 7.22. Suppose (𝑉 , 𝜉) is a closed contact manifold containing a subdomain 𝑁
with nonempty boundary, which is obtained by gluing and blowing down Giroux domains.

(a) If 𝑁 has at least one blown down boundary component then it contains a small
bLob, hence (𝑉 , 𝜉) does not have any (semipositive) weak filling.

(b) If 𝑁 contains two Giroux domains Σ+ × 𝕊1 and Σ− × 𝕊1 glued together such that
Σ− has a boundary component not touching Σ+, then (𝑉 , 𝜉) has no (semipositive)
weak filling (𝑊, 𝜔) with [𝜔𝑉 ] ∈ 𝒪(Σ+ × 𝕊1).

In particular (𝑉 , 𝜉) has no (semipositive) strong filling in either case.
The first statement in this theorem follows immediately from Proposition 7.19 and

Theorem 7.17. We will explain the second in Section 7.5, essentially by using the sym-
plectic cobordism construction of the next section to reduce it to the first statement,
though some care must be taken because the filling obtained by attaching our cobordism
to a given semipositive filling need not always be semipositive. Ibid. also contains an
alternative argument for both parts of Theorem 7.22 using 𝐽 -holomorphic spheres: this
requires slightly stricter homological assumptions than stated above, but has the advan-
tage of not requiring semipositivity at all, due to the polyfold machinery developed in
Hofer, Wysocki, and Zehnder 2011. See Section 7.7 for more discussion of transversality
issues.

Without delving into the details, we should mention that we also expect the above
filling obstruction to be detected algebraically in Symplectic Field Theory via the notion
of algebraic torsion defined in Latschev and Wendl 2011. Recall that a contact manifold
is said to be algebraically overtwisted if it has algebraic 0-torsion (this is equivalent to
having vanishing contact homology), but there are also infinitely many “higher order”
filling obstructions known as algebraic 𝑘-torsion for integers 𝑘 ≥ 1. It turns out that one
can always choose the data on a Giroux domain Σ × 𝕊1 so that gradient flow lines of a
Morse function on Σ give rise to holomorphic curves in the symplectization of Σ × 𝕊1,
and these can be counted in SFT. The expected result is as follows:
Conjecture 7.23. Suppose (𝑉 , 𝜉) contains a subdomain 𝑁 as in Theorem 7.22, choose
any 𝑐 ∈ 𝒪(𝑁) and consider SFT with coefficients in ℝ[𝐻2(𝑉 ; ℝ)/ ker 𝑐]. Then (𝑉 , 𝜉) has
algebraic 1-torsion, and it is also algebraically overtwisted if 𝑁 contains any blown down
boundary components.
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7.4. Surgery along Giroux domains
In this section, we explain a surgery procedure which removes the interior of a Giroux
domain from a contact manifold and blows down the resulting boundary. This surgery
corresponds to a symplectic cobordism that can be glued on top of any weak filling
satisfying suitable cohomological conditions, leading to a proof of Theorem 7.22.

Suppose (𝑉 , 𝜉) is a (2𝑛 − 1)-dimensional contact manifold without boundary, contain-
ing a Giroux domain 𝐺 ⊂ 𝑉 , possibly with some boundary components blown down.
Removing the interior of 𝐺, the boundary of 𝑉 ∖ 𝐺 is then a 𝜉-round hypersurface

𝜕(𝑉 ∖ 𝐺) = 𝑀 × 𝕊1 ,

where (𝑀, 𝜉𝑀) is a (possibly disconnected) closed contact manifold. We can thus blow
it down as described in Section 7.3.1, producing a new manifold

𝑉 ′ ∶= (𝑉 ∖ 𝐺)//𝑀

without boundary, which inherits a natural contact structure 𝜉′.
Topologically, the surgery taking (𝑉 , 𝜉) to (𝑉 ′, 𝜉′) can be understood as a certain

handle attachment. We now give a point-set description of this handle attachment
which is sufficient to state the theorem below (but Massot, Niederkrüger, and Wendl
2013 does discuss a smooth model). Assume that 𝐺 is obtained from the ideal Liouville
domain (Σ, 𝜔) with boundary 𝜕Σ = 𝑀p ⊔ 𝑀bd by blowing down the Giroux domain
Σ×𝕊1 at 𝑀bd ×𝕊1 but preserving 𝑀p ×𝕊1 as in Fig. 7.1(a) (here bd stands for “blown
down”, and p for “preserved”). Then topologically,

𝐺 = (𝑀bd × 𝔻2) ∪𝑀bd×𝕊1 (Σ × 𝕊1) .

Note that 𝑀bd can now be regarded as a codimension 2 contact submanifold of 𝐺, namely
by identifying it with 𝑀bd × {0}.

Next, remove a small open collar neighborhood of 𝑀bd from Σ and denote the resulting
submanifold by Σℎ. We can regard Σℎ × 𝕊1 as a subdomain of 𝐺, and consider the
manifold with boundary and corners defined by

([0, 1] × 𝑉 ) ∪{1}×(Σℎ×𝕊1) (Σℎ × 𝔻2) .

After smoothing the corners, this becomes a smooth oriented cobordism 𝑊 with bound-
ary (see Fig. 7.1(b)),

𝜕𝑊 = −𝑉 ⊔ 𝑉 ′ ⊔ (𝑀bd × 𝕊2) .
We can now state the main theorem of this section.

Theorem 7.24. Suppose 𝑊 denotes the 2𝑛-dimensional smooth cobordism described
above, and Ω is a closed 2-form on 𝑉 such that:

• Ω weakly dominates 𝜉

114



7.4. Surgery along Giroux domains

(a) The domain 𝐺 is obtained
from the product manifold Σ ×
𝕊1 by blowing down the bound-
ary components 𝑀bd × 𝕊1 to
𝑀bd.

(b) The cobordism is obtained by gluing Σℎ × 𝔻2 onto 𝐺, and
rounding its corners. Note that after the handle attachment
the boundary of the surgered manifold consists of the contact
manifold 𝑉 ′ plus components diffeomorphic to 𝑀bd × 𝕊2 cor-
responding to the blown down boundary of 𝐺.

Figure 7.1.: Giroux domain surgery

• the cohomology class of Ω belongs to the obstructed subspace 𝒪(𝐺), i.e. for every
1-cycle 𝑍 in Σ,

∫
𝑍×𝕊1

Ω = 0 .

Then 𝑊 admits a symplectic structure 𝜔 with the following properties:

1. �𝜔|𝑇𝑉 = Ω.

2. The co-core Σℎ × {0} ⊂ Σℎ × 𝔻2 ⊂ 𝑊 is a symplectic submanifold weakly filling
(𝜕Σℎ × {0}, 𝜉Σ).

3. (𝑉 ′, 𝜉′) is a weakly filled boundary component of (𝑊, 𝜔) that is contactomorphic
to the blown down manifold (𝑉 ∖ 𝐺)//𝑀p.

4. A neighborhood of 𝑀bd × 𝕊2 ⊂ 𝜕𝑊 in (𝑊, 𝜔) can be identified symplectically with

((−𝛿, 0] × 𝑀bd × 𝕊2, 𝜔0 ⊕ 𝜔𝕊2)

for some 𝛿 > 0, where 𝜔𝕊2 is an area form on 𝕊2 and 𝜔0 is a symplectic form on
(−𝛿, 0] × 𝑀bd for which the boundary (𝑀bd, 𝜉Σ) is weakly filled. Moreover, the
intersection of the co-core Σ × {0} with this neighborhood has the form (−𝛿, 0] ×
𝑀bd × {const}.

Remark 7.25. A pair of weak symplectic cobordisms can be smoothly glued together
along a positive/negative pair of contactomorphic boundary components whenever the
symplectic forms restricted to these boundary components are cohomologous. Thus the
symplectic cobordism of the above theorem can be glued on top of any weak filling (𝑊, 𝜔)
of (𝑉 , 𝜉) for which [ �𝜔|𝑇𝑉 ] ∈ 𝒪(𝐺).

The proof of Theorem 7.24 is somewhat technical and will not be reproduced here. It
consists of the following five steps:
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1. Find a standardized model with a special contact form 𝜆 for tubular neighborhoods
of 𝜕𝐺 and the blown down components 𝑀bd.

2. Construct a symplectic form on our proto-cobordism [0, 1]×𝑉 that is well adjusted
to both Ω and 𝜆.

3. Carve out the interior of {1} × Σ × 𝕊1 from [0, 1] × 𝑉 . This creates a notch with
corners along its edges, and we then smoothly glue the handle Σ × 𝔻2 into the
cavity, creating a smooth manifold.

4. Study the symplectic form induced from the proto-cobordism on the glued part of
the handle and extend it to the whole handle.

5. Check that the new boundary of the cobordism has the desired properties.

7.5. Giroux domains and non-fillability
We now use the cobordism of the preceding section to prove Theorem 7.22 on filling
obstructions. The first few paragraphs are the expected ones where we glue the cobor-
dism of the previous section on top of a hypothetical filling. The rest is kept there as an
example of the contortions needed because of transversality issues in holomorphic curves
theory. The point is that, even assuming semi-positivity of the hypothetical filling is not
enough. This motivates the discussion in Section 7.7. It also explains why we stated so
many geometric properties of the cobordism in Theorem 7.24.

Part (a) of the theorem follows immediately from the fact that if (𝑉 , 𝜉) contains a
Giroux domain 𝑁 that has some boundary components that are blown down and others
that are not, then by Proposition 7.19 it contains a small bLob, so Theorem 7.17 implies
that (𝑉 , 𝜉) does not admit any semipositive weak filling.

To prove part (b), suppose 𝑁 has the form

𝑁 = (Σ+ × 𝕊1) ∪𝑌 ×𝕊1 (Σ− × 𝕊1) ,
where Σ± are ideal Liouville domains with boundary 𝜕Σ± = 𝜕glueΣ± ⊔ 𝜕freeΣ±, 𝑌 ∶=
𝜕glueΣ+ = 𝜕glueΣ− carries the induced contact form 𝛼 and 𝜕freeΣ− is not empty.
Arguing by contradiction, assume that (𝑉 , 𝜉) is weakly filled by a semipositive symplec-
tic filling (𝑊0, 𝜔) with [ �𝜔|𝑇𝑉 ] ∈ 𝒪(Σ+). This establishes the cohomological condition
needed by Theorem 7.24 on Σ+ ×𝕊1, so applying the theorem, we can enlarge (𝑊0, 𝜔) by
attaching Σ+ × 𝔻2, producing a compact symplectic manifold (𝑊1, 𝜔) whose boundary
(𝑉 ′, 𝜉′) supports a contact structure that is weakly filled.

Since the boundary 𝑉 ′ of the new symplectic manifold (𝑊1, 𝜔) is contactomorphic
to (𝑉 ∖ (Σ+ × 𝕊1))//𝑌 , we find in (𝑉 ′, 𝜉′) a domain isomorphic to (Σ− × 𝕊1)//𝑌 that
contains a small bLob. Unfortunately this does not directly obstruct the existence of
the weak filling (𝑊1, 𝜔), because even though 𝑊0 was semipositive, 𝑊1 might not be.
We will follow the proof of Theorem 7.17, with the difference that we need to reconsider
compactness to make sure that bubbling is still a “codimension 2 phenomenon”.

Choose an almost complex structure 𝐽 on (𝑊1, 𝜔) with the following properties:
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(i) 𝐽 is tamed by 𝜔 and makes (𝑉 ′, 𝜉′) strictly 𝐽 -convex,

(ii) 𝐽 is adapted to the bLob in the standard way (cf. the proof of Theorem 7.17),

(iii) for some small radius 𝑟 > 0, 𝐽 = 𝐽Σ+ ⊕ 𝑖 on Σ+ × 𝔻2
𝑟 ⊂ 𝑊1, where 𝐽Σ+ is a tamed

almost complex structure on Σ+ for which 𝜕Σ+ is 𝐽Σ+-convex.

The third condition uses the fact from Theorem 7.24 that the co-core 𝒦′ ∶= Σ+ × {0}
of the handle is a symplectic (and now also 𝐽 -holomorphic) hypersurface weakly filling
its boundary. The binding of the bLob lies in the boundary of the co-core 𝒦′

+, and the
normal form described in Niederkrüger 2006 is compatible with the splitting Σ+ × 𝔻2

𝑟 so
that (ii) and (iii) can be simultaneously achieved.

By choosing 𝐽Σ+ generic, we can also assume that every somewhere injective 𝐽Σ+-
holomorphic curve in Σ+ is Fredholm regular and thus has nonnegative index. Note
that any closed 𝐽 -holomorphic curve in Σ+ × 𝔻2

𝑟 is necessarily contained in Σ+ × {𝑧}
for some 𝑧 ∈ 𝔻2

𝑟, and the index of this curve differs from its index as a 𝐽Σ+-holomorphic
curve in Σ+ by the Euler characteristic of its domain. This implies that every somewhere
injective 𝐽 -holomorphic sphere contained in Σ+ × 𝔻2

𝑟 has index at least 2. Likewise, by
a generic perturbation of 𝐽 outside of this neighborhood we may assume all somewhere
injective curves that are not contained entirely in Σ+ × 𝔻2

𝑟 also have nonnegative index.
Now let ℳ be the connected moduli space of holomorphic disks attached to the bLob

that contains the standard Bishop family. We can cap off every holomorphic disk 𝑢 ∈ ℳ
by attaching a smooth disk that lies in the bLob, producing a trivial homology class in
𝐻2(𝑊1). The cap and the co-core intersect exactly once, and it follows that 𝑢 also must
intersect the co-core 𝒦′

+ exactly once, because 𝑢 and 𝒦′
+ are both 𝐽 -complex.

To finish the proof, we have to study the compactness of ℳ and argue that ℳ ∖ ℳ
consists of strata of codimension at least 2. A nodal disk 𝑢∞ lying in ℳ∖ℳ has exactly
one disk component 𝑢0, which is injective at the boundary, and one component 𝑢+ that
intersects the co-core once; either 𝑢+ = 𝑢0 or 𝑢+ is a holomorphic sphere. Every other
non-constant connected component 𝑣 is a holomorphic sphere whose homology class has
vanishing intersection with the relative class [𝒦′

+]. So either 𝑣 does not intersect the
𝐽 -complex submanifold 𝒦′

+ at all or 𝑣 is completely contained in 𝒦′
+. In either case,

𝑣 is homotopic to a sphere lying in 𝑊0: indeed, if 𝑣 does not intersect the co-core, we
can move it out of the handle by pushing it radially from Σ+ × (𝔻2 ∖ {0}) into the
boundary Σ+ × 𝕊1 ⊂ 𝑊0, and if 𝑣 ⊂ 𝒦′

+ = Σ+ × {0}, then we can simply shift it to
Σ+ × {1} ⊂ 𝑊0. Using the fact that 𝑢0 and 𝑢+ are both somewhere injective, together
with the semipositivity and genericity assumptions, we deduce that every connected
component of 𝑢∞ has nonnegative index, thus ℳ ∖ ℳ has codimension at least two
in ℳ. The rest of the proof is the same as for Theorem 7.17.
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7. Weak and strong fillings in higher dimensions

7.6. Construction of Liouville domains with disconnected
boundary

7.6.1. Contact products and Liouville pairs
In this section we construct Liouville pairs on closed manifolds of every odd dimension.
It is enough to prove Theorem 7.4 in the special case of a totally real number field.
The general case discussed in Massot, Niederkrüger, and Wendl 2013 adds quite a bit of
complications that are not needed here.

Recall that the goal is to find positive/negative pairs of contact forms (𝛼+, 𝛼−) on
oriented odd-dimensional manifolds 𝑀 with the property that, if 𝑠 ∈ ℝ denotes the
coordinate on the first factor of ℝ × 𝑀 ,

𝛽 ∶= 𝑒−𝑠𝛼− + 𝑒𝑠𝛼+

defines a positively oriented Liouville form on ℝ × 𝑀 .
Given such a pair, we define a 1-form on ℝ × 𝕊1 × 𝑀 by

𝜆GT = 1 + cos 𝑠
2 𝛼+ + 1 − cos 𝑠

2 𝛼− + (sin 𝑠) 𝑑𝑡, (7.2)

and denote 𝜉GT ∶= ker 𝜆GT.

Proposition 7.26. The co-oriented distribution 𝜉GT defined above is a positive contact
structure on ℝ × 𝕊1 × 𝑀 , which can be viewed as an infinite chain of Giroux domains
[𝑘𝜋, (𝑘 + 1)𝜋] × 𝕊1 × 𝑀 = (𝑀 × [𝑘𝜋, (𝑘 + 1)𝜋]) × 𝕊1 glued together.

Proof. Let 𝜑∶ (0, 𝜋) → ℝ denote the orientation reversing diffeomorphism defined by
𝜑(𝑠) = ln 1+cos 𝑠

sin 𝑠 . This induces an orientation preserving diffeomorphism from the inte-
rior of Σ ∶= 𝑀 ×[0, 𝜋] to ℝ×𝑀 , so pulling back 𝛽 ∶= 1

2 (𝑒𝑢𝛼+ + 𝑒−𝑢𝛼−) gives a Liouville
form which defines on Σ the structure of an ideal Liouville domain. Regarding 𝜕Σ as
the zero-set of the function sin 𝑠 and writing 𝑢 = 𝜑(𝑠), the Giroux domain Σ × 𝕊1, then
inherits the contact form

𝜆GT = (sin 𝑠) · [𝑑𝑡 + 1
2 (𝑒𝑢𝛼+ + 𝑒−𝑢𝛼−)] ,

proving that 𝜆GT is indeed a positive contact form on 𝑀 × [0, 𝜋] × 𝕊1 = [0, 𝜋] × 𝕊1 × 𝑀 .
A similar argument proves the contact condition on [𝜋, 2𝜋]×𝕊1 ×𝑀 , and the rest follows
by periodicity.

The first example of a Liouville pair is ±𝑑𝜃 on 𝕊1. One can construct higher dimen-
sional examples using contact products. The contact product of (𝑀1, 𝜉1) and (𝑀2, 𝜉2)
is defined as the product of their symplectizations 𝑆𝜉1 × 𝑆𝜉2 divided by the diagonal
ℝ-action (cf. Giroux 2010). This describes a contact manifold but, since the Liouville
pair condition is really about contact forms and not only contact structures, we want a
more specific construction. Suppose we have contact forms 𝛼1 and 𝛼2. Those give iden-
tifications between 𝑆𝜉𝑖 and ℝ × 𝑀𝑖 with fiber coordinates 𝑡𝑖 on ℝ. On the product, one
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has the Liouville form 𝜆 = 𝑒𝑡1𝛼1+𝑒𝑡2𝛼2 and its dual vector field 𝑋 = 𝜕𝑡1
+𝜕𝑡2

. We shall
say that a manifold 𝑉 with a contact form 𝜆 is a linear model for the contact product
of (𝑀1, 𝛼1) and (𝑀2, 𝛼2) if it is realized as a hypersurface in 𝑆𝜉1 × 𝑆𝜉2 transverse to 𝑋
and defined by a linear equation on 𝑡1 and 𝑡2. Concretely, this means 𝑉 = 𝑀1 ×ℝ×𝑀2
is embedded into the product (ℝ × 𝑀1) × (ℝ × 𝑀2) by 𝜑(𝑚1, 𝑡, 𝑚2) = (𝜇𝑡, 𝑚1, 𝜈𝑡, 𝑚2)
for some constants 𝜇 and 𝜈. This gives a hypersurface positively transverse to 𝑋 pro-
vided 𝜈 > 𝜇. The contact form induced by 𝜆 on 𝑉 is then 𝑒𝜇𝑡𝛼1 + 𝑒𝜈𝑡𝛼2. An easy
computation proves the following important result (there are more general versions).

Proposition 7.27. If 𝑀1 is ℝ or 𝕊1 endowed with the Liouville pair 𝛼± = ±𝑑𝜃 and
(𝑀2, 𝛼2) is any manifold with a contact form, then any linear model for the contact
product inherits a Liouville pair ±𝑒𝜇𝑡𝑑𝜃 + 𝑒𝜈𝑡𝛼.

Of course, the disadvantage of the contact product construction is that the resulting
manifold is never compact, and there seems to be no general way of finding compact
quotients of contact products. We shall therefore specialize further by seeking examples
among Lie groups which can be seen as symplectizations of some subgroups that have
co-compact lattices. (The idea to consider left-invariant contact forms on Lie groups is
borrowed from Geiges 1994.)

We set

𝐻𝑛 = {(𝑡1, …, 𝑡𝑛) ∈ ℝ𝑛 ; ∑ 𝑡𝑖 = 0}
𝐺𝑛 = 𝐻𝑛 ⋉ ℝ𝑛 where (𝑡1, …, 𝑡𝑛) · (𝜃1, …, 𝜃𝑛) = (𝑒𝑡1𝜃1, …, 𝑒𝑡𝑛𝜃𝑛)

Of course 𝐻𝑛 is isomorphic to ℝ𝑛−1 but the above description is convenient in order to
find a cocompact lattice in 𝐺𝑛.

One can show, using the above proposition or by an explicit calculation, that for a
suitable choice of orientation on 𝐺𝑛,

𝛼± ∶= ±𝑒−𝑡1 𝑑𝜃1 + 𝑒−𝑡2 𝑑𝜃2 + ⋯ + 𝑒−𝑡𝑛 𝑑𝜃𝑛 . (7.3)

is a left-invariant Liouville pair on 𝐺𝑛.

Proposition 7.28. There exist lattices Λ ⊂ 𝐻𝑛 and Λ′ ⊂ ℝ𝑛 such that the group action
of Λ preserves Λ′. Hence, for every integer 𝑛 ≥ 1, the Liouville pair defined by (7.3) on
ℝ𝑛−1 × ℝ𝑛 descends to a compact quotient which is a 𝕋𝑛-bundle over 𝕋𝑛−1.

Proposition 7.28 is trivial when 𝑛 = 1, and elementary when 𝑛 = 2: for the latter
case, one can choose Λ ⊂ ℝ to be generated by any real number 𝜏 ≠ 0 such that 𝑒𝜏

is an eigenvalue of some matrix 𝐴 ∈ SL(2, ℤ). Then 𝐴 may be viewed as the matrix
of the linear transformation ℝ2 → ℝ2 ∶ (𝜃1, 𝜃2) ↦ (𝑒−𝜏𝜃1𝑒𝜏𝜃2) in some other basis
where it has integer coefficients. This transformation therefore preserves the lattice
generated by that basis. This produces a Liouville pair on every 𝕋2-bundle over 𝕊1 with
hyperbolic monodromy—these examples have appeared previously in Geiges 1995 and
Mitsumatsu 1995. A hint of the general arithmetic strategy we will use below appears
in this discussion, as the condition that 𝑒𝜏 should be an eigenvalue of some matrix in
SL(2, ℤ) implies that 𝑒𝜏 belongs to a quadratic extension of the field ℚ.

119



7. Weak and strong fillings in higher dimensions

7.6.2. Some number theory

In this section we will need some standard notions and results from algebraic number
theory, e.g. Dirichlet’s Unit Theorem; a good reference for this material is Marcus 1977.

Let 𝕜 be a number field, i.e. a finite degree extension of ℚ, and let 𝑛 denote its degree
[𝕜 ∶ ℚ]. Such a field is always isomorphic to ℚ[𝑋]/(𝑓) for some irreducible polynomial
𝑓 ∈ ℚ[𝑋] of degree 𝑛 (with simple roots). Throughout this section and the next, we
assume that all roots of 𝑓 are real. One says that 𝕜 is a totally real number field.

Each root 𝛼 gives an embedding of 𝕜 into ℝ, sending (the equivalence class of) 𝑋
to 𝛼. These embeddings will be denoted by 𝜌1, … , 𝜌𝑛. This method actually gives all
embeddings of 𝕜 into ℂ, and we can collect them to define an injective map

𝑗 ∶ 𝕜 → ℝ𝑛 ∶ 𝑥 ↦ (𝜌1(𝑥), … , 𝜌𝑛(𝑥)) .

The norm of an element of 𝕜 is defined as 𝑁(𝑥) = ∏𝑖 𝜌𝑖(𝑥), and the fact that 𝑓 is
irreducible implies that 𝑁(𝑥) vanishes only when 𝑥 = 0. The ring of integers 𝒪𝕜 of 𝕜
is by definition the set of all elements in 𝕜 which are roots of monic polynomials with
coefficients in ℤ. These all have integer-valued norms, and an important observation is
that the map 𝑗 defined above sends 𝒪𝕜 to a lattice Λ′

𝕜 in ℝ𝑛 .
Invertible elements in the ring 𝒪𝕜 are called units of 𝕜, and they form a (multiplicative)

group denoted by 𝒪×
𝕜 . They all have norm ±1 since 𝑁(𝑥𝑦) = 𝑁(𝑥)𝑁(𝑦). We denote by

𝒪×,+
𝕜 the subgroup of positive units: 𝒪×,+

𝕜 = {𝑥 ∈ 𝒪×
𝕜 | 𝜌𝑖(𝑥) > 0 for all 𝑖}. Dirichlet’s

Unit Theorem implies that 𝒪×,+
𝕜 is isomorphic to ℤ𝑛−1. The map 𝑗 restricts to an

injective group homomorphism of 𝒪×,+
𝕜 into the multiplicative group (ℝ∗

+)𝑛, and since
𝑁(𝒪×,+

𝕜 ) = {1}, Ln ∘𝑗(𝒪×,+
𝕜 ) lands in 𝐻𝑛, where Ln(𝑥1, …, 𝑥𝑛) ∶= (ln 𝑥1, …, ln 𝑥𝑛). The

precise formulation of Dirichlet’s theorem (still in the totally real case) is that Λ𝕜 ∶=
Ln ∘𝑗(𝒪×,+

𝕜 ) is a lattice in 𝐻𝑛. Because multiplication by elements of 𝒪×
𝕜 preserves 𝒪𝕜,

this proves Proposition 7.28.
The manifold 𝑀𝕜 of Theorem 7.4 is 𝐺𝑛/(Λ𝑘 ⋉ Λ′

𝕜). Note that the only choices we
made in the construction were the ordering of the embeddings of 𝕜 into ℝ. The manifold
𝑀𝕜 does not depend on these choices up to diffeomorphism. Also one can easily check
that 𝐺𝑛 has a unique isotopy class of left-invariant Liouville pair.

Examples

We now discuss two examples to see all the objects discussed above appearing. The very
first example of a number field is ℚ itself. In this case 𝑛 = 1, 𝑓 = 𝑋 − 1, and 𝑗 is the
inclusion of ℚ in ℝ. The ring of integers is 𝒪𝕜 = ℤ, with 𝒪×

𝕜 = {±1} and 𝒪×,+
𝕜 = {1}.

As expected, 𝑀ℚ = ℝ/𝑗(𝒪𝕜) ≅ ℝ/ℤ = 𝕊1.
As a less trivial example, we consider 𝕜 = ℚ[

√
2]. Here 𝑛 = 2 and 𝑓 = 𝑋2 − 2 with

roots ±
√

2. The 𝑗 map is defined by 𝑎 + 𝑏𝑋 ↦ (𝑎 + 𝑏
√

2, 𝑎 − 𝑏
√

2). The norm of 𝑎 + 𝑏𝑋
is 𝑎2 − 2𝑏2. The integer ring 𝒪𝕜 is ℤ + ℤ𝑋, and its image under 𝑗 is the lattice

{(𝑎 + 𝑏
√

2, 𝑎 − 𝑏
√

2) | 𝑎, 𝑏 ∈ ℤ} = ℤ(1, 1) + ℤ(
√

2, −
√

2) ⊂ ℝ2 .
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The group of units is 𝒪×
𝕜 = {±(1 + 𝑋)𝑘 | 𝑘 ∈ ℤ}, and 𝕌𝕜 = {±1}. Restricting to

positive elements, we have 𝒪×,+
𝕜 = {(3 + 2𝑋)𝑘 | 𝑘 ∈ ℤ} and 𝕌+

𝕜 = {1}. The image of
𝒪×,+

𝕜 in (ℝ∗
+)2 is 𝑗(𝒪×,+

𝕜 ) = {((3 + 2
√

2)𝑘, (3 − 2
√

2)𝑘) | 𝑘 ∈ ℤ}, hence Ln ∘𝑗(𝒪×,+
𝕜 ) =

{(𝑘 ln(3 + 2
√

2), 𝑘 ln(3 − 2
√

2))} which is indeed a lattice in 𝐻1 = {(𝑡1, 𝑡2) ∈ ℝ2 | 𝑡1 +
𝑡2 = 0} generated by 𝑚 ∶= (ln(3 + 2

√
2), ln(3 − 2

√
2)). One can check by hand that

this lattice preserves Λ′
𝕜 which is generated by (1, 1) and (

√
2, −

√
2). In this basis, the

matrix of 𝑚 is 𝐴 = (3 4
2 3) , so we see that 𝑀𝕜 is a 𝕋2-bundle over 𝕊1 with monodromy

𝐴, which is hyperbolic. The Liouville pair we constructed yields two contact structures
which rotate in opposite directions between the stable and unstable foliations of the
Anosov flow defined by the monodromy (cf. Mitsumatsu 1995).

7.6.3. There is no alternative

We now briefly sketch why, as soon as one seeks Liouville pairs among left-invariant
1-forms on Lie groups, number theory is unavoidable.

First there is not much freedom in choosing Lie groups to build invariant Liouville
pairs, at least in low dimension. The following result was not discussed in Massot,
Niederkrüger, and Wendl 2013 so we include a proof here.

Theorem 7.29. In dimension 5, there are only two Lie groups that have a cocompact
lattice and a left invariant Liouville pair.

One of these Lie groups is 𝐺3 discussed above and the other is attached to the case
of number fields which have one real embedding and two complex conjugate non-real
embeddings in ℂ (discussed in ibid. but not here).

Proof. According to Diatta and Foreman 2015, Theorem 3.1 there are exactly seven
simply connected 5-dimensional Lie groups having a left invariant contact form and a
cocompact lattice. We will use the notations in ibid. to name them. We want to prove
that five of them do not have an invariant Liouville pair. We now list those groups
with a basis (𝛼1, …, 𝛼5) of their spaces of invariant 1-forms and non-vanishing exterior
derivatives.

• D1 where 𝑑𝛼1 = 𝛼4 ∧ 𝛼2 + 𝛼5 ∧ 𝛼3

• D2 where 𝑑𝛼1 = 𝛼4 ∧ 𝛼3 + 𝛼5 ∧ 𝛼2 and 𝑑𝛼2 = 𝛼5 ∧ 𝛼3

• D3 where 𝑑𝛼1 = 𝛼4 ∧ 𝛼3 + 𝛼5 ∧ 𝛼2 and 𝑑𝛼2 = 𝛼5 ∧ 𝛼3 and 𝑑𝛼3 = 𝛼5 ∧ 𝛼4

• D5 where 𝑑𝛼1 = 𝛼3 ∧ 𝛼2 + 𝛼5 ∧ 𝛼4 and 𝑑𝛼2 = 𝛼5 ∧ 𝛼2 and 𝑑𝛼3 = 𝛼3 ∧ 𝛼5

• D11 where 𝑑𝛼1 = 𝛼3 ∧ 𝛼2 + 𝛼5 ∧ 𝛼4 and 𝑑𝛼2 = 𝛼3 ∧ 𝛼5 and 𝑑𝛼3 = 𝛼5 ∧ 𝛼2
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In all cases, we notice that vol ∶= 𝛼1 ∧ 𝑑𝛼2
1 is a volume form and:

∀𝛾 ∈ Span(𝛼2, ⋯, 𝛼5), 𝑑𝛾2 = 0, 𝛾 ∧ 𝑑𝛼2
1 = 0 and 𝑑𝛼1 ∧ 𝑑𝛾 = 0. (7.4)

Suppose now we have a Liouville pair 𝛼±. We write 𝛼± = 𝑎±𝛼1 + 𝛾± where 𝛾± is in
Span(𝛼2, …, 𝛼5). Our Liouville form on ℝ × 𝐺 is 𝛽 = 𝑒𝑠𝛼+ + 𝑒−𝑠𝛼− as usual.

Using Equation (7.4), one computes first that: 𝛼± ∧ 𝑑𝛼2
± = 𝑎3

±vol hence 𝑎+ is positive
and 𝑎− is negative. Then one computes:

𝑑𝛽3 = (𝑒𝑠𝑎+ − 𝑒−𝑠𝑎−)(𝑒𝑠𝑎+ + 𝑒−𝑠𝑎−)2 𝑑𝑠 ∧ vol.

So the symplectic condition is violated when 𝑠 = 1
2 ln(−𝑎−/𝑎+).

Next we want to sketch why all cocompact lattices in 𝐺𝑛 come from number theory.
Suppose Γ is such a lattice. One can prove that the commutator subgroup [Γ, Γ] is a
lattice in [𝐺𝑛, 𝐺𝑛] = {0} × ℝ𝑛, and then Γ ∩ 𝐻𝑛 is also a lattice. To each element
(𝑡1, …𝑡𝑛) of 𝐻𝑛 we associate the diagonal matrix diag(𝑒𝑡1 , …, 𝑒𝑡𝑛). Seen this way, the
lattice Γ ∩ 𝐻𝑛 is generated by diagonal matrices 𝐴1, …, 𝐴𝑛−1. Because the action on
ℝ𝑛 of all those matrices preserves the lattice Γ∩𝐻𝑛, there is a basis where they all have
integer coefficients.

Hence we see that, in order to build a lattice in 𝐺𝑛, we need 𝑛 − 1 matrices with
integer coefficients that pairwise commute but have no other relations (they span a
ℤ𝑛−1 in SL𝑛(ℤ)) and are diagonalizable. Building them by hand is already non-trivial
for 𝑛 = 3. One can actually prove that the algebra generated over ℚ by Id, 𝐴1, …, 𝐴𝑛−1
is a number field with degree 𝑛. So number theory is unavoidable here. The lattice then
has to be a close relative of the one we constructed above. In particular, one can replace
𝒪𝕜 by any additive subgroup 𝑀 of 𝕜 which is a free abelian group of rank 𝑛, and 𝒪×,+

𝕜
by any of its finite index subgroups preserving 𝑀 .

7.7. Later developments and prospects
The results of Massot, Niederkrüger, and Wendl 2013 are still the most advanced results
on tight but not fillable contact structures in higher dimensions. The main difference with
the situation at the time this paper was written is that, thanks to Borman, Eliashberg,
and Murphy 2015, there is now an absolute definition of tightness (although we explained
why any reasonable definition of tightness in higher dimensions was forced to make our
examples tights).

Although we still don’t know whether there exist contact manifolds of dimension at
least 7 which are weakly but not strongly fillable, the definition of weak fillings introduced
above is arguably one of the most important points in this study, both per se and as a
technical tool to study other types of symplectic fillings. Bowden, Crowley, and Stipsicz
2015 constructed new examples of weak symplectic fillings.

Our construction of Liouville manifolds with disconnected boundary were also used
in Bowden, Crowley, and Stipsicz 2014 in order to prove existence in all dimensions
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of contact manifolds which admit a Liouville filling but no Weinstein filling. Even in
dimension 3, this is a relatively new result which appeared in Bowden 2012.

Very recently, my student Fabio Gironella used the notion of weak fillings and its
stability under Bourgeois’s construction to prove existence of closed tight but virtually
overtwisted contact structures in all dimensions. He is also investigating the mysterious
relation between PS-overtwisted manifolds and overtwisted manifolds.

The use of elementary number theory to produce contact and symplectic manifolds in
Section 7.6 is also probably worth further investigations. For instance any number field
extension correspond to some contact embedding, and it would be nice to see whether
the corresponding Galois group action on contact geometry carries any interesting in-
formation.

One slightly unsatisfying aspect of all fillability obstruction results in higher dimen-
sions is the presence of technical semi-positivity assumptions which are present only
to avoid transversality issues (see also the discussion at the beginning of Section 7.5).
Although this is only a minor annoyance, I think it does provide an interesting test
case for any machinery designed to overcome transversality issues in holomorphic curves
theory. Recall that, in the proof of the bLob (or plastikstufe) filling obstruction, we have
a compactified moduli space ℳ of holomorphic disks. This is a compact topological
space, together with some evaluation map ev ∶ ℳ → 𝑁 ∖ 𝐵 where 𝑁 is a bLob and 𝐵
its binding. There is also a subset 𝜕ℳ in ℳ, made of Bishop disks, which is a smooth
manifold along which the linearized Cauchy-Riemann equation is surjective. This subset
is sent by the evaluation map to a homologically essential submanifold in ℳ. All those
properties hold for any almost complex structure 𝐽 which is standard near the bLob. The
traditional way of going on is to add technical assumptions to ensure that, for a generic
perturbation of 𝐽 , there is a path 𝛾 in 𝑁 ∖ 𝐵 such that ev−1(𝛾) is a smooth compact
1-manifold whose boundary is its intersection with 𝜕ℳ, and is connected, contradicting
the classification of compact 1-manifolds. But even under these technical assumption,
this is only a trick to avoid sphere bubbles. For the sake of discussion, let us make the
following definition.

Definition 7.30. A general machinery designed to overcome transversality issues in
symplectic geometry is powerful enough for PS-overtwisted contact manifolds if there is
a homology theory ℍ for compact topological spaces and pairs of them, which reduces
to singular homology for manifolds, and the machinery defines a fundamental class
[ℳ] ∈ ℍ(ℳ, 𝜕ℳ) which is sent by the connecting map 𝛿 ∶ ℍ(ℳ, 𝜕ℳ) → 𝐻(𝜕ℳ) to the
ordinary fundamental class of the topological manifold [𝜕ℳ].

Lemma 7.31. If there exists a general machinery powerful enough for PS-overtwisted
contact manifolds then PS-overtwisted manifolds are non-fillable, without any technical
assumption on the symplectic filling.

Proof. We know that ev∗[𝜕ℳ] is non-trivial in 𝐻(𝑁 ∖ 𝐵) hence [𝜕𝑀] cannot be the
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image of anything from ℍ(ℳ, 𝜕ℳ). Indeed, the commutative diagram

ℍ(ℳ, 𝜕ℳ) 𝐻(𝜕ℳ) ℍ(ℳ)

𝐻(𝑁 ∖ 𝐵)

𝛿

(ev |𝜕ℳ)∗

𝜄∗

ev∗

contradicts the fact that (ev |𝜕ℳ)∗[𝜕ℳ] is non-zero but is in the image of ev∗ ∘𝜄∗ ∘ 𝛿 with
𝜄∗ ∘ 𝛿 = 0. Note that this above proof is the dream proof that is currently beyond reach
even in the semi-positive case.

There are several transversality machineries around. The only one I have hope to
understand well enough is from Pardon 2016. In particular that paper explicitly implies
that it will be powerful enough for PS-overtwisted manifolds provided one can equip
(ℳ, 𝜕ℳ) with an implicit atlas with boundary. I think this construction would be
very interesting from a pedagogical point of view, as the minimal interesting geometric
application of ibid. It would be simpler than any existing application of this technology
in Pardon 2016, 2015 and I cannot think of a simpler potential application.

124



8. From geometry to topology

8.1. Introduction
Recall from Section 2.2 that one can easily define a natural class of Riemannian metrics
compatible with a contact structure or geodesible contact structures. But the only links
between their geometry and global topological properties of contact structures were
established either under very restrictive symmetry conditions in Komendarczyk 2008, or
in a proof where geometry and contact topology were completely uncoupled in Massot
2008a. In this chapter, which surveys Etnyre, Komendarczyk, and Massot 2012, 2016,
we explain how geometry and contact topology can be more intimately linked.

A natural reference point here is the well-known sphere theorem in Riemannian geom-
etry, proved in Berger 1960; Klingenberg 1961, which is one of the fundamental results
showing how geometry can control the topology of the domain. Recall, the sphere
theorem states that every simply connected 𝑛-manifold which admits 1

4 -pinched posi-
tive sectional curvature is homeomorphic to the 𝑛-sphere. The main result of Etnyre,
Komendarczyk, and Massot 2012 is the following.

Theorem 8.1 (Contact sphere theorem). Let (𝑀, 𝜉) be a closed contact 3–manifold and
𝑔 a complete Riemannian metric compatible with 𝜉. If there is a constant 𝐾𝑚𝑎𝑥 > 0
such that the sectional curvatures of 𝑔 satisfy

0 < 4
9𝐾𝑚𝑎𝑥 < sec(𝑔) ≤ 𝐾𝑚𝑎𝑥,

then the universal cover of 𝑀 is diffeomorphic to the 3–sphere by a diffeomorphism
taking the lift of 𝜉 to the standard contact structure on the 3–sphere.

As explained in Section 3.2.1, Eliashberg 1992 proved that 𝜉std is the unique (up
to contactomorphism) tight contact structure on 𝑆3, and what we actually prove in
the above theorem is tightness of the contact structure. So this theorem really gives
Riemannian geometric conditions that imply tightness.

More generally, one might want to go beyond the tight vs overtwisted dichotomy and
sort the class of tight contact structures by finding privileged subclasses. In addition
to the notion of universal tightness, a classical class is that of symplectically fillable
contact structures. In this chapter, we seek classes interacting nicely with curvature in
Riemannian geometry. Note that such interactions will automatically be inherited by
covering spaces, contrasting with fillability properties.

Our proofs of the contact sphere theorem and other global results use quantitative
versions of Darboux theorem. Recall that Darboux theorem in contact geometry guar-
anties that each point in a contact manifold has a neighborhood which is standard, i.e.
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embeds inside the standard contact structure on ℝ2𝑛+1. Given a contact structure 𝜉 on
a (2𝑛 + 1)–manifold 𝑀 and a Riemannian metric 𝑔 we can ask for a quantitative version
guaranteeing that balls up to a certain radius are standard. We define the Darboux
radius of (𝜉, 𝑔) at a point 𝑝 ∈ 𝑀 as

𝛿𝑝(𝜉, 𝑔) = sup{𝑟 < inj(𝑔, 𝑝) | the open geodesic ball (𝐵𝑝(𝑟), 𝜉) at 𝑝 of radius 𝑟 is
contactomorphic to an open subset in (ℝ2𝑛+1, 𝜉std)},

(where inj(𝑔, 𝑝) is the injectivity radius of 𝑔 at 𝑝) and the Darboux radius of (𝜉, 𝑔) to be

𝛿(𝜉, 𝑔) = inf
𝑝∈𝑀

𝛿𝑝(𝜉, 𝑔).

In dimension 3, classification results from Section 3.2.1 prove that balls are standard as
long as they are tight. In higher dimension this is no longer true a priori and we introduce
the variations 𝜏 for the tightness radius and 𝜏PS for the PS-tightness radius. Results
from Niederkrüger 2006; Massot, Niederkrüger, and Wendl 2013; Borman, Eliashberg,
and Murphy 2015 imply that 𝛿(𝜉, 𝑔) ≤ 𝜏PS(𝜉, 𝑔) ≤ 𝜏(𝜉, 𝑔). In dimension 3 all three
radii are equal but in higher dimension the situation is unclear, although one can say
that 𝛿(𝜉, 𝑔) = 𝜏PS(𝜉, 𝑔) is unlikely (see Chapter 10) and Casals, Murphy, and Presas
2015 proves a weaker version of 𝜏PS(𝜉, 𝑔) = 𝜏(𝜉, 𝑔). It should be noted that both papers
Etnyre, Komendarczyk, and Massot 2012, 2016 were written before the announcement
of Borman, Eliashberg, and Murphy 2015 (and a fortiori before Casals, Murphy, and
Presas 2015).

Of course, if we do not assume any compatibility condition between the metric and
the contact structure then we cannot estimate the tightness radius. We first concentrate
on what happens with the compatibility definition recalled in Section 2.2. The tightness
radius is, by definition, always less than the injectivity radius but one could ask if, for
compatible metrics, they always coincide. This would explain the following surprising
result (which is an important ingredient of the proof of Theorem 8.1).

Theorem 8.2. Let (𝑀, 𝜉) be a contact 3–manifold and 𝑔 a complete Riemannian metric
that is compatible with 𝜉. For a fixed point 𝑝 ∈ 𝑀 let 𝜏𝑝 = 𝜏𝑝(𝑀, 𝜉) and suppose that
𝜏𝑝 < inj𝑝(𝑔). Then for all radii 𝑟 with 𝜏𝑝 ≤ 𝑟 < inj𝑝(𝑔), the geodesic sphere 𝑆𝑝(𝑟)
contains an overtwisted disk.

Recall that, a priori, overtwisted disks can have a very complicated geometry and this
is what makes it hard to prove tightness of contact structures. We find this theorem
somewhat surprising as it says that, when a metric is compatible with a contact structure
then, as soon as a geodesic ball is large enough to be overtwisted, one sees the overtwisted
disk in a specific place, namely the boundary of the ball. Thus making it easy to
determine when such a ball is tight (using Bennequin’s theorem).

Despite this surprising result, we have numerical experiments which strongly suggest
that the tightness radius can indeed be less than the injectivity radius for compatible
metrics, so we search for geometrical quantities controlling the tightness radius. To this
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end we recall that given a Riemannian metric 𝑔 on 𝑀 the convexity radius of 𝑔 is defined
to be

conv(𝑔) = sup{𝑟 | 𝑟 < inj(𝑔) and the geodesic balls of radius 𝑟
are weakly geodesically convex},

where inj(𝑔) is the injectivity radius of (𝑀, 𝑔). This is the convexity notion discussed at
the beginning of Section 2.6.2.

Theorem 8.3. Let (𝑀, 𝜉) be a contact manifold and 𝑔 a complete Riemannian metric
that is compatible with 𝜉. Then,

𝜏PS(𝑀, 𝜉) ≥ conv(𝑔). (8.1)

In particular, if sec(𝑔) ≤ 𝐾, for 𝐾 > 0, then

𝜏PS(𝑀, 𝜉) ≥ min{inj(𝑔), 𝜋
2
√

𝐾
}

and 𝜏PS(𝑀, 𝜉) = inj(𝑔), if 𝑔 has non-positive curvature.

We note that if 𝑀 is a compact manifold then one may easily show that a lower
bound for 𝜏PS(𝑀, 𝜉) exists. To see this note that 𝑀 may be covered with Darboux
balls (which are PS-tight). Then the Lebesgue number for this open cover provides the
desired lower bound. Of course this bound exists for any metric and one has virtually
no control over it. Theorem 8.3 shows that if the metric is compatible with the contact
structure then one does not need compactness and one can estimate 𝜏PS(𝑀, 𝜉) below in
terms of curvature and injectivity radius. In particular, our theorem shows when 𝑀 is
non-compact with bounded curvature and injectivity radius, the tightness radius cannot
shrink to zero at infinity.

The above theorem is based on holomorphic curves in symplectizations, following Hofer
1993; Albers and Hofer 2009. The crucial point is to prevent those curves to escape the
ball. In order to achieve this we need to compare Riemannian convexity and 𝐽 -convexity
in symplectizations of contact manifolds.

We notice that our bounds on the tightness radius are especially effective in the case
of non-positive curvature.

Corollary 8.4. Let (𝑀, 𝜉) be a contact manifold and 𝑔 a complete Riemannian met-
ric compatible with 𝜉 having non-positive sectional curvature. Then (𝑀, 𝜉) and all its
covering spaces are PS-tight.

The class of compatible metrics is very natural but it is fairly restrictive. We note
right away that a hyperbolic metric cannot be compatible with a contact structure on
a closed manifold according to Blair 2002, p. 99. Furthermore, Blair conjectures that
if a metric is compatible with a contact structure on a closed manifold and has non-
positive curvature then it is flat. So the above corollary may be of very limited impact1.

1. However it does not seem obvious that any contact structure which is compatible with a flat metric
is tight, especially since there is no classification of foliations of ℝ3 by lines, contrasting with the situation
in 𝕊3.
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This justifies the introduction of a more general class of metrics that can include the
hyperbolic ones. Another motivation for extending the notion of compatibility comes
from the theory of curl eigenfields. A curl eigenfield on a Riemannian 3–manifold is a
1–form 𝛼 satisfying ∗𝑑𝛼 = 𝜃′𝛼 with 𝜃′ constant but ‖𝛼‖ can vary. (We note that this
equation is dual to the normal curl eigenfield equation for vector fields.) See Etnyre and
Ghrist 2000 for some applications of this concept.

We say that a Riemannian metric and a contact structure 𝜉 are weakly compatible if
there exist a Reeb vector field for 𝜉 which is perpendicular to 𝜉. This condition can be
equivalently stated as there exists a contact form 𝛼 such that

∗ 𝑑𝛼 = 𝜃′𝛼, (8.2)

where 𝜃′ is a positive function (which measures the rotation speed of the contact planes).
This class of metrics includes all the non-singular curl eigenfields and Beltrami fields.

In addition it allows for hyperbolic metrics. It is also stable both under conformal
changes and under the modifications used in Krouglov 2008, see Remark 8.6 below.

We will use several measures of how far a weakly compatible metric is from being
compatible. First the rotation speed 𝜃′ and the norm 𝜌 of the special Reeb vector field
𝑅 entering in the definition are both constant in the compatible case so their gradient
are such measures. We will also use the mean curvature 𝐻 of the contact plane field.
It vanishes for compatible metrics and its definition is recalled in Section 2.2.3. Finally
we shall also use the normalized Reeb vector field 𝑛 = 𝑅/‖𝑅‖, which is a unit normal
vector field to the contact planes. In the compatible case it is a geodesic vector field so
we will consider ∇𝑛𝑛.

One can prove that the following two combinations of these measures give the same
vector field:

𝐷𝑔 ∶= ∇𝑛𝑛 + 2𝐻𝑛 = (∇ ln 𝜃′)⟂ − ∇ ln 𝜌 (8.3)

where 𝑣⟂ is the component of 𝑣 perpendicular to 𝜉. We introduce:

𝑑𝑔 = max
𝑀

‖𝐷𝑔‖

Note that 𝑑𝑔 is finite whenever 𝑀 is compact and vanishes for compatible metrics (all
terms in 𝐷𝑔 vanish in this case). To extend our main theorem to weakly compatible
metrics we also introduce the following notation: let 𝐾 ≥ 0 and sec(𝑔) ≤ ±𝐾, define

ct𝐾(𝑟) =
⎧{
⎨{⎩

√
𝐾 cot(

√
𝐾𝑟) , for sec(𝑔) ≤ 𝐾, 𝑟 ≤ min{inj(𝑔), 𝜋

2
√

𝐾},
1𝑟 , for sec(𝑔) ≤ 0,√

𝐾 coth(
√

𝐾𝑟), for sec(𝑔) ≤ −𝐾.

� (8.4)

Here, of course, in the first case we assume sec(𝑔) is positive somewhere and in the
second case that it is 0 somewhere. Also to simplify our notations we will often write
ct𝐾 instead of ct−𝐾 understanding that we mean the latter in the negative curvature
setting. We may now state our result for weakly compatible metrics as follows.
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Theorem 8.5. Let (𝑀, 𝜉) be a contact 3-manifold (not necessarily closed) that is weakly
compatible with a Riemannian metric 𝑔. Whenever 𝑑𝑔 < ∞ the tightness radius admits
the following lower bound

𝜏(𝑀, 𝜉) ≥ min {ct−1
𝐾 (𝑑𝑔) , inj(𝑔)} .

Remark 8.6. The above theorems can be applied only when we have control over the
sectional curvature of all plane fields and not only the sectional curvature of contact
planes 𝜉. This is natural in view of the following very slight sharpening of a result
of Krouglov saying that the latter curvature is very flexible. To get this version, start
with a compatible metric and observe that Krouglov’s modifications do not destroy weak
compatibility, although they destroy compatibility (this is another reason to use weakly
compatible metrics).

Theorem 8.7 (ibid.). Given a cooriented contact structure 𝜉 on a closed 3–manifold 𝑀
and any strictly negative function 𝑓, there is a weakly compatible metric on 𝑀 such that
the sectional curvatures of 𝜉 are given by 𝑓. Moreover, if the Euler class of 𝜉 is zero
then any function 𝑓 may be realized.

Observe that since ct𝐾(𝑟) → ∞ as 𝑟 → 0 the bound in Theorem 8.5 is always nonzero.
We also notice that if 𝛼 is actually compatible with 𝑔 then 𝑑𝑔 = 0 and thus ct−1

𝐾 (𝑑𝑔)
can be taken to be +∞ when 𝐾 = 0. A similar situation occurs when sec(𝑔) ≤ −𝐾,
then ct−1

𝐾 (𝑟) is ill defined for 𝑟 ∈ [−
√

𝐾,
√

𝐾] and we may assume ct−1
𝐾 (𝑑𝑔) to be +∞ as

well. Recall that for such manifolds, the universal cover is exhausted by geodesic balls.
Since an overtwisted disk has to be contained in a compact part of the universal cover,
we get the following corollary.

Corollary 8.8. Let (𝑀, 𝜉) be a contact 3-manifold (not necessarily closed) that is weakly
compatible with a complete Riemannian metric 𝑔 of non-positive sectional curvature. If

sec(𝑔) ≤ −𝑑2
𝑔 (8.5)

at all points then the contact structure 𝜉 is universally tight.

One remarkable property of compatible metrics is that Reeb orbits are geodesics and
we use this in our study of compatible metrics. However, this is precisely what rules out
closed hyperbolic manifolds in dimension 3: these manifolds cannot have any geodesic
vector field Zeghib 1993. But many hyperbolic manifolds have quasi-geodesic vector
fields, see e.g. Calegari 2006. These vector fields also cannot have any contractible
Reeb orbits. So if a closed hyperbolic manifold has a quasi-geodesic Reeb field then the
corresponding contact structure is universally tight. This observation does not explicitly
use any easily defined compatibility between a metric and contact structure. However we
can use an easy differential geometric criterion for quasi-geodesicity to get the following
theorem which can then be compared to Theorem 8.8.

Theorem 8.9. Let (𝑀, 𝜉) be a closed contact manifold (of any dimension). Suppose
𝑀 admits a metric 𝑔 such that the sectional curvature of 𝑔 is bounded above by some
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constant −𝐾 < 0, and there is a Reeb vector field 𝑅 for 𝜉 such that the normalized Reeb
field 𝑁 = 𝑅/‖𝑅‖ satisfies

‖∇𝑁𝑁‖ ≤
√

𝐾.

Then (𝑀, 𝜉) and all its finite covers are PS-tight.

We note that one can think of the condition ‖∇𝑁𝑁‖ ≤
√

𝐾 as some type of com-
patibility between 𝑔 and 𝜉. We also note that, while this theorem is stronger than
Theorem 8.8 when they both apply, it does require that we are working with a closed
manifold. We would lastly like to point out that earlier we used 𝑛 for the normalized
Reeb vector field while here we used 𝑁 for that purpose. We will always use 𝑛 to denote
a unit normal vector field to the contact planes (which, in a weakly compatible metric,
the normalized Reeb vector field always is) and use 𝑁 if the normalized field does not
have to be normal.

Finally we return to the question of estimating the Darboux radius in higher dimen-
sions where it probably differs from the tightness radius. The following result was proved
in Etnyre, Komendarczyk, and Massot 2016 using techniques in differential geometry,
briefly described in Section 8.6, without holomorphic curves.

Theorem 8.10. Let (𝑀2𝑛+1, 𝜉) be a (2𝑛+1)–dimensional contact manifold and (𝛼, 𝑔, 𝐽)
be a complete compatible metric structure for 𝜉 with rotation speed 𝜃′. If the sectional
curvature of 𝑔 is contained in the interval [−𝐾, 𝐾] for some positive 𝐾 then

𝛿(𝜉, 𝑔) ≥ min (inj(𝑔)
2 , 1

208𝑛2 max (
√

𝐾, ‖[𝐽, 𝐽]‖, 𝜃′)
) ,

where [𝐽 , 𝐽] is the Nijenhuis torsion of the complex structure 𝐽 on 𝜉.

8.2. Tightness radius estimates

Let (𝑀, 𝜉) be a contact manifold. Let 𝑆 be a regular level set of a smooth function 𝑓 on
𝑀 . Let 𝑊 be the symplectization of (𝑀, 𝜉), identified with ℝ+ × 𝑀 using some contact
form 𝛼. We set Σ = ℝ+ × 𝑆 ⊂ 𝑊 and 𝒞 = 𝑇 Σ ∩ 𝐽𝑇 Σ. Recall that the Levi form of Σ
is defined on 𝒞 by 𝐿(𝑢, 𝑣) = −𝑑(𝑑𝑓 ∘ 𝐽)(𝑢, 𝐽𝑣). We want to compare pseudoconvexity
of Σ, measured by its Levi form 𝐿, and Riemannian convexity of 𝑆, measured by the
Hessian ∇2𝑓 .

Proposition 8.11. Let 𝑔 be a metric compatible with the contact structure 𝜉 on 𝑀 .
Then for any 𝑣 ∈ 𝒞 we have

𝐿(𝑣, 𝑣) = ∇2𝑓(𝑣, 𝑣) + ∇2𝑓(𝐽𝑣, 𝐽𝑣). (8.6)
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This formula was known before when (𝑊, 𝐽) is Kähler, see Greene and Wu 1973,
Lemma page 646. The general case is proved by computations using the special geometry
of compatible metrics.

The above proposition proves that Σ is 𝐽 -convex as long as 𝑆 is convex (one must be
careful with the extra ℝ+ direction along which ∇2𝑓 is not positive but one still has a
positive ∇2𝑓(𝐽𝜕𝑡, 𝐽𝜕𝑡)).

This 𝐽 -convexity allows to prove tightness as follows. Let 𝐵𝑝(𝑟0) be the geodesic
ball centered at 𝑝 with radius 𝑟0 < conv(𝑔). We know that ℝ+ × 𝜕𝐵𝑝(𝑟) is a strictly
pseudoconvex submanifold of ℝ+ × 𝑀 for all 𝑟 ≤ 𝑟0. Assume now for contradiction that
𝐵𝑝(𝑟) contains an overtwisted disk. Arguing as in Hofer 1993; Albers and Hofer 2009, one
can start a family of holomorphic disks near an elliptic singularity in the overtwisted disk.
Since these disk cannot touch ℝ+ × 𝜕𝐵𝑝(𝑟0) thanks to pseudoconvexity, the Gromov–
Hofer compactness theorem extends to this setting and we get the existence of a closed
Reeb orbit 𝛾 in 𝐵𝑝(𝑟0). This orbits yields a 𝐽 -holomorphic cylinder 𝐶𝛾 = ℝ+ × 𝛾 in
ℝ+ × 𝐵𝑝(𝑟0). But this is a contradiction because 𝐶𝛾 has to touch ℝ+ × 𝜕𝐵𝑝(𝑟) from the
inside for some 𝑟 ≤ 𝑟0.

The estimate in terms of curvature bounds in Theorem 8.3 comes from classical con-
vexity estimates for the distance function, see e.g. Petersen 2006.

In the 3-dimensional case, we have the following version of Proposition 8.11 which holds
for metrics that are only weakly compatible with 𝜉, and similarly implies Theorem 8.5
and corollary 8.8.

Proposition 8.12. Let 𝑔 be a metric weakly compatible with the contact form 𝛼 on the
3–manifold 𝑀 . Then for any 𝑣 ∈ 𝒞 we have

𝐿(𝑣, 𝑣) = ∇2𝑓(𝑣, 𝑣) + ∇2𝑓(𝐽𝑣, 𝐽𝑣) − ⟨∇𝑓, 𝐷𝑔⟩ ‖𝑣‖2

where 𝐷𝑔 = ∇𝑛𝑛 + 2𝐻𝑛.

8.3. Tightness and quasi-geodesics
Here we prove Theorem 8.9, a geometric “universal tightness” criterion for contact struc-
tures using quasi-geodesics.

Suppose by contradiction (𝑀, 𝜉) is overtwisted. According to Hofer 1993; Albers and
Hofer 2009 there will be a closed contractible orbit in the flow of the Reeb field 𝑅,
and hence in the flow of 𝑁 = 𝑅/‖𝑅‖. This orbit will lift to a closed orbit 𝛾 in the
universal cover of 𝑀 . Of course our metric, contact structure and Reeb field also lift to
the universal cover and satisfy the same hypotheses (since we will work exclusively in
the cover from now on, we will use the same notation for objects in the cover).

Choose any point 𝑝 in the cover. There will be some 𝑟 such that the embedded geodesic
ball 𝐵𝑝(𝑟) of radius 𝑟 about 𝑝 will contain 𝛾 and 𝜕𝐵𝑝(𝑟) will have a tangency with 𝛾.
Let r𝑝(𝑥) = 𝑑(𝑝, 𝑥) be the radial function measuring the distance from 𝑝. Convexity
estimates for the distance function guarantee that

√
𝐾 < ∇2r𝑝( ̇𝛾, ̇𝛾).
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We parameterize 𝛾 such that the tangency 𝜕𝐵𝑝(𝑟) with occurs at 𝛾(0). As 𝛾 lies inside
𝐵𝑝(𝑟) we see that

0 ≥ 𝜕2

𝜕𝑡2 (r𝑝 ∘ 𝛾)|𝑡=0 = 𝜕
𝜕𝑡𝑔(∇r𝑝, ̇𝛾) = ∇2r𝑝( ̇𝛾, ̇𝛾) + 𝑑r𝑝(∇𝛾̇ ̇𝛾).

Thus we can compute
√

𝐾 < ∇2r𝑝( ̇𝛾, ̇𝛾) ≤ −𝑔(∇r𝑝, ∇𝛾̇ ̇𝛾) ≤ ‖∇𝛾̇ ̇𝛾‖ = ‖∇𝑁𝑁‖ ≤
√

𝐾,

where the third inequality comes from the fact that ∇r𝑝 has unit length so −𝑔(∇r𝑝, ∇𝛾̇ ̇𝛾)
is one component of ∇𝛾̇ ̇𝛾 in some orthonormal basis. Thus we arrive to the absurd
consequence that

√
𝐾 <

√
𝐾 and an overtwisted disk could not exist.

8.4. Overtwisted balls for compatible metrics
We now discuss the proof of Theorem 8.2 about overtwisted balls. An oriented foliation
ℱ on a sphere 𝑆 is simple if it has exactly one singularity of each sign (the positive one
will be called the north pole and the negative one the south pole). It is almost horizontal
if, in addition, all its closed leaves are oriented as the boundary of the disk containing
the north pole (in other words from “west” to “east”). These are (slight variations on)
definitions from Eliashberg 1989.

If 𝜉 is a contact structure on 𝑀 and 𝑆 is a sphere in 𝑀 then we will say that 𝜉 is
simple or almost horizontal along 𝑆 if ℱ = 𝜉𝑆 has this property. The relevance of these
definitions to compatible metrics comes from the following lemma which crucially use
the geometry of compatible metrics.

Lemma 8.13. Let 𝑔 be a Riemannian metric compatible with the contact manifold
(𝑀, 𝜉). Let 𝛼 be the contact form implicated in the definition of compatibility between 𝑔
and 𝜉 and 𝑅𝛼 its Reeb vector field. Let 𝑟 < inj(𝑔) and 𝑆 be the sphere of radius 𝑟 around
some point 𝑝0. The contact structure 𝜉 is simple along 𝑆 with poles exp𝑝0

(±𝑟𝑅𝛼).

Proof. Let 𝑆 be a sphere of radius 𝑟 < inj(𝑔) around 𝑝0. Let 𝛾 be a unit speed geodesic
starting at 𝑝0 and denote 𝛾(𝑟) ∈ 𝑆 by 𝑝. Suppose 𝑝 is a singularity of 𝜉𝑆, that is, 𝜉𝑝 is
tangent to 𝑆 at 𝑝. By Gauss’ Lemma, 𝜉𝑝 is orthogonal to 𝛾 at 𝑝. As 𝑅𝛼 is also orthogonal
to 𝜉𝑝 we must have 𝛾′(𝑟) = ±𝑅𝛼. As the flow of 𝑅𝛼 give geodesics we see that 𝛾′(𝑡) is
equal to ±𝑅𝛼 for all 𝑡 and hence 𝛾′(0) = ±𝑅𝛼. Thus 𝑝 is exp𝑥0

(±𝑟𝑅𝛼).

The following proposition explores how a contact structure on a ball can be overtwisted
by explaining some relations between simple, almost horizontal and tight. The first point
is obvious. The second one was observed by Giroux and is used in the proof of the third
one, which will be crucial for the sphere theorem.

Proposition 8.14. Let 𝐵 be a ball in a 3–dimensional contact manifold (𝑀, 𝜉) which
is the disjoint union of a point 𝑝 and a family of spheres 𝑆𝑡, 𝑡 ∈ (0, 1].
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1. If all foliations 𝜉𝑆𝑡 are simple and 𝜉|𝐵 is tight then 𝜉 is almost horizontal along
all the 𝑆𝑡.

2. If all foliations 𝜉𝑆𝑡 are almost horizontal, then 𝜉|𝐵 is tight.

3. If all foliations 𝜉𝑆𝑡 are simple, and 𝜉|𝐵 is overtwisted then there is some radius 𝑡1
such that all foliations 𝜉𝑆𝑡 for 𝑡 ≥ 𝑡1 have closed leaves.

The proof of the above proposition was inspired by Giroux’s proof of Bennequin’s
theorem. The details are a bit technical but the key idea is contained in Figure 8.1. Any
closed leaf birth (resp. death) near the North pole goes West (resp East). Indeed the
contact structure is positive hence a leaf which goes West becomes, for larger radii, a
circle along which the characteristic foliation goes towards the North pole. The latter is
repelling hence a leaf which goes West near the North pole cannot die.

Figure 8.1.: Closed leaf near the North pole in the proof of Proposition 8.14

Proof of Theorem 8.2. Fixing 𝑝 ∈ 𝑀 consider the geodesic spheres 𝑆𝑝(𝑟) of radius 𝑟
about 𝑝 and the geodesic balls 𝐵𝑝(𝑟) that they bound. We can use Lemma 8.13 to
conclude that all the spheres 𝑆𝑝(𝑟), 𝑟 ≤ inj𝑝(𝑔), have simple characteristic foliation.
Recall that we are assuming that 𝜏𝑝 < inj𝑝(𝑔) i.e. 𝐵𝑝(𝑟), 𝑟 < 𝜏𝑝, is tight and 𝐵𝑝(𝑟),
𝑟 > 𝜏𝑝, is overtwisted. Let

𝑟′ = inf{𝑟 | such that 𝑆𝑝(𝑟) has a closed leaf in its characteristic foliation.}

Notice that 𝑆𝑝(𝑟′) does have a closed leaf since simple foliations on spheres without
closed leaves form an open set. By Proposition 8.14 the contact structure restricted
to 𝐵𝑝(𝑟), 𝑟 < 𝑟′, is tight. Thus 𝑟′ = 𝜏𝑝 and we see that 𝑆𝑝(𝜏𝑝) has a closed leaf
in its characteristic foliation, which of course bounds an overtwisted disk. We then get
overtwisted disks on spheres of higher radii using the third point of Proposition 8.14.

8.5. The contact sphere theorem
The following proposition is a variation on a similar result used in the proof of the topo-
logical sphere theorem Klingenberg 1961, it does not involve any contact geometry. Its
proof is based on comparison theorems in Riemannian geometry, especially Toponogov
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theorem, and Klingenberg’s injectivity radius estimate. The example of lens spaces prove
that the simple connectivity assumption is crucial.

Proposition 8.15. Let 𝑀 be complete simply connected Riemannian manifold whose
sectional curvature satisfies 4

9 < 𝐾 ≤ 1. If 𝑝 and 𝑞 in 𝑀 are at maximal distance, that
is 𝑑(𝑝, 𝑞) = diam(𝑀), then there are radii 𝑟𝑝 and 𝑟𝑞 such that

• both closed balls 𝐵(𝑝, 𝑟𝑝) and 𝐵(𝑝, 𝑟𝑝) are embedded, i.e. 𝑟𝑝, 𝑟𝑞 < inj(𝑔),

• the ball 𝐵(𝑞, 𝑟𝑞) is convex, i.e. 𝑟𝑞 < conv(𝑔),

• 𝑀 = 𝐵(𝑝, 𝑟𝑝) ∪ 𝐵(𝑞, 𝑟𝑞), and

• the boundary of each ball, 𝐵(𝑝, 𝑟𝑝) and 𝐵(𝑝, 𝑟𝑝), is contained in the interior of the
other ball.

Proof of Theorem 8.1. We now gather the different ingredients of the contact sphere the-
orem, highlighting how Riemannian geometry, topological methods in contact geometry
and pseudoholomorphic curves arguments interact in this proof.

Since both the hypotheses and the conclusion of the theorem are scale invariant, we
can assume that the curvature is bounded above by 1 so that 4

9 < 𝐾 ≤ 1. Moreover,
we can assume that 𝑀 is simply connected as pulling the contact structure and metric
back to the universal cover of 𝑀 does not affect the curvature pinching.

Deep classical Riemannian geometry gives, through Proposition 8.15, that there are
two geometrics balls 𝐵cvx and 𝐵big whose interior covers our manifold 𝑀 and such that
𝐵cvx is weakly convex.

We assume for contradiction that 𝜉 is an overtwisted contact structure. A priori, it
could be that all overtwisted disks intersect both 𝐵cvx and 𝐵big. However there is no
loss of generality in assuming that there is one, which we denote by 𝐷, which misses the
center 𝑞 of 𝐵cvx.

Our comparison of Riemannian and almost-complex convexity combines with pseudo-
holomorphic curves arguments of Gromov and Hofer to tell us, through Theorem 8.3,
that 𝐵cvx is a tight ball.

We can now use either the classification of tight contact structures on balls by Eliash-
berg Eliashberg 1992 or, more elementarily, our description in Proposition 8.14 and its
proof. Either way, we can construct a contact vector field transverse to the concentric
spheres that make up 𝐵cvx ∖ {𝑞}. This contact vector fields generates a contact isotopy
that will push any subset of 𝐵cvx that misses 𝑞 into an arbitrarily small neighborhood
of 𝜕𝐵cvx. In particular we can push 𝐷 into 𝐵big.

Based on the special geometry of compatible metrics and a topological argument using
Giroux’s study of bifurcations for characteristic foliations, Proposition 8.14 then tells us
that there is an overtwisted disk on 𝜕𝐵big. However, as we know 𝜕𝐵big ⊂ 𝐵cvx, this
contradicts the tightness of 𝐵cvx. Hence we see that 𝜉 must be tight.

Although this is does not completely follow from the previous discussion, the ambiant
manifold is the 3-sphere as is guarantied by the classical sphere theorem. Now we get
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that 𝜉 is isomorphic to the standard contact structure because all tight contact structures
on the sphere are standard. This later fact is due to Eliashberg ibid. and uses purely
topological method in contact geometry (see also Giroux 2000, Remark 2.18 for Giroux’s
alternative proof).

Remark 8.16. As an immediate corollary of the contact sphere theorem, we obtain that
any contact structure compatible with the round metric on 𝕊3 is isotopic to the standard
one 𝜉0. While this result is not obvious, it already follows from older results. Indeed,
suppose that 𝜉 is compatible with a round metric and denote by 𝑅 the Reeb vector field
involved. This vector field is geodesic (its orbits are great circles parametrized by arc
length) and divergence free. Although there is an infinite dimensional space of geodesic
vector fields on 𝕊3, Gluck and Gu 2001 proved that they become completely rigid if we
assume in addition that they are divergence free. So 𝜉 is actually conjugated to 𝜉0 by an
isometry.

This rigidity is of a completely different nature than the statement of the sphere theorem
where the isotopy with the standard structure is unrelated to any rigid structure on the
sphere.

8.6. A quantitative Darboux theorem in any dimension
We now explain the steps needed to prove the Darboux radius estimate of Theorem 8.10.
The statement from Section 8.1 is already a simplified weaker version of the result from
Etnyre, Komendarczyk, and Massot 2016, and here we will state even simpler statements
for the intermediate pieces. In the context of Theorem 8.10, we set:

𝜌 = 1/ max(𝜃′,
√

𝐾, ‖[𝐽, 𝐽]‖)

which is the length scale appearing in the main estimate.
The goal is to embed a large geodesic ball in our contact manifold into the standard

contact ℝ2𝑛+1. The later is the contactization of the standard Liouville structure on ℝ2𝑛

and we will compare it to some contactization of a natural exact symplectic manifold
inside our given contact metric manifold 𝑀 .

Given any point 𝑝 in 𝑀 and the contact hyperplane 𝜉𝑝 at 𝑝, the geodesic disk D(𝑟)
centered at 𝑝 of radius 𝑟 and tangent to 𝜉𝑝 is given as the image of the restriction of the
exponential map to the disk of radius 𝑟 in 𝜉𝑝, that is

D(𝑟) = exp𝑝(𝐷𝜉(𝑟)).

where 𝐷𝜉(𝑟) = ( �{𝑣 ∈ 𝜉𝑝; |𝑣| < 𝑟}) �. Denoting the Reeb flow by Φ(𝑡,x) ∶ ℝ × 𝑀 ⟶ 𝑀
we define the map

𝐸 ∶ ℝ × 𝐷𝜉(𝑟) → 𝑀 ∶ (𝑡, 𝑣) ↦ Φ(𝑡, exp𝑝(𝑣)),

and the 𝑅𝛼–invariant “cylindrical” neighborhood C(𝑟) of D(𝑟) to be the image of 𝐸. Of
course C(𝑟) is not, in general, an embedded submanifold of 𝑀 , but for 𝑟 small enough
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𝒟(𝑟) will be an embedded disk and 𝑅𝛼 will be transverse to D(𝑟). For such an 𝑟, C(𝑟)
will then contain embedded neighborhoods of D(𝑟), for example 𝐸((−𝜖, 𝜖) × 𝐷𝜉(𝑟)), for
sufficiently small 𝜖. The Darboux radius estimate proof proceeds in the following steps.
Step I. Find an estimate on the radius 𝑟 so that 𝑅𝛼 is transverse to D(𝑟).
Step II. Find an estimate on the radius 𝑟 so that the pull back of the contact structure
𝜉 to ℝ × 𝐷𝜉(𝑟) via 𝐸 embeds into the standard contact ℝ2𝑛+1.
Step III. Find an estimate on the size of a geodesic ball about 𝑝 that embeds in 𝑀 and
is contained in C(𝑟).

The estimate in Step I is given in the following proposition whose proof is based on
Jacobi fields estimates and Gronwall type arguments.

Proposition 8.17. Given a compatible metric structure (𝛼, 𝑔, 𝐽) on the contact manifold
(𝑀, 𝜉), the disk 𝒟(𝑟0) is embedded and the Reeb vector field 𝑅𝛼 is positively transverse
to it if

𝑟0 < 𝑟⋔ ∶= min {inj(𝑔), 𝜌
3𝑛1/4 } , (8.7)

Moreover, if 𝑛D is a unit normal vector to 𝒟(𝑟0), then along any radial geodesic 𝛾 = 𝛾(𝑟)
⟨𝑅𝛼(𝑟), 𝑛D(𝑟)⟩ ≥ 1 − 𝑟/𝜌 − √𝑛(𝑟/𝜌)2, (8.8)

To carry out Step II we first make an observation about contactizations of Liouville
domains and exact symplectic manifolds. For the remainder of this section (𝑊, 𝛽0) will
be a Liouville domain. Let 𝜇 denote the restriction of 𝛽0 to 𝜕𝑊 . By definition 𝜇 is a
contact form. The completion of 𝑊 is obtained as usual by adding the cylindrical end
[1, ∞) × 𝜕𝑊 equipped with the Liouville form 𝑡𝜇, where 𝑡 is the “radial” coordinate
on [1, ∞). The resulting manifold will be denoted 𝑊∞ and we will also denote this
extended 1-form by 𝛽0. For any constant 𝑎 > 1 we set 𝑊𝑎 = 𝑊 ∪ ([1, 𝑎) × 𝜕𝑊). We
say an almost complex structure is adapted to 𝛽0 if

(𝑎) it is tamed by 𝑑𝛽0,

(𝑏) it preserves the contact structure ker 𝜇 on each {𝑡} × 𝜕𝑊 , and

(𝑐) it sends 𝜕𝑡, point-wise, to some positive multiple of the Reeb field 𝑅𝜇.

Proposition 8.18. Suppose 𝛽1 is a 1–form on 𝑊𝑇 (for some 𝑇 > 1) such that 𝑑𝛽1 is a
symplectic form on 𝑊𝑇 and there is an almost complex structure which is adapted to 𝛽0
and tamed by 𝑑𝛽1. Then, for any 𝑇0 ∈ [1, 𝑇 ), the contactization of (𝑊 𝑇0

, 𝛽1) embeds
in the contactization of (𝑊∞, 𝛽0).

The key technical step to prove the above proposition is the following interpolation
lemma whose proof only needs some careful cut-off functions.

Lemma 8.19 (Interpolation lemma). Let (𝑊, 𝛽0) be a Liouville domain and (𝑊∞, 𝛽0)
its completion. Suppose 𝛽1 is a 1–form on 𝑊𝑇 (for some 𝑇 > 1) such that 𝑑𝛽1 is a
symplectic form on 𝑊𝑇 and there is an almost complex structure which is adapted to
𝛽0 and tamed by 𝑑𝛽1. Then for any 𝑇0 ∈ [1, 𝑇 ) there is a positive constant 𝜆 and a
Liouville form ̂𝛽 on 𝑊∞ such that
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(𝑖) ̂𝛽 = 𝜆𝛽0 outside 𝑊𝑇 ,

(𝑖𝑖) ̂𝛽 = 𝛽1 on 𝑊𝑇0
, and

(𝑖𝑖𝑖) 𝑑 ̂𝛽 is tamed by 𝐽 .

The proposition then follows from an easy Moser type argument. In our situation,
we want to apply the above proposition to the complex structure on 𝒟(𝑟) obtained by
pushing forward, via exp𝑝, some complex structure on 𝜉𝑝 tamed by 𝑑𝛼𝑝. Again we use
Jacobi field estimates to prove the following.

Proposition 8.20. In the above setup, the complex structure (exp𝜉
𝑝)∗𝐽𝑝 is tamed by the

restriction of 𝑑𝛼 to 𝒟(𝑟) whenever

𝑟 < min (𝑟⋔, 𝜌
104𝑛2 ) .

The previous two propositions will guarantee that the pull back of the contact structure
on C(𝑟) via 𝐸 will be standard, that is embed in the standard contact structure on ℝ2𝑛+1,
thus completing Step II. So we are left to complete Step III by estimating the size of a
geodesic ball that can be embedded in such a cylinder. We can make such an estimate
in a more general context that does not involve anything from the special geometry of
compatible metrics except that the Reeb field is geodesic. Its statement needs some
reference functions sn𝑘, indexed by a real number 𝑘.

sn𝑘(𝑟) =
⎧{
⎨{⎩

1√
𝑘 sin(

√
𝑘𝑟) , if 𝑘 > 0

𝑟, if 𝑘 = 0,
1√
−𝑘 sinh(

√
−𝑘𝑟), if 𝑘 < 0.

�

Proposition 8.21. Let (𝑀, 𝑔) be a complete Riemannian manifold whose sectional
curvature is bounded above by 𝐾. Let 𝑋 be a unit norm geodesic vector field on 𝑀 and
𝑝 a point in 𝑀 . Consider the disk

𝒟(𝑟0) ∶= {exp𝑝(𝑣) ∶ 𝑣 ∈ 𝑋⟂
𝑝 , ‖𝑣‖ < 𝑟0} with 𝑟0 < min (inj(𝑔)

2 , 𝜋
2
√

𝐾
) .

We denote by 𝑛 a unit vector field positively transverse to 𝒟(𝑟0) and assume we have
the following estimate along a radial geodesic 𝛾

⟨𝑋(𝛾(𝑟)), 𝑛(𝛾(𝑟))⟩ ≥ 1 − 𝑃(𝑟),

where 𝑃 = 𝑃 (𝑟) ≥ 0 depends only on the distance 𝑟 to 𝑝 and 𝑃(𝑟) ≤ 1 on [0, 𝑟0]. Then
the cylinder C(𝑟0) = Φ( �(−∞, ∞) × 𝒟(𝑟0))� given by the flow Φ of 𝑋 contains a geodesic
ball of radius

sn−1
𝐾 ((1 − 𝑃(𝑟0))sn𝐾(𝑟0))

about 𝑝.
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8.7. Later developments and prospects
The contact sphere theorem has been slightly improved in Ge and Huang 2013 which
weakened the pinching condition from 4/9 to 1/4. Their proofs relies on all steps of
our proof, but adds some ideas from the theory of non-smooth convex functions and
Busemann functions. Using these ideas they also prove the following nice result.

Theorem 8.22 (ibid.). Let (𝑀, 𝜉) be an open contact manifold with a compatible metric
𝑔 which is complete. If 𝑔 has positive sectional curvature, then 𝜉 is tight. This also holds
more generally if 𝑔 has nonnegative sectional curvature on 𝑀 and positive sectional
curvature in 𝑀 ∖ 𝐾 for some compact subset 𝐾 of 𝑀 .

Although it is nice to see new ideas about the contact sphere problem, one must
emphasize that there is no reason why 1/4 should be the optimal pinching constraint.
The topological 1/4-pinching sphere theorem is optimal in even dimensions since complex
projective spaces have sectional curvature varying in the closed interval [1/4, 1]. But it
is not optimal in odd dimensions. Especially in dimension 3, the first triumph of the
Ricci flow was the proof, in Hamilton 1982, that positive Ricci curvature, which is a
much weaker condition, is already enough to characterize 𝕊3 among simply connected
manifolds (this was before Perelman’s proof of the Poincaré conjecture of course).

This optimality question is linked to a much deeper issue. The Levi-Civita connec-
tion and its Riemann curvature tensor are not fully natural in the contact context. A
more natural candidate is the Tanaka-Webster connection. This is an object coming
from CR geometry but, in dimension 3, the geometry of compatible Riemannian met-
rics, sub-Riemannian geometry and (calibrated) CR geometry are all equivalent, this
essentially follows from the fact that there is only one symplectic structure on an ori-
ented 2-dimensional vector space up to scale. We will describe the relevant part of
CR/sub-Riemannian geometry in dimension 3 only.

Let 𝑔 be a sub-Riemannian structure on a cooriented contact 3-manifold (𝑉 , 𝜉) and 𝐽
the corresponding complex structure on 𝜉. Let 𝜃 be the unique contact form for 𝜉 such
that

𝑔 = 1
2𝑑𝜃(·, 𝐽·)

and let 𝑇 be its Reeb field. We denote by 𝜋 the projection onto 𝜉 with kernel spanned
by 𝑇 . All this allows to define the canonical extension of 𝑔 to a Riemannian metric ̂𝑔 on
𝑉 :

̂𝑔 ∶= 𝑔(𝜋·, 𝜋·) + 𝜃2.
Note that the 1

2 in the definition of 𝜃 is there to ensure that the round metric on 𝕊3 with
constant sectional curvature 1 is the ̂𝑔 metric of some sub-Riemannian structure on the
standard contact structure. We also define 𝜙 as usual by 𝜙𝑇 = 0 and 𝜙|𝜉 = 𝐽 .

Theorem 8.23 (Tanaka-Webster). On any sub-Riemannian contact 3-manifold (𝑉 , 𝜉, 𝑔)
there is a unique connection ∇ with torsion Tor such that:

• ∇ preserves 𝜉: for any vector field 𝑋 and any Legendrian vector field 𝑌 , ∇𝑋𝑌 is
Legendrian
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• the contact form 𝜃 and its derivative 𝑑𝜃, the Reeb field 𝑇 , the operator 𝜙 and the
metric ̂𝑔 are parallel

• for any Legendrian vector fields 𝑋 and 𝑌 ,

Tor(𝑋, 𝑌 ) = 𝑑𝜃(𝑋, 𝑌 )𝑇 and Tor(𝑇 , 𝐽𝑋) = −𝐽Tor(𝑇 , 𝑋)

This connection is related to the Levi-Civita connection ∇𝐿𝐶 of ̂𝑔 by:

∇𝑋𝑌 = ∇𝐿𝐶
𝑋 𝑌 − 𝜃(𝑋)𝜙𝑌 − 𝜃(𝑌 )𝜙𝑋 − 1

2(𝜙 ℒT𝜙)𝑋 + 1
2 (𝑑𝜃(𝑋, 𝑌 ) − 𝑔((𝜙 ℒT𝜙)𝑋, 𝑌 )) 𝑇 .

The torsion operator is 𝜏 ∶ 𝑋 ↦ Tor(𝑇 , 𝑋). It maps 𝜉 to itself and vanishes on 𝑇 . The
scalar curvature of the Tanaka Webster connection is usually called the Webster curva-
ture of (𝑉 , 𝜉, 𝑔), and denoted by 𝑊 . These two functions 𝑊 and ‖𝜏‖ locally determine
(𝑉 , 𝜉, 𝑔) up to finite ambiguity.

Of course the contact sphere theorem (either from Etnyre, Komendarczyk, and Massot
2012 or from Ge and Huang 2013) can be rewritten in terms of those functions. But the
formula relating ∇ and ∇𝐿𝐶 in Theorem 8.23 is not enticing. A much more inspiring
thing to check is what those functions are for left-invariant sub-Riemannian structure on
three-dimensional Lie groups. This was done (with different motivations and notations
coming from sub-Riemannian geometry rather than CR geometry) in Agrachev and Bar-
ilari 2012. One immediately notes that, in this very restricted class of sub-Riemannian
manifolds, SU(2) is characterized by the inequality ‖𝜏‖ < 𝑊 . Of course left-invariant
functions on Lie groups are constant, so we do not expect to see any derivatives of 𝑊 and
‖𝜏‖ here. But this inequality is a rather direct analogue of the positive Ricci assumption
in Hamilton 1982. One can therefore make the following bold conjecture.

Conjecture 8.24. Let (𝑉 , 𝜉, 𝑔) be a 3-dimensional complete sub-Riemannian manifold.
If ‖𝜏‖ < 𝑊 then the universal cover of (𝑉 , 𝜉) is the tight 𝕊3.

Admittedly, the evidence supporting this conjecture is thin (almost all of it was
discussed above). On the other hand this result would be sharp: left-invariant sub-
Riemannian structures on 𝕋3, seen as a quotient of SO(2) ⋉ ℝ2, all satisfy ‖𝜏‖ = 𝑊 .

Another direction worth investigating relates to Theorem 8.9. The criterion given
there is a local differential constraint ensuring that Reeb orbits are quasi-geodesic.
This ensures tightness because all Reeb fields of overtwisted contact structure have con-
tractible closed orbits. Although there are contact structures on the hyperbolic space
satisfying this local constraint, there is no hope to apply this result explicitly to closed
manifolds because the hyperbolic metric is never explicit enough. This theorem should
rather be thought of as a bridge between the methods used here and the general search for
quasi-geodesic Reeb vector fields on hyperbolic manifolds, hopefully making connections
with Fenley and Mosher 2001; Calegari 2006; Frankel 2013, 2015.

In particular, the main result of Fenley and Mosher 2001 is that, for any closed,
oriented, hyperbolic 3-manifold 𝑀 , every nonzero homology class 𝑆 in 𝐻2(𝑀) and every
taut, finite depth foliation 𝓕 whose compact leaves represent 𝑆, a pseudoAnosov flow
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Φ which is almost transverse to 𝓕 is a quasi-geodesic. Almost transverse means that it
becomes transverse after some sort of blow up. Note that such 𝓕 and Φ always exist,
assuming that 𝑆 exists, and are constructed using a sutured hierarchy (see Section 4.2.3).
Colin and Honda 2005 proved that, in the case where 𝑀 has non-empty boundary which
is a union of tori, it is possible to build a contact structure and a Reeb vector field
transverse to a taut foliation. It would be very interesting to bridge the gap to Fenley
and Mosher 2001. Note here the importance of the word “almost” in this theorem: there
is no hope to get a Reeb vector field which is transverse to a close leaf. The very first
case to study is when 𝑀 fibers over the circle.
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9.1. Introduction
This chapter surveys Giroux and Massot 2015; Massot and Niederkrüger 2016 which
study contact mapping class groups.

Giroux and Massot 2015 studies contact transformations of 3-manifolds which are
circle bundles equipped with contact structures tangent to the fibers. The main example
of such a manifold is the unit cotangent bundle 𝑉 = 𝑆𝑇 ∗𝑆 of a surface 𝑆, endowed with
its canonical contact structure 𝜉: this contact manifold is also called the manifold of
cooriented contact elements over 𝑆. Other examples are obtained as follows: for any
positive integer 𝑑 dividing |2𝑔 − 2| where 𝑔 is the genus of 𝑆, the manifold 𝑉 admits
a 𝑑-fold fibered cyclic cover 𝑉𝑑 and the pullback 𝜉𝑑 of 𝜉 on 𝑉𝑑 is a contact structure
tangent to the fibers of 𝑉𝑑 over 𝑆. It is a nice and easy observation that all Legendrian
circle bundles are of this form (see Lutz 1983, p. 179).

The main goal of Giroux and Massot 2015 is to determine the contact mapping class
group of (𝑉𝑑, 𝜉𝑑), namely the group 𝜋0𝒟(𝑉𝑑; 𝜉𝑑), where 𝒟(𝑉𝑑; 𝜉𝑑) denotes the group
of contact transformations of (𝑉𝑑, 𝜉𝑑) (diffeomorphisms preserving the contact struc-
ture with its coorientation). This group has an obvious homomorphism to the usual
(smooth) mapping class group 𝜋0𝒟(𝑉𝑑) (where 𝒟(𝑉𝑑) consists of all diffeomorphisms
of 𝑉𝑑) which has been computed in Waldhausen 1967. As explained in Section 5.3, this
homomorphism is tightly related to the fundamental group of the isotopy class of 𝜉𝑑,
i.e. the connected component of 𝜉𝑑 in the space Ξ(𝑉𝑑) of all contact structures on 𝑉𝑑.

Our main result is the following theorem, in which 𝑉𝑑 is endowed with any principal
circle bundle structure inherited from one on 𝑉 = 𝑆𝑇 ∗𝑆.

Theorem 9.1. Let 𝑆 be a closed, connected, orientable surface of genus 𝑔 ≥ 1 and 𝑑 a
positive integer dividing 2𝑔 − 2. Denote by 𝑅𝑡 ∶ 𝑉𝑑 → 𝑉𝑑 the action of 2𝜋𝑡 ∈ ℝ/2𝜋ℤ by
rotation along the fibers. Then:

• The fundamental group 𝜋1( �Ξ(𝑉𝑑), 𝜉𝑑) � is infinite cyclic and generated by the loop
(𝑅𝑡)∗𝜉𝑑, 𝑡 ∈ [0, 1/𝑑].

• The kernel of the natural homomorphism

𝜋0𝒟(𝑉𝑑; 𝜉𝑑) → 𝜋0𝒟(𝑉𝑑)

is the cyclic group ℤ/𝑑ℤ spanned by the contact mapping classes of the deck trans-
formations of 𝑉𝑑 over 𝑆𝑇 ∗𝑆.
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In the torus case, 𝑔 = 1, Geiges and Gonzalo Perez 2004 proved, also using topological
methods, that the loop appearing in the previous theorem generates an infinite cyclic
group in 𝜋1(Ξ, 𝜉𝑑) (but they did not prove that this cyclic subgroup is the full group).
Bourgeois 2006 reproved this using contact homology. Then Geiges and Klukas 2014
proved the theorem when 𝑔 = 1 and 𝑑 = 1.

As a direct consequence of the theorem above, we obtain:

Corollary 9.2. Let 𝑆 be a closed orientable surface of genus 𝑔 ≥ 2. Then the natural
homomorphism

𝜋0𝒟(𝑆) → 𝜋0𝒟(𝑆𝑇 ∗𝑆; 𝜉)
induced by the differential is an isomorphism.

This corollary is stated as Theorem 1 in Giroux 2001c but the “proof” given there
contains a mistake. See Section 9.2.3 for several related examples.

In the case 𝑔 = 1, each manifold 𝑉𝑑 is diffeomorphic to 𝕋3 = (ℝ/ℤ)3 fibering over
𝑆 = 𝕋2 by the projection (𝑥, 𝑦, 𝑧) ↦ (𝑥, 𝑦), and its contact structure 𝜉𝑑 can be defined
by

cos(2𝑑𝜋𝑧) 𝑑𝑥 − sin(2𝑑𝜋𝑧) 𝑑𝑦 = 0, 𝑥, 𝑦, 𝑧 ∈ ℝ/ℤ.
Then the results of Giroux 1994b, 1999 about pre-Lagrangian tori, discussed in Sec-
tion 3.2.1 readily imply that the image of the obvious homomorphism 𝜋0𝒟(𝕋3, 𝜉𝑑) →
𝜋0𝒟(𝕋3) = SL3(ℤ) is the subgroup Π of transformations preserving ℤ2 × {0} ⊂ ℤ3

(this was first explicitly pointed out in Eliashberg and Polterovich 1994). Therefore the
induced homomorphism 𝜋0𝒟(𝕋3, 𝜉1) → Π is an isomorphism.

Finally, for 𝑔 = 0, an unpublished result of Fraser 2016 shows that the contact trans-
formation group of the standard projective 3-space (namely, the unit cotangent bundle
of the 2-sphere) is connected. This completes the list of contact mapping class groups
for unit cotangent bundles of closed orientable surfaces.

We now turn the higher-dimensional examples of non-trivial contact mapping classes
from Massot and Niederkrüger 2016. Let 𝕜 ⊂ ℝ be a field of real numbers such that
dimℚ 𝕜 is finite and such that 𝕜 is totally real (i.e. any field embedding 𝕜 ↪ ℂ is
real-valued). In Section 7.6 we associated to 𝕜 a compact manifold 𝑀𝕜 equipped with
1-forms 𝛼± such that the formula

𝜉𝑛 ∶= ker (1 + cos(𝑛𝑠)
2 𝛼+ + 1 − cos(𝑛𝑠)

2 𝛼− + sin(𝑛𝑠) 𝑑𝑡)

for 𝑛 ≥ 1 defines a family of contact structures on 𝕋2 × 𝑀𝕜, where (𝑠, 𝑡) are the co-
ordinates of 𝕋2. For instance 𝑀ℚ = 𝕊1 with 𝛼± = ±𝑑𝜃 so 𝕋2 × 𝑀ℚ = 𝕋3 with 𝜉𝑛 as
above. Note that there are infinitely many such fields 𝕜 for each given dimℚ 𝕜 > 1, and
the corresponding 𝑀𝕜 are pairwise non-homeomorphic.

Theorem 9.3. For any totally real number field 𝕜, any 𝑛 greater than one and any
1 ≤ 𝑚 < 𝑛, the contactomorphism

Ψ𝑛,𝑚 ∶ (𝕋2 × 𝑀𝕜, 𝜉𝑛) → (𝕋2 × 𝑀𝕜, 𝜉𝑛), (𝑠, 𝑡, 𝜃) ↦ ( �𝑠 + 2𝜋𝑚𝑛 , 𝑡, 𝜃) �
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is smoothly isotopic to the identity but it is not symplectically pseudoisotopic to the
identity, so in particular it is not contact isotopic to the identity. In addition, there is
a contactomorphism which is conjugated to Ψ𝑛,𝑚 inside Diff(𝕋2 × 𝑀𝕜) but not inside
Diff(𝕋2 × 𝑀𝕜, 𝜉𝑛).

The 3-dimensional results mentioned above have been obtained using Giroux’s theory
of 𝜉-convex surfaces. Such methods do not seem to be sufficiently powerful to prove the
higher dimensional results and, even in dimension 3, it seems unlikely that they might
yield the stronger pseudoisotopy obstruction. Instead, we will use 𝐽 -holomorphic curve
techniques to show that a certain pre-Lagrangian submanifold 𝑃 in 𝕋2 × 𝑀𝕜 cannot be
displaced from itself by any contactomorphism that is symplectically pseudoisotopic to
the identity. The main theorem follows because Ψ𝑚,𝑛 does displace 𝑃 .

Note that a stronger non-displaceability result holds: The pre-Lagrangian 𝑃 contains
a Legendrian submanifold Λ which cannot be disjoined from 𝑃 . This can be proved by
setting up a Floer theory for Lagrangian lifts of 𝑃 and Λ in the symplectization of 𝜉𝑛 as
was done in Eliashberg, Hofer, and Salamon 1995 (see Lemma 9.21 about why invariance
under compactly supported Hamiltonian isotopies is enough). Such a strategy involves
a lot more technical work than is necessary to deduce our theorem on contact transfor-
mations. An even more high-tech road would be to prove that contact transformations
which are symplectically pseudoisotopic to the identity act trivially on contact homology
and use it to prove Theorem 9.3. However we feel that such a monumental proof would
not make sense as long as our only examples can be handled by much more elementary
techniques. So we chose instead to prove the weaker non-displaceability result (which
is also of independent interest and has less hypotheses). Here one can also envision
variations on the argument. One referee pointed out to us that we could adapt to our
setup the variation on Gromov’s argument which is explained in McDuff and Salamon
2004, end of Section 9.2. This variation uses holomorphic strips instead of disks and
is arguably slightly more contrived but does not set up a full Floer theory so it is also
elementary in the sense of the current discussion. Note however that such a road would
bypass Theorem 9.23 which has independent interest.

9.2. The 3-dimensional case
9.2.1. Spaces of surface embeddings
For any compact manifold 𝑉 with (possibly empty) boundary, we denote by 𝒟(𝑉 , 𝜕𝑉 )
the group of diffeomorphisms of 𝑉 relative to a neighborhood of the boundary. When
the boundary of 𝑉 is empty, we sometimes drop 𝜕𝑉 from our notations.

In addition to the fibration of Key observation 5.6, we will need informations about
spaces of surface embeddings, and the fibration there are involved in. Assume from now
on that the contact manifold (𝑉 , 𝜉) has dimension 3 and let 𝐹 be a compact orientable
surface properly embedded in 𝑉 . We denote by

• 𝒫(𝐹, 𝑉 ) the space of proper embeddings 𝐹 → 𝑉 which coincide with the inclusion
𝜄 ∶ 𝐹 → 𝑉 near 𝜕𝐹 ;
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• 𝒫o(𝐹 , 𝑉 ) ⊂ 𝒫(𝐹 , 𝑉 ) the connected component of the inclusion 𝜄;

• 𝒫(𝐹, 𝑉 ; 𝜉) ⊂ 𝒫(𝐹 , 𝑉 ) the subspace of embeddings 𝜓 which induce the same char-
acteristic foliation as the inclusion, i.e. satisfy 𝜉 𝜓(𝐹) = 𝜓∗(𝜉𝐹);

• 𝒫o(𝐹 , 𝑉 ; 𝜉) the intersection 𝒫o(𝐹 , 𝑉 ) ∩ 𝒫(𝐹 , 𝑉 ; 𝜉).
The same standard tools as in the proof of Key observation 5.6 give the following:

Lemma 9.4. Let (𝑉 , 𝜉) be a compact contact manifold of dimension 3. For every
properly embedded surface 𝐹 ⊂ 𝑉 , the restriction map

𝒟(𝑉 , 𝜕𝑉 ; 𝜉) → 𝒫(𝐹 , 𝑉 ; 𝜉), 𝜙 ↦ 𝜙𝐹|,
is a locally trivial fibration over its image.

Remark 9.5. The above lemma is a typical result where it is useful to work relatively
to a neighborhood of the boundary and not just to the boundary itself. Indeed, any
diffeomorphism relative to both 𝜕𝑉 and a properly embedded surface 𝐹 is tangent to
the identity along 𝜕𝐹 , and so the fibration property fails in this case. However, since
the inclusion of 𝒟(𝑉 , 𝜕𝑉 ; 𝜉) into the group of contact transformations relative to the
boundary is a homotopy equivalence, this does not matter.

The theory of 𝜉-convex surfaces can be used to study the homotopy type of 𝒫(𝐹, 𝑉 ; 𝜉).
We will need the following version of the realization lemma with parameters (see Giroux
2001c, Lemmas 6 and 7):

Proposition 9.6. Let 𝐹 be a 𝜉-convex surface, 𝑈 a homogeneous neighborhood, and Γ
the associated dividing set.

(a) The space ℱ(𝐹; Γ) of singular foliations on 𝐹 which are tangent to 𝜕𝐹 and admit Γ𝑈
as a dividing set is an open contractible neighborhood of 𝜉𝐹 in the space of all singular
foliations on 𝐹 .

(b) There exists a continuous map ℱ(𝐹; Γ) → 𝒫(𝐹 , 𝑉 ), 𝜎 ↦ 𝜓𝜎, with the following
properties:

1. 𝜓𝜉𝐹 is the inclusion 𝐹 → 𝑉 ;

2. 𝜓𝜎(𝐹) is contained in 𝑈 = 𝐹 × ℝ and transverse to the contact vector field 𝜕𝑡 for
all 𝜎 ∈ ℱ(𝐹 ; Γ);

3. 𝜉 𝜓𝜎(𝐹) = 𝜓𝜎(𝜎) for all 𝜎 ∈ ℱ(𝐹 ; Γ).
(c) Let 𝒫(𝐹 , 𝑉 ; Γ) denote the space of embeddings 𝜓 ∈ 𝒫(𝐹 , 𝑉 ) such that 𝜓(𝐹) is 𝜉-convex
with dividing set 𝜓(Γ). Then the inclusion 𝒫(𝐹 , 𝑉 ; 𝜉) → 𝒫(𝐹 , 𝑉 ; Γ) is a homotopy
equivalence.

We will also need the following result which shows that the homotopy type of 𝒟(𝑉 , 𝜕𝑉 ; 𝜉)
is locally constant when 𝜕𝑉 is 𝜉-convex (see ibid., Proposition 8:
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Proposition 9.7. Let 𝑉 be a compact 3-manifold, Δ a multi-curve on 𝜕𝑉 and Ξ(𝑉 , Δ)
the space of contact structures 𝜉 on 𝑉 for which 𝜕𝑉 is 𝜉-convex with dividing set Δ. For
𝜉 ∈ Ξ(𝑉 , Δ), the homotopy type of 𝒟(𝑉 , 𝜕𝑉 ; 𝜉) depends only on the connected component
of Ξ(𝑉 ; Δ) containing 𝜉.

9.2.2. Legendrian circle bundles over surfaces

In this section we consider a compact oriented surface 𝑆 which is neither a sphere nor
a torus. The torus case is also understood. Actually, using results of Massot 2008a, the
following discussion can be carried over to orbifolds.

As in the introduction, (𝑉𝑑, 𝜉𝑑) denotes the 𝑑-fold fibered cyclic cover of the unit
cotangent bundle 𝑉 ∶= 𝑉1 = 𝑆𝑇 ∗𝑆, equipped with the pullback of the canonical contact
structure 𝜉 of 𝑉 .

The key to proving Theorem 9.1 is to go through spaces of embeddings. The fibration
from Lemma 9.4 ensures that a contact transformation 𝜑 that acts non-trivially on
some 𝜋0 𝒫(𝐹 , 𝑉 ; 𝜉) is non trivial in 𝜋0𝒟(𝑉 ; 𝜉), and that any 𝜑 which acts trivially
on some 𝜋0 𝒫(𝐹 , 𝑉 ; 𝜉) is isotopic to some 𝜓 that is the identity near 𝐹 . In addition,
spaces of embeddings conveniently allow to localize statement and, in the 𝜉-convex case,
Proposition 9.6 allows to replace them by the more convenient 𝒫(𝐹 , 𝑉 ; Γ). The main
technical result is the following.

Proposition 9.8. If 𝑇 is a fibered torus over a non-separating embedded circle in
𝑆 then the group of deck transformations of 𝑉𝑑 → 𝑉 acts freely and transitively on
𝜋0(𝒫o(𝑇 , 𝑉𝑑; 𝜉𝑑)). If 𝐴 is a fibered annulus over a non-separating properly embedded arc
in 𝑆 then 𝒫o(𝐴, 𝑉𝑑; 𝜉𝑑) is connected.

Observe that the preimage 𝐹 ∶= 𝜋−1(𝛾) of any properly embedded curve 𝛾 in 𝑆 is a
𝜉𝑑-convex surface in 𝑉𝑑. Indeed, any vector field 𝑋 in 𝑆 transverse to 𝛾 (and tangent
to 𝜕𝑆) lifts to a contact vector field 𝑋̄ transverse to 𝐹 (and tangent to 𝜕𝑉𝑑). The
dividing set of 𝜉𝑑𝐹 associated with 𝑋̄ is the set of points in 𝐹 where 𝜉𝑑 projects down
(by the differential of 𝜋) to the line spanned by 𝑋. The first ingredient in order to prove
Proposition 9.8 is the following consequence of the semi-local Bennequin inequality for
tori.

Lemma 9.9. Let 𝐹 be a torus fibered over a homotopically essential circle in 𝑆 and Γ a
dividing set for 𝜉𝑑𝐹 . For any isotopy 𝜑 such that 𝜑1(𝐹) is also 𝜉𝑑-convex, the foliation
𝜉𝑑𝜑1(𝐹) is divided by a collection of curves isotopic to the components of 𝜑1(Γ).

An corollary of this lemma is a constraint on the image of 𝜋0𝒟(𝑉 ; 𝜉) → 𝜋0𝒟(𝑉 ).

Corollary 9.10. A diffeomorphism of 𝑉𝑑 which is fibered over the identity is isotopic
to a contactomorphism only if it is isotopic to the identity.

The following lemma is useful to prove the existence of contact transformations which
are smoothly but not contact isotopic to the identity:
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Lemma 9.11. Let 𝑇 be a fibered torus over a homotopically non-trivial circle 𝐶 in 𝑆
and 𝑖 ∶ 𝑇 → 𝑉𝑑 the inclusion map. Let 𝑅𝑡 be the action of 𝑒2𝑖𝜋𝑡 on 𝑉𝑑. For any non-zero
integer 𝑘 in ℤ, the path 𝛾𝑘 ∶ [0, 1] → 𝒫o(𝑇 , 𝑉𝑑) defined by 𝛾𝑘(𝑡) = 𝑅𝑘𝑡/𝑑 ∘ 𝑖 is non-trivial
in 𝜋1(𝒫o(𝑇 , 𝑉𝑑), 𝒫o(𝑇 , 𝑉𝑑; 𝜉𝑑)).

For any integer 𝑘 between 1 and 𝑑 − 1, the action of 𝑅𝑘/𝑑 on 𝜋0(𝒫o(𝑇 , 𝑉𝑑; 𝜉𝑑)) is
non-trivial.

Using covering spaces tricks and isotopy cut off, one can go down one more dimension
and reduce Lemma 9.11 to a statement about Legendrian knots proved in Ghiggini 2006a:
in (𝕋2 × ℝ, ker (cos(2𝑛𝜋𝑧)𝑑𝑥 − sin(2𝑛𝜋𝑧)𝑑𝑦)), the Legendrian circles {0} × 𝕊1 × {0} and
{0}×𝕊1 ×{𝑘} are not contact isotopic for 𝑘 ≠ 0. Note that this result about Legendrian
knots is proved, using again a covering map trick, by reduction to the classification of 𝕊1-
invariant contact structures! Of course the later was proved by reduction to Bennequin.
This is typical of all dévissages in this section.

Alternatively, one could use the stronger result due to Eliashberg, Hofer and Salamon
Eliashberg, Hofer, and Salamon 1995 saying that, in (𝕋3, 𝜉𝑛), the Legendrian circle
{0} × 𝕊1 × {0} cannot be displaced from the pre-Lagrangian torus 𝕊1 × 𝕊1 × {0} by a
contact isotopy. However this result uses holomorphic curves in symplectizations so it
has a different flavor from the techniques we use in this section.

The last ingredients in the proof of Proposition 9.8 are the classification of tight
contact structures on thickened tori discussed in Section 3.2.3, and Ghiggini’s torus trick
described in Section 3.2.4. After proving this proposition, one can move to the actual
theorem about contact transformations, whose proof we include in order to explain how
pieces fit together.

Theorem 9.12. If 𝑆 is closed then the kernel of the canonical homomorphism

π0𝒟(𝑉𝑑, 𝜉𝑑) → π0𝒟(𝑉𝑑)

is the cyclic group of deck transformations of 𝑉𝑑 over 𝑉 . If 𝑉 has non-empty boundary
then π0𝒟(𝑉𝑑, 𝜕𝑉 ; 𝜉𝑑) → π0𝒟(𝑉𝑑, 𝜕𝑉𝑑) is injective.

Proof. We first assume 𝑉 has non-empty boundary and prove that the kernel of the map
π0𝒟(𝑉𝑑, 𝜕𝑉𝑑; 𝜉𝑑) → π0𝒟(𝑉𝑑, 𝜕𝑉𝑑) is trivial. The proof proceeds by induction on

𝑛(𝑆) = −2𝜒(𝑆) − 𝛽(𝑆) = 𝛽(𝑆) + 4𝑔(𝑆) − 4

where 𝜒(𝑆) and 𝑔(𝑆) are the Euler characteristic and genus of 𝑆 and 𝛽(𝑆) is the number
of connected components of 𝜕𝑆. So 𝑛(𝑆) ≥ −3 with equality when 𝑆 is a disk.

We first explain the induction step so we assume 𝑛(𝑆) > −3. Let 𝜑 be a contac-
tomorphism of 𝑉𝑑 relative to some neighborhood 𝑈 of 𝜕𝑉𝑑 and smoothly isotopic to
the identity relative to 𝑈 . Let 𝑎 be a properly embedded non-separating arc in 𝑆 and
denote by 𝐴 the annulus fibered over 𝑎 and 𝑖 ∶ 𝐴 → 𝑉𝑑 the inclusion map. According to
Proposition 9.8, 𝒫o(𝐴, 𝑉𝑑, 𝜉𝑑) is connected hence the path lifting property of the fibra-
tion 𝒟𝑜(𝑉𝑑, 𝜕𝑉𝑑; 𝜉𝑑) → 𝒫o(𝐴, 𝑉𝑑; 𝜉𝑑) from Lemma 9.4 implies that 𝜑 is contact isotopic
to some 𝜑′ which is relative to 𝐴 and 𝑈 . Using Remark 9.5, we can assume 𝜑′ is relative
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to a neighborhood of 𝜕𝑉𝑑 ∪ 𝐴 which is fibered over some neighborhood 𝑊 of 𝑎 ∪ 𝜕𝑆 in
𝑆. We cut 𝑆 along 𝑎 and round the corners inside 𝑊 to get a subsurface 𝑆′ ⊂ 𝑆 with
𝑛(𝑆′) < 𝑛(𝑆). By induction hypothesis applied to 𝜋−1(𝑆′), 𝜑′ is contact isotopic to
identity so the induction step is completed.

The induction starts with the disk case which is already explained with all details
in Giroux 2001c, Page 345. The idea is the same as for the induction step but the
cutting surface in the solid torus 𝑉𝑑 is a meridian disk. There are no such disk with
Legendrian boundary in 𝑉𝑑 but one can use the realization lemma (Proposition 9.6) to
deform 𝜉𝑑 near 𝜕𝑉𝑑 until such a disk exists. This does not change the homotopy type
of 𝒟(𝑉𝑑, 𝜕𝑉𝑑; 𝜉𝑑) according to Proposition 9.7. Colin’s result about embedding of disks
mentioned in Section 3.2.4 then replaces Proposition 9.8 and the final isotopy is provided
by Eliashberg 1992 that proves π0𝒟(𝐵3, 𝜕𝐵3; 𝜉) is trivial for the standard ball.

We now turn to the case where 𝑉𝑑 is closed. We first prove that the group of deck
transformations injects into π0𝒟(𝑉𝑑; 𝜉𝑑). Let 𝐶 be a non-separating circle in 𝑆 and 𝑇
the fibered torus over 𝐶. Denote by 𝑖 the inclusion of 𝑇 in 𝑉𝑑. Proposition 9.8 guaranties
that the action of a non-trivial deck transformation 𝑓 on 𝜋0(𝒫o(𝑇 , 𝑉𝑑; 𝜉𝑑)) is non-trivial
hence 𝑓 is non-trivial in π0𝒟(𝑉𝑑; 𝜉𝑑).

We now prove surjectivity. Let 𝜑 be a contactomorphism of 𝑉𝑑 which is smoothly
isotopic to the identity. Proposition 9.8 gives a deck transformation 𝑓 such that 𝑓 ∘ 𝜑 ∘ 𝑖
is isotopic to 𝑖 in 𝒫o(𝑇 , 𝑉𝑑; 𝜉𝑑). As above, this implies that 𝑓 ∘ 𝜑 is contact isotopic to
a contactomorphism 𝜑′ which is relative to an open fibered neighborhood 𝑈 of 𝑇 . The
circle bundle 𝑉𝑑 ∖ 𝑈 has non-empty boundary hence we know that 𝜑′ is contact isotopic
to identity.

Theorem 9.12 combines with topological results from Laudenbach 1974; Hatcher 1976
describing 𝜋1(𝒟(𝑉𝑑), Id) to prove the following corollary.

Corollary 9.13. Assume that 𝑉𝑑 has empty boundary and denote by Ξ the space 𝒟(𝑉𝑑) •

𝜉𝑑 of contact structures isomorphic to 𝜉𝑑 on 𝑉𝑑. Let 𝑅𝑡 denote the action of 𝑒2𝑖𝜋𝑡 ∈ 𝕊1

on 𝑉𝑑. The fundamental group 𝜋1(Ξ, 𝜉𝑑) is an infinite cyclic group generated by the loop
𝑡 ↦ (𝑅𝑡/𝑑)∗𝜉𝑑.

Corollary 9.14. The lifting map from π0𝒟(𝑆) to π0𝒟(𝑉 , 𝜉) is an isomorphism.

Proof. We denote by 𝑝 the projection from 𝑉 to 𝑆 and by 𝒟(𝑆, 𝜕𝑆) the group of diffeo-
morphisms of 𝑆 relative to a neighborhood of 𝜕𝑆. In the sequence of maps:

𝜋0𝒟(𝑆, 𝜕𝑆) → 𝜋0𝒟(𝑉 , 𝜕𝑉 ; 𝜉) → 𝜋0𝒟(𝑉 , 𝜕𝑉 )

the composite map is known to be injective (this follows from considerations of funda-
mental groups) so the first map is also injective. It remains to prove that it is surjective.
Let 𝜑 be a contactomorphism. We want to prove that 𝜑 is contact isotopic to the lift of
some diffeomorphism of 𝑆. According to Waldhausen 1967, 𝜑 is smoothly isotopic to a
fibered diffeomorphism 𝑓 : there exists an isotopy 𝜓 and a diffeomorphism ̄𝑓 in 𝒟(𝑆, 𝜕𝑆)
such that 𝑓 = 𝜓1 ∘ 𝜑 and 𝑝 ∘ 𝑓 = ̄𝑓 ∘ 𝑝. We will prove that 𝜑 is contact isotopic to the lift
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𝐷 ̄𝑓 . We first note that 𝑓 ∘ 𝐷( ̄𝑓)−1 is fibered over the identity and is smoothly isotopic
to a contactomorphism (through the path 𝑡 ↦ 𝜓1−𝑡 ∘ 𝜑 ∘ 𝐷( ̄𝑓)−1). Corollary 9.10 then
guaranties that 𝑓 ∘ 𝐷( ̄𝑓)−1 is smoothly isotopic to the identity. Hence 𝜑 is smoothly
isotopic to 𝐷 ̄𝑓 hence contact isotopic according to Theorem 9.12.

9.2.3. Examples of disconnected spaces of embeddings
In this section we describe examples of disconnected spaces consisting of smoothly iso-
topic embeddings inducing a fixed characteristic foliation. More specifically, we con-
struct disconnected spaces of smoothly isotopic 𝜉-convex embeddings with a fixed divid-
ing set, and the former spaces are deformation retracts of the latter by Proposition 9.6.
Those examples should be compared to the connectedness results which were crucial in
Section 9.2.2. In addition they provide counter-examples to to the incorrect statement
from Giroux 2001c which was corrected in Giroux and Massot 2015, the wrong statement
from Honda 2000a which was corrected in Honda 2001, and some other failed attempts
at proving versions of Theorem 9.1, by other people, that never went as far as being
published. All these mistakes involve over-optimistic lemmas for surface disjunction or
simplifications of sequences of bifurcations whose total effect is null.

Hence we want to describe examples where we have explicit smooth isotopies among
surfaces which are all 𝜉-convex except for a finite number of times and exhibit various
behaviors for those isotopies. We also want to highlight situations where persistent in-
tersection phenomena occur and situations where a contact isotopy exists in the ambiant
manifold but not inside a smaller manifold (where a smooth isotopy still exists). For all
this we need the following technical definition.

Definition 9.15. A discretized isotopy of embeddings of an oriented surface 𝑆 into a
contact 3-manifold (𝑉 , 𝜉) is an isotopy of embeddings 𝑗 ∶ 𝑆 × [0, 1] → 𝑉 such that, for
some (unique) integer 𝑛:

• the restriction of 𝑗 to 𝑆 ×[𝑖/𝑛, (𝑖+1)/𝑛] is an embedding for each 𝑖 from 0 to 𝑛−1,

• all surfaces 𝑗𝑡(𝑆) are 𝜉-convex except when 𝑡 = 𝑖/𝑛 + 1/(2𝑛) for some integer 𝑖
between 0 and 𝑛 − 1.

Each embedding of 𝑆 × [𝑖/𝑛, (𝑖 + 1)/𝑛] is called a step of the discretized isotopy. It is
called a forward or backward step depending on whether it is orientation preserving or
reversing.

Colin’s idea described in Section 3.2.4 combines with the discretization lemma to
prove that any isotopy of embeddings which starts and end at 𝜉-convex embeddings is
homotopic relative to its end-points to a discretized isotopy.

Any discretized isotopy 𝑗 defines a sequence of isotopy classes of multi-curves Γ0, … , Γ𝑛
such that the characteristic foliation of 𝑗𝑖/𝑛(𝑆) is divided by 𝑗𝑖/𝑛(Γ𝑖).

Recall from Section 3.2.1 that the contact structure 𝜉𝑑 on 𝕋3 with coordinates (𝑥, 𝑦, 𝑧)
is defined by:

𝜉𝑑 = ker (cos(2𝑑𝜋𝑧)𝑑𝑥 − sin(2𝑑𝜋𝑧)𝑑𝑦)
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and they are pairwise non-isomorphic.

Proposition 9.16. In (𝕋3, 𝜉𝑑), let 𝑇 be the torus {8𝑑 𝑧 = cos 𝑥}. Denote by 𝑗0 the
inclusion of 𝑇 into 𝕋3 and by 𝑗1 the embedding obtained by restriction to 𝑇 of the
rotation (𝑥, 𝑦, 𝑧) ↦ (𝑥, 𝑦, 𝑧 + 1/𝑑). Those two embeddings are smoothly isotopic and:

• 𝑗0 and 𝑗1 induce the same characteristic foliation on 𝑇

• 𝑗0 is not isotopic to 𝑗1 among 𝜉𝑑-convex embeddings,

• there is a discretized isotopy from 𝑗0 to 𝑗1 with only forward steps changing the
direction of dividing curves,

• there is a discretized isotopy from 𝑗0 to 𝑗1 consisting of four forward steps which
change the number of dividing curves without changing their direction.

Proof. Since the rotation map is a contactomorphism, 𝑗0 and 𝑗1 induce the same char-
acteristic foliation on 𝑇 . Assume for contradiction that 𝑗0 and 𝑗1 are isotopic through
𝜉𝑑-convex surfaces. Proposition 9.6c and Lemma 9.4 then imply that there is a contact
isotopy 𝜑 such that 𝑗1 = 𝜑1 ∘ 𝑗0. We lift this isotopy to 𝕋2 × ℝ which covers 𝕋3 by
(𝑥, 𝑦, 𝑠) ↦ (𝑥, 𝑦, 𝑠 mod 2𝜋). We denote by 𝜑′ the lifted isotopy and by 𝑇 ′ some (fixed)
lift of 𝑇 . We denote by 𝜏𝑛 the translation (𝑥, 𝑦, 𝑠) ↦ (𝑥, 𝑦, 𝑠 + 𝑛) and by 𝑇[𝑎,𝑏] the
compact manifold bounded by 𝜏𝑎(𝑇 ′) and 𝜏𝑏(𝑇 ′). Because 𝑇 ′ is compact and contact
isotopies can be cut-off, we can assume that 𝜑′ is compactly supported. Then there is
some 𝑁 such that 𝜑1 sends 𝑇[−𝑁,0] to 𝑇[−𝑁,1]. In particular those submanifolds are con-
tactomorphic. This contradicts the classification of tight contact structures on 𝕋3 since
this contactomorphism could be used to build a contactomorphism from (𝕋3, 𝜉𝑁+1) to
(𝕋3, 𝜉𝑁+2).

The existence of a discretized isotopy from 𝑗0 to 𝑗1 consisting of forward steps chang-
ing the direction of dividing curves follows from repeated uses of a small part of the
classification of tight contact structures on thickened tori: if 𝜉 is a tight contact struc-
ture on 𝕋2 ×[0, 1] such that 𝕋2 ×{0} and 𝕋2 ×{1} are 𝜉-convex with two dividing curves
𝛾0, 𝛾′

0 and 𝛾1, 𝛾′
1 respectively such 𝛾0 intersects 𝛾1 transversely at one point then 𝜉 is

isotopic relative to the boundary to a contact structure 𝜉′ such that all tori 𝕋2 × {𝑡} are
𝜉′-convex except 𝕋2 × {1

2}.
In order to construct a discretized isotopy where the direction of dividing curves is

constant, we see 𝜉𝑑 as an 𝕊1-invariant contact structure on 𝕋3 with 𝕊1 action given by
rotation in the 𝑦 direction. In order to describe an 𝕊1-equivariant isotopy of embeddings
of 𝑇 , it is enough to give a isotopy of curves in 𝕋2. Curves corresponding to are 𝜉𝑑-
convex tori are exactly those which are transverse to Γ = {𝑥 ∈ (𝜋/𝑑)ℤ}. Figure 9.1 then
finishes the proof.

In our next example the discretized isotopy oscillates and there is persistent intersec-
tion.
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Figure 9.1.: Discretized isotopy of curves lifting to tori in (𝕋3, 𝜉𝑑). Curves lifting to
non-convex tori are dashed.

Proposition 9.17. Let 𝑉 be the torus bundle over 𝕊1 with monodromy 𝐵 = ( 5 1
4 1 ), ie.

𝑉 = (𝕋2 × ℝ)/ ((𝐵𝑥, 𝑡) ∼ (𝑥, 𝑡 + 1)) .

Let 𝑇 be the image of 𝕋2×{1
2} in 𝑉 and let 𝑗0 be the inclusion map from 𝑇 to 𝑉 . There is

a tight virtually overtwisted contact structure 𝜉 on 𝑉 and an embedding 𝑗1 ∈ 𝒫o(𝑇 , 𝑉 ; 𝜉)
such that:

• 𝑗0 is not isotopic to 𝑗1 in 𝒫o(𝑇 , 𝑉 ; 𝜉);

• any 𝑗 ∈ 𝒫o(𝑇 , 𝑉 ; 𝜉) such that 𝑗(𝑇 ) is disjoint from 𝑇 is isotopic to 𝑗0 in 𝒫o(𝑇 , 𝑉 ; 𝜉)
(in particular 𝑗1(𝑇 ) cannot be disjoined from 𝑇 by contact isotopy);

• there is a discretized isotopy from 𝑗0 to 𝑗1 with one forward step and one backward
step, both modifying the direction of dividing curves.

Proof of the first point of Proposition 9.17. The proof uses the theory of normal forms
for tight contact structures on 𝑉 based what is explained for thickened tori in Sec-
tion 3.2.3 (in particular the definition of rotation sequences and orbit flips recalled there).

Here we need two (isotopic) contact structures on 𝕋2 × [0, 1]. We fix a Morse-Smale
suspension 𝜎0 on 𝕋2 with two closed orbits having homology class (1, 0), and we denote
by 𝜎1 the image of 𝜎0 under 𝐴. We also fix a Morse-Smale suspension 𝜎1

2
with two

closed orbits having homology class (−1, 1). Let 𝜉 be a contact structure on 𝕋2 × [0, 1]
such that:

• 𝜉 prints 𝜎𝑡 on 𝕋2 × {𝑡} for 𝑡 ∈ {0, 1
2 , 1} ;

• [0, 1] is a union of minimally twisting rotation sequences and two orbit flip se-
quences with homology classes (1, 0) and (−1, 1) respectively.

Let 𝜉′ be a contact structure with the same properties except that orbit flip homology
classes are (1, −1) and (−1, 2). The explicit construction of Giroux 2000, Example 3.41
guarantees that 𝜉 and 𝜉′ are isotopic (relative to the boundary). More specifically, it
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builds a contact structure printing a non-generic movie of characteristic foliations where
two saddle connections happen on the same torus, and such that the movies printed
by 𝜉 and 𝜉′ are essentially obtained by choosing the order in which these connections
appear. Alternatively, one can see the isotopy between 𝜉 and 𝜉′ as an application of
the “shuffling lemma”, Honda 2000a, Lemma 4.14. We will also denote by 𝜉 and 𝜉′ the
induced contact structures on 𝑉 . And we denote by 𝑇 the image in 𝑉 of 𝕋2

1/2.
Let 𝜑 be a smooth isotopy of 𝑉 such that 𝜉′ = 𝜑∗

1𝜉. Assume for contradiction that
𝑗0 ∶ 𝑇 ↪ 𝑉 and 𝑗1 = 𝜑1 ∘ 𝑗0 are in the same component of 𝒫o(𝑇 , 𝑉 ; 𝜉). Using the
path lifting property for the map 𝒟𝑜(𝑉 ; 𝜉) → 𝒫o(𝑇 , 𝑉 ; 𝜉) guaranteed by Lemma 9.4,
we get a contact isotopy 𝜃 for 𝜉 such that 𝑗1 = 𝜃1 ∘ 𝑗0. Then 𝜓 ∶= 𝜃−1

1 ∘ 𝜑1 is a
diffeomorphism relative to 𝑇 , and pulls back 𝜉 to 𝜉′. Thus we can cut 𝑉 along 𝑇 to
get a thickened torus 𝑌 , naturally identified with 𝕋2 × [1

2 , 3/2]. The diffeomorphism 𝜓
induces a diffeomorphism of 𝑌 which is relative to the boundary, hence acts trivially
on 𝐻1(𝑌 ). This is a contradiction because the restriction of 𝜉 and 𝜉′ to 𝑌 do not
have the same relative Euler class in 𝐻1(𝑌 ). Recall that 𝑒(𝑌 ; 𝜉) is the homology class
of the vanishing locus of any generic section of 𝜉 which spans 𝜉𝜕𝑌 (with the correct
orientation) along 𝜕𝑌 . Here, contributions to this class come from orbit flips and we
get 𝑒(𝑌 ; 𝜉) = 2(−1, 1) + 2𝐴(1, 0) = 2(0, −3) while 𝑒(𝑌 ; 𝜉′) = 2(−1, 2) + 2𝐴(1, −1) =
2(1, −7). Note, for sanity check, that those two classes become the same in 𝑉 , since
𝑒(𝑌 ; 𝜉′) − 𝑒(𝑌 ; 𝜉) = 2(1, −4) = (Id −𝐴)(0, 1).

Finally we describe an example on a manifold with boundary with the same situation
as above but things untangle inside a larger manifold.

Proposition 9.18. Let 𝑉 denote the manifold 𝕋2×[0, 1] and 𝑉 ′ = 𝕋2×[0, 1
2 ]. There is a

universally tight contact structure 𝜉 on 𝑉 and two smoothly isotopic 𝜉-convex embeddings
𝑗0, 𝑗1 ∶ 𝕋2 → 𝑉 ′ with images 𝑇0 and 𝑇1 such that

• 𝑗0 is isotopic to 𝑗1 among 𝜉-convex embeddings in 𝑉

• 𝑗0 is not isotopic to 𝑗1 among 𝜉-convex embeddings in 𝑉 ′

• 𝑇0 cannot be disjoined from 𝑇1 by an isotopy among 𝜉-convex surfaces in 𝑉 ′

• there is a discretized isotopy from 𝑗0 to 𝑗1 in 𝑉 ′ with one forward step and one
backward step, both modifying the direction of dividing curves.

• there is a discretized isotopy from 𝑗0 to 𝑗1 in 𝑉 ′ with one forward step and one
backward step, both modifying the number of dividing curves.

The construction is pictured in Figure 9.2. Let 𝑆 be the annulus {1 ≤ |𝑧| ≤ 3} ⊂ ℂ
and 𝑆′ ⊂ 𝑆 the subannulus {1 ≤ |𝑧| ≤ 2}. We fix an identification between 𝑉 and
𝑆 × 𝕊1 which identify 𝑉 ′ with 𝑆′ × 𝕊1. Let Γ′ = Γ′

1 ∪ Γ′
2 be a disjoint union of two

properly embedded arcs in 𝑆′ whose end points are on the circle {|𝑧| = 2}. Let Γ be a
smooth homotopically essential circle in 𝑆 such that Γ∩𝑆′ = Γ′. Let 𝜉 be a 𝕊1-invariant
contact structure on 𝑉 with dividing set Γ and denote by 𝜉′ its restriction to 𝑉 ′. Let
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Figure 9.2.: The example of Proposition 9.18. The dividing set Γ is the thick curve, 𝛾0
and 𝛾1 are dashed.

𝛾0 and 𝛾1 be homotopically essential circles in 𝑆′ such that 𝛾𝑖 intersects transversely Γ′
𝑖

in two points and does not intersect the other component of Γ′. The tori we want are
𝑇0 = 𝛾0 × 𝕊1 and 𝑇1 = 𝛾1 × 𝕊1, parametrized by product maps.

The proof that they have the announced properties is based on the classification of
𝕊1-invariant contact structures recalled in Section 3.2.3.

9.3. Higher dimensional examples
9.3.1. From pseudoisotopic disjunctions to weakly exact Lagrangians
In this section we explain how persistence of certain Lagrangian intersections in the
symplectization implies persistence of pre-Lagrangian intersections in the corresponding
contact manifold. Next we explain how existence of relevant Lagrangian intersections
follows from a result about weakly exact Lagrangians which will be proved in the next
section.

Remember that a Lagrangian 𝐿 in a symplectic manifold (𝑊, 𝜔) is called weakly exact
if ∫𝔻2 𝑢∗𝜔 vanishes for every smooth map 𝑢∶ (𝔻2, 𝜕𝔻2) → (𝑊, 𝐿). On the pre-Lagrangian
side, one can prove the following, essentially coming from Eliashberg, Hofer, and Salamon
1995:

Lemma 9.19. Let 𝑃 𝜄
↪−→ (𝑀, 𝜉) be a pre-Lagrangian submanifold and denote by 𝒜(𝑃)

the space of contact forms for 𝜉 whose restrictions to 𝑃 are closed. If 𝑃 is closed then
the following properties are equivalent:

1. there exists an 𝛼 in 𝒜(𝑃) such that ∫𝔻2 𝑢∗𝑑𝛼 vanishes for every smooth map
𝑢∶ (𝔻2, 𝜕𝔻2) → (𝑀, 𝑃).

2. for every 𝛼 in 𝒜(𝑃), ∫𝔻2 𝑢∗𝑑𝛼 vanishes for every smooth map 𝑢∶ (𝔻2, 𝜕𝔻2) →
(𝑀, 𝑃).

3. there is a Lagrangian lift of 𝑃 which is weakly exact
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4. all Lagrangian lifts of 𝑃 are weakly exact.

A closed pre-Lagrangian submanifold with any of the above properties will be called
weakly exact. This terminology parallels the Lagrangian case but note that there is
nothing like a strongly exact closed pre-Lagrangian (see the proof below).

In the rest of this section we will explain how the following result, which is the key
step to the proof of Theorem 9.3, can be translated into a statement about the non-
existence of certain weakly exact Lagrangians. Remember that a contact structure is
called hypertight if it admits a Reeb vector field without contractible closed orbits.

Theorem 9.20. A closed weakly exact pre-Lagrangian in a closed hypertight contact
manifold cannot be displaced by any contactomorphism that is symplectically pseudoiso-
topic to the identity.

Note that one indeed needs the weak exactness assumption in the theorem since
Darboux balls are displaceable by contact isotopy and contain plenty of closed pre-
Lagrangian submanifolds.

The next lemma is a general fact about symplectic pseudoisotopy which is proved in
Massot and Niederkrüger 2016, and could be useful in other contexts.

Lemma 9.21. Let 𝜑 be a contactomorphism of (𝑀, 𝜉) that is symplectically pseudoiso-
topic to the identity. For any compact subset 𝐾 in 𝑆𝜉, there is a compactly supported
Hamiltonian isotopy Φ in 𝑆𝜉 such that, for every 𝑝 ∈ 𝐾,

𝜋(Φ1(𝑝)) = 𝜑(𝜋(𝑝)) ,

where 𝜋 ∶ 𝑆𝜉 → 𝑀 is the canonical projection.

Next we need Gromov’s trick relating Lagrangian disjunctions and Lagrangian em-
beddings.

Proposition 9.22 (Gromov 1985, Section 2.3.𝐵′
3). Let (𝑊, 𝑑𝜆) be an exact symplectic

manifold, and let 𝐿 ⊂ 𝑊 be a Lagrangian. If Φ𝑠 ∶ 𝑊 → 𝑊 is a Hamiltonian isotopy,
then we can find a Lagrangian immersion

𝑗 ∶ 𝐿 × 𝕊1 ↬ ( �𝑊 × ℂ, 𝑑𝜆 ⊕ 𝑑𝑥 ∧ 𝑑𝑦)�

where 𝑥 + 𝑖𝑦 is the coordinate on ℂ, such that the self-intersection points of 𝑗(𝐿 × 𝕊1)
are in one-to-one correspondence with the intersection points in 𝐿 ∩ Φ1(𝐿). If 𝑗 is an
embedding and if 𝐿 is weakly exact, then 𝑗 will also be weakly exact.

A detailed proof of this proposition can be found in Audin, Lalonde, and Polterovich
1994, Theorem 2.3.6. In the next section we will combine ideas from Gromov 1985, Sec-
tion 2.3.𝐵′

3 with the compactness theorem in Hofer 1993 to prove the following theorem.
This requires some care because the end of 𝑆𝜉 × ℂ is neither convex nor concave, and
because neither the closed Lagrangian submanifold serving as boundary condition for
an inhomogeneous Cauchy-Riemann problem, nor the perturbation term involved are in
product form.

153



9. Contact mapping class groups

Theorem 9.23. If (𝑀, 𝜉) is a closed contact manifold that is hypertight, then (𝑆𝜉 ×
ℂ, 𝑑𝜆 ⊕ 𝑑𝑥 ∧ 𝑑𝑦) does not contain any weakly exact closed Lagrangian.

Using all this we can prove Theorem 9.20. Suppose that 𝑃 is a closed weakly ex-
act pre-Lagrangian submanifold in a hypertight (𝑀, 𝜉). Let 𝜑 be a contactomorphism
symplectically isotopic to the identity and let 𝐿𝑃 be a Lagrangian lift of 𝑃 . According
to Lemma 9.19, 𝐿𝑃 is weakly exact. Assume for contradiction that 𝑃 ∩ 𝜑(𝑃) = ∅.
Lemma 9.21 applied to 𝐾 = 𝐿𝑃 and 𝜑 gives a Hamiltonian isotopy Φ in (𝑆𝜉, 𝑑𝜆) which
displaces 𝐿𝑃 : 𝐿𝑃 ∩Φ1(𝐿𝑃 ) = ∅. Proposition 9.22 turns it into a weakly exact embedded
Lagrangian in (𝑆𝜉 × ℂ, 𝑑𝜆 ⊕ 𝑑𝑥 ∧ 𝑑𝑦), which contradicts Theorem 9.23.

9.3.2. From hypertightness to absence of weakly exact Lagrangians
In this section we sketch the proof of Theorem 9.23 following the argument in Gromov
1985, Section 2.3.𝐵′

3. The strategy is to show that there is a non-trivial holomorphic
disk with boundary on any closed Lagrangian submanifold of 𝑆𝜉 × ℂ. These disks result
from bubbling of an inhomogeneous Cauchy-Riemann equation.

We fix a contact form 𝛼 without contractible Reeb orbit. We identify (𝑆𝜉, 𝑑𝜆) with
(ℝ×𝑀, 𝑑(𝑒𝑡𝛼)) using the contact form 𝛼 and denote by 𝜋𝜉, 𝜋ℝ, 𝜋𝑀 and 𝜋ℂ the canonical
projections of 𝑆𝜉 × ℂ to 𝑆𝜉, ℝ, 𝑀 and ℂ respectively. We fix an ℝ-invariant almost
complex structure 𝐽𝛼 on ℝ × 𝑀 which preserves 𝜉, is compatible with the restriction of
𝑑𝛼 to 𝜉 and sends 𝜕𝑡 to 𝑅𝛼. Let 𝐿 ⊂ 𝑆𝜉 × ℂ be a closed Lagrangian, 𝑈𝐿 a compact
tubular neighborhood of 𝐿 and 𝑝0 a point in 𝐿. We assume that 𝜋ℝ(𝑈𝐿) lies in {𝑡 > 1}
(this can be arranged by a constant rescaling of 𝛼). All these objects, including 𝐽𝛼,
are now fixed forever. We denote by ℬ the space of 𝑊 1,𝑝-maps 𝑢 from (𝔻2, 𝜕𝔻2, 1) to
(𝑆𝜉 × ℂ, 𝐿, 𝑝0) which are homotopic to the constant map 𝑢0 ∶ 𝑧 ↦ 𝑝0.

We will consider inhomogeneous Cauchy-Riemann equations
̄𝜕𝐽𝑢 = 𝐺(𝑢) ,

where 𝐽 = 𝐽𝛼 ⊕ 𝑖 on 𝑆𝜉 × ℂ and 𝑢 ∈ ℬ is the unknown. The perturbation term 𝐺 is a
section of the following bundle of complex-antilinear maps:

Homℂ( �𝑇 𝔻2, 𝑇 (𝑆𝜉 × ℂ)) � → 𝔻2 × ( �𝑆𝜉 × ℂ) �

and 𝐺(𝑢)∶ 𝔻2 → Homℂ( �𝑇 𝔻2, 𝑇 (𝑆𝜉 × ℂ)) � denotes the restriction of 𝐺 to the graph of 𝑢:
𝐺(𝑢)(𝑧) = 𝐺(𝑧, 𝑢(𝑧)). Let 𝐺 be a family of perturbation terms 𝐺𝑠 for 𝑠 ∈ [0, 1] and set

ℳ(𝐺) = { �(𝑠, 𝑢) ∈ [0, 1] × ℬ ∣ � ̄𝜕𝐽𝑢 = 𝐺𝑠(𝑢)} � . (9.1)

The spaces of perturbation terms we use are:

𝒢𝜀,𝐶 = { �(0 ⊕ 𝐶𝑠𝑑 ̄𝑧) + 𝐻𝑠 ∣� supp 𝐻 ⊂ (𝜀, 1 − 𝜀) × 𝔻2 × 𝑈𝐿} �

where 0 is the 0-section in Homℂ(�𝑇 𝔻2, 𝑇 (𝑆𝜉)) � and 𝐶𝑠 is in ℝ ⊂ 𝑇 ℂ. The term 𝐻 is a
𝐶1 section of the bundle

Homℂ( �𝑇 𝔻2, 𝑇 (𝑆𝜉 × ℂ)) � → [0, 1] × 𝔻2 × ( �𝑆𝜉 × ℂ) � .
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In this setup, the following result follows easily from standard techniques.

Proposition 9.24. If 𝜀 > 0 is chosen sufficiently small and 𝐶 sufficiently large, then
there is some 𝐺 in 𝒢𝜀,𝐶 such that ℳ(𝐺) is a smooth 1-dimensional manifold whose
boundary is {(0, 𝑢0)} where 𝑢0 is the constant disk at 𝑝0.

We now choose one 𝐺 given by Proposition 9.24 and keep it until the end of this
section. Since ℳ(𝐺) is a 1-dimensional manifold with only one boundary point, it
cannot be compact. We want to prove that, under the assumptions of hypertightness
of 𝜉 and compactness of 𝑀 and 𝐿, the only source of non-compactness for ℳ(𝐺) is
bubbling of holomorphic disks so that 𝐿 is not weakly exact.

We first note some 𝐶0-estimates for all solutions in ℳ(𝐺). For any (𝑠, (𝑢𝜉, 𝑢ℂ)) in
ℳ(𝐺), the component 𝑢𝜉 is 𝐽𝛼-holomorphic outside the preimage of 𝑈𝐿. Hence it
cannot enter any neighborhood of 𝑆+∞𝜉 which is disjoint from the projection 𝜋𝜉(𝑈𝐿).
Similarly, the component 𝑢ℂ is harmonic outside the preimage of 𝑈𝐿 and this implies
that the image of 𝑢ℂ is contained in a fixed compact subset (any disk around 0 which
contains 𝜋ℂ(𝑈𝐿) is big enough, see for example the proof of McDuff and Salamon 2004,
Lemma 9.2.3). Those observations are summarized in the following lemma.

Lemma 9.25. There is a neighborhood 𝑈+ of 𝑆+∞𝜉 and a compact set 𝐾ℂ ⊂ ℂ such
that, for all (𝑠, 𝑢) in ℳ(𝐺), 𝑢(𝔻) ⊂ (𝑆𝜉 ∖ 𝑈+) × 𝐾ℂ.

Next we need some energy bounds. In view of our later use of Hofer’s energy, we
will introduce the following class of symplectic forms. We consider the space of probe
functions

ℱ ∶= { �𝜓∶ ℝ → ℝ ∣ � 𝜓 is a smooth embedding and 𝜓(𝑡) = 𝑡 for 𝑡 > 1} �

and the associated exact symplectic forms 𝜔𝜓 ∶= 𝑑(𝑒𝜓𝛼) on 𝑆𝜉.

Proposition 9.26. There is some bound 𝐴 such that ∣ �∫𝑉 𝑢∗(𝜔𝜓 ⊕ 𝜔ℂ)∣ � ≤ 𝐴 for all
(measurable) subsets 𝑉 ⊂ 𝔻, all (𝑠, 𝑢) in ℳ(𝐺) and all 𝜓 in ℱ.

Proof. The first observation, due to Gromov, is that one can turn the inhomogeneous
Cauchy-Riemann problem defining ℳ(𝐺) into an homogeneous one which allows easier
energy estimates. To any 𝑢 in ℬ we associate its graph

𝑢̃ ∶ 𝔻2 → 𝔻2 × (𝑆𝜉 × ℂ), 𝑧 ↦ ( �𝑧, 𝑢(𝑧)) �

and for any 𝑠 in [0, 1] we consider the almost complex structure 𝐽𝑠 on 𝔻2 × (𝑆𝜉 × ℂ)
given by

𝐽𝑠( ̇𝑧, ̇𝑝) ∶= (𝑖 ̇𝑧, 𝐽 ̇𝑝 + 2𝐺𝑠 ⋅ 𝑖 ̇𝑧)
for every vector ̇𝑧 ∈ 𝑇 𝔻2 and ̇𝑝 ∈ 𝑇 (𝑆𝜉 × ℂ). The pair (𝑠, 𝑢) is in ℳ(𝐺) if and only if
𝑢̃ is a 𝐽𝑠-holomorphic map.

Lemma 9.27. If 𝐾 > 0 is large enough then 𝜔̃𝜓 = (𝐾𝜔𝔻) ⊕ 𝜔𝜓 ⊕ 𝜔ℂ tames 𝐽𝑠 for all
𝜓 and 𝑠.
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Note also that, because 𝜋ℝ(𝑈𝐿) ⊂ [1, ∞), the submanifold 𝕊1 × 𝐿 ⊂ 𝔻2 × (𝑆𝜉 × ℂ) is
Lagrangian for every 𝜔̃𝜓. Stokes’ formula then ensures that

∫
𝔻

𝑢̃∗𝜔̃𝜓 = 𝐾𝜋

for every 𝑢 in ℬ. If 𝐾 is sufficiently large to get tameness from Lemma 9.27 and 𝑢̃ is
𝐽𝑠-holomorphic then 𝑢̃∗𝜔̃𝜓 is non-negative on 𝔻. Then for any 𝑉 ⊂ 𝔻, we have

∫
𝑉

𝑢∗(𝜔𝜓 ⊕ 𝜔ℂ) = ∫
𝑉

𝑢̃∗𝜔̃𝜓 − ∫
𝑉

𝐾𝜔𝔻

with both right-hand side integrals in [0, 𝐾𝜋] so we can choose 𝐴 = 𝐾𝜋 to finish the
proof of Proposition 9.26.

After those preliminaries, we now consider any sequence (𝑠𝑘, 𝑢𝑘)𝑘 which has no con-
vergent subsequence in ℳ(𝐺). The sequence 𝑟𝑘 ∶= max𝔻 |𝑑𝑢𝑘| is unbounded since
otherwise the Arzelà–Ascoli theorem and elliptic regularity would provide a convergent
subsequence for 𝑢𝑘. Let 𝑧𝑘 be a sequence in 𝔻 such that 𝑟𝑘 = |𝑑𝑢𝑘(𝑧𝑘)|. After passing
to a subsequence, we can assume that 𝑧𝑘 converges to some 𝑧∞ in 𝔻 and 𝑟𝑘 goes to
+∞. We set 𝛿𝑘 = 𝑑(𝑧𝑘, 𝜕𝔻) = 1 − |𝑧𝑘|.

Sphere and plane bubbling

Assume for contradiction that 𝑟𝑘𝛿𝑘 is unbounded. (this happens for instance if 𝑧∞
lies in the interior of 𝔻). After passing to a subsequence, we can assume that 𝑟𝑘𝛿𝑘 is
increasing and goes to infinity. We denote by 𝔻𝑘 the open disk with radius 𝑟𝑘𝛿𝑘 in ℂ
and consider the map Φ𝑘 ∶ 𝑧 ↦ 𝑧𝑘 + 𝑧/𝑟𝑘 which, due to our choice of 𝛿𝑘, sends 𝔻𝑘 into
𝔻. We set 𝑡𝑘 = 𝜋ℝ(𝑢𝑘(𝑧𝑘)) and

𝑣𝑘 ∶ 𝔻𝑘 → 𝑆𝜉 × ℂ, 𝑧 ↦ 𝜏−𝑡𝑘
∘ 𝑢𝑘 ∘ Φ𝑘 .

By construction, we have sup |𝑑𝑣𝑘| ≤ |𝑑𝑣𝑘(0)| = 1 and 𝜋ℝ(𝑣𝑘(0)) = 0. The Arzelà–
Ascoli theorem then proves that 𝑣𝑘 converges uniformly on compact subsets to some
𝑣 ∶ ℂ → 𝑆𝜉 × ℂ. Since 𝐽 is translation invariant, we get

̄𝜕𝐽𝑣𝑘 = 1
𝑟𝑘

𝑑𝜏−𝑡𝑘
∘ ̄𝜕𝐽𝑢𝑘(Φ𝑘(𝑧))

= 1
𝑟𝑘

𝑑𝜏−𝑡𝑘
∘ 𝐺𝑠𝑘

(Φ𝑘(𝑧), 𝑢𝑘(Φ𝑘(𝑧))) → 0

where convergence is uniform on compact sets hence, by elliptic regularity, 𝑣 is genuinely
𝐽 -holomorphic, and in particular the component 𝜋ℂ∘𝑣 is a classical holomorphic function
from ℂ to ℂ, and 𝑣𝜉 ∶= 𝜋𝜉 ∘ 𝑣 is a 𝐽𝛼-holomorphic map. From Lemma 9.25 it follows
that 𝜋ℂ ∘ 𝑣 is bounded, so that this component is in fact constant. In particular we get
that, for any compact subset 𝐾 in ℂ, we have

lim
𝑘→∞

∫
Φ𝑘(𝐾)

𝑢∗
𝑘𝜔ℂ = 0. (9.2)
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The component 𝑣𝜉 by contrast cannot be constant since |𝑑𝑣(0)| = 1.

Lemma 9.28. After passing to a subsequence of 𝑢𝑘, the sequence 𝑡𝑘 diverges towards
−∞.

This lemma is proved by contradiction. Assuming that 𝑡𝑘 does not go towards −∞
gives a finite area holomorphic plane 𝑣𝜉 in 𝑆𝜉. One cannot apply Gromov’s removal of
singularities theorem in 𝑆𝜉 but instead we proved that either 𝑣𝜉 extends to ℂP1 or it is
proper and both possibilities are absurd.

Remember that the Hofer energy of a 𝐽𝛼-holomorphic map 𝑣 ∶ Σ → 𝑆𝜉 in the sym-
plectization is defined as

𝐸𝛼(�𝑣) � = sup
𝜑∈ℱ′

∫
Σ

𝑣∗𝜔𝜑 ,

where ℱ′ is the space of increasing diffeomorphisms from ℝ to (−1, 0) and 𝜔𝜑 = 𝑑(𝑒𝜑𝛼)
on 𝑆𝜉.

Lemma 9.29. The holomorphic plane 𝑣𝜉 has finite Hofer energy.

Since 𝑣𝜉 has finite Hofer energy, Hofer 1993, Theorem 31 gives a contractible 𝑇 -
periodic Reeb orbit 𝛾 for 𝛼 and a sequence 𝑥𝑘 such that 𝑣𝜉(𝑒2𝜋(𝑥𝑘+𝑖𝑦)) converges uni-
formly to 𝛾(𝑇 𝑦) (we cannot hope for convergence without condition on 𝑥𝑘 because we
haven’t made any non-degeneracy assumption on 𝛼). This contradicts our assumption
that 𝛼 has no contractible closed Reeb orbit so we have proved that 𝑟𝑘𝛿𝑘 is bounded.

Disk bubbling

Because 𝑟𝑘𝛿𝑘 is bounded, we learn in particular that 𝑧∞ is in 𝜕𝔻. For notational
convenience only, we assume that 𝑧∞ = 1. After passing to a subsequence we can
assume that 𝑟𝑘 ≥ 1 and 𝑟𝑘𝛿𝑘 converges to some non-negative number 𝜈. We set

𝑤𝑘 = (1 − 1
𝑟𝑘

) 𝑧𝑘
|𝑧𝑘|

(this extra sequence of points is a minor nuisance needed because when 𝜈 is zero, the
naive rescaling could lead to a constant map). We use the rescaling maps

Φ𝑘(𝑧) = 𝑧 + 𝑤𝑘
1 + 𝑤̄𝑘𝑧

which are automorphisms of 𝔻 sending 0 to 𝑤𝑘 and which converge uniformly to the
constant map 𝑧 ↦ 1 on any compact subset 𝐾 of 𝔻′ ∶= 𝔻∖{−1}. Also there are positive
constants 𝐶1(𝐾) and 𝐶2(𝐾) such that, for every 𝑧 in 𝐾:

𝐶1(𝐾)
𝑟𝑘

≤ ‖𝑑Φ𝑘(𝑧)‖ ≤ 𝐶2(𝐾)
𝑟𝑘

.

Our rescaled disk is then 𝑣𝑘 ∶= 𝑢𝑘 ∘ Φ𝑘 which satisfies: ‖𝑑𝑣𝑘(𝑧)‖ = ‖𝑑𝑢𝑘(Φ𝑘(𝑧))‖ ·
‖𝑑Φ𝑘(𝑧)‖ for every 𝑧 since 𝑑Φ𝑘(𝑧) is an invertible conformal linear map. So for every
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compact 𝐾 ⊂ 𝔻′, ‖𝑑𝑣𝑘‖ ≤ 𝐶2(𝐾) on 𝐾. In addition each 𝑣𝑘(𝜕𝔻′) is in 𝐿 so 𝑣𝑘(𝐾) is in
the 𝐶2(𝐾)-neighborhood of 𝐿 for each convex compact subset 𝐾. Using an exhaustion
of 𝔻′ by such subsets we get that 𝑣𝑘 is uniformly bounded on compact subsets of 𝔻′. So
the Arzelà-Ascoli theorem gives convergence of 𝑣𝑘 to some 𝑣 ∶ (𝔻′, 𝜕𝔻′) → (𝑆𝜉 × ℂ, 𝐿)
uniformly on compact subsets of 𝔻′. Since ‖𝑑𝑣𝑘(𝜁𝑘)‖ ≥ 𝐶1(𝐾0), we get 𝑑𝑣(𝜁∞) ≠ 0 and
𝑣 is non-constant. Using that Φ𝑘 is holomorphic we get:

̄𝜕𝑣𝑘(𝑧) = 𝐺𝑠 (Φ𝑘(𝑧), 𝑣𝑘(𝑧)) ∘ 𝑑Φ𝑘(𝑧)

which converges to zero uniformly on compact subsets of 𝔻′ so, by elliptic regularity, 𝑣
is 𝐽 -holomorphic.

The energy of 𝑣 is bounded by Proposition 9.26 since:

∫
𝐾

𝑣∗
𝑘(�𝜔 ⊕ 𝜔ℂ)� = ∫

Φ𝑘(𝐾)
𝑢∗

𝑘( �𝜔 ⊕ 𝜔ℂ)� ≤ 𝐴.

Again there is a version the removal of singularity theorem that allow to compactify 𝑣 to
a non-constant 𝐽 -holomorphic disk with boundary on 𝐿. Here the key is that, although
the symplectic manifold has bad infinity, 𝐿 is compact. Thus as we wanted to show, 𝐿
is not weakly exact.

9.3.3. Application to contact transformation
Additionally to the properties discussed in Chapter 7, the manifold (𝑀𝕜, 𝛼+) contains
a closed pre-Lagrangian submanifold 𝑃0 such that the restriction of 𝛼+ to 𝑃0 is closed
and 𝜋1(𝑃0) injects into 𝜋1(𝑀𝕜). We use the notations of Proposition 7.28 on Page 119.
Consider any of the fibers {t} × (ℝ𝑙+1/Λ′) in 𝑀/Λ′ with t ∈ ℝ𝑙. This fiber is a torus
which is pre-Lagrangian in ( �𝑀/Λ′, 𝛼+) �, because 𝛼+ restricts to a constant 1-form on it.
Clearly this torus embeds in 𝑀 under the projection 𝑀/Λ′ → 𝑀 . We choose for 𝑃0 the
image of this embedding. By construction, 𝜋1(𝑃0) = Λ′ embeds into 𝜋1(𝑀) = Λ ⋉ Λ′.

We set 𝑉𝕜 = 𝕋2 × 𝑀𝕜. The pre-Lagrangian submanifold 𝑃0 ⊂ (𝑀𝕜, 𝛼+) described
above extends to a pre-Lagrangian submanifold 𝑃 ∶= {0} × 𝕊1 × 𝑃0 in (𝑉𝕜, 𝜉𝑛), because
the restriction of

𝜆𝑛 = 1 + cos(𝑛𝑠)
2 𝛼+ + 1 − cos(𝑛𝑠)

2 𝛼− + sin(𝑛𝑠) 𝑑𝑡

to {0} × 𝕊1 × 𝑃0 is the closed 1-form �𝛼+|𝑇𝑃0
.

The contactomorphism Ψ𝑛,𝑚 ∶ (𝑠, 𝑡, 𝜃) ↦ (𝑠+ 2𝜋𝑚/𝑛, 𝑡, 𝜃) obviously displaces 𝑃 from
itself so we only need to check that 𝑃 is weakly exact and apply Theorem 9.20 to get
that Ψ𝑛,𝑚 is not symplectically pseudoisotopic to the identity.

We will now show 𝜋2(𝑉𝕜, 𝑃 ) = 0, which implies that 𝑃 is weakly exact. Because
𝜋1(𝑃0) embeds into 𝜋1(𝑀𝕜) we get that 𝜋1(𝑃 ) embeds into 𝜋1(𝑉𝕜). The long exact
sequence of the pair (𝑉𝕜, 𝑃 ) contains

𝜋2(𝑉𝕜) → 𝜋2(𝑉𝕜, 𝑃 ) → 𝜋1(𝑃 ) → 𝜋1(𝑉𝕜)
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where 𝜋2(𝑉𝕜) = 0 (because by construction the universal cover of 𝑀𝕜 is a Euclidean
space) and 𝜋1(𝑃 ) ↪ 𝜋1(𝑉𝕜) so 𝜋2(𝑉𝕜, 𝑃 ) = 0.

We now prove the last part of the main theorem, about conjugations. Consider the
family of contactomorphisms

Φ𝜏 ∶ (𝕋2 × 𝑀𝕜, 𝜉𝑛) → (𝕋2 × 𝑀𝕜, 𝜉𝑛), (𝑠, 𝑡; 𝑥) ↦ ( �𝑠, 𝑡 + 2𝜋𝑚𝜏𝑛 ; 𝑥) �

for 𝜏 ∈ [0, 1].
The contactomorphism Φ1 is conjugated to Ψ𝑛,𝑚 by the diffeomorphism

𝐴∶ (𝑉𝕜, 𝜉𝑛) → (𝑉𝕜, 𝜉𝑛), (𝑠, 𝑡; 𝑥) ↦ (𝑡, −𝑠; 𝑥)
which satisfies 𝐴Φ1𝐴−1 = Ψ𝑛,𝑚. But 𝐴 cannot be replaced by a contactomorphism
since Φ1 is, by construction, contact isotopic to the identity.

9.4. Later developments and prospects
Both papers Giroux and Massot 2015 and Massot and Niederkrüger 2016 are rather
recent and there is not much new in these directions, except for the appearance of Lanzat
and Zapolsky 2015 which constructs new examples of non-trivial contact mapping classes
in higher dimensions. However these examples do not live on closed contact manifolds
but on contactizations 𝑊 × 𝕊1 of Liouville manifolds. The fact that they are non-trivial
improves corresponding results about the Liouville base in Khovanov and Seidel 2002. It
would be interesting to know whether this result survives compactification of the ambient
manifold, say by blow down as in Section 7.3.1 (this operation turns 𝑊 × 𝕊1 into the
closed manifold supported by the open book with page 𝑊 and monodromy identity).

In the three dimensional case, what is missing is a general result analogous to the coarse
classification of tight contact structures (see Section 3.2.5). There is no general criterion
guaranteeing that ker(𝜋0𝒟(𝑉 ; 𝜉) → 𝜋0𝒟(𝑉 )) is finite, or even finitely generated. As
proved in Ding and Geiges 2010, this kernel is isomorphic to ℤ if 𝑉 = 𝕊1 × 𝕊2 and 𝜉 is
tight. Since 𝒟(𝕊2 × 𝕊1) has a lot of topology (although it has finitely many connected
components), it may be an exceptional case from the contact point of view too. From
the coarse classification theorem and results in this chapter, it is natural to restrict
attention to irreducible atoroidal manifolds. In that case it follows from Perelman’s
proof of the geometrization conjecture that 𝑉 is hyperbolic. Mostow rigidity then proves
that 𝜋0𝒟(𝑉 ) is finite. Better, Gabai 2001 proved that each connected component is
contractible. So the kernel of 𝜋0𝒟(𝑉 ; 𝜉) → 𝜋0𝒟(𝑉 ) is isomorphic to 𝜋1 Ξ(𝑉 ; 𝜉). One
could hope to study this fundamental group by techniques extending the ones used in
the coarse classification theorem. Another possibility is to try and mimic the methods
used to get generating sets for surface mapping class groups. The strategy there is to
find a complex onto which the mapping class group acts nicely, typically a variation
on the complex of curves. One could hope to use convexity here but I was not able to
implement this strategy up to now.

In higher dimensions, computing ker(𝜋0𝒟(𝑉 ; 𝜉) → 𝜋0𝒟(𝑉 )) seems rather hopeless
since there is no single example of a computed 𝜋0 Ξ(𝑉 ). However one can still hope for

159



9. Contact mapping class groups

some weak version of our results about contact element bundles. It could be that, for
almost every closed manifold 𝑀 , every contact diffeomorphism 𝜑 of 𝑆𝑇 ∗𝑀 is contact
isotopic to the lift of a diffeomorphism 𝑓 of 𝑀 . A more realistic goal could be to prove
that 𝜑 is homotopic to such a lift. My hope is to use sheaf theoretical methods to prove
that. Indeed the contact graph in 𝑆𝑇 ∗(𝑀 × 𝑀) of the lift of any 𝑓 is the microsupport
of the constant sheaf on the graph of 𝑓 . If one can prove that the graph of every 𝜑 is a
microsupport then it would certainly have topological consequences. Here the inspiration
is Guillermou 2012 which proved that every closed exact Lagrangian in the cotangent
bundle of a closed manifold is the microsupport of some nice complex of sheaves, and
used it to reprove that it is homotopy equivalent to the base.

In a different direction, it is interesting to study the case of overtwisted contact 3-
manifolds. Because of the parametric version of the classification of overtwisted contact
structures from Eliashberg 1989, this is essentially equivalent to studying the space of
overtwisted disks inside a given overtwisted manifold. This is a question that I asked my
student Fabio Gironella to think about, but I quickly found out that Thomas Vogel was
preparing a paper on the same examples, hence I redirected Fabio towards something
else.
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10. Exotic tight contact structures on ℝ2𝑛−1

We saw in Section 3.2.1 that Eliashberg 1992 proved that all tight contact structures on
the closed ball 𝔹3 which coincide with the standard one along the boundary are isotopic
to it, relative to the boundary. Together with genericity of 𝜉-convex surfaces and the
realization lemma (or by direct use of the elimination lemma), this can be used to prove
that ℝ3 has a unique isomorphism class of tight contact structures.

In higher dimension this strategy fails at all stages. First we do not have genericity
of 𝜉-convex surfaces (or the analogue of the elimination lemma). And there are exotic
contact structures on closed balls. Indeed Eliashberg 1991b; Geiges 1997a; Ustilovsky
1999; Ding and Geiges 2004b proved that spheres have strongly fillable contact structures
that are homotopic to the standard one but not isomorphic. Removing a standard open
Darboux ball to such a sphere produces an exotic closed ball. Note that the latter
argument does not tell anything about the complement of an open ball or a point. At
this stage we still don’t know whether ℝ2𝑛−1 admits an exotic tight contact structure
when 𝑛 is larger than two.

Many exotic contact structures on 𝕊2𝑛−1 are actually Stein fillable, they arise as link
of isolated complex singularities. The corresponding Stein filling has some non-trivial
topology, and this was used to produce exoticness. Indeed the Eliashberg-Floer-McDuff
theorem from McDuff 1991a guarantees that all Stein fillings of the standard contact
structure on 𝕊2𝑛−1 are diffeomorphic to balls.

Joint work in progress with Klaus Niederkrüger aim to prove the following variation of
this result, which would imply the existence of exotic tight contact structures on ℝ2𝑛−1.

Conjecture 10.1. Let 𝜉 be a contact structure on 𝕊2𝑛−1 having some Stein filling 𝑊 .
If the complement of a point in (𝕊2𝑛−1, 𝜉) is contactomorphic to the standard contact
structure on ℝ2𝑛−1 then 𝑊 is diffeomorphic to a ball.

The following definition appeared in Niederkrüger and Rechtman 2011 generalizing
the proof the Weinstein conjecture for tight 3-manifolds having non-zero 𝜋2 in Hofer
1993.

Definition 10.2. Let (𝑀, 𝜉) be a (2𝑛−1)-dimensional contact manifold. An 𝑛-dimensional
submanifold 𝑁 ↪ 𝑀 is called a Legendrian open book (Lob), if 𝜉 induces a singular
foliation ℱ on 𝑁 that is diffeomorphic to an open book decomposition, i.e., the singular
set sing(ℱ) = { �𝑝 ∈ 𝑁 ∣ � 𝑇𝑝𝑁 ⊂ 𝜉𝑝} � is the binding of an open book on 𝑁 , and each
regular leaf of the foliation corresponds to a page of the open book.

Legendrian open books can be used to understand properties of symplectic fillings of
a contact manifold (𝑀, 𝜉) by studying the holomorphic disks whose boundaries lie in
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10. Exotic tight contact structures on ℝ2𝑛−1

the Lob. Near the binding the situation is the same as for bLobs, and one has a source
of 𝐽 -holomorphic disks.

Proposition 10.3. Let (𝕊2𝑛−1, 𝜉0) be the standard contact sphere, and let 𝕊𝑛−2
sing be the

isotropic submanifold

𝕊𝑛−2
sing ∶= { �(0, 𝑖y) ∈ ℂ × ℂ𝑛−1 ∣ � y ∈ ℝ𝑛−1, ‖y‖ = 1} � .

The complement 𝕊2𝑛−1 ∖ 𝕊𝑛−2
sing is foliated by a family of 𝑛-dimensional spheres 𝐿b that

is parametrized by b in the interior of 𝔻𝑛−1. Each of these spheres 𝐿b is a Lob with
Legendrian open book (𝐵b, 𝜗b), where the binding 𝐵b is the subset where {𝑟 = 0}, and
the fibration is 𝜗b ∶ 𝐿b ∖ 𝐵b → 𝕊1, (𝑟𝑒𝑖𝜑,x) ↦ 𝑒𝑖𝜑.

In order to prove Conjecture 10.1, we assume the existence of an isomorphism between
the standard ℝ2𝑛−1 and the complement of a point in the boundary of some Stein
manifold 𝑊 . Transporting the family of Lobs from Proposition 10.3 to ℝ2𝑛−1 and then
𝜕𝑊 , we get the same picture in 𝜕𝑊 except that everything become wild near one point.

Our work in progress aims to prove that holomorphic curves can still be used in this
situation. In particular the total lack of energy bound is made up for by the assumption
that the filling 𝑊 is Stein. For instance, the proof in a tamer context could use the
following steps to analyse compactness of some family of curves. First use a bubbling
off analysis to build a bounded holomorphic plane 𝑣 ∶ ℂ → 𝑊 + with finite area, where
𝑊 + is a completion of 𝑊 . Next use Gromov’s removal of singularities to extend 𝑣
to a holomorphic sphere ℂP1 → 𝑊 + and get a contradiction to some assumption on
𝑊 , typically symplectic asphericity. In our case, the contradiction comes from the fact
that 𝑊 + embeds into some ℂ𝑁, and Liouville’s theorem forbidding the existence of
a non-constant bounded holomorphic map from ℂ to ℂ𝑁, without any energy bound
assumption.

This argument, and others similar in spirit, are efficient but they require to keep
the almost complex structure integrable (at least near the boundary). In particular we
cannot modify the complex structure to build the Bishop family of holomorphic disks
near the binding of each Lob and guarantee that no other disk approach the binding. The
existence part is more or less already proved in the complex analysis literature, although
we have a more symplectic friendly proof. But the uniqueness is still in progress.
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11. Open books and invariant norms
Section 5.3 reviewed what is known about invariant norms on contact transformation
groups. A conjugation invariant norm on a group 𝐺 is a function 𝜈 ∶ 𝐺 → [0, ∞)
satisfying the following properties:

1. 𝜈(Id) = 0 and 𝜈(𝑔) > 0 for all 𝑔 ≠ Id.

2. 𝜈(𝑔ℎ) ≤ 𝜈(𝑔) + 𝜈(ℎ) for all 𝑔, ℎ ∈ 𝐺.

3. 𝜈(𝑔−1) = 𝜈(𝑔) for all 𝑔 ∈ 𝐺.

4. 𝜈(ℎ−1𝑔ℎ) = 𝜈(𝑔) for all 𝑔, ℎ ∈ 𝐺.

Bi-invariant distances are another point of view on the same objets. Such a distance 𝑑
defines a norm 𝜈 = 𝑑(·, Id) and, starting from a norm 𝜈, one gets a distance 𝑑(𝑓, 𝑔) =
𝜈(𝑓𝑔−1).

Inspired by the Hofer distance in symplectic geometry, there have been several recent
works on invariant norms on groups of contact transformations isotopic to the identity
or its universal cover, see Sandon 2010; Fraser, Polterovich, and Rosen 2012; Colin and
Sandon 2015; Borman and Zapolsky 2015 and the survey Sandon 2015.

A conjugation invariant norm is a purely algebraic object (e.g. 𝜈(Id) = 0 and 𝜈(𝑔) = 1
for all other 𝑔 is very much invariant). The topology given by such a norm can be very
different from the smooth one (again this happens in the symplectic case with Hofer and
Viterbo’s distances).

In the contact case, norms are discrete except maybe on 𝜋1(𝐺). The usual way of
defining a discrete invariant is through generating sets. To any generating set 𝑆 of a
group 𝐺 we can associate the norm

𝜈𝑆(𝑔) = min{𝑘 ∈ ℕ ; 𝑔 ∈ 𝑆𝑘}.

Non-degeneracy and triangle inequality are obvious. Invariance by inversion and conju-
gation hold whenever 𝑆 is invariant by these operations. In that case we will say that 𝑆
is an invariant generating set.

Recall a group is called perfect if any element is a product of commutators. In this case
the set of commutators is an invariant generating set. The resulting norm is called the
commutator length. A group is uniformly perfect is this norm is bounded. If furthermore
𝐺 is a simple group then every non-trivial element 𝑔 gives a generating set {𝑔, 𝑔−1} and
a corresponding norm 𝜈𝑔. If 𝜈𝑔 is bounded for some 𝑔 then any invariant norm 𝜈 on
𝐺 is bounded, by max(𝜈𝑔)𝜈(𝑔). A group is uniformly simple if all these 𝜈𝑔 norms are
bounded (by the same number).
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As an example, we discuss a famous subgroup of contact transformations of the stan-
dard contact 𝕊3.

Example 11.1 (The rotation group SO3(ℝ)). Every element is the product of two
reflections hence the product of two conjugates of any given rotation with angle 𝜋 . One
then check that, for every non-trivial rotation 𝑅, there is a product of two conjugate of
𝑅 which has angle 𝜋. Hence every element of SO3(ℝ) is a product of four conjugates
of 𝑅. Let 𝐴 be the rotation with angle 𝜋/2 around the 𝑧-axis and let 𝐵 be the half-turn
around the 𝑥-axis. Then [𝐴, 𝐵] is a half-turn (around the 𝑧-axis). Hence every element
of SO3(ℝ) is the product of at most two commutators. Note every element is conjugate
to its inverse in this group.

The only general result known about contact transformation groups is in Rybicki 2010
which proves that, for every contact manifold (𝑉 , 𝜉), 𝐺 = 𝒟(𝑉 ; 𝜉) and its universal cover
are simple. In particular these groups are perfect, a crucial information for us.

The most basic observation about the algebraic structure of transformation groups
is that two transformations with disjoint support commute. A refined version of this
observation involve commutators. It goes back at least as far as Thurston’s work on
diffeomorphism groups.

Observation 11.2. Let 𝑎, 𝑏 and 𝑔 be three transformations such that 𝑔 displaces the
support of 𝑎 from the support of 𝑏. Then the commutator [𝑎, 𝑏] is a product of four
conjugates of 𝑔 or 𝑔−1.

Proof. Indeed, if we set 𝑐 = 𝑔−1𝑎𝑔 then 𝑏 and 𝑐 have disjoint support hence 𝑐𝑏 = 𝑏𝑐 and:

𝑎𝑏𝑎−1𝑏−1 = 𝑔𝑐𝑔−1𝑏𝑔𝑐−1𝑔−1𝑏−1

= 𝑔𝑐𝑔−1𝑐−1𝑐𝑏𝑔𝑐−1𝑏−1𝑏𝑔−1𝑏−1

= 𝑔(𝑐𝑔−1𝑐−1) ((𝑏𝑐)𝑔(𝑏𝑐)−1) (𝑏𝑔−1𝑏−1).

Hence commutators of transformations with displaceable support can be replaced by
conjugates of elements depending only on the support. The next step in this line is
Burago, Ivanov, and Polterovich 2008, Theorem 2.2(i) which guarantees that, if 𝐹 is a
transformation and 𝑈 is a subset whose iterated images under 𝐹 are pairwise disjoint
(𝐹 𝑖(𝑈)∩𝐹 𝑗(𝑈) is empty for all 𝑖 ≠ 𝑗 in ℤ) then any product of commutators of elements
supported in 𝑈 can be rewritten as a product of only two such commutators.

This motivates the following definition, originally introduced in the smooth setting in
ibid., and later adapted to the contact setting in Fraser, Polterovich, and Rosen 2012.

Definition 11.3 (Burago, Ivanov, and Polterovich 2008; Fraser, Polterovich, and Rosen
2012). An open contact manifold (𝑉 , 𝜉) is called contact portable if there exists a compact
set 𝑉0 ⊂ 𝑉 and a contact isotopy {𝑃𝑡} of 𝑉 , 𝑡 ≥ 0, 𝑃0 = Id such that following hold:

• The set 𝑉0 is an attractor of {𝑃𝑡}, i.e. for every compact set 𝐾 ⊂ 𝑉 there exists
some 𝑡 > 0 such that 𝑃𝑡(𝐾) ⊂ 𝑉0.
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• There exists a contactomorphism 𝜃 of 𝑉 displacing 𝑉0 (𝜃 may have non-compact
support).

In this situation, 𝑉0 is called a core of 𝑉 .

The algebraic ideas mentioned above prove the following key statement.

Proposition 11.4 (Burago, Ivanov, and Polterovich 2008; Fraser, Polterovich, and
Rosen 2012). If (𝑉 , 𝜉) is a portable contact manifold then any contact transformation
with compact support in 𝑉 is a product of two commutators. If 𝜃 is a displacing contac-
tomorphism as in Definition 11.3, then each of these commutators is a product of four
conjugates of 𝜃 or 𝜃−1.

It is an easy observation that interiors of contact handlebodies are contact portable,
with their Legendrian spine as attractors. Actually I do not know any other example
(the only example in Fraser, Polterovich, and Rosen 2012 is the standard ℝ2𝑛+1).

The next crucial fact is that the open book decomposition theorem decomposes any
closed contact manifold into a union of two contact handlebodies (see Section 3.3). Hence
it is useful to understand when contact transformations can be decomposed with respect
to such a contact Heegaard splitting.

Proposition 11.5. Let (𝑉 , 𝜉) be a closed orientable contact manifold and let 𝐺 be the
connected component of the identity in the contact transformation group 𝒟(𝑉 , 𝜉). Assume
that 𝜉 is supported by an open book whose pages are subcritical Weinstein manifolds. Then
Every element of 𝐺 or its universal cover is the composition of two elements with compact
support in the interior of contact handlebodies.

Corollary 11.6. If (𝑉 , 𝜉) is supported by an open book with subcritical pages then every
norm on 𝐺 or its universal cover is bounded.

The above proposition is rather simple to prove. Let 𝑉 = 𝐻0 ∪ 𝐻1 be a contact Hee-
gaard splitting coming from an open book with subcritical pages. There are Legendrian
spines 𝐿0 and 𝐿1 for 𝐻0 and 𝐻1 that do not have any Legendrian pieces: they are
union of isotropic submanifolds of lower dimensions. The key point is that, in a generic
contact isotopy 𝜑, there will not be any intersection between 𝐿0 and some 𝜑𝑡(𝐿1).

The above assumption on open book is of course rather strong and such manifold
definitely have a flexible flavor, although they can be Stein fillable, e.g. if the monodromy
is trivial. In a more general situation, one can imagine the following scenario. During
the isotopy 𝜑, there are finitely many collisions between 𝜑𝑡(𝐿1) and 𝐿0 but one can
prevent them by composing 𝜑𝑡 with an isotopy having support in a ball which slows
down 𝜑𝑡 to avoid collision. This is the strategy used in Burago, Ivanov, and Polterovich
2008; Tsuboi 2008 to prove that invariant norms on diffeomorphism groups are bounded.

In the contact case we know this strategy can not succeed in all situations since there
are examples of unbounded norms on the universal cover of 𝐺. What happens is that the
slow down move needs some definite amount of room. Something like a loose chart for the
Legendrian part of spines is required. Note however that the complement of a Legendrian
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spine of one handlebody in a contact Heegaard splitting is tight (it embeds into the
fillable manifold constructed from the same page with trivial monodromy). It seems
very likely that the Legendrian spine of an open book with flexible page has the right
kind of loose charts (by definition, critical handles are attached to loose Legendrians,
and the Liouville flow provide room in the relevant extra dimension). However the class
of contact structures supported by open books with flexible pages is rather mysterious.
It definitely has some flexible flavor but does not seem to have any direct relation to
overtwistedness.

We encode this discussion into a technical definition and a conjecture.

Definition 11.7. An element of 𝐺 or its universal cover has a good decomposition if it
can be written the composition of two elements with compact support in the interior of
contact handlebodies and an element with compact support in a Darboux ball.

Conjecture 11.8. If (𝑉 , 𝜉) is overtwisted or supported by an open book with flexible
pages then every element of 𝐺 or its universal cover has a good decomposition.

It follows from the algebraic discussion above that this conjecture (or its proved version
for subcritical open books) would imply that all invariant norm on the corresponding
group are bounded. But the proof actually give explicit bounds in many cases. For
instance, let 𝜑 be a strictly monotone isotopy. It means that the vector field 𝑑𝜑𝑡/𝑑𝑡
is never in 𝜉 (𝜑 could be a Reeb flow for instance). Then there is a positive 𝜀0 such
that, for all 𝜀 ∈ (0, 𝜀0], every element of 𝐺 can be written as a product of at most
20 conjugates of 𝜑𝜀 and 𝜑−1

𝜀 . This essentially follows from the fact that 𝜑𝜀 displaces
isotropic submanifolds.

On generic Legendrian isotopies
A technical ingredient in order to tackle Conjecture 11.8 is to prove generic properties of
the trace 𝜑(𝐿×[0, 1]) where 𝜑∶ 𝑉 ×[0, 1] → 𝑉 is a contact isotopy and 𝐿 is a Legendrian
submanifold. We know since Whitney 1943, 1944 what kind of singularities to expect
if we perturb 𝜑 among all smooth maps: 𝜑 will become an immersion outside finitely
many Whitney umbrellas, and we also know things about double and triple points. But
we need to stay among contact isotopies. I wasn’t able to find this statement in the
literature so I proved it.

A smooth map from 𝐿 × 𝐼 to (𝑉 , 𝜉) is a trace of Legendrian isotopy if and only if its
1-jet extension lands in:

Λ∗(𝐿 × 𝐼, 𝑉 ; 𝜉) = {((𝑙, 𝑡), 𝑣, 𝐴) ∈ 𝐽1(𝐿 × 𝐼, 𝑉 ) ; 𝐴 ∶ 𝑇 𝐿 × {0}
Lag
↪ 𝜉𝑣}

This space is an open subset of the smooth codimension 𝑛(𝑛 + 1)/2 submanifold Λ(𝐿 ×
𝐼, 𝑉 ; 𝜉) ⊂ 𝐽1(𝐿 × 𝐼, 𝑉 ) defined by asking that 𝐴(𝑇 𝐿 × {0}) is isotropic in 𝜉𝑣 without
requiring any rank condition.

Singularities of maps from 𝐿 × 𝐼 to 𝑉 correspond in 𝐽1(𝐿 × 𝐼, 𝑉 ) to the stratified
submanifold Σ(𝐿 × 𝐼, 𝑉 ) of 1-jets ((𝑙, 𝑡), 𝑣, 𝐴) where 𝐴 does not have full rank. This
Σ(𝐿 × 𝐼, 𝑉 ) has codimension 𝑛 + 1 in 𝐽1(𝐿 × 𝐼, 𝑉 ).
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In a Darboux chart, both Λ∗ and Σ become real algebraic sets. There are not transverse
to each other so studying their intersection requires some care. But I proved that this
intersection is of codimension 𝑛 + 1 in the smooth variety Λ∗. This is in accordance
with the hope that non-immersed points are isolated in 𝐿 × 𝐼 . But it is not enough
since we want to perturb while staying in Λ∗ so we cannot direct apply the usual “Thom
transversality in jet spaces” theorem.

Instead one can use a front projection and the associated lift map. The 1-jet of a lifted
front can be written in terms of the 2-jet of the front and I proved that this jet lift is an
algebraic submersion. Hence the preimage of Λ∗ ∩ Σ has the expected codimension and
Thom transversality applies.
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As explained in Section 5.3, one can hope to define contact homeomorphisms, at least in
dimension 3. In this chapter we explain how convexity could help to prove foundational
results in this area.

12.1. Carnot-Carathéodory bilipschitz homeomorphisms
The Heisenberg group ℍ𝑛 in dimension 2𝑛 + 1 is constructed from the 2𝑛-dimensional
symplectic vector space (𝐸, 𝜔0) (unique up to isomorphism) as ℍ𝑛 = 𝐸 × ℝ equipped
with the following semi-direct product group law:

(𝑣, 𝑧)(𝑣′, 𝑧′) = (𝑣 + 𝑣′, 𝑧 + 𝑧′ + 𝜔0(𝑣, 𝑣′)/2).

Let 𝛽0 be the canonical primitive of 𝜔0 (i.e. (𝛽0)𝑣 = 𝜄𝑣𝜔0). Then 𝛽0 + 𝑑𝑧 is a left
invariant contact form on ℍ𝑛. Any choice of Euclidean structure on 𝐸 compatible with
𝜔0 gives rise to a left-invariant Riemannian metric on ℍ𝑛. The corresponding sub-
Riemannian metric for (ℍ𝑛, 𝜉0 = ker(𝛽0 +𝑑𝑧)) is independent of the choice of Euclidean
structure up to homothety. By a slight abuse of notation we will call it “the natural
sub-Riemannian structure on ℍ𝑛”.

It is also convenient to consider the “norm”

𝑁(𝑣, 𝑧) = ( �‖𝑣‖4 + |𝑧|2) �1/4

which defines a left invariant distance which is equivalent to the sub-Riemannian ones.
The next crucial geometric objects are dilatations

𝛿𝜆(𝑣, 𝑧) = (𝜆𝑣, 𝜆2𝑧).

For each pair (𝑥, 𝑦) we have 𝑑(𝛿𝜆(𝑥), 𝛿𝜆(𝑦)) = 𝜆𝑑(𝑥, 𝑦) hence 𝛿𝜆 is bilipschitz with
constant BiLip(𝛿𝜆) = 𝜆. Also 𝑁(𝛿𝜆(𝑥)) = 𝜆𝑁(𝑥).

Examples of bilipschitz homeomorphisms

We need some examples of bilipschitz homeomorphisms in dimension 3. Balogh, Hoefer-
Isenegger, and Tyson 2006 proves that a Lipschitz map 𝑓 of ℝ2 such that there is a
constant 𝜆 such that a.e. 𝐽(𝑓) = 𝜆 lifts to a unique Lipschitz map in the Heisenberg
group. For instance one could lift 𝑓(𝑥, 𝑦) = (𝑥 + 𝑔(𝑦), 𝑦) where 𝑔 is any Lipschitz map
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12. Towards contact homeomorphisms

from ℝ to itself. As a very simple example we can lift 𝑔𝑡(𝑦) = −𝑡|𝑦| to get the bilipschitz
flow

𝜑𝑡(𝑥, 𝑦, 𝑧) = (𝑥 − 𝑡|𝑦|, 𝑦, 𝑧 − 𝑡
2𝑦|𝑦|) .

This map is not differentiable in the 𝜕𝑦 direction along the plane 𝑦 = 0 but one can
explicitly check that 𝜑∗

𝑡𝛼 = 𝛼 everywhere else. Of course on can use more complicated
maps, say 𝑔(𝑦) = 𝑦2 sin(1/𝑦)) for instance.

One can also lift maps like 𝑓(𝑟, 𝜑) = (𝑟, 𝜑 + 𝜃(𝑟2)) in polar coordinates (𝑟, 𝜑). One
can compute the matrix of 𝐷𝑓 in the orthonormal moving frame (𝜕𝑟, (1/𝑟)𝜕𝜑) :

𝐷𝑓(𝑟, 𝜑) = ( 1 0
2𝑟2𝜃′ 1)

and we get that 𝑓 is bilipschitz if 𝜃′ = 1/𝑟2 for instance because both 𝐷𝑓 and 𝐷𝑓−1

are bounded. Note that 𝑓 sends any line through the origin to a spiral crossing each
coordinate axis infinitely many times. Those curves lift to Legendrian with this behavior.

The examples above are not truly 3-dimensional so they can be somewhat misleading.
For instance they do not create Legendrian curves that have intersections with arbitrarily
small Reeb translates. An easy way to build some is to craft a bilipschitz map which
commutes with one dilatation. Denote by 𝐵(𝑂, 𝑟) the ball of radius 𝑟 for the norm 𝑁 .
Any smooth contactomorphism 𝑢1 supported in 𝐵(𝑂, 2) ∖ 𝐵(𝑂, 1), can be extended by
conjugation by 𝛿2:

∀𝑛 ∈ ℤ; 𝑢𝐵(𝑂,2𝑛+1)∖𝐵(𝑂,2𝑛) = 𝛿𝑛
2 ∘ 𝑢1 ∘ 𝛿−𝑛

2 .

The crucial point is that BiLip(𝑢) = BiLip(𝑢1). In particular the extension by 𝑢(𝑂) = 𝑂
is (globally) biLipschitz everywhere. If 𝑢1 sends the Legendrian line 𝐿 = {𝑥 = 𝑧 = 0}
to a Legendrian which has a Reeb chord then 𝑢(𝐿) will have shorter and shorter Reeb
chords accumulating on 0.

The Pansu-Rademacher theorem
The main result of Pansu 1989 is a Carnot-Carathéodory version of Rademacher’s the-
orem asserting that Lipschitz maps are almost everywhere differentiable. This requires
a notion of differentiability adapted to the sub-Riemannian setting.

Definition 12.1. A map ℎ from ℍ𝑛 to itself with ℎ(0) = 0 is Pansu-differentiable (or
P-differentiable) at 0 if

ℎ𝑡(𝑥) = 𝛿1/𝑡 ∘ ℎ ∘ 𝛿𝑡(𝑥)
converges uniformly on compact subsets when 𝑡 goes to zero.

One can use this definition to define P-differentiability at any point of any homeo-
morphism between contact manifolds. Pansu’s theorem is then that CC-lipschitz maps
are almost everywhere P-differentiable. If the map is bilipschitz, and one uses a local
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Darboux chart, one has the extra conclusion that, almost everywhere, the limit map
from the definition is a group automorphism of ℍ𝑛.

This is clearly a strong result but one must keep in mind that the Euclidean version
does not prevent the existence of exotic smooth structures that are bilipschitz homeo-
morphic to standard ones, see Sullivan 1979.

12.2. An anisotropic contact manifold
We want to know whether CC-bilipschitz maps remember contact topology. Hence the
most pressing question is whether a neighborhood of an overtwisted disk can be CC-
bilipschitz embedded into ℍ3. In this section we explain how the results discussed in
Section 3.2.1 could help answering this question, using characteristics of invariant contact
structures on 𝕋2 × ℝ that could be seen from a metric perspective.

In this section, 𝑉 = 𝑇 2×ℝ with coordinates (𝑥, 𝑦, 𝑡) and 𝜉 = ker(cos(𝑘𝑦)𝑑𝑥−sin(𝑘𝑦)𝑑𝑡)
for some fixed integer 𝑘. We denote by 𝐻 ∈ 𝐻1(𝑉 , ℤ) the homology class of {𝑦 = 𝑡 = 0}.

Proposition 12.2. The contactomorphism group Diff(𝑉 , 𝜉) has the following rigidity
properties:

• Let 𝜄 ∶ 𝑇 2 × [−𝜀, 𝜀] → 𝑉 be a homologically essential contact embedding. Then
𝜄∗𝐻 = 𝐻.

• A diffeomorphism 𝜓 of 𝑉 is isotopic to a element of Diff(𝑉 , 𝜉) if and only if
𝜓∗𝐻 = 𝐻.

• If 𝜌 ∶ 𝕊1 ↪ Diff(𝑉 , 𝜉) is a 1-parameter subgroup smoothly conjugated to a rotation
in 𝑇 2 then for any 𝑣 ∈ 𝑉 , [𝜌(𝕊1)𝑣] = 𝐻.

• For any positive integers 𝑛 and 𝑚, one has the self covering map 𝜋𝑛,𝑚 ∶ 𝑉 → 𝑉
defined by 𝜋𝑛,𝑚(𝑥, 𝑦, 𝑡) = (𝑛𝑥, 𝑚𝑦, 𝑡). The contact structure 𝜋∗

𝑛,𝑚𝜉 is isotopic to
𝜉 if and only if 𝑚 = 1.

Also, 𝐻 is the only primitive homology class in 𝐻1(𝑉 , ℤ) which is not the direction
of a foliation by Legendrian circles.

Conjecture 12.3. Let 𝜄 ∶ 𝑇 2×[−𝜀, 𝜀] → 𝑉 be a homologically essential locally bilipschitz
embedding. Then 𝜄∗𝐻 = 𝐻.

Conjecture 12.4. Let 𝜌 ∶ 𝕊1 ↪ Diff(𝑉 , 𝜉) be the rotation group 𝜌(𝜃) = (𝑥, 𝑦, 𝑡) ↦
(𝑥 + 𝜃, 𝑦, 𝑡)). Let ℎ be a homeomorphism of 𝑉 . If ℎ ∘ 𝜌(𝜃) ∘ ℎ−1 is a group of locally
bilipschitz homeomorphisms then ℎ∗𝐻 = 𝐻.

We now link this manifold with the tight/overtwisted dichotomy. First it is pretty
clear that the smooth version of Conjecture 12.3 implies Bennequin but the same is not
so clear for Conjecture 12.4. This could mean the later is more promising.

In Conjecture 12.4 we already have a 𝕊1 but the exotic one does not necessarily
commutes with it. Also note that a contact manifold can have a free 𝕊1 × 𝕊1 action:
think of a neighborhood of a prelagrangian torus.
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Proposition 12.5. If Conjecture 12.3 or Conjecture 12.4 is true then there is no bilip-
schitz embedding of an overtwisted disk into a tight contact manifold.

The proof of the above proposition will use Bennequin’s theorem and classification
results by Eliashberg and Giroux.

Proof. Assume for contradiction there is a tight (𝑀, 𝜉) with a bilipschitz image 𝜑(𝐵)
of a neighborhood 𝐵 of overtwisted disk 𝐷. After shrinking slightly 𝐵, we can assume
𝜑(𝐵) is contained in a smooth ball 𝐵1 in 𝑀 . Genericity of 𝜉-convex surfaces, the
realization lemma and Eliashberg’s uniqueness ensures that (𝐵1, 𝜉) embeds into the
standard 𝕊3. In addition, the neighborhood 𝐵 contains an unknotted Lutz tube (𝐷2 ×
𝕊1, 𝜉𝐿 = ker(𝑐𝑜𝑠(𝜋𝑟)𝑑𝑧 +𝑟 sin(𝜋𝑟)𝑑𝜃)). The boundary of this tube is prelagrangian with
meridian direction. It can be perturbed to a torus 𝑇 whose characteristic foliation is
a Morse-Smale suspension with two meridian closed leaves. Let 𝑈 be a homogeneous
neighborhood of 𝑇 and 𝜑 ∶ 𝑈 → 𝕊3 the restriction of the given bilipschitz embedding.
Let 𝜓 be a diffeomorphism approximating 𝜑 in 𝐶0-topology. Using genericity of 𝜉-convex
surfaces, we can further assume that 𝑇 ′ = 𝜓(𝑇 ) is 𝜉-convex. Because of Bennequin’s
theorem, the dividing set of 𝑇 ′ is not meridian. So 𝜑−1 already gives a contradiction to
Conjecture 12.3.

We denote by 𝑈 ′ a homogeneous neighborhood of 𝑇 ′ inside 𝜑(𝑈). We set 𝑈1 =
𝜑−1(𝑈 ′). The restriction 𝜉1 of 𝜉𝐿 to 𝑈1 is tight since 𝜉𝐿 is tight on 𝑈 . The semi-local
Bennequin inequality and the classification of tight structures on thickened tori implies
the existence of free smooth 𝕊1 action with meridian direction on (𝑈1, 𝜉1). Hence we
get a free bilipschitz 𝕊1 action on 𝑈 ′ which contradicts Conjecture 12.4.

12.3. Handle straightening approach
In order to smooth contact homeomorphisms, we can try to use a contact handle de-
composition given by the open book theorem and smooth one handle at a time.

Conjecture 12.6 (0-handle straightening). We set

𝐻0 = {𝑥2 + 𝑦2 + 𝑧2 ≤ 1} ⊂ ℝ3 and 𝜉0 = ker(𝑑𝑧 − 𝑦𝑑𝑥 + 𝑥𝑑𝑦).

For any CC-bilipschitz embedding 𝜑 ∶ (𝐻0, 𝜉0) → (ℝ3, 𝜉0), there is a CC-bilipschitz
embedding 𝜓 ∶ (𝐻0, 𝜉0) → (ℝ3, 𝜉0) which coincides with 𝜑 near 𝜕𝐻0 and is smooth in a
neighborhood of the origin.

I expect that the above conjecture will follow from Pansu’s theorem explained in
Section 12.1, compare the Euclidean case in Kirby 1966, Theorem 6. The crucial step
would then be:

Conjecture 12.7 (1-handle straightening). We set

𝐻1 = {𝑥2 + 𝑧2 ≤ 1; 𝑦2 ≤ 1} ⊂ ℝ3 and 𝜉1 = ker(𝑑𝑧 + 𝑦𝑑𝑥 + 2𝑥𝑑𝑦).
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For any CC-bilipschitz embedding 𝜑 ∶ (𝐻1, 𝜉1) → (ℝ3, 𝜉1) which is smooth near 𝐻1∩{𝑦 =
±1}, there is a CC-bilipschitz embedding 𝜓 ∶ (𝐻1, 𝜉1) → (ℝ3, 𝜉1) which coincides with 𝜑
near 𝜕𝐻1 and is smooth in a neighborhood of 𝐻1 ∩ {𝑥 = 𝑧 = 0}.

For completeness we state what would be the 2-handle straightening conjecture, but
we will explain below that it can be bypassed.

Conjecture 12.8 (2-handle straightening). We set

𝐻2 = {𝑥2 + 𝑧2 ≤ 1; 𝑦2 ≤ 1} ⊂ ℝ3 and 𝜉2 = ker(𝑑𝑧 + 𝑦𝑑𝑥 + 2𝑥𝑑𝑦).

For any CC-bilipschitz embedding 𝜑 ∶ (𝐻2, 𝜉2) → (ℝ3, 𝜉2) which is smooth near 𝐻2 ∩
{𝑥2 + 𝑧2 = 1}, there is a CC-bilipschitz embedding 𝜓 ∶ (𝐻2, 𝜉2) → (ℝ3, 𝜉2) which
coincides with 𝜑 near 𝜕𝐻2 and is smooth in a neighborhood of 𝐻2 ∩ {𝑦 = 0}.

Eliashberg’s uniqueness on balls combines with Moise-Munkres smoothing of 3-dimensional
homeomorphisms (the combination of Moise 1952; Munkres 1960) to give the 3-handle
case.

Proposition 12.9 (3-handle straightening). We set

𝐻3 = {𝑥2 + 𝑦2 + 𝑧2 ≤ 1} ⊂ ℝ3 and 𝜉3 = ker(𝑑𝑧 − 𝑦𝑑𝑥 + 𝑥𝑑𝑦).

For any CC-bilipschitz embedding 𝜑 ∶ (𝐻3, 𝜉3) → (ℝ3, 𝜉3) which is smooth near 𝜕𝐻3,
there is a CC-bilipschitz embedding 𝜓 ∶ (𝐻3, 𝜉3) → (ℝ3, 𝜉3) which coincides with 𝜑 near
𝜕𝐻3 and is smooth everywhere.

Giroux’s theorem about existence of contact handle decompositions (which is equiv-
alent to existence of supporting open books) guarantees that the handle straightening
conjectures are sufficient to smooth any CC-bilipschitz homeomorphism between closed
contact 3-manifolds. Actually, using the characterization of contact handlebodies, one
can get away with 0-handle straightening and a weak version of 1-handle straightening.
Below we give a couple of possible weakening of this conjecture, there are many more.

Conjecture 12.10 (weak 1-handle straightening). We set

𝐻1 = {𝑥2 + 𝑧2 ≤ 1; 𝑦2 ≤ 1} ⊂ ℝ3 and 𝜉1 = ker(𝑑𝑧 + 𝑦𝑑𝑥 + 2𝑥𝑑𝑦).

For any CC-bilipschitz embedding 𝜑 ∶ (𝐻1, 𝜉1) → (ℝ3, 𝜉1) which is smooth near 𝐻1 ∩
{𝑦 = ±1}, there is a topological embedding 𝜓 ∶ 𝐻1 → ℝ3 which coincides with 𝜑 near
𝜕𝐻1 and is smooth in 𝐻1 ∩ {𝑥2 + 𝑧2 ≤ 𝜀} for some positive 𝜀 and such that the arc
𝛾 = 𝐻1 ∩ {𝑥2 + 𝑧2 = 0} is sent by 𝜓 to a 𝜉1-Legendrian curve whose 𝜉1-framing is
homotopic rel end-points to the one defined by 𝜓∗𝜉1.

Alternatively, one can ask that 𝜓 is smooth in 𝐻1 ∩ {𝑥2 + 𝑧2 ≤ 𝜀} for some positive 𝜀
and such that the annulus 𝐴 = 𝐻1 ∩{𝑥2 +𝑧2 = 𝜀/2} is sent by 𝜓 to a 𝜉1-convex annulus
divided by a pair of arcs isotopic rel end-points to 𝜓(𝐴 ∩ {𝑧 = 0}).
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Proposition 12.11. The 0-handle straightening conjecture and any version of the 1-
handle straightening conjecture imply that any CC-bilipschitz homeomorphism between
closed contact manifolds can be smoothed to a 𝐶0-close contact diffeomorphism (maybe
not isotopic to the original homeomorphism through CC-bilipschitz maps though).

Sketch of proof. This follows from the existence of arbitrarily fine contact handle de-
compositions and the characterization of contact handlebodies in Key observation 3.17.
In order to get 𝐶0-close approximation one must follows the proof of the characteriza-
tion in order to see that it gives a weak 2-handle straightening and then use 3-handle
straightening.

12.4. From quadri-lipschitz structures to homotopy classes
The conjectures from the preceding section are probably quite hard. One can instead try
to prove weaker results. For instance one could hope that a CC-bilipschitz map has to
preserve the homotopy class of (unoriented) plane field. Since we know that any homeo-
morphism in dimension 3 is isotopic to a diffeomorphism unique up to smooth isotopy, a
cheap way of making sense of the previous sentence is to asked whether a (non-contact)
smoothing of a CC-bilipschitz homeomorphism has to preserve the homotopy class of
plane field. One can even put stronger hypothesis and assume that our homeomorphism
is quadri-lipschitz: it is bilipschitz both in the Carnot-Carathéodory sense and in the
Euclidean sense.

Here we will sketch how a theory inspired by the microbundle theory from Milnor
1964 could prove the above conjecture.

Definition 12.12. A bundle family over a topological space 𝑋 is a triple (𝐻, 𝑝, 𝑠) where
𝐻 = (𝐻𝜆)𝜆∈(0,∞] is a family of topological spaces with 𝐻𝜆 ⊂ 𝐻𝜆′ when 𝜆 ≤ 𝜆′,
𝑝 ∶ 𝐻∞ → 𝑋 is called the projection map, 𝑠 ∶ 𝑋 → ∩𝐻𝜆 is called the zero section and
𝑝 ∘ 𝑠 = Id.

Two such objects (𝐻, 𝑝, 𝑠) and (𝐻′, 𝑝′, 𝑠′) over 𝑋 are called equivalent if there exist
neighborhoods 𝑉 and 𝑉 ′ of 𝑠(𝑋) and 𝑠′(𝑋), a homeomorphism 𝜑 ∶ 𝑉 → 𝑉 ′ and a
positive constant 𝐶 such that the diagram

𝑉

𝑋 𝑋

𝑉 ′

𝜑

𝑝𝑠

𝑠′ 𝑝′

commutes and:
𝑉 ′ ∩ 𝐻′

𝜆/𝐶 ⊂ 𝜑(𝑉 ∩ 𝐻𝜆) ⊂ 𝑉 ′ ∩ 𝐻′
𝐶𝜆.

One has an obvious definition of pull-back of a bundle family by a continuous map.
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Example 12.13. To any pair of metrics 𝑑1 and 𝑑2 on 𝑋 (defining the given topology
on 𝑋), we associate the bundle family defined by:

𝐻𝜆 = {(𝑥, 𝑦) ∈ 𝑋; 𝑑1(𝑥, 𝑦) ≤ 𝜆√𝑑2(𝑥, 𝑦)}

with 𝑝(𝑥, 𝑦) = 𝑥 and 𝑠(𝑥) = (𝑥, 𝑥).

The equivalence class of the bundle family in the above example depends only on
the bilipschitz equivalence classes of 𝑑1 and 𝑑2. In particular, a map which is quadri-
Lipschitz from (𝑋, 𝑑1, 𝑑2) to (𝑋′, 𝑑′

1, 𝑑′
2) pulls back 𝐻′ to a bundle family equivalent to

𝐻.

Definition 12.14. A diffuse contact structure on 𝑋 is a bundle family over 𝑋 which
is locally equivalent to one associated to (ℝ2𝑛+1, dCC, deuc) where dCC is the Carnot-
Caratheodory distance and deuc is the Euclidean one.

Example 12.15. In particular, any contact structure on a closed (2𝑛 + 1)-dimensional
contact manifold has a canonical equivalence class of diffuse contact structures. Indeed
one can choose some sub-Riemannian and Riemannian metrics and the bundle family
associated to corresponding distances will be locally equivalent to the model one.

Definition 12.16. A microplane field on a topological space 𝑋 is a tuple (𝐸, 𝐹 , 𝜋, 𝜎)
where 𝐸 and 𝐹 ⊂ 𝐸 are topological spaces, the projection 𝜋 is continuous map from
𝐸 to 𝑋, the zero section 𝜎 is a continuous map from 𝑋 to 𝐸 such that 𝜋 ∘ 𝜎 = Id.
Furthermore we require that, for each 𝑥 in 𝑋, there are neighborhoods 𝑈 of 𝑥 and 𝑉 of
𝜎(𝑥) with 𝜎(𝑈) ⊂ 𝑉 and 𝜋(𝑉 ) ⊂ 𝑈 and a homeomorphism 𝜑 from 𝑉 to 𝑈 × ℝ𝑛 which
sends 𝐹 ∩ 𝑉 to ℝ𝑛−1 × {0} and makes the following diagram commute:

𝑉

𝑈 𝑈

𝑈 × ℝ𝑛

𝜑

𝜋𝜎

Id ×0 𝑝𝑟1

Two microplane fields (𝐸, 𝐹 , 𝜋, 𝜎) and (𝐸′, 𝐹 ′, 𝜋′, 𝜎′) over 𝑋 are equivalent if there are
neighborhoods 𝑉 and 𝑉 ′ of 𝜎(𝑋) and 𝜎′(𝑋) and a homeomorphism 𝜑 from (𝑉 , 𝐹 ∩ 𝑉 )
to (𝑉 ′, 𝐹 ′ ∩ 𝑉 ′) which is compatible with sections and projections.

Example 12.17. Let 𝜉 be a plane field on a closed smooth manifold 𝑋. For any
connection ∇ on 𝑋 there is a neighborhood 𝑊 of the zero section in 𝑇 𝑋 such that the
exponential map of ∇ is a diffeomorphism from 𝑊 to a neighborhood of the diagonal
in 𝑋 × 𝑋. We can then set 𝐸 = exp(𝑊), 𝐹 = exp(𝜉 ∩ 𝑊), 𝜋(𝑥, 𝑦) = 𝑥 and 𝜎(𝑥) =
(𝑥, 𝑥). The tuple 𝜇𝜉 ∶= (𝐸, 𝐹 , 𝜋, 𝜎) is microplane field on 𝑋 whose equivalence class is
independent of the choices of ∇ and 𝑊 . We will say that 𝜇𝜉 is obtained by exponentiating
𝜉.

177



12. Towards contact homeomorphisms

Definition 12.18. A microplane field (𝐸, 𝐹 , 𝜋, 𝜎) is compatible with a diffuse contact
structure (𝐻, 𝑝, 𝑠) if, for every 𝜆 smaller then some 𝜆0, there exist nested neighborhoods
𝑉𝜆 of 𝜎(𝑋) and 𝑊𝜆 of 𝑠(𝑋) and a homeomorphism 𝜑 ∶ 𝑉𝜆0

→ 𝑊𝜆0
compatible with

projections and sections and such that

𝜑(𝑉𝜆 ∩ 𝐹) ⊂ 𝑊𝜆 ∩ 𝐻𝜆.

Note that the compatibility condition defined above depends only on the equivalence
classes of microplane field and diffuse contact structure.

Lemma 12.19. Let 𝜉 be a contact structure on a smooth manifold 𝑋 and 𝐻𝜉 a diffuse
contact structure on 𝑋 obtained from 𝜉 as in Example 12.15. Then any microplane field
obtained by exponentiating 𝜉 as in Example 12.17 is compatible with 𝐻𝜉.

Conjecture 12.20. Any two microplane fields compatible with a given diffuse contact
structure are equivalent.

Conjecture 12.21. There is a classifying space BMP(𝑛) and a universal microplane field
EMP(𝑛) → BMP(𝑛) such that any microplane field over 𝑋 is equivalent to 𝑓∗ EMP(𝑛)
for some 𝑓 ∶ 𝑋 → BMP(𝑛) . In addition there is a map from BMP(𝑛) to BTop(𝑛)
such that, if a microplane field is contained in the tangent microbundle of a topological
manifold 𝑋 then there is a commutative diagram

BMP(𝑛)

𝑋 BTop(𝑛)

producing the relevant equivalence classes of objects.

Conjecture 12.22. There are fibrations B𝛯(𝑛) → BMP(𝑛) such that

B𝛯(𝑛) BMP(𝑛)

BO(𝑛) BTop(𝑛)

𝜋

is commutative up to homotopy.
If 𝜇𝜉 is a microplane field obtained by exponentiating a plane field 𝜉 then the corre-

sponding classifying maps satisfies: 𝐵𝜇𝜉 ∼ 𝜋 ∘ 𝐵𝜉 among lifts of 𝑋 → BTop(𝑛).

Conjecture 12.23. If 𝑛 = 3, both horizontal maps in Conjecture 12.22 are homotopy
equivalences in a compatible way.

We can now put all pieces together assuming the above conjectures.
Let 𝐻𝜉 and 𝐻𝜉′ be diffuse contact structures associated to contact structures 𝜉 and

𝜉′ as in Example 12.15. Let 𝜇𝜉 and 𝜇𝜉′ be microplane fields obtained by exponentiating
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𝜉 and 𝜉′. Lemma 12.19 ensures that 𝐻𝜉 and 𝐻𝜉′ are compatible with 𝜇𝜉 and 𝜇𝜉′

respectively.
Assume that 𝜑 is a quadri-Lipschitz homeomorphism from (𝑋, 𝜉) to (𝑋, 𝜉′). By con-

struction, 𝐻𝜉 and 𝜑∗𝐻𝜉′ are equivalent. Conjecture 12.20 ensures that 𝜑∗𝜇𝜉′ is equiv-
alent to 𝜇𝜉. By Conjecture 12.21 it means the classifying maps 𝐵𝜑∗𝜇𝜉′ = 𝐵𝜇𝜉′ ∘ 𝜑 and
𝐵𝜇𝜉 are homotopic. Since 𝜇𝜉 and 𝜇𝜉′ are obtained by exponentiation, Conjecture 12.22
gives 𝜋 ∘ 𝐵𝜉′ ∘ 𝜑 ∼ 𝜋 ∘ 𝐵𝜉 where 𝜋 is the fibration from B𝛯(2) to BMP(2). By Conjec-
ture 12.23 so we get that 𝐵𝜉′ ∘𝜑 ∼ 𝐵𝜉 (among lifts of 𝐵𝑇 𝑋). Since 𝜑 is isotopic to some
diffeomorphism 𝜓, we have 𝐵𝜉′ ∘ 𝜓 ∼ 𝐵𝜉 (among lifts of 𝐵𝑇 𝑋) and 𝜓∗𝜉 is homotopic to
𝜉′ as unoriented plane fields.

12.5. Limits in 𝐶0-topology
A less radical approach to contact homeomorphisms and topological contact manifolds
is offered by the Eliashberg-Gromov theorem guaranteeing that a diffeomorphism which
is the 𝐶0-limit of a sequence of contact diffeomorphisms is contact, see Section 5.3.

Before trying to work with this definition, a test case is the following conjecture whose
topological version (without contact structure) follows from Cerf 1961, 1968.

Conjecture 12.24 (Local connectedness). Let (𝑀, 𝜉) be a closed contact 3–manifold.
The contactomorphism group 𝒟(𝑀; 𝜉) equipped with the 𝐶0 topology is locally arcwise
connected.

Again the hope is to use contact handle decompositions to prove the conjecture. For
instance, the next lemma follows from Eliashberg’s uniqueness of tight contact structures
on balls.

Lemma 12.25. Let 𝐵+ be a Darboux ball inside (𝑀, 𝜉) and 𝐵 ⋐ 𝐵+ a smaller Darboux
ball. For every 𝜑 in 𝒟(𝑀; 𝜉) such that 𝜑(𝐵) ⊂ 𝐵+, there exists a 𝜓 in 𝒟𝑐(𝐵+; 𝜉) such
that 𝜓 ∘ 𝜑 is the identity on a neighborhood of 𝐵.

Similar lemmas for higher index contact handles follow from the semi-local Bennequin
inequality and Colin’s disk theorem (see Section 3.2.4). A version of these lemmas where
the 𝐶0 norm of 𝜓 is controlled would readily imply Conjecture 12.24. More specifically,
the following would be enough for 0-handles and gives the general flavor:

Conjecture 12.26. Let 𝜉 be the standard contact structure on 𝑉 = 𝕊2 × ℝ and let
𝑗0 ∶ 𝕊2 → 𝑉 be the inclusion 𝑥 ↦ (𝑥, 0). For every positive 𝜀 and every 𝑗 ∶ 𝕊2 → 𝑉
which induces the same characteristic foliation as 𝑗0 on 𝕊2, and is 𝜀-close to 𝑗0 in 𝐶0

distance, there is a compactly supported contact transformation 𝜑 such that 𝜑 ∘ 𝑗 = 𝑗0
and 𝜑 is 100𝜀-close to Id in 𝐶0 distance.

Note that the PL analogue of this conjecture occupies roughly 15 pages in Moise
1952, which Cerf 1961 refers to in the smooth case: “La démonstration de ce résultat
est assez longue, et comme elle suit pas à pas celle du lemme 4 de Moise 1952, nous ne
la donnerons pas ici.”.
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12. Towards contact homeomorphisms

In the contact setting, even the case of 𝑗 ∶ 𝑥 ↦ (𝑥, 𝜀) is non-obvious since no map
(𝑥, 𝑡) ↦ (𝑥, 𝜌(𝑡)) will be contact and solve the problem.

Assuming that one can prove Conjecture 12.24, the next step (which shouldn’t be much
harder) would be to prove that the definition of contact homeomorphisms in terms of
𝐶0 limits is local:

Conjecture 12.27 (From local to global). Let (𝑀, 𝜉) be a closed contact 3–manifold.
Any homeomorphism of 𝑀 which is locally a 𝐶0-limit of smooth contact embeddings is
globally a 𝐶0-limit of contact diffeomorphisms.

Once contact homeomorphisms are well understood (whatever the definition), the next
step is to use them to define 𝐶0 contact manifolds as topological manifolds equipped with
an atlas whose transition functions are contact homeomorphisms. Again, in dimension 3,
we expect to see nothing new here, confirming that contact structures on 3-manifolds are
very much topological objects. The following is one way this could be stated precisely.

Conjecture 12.28 (Smoothing). Let 𝑀 be a closed topological manifold and 𝓐 an atlas
for 𝑀 whose transition maps are 𝐶0-limits of smooth contact embeddings of (ℝ3, 𝜉0).

Let Homeo(𝑀; 𝓐) be the space of homeomorphisms 𝜑 such that, for every 𝑥 in 𝑀 ,
there are charts 𝜒1 ∶ 𝑈1 ↪ ℝ3, 𝜒2 ∶ 𝑈2 ↪ ℝ3, and an open set 𝑈 ⊂ 𝑈1 such that 𝑥 is in
𝑈 , 𝜑(𝑈) ⊂ 𝑈2, and 𝜒2 ∘ 𝜑 ∘ 𝜒−1

1 ∶ 𝜒1(𝑈) → 𝜒2 ∘ 𝜑(𝑈) is a 𝐶0-limit of smooth contact
embeddings.

Then Homeo(𝑀; 𝓐) is a locally connected subgroup of Homeo(𝑀), and there is a
smooth structure Σ on 𝑀 and a contact structure 𝜉 on 𝑀Σ such that 𝒟(𝑀Σ; 𝜉) is dense
in Homeo(𝑀; 𝓐).

The pair (Σ, 𝜉) is unique up to isotopy: if Σ′ and 𝜉′ also lead to a dense 𝒟(𝑀Σ′ ; 𝜉′)
in Homeo(𝑀; 𝓐) then there is a homeomorphism 𝜓 topologically isotopic to Id𝑀 which
is a diffeomorphism from 𝑀Σ to 𝑀Σ′ and 𝜓∗𝜉 = 𝜉′.
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