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1 Contact structures on 3-manifolds
A plane field ξ on a 3–manifold V is a (smooth) map associating to each point
p of V a 2-dimensional subspace ξ(p) of TpV . All plane fields considered here
will be coorientable, it means one can continuously choose one of the half spaces
cut out by ξ(p) in TpV . In this situation, ξ can be defined as the kernel of some
nowhere vanishing 1–form α: ξ(p) = kerα(p). The coorientation is given by
the sign of α. We will always assume that V is oriented. In this situation a
coorientation of ξ combines with the ambient orientation to give an orientation
on ξ.

1.1 The canonical contact structure on the space of con-
tact elements

Let S be a surface and π : ST ∗S → S the bundle of cooriented lines tangent
to S. It can be seen as the bundle of rays in T ∗S, hence the notation. The
canonical contact structure on ST ∗S at a point d is defined as the inverse image
under π∗ of d ⊂ Tπ(d)S, see Figure 1.

Suppose first that S is the torus T 2 = R2/2πZ2. Let x and y be the canonical
S1-valued coordinates on T 2. A cooriented line tangent to T 2 at some point
(x, y) can be seen as the kernel of some 1–form λ which has unit norm with

Figure 1: Canonical contact structure on the bundle of cooriented lines. At
bottom is a portion of S with a tangent line at some point. Above that point
one gets the fiber by gluing top and bottom of the interval. The contact structure
is shown at the point of the fiber corresponding to the line drawn below.
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Figure 2: Canonical contact structure on T 3. Opposite faces of the cube are
glued to get T 3

respect to the canonical flat metric. So there is some angle z such that λ =
cos(z)dx− sin(z)dy. So we have a natural identification of ST ∗T 2 with T 3. In
addition the canonical contact structure can be defined by cos(z)dx− sin(z)dy
now seen as a 1–form on T 3 called the canonical contact form on T 3, see Figure 2.

When S is the sphere S2, ST ∗S can be identified with RP 3 so there is a
two-fold covering map from S3 to ST ∗S. The lifted contact structure is called
the canonical contact structure on S3. Later we will explain a way of thinking
of this contact structure as the boundary of the standard symplectic 4-ball.

1.2 Contact structures and contact forms
Definition 1. A contact structure on a 3–manifold is a plane field which is
locally diffeomorphic to the canonical contact structure on ST ∗R2. A contact
form is a 1–form whose kernel is a contact structure. A curve or a vector field
is Legendrian if it is tangent to a given contact structure.

As noted above all our manifolds will be oriented and diffeomorphisms in the
above definition shall preserve orientations and coorientations of plane fields.

Theorem 1 (Darboux–Pfaff theorem). A 1–form α is a contact form if and
only if α ∧ dα is a positive volume form.

The condition α∧ dα > 0 will henceforth be called the contact condition for
α.
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Proof. We denote by ξ the kernel of α. If ξ is a contact structure then the image
of α in the local model is fα0 where f is some nowhere vanishing function and
α0 = cos(z)dx− sin(z)dy. So

α ∧ dα = fα0 ∧ (fdα0 + df ∧ α0) = f2α0 ∧ dα0

= f2 dx ∧ dy ∧ dz

which is a positive volume form.
Conversely, suppose α ∧ dα is positive. Let p be a point in M . We want to

construct a coordinate chart around p such that ξ = ker(cos(z)dx − sin(z)dy).
We first choose a small surface S containing p and transverse to ξ = kerα.
Then we pick a non-singular vector field X tangent to S and ξ near p and a
small curve c in S containing p and transverse to X, see Figure 3. Let y be

Figure 3: Proof of the Darboux–Pfaff theorem

a coordinate on c. The flow of X at time x starting from c gives coordinates
(x, y) on S near p in which X = ∂x.

We now consider a vector field V transverse to S and tangent to ξ. The
flow of V at time t starting from S gives coordinates (x, y, t) near p such that
α = f(x, y, t)dx + g(x, y, t)dy because α(∂t) = α(V ) = 0. Up to rescaling, one
can use instead α1 = cos z(x, y, t)dx − sin z(x, y, t)dy for some function z such
that z(x, y, 0) = 0. Now is time to use the contact condition. We can compute

α1 ∧ dα1 =
∂z

∂t
dx ∧ dy ∧ dt

so the implicit function theorem guaranties that we can use z as a coordinate
instead of t.

In the above proof, z(x, y, t) was the angle between ξ and the horizontal ∂x
is the plane normal to the Legendrian vector field ∂t. We saw that the contact
condition forces this angle to increase. This means that the contact structure
rotates around ∂t. The above proof essentially says that this rotation along
Legendrian vector fields characterizes contact structures.

We now focus on the difference between contact structures and contact forms.
The data of a contact form is equivalent to a contact structure and either a choice
of a Reeb vector field or a section of its symplectization.
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Definition 2. A Reeb vector field for a contact structure ξ is a vector field
which is transverse to ξ and whose flow preserves ξ.

If one has a Riemannian metric on a surface S then the bundle of contact
elements of S can be identified with the unit tangent bundle STS and the
geodesic flow is then a Reeb vector field for the canonical contact structure.

One can easily prove that each contact form α comes with a canonical Reeb
vector field Rα which is characterized by dα(Rα, ·) = 0 and α(Rα) = 1. All
Reeb vector fields arise this way.

Next, recall that for any co-oriented hyperplane field ξ on a manifold V , one
can consider the annihilator of ξ in T ∗V :

Sξ :=
{
λ ∈ T ∗V

∣∣ kerλ = ξ and λ(v) > 0 if v is positively transverse to ξ
}
.

The field ξ is a contact structure if and only if Sξ is a symplectic submanifold
of (T ∗V, ωcan), and in this case Sξ is called the symplectization of ξ. Any
contact form α is a section of this R-bundle, and thus determines a trivialization
R× V → Sξ given by (t, v) 7→ (v, etα(v)). In this trivialization, the restriction
of the canonical symplectic form ωcan becomes d(etα).

2 Isotopic contact structures and Gray’s theorem
Clearly we want to consider two contact structures to be the same if they are
conjugated by some diffeomorphism. One can restrict this by considering only
diffeomorphism corresponding to deformations of the ambient manifold. An
isotopy is family of diffeomorphisms ϕt parametrized by t ∈ [0, 1] such that
(x, t) 7→ ϕt(x) is smooth and ϕ0 = Id. The time-dependant vector field gen-
erating ϕt is defined as Xt = d

dtϕt. One says that two contact structures ξ0
and ξ1 are isotopic if there an isotopy ϕt such that ξ1 = (ϕ1)∗ξ0. In particu-
lar such contact structures can be connected by the path of contact structures
ξt := (ϕt)∗ξ0. It is then natural to consider the seemingly weaker equivalence
relation of homotopy among contact structures. The next theorem says in par-
ticular that, on closed manifolds, this equivalence relation is actually the same
as the isotopy relation.

Theorem 2 (Gray). For any path (ξt)t∈[0,1] of contact structures on a closed
manifold, there is an isotopy ϕt such that ϕ∗t ξt = ξ0.

The vector field Xt generating ϕt can be chosen in limε→0 ξt ∩ ξt+ε at each
time t.

Proof. The proof of this theorem can be found in many places but without much
geometric explanations so we now explain the semi-heuristic picture behind
it. The key is to be able to construct an isotopy pulling back ξt+ε to ξt for
infinitesimally small ε. It means we will construct the generating vector field
Xt rather than ϕt directly. The compactness assumption will guaranty that the
flow of Xt exists for all time.

At any point p, if the plane ξt+ε coincides with ξt then we have nothing to do
and set Xt = 0. Otherwise, these two planes intersect transversely along a line
dt,ε. The natural way to bring ξt+ε back to ξt is to rotate it around dt,ε. Since
we know from the proof of Theorem 1 that the flow of Legendrian vector fields
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Figure 4: Proof of Gray’s theorem

rotate the contact structure, we will choose Xt in the line dt := limε→0 dt,ε, see
Figure 4. Let us compute dt,ε :

dt,ε = {v | αt+ε(v) = αt(v) = 0} = {v ∈ ξt | 1ε (αt+ε − αt)(v) = 0}

which gives, as ε goes to zero: dt = ξt ∩ ker(α̇t).
The contact condition for αt is equivalent to the fact that (dαt)|ξt is non-

degenerate. So Xt belongs to ξt ∩ ker(α̇t) if and only if it belongs to ξt and
ιXt

dαt = ftα̇t on ξt for some function ft.
Moreover, we wantXt to compensate the rotation expressed by α̇t. A natural

guess is then to pick Xt such that ιXtdαt = −α̇t.
We now have a precise candidate for Xt and we can compute to prove that

it does the job.

3 Symplectic fillings and cobordisms

3.1 Definitions
Definition 3. Let V be a closed oriented 3-manifold with a positive and co-
oriented contact structure ξ. Let W be a compact symplectic 4-manifold such
that ∂W = V as oriented manifolds. We say that (W,ω) is a

• weak filling of (V, ξ) if ω|ξ is positive

• strong filling of (V, ξ) if and ω admits a primitive λ (a Liouville form)
near ∂W which restricts to V as a contact form for ξ.

• exact filling of (V, ξ), or a Liouville domain with boundary (V, ξ), if the
Liouville form λ extends globally over W .

The definitions above are ordered from the weakest to the strongest. We
will consider two examples of exact fillings. The first one is the ball B4 ⊂ R4
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with Liouville form xdy + ydx which is an exact filling of the standard contact
structure on the sphere S3.

The second example is the disk cotangent bundle DT ∗S = {(q, p) ; q ∈ S, p ∈
T ∗q S, ‖p‖ ≤ 1} where we use an auxiliary metric on a surface S. The Liouville
form is the canonical form λ = pdq. The boundary is the contact manifold
ST ∗S which, as the notation suggests, can be seen as the space of cooriented
contact elements of S. In particular we get an exact filling of the canonical
contact structure on T 3. This contact structure is the first one in the family

ξn := ker
(
cosnz dx− sinnz dy

)
, n ≥ 1.

Eliashberg proved in [Eli96] that ξ1 is the only strongly fillable contact structure
in this family, this will be explained in Chris Wendl’s lectures. However, Giroux
previously observed they are all weakly fillable. The product symplectic form
ωp on T 2 ×D2, which is very different from the canonical symplectic structure
on T ∗T 2, is obviously positive on the foliation ker dz of T 3 if z is seen as the
angular coordinate on D2. Each contact structure in the above family is isotopic
to a contact structure which is C∞–close to ker dz. Indeed

ξsn := ker
(
sdz + cosnz dx− sinnz dy

)
, s ∈ [0, S]

defines a homotopy of contact structures that can be converted to an isotopy
by Gray’s theorem. Since positivity of ωp on a plane field is an open condition,
the contact structure ξsn is weakly filled when s is large enough. Actually, closer
inspection reveals that any positive s is enough.

This way of proving weak fillability can be generalized to other torus bundles
over the circle. There is an alternative way of seeing it which can be generalized
to circle bundle over surfaces (or orbifold surfaces). The crucial observation
is that the kernel of the restriction of ωp to T 3 is spanned by ∂z. Taking
orientations into account, one sees that a contact structure on T 3 is weakly
filled by (T 2×D2, ωp) if and only if it is positively transverse to ∂z. Let X be a
Legendrian vector field for ξn which is tangent to ker dz. The contact condition
guaranties that the flow of X rotates ξ around X. Hence it instantaneously
isotopes ξ to a contact structure transverse to ∂z (here one has to choose to flow
in forward or backward time to get positive transversality).

The above definitions can be adapted to the setting of cobordisms. A cobor-
dism from V− to V+ is a compact symplectic manifold W such that ∂W =
−V− tV+ where −V− denotes V− with reversed orientations and we can ask for
the same relation between symplectic and contact as in the absolute case, hence
getting the notions of weak, strong and exact cobordisms. One says that V+ is
the positive or top or convex end of the cobordism and V− is the negative or
bottom or concave end. A important example of symplectic cobordism will be
provided by Legendrian surgery.

3.2 Legendrian surgery
In differential topology, surgery of index k − 1 on a m-manifold is an operation
which removes a domain Sk−1×Dm−k+1 called the attaching region and replaces
it with Dk × Sm−k (those domains have the same boundary). This operation
comes with a cobordism from the original manifold to the new one obtained
from the thickening M × [0, 1] by attaching the so-called handle Dk × Dm−k+1

6



along (Sk−1 ×Dm−k)×{1}. The submanifold Dk ×{0} is called the core of the
handle. It is attached to the sphere Sk−1 × {0} inside the original manifold.

In contact topology, Legendrian surgery on a contact (2n−1)-manifold (M, ξ)
is surgery along a Legendrian sphere Sn−1 where the handle is symplectic and its
core is Lagrangian. Weinstein’s tubular neighborhood theorem for Lagrangian
submanifolds naturally leads to think of the handle Dn × Dn as the unit disk
cotangent bundleDT ∗Dn (with respect to the flat metric onDn). The boundary
of this handle is DT ∗D|S ∪ ST ∗D. We want the attaching region DT ∗D|S to
be concave and the new region ST ∗D to be convex so, instead of the standard
Liouville form on T ∗D, we use λH = 2pdq + qdp.

Weinstein’s theorem for Legendrian submanifolds allows to get the neigh-
borhood1 DT ∗S × [−1, 1] for the Legendrian sphere S in M . In this model the
contact form is dt+λ where t is the coordinate in [−1, 1] and λ is the canonical
Liouville form on T ∗S so we have part of the contactization of (T ∗S, λ). We
want to glue the attaching region of the symplectic handle onto this region. For
this and for considerations of Reeb dynamics later, we use the Euclidean struc-
ture on Rn to identify cotangent bundles of D and S with their tangent bundle.
We also use standard embeddings of S and D into Rn to get the isomorphism
TD|S = TS ⊕ νS where νS is the normal bundle of S in Rn with outward
orientation. Since this normal bundle is trivial, we get a diffeomorphism from
DTD|S to N = {((q, u), t) ∈ TS × [−1, 1] ; ‖u‖2 + t2 ≤ 1}. This identification
is the handle attaching map.

When n = 2 the inverse of this map is especially easy to write down using
the parametrization of TS1 by R/(2π)Z× R and of R2 by C:

Φ(θ, y, t) =
(
eiθ, ieiθy + eiθt

)
(θ, y) ∈ TS, t ∈ [−1, 1]

The above formula allows to check very easily that

Φ∗λH = dt+ ydθ

so our attaching map is indeed a contactomorphism.
We now want to understand the effect of this surgery on the contact manifold

(M, ξ). A convenient way of seeing it is through Reeb dynamics, see Figure 5. In
TS× [−1, 1] the Reeb vector field of dt+λ is ∂t so Reeb trajectories are vertical
segments. Suppose now we perform surgery and start a Reeb orbit at (q, u,−1).
This orbit hits the boundary of the attaching region at (q, u,−

√
1− ‖u‖2).

There it gets identified with a unit vector w tangent to D at q. More precisely,
w = u + v where v ∈ νS is inward pointing ‖u + v‖ = 1. The Reeb orbit then
goes through the new region STD following the geodesic flow there. It leaves
this region at some point (q′, w) ∈ STD|S where it gets identified back to the
projection u′ of w onto Tq′S. So the Reeb orbit exits the attaching region at
(q′, u′,

√
1− ‖u′‖2). The map (q, u) 7→ (q′, u′) is called the symplectic Dehn

twist (or Dehn-Arnold-Seidel twist).
In dimension 3 in particular, the attaching region is a solid torus which is

replaced by another solid torus and one can see the gluing back map as defined
on the double of an annulus as the identity on one annulus and a Dehn twist
on the other one. In general, one can describe the effect of Legendrian surgery
on (M, ξ) as follows. There is a unique function h on DT ∗S which vanishes

1Strictly speaking, one get norm ε instead of 1 in general but we will ignore this detail.
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Figure 5: The Dehn twist on DTS1

along the boundary and satisfies τ∗λ = λ − dh where τ is the Dehn twist. In
dimension 3, one can check that τ(q, p) = (q+(p+1)π, p) and h(q, p) = (1−p2)π2 .
In particular ((q, p), t) 7→ (τ(q, p), t + h(q, p)) is a contactomorphism. So one
can cut open the region DT ∗S × [−1, 1] along DT ∗S × {0} and then glue in
{((q, p), t) ; t ∈ [0, h(q, p)]} by the obvious map on t = 0 and the Dehn twist on
the other side.

4 The tight vs overtwisted dichotomy
Definition 4 (Eliashberg). A contact manifold is overtwisted if it contains an
embedded disk along which the contact structure is as in Figure 6. Otherwise it
is called tight.

Figure 6: An overtwisted disk

Any contact structure can be modified to become overtwisted using an op-
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eration called the (half) Lutz twist. Given a knot K transverse to ξ, one can
find a neighborhood K× εD2 with coordinates (z, r, θ) where ξ = ker dz+ r2dθ.
Any thickened torus η ≤ r ≤ 2η is isomorphic to some T 2 × [a, b] in the stan-
dard T 3. One can then replace this piece with a larger T 2 × [a′, b′] so that the
contact structure rotates half a turn between K and the boundary of a solid
torus K × ε′D2. The result is called a Lutz tube, it’s an S1-family of Figure 6.

The class of overtwisted contact structures is truly remarkable. They have
special properties with respect to fillings, Reeb dynamics and flexibility. Sam
Lisi will prove in his lectures the following result.

Theorem 5 (Eliashberg-Gromov [Gro85,Eli90]). Fillable contact structures are
tight.

In particular one recovers Bennequin’s theorem [Ben83] saying the standard
contact structures on R3, T 3 or S3 are tight. This theorem shows in particular
that the standard contact structure on R3 is not isomorphic to the overtwisted
structure of Figure 6, although they are homotopic through plane fields. This
contrasts sharply with the following result.

Theorem 6 (Eliashberg [Eli89]). If two overtwisted contact structures on a
closed manifold are homotopic through plane fields then they are homotopic
through contact structures, hence isotopic.

From this theorem, it follows that any kind of subtle invariant of contact
structures like SFT or HF/ECH /SWF should completely miss overtwisted con-
tact structures: there is nothing to see there. Indeed, SFT vanishes and the
contact invariant is trivial in the other theories.

We will focus on one example of contact structures which are homotopic
through plane fields. On T 3, one can consider for any positive integer n, the
contact structure ξn = ker(cos(nz)dx − sin(nz)dy). They are all homotopic to
the same (integrable) plane field ker dz, hence homotopic to each other. One
possible homotopy consists in rotating ξn around ξn ∩

(
T 2 × {z}

)
to make it

tangent to all tori T 2×{z}. Initially ξn is perpendicular to those tori and we can
rotate through an angle sπ2 where s ∈ [0, 1] is the homotopy parameter. This
is the same homotopy as in the weak filling discussion but pushed all the way
to the foliation ker dz. Giroux [Gir99] (and then Kanda [Kan97] using different
techniques) proved that the structures ξn are pairwise non-homotopic among
contact structures.

As a variant of the above situation, consider the same plane fields on T 2 ×
[0, 1]. By reparametrizing slightly the interval, one can arrange that all ξn
coincide near the boundary and the above homotopy can then be cutoff to
prove that all ξn are homotopic relative to the boundary. In particular, this
prove that full Lutz twists along transverse knots (i.e. applying two half Lutz
twists) do not change the homotopy class of a contact structure. So Theorem 6
proves that any overtwisted contact manifold contains a Lutz tube since one
can perform a full Lutz twist in the complement of an overtwisted disk without
changing the isotopy class of contact structure (there is a more explicit way
of exhibiting a Lutz tube in any neighborhood of an overtwisted disk but it
requires more technology).

We start our sketch of proof of Theorem 6 with a proposition which holds
in any contact manifold. Recall that the characteristic foliation of a surface S
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in a contact manifold (V, ξ) is the (singular) foliation ξS tangent to ξ ∩ TS and
singular where ξ = ±TS.

Proposition 7 ([Eli89]). Let ξs, s ∈ [0, 1] be a homotopy of plane fields on a
closed manifold V such that ξ0 and ξ1 are contact. Suppose Ks is a family of
compact subsets in V such that ξs is contact on Ks and K0 = K1 = V . Then
the family ξs is homotopic relative to ∪Ks to a homotopy of plane fields such
that, for some ball B in V with boundary S and for every s:

• the characteristic foliation ξsS has exactly two singularities p±s where ξs =
±TS;

• along any closed leaf in ξsS, ξs is cooriented towards p+s ;

• ξs is contact on V \B.

Very rough sketch of proof of Proposition 7. We will construct B as an embed-
ded boundary connected sum of myriads of small balls. All construction below
work continuously with respect to the parameter s so we suppress it from the
notations. The key idea is that, in a chart, if S is a strictly convex sphere which
is sufficiently small compared to variations of ξ then the first two properties
above automatically hold. The second one is intuitively clear. To prove the first
one, we consider the Gauss map GS : S → S2 given by the outward normal to
S. By convexity of S, this is a diffeomorphism. If S is sufficiently small then its
curvature is high so ‖DG−1S ‖ is small and the map ±Gξ ◦ G−1S comparing the
normals to S and ξ is a contraction so there is exactly one fixed point GS(p±).
We will call p+ the North pole and p− the South pole.

Of course, if the ball B is contained in a region where ξ is integrable like the
one appearing in the above homotopy on T 2 × [0, 1] then the singular foliation
ξS will look like the left-hand side of Figure 7. This ξ cannot be perturbed to
become contact in a neighborhood of S while keeping the same foliation. How-
ever we can first perturb ξ near S to get the right-hand side of Figure 7. The

Figure 7: Local perturbation of singularities

plane field ξ can then be perturbed to become contact on some neighborhood
U(S) keeping ξS. Suppose now that V is filled by small balls Bi so that the
neighborhoods U(Si) cover V \

⋃
Bi. One can then use arcs ai positively trans-

verse to ξ in V \
⋃
Bi to get a chain of balls, each arc connecting a North pole

to a South pole. The ball B is then a small regular neighborhood of the union
of all Bi’s and ai’s.
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Warning: actually proving this proposition is a lot more painful than the
previous sketch, see [Eyn09, Chapter 8].

The above proposition didn’t assume existence of an overtwisted disk. The
reason why this proposition alone can’t get flexibility is there is no way the
characteristic foliation on the right-hand side of Figure 7 can be the foliation
printed on S by some contact structure defined on the whole ball B bounded
by S.

Suppose now that ∆ is an overtwisted disk for ξ0 and ξ1. It can always be
arranged by homotopy that all ξs agree near ∆. Applying Proposition 7 with
Ks containing ∆, we can then connect B with a regular neighborhood of ∆ to
get a new ball B′ which have the same properties than B except that two closed
leaves, coming from ∆, have the wrong orientation. A typical movie of ξsB′ is
shown in Figure 8. The magic of Eliashberg’s argument is this movie is indeed

Figure 8: A typical movie of foliations ξsB′. First B has a North-South dynam-
ics hence contributes nothing. Then a closed leaf appears in ξsB then a whole
interval of them. Then it disappears the same way it came.

the movie of foliations printed on the boundary of a family of balls Bmodel
s living
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in any neighborhood of Figure 6. So one can throw away the restriction of ξs to
B′ and replace it with the restriction of ξOT to Bmodel

s (which is homotopic to
the thrown away family). The balls Bmodel

s are bounded by surfaces of revolution
obtained from the curves of Figure 9.

Figure 9: The family of spheres corresponding to Figure 8. The solid vertical line
is the rotation axis. The dashed one indicates the cylinder where ξ is horizontal
again.
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