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Introduction

These lecture notes are an introduction to the study of global properties of con-
tact structures on 3-manifolds using topological rather than analytical methods.
From that perspective, the main tool to study a contact manifold (V, ξ) is the
study of its ξ-convex surfaces. These surfaces embedded in V are useful because
all the information about ξ near each of them is encoded into a surprisingly
small combinatorial data. In order to illustrate the power of ξ-convex surfaces
without long developments, we use them to reprove, following Giroux [Gir00],
two important theorems which were originally proved using different techniques
by Bennequin [Ben83] and Eliashberg [Eli92].

Besides Giroux’s original papers [Gir91,Gir00], there are already two sets of
lectures notes by Etnyre [Etn04] and Honda [Hon] and a book by Geiges [Gei08]
which cover almost all topics we will discuss as well as more advanced topics.
Our goal is not to replace those references but to complement them. Mostly,
we include many pictures that are not easily found in print and can help to
build intuition. We focus on a small set of contact manifolds and illustrate all
phenomena on those examples by showing explicit embedded surfaces. On the
other hand, we almost never give complete proofs.

Chapter 1 explains the local theory of contact structures starting with the
most basic definitions. There are many ways to define contact structures and
contact forms and we use unusual geometric definitions in order to complement
existing sources. We also try to explain the geometric intuition behind the
theorems of Darboux-Pfaff and Gray rather than using Moser’s path method
without explanation.

Once enough definitions are given, an interlude states the theorems of Ben-
nequin and Eliashberg that are proved at the high point of these notes. It serves
as motivation for the rather long developments of Chapter 2.

Chapter 2 begins the study of surfaces in contact manifolds. The starting
point is the singular foliation printed by a contact structure on any surface. We
then work towards ξ-convex surfaces theory by simplifying gradually the con-
tact condition near a surface. Once the amazing realization lemma is proved, we
investigate obstructions to ξ-convexity and prove these obstructions are generi-
cally not present. The last section of this chapter then get the first fruits of this
study by proving the Eliashberg-Bennequin inequalities.

Chapter 3 goes beyond the study of a single surface by studying some one-
parameter families of surfaces. In particular we describe what happens exactly
when one of the obstructions to ξ-convexity discussed in the preceding chap-
ter arises. This allows us to prove the theorems of Bennequin and Eliashberg
mentioned above. Until now, the proof of Bennequin’s theorem using ξ-convex
surfaces was explained only in [Gir00].
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Of course this is only the beginning of a story which continues both by itself
and in combination with holomorphic curves techniques.

Conventions: A plane field ξ on a 3–manifold V is a (smooth) map associat-
ing to each point p of V a 2-dimensional subspace ξ(p) of TpV . All plane fields
considered here will be coorientable, it means one can continuously choose one
of the half spaces cut out by ξ(p) in TpV . In this situation, ξ can be defined as
the kernel of some nowhere vanishing 1–form α: ξ(p) = kerα(p). The coorien-
tation is given by the sign of α. We will always assume that V is oriented. In
this situation a coorientation of ξ combines with the ambient orientation to give
an orientation on ξ. All contact structures in these notes will be cooriented.

Occasionally, we will include remarks or comments that are not part of the
main flow of explanations. These remarks are typeset in small italic print.
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Chapter 1

Local theory

1.1 Contact structures as rotating plane fields

1.1.1 The canonical contact structure on the space of con-
tact elements

Let S be a surface and π : ST ∗S → S the bundle of cooriented lines tangent to
S (also called contact elements for S). It can be seen as the bundle of rays in
T ∗S, hence the notation. The canonical contact structure on ST ∗S at a point
d is defined as the inverse image under π∗ of d ⊂ Tπ(d)S, see Figure 1.1.

Suppose first that S is the torus T 2 = R2/2πZ2. Let x and y be the canonical
S1-valued coordinates on T 2. A cooriented line tangent to T 2 at some point
(x, y) can be seen as the kernel of a 1–form λ which has unit norm with respect
to the canonical flat metric. So there is some angle z such that λ = cos(z)dx−
sin(z)dy. Hence we have a natural identification of ST ∗T 2 with T 3. In addition
the canonical contact structure can be defined by cos(z)dx− sin(z)dy now seen
as a 1–form on T 3 called the canonical contact form on T 3, see Figure 1.2.

When S is the sphere S2, ST ∗S is endowed with a free transitive action of
SO3(R) so it is diffeomorphic to SO3(R). So there is a two-fold covering map

Figure 1.1: Canonical contact structure on the bundle of cooriented lines. At
bottom is a portion of S with a tangent line at some point. Above that point one
gets the fiber by gluing top and bottom of the interval. The contact structure
is shown at the point of the fiber corresponding to the line drawn below.
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Figure 1.2: Canonical contact structure on T 3. Opposite faces of the cube are
glued to get T 3

from S3 ' SU(2) to ST ∗S2. The lifted plane field is called the canonical contact
structure on S3. We will see different ways of describing this example later on.

1.1.2 Contact structures and contact forms
Definition 1. A contact structure on a 3–manifold is a plane field which is
locally diffeomorphic to the canonical contact structure on ST ∗T 2. A contact
form is a 1–form whose kernel is a contact structure. A curve or a vector field
is Legendrian if it is tangent to a given contact structure.

As noted above all our manifolds will be oriented and diffeomorphisms in
the above definition shall preserve orientations.

Theorem 2 (Darboux–Pfaff theorem). A 1–form α is a contact form if and
only if α ∧ dα is a positive volume form.

Let ξ be the kernel of α. The condition α∧ dα > 0 will henceforth be called
the contact condition for α. It is equivalent to the requirement that dα|ξ is
non-degenerate and defines the orientation of ξ coming from the orientation of
the ambient manifold and the coorientation of ξ.

Proof. If ξ is a contact structure then the image of α in the local model is fα0

where f is some nowhere vanishing function and α0 = cos(z)dx− sin(z)dy. So

α ∧ dα = fα0 ∧ (fdα0 + df ∧ α0) = f2α0 ∧ dα0

= f2 dx ∧ dy ∧ dz
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which is a positive volume form. More generally the above computation proves
that the contact condition for a nowhere vanishing one-form depends only on
its kernel.

Conversely, suppose α ∧ dα is positive. Let p be a point in M . We want to
construct a coordinate chart around p such that ξ = ker(cos(z)dx − sin(z)dy).
We first choose a small surface S containing p and transverse to ξ. Then we
pick a non-singular vector field X tangent to S and ξ near p and a small curve
c in S containing p and transverse to X, see Figure 1.3. Let y be a coordinate

Figure 1.3: Proof of the Darboux–Pfaff theorem

on c. The flow of X at time x starting from c gives coordinates (x, y) on S near
p in which X = ∂x.

We now consider a vector field V transverse to S and tangent to ξ. The
flow of V at time t starting from S gives coordinates (x, y, t) near p such that
α = f(x, y, t)dx + g(x, y, t)dy because α(∂t) = α(V ) = 0. Up to rescaling, one
can use instead α1 = cos z(x, y, t)dx − sin z(x, y, t)dy for some function z such
that z(x, y, 0) = 0. Now it is time to use the contact condition. We can compute

α1 ∧ dα1 =
∂z

∂t
dx ∧ dy ∧ dt.

Remember the contact condition for α is equivalent to the contact condition for
α1. So ∂z

∂t is positive and the implicit function theorem then guaranties that we
can use z as a coordinate instead of t.

In the above proof, z(x, y, t) was the angle between ξ and the horizontal ∂x
is the plane normal to the Legendrian vector field ∂t. We saw that the contact
condition forces this angle to increase. This means that the contact structure
rotates around ∂t. The above proof essentially says that this rotation along
Legendrian vector fields characterizes contact structures.

We now focus on the difference between contact structures and contact forms.
The data of a contact form is equivalent to a contact structure and either a choice
of a Reeb vector field or a section of its symplectization.

Definition 3. A Reeb vector field for a contact structure ξ is a vector field
which is transverse to ξ and whose flow preserves ξ.
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If one has a Riemannian metric on a surface S then the bundle of contact
elements of S can be identified with the unit tangent bundle STS and the
geodesic flow is then the flow of a Reeb vector field for the canonical contact
structure.

One can easily prove that each contact form α comes with a canonical Reeb
vector field Rα which is characterized by dα(Rα, ·) = 0 and α(Rα) = 1. All
Reeb vector fields arise this way.

Next, for any co-oriented plane field ξ on a 3-manifold V , one can consider
the annihilator of ξ in T ∗V :

Sξ :=
{
λ ∈ T ∗V

∣∣ kerλ = ξ and λ(v) > 0 if v is positively transverse to ξ
}
.

It is a good exercise to check that a plane field ξ on V is a contact structure if
and only if Sξ is a symplectic submanifold of (T ∗V, ωcan). In this case Sξ is called
the symplectization of ξ. The manifold Sξ is a principal R–bundle where a real
number t acts by λ 7→ etλ. Any contact form α is a section of this R-bundle,
and thus determines a trivialization R × V → Sξ given by (t, v) 7→ etαv. In
this trivialization, the restriction of the canonical symplectic form ωcan becomes
d(etα).

1.2 Examples
The canonical contact structure on R3

The universal cover of ST ∗T 2 is of course R3 and the lifted contact structure
is ξ0 = ker

(
cos(z)dx − sin(z)dy

)
where x, y and z are now honest real-valued

coordinates. The plane field ξ0 is called the standard contact structure on R3.

Figure 1.4: Universal cover of the standard contact structure on T3 seen from
the side. It is invariant under translation in the vertical direction
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Depending on context, it can be useful to have different ways of looking at ξ0
using various diffeomorphisms of R3. The image of ξ0 under the diffeomorphismxy

z

 7→
tp
q

 =

cos(z) − sin(z) 0
sin(z) cos(z) 0

0 0 1

xy
z


is drawn in Figure 1.5. It admits the contact form dt+pdq and arises naturally on
R3 seen as the space of 1-jets of functions from R to R (see e.g. [Gei08, Example
2.5.11] for more information on this interpretation).

Figure 1.5: ker(dt+ pdq) on R3. It is invariant under translation in the vertical
direction. It becomes vertical only if one goes all the way to p = ±∞.

Figures 1.4 and 1.5 together are often confusing for beginners. First the thick
black line {t = p = 0} in Figure 1.5 is Legendrian yet the contact structure does
not seem to rotate along it. Second, it seems the two pictures exhibit Legendrian
foliations by lines with very different behavior. In the second picture the contact
structure turns half a turn along each leave whereas it turns infinitely many
turns in the first picture.

Both puzzles are solved by the same picture. The diffeomorphism we used
above sends the foliation by Legendrian lines of Figure 1.4 to a foliation contain-
ing the mysterious line {t = p = 0} in Figure 1.5 together with helices around
that line, see Figure 1.6.

So we first see where is the foliation of Figure 1.4 inside Figure 1.5. And
second we remember that it makes sense to say that a plane field rotates along
a curve only compared to something else. Contact structures rotate along Leg-
endrian curves compared to neighborhood leaves of some Legendrian foliation.
And indeed we see the contact structure turns infinitely many times along the
mysterious line compared to the nearby Legendrian helices.

It is also sometimes convenient to consider the image of ker(dt+ pdq) under
the diffeomorphism (t, p, q) 7→ (q,−p, t + pq

2 ). This image is the kernel of dz +
1
2r

2dθ in cylindrical coordinates, see Figure 1.7. In this model, one sees clearly
that, at each point, there are Legendrian curves going in every possible direction.
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Figure 1.6: The mysterious line in Figure 1.5 together with two helices coming
from the lines of Figure 1.4.

Figure 1.7: Another view of the standard contact structure on R3

Figure 1.8 shows how to deform Figure 1.7 to embed it inside Figure 1.5.
Either of these contact structures (which are diffeomorphic by construction)

will be called the canonical contact structure on R3. Of course they can all be
used as the local model in the definition of a contact structure.

The canonical contact structure on S3

We have already met the canonical contact structure on S3 coming from the
canonical contact structures on ST ∗S2. One can prove that it is also

• the orthogonal of the Hopf circles for the round metric,

• a left-invariant contact structure on the Lie group SU(2),

• TS3 ∩ JTS3 when S3 is seen as the boundary of the unit ball in C2 and J
denotes the action of multiplication by i in TC2.

The complement of a point in the standard S3 is isomorphic to the stan-
dard R3, see [Gei08, Proposition 2.1.8] for a computational proof valid in any
dimension.
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Figure 1.8: Embedding of Figure 1.7 into Figure 1.5

1.3 Isotopies

1.3.1 Isotopic contact structures and Gray’s theorem
Up to now we considered two contact structures to be the same if they are
conjugated by some diffeomorphism. One can restrict this by considering only
diffeomorphisms corresponding to deformations of the ambient manifold. An
isotopy is a family of diffeomorphisms ϕt parametrized by t ∈ [0, 1] such that
(x, t) 7→ ϕt(x) is smooth and ϕ0 = Id. The time-dependent vector field gen-
erating ϕt is defined as Xt = d

dtϕt. One says that two contact structures ξ0
and ξ1 are isotopic if there is an isotopy ϕt such that ξ1 = (ϕ1)∗ξ0. In particu-
lar such contact structures can be connected by the path of contact structures
ξt := (ϕt)∗ξ0. It is then natural to consider the seemingly weaker equivalence
relation of homotopy among contact structures. The next theorem says in par-
ticular that, on closed manifolds, this equivalence relation is actually the same
as the isotopy relation.

Theorem 4 (Gray [Gra59]). For any path (ξt)t∈[0,1] of contact structures on a
closed manifold, there is an isotopy ϕt such that ϕ∗t ξt = ξ0.

The vector field Xt generating ϕt can be chosen in limε→0 ξt ∩ ξt+ε at each
time t.

Proof. The proof of this theorem can be found in many places but without much
geometric explanations. So we now explain the picture behind it. The key is to
be able to construct an isotopy pulling back ξt+ε to ξt for infinitesimally small
ε. It means we will construct the generating vector field Xt rather than ϕt
directly. The compactness assumption will guaranty that the flow of Xt exists
for all time.
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At any point p, if the plane ξt+ε coincides with ξt then we have nothing to do
and set Xt = 0. Otherwise, these two planes intersect transversely along a line
dt,ε. The natural way to bring ξt+ε back to ξt is to rotate it around dt,ε. Since
we know from the proof of Theorem 2 that the flow of Legendrian vector fields
rotate the contact structure, we will choose Xt in the line dt := limε→0 dt,ε, see
Figure 1.9. Let us compute dt,ε :

Figure 1.9: Proof of Gray’s theorem

dt,ε = {v | αt+ε(v) = αt(v) = 0} = {v ∈ ξt | 1
ε (αt+ε − αt)(v) = 0}

which gives, as ε goes to zero: dt = ξt ∩ ker(α̇t).
The contact condition for αt is equivalent to the fact that (dαt)|ξt is non-

degenerate. So Xt belongs to ξt ∩ ker(α̇t) if and only if it belongs to ξt and
ιXtdαt = ftα̇t on ξt for some function ft.

Moreover, we want Xt to compensate the rotation expressed by α̇t. A
natural guess is then to pick the unique Legendrian vector field Xt such that
(ιXtdαt)|ξt = −(α̇t)|ξt .

We now have a precise candidate for Xt and we can compute to prove that
it does the job. Let ϕt be the flow of Xt. Using Cartan’s formula, we get:

d

dt
ϕ∗tαt = ϕ∗t

(
α̇t + LXt αt

)
= ϕ∗t

(
α̇t + ιXtdαt

)
.

By construction, the term in the parenthesis vanishes on ξt so it is αt multiplied
by some function µt and we get:

d

dt
ϕ∗tαt = (µt ◦ ϕt)ϕ∗tαt.

So ϕ∗tαt stays on a line in the space of one forms. This line is obviously the line
spanned by ϕ∗0α0 = α0 and we then have kerϕ∗tαt = kerα0 = ξ0 for all t. It is
not hard to see that Xt is the only Legendrian vector field which works.
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Some compactness assumption is indeed necessary in Gray’s theorem.
There are counter-examples on R2 × S1 discovered in [Eli91].

Contact structures form an open set in the space of all plane fields. Gray’s
theorem proves that isotopy classes of contact structures on a closed manifold
are actually connected components of this open set. In particular there are
only finitely isotopy classes of contact structures on a closed manifold.

The example of linear foliations on T 3 proves that Gray’s theorem wouldn’t
hold for foliations.

1.3.2 Libermann’s theorem on contact Hamiltonians
Contact transformations of a contact manifold (V, ξ) are diffeomorphisms of V
which preserve ξ. The infinitesimal version of these are vector fields whose flow
consists of contact transformations. They are called contact vector fields and
are exactly those X for which (LX α)|ξ = 0 for any contact form α defining ξ.
Note that this condition is weaker than LX α = 0 which would imply that the
flow of X preserves α and not only its kernel ξ.

In the proof of Gray’s theorem, we saw that one can rotate a contact struc-
ture at will using the flow of a Legendrian vector field uniquely determined by
the rotation we want to achieve. The same idea allows to prove that any vector
field on a contact manifold can be transformed into a contact vector field by
adding a uniquely determined Legendrian vector field. This is the geometric
fact underlying the existence of so-called contact Hamiltonians.

Theorem 5 (Libermann [Lib59]). On a contact manifold (V, ξ) the map which
sends a contact vector field to its reduction modulo ξ is an isomorphism from
the space of contact vector fields to the space of sections of the normal bundle
TV/ξ.

If we single out a contact form α then we get a trivialization TV/ξ → V ×R
given by (x, [u]) 7→ (x, α(u)). Sections of TV/ξ can then be seen as functions
on V and the contact vector field Xf associated to a function f using the pre-
ceding theorem is called the Hamiltonian vector field coming from α and f .
Libermann’s theorem both implies existence of Xf and the fact that it is the
unique contact vector field satisfying α(X) = f . The situation is analogous to
the case of Hamiltonian vector fields in symplectic geometry but in the sym-
plectic case there are symplectic vector fields that are not Hamiltonian. Note
that the above interpretation when a contact form is fixed is what Libermann
originally discussed and also the most common use of the word contact Hamil-
tonian.

Proof of Theorem 5. Let X be any vector field on V . The theorem is equivalent
to the assertion that there is a unique Legendrian vector field Xξ such that
X+Xξ is contact. Using any contact form α, we have equivalent reformulations:

X +Xξ is contact ⇐⇒
(
LX+Xξ α

)
|ξ = 0

⇐⇒
(
ιX+Xξdα+ d(ιXα)

)
|ξ = 0

⇐⇒
(
ιXξdα

)
|ξ = − (ιXdα+ d(ιXα))|ξ

and the later condition defines uniquely Xξ because dα|ξ is non-degenerate.
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Remark 6. A common use of contact Hamiltonians, and the only one we will
need, is to cut-off or extend a contact vector field. For instance if X is a contact
vector field defined on an open set U ⊂ V and F is a closed subset of V contained
in U then there is a contact vector field X̃ which vanishes outside U and equals
X on F . If L denotes the isomorphism of Theorem 5 and ρ is a function with
support in U such that ρ|F ≡ 1 then we can use X̃ = L−1(ρL(X)).
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Setting the goals: the tight vs
overtwisted dichotomy

After the local theory and before starting our study of convex surfaces, we need
some motivation.

In Figure 1.7 showing ker(dz + r2dθ), the contact planes rotate along rays
perpendicular to the z-axis but are never horizontal away from the z-axis. On
the other extreme one can instead consider a contact structure which turns
infinitely many times along these rays. A possible contact form for this is
cos(r) dz + r sin(r) dθ which is horizontal for each r such that sin(r) = 0, ie
r = kπ. Figure 1.10 shows what happens along z = 0 and r ≤ π. One sees a
disk whose tangent space agrees with ξ at the center and along the boundary.

Figure 1.10: An overtwisted contact structure

Definition 7 (Eliashberg). A contact manifold is overtwisted if it contains
an embedded disk along which the contact structure is as in Figure 1.10: the
contact structure ξ is tangent to the disk in the center and along the boundary
and tangent to rays from the center to the boundary. A contact structure which
not overtwisted is called tight.

14



It may look like this is the beginning of an infinite series of definitions where
ones looks at disks z = 0, r ≤ kπ in the model above. But this would bring
nothing new as can be seen from the following exercise.

Exercise. Prove that any neighborhood of an overtwisted disk in a contact man-
ifold contains a whole copy of (R3, ξOT) where ξOT = ker

(
cos(r) dz+r sin(r) dθ

)
.

The above exercise is pretty challenging at this stage but it can serve as a
motivation for the technology at the beginning of the next chapter. And, most
of all, it shows that not immediately seeing something in a contact manifold
does not mean it is not there (recall also Figure 1.6). This begins to highlight
the depth of the following two results whose proof is the main goal of these
lecture notes.

Theorem 8 (Bennequin 1982 [Ben83]). The standard contact structures on R3

and S3 are tight.

Theorem 9 (Eliashberg 1992 [Eli92]). All tight contact structures on R3 or S3

are isomorphic to the standard ones.

Bennequin’s theorem shows in particular that the standard contact structure
on R3 is not isomorphic to the overtwisted structure of Figure 1.10. In order to
put this in perspective, recall that Figures 1.4 and 1.5 show isomorphic contact
structures. It may look like the difference between these is analogous to the
difference between Figure 1.7 and 1.10. But Bennequin’s theorem proves that
the later two pictures are really different.

Eliashberg’s theorem shows that tight contact structures on S3 are rare. By
contrast, overtwisted contact structures abound. The Lutz–Martinet theorem,
revisited by Eliashberg, says that, on a closed oriented manifold, any plane field
is homotopic to an overtwisted contact structure [Eli89]. Recall that, because
the Euler characteristic of a 3–manifold always vanishes, all such manifolds have
plane fields and even more, there are always infinitely many homotopy classes
of plane fields (for the classification of homotopy classes of plane fields one can
refer to [Gei08, Section 4.2]).

In [CGH09], Colin, Giroux and Honda proved that only finitely many homo-
topy classes of planes fields on each manifold can contain tight contact struc-
tures. This is far beyond the scope of these lectures but see Theorem 30 for a
weaker version due to Eliashberg [Eli92].
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Chapter 2

Convex surfaces

The goal of this chapter is to explain the following crucial observation by Em-
manuel Giroux in 1991:

If S is a generic surface in a contact 3-manifold, all the information
about the contact structure near S is contained in an isotopy class
of curves on S.

All this chapter except the last section comes from Giroux’s PhD thesis [Gir91],
see also the webpage of Daniel Mathews for his translation of that paper into
English.

2.1 Characteristic foliations of surfaces
After the local theory which explains what happens in neighborhoods of points
in contact manifolds, we want to start the semi-local theory which deals with
neighborhoods of surfaces.

The main tool will be characteristic foliations. The basic idea is to look at
the singular foliation given on a surface S by the line field TS∩ξ, see Figure 2.1.

Figure 2.1: Characteristic foliation of a surface as the intersection between the
tangent space and the contact plane.

In order to define precisely what is a line field with singularities, we see them
as vector fields whose scale has been forgotten. It means they are equivalence
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classes of vector fields where X ∼ Y if there is a positive function f such that
X = fY . A singularity is then a point where some, hence all, representative
vanishes. Note that f should be positive everywhere, including singularities.

One can think of a line as the kernel of a linear form rather than a subspace
spanned by a vector. This prompts an equivalent definition as an equivalence
class of 1–forms where α ∼ β if there is a positive function f such that α = fβ.

To go from one point of view to the dual one, we can use an area form ω on
the surface. The correspondence between vector fields and 1–forms is then given
by X 7→ β := ιXω. The singular foliations [X] defined by X and [β] defined by
β are indeed geometrically the same since X and β vanish at the same points
and elsewhere X spans kerβ. In addition, one has the following commutative
diagram which will be useful later.

vector fields ∼−−−−→
ι•ω

1–forms

div

y yd
functions ∼−−−−→

•ω
2–forms

(2.1)

The left-hand side vertical arrow is the divergence map defined by the equal-
ity LX ω = (divX)ω. So positive divergence means the flow of X expands area
while negative divergence means area contraction. Divergence is not well de-
fined for a singular foliation because it depends on the representative vector
field. However, at a singularity of a foliation, the sign of divergence is well
defined because

LfX ω = df ∧ ιXω + f(divX)ω

so, at points where X vanishes, div fX = f divX. The same kind of computa-
tion proves that this sign doesn’t depend on the choice of the area form within
a given orientation class.

Definition 10. Let S be an oriented surface in a contact manifold (M, ξ) with
ξ = kerα, co-oriented by α. The characteristic foliation ξS of S is the equiva-
lence class of the 1–form ι∗α induced by α on S.

In particular, singularities of the characteristic foliation ξS are points where
ξ = TS (maybe with reversed orientation). At those points dι∗α = dα|ξ is
non-degenerate so the above commutative diagram proves that singularities of
characteristic foliations have non-zero divergence.

Examples Figures 2.2, 2.3 and 2.4 show examples of characteristic foliations.

2.1.1 Leaves of characteristics foliations
The leaves (or orbits) of a singular foliation are the integral curves of any vector
field representing it. The intuitive notion of a singular foliation is rather the
data of leaves than an equivalence class of vector fields. In contact geometry,
this discrepancy does not generate any confusion thanks to the following lemma.
It is a rather technical point but we discuss it here anyway because it doesn’t
appear to be published anywhere else, although it is mentioned in [Gir00, page
629].

17



Figure 2.2: Characteristic foliation of Euclidean spheres around the origin in R3

equipped with the canonical contact structure ξ = ker(dz + r2dθ). There are
singular points at the intersection with the z-axis and all regular leaves go from
a singularity to the other one.

Figure 2.3: Characteristic foliation of a torus {x = constant} in T 3 equipped
with its canonical contact structure ξ = ker(cos(z)dx − sin(z)dy). One can see
two circles made entirely of singularities where sin(z) = 0, one appear in the
middle of the picture and the other one can be seen both at bottom and at top.
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Figure 2.4: Characteristic foliation of a torus {z = constant} in T 3 equipped
with its canonical contact structure ξ = ker(cos(z)dx− sin(z)dy).

Lemma 11 (Giroux). If two singular foliations on a surface have the same
leaves and if their singularities have non-zero divergence then they are equal.

The following proof can be safely skipped on first reading.

Proof. The statement is clear away from singularities and a partition of unity
argument brings it down to a purely local statement. So we focus on a neigh-
borhood of a singularity (which may be non-isolated though).

Let Y and Y ′ be vector fields on R2 which vanish at the origin and have the
same orbits.

Y = f∂x + g∂y et Y ′ = f ′∂x + g′∂y.

We will compute divergence using the Euclidean area form ω = dx ∧ dy (we
know the sign of divergence of singular points does not depend on this choice).
So div Y = ∂xf+∂yg. All the following assertions will be true in a neighborhood
of the origin that will shrink only finitely many times. Since div(Y ) is non-zero,
we can use a linear coordinate change to ensure that ∂xf doesn’t vanish. The
implicit function theorem then gives new coordinates such that f(x, y) = x.
Because

f ′(x, y) = f ′(0, y) + x

∫ 1

0

∂xf
′(tx, y)dt

we can write f ′ = xu(x, y) + v(y). Along the curve {x = 0}, the vector field
Y is vertical (or zero) so the same is true for Y ′. Hence f ′ also vanishes along
this curve and v is identically zero. The condition that Y and Y ′ are either
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simultaneously zero or colinear is then:∣∣∣∣x xu
g g′

∣∣∣∣ = 0

which gives g′ = ug where x is non-zero hence everywhere by continuity. One
then gets Y ′ = uY . In particular div Y ′ = udiv Y + du ∧ (ιY dx ∧ dy). Away
from zeros of Y and Y ′, u is positive because Y and Y ′ have the same leaves. At
a common zero, div Y ′ = udiv Y and, because singularities of Y ′ have non-zero
divergence, the function u doesn’t vanish. Hence it is positive everywhere (note
that Y and Y ′ can’t be everywhere zero).

2.2 Neighborhoods of surfaces
Any orientable surface S in an orientable 3-manifold has a neighborhood diffeo-
morphic to S×R (use the flow of a vector field transverse to S). We will always
denote by t the coordinate on R and by St the surface S × {t} for a fixed t.
From now on, we will assume that S is oriented and orient S ×R as a product.

Any plane field ξ defined near S has then an equation α = utdt+ βt where
ut is a family of functions on S and βt is a family of 1–forms on S. Note that
the characteristic foliation of St is the equivalence class of βt since the latter is
the 1–form induced by α on St.

The contact condition for ξ (with respect to the product orientation) is
equivalent to

utdβt + βt ∧ (dut − β̇t) > 0 (?)

where β̇t denotes ∂βt
∂t . This condition is a non-linear partial differential relation

which is not so simple. The main thrust of the following discussion will be to
simplify it by fixing some of the terms.

Reconstruction lemmas

The easiest case is to fix the whole family βt. In this case the contact condition
(?) is only about the family ut and becomes convex. In particular the space of
solutions ut is connected and we get:

Lemma 12 (Global reconstruction). If ξ and ξ′ are positive contact structures
on S × R such that ξSt = ξ′St for all t then ξ and ξ′ are isotopic.

We give a detailed proof since it is a model of several later proofs.

Proof. There are equations utdt+ βt and u′tdt+ β′t of ξ and ξ′. The hypothesis
of the lemma is that β′t = ftβt for some family of positive functions ft on
S. So another equation for ξ′ is u′t/ftdt + βt. We have two solutions ut and
u′t/ft of the contact condition, Equation (?), with βt fixed. Since this condition
is convex, the space of its solutions is connected so we can find a family of
solution (ust )s∈[0,1] relating them (a linear interpolation will do the job). This
family corresponds to a family of contact structures ξs = ker(ustdt + βt) which
Gray’s theorem (Theorem 4) converts to an isotopy of contact structures1.

1One may worry about the fact that S × R is non-compact but here the vector field
constructed during the proof of this theorem is tangent to St which is compact for all t
hence its flow is well defined for all times
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Our discussion of Gray’s theorem actually tells us more about what is going
on. Recall the vector field generating the isotopy at time s can be chosen in the
intersections of ξs and ξs+ε. So we see the isotopy is stationary at each singular
point of the characteristic foliations [βt]. At all other points it is tangent to
the characteristic foliation and its flow makes the contact structures we want to
relate to rotate toward each other, see Figure 2.5.

Figure 2.5: Reconstruction lemmas. We have two contact structures printing
the same characteristic foliation on a surface. One of them is drawn along an
arc going from a singularity to another. The second one appears only at one
point with dotted outline. At this point the isotopy constructed in the proof is
tangent to the arc to make the contact structure rotate.

If instead of fixing the whole family βt we fix only β0 then we get the following
lemma.

Lemma 13 (Local reconstruction). If ξ and ξ′ are positive contact structures
which prints the same characteristic foliation on a compact embedded surface S
then there is a neighborhood of S on which ξ and ξ′ are isotopic (by an isotopy
globally preserving S).

Proof. The contact condition along S0 becomes a convex condition on u0 and β̇0.
Again we can find a path of plane fields which, along S, are contact structures
interpolating between ξ and ξ′. Because the contact condition is open, they will
stay contact structures near S and we can use Gray’s theorem again.

Exercise. Prove that the two preceding lemmas are false for foliations.

We can now return to the challenging exercise of Chapter 1 with much better
chances of success. Recall that ξOT = ker(cos(r)dz + r sin(r)dθ).

Exercise. Use the local reconstruction lemma to prove that any neighborhood
of an overtwisted disk in a contact manifold contains a copy of (R3, ξOT). Hint:
try to understand the characteristic foliation of the surface of Figure 2.6.

As illustrated by the previous exercise, the reconstruction lemmas are al-
ready quite useful by themselves. But the characteristic foliation is still a huge
data and it is very sensitive to perturbations of the contact structure or the
surface. This will be clear from the discussion of genericity of convex surfaces
and of the realisation lemma below.
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Figure 2.6: Rotating the wavy curve around the z-axis in (R3, ξOT) gives a plane
having a characteristic foliation diffeomorphic to that of {z = 0}. Note that the
curve is horizontal at each intersection with the {r = π} axis.

2.2.1 Convex surfaces
Homogeneous neighborhoods

The next step in our quest to simplify the contact condition (?) seems to be
fixing ut instead of βt. But this still gives a non-linear equation on the family
βt if β̇t is not zero. So we assume that βt does not depend on t: βt = β. In
particular the families (u0, β) and (ut, β) both give contact structures with the
same characteristic foliation [β] on each St. Hence the global reconstruction
Lemma tells us these contact structures are isotopic. So we now assume that ut
is also independent of t.

In this situation, the contact structure itself becomes invariant under R
translations, one says that ∂t is a contact vector field. Note that this vector field
is transverse to all surfaces St. Conversely if a contact vector field is transverse
to a surface then it can be cut-off away from the surface using Remark 6 and
then its flow defines a tubular neighborhood S × R with a t–invariant contact
structure.

Definition 14 (Giroux [Gir91]). A surface S in a contact 3–manifold (M, ξ)
is ξ–convex if it is transverse to a contact vector field or, equivalently, if it has
a so called homogeneous neighborhood: a tubular neighborhood S ×R where the
restriction of ξ is R–invariant.

Example 15. In T 3 with its canonical contact structure, all tori {x = constant}
as in Figure 2.3 are ξ–convex since they are transverse to the contact vector field
∂x.

Example 16. In
(
R3, ker(dz + r2dθ)

)
, any Euclidean sphere around the origin

is ξ–convex since they are transverse to the contact vector field x∂x+y∂y+2z∂z.

In the convex case, the contact condition becomes:

udβ + β ∧ du > 0 (†)

Using some area form ω and Equation (2.1), one can rephrase it in terms of the
vector field Y ω–dual to β as:

udivω Y − du(Y ) > 0 (†′)
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Analogously to the previous section we see that, u being fixed, the space of
solutions β to (†) is contractible, this was our stated goal when we asked βt to
be independent of t. The miracle is that it essentially stays true if one fixes
only the zero set Γ of u. Indeed, away from Γ, we can divide our contact form
udt+β by |u| to replace it by ker(±dt+β′) where β′ = 1

|u|β. The condition (†)
for (±1, β′) is simply ±dβ′ > 0 which is not only convex, it does not depend on
u! Of course this discussion needs some precise definitions which are provided
below but the first miracle has already happened: near a ξ–convex surface S, all
the information about ξ is contained in Γ. It remains to see that such surfaces
are generic, the second miracle.

Dividing sets

Let us take a look at Γ = {u = 0}. Along Γ, the contact condition (†′) reads
−du(Y ) > 0. So Γ is a regular level set of u. Hence it is a one-dimensional
submanifold without boundary, ie a collection of disjoint simple closed curves
in S. Such collections will be referred to as multi-curves.

The condition −du(Y ) > 0 also implies that Γ is transverse to ξS. More
precisely, Y goes from S+ = {u > 0} to S− = {u < 0} along Γ and the picture
near Γ is always as in Figure 2.7. In the following discussion we will use several
time the fact that this picture is very simple and controlled to be less precise
about what happens near Γ.

Figure 2.7: Characteristic foliation near the dividing set Γ

The last remarkable property of the decomposition of S in S+ and S− is
Y expands some area form in S+ and contracts it in S−. Indeed, if one sets
Ω = 1

|u|ω on S \ Γ then divΩ Y = ± 1
u2 on S±. One can actually modify Ω near

Γ so that divΩ Y is positive on S+, negative on S− and vanishes along Γ.

Definition 17. A singular foliation F of a surface S is divided by an (em-
bedded) multi-curve Γ if there is some area form Ω on S and a vector field Y
directing F such that:

• the divergence of Y does not vanish outside Γ –we set

S± = {p ∈ S; ±divΩ Y (p) > 0}

• the vector field Y goes transversely out of S+ and into S− along Γ.
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What we proved above is that the characteristic foliation of a ξ–convex
surface is divided by some multi-curve. Using the local reconstruction lemma
(Lemma 13), one can prove the converse to get:

Proposition 18. A surface S is ξ–convex if and only if ξS is divided.

Proof. We assume that ξS is divided by some multi-curve Γ. According to
the local reconstruction lemma, we only need to prove that there is a contact
structure ξ′ defined near S such that S is ξ′–convex and ξ′S = ξS. We set
β = ιY Ω. In particular ξS = [β]. On S \ Γ, ξ′ = ker±dt + β is a contact
structure which also prints [β] on S \ Γ and one can check that there is no
problem to extend it along Γ.

Note that the dividing set is not unique for a given foliation. IfX is a contact
vector field transverse to the surface S then the considerations above prove that
ΓX := {s ∈ S; X(s) ∈ ξ} is a dividing set for S.

However, if one fixes β in the contact condition (†), it becomes convex in
u, hence the space of solutions u is connected. This implies that the space of
multi-curves dividing a given foliation is connected (in fact contractible).

Examples In the case of spheres of example 16, the dividing set corresponding
to the given vector field is the equator {z = 0}.

In the torus case of Figure 2.3, the dividing set coming from ∂x is defined
by cos(z) = 0 so it is made of two circles sitting between the singularity circles
defined by sin(z) = 0, see Figure 2.8.

The realization lemma

We are now ready to make precise the fact that the dividing set contains all the
information about the contact structure near a convex surface.

Lemma 19 (Realization Lemma). Let S be a ξ–convex surface divided by some
multi-curve Γ. For any singular foliation F divided by Γ, there is an isotopy δt
with support in an arbitrarily small neighborhood of S and such that ξ′ = δ∗1ξ
satisfies ξ′S = F . Equivalently, one has ξδ1(S) = δ1(F ).

So any singular foliation divided by Γ is printed on S by some contact struc-
ture isotopic to ξ or, equivalently, it can be realized as the characteristic foliation
of a surface isotopic to S.

The proof of this very important lemma has already been essentially ex-
plained right after stating condition (†). It follows from the fact that ±dβ > 0
is a convex condition and Gray’s theorem as in the reconstruction lemmas.

This lemma is often called Giroux’s flexibility theorem but one can argue
that it is rather a rigidity result since all the information can be stored into a
tiny combinatorial data: the isotopy class of the dividing set.

Example Consider the convex torus of Figure 2.3. Its characteristic foliation
is highly non generic since it has two circles of singularities. Yet it is divided by
two circles parallel to the singularity circles. Figure 2.9 shows a generic foliation
divided by the same curves but where singular circles have been replaced by
regular closed leaves.
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Figure 2.8: A dividing set for the torus of Figure 2.3 (dashed on the picture)

The realization lemma implies that the surface of Figure 2.3 is isotopic to
a surface which has Figure 2.9 as its characteristic foliation. Figure 2.10 shows
this surface explicitly.

The transition between these foliations play an important role in the clas-
sification of tight contact structures on the product of a torus and an interval,
see [Gir00, Section 1.F]
In order to use the power of the realization lemma, we need to prove that

ξ-convex surfaces exist in abundance. We will first discuss some obstructions to
ξ-convexity then prove genericity of ξ-convex surfaces.

2.2.2 Obstructions to convexity
Degenerate closed leaves

The most obvious obstruction to ξ-convexity for a closed surface S is when ξS
is defined by some β with dβ = 0, as in Figure 2.4, because then the contact
condition (†) becomes β ∧ du > 0 which implies that u has no critical point.

Surfaces with such characteristic foliations are called pre-Lagrangian.
They are either tori or Klein bottles and play an important role in some
later part of the theory.
This obstruction idea can be extended remarking that it does not need the

whole of S, it can be applied along a closed leaf L of ξS. This is easier to see in
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Figure 2.9: A generic foliation of the torus divided by two curves

Figure 2.10: A realization of Figure 2.9 as a deformation of the torus of Figure
2.3
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the dual picture of equation (†′). Indeed, if divω(Y ) vanishes along L, condition
(†′) says that −u′|L > 0 whereas the restriction u|L necessarily has some critical
point.

Definition 20. A closed leaf L of a singular foliation is degenerate if there is a
1–form β defining the foliation near L and whose differential dβ vanishes along
L. A non-degenerate leaf is called repelling (resp attracting) if there is some β
such that dβ is positive (resp negative) along L.

The definition above is convenient for our purposes but one should keep in
mind that it is equivalent to the more geometrical definition through Poincaré’s
first return map π on a transverse curve c, see Figure 2.11. A closed leaf is
degenerate if π′(0) = 1. A non-degenerate closed leaf is attracting if π′(0) < 1
and repelling if π′(0) > 1.

Figure 2.11: Poincaré’s first return map π on a transversal c to a closed leaf L.

The discussion preceding the definition proves that if S is ξ–convex then ξS
has no degenerate closed leaves.

Remark 21. Suppose now that S is indeed ξ–convex and L is a (non-degenerate)
closed leaf of ξS. Let Γ be a dividing set for ξS. Because ξS is transverse to Γ
and always goes out of S+ and into S−, L cannot meet Γ. Because L is compact,
the restriction of u to L has at least one critical point. At this point, the contact
condition gives udβ > 0. So repelling orbits are in S+ and attracting orbits are
in S−.

Retrograde connections

Recall from Section 2.1 that the contact condition ensures that all singularities
of characteristic foliations have non-zero divergence and hence have non-zero
sign. Singularities of ξS correspond to points where S is tangent to ξ and they
are positive or negative depending on whether the orientation of ξ and S match
or not.

In generic characteristic foliations one sees only two topological types of sin-
gularities: nodes and saddles. If one considers generic families of characteristic
foliations then saddle-nodes may appear, see Figure 2.14. Since the sign of
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Figure 2.12: A sphere or radius π in the overtwisted R3. The equator is a
degenerate closed leaf. Note how leaves spiral a lot more around a degenerate
leaf than around a non-degenerate.

Figure 2.13: A sphere or radius slightly less than 2π in the overtwisted R3. The
intersection with the cylinder {r = π} consists of two non-degenerate closed
leaves (one of them is not visible in the picture).
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Figure 2.14: Generic singularities of characteristic foliations

singularities corresponds to their divergence, positive nodes are always sources
while negative nodes are always sinks. The sign of saddles cannot be read from
topological pictures only.

Let S be a ξ–convex surface so that ξ = ker(udt + β) near S. We begin by
a remark analogous to Remark 21. At any singular point p of ξS, the contact
condition (†) give udβ(p) > 0. So singularities are positive in S+ and negative
in S−.

Suppose now that p and q are two singular points of ξS with opposite signs
and there is a regular leaf L of ξS going from p to q. Because L has to be
transverse to Γ and go from S+ to S−, the above discussion proves that p is
positive and q is negative.

Definition 22. In the characteristic foliation of a surface, a retrograde connec-
tion is a leaf which goes from a negative singularity to a positive one.

The discussion above proves that ξ–convex surfaces have no retrograde con-
nections. Note that retrograde connections cannot involve nodes since the sign
of nodes determine the local orientations of the foliation.

Leaves of characteristic foliations between two singularities of opposite signs
are always arcs tangent to the contact structure along which the contact struc-
ture rotates half a turn compared to the surface. What makes retrograde con-
nections special is that the direction of rotation is opposite to the one around
Legendrian foliations.

Example 23 ([Gir00, Example 3.41]). In R2 × S1 with contact structure ξ =
ker(cos(2πz)dx− sin(2πz)dy), we consider the family of transformations

ϕt((x, y), z) = (R−4πt(x, y), z + t)

where Rθ denotes the rotation of angle θ around the origin of R2. The orbit of
a circle in R2 passing through the origin sweeps a torus S whose characteristic
foliation has two retrograde saddle connections along the z-axis, see Figure 2.15.
Indeed, along this axis, the tangent plane TS turns in the same direction as ξ
but twice as fast. It means that, seen from TS, ξ rotates one turn in the opposite
direction. See Figure 2.16 for a better view of the characteristic foliation.
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Figure 2.15: A torus having a retrograde saddle connection

Figure 2.16: A (double) saddle connection on the torus of Figure 2.15 after
top/bottom and left/right are glued. The top saddle is negative, the bottom
one positive. The top node is positive, the bottom one negative. The curves
drawn are all the separatrices of the saddles.
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2.2.3 Genericity of convex surfaces
We are now ready to use generic properties of vector fields on surfaces to prove
that any surface in a contact manifold can be perturbed to a ξ–convex one. See
Figures 2.17 and 2.18 for an example and [Gir01a, Proof of Proposition 2.10]
for more examples of the same kind.

Proposition 24. Any closed surface in a contact 3–manifold (M, ξ) is C∞–
close to a ξ–convex surface.

Figure 2.17: A non-convex torus

Genericity of ξ–convex surfaces is a small dimensional phenomenon, it does
not hold for hypersurfaces in higher dimensions [Mor11]. In dimension 3, ξ–
convexity is a degenerate notion, much like ordinary convexity in real dimension
1 and pseudo-convexity in complex dimension 1.

We first prove that any foliation sufficiently close to a characteristic foliation
ξ0S is the characteristic foliation ξS coming from some ξ isotopic to ξ0. Equiv-
alently it means it is the characteristic foliation printed by ξ0 on some surface
isotopic to S. Let C be the connected component of the space of contact struc-
tures which contains ξ0. The first point is that the map which maps ξ in C to
the characteristic foliation ξS is open. The second point is that Gray’s theorem
imply that all ξ in C are isotopic to ξ0.

So the genericity of ξ–convex surfaces will follow from the one of divided foli-
ations. Essentially we will see that the obstructions to the existence of a dividing
set discussed above are the only ones provided that no non-trivial recurrence
appear. The precise requirement is expressed in the following definition.

Definition 25. A singular foliation on a closed surface satisfies the Poincaré–
Bendixson property if the limit set of any half orbit is either a singularity or a
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Figure 2.18: Perturbation of the non-convex torus of Figure 2.17 into a convex
torus

closed orbit or a union of singularities and orbits connecting them.

The Poincaré-Bendixson theorem thus says that a singular foliation on a
sphere satisfies the Poincaré-Bendixson property as soon as its singularities are
isolated, see e.g. [PdM82].

Proposition 26. Let S be a surface in a contact manifold (V, ξ). If the char-
acteristic foliation ξS satisfies the Poincaré–Bendixson property then S is ξ–
convex if and only if ξS has neither degenerate closed leaves nor retrograde
connections.

Genericity of ξ–convex surfaces then follows from Peixoto’s theorem stating
that Morse-Smale foliations are generic on surfaces, see [PdM82] for a beautiful
exposition of this result starting with the basic of dynamical systems. A foliation
is Morse-Smale if

• it satisfies the Poincaré-Bendixson property,

• all its singularities are nodes or saddles,

• all its closed leaves are non-degenerate,

• it has no saddle connections.

Proof of Proposition 26. In the preceding sections, we have seen that the ab-
sence of degenerate closed leaves and retrograde connections is necessary for
convexity.
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We now prove that it is sufficient when the Poincaré-Bendixson property
holds. In this proof we assume that all singularities are nodes, saddles or saddle-
nodes. This is true for generic families of characteristic foliations with any
number of parameters and is all we need in these lectures. In order to save some
more words we will even pretend there are no saddle-nodes. The reader can
replace any occurrence of the word “saddle” by “saddle or saddle-node” to get
the more general proof.

During the discussion of obstructions to convexity, we have seen that singu-
larities and closed leaves should be dispatched into S+ or S− according to their
signs. Another constraint comes from separatrices of saddles: since we want the
characteristic foliation to go transversely out of S+ along Γ, stable separatrices
of positive saddles and unstable separatrices of negative saddles cannot meet Γ.

So we build a subsurface S′+ of S by putting a small disk around each
positive singularity and narrow bands around positive closed leaves and stable
separatrices of positive saddles. If all these elements are sufficiently small, the
boundary of S′+ can be smoothed to a curve transverse to the characteristic
foliation, see Figure 2.19. In addition one can find an area form on S′+ which is

Figure 2.19: Construction of a dividing set on a torus. One can check that ∂S′+
and ∂S′− are indeed isotopic among dividing curves.

expanded by ξS′+. We can construct similarly a subsurface S′− and a contracted
area form on it. None of these subsurfaces is empty because of Stokes’ theorem
which guaranties that an area form on a closed surface is never exact.

Let A be a component of the complement of S′+∪S′− in S. It has non-empty
boundary and does not contain any singularity so A is an annulus. In addition
it does not contain any closed leaf so Poincaré-Bendixson’s theorem guaranties
that all leaves of the characteristic foliation entering A along some boundary
component leave it through the other boundary component. So we are indeed
in the situation of Figure 2.7 and one can take the core of A as a dividing curve.
The corresponding subsurfaces S± then retract onto S′±.

The proof above contains some useful information about how a dividing set
can be recovered from the important features of the characteristic foliation so
we record this in a definition and a corollary.
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Definition 27. Given a foliation F satisfying the Poincaré-Bendixon property,
we denote by G+ (resp G−) the union of repelling (resp attracting) closed leaves,
of positive (resp negative) singularities and of the stable (resp unstable) separa-
trices of these singularities. The union G+ ∪ G− is called the Giroux graph of
F .

Note that the terminology graph is a little stretched since one can have
separatrices accumulating on closed orbits (like in Figure 2.19) or on con-
nected singularities so the Giroux graph equipped with the induced topology is
not necessarily homeomorphic to a CW-complex of dimension one.

Corollary 28. If a characteristic foliation satisfies the convexity criterion of
Proposition 26 and G+ ∪G− is its Giroux graph then, for any dividing set, S+

retracts on a regular neighborhood of G+ and S− on a regular neighborhood of
G−.

2.2.4 Giroux criterion and Eliashberg–Bennequin inequal-
ities

Until now, the discussion of this chapter does not make any distinction between
tight and overtwisted contact structures. We now start to discuss how convex
surfaces theory sees tightness.

Theorem 29 (Giroux criterion [Gir01a, Theorem 4.5a]). In a contact manifold
(V, ξ), a ξ–convex surface divided by some multi-curve Γ has a tight neighborhood
if and only if one of the following conditions is satisfied:

• no component of Γ bounds a disk in S

• S is a sphere and Γ is connected.

The only application of this theorem we will present in detail is in the classifi-
cation of tight contact structures on S3 (existence by Bennequin and uniqueness
by Eliashberg). There we will only need that, if S is a sphere, then it has a
tight neighborhood only if its dividing set is connected. So we prove only this
part of the theorem, we assume S is a sphere and Γ is not connected. Let S′
be a component of S \ Γ which is a disk and denote by γ its boundary. Let S′′
be the other component containing γ in its boundary. Since Γ is not connected,
S′′ has more boundary components. Using this, one can construct a foliation
F on S which is divided by Γ, has a circle of singularities L in S′′, is radial
inside a disk bounded by L and coincides with ξS outside S′ ∪ S′′, see Figure
2.20. In any neighborhood U of S, the realization Lemma gives a surface δ1(S)
which has δ1(F ) as its characteristic foliation. Then δ1(L) is the boundary of
an overtwisted disk contained in δ1(S) hence in U .

An important direct application of the Giroux criterion is Giroux’s proof of
the following constraint on the Euler class of a tight contact structure (originally
due to Eliashberg). We will not use it in those notes but include it here since it
now comes for free.

Theorem 30 (Eliashberg–Bennequin inequality [Eli92]). Let (M, ξ) be a 3–
dimensional contact manifold. If ξ is tight and S is a closed surface embedded
in M then the Euler class of ξ satisfies the following inequality:

|〈e(ξ), S〉| ≤ max(0,−χ(S))
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Figure 2.20: Characteristic foliations for the Giroux criterion. The dividing set
Γ is dashed. On the left-hand side one has the simplest case when S′′ is an
annulus. On the right hand-side one sees a possible foliation when S′′ has one
more boundary component (on the right). Note that the disk bounded by the
small component of Γ on the right may contain more components of Γ. The
extension to more boundary components uses the same idea.

Proof. Using genericity of ξ–convex surfaces, one can homotop S until it is ξ–
convex. This does not change the Euler class which can now be evaluated as
χ(S+) − χ(S−) since singularities are distributed among S+ and S− according
to their signs. If S is a sphere then the Giroux criterion says that both S+ and
S− are disks so 〈e(ξ), S〉 = 0 and the inequality is proved. So suppose now that
S has positive genus. The Giroux criterion says that no connected component
of S+ or S− is a disk. This implies that both χ(S+) and χ(S−) are negative.
Hence both χ(S+)−χ(S−) and −χ(S+) +χ(S−) are less than −χ(S+)−χ(S−)
which is −χ(S).
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Chapter 3

Bifurcations and first
classification results

The goal of this chapter is to prove that any tight contact structure on S3 has to
be isotopic to the standard contact structure and that the later is indeed tight.
We will not give the original proofs due to Eliashberg [Eli92] and Bennequin
[Ben83] respectively. We will rather use the technology of ξ–convex surfaces to
prove them. These proofs were obtained by Giroux along its way towards more
general classification results in [Gir00]. The classification result is a compar-
atively easy special case of Giroux’s preparation Lemma [Gir00, Lemma 2.17]
while the tightness result follows from the bifurcation lemmas [Gir00, Lemmas
2.12 and 2.14].

3.1 The elimination lemma
In the characteristic foliation of a surface, a saddle and a node are said to be in
elimination position if they have the same sign and there is a leaf from one to
the other. Such a leaf is called an elimination arc. Giroux’s elimination lemma
in its simplest form says one can perturb the surface to replace a neighborhood
of the elimination arc by a region without singularity as in Figure 3.1.

Figure 3.1: Elimination of a pair of singular points.

For the classification of tight contact structures on S3 we will need a version
of this process which keeps neighboring surfaces under control.
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Figure 3.2: The elimination move. The top box shows the move transverse to
the elimination arc seen as the middle point of the segment. This move is cut
off in the longitudinal direction.
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We do not need much control though and the following version is simpler
than [Gir00, Lemma 2.15] which is needed for the classification of tight contact
structures on torus bundles.
Let ξ be a contact structure on S × [−1, 1] and set St := S × {t}. Suppose

a node e0 and a saddle h0 are in elimination position on S0. This configuration
is stable so it persists for t in some interval (−ε, ε). Let Ct denote a continuous
family of elimination arcs between et and ht on St.

Lemma 31 (Giroux elimination lemma). Let δ be a positive number smaller
than ε. Let U a neighborhood of

⋃
|t|<δ Ct intersecting each St in a disk Dt

whose characteristic foliation is as in the left hand side of Figure 3.1. One can
deform ξ in U such that ξDt has:

• no singular point when |t| < δ,

• a saddle-node when |t| = δ,

• a pair of singularities in elimination position when |t| ∈ (δ, ε).

In addition, one can impose that separatrices facing the elimination arc are
connected to the same points of ∂Dt as before the deformation, see Figure 3.3.

Figure 3.3: Elimination in a family.

The corresponding manipulation transverse to the elimination arc is ex-
plained in Figure 3.4

Figure 3.4: The elimination move in family. The left hand-side shows the origi-
nal surfaces St stacked. The right hand-side performs the elimination, compare
with top of Figure 3.2.

3.2 Thickened spheres and Eliashberg uniqueness
The goal of this section is to explain Giroux’s proof of the classification of tight
contact structures on S3.
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Theorem 32 (Eliashberg [Eli92]). Any tight contact structure on S3 is isotopic
to the standard one.

By definition of contact structures, one can assume that S3 is the union of
two standard balls and a thickened sphere with standard ξ–convex boundary as
in Figure 2.2. This allows in particular to apply the following proposition.

Proposition 33. Let ξ be a tight contact structure on a thickened sphere S ×
[0, 1]. If S0 and S1 are ξ–convex then ξ is isotopic relative to the boundary to a
contact structure ξ′ such that all spheres St are ξ′–convex.

Proof. First note that tightness prevents the apparition of any closed leaf in any
ξSt since it would bound an overtwisted disk. Then we need some theory of
one-parameter families of singular foliations on the sphere [Sot74]. Specifically,
one can assume that each ξSt has finitely many singularities and at worse a
saddle connection or a saddle-node (but not both at the same time). Note
that finiteness of saddle connections can be achieved by perturbation thanks to
the absence of closed leaves (compare Figure 3.10). Using this, the Poincaré-
Bendixson theorem and the criterion of Proposition 26, one can see that all
surfaces St are ξ–convex except for finitely many t1, . . . , tk where:

• all singularities of ξSti are saddles or nodes

• there is exactly one saddle connection on ξSti and it is retrograde,

see Figure 3.5 for an example.
We will now modify ξ near each Sti in order to make all St ξ–convex. Since

we know closed leaf or non-trivial recurrence cannot arise, it suffices to get rid
of retrograde saddle connections. We concentrate on one ti at a time. Let ε be
a small positive number such that ξSt does not change up to homeomorphism
when t is either in [ti− ε, ti) or (ti, ti + ε]. In particular the positive part G+ of
the Giroux graph deforms by isotopy in each of these intervals. Theorem 29, the
Giroux criterion, and the link between the Giroux graph and the dividing set
explained in Corollary 28 guarantee that G+ is a tree in each interval. It implies
that we can find elimination arcs between all positive saddles and all but one
positive nodes without using the separatrix which enters the saddle connection
at ti (recall in particular that the number of vertices in a tree is exactly the
number of edges plus one).

We now use Lemma 31, the elimination lemma, to get rid of all positive
saddles for t in [t − δ, t + δ] for some positive δ smaller than ε, see Figure 3.6.

Before continuing the proof of the theorem, we note two properties of the
sphere which were somehow surreptitiously used in the above proof. After the
elimination of the retrograde connections we needed the fact that no closed
leaves could appear, this is due to Schönflies theorem which would have provided
an overtwisted disk. We also needed the Poincaré-Bendixson theorem to prevent
the apparition of non-trivial recurrence. Suppose one tries to use the elimination
lemma to get rid of the bifurcation of Figure 3.9 (which is bound to fail since
the isotopy class of the dividing set changes during this bifurcation). If one gets
rid of both saddles then degenerate leaves arise. If one gets rid of one saddle
only (like we did for the sphere) then non-trivial recurrence appear: we get a
Cherry flow on the torus, see [PdM82].
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Figure 3.5: Original movie
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Figure 3.6: Movie after elimination. The first picture is the same as in Figure
3.5 then a pair of singularity is replaced by a saddle-node then it disappears.
The fourth picture corresponds to the central picture of Figure 3.5 but there is
no more positive saddle so no saddle connection. The eliminated pair returns in
the sixth picture as a saddle-node and the final picture is the same as in Figure
3.5.
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The proof of Theorem 32 now follows from Giroux’s uniqueness lemma which
allows to replace the contact structure obtained on the thickened sphere of the
previous proposition by the model.

Lemma 34 (Uniqueness lemma [Gir00, Lemma 2.7]). Let ξ0 and ξ1 be two
contact structures printing the same characteristic foliations on the boundary of
S × [0, 1]. If there is a continuous family of multi-curves Γt dividing both ξ0St
and ξ1St then ξ0 and ξ1 are isotopic relative to the boundary.

The proof of this lemma is similar to the ones of the previous chapter but
the path of contact structures is less obvious.

We now explain how to get the classification of tight contact structures on
S2 × S1 without extra effort. Let ξ be one of them and fix some S = S2 × {θ0}.
Using genericity of ξ–convex surfaces, we can perturb ξ to make S convex.
Then the Giroux criterion tells us that its dividing set is connected. Using the
realisation lemma, we change ξ by isotopy until ξS is standard, ie as in Figure
2.2. We can then remove a homogeneous neighborhood of S and we are back
to a thickened sphere where we can apply Proposition 33 and the uniqueness
lemma.

3.3 Bifurcation lemmas
We now consider a general closed surface S and any contact structure ξ on S×I
for some interval I. For each t in I, one has the surface St := S × {t} and its
characteristic foliation ξSt. If some St0 is not ξ-convex then the characteristic
foliations for t close to t0 are not all C1–conjugate to ξSt0 , otherwise the global
reconstruction lemma (Lemma 12) would give a contradiction. We will now try
to understand what really happens when this lack of ξ–convexity is explained
by the obstructions we discussed in the previous chapter, ie it comes from a
degenerate closed leaf or a retrograde connection. We will see in particular that
the bifurcation is much sharper than expected: no foliation ξSt is even C0–
conjuguate to ξSt0 for t in a punctured neighborhood of t0. Better, we will get
a very precise description of what happens.

The birth/death lemma

Let L be a degenerate closed leaf of the characteristic foliation ξSt. This means
that the Poincaré return map on any curve transverse to L is tangent to the
identity. One says that L is positive (resp negative) if the second derivative
of this map is positive (resp negative) at the intersection point between L and
the transverse curve. If L is either positive or negative then one says that it is
weakly degenerate.

Lemma 35 (Birth/Death Lemma [Gir00, Lemma 2.12]). A positive (resp neg-
ative) degenerate closed orbit indicates the birth (resp death) of a pair of non-
degenerate closed leaves when t increases.

See Figure 3.7 for examples of these situations on a thickened torus T×[0, 1].
Looking at these pictures it is easy to prove a weak form of the birth-death
lemma which already shows how the contact condition enters. Since the contact
structure is transverse to all tori Tt, t ∈ [0, 1], one can lift ∂t to a vector field
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Figure 3.7: Birth and death of closed leaves on a torus.

tangent to ξ. The flow of this lift defines a new product structure on T × [0, 1]
without changing the movie of singular foliations ξTt up to diffeomorphism. So
one can assume that all intervals Ip = {p} × [0, 1] are Legendrian. If we think
of foliations ξTt as living all on T then the contact condition is equivalent to
asking that, at each point p, ξTt(p) rotates clockwise as t increases. Indeed, if
x and y are coordinates on T , there is a function θ such that

ξ = ker
(

cos θ(x, y, t) dx− sin θ(x, y, t) dy
)
.

The contact condition is then equivalent to ∂tθ > 0, compare with the proof of
the Darboux-Pfaff theorem (Theorem 2).

Now the second picture in Figure 3.7 shows a positive degenerate orbit L in
some ξTt0 . Let A be a small annulus around L. Along L, the slope of ξTt0 is
zero and it is positive in A \ L. So, for t < t0 it was everywhere positive in A
and there were no closed leaf at all in A. For t > t0, the slope becomes negative
along L and stays positive along the boundary of A. Then the complement of
L in A is made of two (half-open) annuli whose boundary are transverse to ξT ,
see Figure 3.8. The Poincaré-Bendixson theorem guaranties that each of these
two sub-annuli contain at least one closed leaf for t > t0 sufficiently close to t0.

Figure 3.8: Birth of at least a pair of periodic orbits. The annulus A is obtained
by gluing left and right. The circle L is at mid-height of each annulus.

So we proved the following weak version of the birth/death lemma which will
be sufficient for our purposes: if there is a positive degenerate closed orbit L at
time t0 then there is an annulus A around L and some positive ε such that there
is no closed leaves in A for t in (t0 − ε, t0) and at least two for t in (t0, t0 + ε).
The death case on the bottom row of Figure 3.7 is explained similarly. Note
that nothing required T to be a torus in this explanation, one only has to work
near L.
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The crossing lemma

Lemma 36 (Crossing Lemma [Gir00, Lemma 2.14]). Assume that there is a
retrograde connection at time t0. For t close to t0, there is a negative singularity
b−t , a positive one b+t , an unstable separatrix c−t of b−t and a stable one c+t of
b+t such that c−t0 = c+t0 .

For t close to t0, one can track separatrices using their intersection with an
oriented curve positively transverse to ξSt. Then, for t < t0 (resp t > t0), the
separatrix c−t is below (resp above) c+t .

Figure 3.9 shows a retrograde saddle connection on a torus obtained by
gluing top/bottom and left/right. Singularities in the lower part are negative
while those in the upper part are positive. The saddle connection is marked by
an arrow. The crossing Lemma tells us that the negative separatrix has to turn
to its right after the connection.

Figure 3.9: Retrograde saddle connection on a torus.

The proof of the crossing lemma is rather delicate so we will only try to go
as far as explaining how the contact condition and the fact that the connection
is retrograde can enter the discussion. Each time we drop the t subscript it
means t = t0. Also we set c = c+ = c−. Compared to the situation of the
birth/death lemma, there is no hope to have a neighborhood S × [0, 1] with
[0, 1] tangent to ξ near c since ξ is tangent to S at b±. However we will find
at least one point on c where the characteristic foliation has to turn clockwise.
If Yt is a vector field defining ξSt, the contact condition (?) can be expressed
as: ut div Yt − dut(Yt) + β̇t(Yt) > 0. The sign of singularities is the sign of
ut so u(b−) < 0 and u(b+) > 0. Hence there is some point p on c such that
u(p) = 0 and du(Y ) ≥ 0. Here we used that c, hence Y , is oriented from b− to
b+. At p, the contact condition becomes β̇(Y ) > du(Y ) so β̇(Y ) > 0. This is
the announced rotation. Since β(Y ) = 0, we have that, at p, ξSt is positively
transverse to c for t > t0 and negatively transverse for t < t0. Of course this
observation is very far from proving the crossing lemma, see [Gir00, Lemma
2.14] for the full story.

3.4 Bennequin’s theorem
The goal of this section is to prove that the standard contact structure on R3 is
tight. This was originally proved by Bennequin, without the word tight which
was introduced by Eliashberg.

Suppose there is an overtwisted disk in the standard contact structure on
R3. Since it is compact, it is contained in some finite radius ball. We can also
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assume it misses a small ball around the origin (for instance we can use the
contact vector field ∂z to push it upward until this is true). Recall we saw in
Example 16 there is a contact vector field X on R3 which is transverse to all
Euclidean spheres around the origin. So these spheres are all ξ–convex and
divided by the equator {z = 0} where X is tangent to ξ. The above discussion
shows that Bennequin’s theorem is a consequence of the following statement.

Theorem 37 (Bennequin seen by Giroux [Gir00, Theorem 2.19]). Let ξ be a
contact structure on a thickened sphere S×[−1, 1]. If all spheres St are ξ–convex
with connected dividing set then ξ is tight.

Families of movies

In order to prove Theorem 37, we first need some preparations from dynamical
systems. Suppose that ξ0 and ξ1 are two contact structures which print generic
movies on S × [−1, 1]. If they are isotopic, one gets a 2-parameters family
ξsSt of characteristic foliations. Thom transversality and a little bit of normal
form theory tells us that we can perturb the family until all these foliations
have finitely many singularities which are either nodes, saddles or saddle-nodes.
Further perturbations allow to make sure that all closed leaves have a Poincaré
return map which is at worse tangent to the identity up to order 2, the worse
case happening only for isolated values of (s, t).

Up to this point there was nothing specific to the sphere. The first special
property of S2 which is crucial in the following is the Poincaré-Bendixson the-
orem which says that, since we have isolated singularities for all our foliations,
the Poincaré-Bendixson property automatically holds. In particular we can ap-
ply the convexity criterion of Proposition 26. In the square [0, 1] × [−1, 1] the
set Ω of points (s, t) such that St is ξs–convex is a dense open set. We denote
by Σ the complement of Ω. It is a union of injectively immersed submanifolds
of [0, 1]× [−1, 1]. In codimension 1, one sees:

• Σ1
dl where the characteristic foliation has a single weakly degenerate closed

leaf and no retrograde saddle connection and no degenerate singularity, see
Figure 2.12

• Σ1
sc where the characteristic foliation has a single retrograde saddle con-

nection and no degenerate closed leaf or singularity, see Figure 3.9.

The bifurcation lemmas imply that these two subsets are injectively immersed
submanifold of the square transverse to the t direction. In addition, the bifur-
cation lemmas imply that components of Σ1

dl can accumulate only on Σ1
sc, see

Figure 3.10 for an example of accumulation. We set Σ1 = Σ1
dl ∪ Σ1

sc.
The accumulation of retrograde saddle connections in Figure 3.10 is not a

phenomena which we can get rid of by perturbation: it is structurally stable in
a 1-dimensional family, see [Sot74]. However, Giroux’s discretization lemma
[Gir01b, lemma 15] states that any contact structure on the product F × I
of a closed surface and an interval with convex boundary is isotopic relative
to the boundary to a contact structure such that only finitely many Ft are
non-convex. This isotopy cannot be made arbitrarily small. It uses first the
dynamics banalization lemma [Gir00, Lemma 2.10] which gets rid of non-
trivial recurrence and then replaces degenerate leaves with retrograde saddle
connexions. Both moves are non-perturbative.

In codimension 2, one sees:

45



Figure 3.10: Saddle connections accumulating a degenerate closed leaf. This is
a movie of characteristic foliations on an annulus obtained by gluing the left
and right sides of each square. A degenerate closed leaf is appearing in the
middle. Leaves spiral more and more in this region, resulting in infinitely many
retrograde saddle connections.

• Σ11 where two codimension one strata intersect transversely, see Figure
3.11 and also Figure 2.16 for a realistic view of the central picture in the
case of example 23.

• Σ2
sc where there is a retrograde connection between a saddle and a saddle-

node. These points adhere to exactly one stratum in Σ1
sc, this typically

happens in the proof of the classification on S3 as an intermediate step
between Figures 3.5 and 3.6

• Σ2
dl where there is a degenerate orbit corresponding to the fusion of two

components of Σ1
dl, see Figure 3.12 for the picture in the (s, t) square and

Figure 3.13 for the corresponding foliations.

Proof core

We now prove Theorem 37. Suppose there is some overtwisted disk in (S ×
[−1, 1], ξ). Then there is some isotopy relative to the boundary bringing this
disk onto the middle sphere S0. So this isotopy sends ξ0 = ξ to a contact
structure ξ1 such that S0 contains an overtwisted disk. Then it can be modified
in the same way genericity of convex surfaces is proved until S0 is ξ1–convex
and divided by a disconnected curve (use Corollary 28 to understand dividing
sets here). We can perturb ξ1 to make sure it also prints a generic movie of
characteristic foliations and perturb the isotopy to be in the situation of the
preceding discussion on families of movies.

The set Ω of (s, t) such that St is ξs–convex is the disjoint union of Ωc
corresponding to connected dividing sets and Ωd corresponding to disconnected
ones.
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s

Figure 3.11: Intersection of two strata of retrograde saddle connections on a
torus. It is a good exercise to draw the Giroux graphs of all convex surfaces
appearing to see the non-trivial effect of this codimension 2 phenomenon on the
dividing sets, contrasting with the discussion below.
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Figure 3.12: The central point is in Σ2
dl. It corresponds to a degenerate closed

leaf with π′′(0) = 0 but π(3)(0) < 0, see Figure 3.13 for the corresponding
foliations.

In addition, we know by construction that Ωd intersects the right vertical
edge {s = 1} so it is not empty. But it does not intersect the left edge {s = 0}
by hypothesis of the theorem. More precisely, we can assume the closure of Ωd
does not meet {s = 0} so the minimum s0 of its projection to [0, 1] is positive.
Choose t0 such that (s0, t0) is in the closure of Ωd.

The point (s0, t0) cannot be in:

• Σ1 because the later is transverse to the t direction so components of Ω
adjacent to a point (s, t) in Σ1 project to neighborhoods of s

• Σ2
sc because each point (s, t) in Σ2

sc adheres to only one component of Σ1
sc

so the intersection between Ω and a small disc around (s, t) is connected
and projects to a neighborhood of s.

• Σ2
dl because all components of Ω touching Σ2

dl are in Ωd because the cor-
responding foliations have closed leaves.

• any point Σ11 involving degenerate closed leaves, again because strata in
Σ1

dl are transverse to the t-direction and indicate birth or death of stable
closed leaves giving disconnected dividing sets.

The only configuration which really needs to be carefully ruled out is that
of points in Σ11 involving only Σ1

sc like in figure 3.14 In this situation ξs0St0 has
two retrograde saddle connections which happen on different surfaces St for s
in a punctured neighborhood of s0 and get swapped when s goes through s0, as
in Figure 3.11. Note that characteristic foliations around (s0, t0) have no closed
leaf and we can also assume they do not have other saddle connections that the
ones we explicitly study.

To ξsSt we associate the oriented graph Γ+(s, t) (resp. Γ−(s, t)) whose ver-
tices are positive nodes and edges are the stable separatrices of positive saddles
(resp. negative saddles). Since we do not have any closed leaf or degenerate
singularities near (s0, t0), Γ+ coincides as a set with G+ from definition 27 and
Γ− is somehow dual to G−. So, according to Corollary 28, when St is ξs–convex,
there is a regular neighborhood of Γ+(s, t) whose boundary divides ξsSt. Be-
cause S is a sphere, we then get that (s, t) is in Ωc if and only if Γ+(s, t) is a
tree (ie a closed connected and simply connected graph). We want to use the
crossing lemma to understand how the graph changes when a retrograde saddle
connection happens, see Figure 3.15.
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Figure 3.13: Foliations corresponding to the strata of Figure 3.12. Left and
right of each square are glued to get an annulus. Thick closed leaves are the
degenerate ones. The central picture corresponds to the annihilation of a birth
and a death of non-degenerate closed leaves.
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Figure 3.14: The situation we must rule out for Bennequin’s theorem

Figure 3.15: Anatomy of a retrograde saddle connection

First we remark that, if we focus on a sufficiently small neighborhood of
(s0, t0) in parameter space, the graph Γ−(s, t) deforms by isotopy so we can
assume it does not depend on s and t. The same is true for Γ+(s, t) as long as we
stay in the complement of Σ. Suppose now there is a saddle connection involving
a negative saddle h−. Let A be the closure of the union of its stable separatrices.
The unstable separatrix of h− entering the saddle connection coorients A and,
together with the orientation of S, this orients A. We denote by o(A) and d(A)
the origin and destination of A.

During a bifurcation, exactly one edge E of Γ+ changes. After the bifur-
cation, the edge E is replaced by an edge A(E) which is obtained from the
concatenation of E and A by a small push towards the right which makes it
avoid o(A), see Figure 3.16 which also explains how these things will be drawn
schematically in the following. Note that the edge E is the edge which is imme-

Figure 3.16: A schematic view of the same retrograde saddle connection as in
Figure 3.15

diately to the right of A at o(A) with respect to the cyclic ordering of edges of
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Γ+ ∪Γ− incident to o(A). So the oriented arc A completely describes the bifur-
cation. We will denote by A(Γ+) the graph obtained from Γ+ after a bifurcation
described by A (up to isotopy).

Returning to the codimension 2 bifurcation at (s0, t0) we have two distinct
strata Σ1

sc(A1) and Σ1
sc(A2) corresponding to distinct (oriented) bifurcation arcs

A1 and A2, see Figure 3.17. We take the graph Γ+ of the Bottom region as a

Figure 3.17: Regions in the parameter space.

reference and apply to it the following proposition. Note that, on a tree, any
ordered pair of vertices determines a unique oriented segment.

Proposition 38. Suppose Γ is a tree and A1 and A2 are bifurcation arcs for
Γ. The following properties are equivalent.

1. A1(Γ) is not a tree but A2(A1(Γ)) is a tree.

2. On Γ, the oriented segment S from d(A2) to d(A1) contains, in that order:
d(A2) ≤ o(A1) < o(A2) ≤ d(A1) and, furthermore, S is immediately to
the right of A1 at o(A1) and A2 at o(A2).

Note that condition 1 above holds if Γ is the tree Γ+ coming from the Bottom
region B since we assume T and B are in Ωc while R is in Ωd. This proposition
concludes the proof of Theorem 37 because condition 2 above is symmetric in
A1 and A2 (here one should not forget that exchanging A1 and A2 will reverse
the orientation on S). So the graph A2(Γ) corresponding to the left region L is
not a tree and L is also in Ωd.

Proof. We first prove that property 1 implies property 2. Let E be the edge of
Γ modified by A1. In particular E has vertices o(A1) and some other vertex v
and E is immediately to the right of A1 at o(A1). Because Γ is a tree, v can’t
be the same as o(A1) and (the closure of) Γ\E is the disjoint union of two trees
Γ1 containing o(A1) and Γ2 containing v, see Figure 3.18.

Note that d(A1) cannot be in Γ1 since otherwise A1(E) would go from Γ1

to Γ2 and A1(Γ) would be a tree.
So d(A1) is in Γ2 and this implies that v in the segment [o(A1), d(A1)] ⊂ Γ.

Also we learn that A1(Γ) is the disjoint union of the tree Γ1 and the graph
Γ2 ∪A1(E) which contains exactly one cycle C. This cycle contains A1(E) and
its vertices are all in [v, d(A1)] ⊂ Γ, see Figure 3.18 again.

Since A2(A1(Γ)) is a tree, the edge E′ modified by A2 in A1(Γ) belongs to
C otherwise C would persist in A2(A1(Γ)). So we get that o(A2) is in C (in
particular it can’t be the same as o(A1)). In addition d(A2) is in Γ1 otherwise
A2(A1(Γ)) would stay disconnected. The last thing to check is that E′ is part
of the segment [d(A2), d(A1)] ⊂ Γ. The only edge of C which is not in this
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Figure 3.18: Trees and graphs in the proof of Propostion 38.

segment is A1(E). Remember E′ is immediately to the right of A2 at o(A2) so
it cannot be A1(E) because that would force A2 to go into the disk bounded by
C which does not contain Γ1 (surreptitiously using Schönflies theorem again).

We now prove the converse implication. Since S is immediately to the right
of A1 at o(A1), it contains the edge E of Γ moved by A1. More precisely, E is
in the segment [o(A1), d(A1)] ⊂ Γ. So A1(Γ) is the disjoint union of a tree Γ1

and a graph Γ2 containing a unique cycle C. Since S is immediately to the right
of A2 at o(A2) and o(A1) 6= o(A2), the edge E′ in A1(Γ) moved by A2 is either
an edge in S or A1(E). In both cases, it is contained in C. So the cycle C does
not persist in A2(A1(Γ)) and A2(E1) connects Γ2 \E′ to Γ1. Hence A2(A1(Γ))
is a tree.

Now this proof is finished let us see where we used the contact condition and
not only properties of generic families of foliations with two parameters. The
first thing is that Σ1 is transverse to the t direction because of the bifurcation
lemmas. A second more subtle point is that the crossing lemma says more:
it tells the direction of the bifurcations: separatrices turn to their right when
t increases. Figure 3.19 show how the above proof would fail if A1 and A2

were allowed to act as switches in opposite direction. In that figure one sees
an example of the bad situation of Figure 3.14. The explanation is that, if we
assume that the bifurcation corresponding to A1 acts in the wrong direction
then, in Proposition 38, we must replace “to the right of A1” by “to the left
of A1” and we loose symmetry between A1 of A2. Of course if both A1 and
A2 act in the wrong direction then we do not have any difference, this simply
corresponds to considering negative tight contact structures on S3.
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