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1 Double complexes
In this section, C, C ′, C ′′ will be abelian categories. A double complex in C is a

family Xp,q of objects of C together with maps

dh : Xp,q → Xp+1,q and dv : Xp,q → Xp,q+1

such that dh ◦ dh = dv ◦ dv = dvdh− dhdv = 0 It is useful to have the following picture
in mind :

. . . . . . . . .

. . . Xp−1,q+1 Xp,q+1 Xp+1,q+1 . . .

. . . Xp−1,q Xp,q Xp+1,q . . .

. . . Xp−1,q−1 Xp,q−1 Xp+1,q−1 . . .

. . . . . . . . .

dh dh

dv

dh

dv

dh

dv

dv

dh

dv

dh

dv

Remark 1. Another convention for double complexes is to ask the property dvdh +
dhdv = 0 instead of dhdv = dvdh. We can switch from one convention to the other by
replacing dv by (−1)pdv. We can define cohomology groups of double complexes :

(HI(X))i,j = H i(X ·,j) and (HII(X))i,j = Hj(X i,·)

with the differentials :
dhHI

= 0, dvHI
induced by dvX ,

dhHII
induced by dhX , d

v
HII

= 0.
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To a double complex X with a nice finiteness property, we can associate a simple
complex s(X). We suppose that

for any n ∈ Z, the set {(p, q) ∈ Z× Z; p+ q = n,Xp,q 6= 0} is finite.

Then we define s(X) the simple complex defined by

s(X)n =
⊕

n=p+q

Xp,q with differential d|Xp,q = (−1)pdv + dh.

We can check that s(X) is indeed a complex :

d ◦ d|Xp,q = d ◦
(
(−1)pdv + dh

)
= (−1)2pdvdv + (−1)pdhdv + (−1)p+1dvdh + dhdh = 0.

We won’t prove the following theorem that ensures us that s(X) is the good simple
complex associated to a double complex.

Theorem 1. If f : X → Y is a morphism of double complexes with the finiteness
property such that f induces an isomorphism

HIIHI(X)
∼−→ HIIHI(Y )

then s(f) is a quasi-isomorphism.

2 Bifunctor
A bifunctor F : C × C ′ → C ′′ consists of the following data :
• a map F : Ob(C)×Ob(C ′)→ Ob(C ′′)
• for all X ∈ Ob(C), F (X, ·) is a functor from C ′ to C ′′
• for all X ′ ∈ Ob(C ′), F (·, X ′) is a functor from C to C ′′
• If f ∈ HomC(X, Y ) and g ∈ HomC′(X ′, Y ′) then there exists

F (f, g) : F (X,X ′)→ F (Y, Y ′)

such that the following diagram commutes :

F (X, Y ′) F (X ′, Y ′)

F (X, Y ) F (X ′, Y )

F (f,Y ′)

F (X,g)

F (f,Y )

F (f,g)
F (X′,g)

The only condition for this diagram to commute is that F (Y, g)◦F (f,X ′) = F (f, Y ′)◦
F (X, g).

If X is a complex in Ob(C+(C)) and X ′ a complex in Ob(C+(C ′)) then F (X,X ′)
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is a double complex in C ′′ satisfying the finiteness condition. So by associating to
F (X,X ′) the simple complex s(F (X,X ′)), we define a bifunctor :

C+(F ) : C+(C)× C+(C ′)→ C+(C ′′).

The construction of s ensures that if X is homotopic to zero then s(F (X, Y )) is also
homotopic to zero for any Y . We can pass to the quotient and get a bifunctor

K+(F ) : K+(C)×K+(C ′)→ K+(C ′′).

Recall that if we have a functor G, a class of adapted objects R to G 1 is a class such
that
• G is exact on R.
• R is big enough (any objects injects itself in an object of R).
• if 0→ F ′ → F → F ′′ → 0 is an exact sequence and F ′ and F are in R then
F ′′ is in R.

For a bifunctor F , we will say that (R,R′) is adapted to F if
• for all X ∈ Ob(R), R′ is adapted to F (X, ·),
• for all X ′ ∈ Ob(R′), R is adapted to F (·, X ′).

In this case, we can derive F and we have for X• ∈ D+(C) and Y • ∈ D+(C ′),

RF (X•, Y •) ' s(F (I•, J•))

where X• ' I•, I• ∈ K+(R), Y • ' J• and J• ∈ K+(R′). We have the following
commutative diagram :

K+(R)×K+(R′) K+(C ′′)

D+(C)×D+(C ′) D+(C ′′).

F

Q×Q′ Q′′

RF

Moreover suppose that we can derive the functor F (·, Y •) for all Y • ∈ Ob(K+(C ′)).
Denote by RIF (·, Y •) this right derived functor. Then by construction of the derived
functor we have

RF (X•, Y •) ' RIF (X•, Y •).

A suffisant condition for this to happen is that there exists a subcategory R of C
such that for all Y ∈ Ob(C ′),R is adapted to F (·, Y ). Another way to formulate it is
that (R, C ′) is adapted to F . There is also an analogous theorem for composition of
derived functor :

1. People usually say R is G-injective
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Theorem 2 (Grothendieck’s composition theorem). Let F : C × C ′ → C ′′ be a left
exact bifunctor of abelian categories and let G : C ′′ → C ′′′ be a left exact functor of
abelian categories. Assume that there exists full additive subcategories R, R′ and R′′
of C, C ′ and C ′′ respectively such that (R,R′) is adapted to F , R′′ is adapted to G
and :

F (Ob(R),Ob(R′)) ⊂ Ob(R′′).

Then the derived functor R(G ◦ F ) : D+(C)×D+(C ′)→ C ′′ exists and we have

R(G ◦ F ) ' RG ◦RF.

We finish this section by a theorem that might be useful for comprehension :

Theorem 3. Let C be an abelian category with enough injective. The functor HomC
is left exact with respect of each of its argument so we can derive it and we have the
following identity :

H0(·) ◦RHomC ' HomD+(C)

and you may already know the bifunctor Hn(·) ◦RHomC. It is denoted ExtnC(·, ·).

Démonstration. We will do the proof as it gives us an explicit construction of a
derived bifunctor. The first lemma, we want to have is :

Lemme 1. If C has enough injectives, (Cop, I) is adapted to the bifunctor Hom where
I denotes the injective objects of C.

The proof of this lemma is trivial once you have all the definitions : an object I is
injective if and only if Hom(·, I) : Cop → Ab is an exact functor. And as Hom(F, ·) is
left exact, injectives objects are adapted to Hom(F, ·). We have proved that (Cop, I)
is adapted to Hom.

Now takeX• ∈ D+(Cop) and Y • ∈ D+(C). We want to computeH0◦RHom(X•, Y •).
Take I• ∈ K+(I) such that Y • ' I•. Then

RHom(X•, I•) ' s(Hom(X•, I•)).

Let’s write explicitly the double complex to understand what’s happening. We have
(recall that X• is an element of D+(Cop) and will be seen later as an element of D−(C)
via X• → X−•) :

· · · ← X−1 ← X0 ← X1 ← · · ·
· · · → I−1 → I0 → I1 → · · ·
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so Hom(X•, I•) is

. . . . . . . . .

. . . Hom(X−1, I1) Hom(X0, I1) Hom(X1, I1) . . .

. . . Hom(X−1, I0) Hom(X0, I0) Hom(X1, I0) . . .

. . . Hom(X−1, I−1) Hom(X0, I−1) Hom(X1, I−1) . . .

. . . . . . . . .

We want to understand the H0 of the simple complex S associated to this double
complex. We need to understand ker(d0S) and im(d−1S ). First

S0 =
⊕
i∈Z

Hom(X−i, I i)

S−1 =
⊕
i∈Z

Hom(X−i−1, I i)

S1
⊕
i∈Z

Hom(X−i+1, I i)

and

dS(fi)i∈Z = (dI ◦ fi−1 ± fi ◦ dX)i∈Z.

The proof is now an easy check : see X• as an element of D−(C) by the identification
(X i)i 7→ (X−i)i. Then an element of S0 is a family of morphisms

. . . X−(i−1) X−i X−(i+1) · · ·

. . . I−i−1 I i I i+1 · · · .

An element of S1 is a family of morphisms

. . . X−(i−1) X−i X−(i+1) · · ·

. . . I−i−1 I i I i+1 · · · .
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And an element of S−1 is a family of morphisms

. . . X−(i−1) X−i X−(i+1) · · ·

. . . I−i−1 I i I i+1 · · · .

The kernel of d0S is composed of family of morphisms which commute with d i.e. of
morphisms of chains from X−• to I•. The image of d−1S are morphisms of chains
homotopic to 0. So we have proved that

H0 ◦RHom(X•, Y •) ' HomK(C)(X
•, I•) ' HomD(C)(X

•, Y •)

and this concludes the proof.

3 Operations on sheaves

3.1 The bifunctor Hom

In this section, we fix a field k so that the tensor product is exact. We will denote
by Mod the category of k-modules. For any manifold X, we denote by Sh(X) the
category of sheaves of k-modules on X and set Db(X) := Db(Sh(X)). Let F and G
be two elements of Sh(X). The sheaf Homk(F ,G ) is defined by

Homk(F ,G )(U) = HomSh(U) (F |U , G |U)

where HomSh(U) (F |U , G |U) is the k-module of morphisms of sheaves between F |U
and G |U .

Proposition 1. The bifunctor Homk(·, ·) from Sh(X)o×Sh(X) to Sh(X) is left exact
with respect to each of its arguments.

The fact that Homk(F ,G ) is indeed a sheaf is an easy check. We will see the left
exactness later as a consequence of the ⊗,Hom adjunction. What I really want to
stress here is that

U 7→ HomMod(F (U), G(U))

has no reason to be a presheaf except if F is flabby. There is no way to define natural
restrictions maps

HomMod(F (U), G(U))→ HomMod(F (V ), G(V )) when V ⊂ U.

One important is example is the following. Let Z be any open or closed set of X and
F ∈ Sh(X) then :

Homk(kZ ,F ) ' ΓZF . (1)
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Suppose first that Z is an open set. It is enough to check that for any open set U of X,
we have Γ(U ; Hom(kZ ,F )) ' Γ(U ; ΓZF ). We are left to prove that Hom(kZ∩U , F |U ) =
F (Z ∩ U). Without loss of generality, we can suppose X = U . Then we can also
suppose Z = X because :

HomSh(X)(kZ ,F ) ' HomSh(Z)(kZ |Z , F |Z).

Indeed if we have a morphism of sheaves between kZ |Z and F |Z , we can extend it to
a morphism between kZ and F because any section of kZ is equal to zero near the
boundary of Z.

HomSh(Z)(kZ ,F ) ' HomPSh(Z)(ǩZ ,F )

' {φV : k → F (V ) with compatibility conditions}V⊂Z
' {φV ∈ F (V ) if with compatibility conditions}V⊂Z
' F (Z).

where ǩZ designs the presheaf of constant functions with values in k. First equality is
due to an adjunction formula between the forgetful functor Sh(Z) → PSh(Z) and
the sheafification functor PSH(Z)→ Sh(Z).

The case where Z is closed follows by applying the left exact functor Homk(·,F )
to the exact sequence 0→ kX\Z → kX → kZ → 0 and comparing it with the exact
sequence 0→ ΓZ(F )→ F → ΓX\ZF .

We can also prove a very useful result :

Homk(F ⊗ G ,H ) ' Homk(F ,Homk(G ,H )). (2)

Démonstration. We just need to prove that

HomSh(X)(F ⊗ G ,H ) ' HomSh(X)(F ,Hom(G ,H )).

The right side is

HomSh(X)(F ⊗ G ,H ) ' HomPSh(X)(F ⊗̌G ,H )

' {φU : F (U)⊗ G (U)→H (U) with compatibility conditions}U⊂X
' {φU : F (U)→ HomMod(G (U),H (U)) with compatibility conditions}U⊂X

and the left side is

HomSh(X)(F ,Hom(G ,H )) '
{
φU : F (U)→ HomSh(X)(G |U , H |U) with compatibility conditions

}
U⊂X .

What we need to check is that giving ourselves a family of morphisms of modules
from F (U) to HomMod(G (U),H (U)) with some compatibility conditions is the
same as giving ourselves a family of morphism from F (U) to HomSh(X)((G |U , H |U )
with compatibility conditions. This is true even though HomSh(X)((G |U , H |U) 6=
HomMod(G (U),H (U)).
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The adjunction formula between f−1 and f∗ can be rewritten using Hom . Indeed,
if we take f : Y → X a continuous map, F ∈ Db(X) and G ∈ Db(Y ) then :

f∗HomkY (f−1F,G) ' HomkX (F, f∗G)

Démonstration.

Γ(U ; f∗HomkY (f−1F,G)) = Γ(f−1(U); HomkX (f−1F,G))

= HomSh(f−1(U))(f
−1F

∣∣
f−1(U)

, G|f−1(U))

= HomSh(U)((F |U , f∗G|U)

= Γ(U ; HomkX (F, f∗G)).

We have just applied the adjunction formula Patrick proved for f : f−1(U)→ U .

3.2 Some reminders and useful formulas

A subcategory R ⊂ C is adapted to a functor F (or is said to be F -injective) if :
(i) for any X ∈ Ob(C), there exists X ′ ∈ Ob(R) and an exact sequence 0→ X →

X ′.
(ii) F is exact on R.
(iii) If 0 → X ′ → X → X ′′ → 0 is an exact sequence in C with X ′ and X in R

then X ′′ is in R.

Theorem 4. Let f : Y → X be a continuous map.
(1) Flabby sheaves are adapted to f? and if F is flabby then f?(F ) is flabby.

(2) Flabby sheaves are adapted to ΓZ and Γ(X, ·) and if F is flabby then ΓZf
is flabby.

(3) c-soft sheaves are adapted to f! and if F is c-soft then f!F is c-soft.

(4) If I is an injective sheaf and F any sheaf then Hom(F, I) is an injective
sheaf. (Sh(X), I) is Hom-injective where I designs injective sheaves.

This theorem could be simplified : if you don’t want to compute explicitly any derived
functor, you just need to say that all these functors map injective objects to injective
objects and that injective objects are adapted to all these functors. As you can see,
with this result, Grothendieck’s composition theorem becomes easy to apply. But
injective resolutions are not easy to find. This is why we use other classes of adapted
objects.

Démonstration. We already saw (1), (2) and (3) during Patrick’s and Vincent’s
lectures so there won’t be any proofs of these results. Let’s prove the (4). We recall
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the definition of injectivity : I is injective if and only if HomSh(X)(·, I) is an exact
functor. As

HomSh(X)(·,Hom(F, I)) = HomSh(X)(· ⊗ F, I)

is the composition of two exact functor, Hom(F, I) is an injective sheaf. As HomSh(X)(·, I)
is exact and the restriction of an injective sheaf to an open set is still an injective
sheaf, we know that Hom(·, I) is an exact functor. Take now F ∈ Sh(X), as Hom(F, ·)
is left exact, injective sheaves are adapted to Hom(F, ·). This concludes the proof.

What we should now remember is that if we want to compute RHom(F •,G •), we
just need to replace G • by a complex of injectives sheaves I• and then

If G • ' I•, RHom(F •,G •) ' s (Hom(F •, I•))

We will derive now some formulas we have proved for the category Sh(X). As we
said previously, the Grothendieck composition theorem has easy to verify hypotheses
and we won’t do any proofs. We take f : Y → X a continuous map, F ∈ Db(X),
G ∈ Db(Y ), Z ⊂ X a closed or an open set of X and F ′, F ′′ in Db(X).

Rf∗RHomDb(Y )(f
−1F,G) ' RHomDb(X)(F,Rf∗G).

RHom(kZ , F ) ' RΓZF.

RHom(F ⊗ F ′, F ′′) ' RHom(F,RHom(F ′, F ′′)).

4 Poincaré-Verdier duality for closed or open subset
In this section, Z ⊂ X will be either an open or a closed subset of X 2 and j will

be the inclusion map. In this case, we can compute explicitly what j!, j∗ and j−1 are.
Indeed we have :
Lemme 2. Let F ∈Sh(Z). Then we have :

j!F (U) = {s ∈ F (U ∩ Z), supp(s) is closed in U ⊂ X}.
This comes from the trivial fact that j : supp(s) → U is proper if and only if

supp(s) is closed in U .
Lemme 3. Take F ∈ Sh(Z) and j as before. Then

(j!F )x =

{
Fx if x ∈ Z
0 otherwise.

Démonstration. Let’s prove the fact that (j!F )x = 0 if x /∈ Z. This is clearly true
if you take x /∈ Z̄ If you take x ∈ ∂Z \ Z, U a neighbourhood of x and s a section
of U ∩ Z with closed support in U , you can see that you have to vanish near x.
Otherwise x would be in the support of s because the support of s is closed in U 3.

2. every proof we will give in this section works also for locally closed subset i.e. sets that can be
written U ∩ F where U is open and F is closed.

3. you can check that for any sheaf F and for any section s ∈ F (U), supp(s) is closed in U .
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But x /∈ U ∩ Z and this is a contradiction.
Take now x ∈ Z and we want to prove that (j!F )x = Fx. If we take U a small

neighborhood of x ∈ X then we have F (U ∩ Z) ' j!F (U). Indeed every section s of
F (U ∩ Z) will have closed support in U . If Z is closed, the support of s being closed
in U ∩ Z will be also closed in U . If Z is open, you just have to take U small enough
such that U ∩ Z = U .

Denote by ShZ(X) the full subcategory of sheaves on X vanishing on X \ Z : a
sheaf F of ShZ(X) verifies Fx = 0 for all x /∈ Z.

Lemme 4. We have an equivalence of category :

j! : Sh(Z)→ ShZ(X).

The inverse is functor is the one induced by j−1.

That means that for any sheaf G ∈ Sh(Z), j−1j!G ' G and for any sheaf
F ∈ ShZ(X), j!j

−1F ' F . The first equality is easy to check. We have a natural
morphism of j!G → j∗G so with the adjunction map we get natural maps :

j−1j!G → j−1j∗G → G .

And, as (j−1j!G )x = Gx and as everything is canonical, this cannot fail to give us
what we want. The second equality is a little trickier to see. Indeed we have the
following diagram :

F j∗j
−1F

j!j
−1F

and we would like to factorize it by F → j!j
−1F . What we need to check is that

the image of a section s ∈ F (U) seen as an element of Γ(U ∩ Z, j−1F ) has closed
support in U ∩ Z ⊂ X. (Recall that

j!j
−1F (U) = {s ∈ (j−1F )(U ∩ Z), supp(s) is closed in U}.)

But we know that s has closed support in U and that s vanishes on X \Z so nothing
bad can happen and we get our factorization. It is a trivial check to see that we have
the good stalks so we have F ' j!j

−1F .
We have now done all the preliminaries to show that j! has a right adjoint functor :

Theorem 5. Define j!F := j−1ΓZF . Then for all G ∈ Sh(Z) and F ∈ Sh(X), we
have the following adjunction formula :

HomSh(X)(j!G ,F ) ' HomSh(Z)(G , j
!F ).
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Démonstration. We must first note that is H ∈ ShZ(X) then H ⊗ kZ = H as they
have the same stalks. So we have :

HomSh(X)(j!G ,F ) ' HomSh(X)(j!G ⊗ kZ ,F )

' HomSh(X)(j!G ,Hom(kZ ,F )) (cf (2))
' HomSh(X)(j!G ,ΓZF ) (cf (1))
' HomSh(Z)(j

−1j!G , j
−1ΓZF ) (cf lemme 4)

' HomSh(Z)(G , j
!F ). (cf lemme 4)

And this concludes the proof.

5 Poincaré-Verdier duality
We have seen in the previous section a very special case of Poincaré-Verdier duality.

We will now admit the general construction of f ! and see what we can deduce from
there.

Theorem 6. Let f : Y → X be a continuous map of locally compact spaces such that f!
has finite cohomological dimension 4. Then there exists a functor f ! : Db(X)→ Db(Y )
and an isomorphism of bifunctors on Db(Y )o ×Db(X)

HomDb(X)(Rf!(·), ·) ' HomDb(Y )(·, f !(·))
The preceding adjunction formula is not nice because we don’t like the bifunctor

HomDb(X). The useful analogous of this bifunctor is the bifunctor RHom and we have
the following formula :

HomDb(X)(·, ·) = H0 ◦RΓ(X, ·) ◦RHom(·, ·).
So we will quickly forget the last theorem and always use this one instead :

Theorem 7. Let f : Y → X be a continuous map of locally compact spaces such
that f! has finite cohomological dimension. Then for F ∈ Db(X) and G ∈ Db(Y ), we
have :

RHomX(Rf!G,F ) ' Rf∗RHomY (G, f !F )

Démonstration. Let’s give a proof of this theorem using the previous one. Let H be
in Db(X). Then we have :

HomDb(X)(H,Rf?RHomY (G, f !F )) ' HomDb(Y )(f
−1H,RHomY (G, f !F ))

' HomDb(Y )(f
−1H ⊗G, f !F ))

' HomDb(X)(Rf!(f
−1H ⊗G), F )

' HomDb(X)(H ⊗Rf!G,F )

' HomDb(X)(H,RHomY (Rf!G,F ))

4. We say that f! has finite cohomological dimension if there exists an integer r > 0 such that
Rjf!(X) = 0 for any j > r and any X ∈ Sh(X) seen as an element of D+(X)
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As this is true for all H ∈ Db(X), we have finished the proof.

We shall state a theorem assuring us that f! will always have finite cohomological
dimension in our cases.

Theorem 8. Let f : Y → X be a continuous function where Y is a topological
manifold of dimension n. Then f! has finite cohomological dimension. We even have
Rjf!(F ) = 0 for all j > n+ 1 and all F ∈ Sh(Y ).

Démonstration. The proof of this statement uses the following lemma. See the pro-
positions 3.2.2 and 3.3.11 in [3] for a proof of this lemma.

Lemme 5. Let Y be a n-dimensional C0-manifold and let F ∈ Sh(Y ). Then :
(i) F admits a resolution of length at most n by c-soft sheaves.
(ii) F admits a resolution of length at most n+ 1 by flabby sheaves.
(iii) F admits a resolution of length at most 3n+ 1 by injective sheaves

It is then easy to deduce our theorem : just take a resolution

0→ F → G0 → G1 → · · · → Gn → 0

of F by c-soft sheaves. Then

Rf!(F ) ' 0→ F (G0)→ F (G1)→ · · · → F (Gn)→ 0

and Rn+1f!(F ) = 0.

We will now see why this duality is called Poincaré-Verdier duality. Take f : X →
{pt} and define

ωX = f !Z{pt}

Proposition 2. If X is a manifold of dimension n, then

ωX ' orX [n]

Démonstration. Let x be a point of X and U a neighborhood of x diffeomorphic to a
n-dimensional ball. We have :

RΓ(U, ωX) ' RΓ(X, ·) ◦RΓU(ωX)

' RΓ({pt}, ·) ◦Rf? ◦RHomZX
(ZU , ωX)

' RΓ({pt}, ·) ◦RHomZ{pt}(Rf!ZU ,Z{pt})
' RHom(RΓc(U ;ZU),Z)

But we know a flabby resolution of ZU given by Cech cochains since Anne’s lecture.
So we are computing the cohomology with compact support of the ball. So we know
that given an orientation on U , RΓc(U,ZU ) ' Z[−n]. This concludes the proof. 5

5. orX is the sheaf associated to the presheaf U 7→ Hom(Hn
c (U ; kX), k)

12



Theorem 9 (Poincaré duality). Let X be a topological manifold of dimension n. For
all i, we have :

H i
c(X,QX)∗ ' Hn−i(X; orX)

Démonstration. Take as before f : X → {pt} the projection. We take this time ωX

as f !Q{pt}. We have :

Hn−i(X; orX) ' H−i(X,ωX) ' H−iRΓ(X,ωX)

' H−iRHom{pt}(RΓc(X,QX),Q)

Here we take the derived functor of Hom on sheaves of vector space on one point i.e.
of vector spaces. But Hom is exact on vector space so we have :

Hn−i(X; orX) ' H−iRΓc(X,QX)∗ ' (H iRΓc(X,QX))∗ ' H i
c(X,QX)∗

We can also compute f ! when f is a fibration. The following proposition is an
analogous of proposition 2 and will follow exactly the same proof.

Proposition 3. Let f : Y → X be a fibration such that the fibers are l-dimensional
manifolds. Then for all X ∈ Db(X), we have :

f !G ' f−1G⊗ orX|Y [l]

where orX|Y is the relative orientation sheaf (its restriction to each fiber is the
orientation sheaf of the fiber).

Démonstration. Take an open set of Y of the form U × V such that f |U×V is the
second projection and such that U is a l-dimensional ball. Then

RΓ(U × V ; f !G) ' RΓ(Y, ·) ◦RHom(kU×V , f
!G)

' RΓ(X, ·) ◦Rf? ◦RHom(kU×V , f
!G)

' RHom(Rf!kU×V , G)

We know that on V , f is the identity and on U , f is the projection on one point.
So Rf!kU×V must be RΓc(U, kU)× kV . If you want to convince yourself of that fact,
you can take the usual flabby resolution of kU×V and check. So we can continue our
computation :

RΓ(U × V ; f !G) ' RHom(RΓc(U ; kU)⊗ kV , G)

' RHom(RΓc(U ; kU), k)⊗RHom(kV , G)

' RΓ(U ;ωU)⊗RΓ(V,G)

' RΓ(U × V ; orX|Y [l])⊗RΓ(U × V ; f−1G)
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