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1 Some symplectic and contact tautology

1.1 Symplectic manifolds

A symplectic form (or symplectic structure) on a 2n-dimensional manifold X is a
2-form w such that dw = 0 and w" is a volume form.

Example 1.1 (Tautological structure on T*N). Denote by nn: T*N — N the
cotangent bundle of N. On T*N one has the Liouville 1-form \qp) = po TiqpnTN-
Its deriwative w = d\ is called the canonical symplectic structure on N.

A n-dimensional submanifold L in X is called Lagrangian if the restriction of w
to L vanishes. If the symplectic form w is exact and we fix a primitive A then L is
a Lagrangian submanifold if :*) is closed. It is called ezact if t*\ is exact.

Example 1.2. The Liouville form has the tautological property that, for any 1-form
a on M, o*\ = «. In particular the graph of o in T*M is Lagrangian (resp. ezact
Lagrangian) if and only if « is closed (resp. exact). Fibers of T*N are also exact
Lagrangian submanifolds but they are not compact.

A symplectomorphism of X is a diffeomorphism preserving w. A symplectic
isotopy is a path (¢;)sejo,1) of symplectomorphisms with g = Id. It is hamiltonian if
it “sweeps out cylinders with vanishing symplectic area” for every loop v: St — X
and every t € [0, 1], the cylindrical map Cy(v): S! x [0,¢] — X sending (6, s) to
©s(7(0)) satisfies [ Cy(y)*w = 0. In that case there is a function H: X x I — R
such that the vector field X; generating the isotopy satisfies tx,w = dH;. This
function is unique up to addition of a function of ¢ only. It is called a hamiltonian
function generating . After choosing a base point xy in X one can define

Ki(x) = %/C’t(am)*w



where «, is any path from zy to x and Cy(«,) is the rectangle analogous to
Ci(~y) above. The condition on cylinders ensures that K; is well-defined. Then
H, = —K, 0 ;' is a hamiltonian function generating ¢.

Conversely, starting with a time-dependant function H;, the condition w™ # 0
ensures the existence and uniqueness of a vector field X; with ¢x,w = dH;. The fact
that w is closed then ensures that X; generates a hamiltonian isotopy (provided
the isotopy exists, e.g. if X; has compact support).

One of Arnold’s conjectures in symplectic topology is that, for any closed
manifold N and any hamiltonian isotopy ¢ in T*N, ¢;(0x) intersects Oy for all
t. A (still open) conjecture of Arnold says that any closed exact Lagrangian
submanifold of T*N can be obtained as ¢;(0y) for some hamiltonian isotopy ¢.

1.2 Contact manifolds

Given a cooriented hyperplane field £ on a manifold V', one considers
S(V,€) ={(z,p) € T"V; kerp = &, }.

One says that £ is a contact structure if the symplectic form of T*V restricts to
a symplectic form on S(V,§). The symplectic manifold S(V, &) is then called the
symplectization of the contact manifold (V,€). It is a R_,-principal bundle over
V. the action of a positive real number A is A - (¢,p) = (¢, Ap). A section of this
bundle is called a contact form for &.

Example 1.3 (Tautological structure on CM). Denote by mp: CM — M the
bundle of cooriented contact elements of a manifold M, i.e. cooriented hyperplanes
in TM. For any (z,p) € T*M := T*M \ Oy, we will denote by (z,[p]) the
corresponding element kerp of CM. The tautological contact structure on CM is
the hyperplane field & defined by £g = Ty, (H). Its symplectization is isomorphic
to T*M : the map (x,p) — ((m, [p]),po T?TM) is a symplectomorphism from T*M
to S(CM,§).

A Legendrian submanifold of a (2n + 1)-dimensional contact manifold (V) is
a n-dimensional submanifold L which is tangent to &.

Example 1.4. (Variations on conormal bundles) We want to geometrically build
Legendrian submanifolds of CM . First one can start with a submanifold Z C M
and consider its conormal bundle

NZ={HeCM;ny(H) € Z, Ty, nZ C H}.

If Z is a cooriented hypersurface we can also consider Ny Z = {T,Z;z € Z}
which is one of the two connected components of N'Z.
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Ifv: M — R is a function without critical point then it defines a wall in CM
which s foliated by Legendrian submanifolds:

Wy = {[d(x)], © € M} = | N7 (1))

teR

A contactomorphism is a diffeomorphism of V' preserving . It lifts as a R.,-
equivariant symplectomorphism of S(V,€): Se(v,p) = (¢(v),po (Toe)™").

A contact isotopy is a path (¢¢)icjo,1) of contactomorphisms with ¢y = Id.
In contrast to the symplectic case, ¢ automatically has a canonical hamiltonian
function which is defined on the symplectization S(V,¢) and is R.,-equivariant. If
we denote by X, the vector field generating ¢ then Hy(v,p) = p(X;(v)). Conversely
any R_,-equivariant function on S(V,p) gives a contact isotopy (provided the
relevant flow exists up to time one).

Contact Hamiltonians have two kinds of avatars. First one can simply projects
X; to a (time-dependant) section of T'V/¢ which is a trivial line bundle. Less
canonically one can choose a contact form « and get the function H; o o which is
defined on V itself and is often called the hamiltonian function of ¢ with respect
to a. Of course « also gives a trivialization of TV/¢ and all three incarnations of
contact hamiltonians are equivalent.

1.3 Contact lifts of exact symplectic objects

If L C T*N is any connected exact Lagrangian (i.e. t: L — T*N satifies .*\ = df)
then it lifts as a Legendrian submanifold of C(N x R)

A

L= {((a.~S(@.p)).[p 1)) € C(N x R): (0.p,) € L}.

In the above definition and elsewhere in this text, we use the canonical isomorphism
T*R ~ R x R. Since f is well-defined up to addition of a constant, the lift L is
well-defined up to “translation in the R direction”.

Example 1.5. If a = df then the graph of a lifts to {((q,—f(q)), [ag, 1])}. In
particular the 0-section O C T*N (seen as the graph of the differential of the zero
function) lifts to No.(N x {0}). If we consider the projection ¢p: N X R — R then
LN W,y corresponds bijectively to L N Op.

Inside C(N x R) one has the dense open set C'(N x R) of hyperplanes not
tangent to the R direction. Its sympectization seen inside 7*(N x R) is

T*N x T*R = {((n, s), (pn, s)); ps # 0}.

Hamiltonian isotopies in 7*N functorially lift to contact isotopies in C'(N x R). If
 is generated by the time-dependant Hamiltonian H; then, by definition, its lift is
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generated by I:It((n, 3), (Pn,0s)) = psHi(n, pn/ps). If ¢ has compact support then
H, canonically extends to a contact hamilonian for the whole C (N x R). Indeed
there exists a positive € such that, for any (n,p,) and any time ¢, Hy(n,p,/ps)
becomes independant of ps when [p;| is in (0, ).

We are now ready to lift the Arnold conjecture about ¢;(0x) N0y to a contact
statement. Since Oy is compact and hamiltonian isotopies can be cut-off, we can
assume without loss of generality that ¢ is compactly supported.

A conjecture by Arnold Let N be a closed manifold and ¢ a compactly
supported hamiltonian isotopy. We denote by ® the lift of ¢ as a contact isotopy
of C(N x R), consider L = N (N x {0}) the lift of Ox and Wy, = {((n,s),[0,1])}
the wall associated to ¢: (n,s) +— s. Then, for any time ¢, ®,(L) intersects W,,.

2 Micro-support and persistent intersections

We fix a ring k which is either R or Z in this text. Ordinary cohomology will always
use coefficients in k. One can study Legendrian submanifolds of CM using D" (M),
the bounded derived category of sheaves of k-modules on M (or its locally bounded
cousin D'P(M)), seen as a quantum version of contact topology in CM. Objects in
this category generalize (among other things) submanifolds of M and local systems
of coefficients. The object corresponding to a submanifold Z is denoted by k. In
this text we do not need to know precisely what is DP(M), we will use only the
existence and functorial properties of the following constructions.

e Any object .# has a support supp(.#) which is a closed subset of M. The
support of ky is Z.

e Any object .% has a micro-support N'.% which is a closed subset of CM. If
Z C M is a closed submanifold then Nk, is NZ. If U is a codimension 0
submanifold with boundary then N'ky = N, 0U.

e For any object .# and any subset A C M, there is a cohomology ob-
ject RT'(A, ). If supp(%) is entirely contained in A then RI'(A, %) ~
RT'(M,.7). If A is a nice subspace of M (say locally closed) and k = R
then the object RI'(A, k) contains exactly the same information as the

usual cohomology of A with coefficients in k. As a trivial special case,
RI'(2,.7) = 0.

Cohomology is linked with micro-supports by the following “Morse lemma”.



Proposition 2.1. Let ¢ : M — R be a function which is proper on the support of
some F € DP(M) and let a < b be two real numbers. If, for all x in M,

dip(xz) =0 and x & supp(.¥)
a<y(r)<b = < or
[dy ()] ¢ NF

then RI'({¢ < a}, %) ~ RI'({¢ < b},.7).

Since supp(ky;) = M and N'ky, = NM = &, the above lemma gives back that
the usual cohomology of sub-level sets do not change until one crosses a critical
value.

The following is a version of the main quantization result of [GKS12].

Theorem 2.2 (Quantization version I). Suppose %, € D*(M) has compact support
and ® is a contact isotopy of CM . Then there is a family %, € D*(M) with compact
support such that ®,(N . Fo) = N.F; and, for all t, RU'(M, %) ~ RT' (M, %).

Corollary 2.3. Let v : M — R be a function without critical point so that it
defines a wall Wy, in CM . If o € DP(M) has compact support and RU(M, F) # 0
then, for any contact isotopy ® and any time t, O,(N.Fo) N Wy, is non-empty.

Proof of corollary. Let %, be the family given by Theorem [2.2l Suppose for
contradiction that the intersection of Wy and ®;(N.%,) = N.%, is empty. Since
supp(-#;) is compact, 1 (supp(.%;)) is also compact. So we can apply the Morse
lemma with a such that {¢) < a} is empty and b such that supp(.%#;) C {¢ < b}
to get RI'(9, %) ~ RI'(M,.%,). Hence the later vanishes. But it is isomorphic to
RT'(M, #,) so we have a contradiction. O

This corollary contains (the contact reformulation of) the Arnold conjecture
about persistence of intersections with the zero section in cotangent bundles. Indeed
suppose N is a closed manifold and ¢ a compactly supported hamiltonian isotopy.
The zero section lifts to N (N x {0}) = N.%, for %, = ki<p. The cohomology
hypothesis is satisfied because RI'(M, . %y) ~ H*(N).

3 Functoriality in contact tautology

3.1 Push forward and pull back

Let f : N — M be any mapg] There is no hope to promote f to a honest map
between CN and CM (think of the case of constant maps for instance). But we can

Lof course a map between manifolds is always assumed to be at least of class C!
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push-forward or pull-back subsets. Let L be any subset in CN. The push-forward
of L under f is:

fo(L) = {(m, [pm]) € CM ;5 3(n,[pn]) € L, m = f(n), pmoTof = pn}.

Note that the above definition makes sense because it depends only on [p,,] and

not the specific p,, in this class.
Dually, if L is a subset of CM then the pull-back of L' under f is:

fH(L) = A{(n,[pa]) €CN ; 3(m, [pm]) € L', m = f(n), pm o Tnf = pn}-

Example 3.1. If f is a diffeomorphism from M to M and L is a single point in CM
we get the obvious lift of f to a diffeomorphism of CM: f.(m,[pm]) = T f(ker py,).
This lift is a contactomorphism.

Example 3.2. If f: E — M s a submersion and W s a cooriented hypersurface
in E then W is called a generating hypersurface for L .= f. (N, W). If W is generic
then L is an immersed Legendrian submanifold.

3.2 Contact correspondences

In order to better understand Theorem [2.2] we need a generalization of the push-
forward and pull-back operations. Let N and M be two manifolds and denote by
An and Ay the Liouville forms on their tangent bundle. The 1-form —Ay + Ay,
on T*N x T*M descends to a contact form on C(N x M) which is not quite the
tautological one. We will denote by C(N, M) the corresponding contact manifold.

A contact correspondence K from CN to CM is a Legendrian submanifold of
C(N, M). It “maps” any subset L of CN to:

K(L) = { (m. [pu]) € CM: 3((n,m). [pn, pu) € K, (n,[pa]) € L.

If L is a generic Legendrian submanifold of CN then K (L) is an immersed Legen-
drian of CM.

The obvious diffeomorphism from N x M to M x N induces a (coorientation
reversing) contactomorphism from C(N, M) to C(M,N). The image K' of a
correspondence K under this isomorphism is a correspondence from CM to CN
called the dual of K.

There is also a contactomorphism from C(N x M) to C(N, M) which sends
((n,m), [Pn, Pm)) to ((n,m), [—=pn, pm]). This will be denoted by ().

To amap f: N — M we associate the correspondence

fe= {((nvm)’ [pmpm]) S C(Nv M)’ m = f(n)a Pn :meTnf}
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which gives back the push-forward operation (hence the notation). The dual
correspondence (f,) is f*.

We denote by pr,, to projection of N x M to M. A subset L of CM is non-
characteristic for f if f, N (pry (L)) C C(N x M) is empty. Using less fancy
notations, this means:

Vn € N,Vpy, € Tj)yM,  (m,[pm]) € L = pnoT,f #0.

Example 3.3. Fort in [ =[0,1], let j, be the injection of M into M x I defined
by ji(m) = (m,t) and let pr; be the projection of M x I to I. One observes that
a subset L of CM is non-characteristic for j; if and only if L Npri(N{t}) = @.
Hence:

L non-characteristic for all j,, t € I <= LNpry(Cl) =@ <= (pr;)«(L) = @.
Two correspondences K from CN to CM and K’ from CM to CR can be
composed to get a correspondence from CN to CR:
K'oK = {((nﬂ“% [Pn, 2r]);

I(m,pm) € T*M, ((n,m), [pn, pm]) € K, ((m,7), [pm:pr]) € K’}-

3.3 Legendrian graphs

Let ¢ be a contact transformation of CM. As any contact transformation, it has a
unique lift Sy to the symplectization of the ambiant contact manifold. Since the
symplectization of CM is canonically isomorphic to T*M =T*M \ Oy, the graph
of Sy is a Lagrangian submanifold of (=T*M) x T*M. Its projection to C(M, M)
is, by definition, the Legendrian graph of ¢:

Py = {((2,9): Pe; py]) € C(M, M); (v, [py)) = @(, [pa]) }-

This graph is a correspondence between CM and itself and p(L) = I',(L) for any
subset L of CM. If ¢ is the lift of f € Diff(M) then I'y, = f..

Any contact isotopy ® in CM with Hamiltonian H; has a Legendrian graph
I'e CC(M, M x I) defined as:

Lo = {((a: ¢, 1), [po: s 1)) @e(a, [pg)) = (', [P3]), e = Hilg,py)}-

Note that the condition p; = Hy(q, p,) makes sense because of equivariance of H;.
Denoting by j; the inclusion of M in M x I as M x {t}, we have

Fcpt = jt* o) Fq>.



Remark 3.4. By construction, any ((q,q',t), [P, P, pi]) in U's satisfies p, # 0 and
p, # 0. Hence, for any subset L in CM, T'y(L)Npr;(CI) is empty. According to Ex-
ample this implies that I (L) is non-characteristic for all j, and (pr;).(T's(L))
18 empty.

4 Kernels and quantizations

Theorem is proved by quantizing the Legendrian graph I's. Recall that there is
a contactomorphism (-)* from C(M x M x I) to C(M, M x I).

Theorem 4.1 (Quantization version II). For any manifold M and any contact
isotopy (Py)ser of CM , there exists Hg € DP(M x M x I) such that (N #5)? = Tg.

In order to understand why the existence of such an object implies Theorem [2.2]
we need to know about functorial properties of the micro-support.

e Any map f: N — M induces a functor Rf,: DP(N) — D”(M). The object
Rf.7 is strongly related to the cohomology of the restriction of .% to fibers
of f. If f is proper on the support of .# € DP(N) then

N(RAHF) C fu(NF)
and this inclusion is an equality if f is a closed embedding.

e Any map f: N — M induces a functor f~': DP(M) — DP(N). If f is
non-characteristic for N'.# then N(f~(%)) C f*(N.F).

e Any object whose micro-support is empty come from local systems on M.

e One can see any object .7 in DP(M x N) as a quantum version of a correspon-
dence between CM and CN. In particular it can be used to send an object
F of DP(M) to an object # (%) in D’(N). Using the contactomorphism
(1)* from C(M x N) to C(M, N) one has, for sufficiently nice %,

Such an object J# is called a kernel, by analogy with integral transformations.

We now sketch why Theorem implies Theorem Starting with %, and %5,
we set . F = H3(Fy) € DP(M x I). One can prove that #5 is nice enough to
have N.% C N (H#4)(N F). Still denoting by j; the inclusion of M in M x I as
M x {t}, we set .F, = j; '(F) € DP(M). The object .%, is the restriction of .Z to



M x {t} identified with M. Remark ensures that j; is non-characteristic for
NZ so

NF, C ji(NF)
C (4 0 W Ha)") (N -Fo)
— (5 oTa) (V7
=T, (NFy) = &, (N )

So NF, C ®,(N Fy). One can prove the reverse inclusion by using the isotopy
(®;)~! and understand how its quantization #g-1 is related to #g. Note however
that the applications to persistent intersections use only the inclusion we proved
above.

It remains to explain why RI'(M,.%,) ~ RI'(M,.%;). Let 7 denote the pro-
jection of M x I to I. What we want to prove is roughly that the cohomology
of fibers M x {t} of = with respect to .%; is independant of ¢. This cohomol-
ogy is described by Rm.Z# so we want to prove that Rm.Z is (locally) constant
on I. On the micro-local side, this means N (Rm.#) = @. This holds because
N(Rm.ZF) C miNF) C m.(Te(N.%)) and the later is empty according to Re-
mark [3.41
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