Micro-support of sheaves in symplectic topology

Patrick MASSOT

October 25, 2013

1 Some symplectic and contact tautology

1.1 Symplectic manifolds

A symplectic form (or symplectic structure) on a 2*n*-dimensional manifold X is a 2-form ω such that $d\omega = 0$ and ω^n is a volume form.

Example 1.1 (Tautological structure on T^*N). Denote by $\hat{\pi}_N: T^*N \to N$ the cotangent bundle of N. On T^*N one has the Liouville 1-form $\lambda_{(q,p)} = p \circ T_{(q,p)} \hat{\pi}_N$. Its derivative $\omega = d\lambda$ is called the canonical symplectic structure on N.

A *n*-dimensional submanifold L in X is called *Lagrangian* if the restriction of ω to L vanishes. If the symplectic form ω is exact and we fix a primitive λ then L is a Lagrangian submanifold if $\iota^*\lambda$ is closed. It is called *exact* if $\iota^*\lambda$ is exact.

Example 1.2. The Liouville form has the tautological property that, for any 1-form α on M, $\alpha^*\lambda = \alpha$. In particular the graph of α in T^*M is Lagrangian (resp. exact Lagrangian) if and only if α is closed (resp. exact). Fibers of T^*N are also exact Lagrangian submanifolds but they are not compact.

A symplectomorphism of X is a diffeomorphism preserving ω . A symplectic isotopy is a path $(\varphi_t)_{t\in[0,1]}$ of symplectomorphisms with $\varphi_0 = \text{Id.}$ It is hamiltonian if it "sweeps out cylinders with vanishing symplectic area": for every loop $\gamma: S^1 \to X$ and every $t \in [0,1]$, the cylindrical map $C_t(\gamma): S^1 \times [0,t] \to X$ sending (θ,s) to $\varphi_s(\gamma(\theta))$ satisfies $\int C_t(\gamma)^* \omega = 0$. In that case there is a function $H: X \times I \to \mathbb{R}$ such that the vector field X_t generating the isotopy satisfies $\iota_{X_t}\omega = dH_t$. This function is unique up to addition of a function of t only. It is called a hamiltonian function generating φ . After choosing a base point x_0 in X one can define

$$K_t(x) = \frac{d}{dt} \int C_t(\alpha_x)^* \omega$$

where α_x is any path from x_0 to x and $C_t(\alpha_x)$ is the rectangle analogous to $C_t(\gamma)$ above. The condition on cylinders ensures that K_t is well-defined. Then $H_t = -K_t \circ \varphi_t^{-1}$ is a hamiltonian function generating φ .

Conversely, starting with a time-dependent function H_t , the condition $\omega^n \neq 0$ ensures the existence and uniqueness of a vector field X_t with $\iota_{X_t}\omega = dH_t$. The fact that ω is closed then ensures that X_t generates a hamiltonian isotopy (provided the isotopy exists, e.g. if X_t has compact support).

One of Arnold's conjectures in symplectic topology is that, for any closed manifold N and any hamiltonian isotopy φ in T^*N , $\varphi_t(0_N)$ intersects 0_N for all t. A (still open) conjecture of Arnold says that any closed exact Lagrangian submanifold of T^*N can be obtained as $\varphi_1(0_N)$ for some hamiltonian isotopy φ .

1.2 Contact manifolds

Given a cooriented hyperplane field ξ on a manifold V, one considers

$$S(V,\xi) = \{(x,p) \in T^*V; \text{ ker } p = \xi_x\}.$$

One says that ξ is a *contact structure* if the symplectic form of T^*V restricts to a symplectic form on $S(V,\xi)$. The symplectic manifold $S(V,\xi)$ is then called the *symplectization* of the contact manifold (V,ξ) . It is a $\mathbb{R}_{>0}$ -principal bundle over V: the action of a positive real number λ is $\lambda \cdot (q,p) = (q,\lambda p)$. A section of this bundle is called a contact form for ξ .

Example 1.3 (Tautological structure on CM). Denote by $\pi_M : CM \to M$ the bundle of cooriented contact elements of a manifold M, i.e. cooriented hyperplanes in TM. For any $(x,p) \in \dot{T}^*M := T^*M \setminus 0_M$, we will denote by (x,[p]) the corresponding element ker p of CM. The tautological contact structure on CM is the hyperplane field ξ defined by $\xi_H := T_H \pi_M^{-1}(H)$. Its symplectization is isomorphic to \dot{T}^*M : the map $(x,p) \mapsto ((x,[p]), p \circ T\pi_M)$ is a symplectomorphism from \dot{T}^*M to $S(CM,\xi)$.

A Legendrian submanifold of a (2n + 1)-dimensional contact manifold (V, ξ) is a *n*-dimensional submanifold *L* which is tangent to ξ .

Example 1.4. (Variations on conormal bundles) We want to geometrically build Legendrian submanifolds of CM. First one can start with a submanifold $Z \subset M$ and consider its conormal bundle

$$\mathcal{N}Z = \{ H \in \mathcal{C}M; \pi_M(H) \in Z, T_{\pi_M(H)}Z \subset H \}.$$

If Z is a cooriented hypersurface we can also consider $\mathcal{N}_+Z = \{T_zZ; z \in Z\}$ which is one of the two connected components of $\mathcal{N}Z$. If $\psi: M \to \mathbb{R}$ is a function without critical point then it defines a wall in CM which is foliated by Legendrian submanifolds:

$$W_{\psi} = \{ [d\psi(x)], \ x \in M \} = \bigsqcup_{t \in \mathbb{R}} \mathcal{N}_{+}(\psi^{-1}(t))$$

A contactomorphism is a diffeomorphism of V preserving ξ . It lifts as a $\mathbb{R}_{>0}$ equivariant symplectomorphism of $S(V,\xi)$: $S\varphi(v,p) = (\varphi(v), p \circ (T_v \varphi)^{-1})$.

A contact isotopy is a path $(\varphi_t)_{t \in [0,1]}$ of contactomorphisms with $\varphi_0 = \text{Id.}$ In contrast to the symplectic case, φ automatically has a canonical hamiltonian function which is defined on the symplectization $S(V,\xi)$ and is $\mathbb{R}_{>0}$ -equivariant. If we denote by X_t the vector field generating φ then $H_t(v,p) = p(X_t(v))$. Conversely any $\mathbb{R}_{>0}$ -equivariant function on S(V,p) gives a contact isotopy (provided the relevant flow exists up to time one).

Contact Hamiltonians have two kinds of avatars. First one can simply projects X_t to a (time-dependant) section of TV/ξ which is a trivial line bundle. Less canonically one can choose a contact form α and get the function $H_t \circ \alpha$ which is defined on V itself and is often called the hamiltonian function of φ with respect to α . Of course α also gives a trivialization of TV/ξ and all three incarnations of contact hamiltonians are equivalent.

1.3 Contact lifts of exact symplectic objects

If $L \subset T^*N$ is any connected exact Lagrangian (i.e. $\iota \colon L \to T^*N$ satisfies $\iota^*\lambda = df$) then it lifts as a Legendrian submanifold of $\mathcal{C}(N \times \mathbb{R})$

$$\hat{L} = \left\{ \left((q, -f(q, p_q)), [p_q, 1] \right) \in \mathcal{C}(N \times \mathbb{R}); \ (q, p_q) \in L \right\}.$$

In the above definition and elsewhere in this text, we use the canonical isomorphism $T^*\mathbb{R} \simeq \mathbb{R} \times \mathbb{R}$. Since f is well-defined up to addition of a constant, the lift \hat{L} is well-defined up to "translation in the \mathbb{R} direction".

Example 1.5. If $\alpha = df$ then the graph of α lifts to $\{((q, -f(q)), [\alpha_q, 1])\}$. In particular the 0-section $0_N \subset T^*N$ (seen as the graph of the differential of the zero function) lifts to $\mathcal{N}_+(N \times \{0\})$. If we consider the projection $\psi \colon N \times \mathbb{R} \to \mathbb{R}$ then $\hat{L} \cap W_{\psi}$ corresponds bijectively to $L \cap 0_N$.

Inside $\mathcal{C}(N \times \mathbb{R})$ one has the dense open set $\mathcal{C}'(N \times \mathbb{R})$ of hyperplanes not tangent to the \mathbb{R} direction. Its sympectization seen inside $\dot{T}^*(N \times \mathbb{R})$ is

$$T^*N \times T^*\mathbb{R} = \{((n,s), (p_n, p_s)); p_s \neq 0\}.$$

Hamiltonian isotopies in T^*N functorially lift to contact isotopies in $\mathcal{C}'(N \times \mathbb{R})$. If φ is generated by the time-dependent Hamiltonian H_t then, by definition, its lift is

generated by $\hat{H}_t((n,s), (p_n, p_s)) = p_s H_t(n, p_n/p_s)$. If φ has compact support then \hat{H}_t canonically extends to a contact hamilonian for the whole $\mathcal{C}(N \times \mathbb{R})$. Indeed there exists a positive ε such that, for any (n, p_n) and any time t, $H_t(n, p_n/p_s)$ becomes independent of p_s when $|p_s|$ is in $(0, \varepsilon)$.

We are now ready to lift the Arnold conjecture about $\varphi_t(0_N) \cap 0_N$ to a contact statement. Since 0_N is compact and hamiltonian isotopies can be cut-off, we can assume without loss of generality that φ is compactly supported.

A conjecture by Arnold Let N be a closed manifold and φ a compactly supported hamiltonian isotopy. We denote by Φ the lift of φ as a contact isotopy of $\mathcal{C}(N \times \mathbb{R})$, consider $L = \mathcal{N}_+(N \times \{0\})$ the lift of 0_N and $W_{\psi} = \{((n, s), [0, 1])\}$ the wall associated to $\psi: (n, s) \mapsto s$. Then, for any time $t, \Phi_t(L)$ intersects W_{ψ} .

2 Micro-support and persistent intersections

We fix a ring **k** which is either \mathbb{R} or \mathbb{Z} in this text. Ordinary cohomology will always use coefficients in **k**. One can study Legendrian submanifolds of $\mathcal{C}M$ using $D^{b}(M)$, the bounded derived category of sheaves of **k**-modules on M (or its locally bounded cousin $D^{lb}(M)$), seen as a quantum version of contact topology in $\mathcal{C}M$. Objects in this category generalize (among other things) submanifolds of M and local systems of coefficients. The object corresponding to a submanifold Z is denoted by \mathbf{k}_Z . In this text we do not need to know precisely what is $D^{b}(M)$, we will use only the existence and functorial properties of the following constructions.

- Any object \mathscr{F} has a support supp (\mathscr{F}) which is a closed subset of M. The support of \mathbf{k}_Z is Z.
- Any object \mathscr{F} has a *micro-support* $\mathcal{N}\mathscr{F}$ which is a closed subset of $\mathcal{C}M$. If $Z \subset M$ is a closed submanifold then $\mathcal{N}\mathbf{k}_Z$ is $\mathcal{N}Z$. If U is a codimension 0 submanifold with boundary then $\mathcal{N}\mathbf{k}_U = \mathcal{N}_+\partial U$.
- For any object \mathscr{F} and any subset $A \subset M$, there is a cohomology object $R\Gamma(A, \mathscr{F})$. If $\operatorname{supp}(\mathscr{F})$ is entirely contained in A then $R\Gamma(A, \mathscr{F}) \simeq R\Gamma(M, \mathscr{F})$. If A is a nice subspace of M (say locally closed) and $\mathbf{k} = \mathbb{R}$ then the object $R\Gamma(A, \mathbf{k}_M)$ contains exactly the same information as the usual cohomology of A with coefficients in \mathbf{k} . As a trivial special case, $R\Gamma(\varnothing, \mathscr{F}) = 0$.

Cohomology is linked with micro-supports by the following "Morse lemma".

Proposition 2.1. Let $\psi : M \to \mathbb{R}$ be a function which is proper on the support of some $\mathscr{F} \in D^{\mathrm{b}}(M)$ and let a < b be two real numbers. If, for all x in M,

$$a \le \psi(x) < b \implies \begin{cases} d\psi(x) = 0 \text{ and } x \notin \operatorname{supp}(\mathscr{F}) \\ or \\ [d\psi(x)] \notin \mathcal{NF} \end{cases}$$

 $\label{eq:characteristic} then \; R\Gamma(\{\psi < a\}, \mathscr{F}) \simeq R\Gamma(\{\psi < b\}, \mathscr{F}).$

Since $\operatorname{supp}(\mathbf{k}_M) = M$ and $\mathcal{N}\mathbf{k}_M = \mathcal{N}M = \emptyset$, the above lemma gives back that the usual cohomology of sub-level sets do not change until one crosses a critical value.

The following is a version of the main quantization result of [GKS12].

Theorem 2.2 (Quantization version I). Suppose $\mathscr{F}_0 \in D^{\mathrm{b}}(M)$ has compact support and Φ is a contact isotopy of $\mathcal{C}M$. Then there is a family $\mathscr{F}_t \in D^{\mathrm{b}}(M)$ with compact support such that $\Phi_t(\mathcal{N}\mathscr{F}_0) = \mathcal{N}\mathscr{F}_t$ and, for all t, $R\Gamma(M, \mathscr{F}_t) \simeq R\Gamma(M, \mathscr{F}_0)$.

Corollary 2.3. Let $\psi : M \to \mathbb{R}$ be a function without critical point so that it defines a wall W_{ψ} in $\mathcal{C}M$. If $\mathscr{F}_0 \in D^{\mathrm{b}}(M)$ has compact support and $R\Gamma(M, \mathscr{F}_0) \neq 0$ then, for any contact isotopy Φ and any time t, $\Phi_t(\mathcal{N}\mathscr{F}_0) \cap W_{\psi}$ is non-empty.

Proof of corollary. Let \mathscr{F}_t be the family given by Theorem 2.2. Suppose for contradiction that the intersection of W_{ψ} and $\Phi_t(\mathcal{NF}_0) = \mathcal{NF}_t$ is empty. Since $\operatorname{supp}(\mathscr{F}_t)$ is compact, $\psi(\operatorname{supp}(\mathscr{F}_t))$ is also compact. So we can apply the Morse lemma with a such that $\{\psi < a\}$ is empty and b such that $\operatorname{supp}(\mathscr{F}_t) \subset \{\psi < b\}$ to get $R\Gamma(\emptyset, \mathscr{F}_t) \simeq R\Gamma(M, \mathscr{F}_t)$. Hence the later vanishes. But it is isomorphic to $R\Gamma(M, \mathscr{F}_0)$ so we have a contradiction. \Box

This corollary contains (the contact reformulation of) the Arnold conjecture about persistence of intersections with the zero section in cotangent bundles. Indeed suppose N is a closed manifold and φ a compactly supported hamiltonian isotopy. The zero section lifts to $\mathcal{N}_+(N \times \{0\}) = \mathcal{N}\mathscr{F}_0$ for $\mathscr{F}_0 = \mathbf{k}_{t\leq 0}$. The cohomology hypothesis is satisfied because $R\Gamma(M, \mathscr{F}_0) \simeq H^*(N)$.

3 Functoriality in contact tautology

3.1 Push forward and pull back

Let $f: N \to M$ be any map¹. There is no hope to promote f to a honest map between $\mathcal{C}N$ and $\mathcal{C}M$ (think of the case of constant maps for instance). But we can

¹ of course a map between manifolds is always assumed to be at least of class C^1

push-forward or pull-back subsets. Let L be any subset in CN. The *push-forward* of L under f is:

$$f_*(L) := \{ (m, [p_m]) \in \mathcal{C}M ; \exists (n, [p_n]) \in L, \ m = f(n), \ p_m \circ T_n f = p_n \}.$$

Note that the above definition makes sense because it depends only on $[p_m]$ and not the specific p_m in this class.

Dually, if L' is a subset of $\mathcal{C}M$ then the *pull-back* of L' under f is:

$$f^*(L') := \{ (n, [p_n]) \in \mathcal{C}N ; \exists (m, [p_m]) \in L', m = f(n), p_m \circ T_n f = p_n \}.$$

Example 3.1. If f is a diffeomorphism from M to M and L is a single point in CM we get the obvious lift of f to a diffeomorphism of CM: $f_*(m, [p_m]) = T_m f(\ker p_m)$. This lift is a contactomorphism.

Example 3.2. If $f: E \to M$ is a submersion and W is a cooriented hypersurface in E then W is called a generating hypersurface for $L := f_*(\mathcal{N}_+W)$. If W is generic then L is an immersed Legendrian submanifold.

3.2 Contact correspondences

In order to better understand Theorem 2.2, we need a generalization of the pushforward and pull-back operations. Let N and M be two manifolds and denote by λ_N and λ_M the Liouville forms on their tangent bundle. The 1-form $-\lambda_N + \lambda_M$ on $T^*N \times T^*M$ descends to a contact form on $\mathcal{C}(N \times M)$ which is not quite the tautological one. We will denote by $\mathcal{C}(N, M)$ the corresponding contact manifold.

A contact correspondence K from $\mathcal{C}N$ to $\mathcal{C}M$ is a Legendrian submanifold of $\mathcal{C}(N, M)$. It "maps" any subset L of $\mathcal{C}N$ to:

$$K(L) = \Big\{ (m, [p_m]) \in \mathcal{C}M; \; \exists \big((n, m), [p_n, p_m] \big) \in K, \; (n, [p_n]) \in L \Big\}.$$

If L is a generic Legendrian submanifold of $\mathcal{C}N$ then K(L) is an immersed Legendrian of $\mathcal{C}M$.

The obvious diffeomorphism from $N \times M$ to $M \times N$ induces a (coorientation reversing) contactomorphism from $\mathcal{C}(N, M)$ to $\mathcal{C}(M, N)$. The image K^t of a correspondence K under this isomorphism is a correspondence from $\mathcal{C}M$ to $\mathcal{C}N$ called the dual of K.

There is also a contactomorphism from $\mathcal{C}(N \times M)$ to $\mathcal{C}(N, M)$ which sends $((n, m), [p_n, p_m])$ to $((n, m), [-p_n, p_m])$. This will be denoted by $(\cdot)^a$.

To a map $f: N \to M$ we associate the correspondence

$$f_* = \left\{ \left((n,m), [p_n, p_m] \right) \in \mathcal{C}(N, M), \ m = f(n), \ p_n = p_m \circ T_n f \right\}$$

which gives back the push-forward operation (hence the notation). The dual correspondence $(f_*)^t$ is f^* .

We denote by pr_M to projection of $N \times M$ to M. A subset L of $\mathcal{C}M$ is noncharacteristic for f if $f_* \cap (\operatorname{pr}_M^*(L)) \subset \mathcal{C}(N \times M)$ is empty. Using less fancy notations, this means:

$$\forall n \in N, \forall p_m \in T^*_{f(n)}M, \quad (m, [p_m]) \in L \implies p_m \circ T_n f \neq 0.$$

Example 3.3. For t in I = [0, 1], let j_t be the injection of M into $M \times I$ defined by $j_t(m) = (m, t)$ and let pr_I be the projection of $M \times I$ to I. One observes that a subset L of CM is non-characteristic for j_t if and only if $L \cap \operatorname{pr}_I^*(\mathcal{N}\{t\}) = \emptyset$. Hence:

L non-characteristic for all $j_t, t \in I \iff L \cap \operatorname{pr}_I^*(\mathcal{C}I) = \emptyset \iff (\operatorname{pr}_I)_*(L) = \emptyset$.

Two correspondences K from CN to CM and K' from CM to CR can be *composed* to get a correspondence from CN to CR:

$$K' \circ K = \left\{ \left((n, r), [p_n, p_r] \right); \\ \exists (m, p_m) \in T^* M, \left((n, m), [p_n, p_m] \right) \in K, \left((m, r), [p_m, p_r] \right) \in K' \right\}.$$

3.3 Legendrian graphs

Let φ be a contact transformation of $\mathcal{C}M$. As any contact transformation, it has a unique lift $S\varphi$ to the symplectization of the ambiant contact manifold. Since the symplectization of $\mathcal{C}M$ is canonically isomorphic to $\dot{T}^*M = T^*M \setminus 0_M$, the graph of $S\varphi$ is a Lagrangian submanifold of $(-\dot{T}^*M) \times \dot{T}^*M$. Its projection to $\mathcal{C}(M, M)$ is, by definition, the Legendrian graph of φ :

$$\Gamma_{\varphi} := \{ ((x, y), [p_x, p_y]) \in \mathcal{C}(M, M); \ (y, [p_y]) = \varphi(x, [p_x]) \}.$$

This graph is a correspondence between $\mathcal{C}M$ and itself and $\varphi(L) = \Gamma_{\varphi}(L)$ for any subset L of $\mathcal{C}M$. If φ is the lift of $f \in \text{Diff}(M)$ then $\Gamma_{\varphi} = f_*$.

Any contact isotopy Φ in $\mathcal{C}M$ with Hamiltonian H_t has a Legendrian graph $\Gamma_{\Phi} \subset \mathcal{C}(M, M \times I)$ defined as:

$$\Gamma_{\Phi} := \{ ((q, q', t), [p_q, p'_q, p_t]); \ \Phi_t(q, [p_q]) = (q', [p'_q]), \ p_t = H_t(q, p_q) \}.$$

Note that the condition $p_t = H_t(q, p_q)$ makes sense because of equivariance of H_t . Denoting by j_t the inclusion of M in $M \times I$ as $M \times \{t\}$, we have

$$\Gamma_{\Phi_t} = j_t^* \circ \Gamma_{\Phi}.$$

Remark 3.4. By construction, any $((q, q', t), [p_q, p'_q, p_t])$ in Γ_{Φ} satisfies $p_q \neq 0$ and $p'_q \neq 0$. Hence, for any subset L in $\mathcal{C}M$, $\Gamma_{\Phi}(L) \cap \operatorname{pr}_I^*(\mathcal{C}I)$ is empty. According to Example 3.3, this implies that $\Gamma_{\Phi}(L)$ is non-characteristic for all j_t and $(\operatorname{pr}_I)_*(\Gamma_{\Phi}(L))$ is empty.

4 Kernels and quantizations

Theorem 2.2 is proved by quantizing the Legendrian graph Γ_{Φ} . Recall that there is a contactomorphism $(\cdot)^a$ from $\mathcal{C}(M \times M \times I)$ to $\mathcal{C}(M, M \times I)$.

Theorem 4.1 (Quantization version II). For any manifold M and any contact isotopy $(\Phi_t)_{t\in I}$ of $\mathcal{C}M$, there exists $\mathscr{K}_{\Phi} \in D^{\mathrm{lb}}(M \times M \times I)$ such that $(\mathcal{N}\mathscr{K}_{\Phi})^a = \Gamma_{\Phi}$.

In order to understand why the existence of such an object implies Theorem 2.2, we need to know about functorial properties of the micro-support.

• Any map $f: N \to M$ induces a functor $Rf_!: D^{\mathrm{b}}(N) \to D^{\mathrm{b}}(M)$. The object $Rf_!\mathscr{F}$ is strongly related to the cohomology of the restriction of \mathscr{F} to fibers of f. If f is proper on the support of $\mathscr{F} \in D^{\mathrm{b}}(N)$ then

$$\mathcal{N}(Rf_!\mathscr{F}) \subset f_*(\mathcal{N}\mathscr{F})$$

and this inclusion is an equality if f is a closed embedding.

- Any map $f: N \to M$ induces a functor $f^{-1}: \mathrm{D^b}(M) \to \mathrm{D^b}(N)$. If f is non-characteristic for \mathcal{NF} then $\mathcal{N}(f^{-1}(\mathcal{F})) \subset f^*(\mathcal{NF})$.
- Any object whose micro-support is empty come from local systems on M.
- One can see any object ℋ in D^b(M×N) as a quantum version of a correspondence between CM and CN. In particular it can be used to send an object ℱ of D^b(M) to an object ℋ(ℱ) in D^b(N). Using the contactomorphism (·)^a from C(M×N) to C(M, N) one has, for sufficiently nice ℋ,

$$\mathcal{N}(\mathscr{K}(\mathscr{F})) \subset ig(\mathcal{N}\mathscr{K}ig)^a(\mathcal{N}(\mathscr{F})).$$

Such an object \mathscr{K} is called a kernel, by analogy with integral transformations.

We now sketch why Theorem 4.1 implies Theorem 2.2. Starting with \mathscr{F}_0 and \mathscr{K}_{Φ} , we set $\mathscr{F} = \mathscr{K}_{\Phi}(\mathscr{F}_0) \in \mathrm{D}^{\mathrm{b}}(M \times I)$. One can prove that \mathscr{K}_{Φ} is nice enough to have $\mathcal{N}\mathscr{F} \subset \mathcal{N}(\mathscr{K}_{\Phi})(\mathcal{N}\mathscr{F}_0)$. Still denoting by j_t the inclusion of M in $M \times I$ as $M \times \{t\}$, we set $\mathscr{F}_t = j_t^{-1}(\mathscr{F}) \in \mathrm{D}^{\mathrm{b}}(M)$. The object \mathscr{F}_t is the restriction of \mathscr{F} to $M \times \{t\}$ identified with M. Remark 3.4 ensures that j_t is non-characteristic for \mathcal{NF} so

$$\mathcal{NF}_t \subset j_t^*(\mathcal{NF}) \\ \subset \left(j_t^* \circ (\mathcal{NK}_{\Phi})^a\right) \left(\mathcal{NF}_0\right) \\ = \left(j_t^* \circ \Gamma_{\Phi}\right) \left(\mathcal{NF}_0\right) \\ = \Gamma_{\Phi_t}(\mathcal{NF}_0) = \Phi_t(\mathcal{NF}_0)$$

So $\mathcal{NF}_t \subset \Phi_t(\mathcal{NF}_0)$. One can prove the reverse inclusion by using the isotopy $(\Phi_t)^{-1}$ and understand how its quantization $\mathscr{K}_{\Phi^{-1}}$ is related to \mathscr{K}_{Φ} . Note however that the applications to persistent intersections use only the inclusion we proved above.

It remains to explain why $R\Gamma(M, \mathscr{F}_t) \simeq R\Gamma(M, \mathscr{F}_0)$. Let π denote the projection of $M \times I$ to I. What we want to prove is roughly that the cohomology of fibers $M \times \{t\}$ of π with respect to \mathscr{F}_t is independent of t. This cohomology is described by $R\pi_!\mathscr{F}$ so we want to prove that $R\pi_!\mathscr{F}$ is (locally) constant on I. On the micro-local side, this means $\mathcal{N}(R\pi_!\mathscr{F}) = \emptyset$. This holds because $\mathcal{N}(R\pi_!\mathscr{F}) \subset \pi_*(\mathcal{N}\mathscr{F}) \subset \pi_*(\Gamma_{\Phi}(\mathcal{N}\mathscr{F}_0))$ and the later is empty according to Remark 3.4.

References

[GKS12] S. Guillermou, M. Kashiwara, and P. Schapira, Sheaf quantization of Hamiltonian isotopies and applications to nondisplaceability problems, Duke Math. J. 161 (2012), no. 2, 201–245, DOI 10.1215/00127094-1507367. MR2876930