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1 Adjunction, pull-back and push-forward

1.1 Categorical framework

We need a powerful way of thinking about the relation between the functors g∗ and
g−1. We first discuss the categorical setting, following [Wei94, Appendix A.6].

Definition 1.1. A pair (L,R) of functors L : A → B and R : B → A are called
adjoint if there is a natural isomorphism τ between MorB(L·, ·) and MorA(·, R·)
seen as functors from Aop × B to Sets.

Warning: here the letter R stands for “right adjoint”, it has nothing to do with
derived functors.

Unravelling the above definition a bit, we see that, for every A in A and B in
B, there is a bijection

τAB : MorB(L(A), B)→ MorA(A,R(B)).

This bijection is natural in A and B in the sense that, for every f : A→ A′ and
g : B → B′, there is a commutative diagram

MorB(L(A′), B) MorB(L(A), B) MorB(L(A), B′)

MorA(A′, R(B)) MorA(A,R(B)) MorA(A,R(B′))

◦L(f)

τA′B

g◦

τAB τAB′

◦f R(g)◦

Proposition 1.2. A pair (L,R) is an adjoint pair if and only if there are natural
transformations η : IdA =⇒ RL and ε : LR =⇒ IdB such that, for all A and B,

1LA = εLA ◦ L(ηA)

1RB = R(εB) ◦ ηRB.
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Proof. Suppose the adjunction transformations ε and η exist. For all f : L(A)→ B,
we set τAB(f) = R(f) ◦ ηA:

A IdA(A) RL(A) R(B)

τAB(f)

ηA R(f)

and similarly, for all g : A→ R(B), τ−1
AB(g) = εB ◦ L(g).

Conversely, if τ exists we don’t have any choice, we have to set ηA = τAL(A)(IdL(A))
and εB = τ−1

R(B)B(IdR(B)). This is too big to fail.

The natural transformation η (resp. ε) is called the unit (resp. co-unit) of the
adjunction. In general they are not isomorphisms of functors.

1.2 Pull back and push forward

Proposition 1.3. Let f : Y → X be a continuous map between topological spaces.
The functors f−1 : Sh(X)→ Sh(Y ) and f∗ : Sh(Y )→ Sh(X) form an adjoint pair
(f−1, f∗).

Proof. We will construct the unit and then the co-unit of the adjunction.
Let G be a sheaf on X. We want to construct ηG : G → f∗f

−1G (which should
of course be functorial in G ). For any open subset UX in X,

f∗f
−1G (UX) = lim−→

VX⊃f(f−1(UX))

G (VX).

Because f(f−1(UX)) ⊂ UX , the module G (UX) is part of the direct system above
hence we have our canonical map.

Moving to the co-unit, we consider any sheaf F on Y . We want to construct
εF : f−1f∗F → F . For any open subset UY in Y ,

f−1f∗F (UY ) = lim−→
UX⊃f(UY )

F (f−1(UX)).

Because f(UY ) ⊂ UX ⇐⇒ UY ⊂ f−1(UX), every module in the directed system
has a restriction map to F (UY ). Those maps are obviously compatible with the
restriction maps defining the limit so we have our canonical map.
Those constructions are so canonical that they cannot fail to give an adjunction.

The unit and co-unit of the above adjunction are not isomorphisms in general.
Suppose first that X is a single point x0 so f maps every point of Y to x0. Then
for all open subset UY in Y , f−1f∗F (UY ) = F (Y ) and εF (UY ) restricts a global
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section (seen as a section of f−1f∗F ) to UY . Dually one can consider the case where
Y is a single point y and we see f as the inclusion of this point in X. Then f∗f−1G
is the sheaf which has the same stalk as G at y and vanishing stalk everywhere
else. So ηG (UX) sends a section to its germ at y if y is in UX and zero otherwise.

2 Proper base change

2.1 Proper push-forward and c-soft sheaves

Let f : Y → X be a continuous map between two locally compact spaces. Recall
that the proper push-forward functor f! : Sh(Y )→ Sh(X) is defined by:

f!F (U) =
{
s ∈ F (f−1(U)); f is proper on supp(s)

}
.

An important special case is when X is a single point. Then f!F (U) is the module
Γc(U,F ) of sections of F over U with compact support.

Lemma 2.1. For any continuous map f : Y → X, any sheaf F on Y and any x
in X:

(f!F )x = Γc(f
−1(x),F ).

The next section will generalize this formula to get the proper base change
theorem.

Before that we need a class of sheaves adapted to proper push forward. Let F
be a closed subset of X and j : F ↪→ X the inclusion map. By definition, for every
sheaf F on X, Γ(F,F ) = Γ(F, j−1F ) = lim−→U⊃F F (U) so in particular there is
a well defined restriction map Γ(X,F )→ Γ(F,F ). The sheaf F is c-soft if this
map is surjective for every compact F .

Lemma 2.2. The class of c-soft sheaves is adaptated to every functor f!. In
particular it is adapted to Γc(X, ·).

2.2 Proper base change

A cartesian square is a commutative diagram of maps

Y ′ Y

X ′ X

�

ḡ

f ′ f

g
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such that there exists a homeomorphism between Y ′ and

Y ×X X ′ = {(y, x′) ∈ Y ×X ′; f(y) = g(x′)}

which transforms f ′ and ḡ into the obvious maps. The square in the middle of the
above diagram indicates this property. An important case to keep in mind is when
f : Y → X is a bundle and f ′ : Y ′ → X ′ as its pull-back under g : X ′ → X.

Lemma 2.3 ([KS94, Proposition 2.5.11]). In the cartesian square situation above,
there is a canonical isomorphism of functors:

g−1 ◦ f! ' f ′! ◦ ḡ−1

in Fun(Sh(Y ), Sh(X ′)).

In particular, for any map f : Y → X and any x in X, we can consider the
cartesian square:

f−1(x) Y

{x} X

�

ı̄

f f

i

The above lemma then gives back the stalk formula of Lemma 2.1. This formula
will be used crucially in the proof.

Proof. Because a cartesian square is commutative, we know that f∗ ◦ ḡ∗ = g∗ ◦ f ′∗.
One can check the properness condition to see that the obvious map still gives a
well defined natural transformation δ : f! ◦ ḡ∗ =⇒ g∗ ◦ f ′! .

We then play with the adjunctions (g−1, g∗) and (ḡ−1, ḡ∗). Specifically, we use
the unit ηḡ : IdSh(Y ) =⇒ ḡ∗ ◦ ḡ−1 and the co-unit εg : g−1 ◦ g∗ =⇒ IdSh(X′) to
build the composition

g−1 ◦ f! g−1 ◦ f! ◦ ḡ∗ ◦ ḡ−1 g−1 ◦ g∗ ◦ f ′! ◦ ḡ−1 f ′! ◦ ḡ−1.
ηḡ δ εg

It remains to prove that this composition is an isomorphism. We need to check that,
for any sheaf G on Y , we get an isomorphism between g−1 ◦ f!(G ) and f ′! ◦ ḡ−1(G ).
This can be check at the level of stalks for a point x′ in X ′. Recall that, for
any continuous map h : A→ B, (h−1F )a = Fh(a) and, according to Lemma 2.1,
(h!G )b = Γc(h

−1(b),G ). So here we get

(g−1f!G )x′ = Γc
(
f−1(g(x′)),G

)
.

4



Because we consider a cartesian square, the map ḡ induces a homeomorphism
between (f ′)−1(x′) and f−1(g(x′)) and an isomorphism

Γc
(
f−1(g(x′)),G

)
' Γc

(
(f ′)−1(x′), ḡ−1G

)
.

The later module is (f ′! ḡ
−1G )x′ .

We can now consider the derived version of the above lemma.

Proposition 2.4 (Proper base change formula [KS94, Proposition 2.6.7]). In
the cartesian square situation above, there is a canonical isomorphism of derived
functors:

g−1 ◦Rf! ' Rf ′! ◦ ḡ−1

in Fun(Db(Y ),Db(X ′)).

Proof. We want to apply the above Lemma 2.3 and Grothendieck’s composition
theorem. Because g−1 is exact, R(g−1 ◦ f) ' g−1 ◦ RF for any left-exact functor
F . So, in view of Lemma 2.3, we only need to prove that Rf ′! ◦ ḡ−1 is a derived
functor of f ′! ◦ ḡ−1. It suffices to find a class of objects which are send by ḡ−1 to a
class of objects adapted to f ′! .

Let IY be the class of sheaves on Y whose restriction to every fiber f−1(x) is
c-soft. Let IY ′ be the analogous class on Y ′. The functor ḡ−1 sends IY tp IY ′
because ḡ induces a homeomorphism between (f ′)−1(x′) and f−1(g(x′)) for all x′.

So we only need to check that IY ′ is adapted to f ′! . Let 0→ F → G →H → 0
be an exact sequence in IY ′ . We want to prove that 0→ f ′! F → f ′! G → f ′! H → 0
is exact. This is equivalent to exactness at the stalk level. By Lemma 2.1 the stalk
sequence is:

0→ Γc((f
′)−1(x′),F )→ Γc((f

′)−1(x′),G )→ Γc((f
′)−1(x′),H )→ 0.

By definition of IY ′ all the sheaves appearing in this sequence are c-soft. And
Lemma 2.2 applied to (f ′)−1(x′) then guaranties exactness.

3 Tensor products and the projection formula
Let X be topological space and F and G two sheaves of modules over some ring k.
The tensor product F ⊗ G is the sheafification of the presheaf U 7→ F (U)⊗ G (U).
In particular it has the same stalks so, using that tensor products commute with
direct limits:

(F ⊗ G )x = Fx ⊗ Gx. (1)
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This stalk formula can be used to prove that pull-back commute with tensor
products ([KS94, Proposition 2.3.5]):

f−1(F ⊗ G ) ' f−1F ⊗ f−1G . (2)

We now investigate relations between our usual functors and tensor products.
In this section k is assumed to be a field so that · ⊗ G is an exact functor. For the
next lemma, recall that, for any k-module M , the sheaf MX is the sheaf of locally
constant functions with values in M .

Lemma 3.1 ([KS94, Lemma 2.5.12]). Let k be a field and M a k-module. For any
sheaf F of k-modules, there is a natural isomorphism:

Γc(X,F ⊗MX) ' Γc(X,F )⊗M.

In particular, if F is c-soft then F ⊗MX is c-soft.

Lemma 3.2 ([KS94, Proposition 2.5.13]). Let f : Y → X be a continuous map,
F a sheaf on X and G a sheaf on Y . If k is a field then there is a canonical
isomorphism

f!G ⊗F → f!

(
G ⊗ f−1F

)
.

Proof. The adjunction transformation IdSh(X) =⇒ f∗f
−1 gives a map f∗G ⊗

F → f∗G ⊗ f∗f−1F . In the category of presheaves there is an obvious equality
f∗G ⊗ f∗f−1F = f∗(G ⊗ f−1F ). The sheafified version gives a map from f∗G ⊗
f∗f

−1F → f∗(G ⊗ f−1F ) which is the obvious thing on stalks since sheafification
preserves the stalk level. So we have a map from f∗G ⊗F to f∗

(
G ⊗ f−1F

)
. Its

restriction to f!G ⊗F goes to f!

(
G ⊗ f−1F

)
.

We need to check that it is an isomorphism. As usual we look at the stalk level.
Note that the restriction of f−1F to any fiber f−1(x) is obviously the constant
sheaf (Fx)f−1(x).(

f!

(
G ⊗ f−1F

))
x
' Γc(f

−1(x), G⊗ f−1F ) by Lemma 2.1

' Γc(f
−1(x), G⊗ (Fx)f−1(x))

' Γc(f
−1(x), G)⊗Fx by Lemma 3.1

' (f!G )x ⊗Fx by Lemma 2.1
' (f!G ⊗F )x by Equation 1

The above sequence of isomorphism corresponds to the map we constructed.

Proposition 3.3 (Projection formula [KS94, Proposition 2.6.6]). Let f : Y → X
be a continuous map, F • a complex of sheaves on X and G • on Y . If k is a field
then there is a natural isomorphism

Rf!(G
•)⊗F • ' Rf!(G

• ⊗ f−1F •).
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Proof. Of course we want to apply the previous lemma and Grothendieck’s com-
position theorem. The assumption that k is a field could be avoided by using
resolution by flat sheaves but then one would need derived tensor products in
the statement. More seriously, we need a version of Grothendieck’s theorem for
bifunctors, see [KS94, Section I.1.10]. Here we only explain what are the facts
allowing to apply this theorem. Let F and G be sheaves on X and Y .

First notice that · ⊗ f−1F is an exact functor so that (· ⊗ f−1F ) ◦ Rf! =
Rf!(·)⊗ f−1F is a derived functor of · ⊗ f−1F ◦ f! = f!(·)⊗ f−1F .

Next the last part of Lemma 3.1 guaranties that · ⊗ f−1F sends c-soft sheaves
and Lemma 2.2 that this class of sheaves is adapted to f!. So Rf!(· ⊗ f−1F ) is a
derived functor of f!(· ⊗ f−1F ).

4 Kernels
In this section we explain how objects in Db(X×Y ) define functors between Db(X)
and Db(Y ). We assume that X and Y are two manifolds (although it would be
enough to assume there exists n such that any sheaf on X or Y has a resolution by
c-soft sheaves of length less than n). We denote by qX and qY the projections of
X × Y to X and Y . We assume that k is a field to avoid derived tensor products
and Hom.

Definition 4.1. For any bounded complex of sheaves K • on X × Y , we define
the functors ΦK • : D+(Y )→ D+(X) by:

ΦK •(G
•) = RqX !

(
K • ⊗ q−1

Y G •
)
.

For K •
1 in Db(X × Y ) and K •

2 in Db(Y × Z), we set

K1 ◦K2 = RqXZ !

(
q−1
XYK1 ⊗ q−1

Y ZK2

)
.

Proposition 4.2. For every K •
1 in Db(X × Y ) and K •

2 in Db(Y × Z):

ΦK1◦K2 = ΦK1 ◦ ΦK2 .

Proof. We consider all projection maps entering this situation:
In this proof we use the notation Ki = K •

i to save space. We denote by G a
complex of sheaves on Z. In the computation below, the indication “b.c.” refers
the the base change formula (Proposition 2.4) in the cartesian square

X × Y × Z Y × Z

X × Y Y

�

qY Z

qXY qY Z
Y

qXY
Y
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X × Y × Z

X × ZX

X × Y

Y

Y × Z

Z

qXZ

qXY

qY Z

qX

qY

qZ

qXY
X

qXY
Y

qXZ
X qXZ

Z

qY Z
Y

qY Z
Z

Figure 1: Some projection maps for kernel composition

(ΦK1 ◦ ΦK2)G = (RqXYX )!

[
K1 ⊗ (qXYY )−1

(
(RqY ZY )!

(
K2 ⊗ (qY ZZ )−1G

) )
︸ ︷︷ ︸

' (RqXY )!

(
q−1
Y Z

(
K2 ⊗ (qZY Z)−1G

)︸ ︷︷ ︸
' q−1

Y ZK2 ⊗ q−1
Y Z(qY ZZ )−1G (by Eq.2)

' q−1
Y ZK2 ⊗ q−1

Z G

)
(b. c.)

]

' (RqXYX )!

[
K1 ⊗ (RqXY )!

(
q−1
Y ZK2 ⊗ q−1

Z G
)

︸ ︷︷ ︸
' (RqXY )!

(
q−1
XYK1 ⊗ q−1

Y ZK2 ⊗ q−1
Z G

)
(proj. qXY )

]

' (RqX)!︸ ︷︷ ︸
=(RqXZ

X )!(RqXZ)!

(
q−1
XYK1 ⊗ q−1

Y ZK2 ⊗ q−1
Z G

)
(qXYX ◦ qXY = qX)

' (RqXZX )!(RqXZ)!

(
q−1
XYK1 ⊗ q−1

Y ZK2 ⊗ q−1
Z G︸ ︷︷ ︸

=q−1
XZ(qXZ

Z )−1G

)

' (RqXZX )!

(
(RqXZ)!

(
q−1
XYK1 ⊗ q−1

Y ZK2

)
⊗ (qXZZ )−1G

)
(proj qXZ)

= ΦK1◦K2G.
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