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The microlocal theory of sheaves and in particular the de�nition of the
micro-support is due to Kashiwara and Schapira (the main reference is their
book �Sheaves on manifolds�). These notes follow very closely the lecture
notes of Viterbo �An introduction to symplectic topology through sheaf the-
ory�.

We assume that the reader has some knowledge on the cohomology of
sheaves and derived functors (but not much). We use as black boxes a few
facts related to the so-called Mittag-Le�er condition and some properties
of derived functors: at least in the cases we consider commuting functors
induce commuting derived functors.

1 De�nitions, examples

1.1 Propagation and micro-support of a sheaf

Let F be a sheaf of R-modules over a manifold X. We want to de�ne what
it means for a sheaf to propagate at some point and in some direction. To
prepare the de�nition let us recall a few notations/facts.

The stalk Fx := limU3xF(U) at a point x is the set of germs of sections
near x. One can also consider the stalk of the cohomology presheaf

Hj(F)x := lim
U3x

Hj(U ;F).

An element in Hj(F)x is a cohomology class of a neighborhood of x modulo
the equivalence relation for which two classes are equivalent when they agree
on some smaller neighborhood of x. In particular, if Hj(U ;F) vanishes for
some neighborhood U of x, then the stalk Hj(F)x vanishes. This is what
happens for constant sheaves. We can de�ne the induced sheaf to an open
subset V by:

ΓV F(U) = F(U ∩ V ).
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Its support is included in the closure of V . Its stalk at a point of ∂V may
be non trivial (for instance, this is what happens for the constant sheaf).

De�nition 1. We will say that F propagates at x in the direction of p (or

simply at (x, p)) if for all C1-function φ de�ned in the neighborhood of x
with φ(x) = 0, dφ(x) = p, the natural map

lim−→
U3x

Hj(U ;F)→ lim−→
U3x

Hj(U ∩ {φ < 0};F).

is an isomorphism for any j.1

In particular, if F propagates at x in the direction of p, every section of
F de�ned on some �half-neigborhood {p < 0}� of x, uniquely extends to a
germ of sections at x.

De�nition 2 (Micro-support I). The micro-support (or singular support) of

a sheaf F , denoted SS(F), is the closure of all (x, p) ∈ T ∗X such that F
does not propagate at x in the direction of p.

Remark 3.

1. SS(F) is conical: for all t > 0, (x, p) ∈ SS(F) i� (x, tp) ∈ SS(F).

2. If (x, p) ∈ SS(F), then x belongs to the support of F . Indeed, if
x is not in the support of F , then H∗(U ;F) vanishes for some open
neighborhood U of x, and H∗(U ∩{φ < 0};F) vanishes as well, so that
propagation holds for any possible φ.

3. The intersection of the micro-support with the zero section SS(F) ∩
0X is the support of the sheaf. Indeed, we have already proved one
inclusion. Conversely, if (x, 0) is not in the micro-support, then for all
y in some neighborhood of x, we have propagation and in particular
for φ = 0, we get H∗(F)y ' 0. Hence H0(F) = F vanishes in some
neighborhood of x.

4. The propagation condition is local: if two sheaves agree on some open
set, the micro-support agree above this set.

5. The propagation condition does not depend on the choice of φ. It
follows from Lemma 9 below.

1We could write equivalently Hj(F)x = (Γ{φ<0}H
j(F))x
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1.2 A few examples

Example. (Constant sheaves). Let RX be the constant sheaf on X, then
SS(RX) = 0X .

The support of the constant sheaf is the entire X so we only have to show
that if p 6= 0, then RX propagates in the direction of p. Let φ be a function
s.t. φ(x) = 0 and dφ(x) = p 6= 0. The point x admits a fundamental system
of neighborhoods U such that U and U ∩ {φ < 0} are both contractible.
Then,

Hj(U,RX) ' Hj(U ∩ {φ < 0};RX) '

{
R if j = 0

0 if j > 0

After taking limits other all such neighborhoods, we see that we have prop-
agation.

Example. (Constant sheaf on closed domains) Let V be the closure of
an open set with smooth boundary in X. For x ∈ ∂V , denote by ν(x)
an exterior normal covector, i.e., ker(ν(x)) = Tx∂V and 〈ν(x), u〉 > 0 for
u ∈ TxX pointing outward. Denote by RV the constant sheaf on V : by
de�nition RV (U) is the set of locally constant functions on V ∩ U . Then,

SS(RV ) = {(x, p) ∈ T ∗X |
(x ∈ V, p = 0) or (x ∈ ∂V, ∃t > 0, p = −tν(x))}.

The cases x ∈ V and x /∈ V ∪∂V have already been treated. Let x ∈ ∂V .
First note that the stalk of RV at x is R since its set of sections is R for every
neighborhood of x. There exists a smooth function φ such that V = {φ > 0}
in the neighborhood of x. Then, for every U 3 x a su�ciently small open
subset,

H0(U ∩ {φ < 0};RV ) = RV (U ∩ {φ < 0}) = 0,

But, H0(RV )x = (RV )x = R. Hence, the map H0(R)x → limU3xH
0(U ∩

{φ < 0};RV ), is not an isomorphism. It follows that (x, dφ(x)) ∈ SS(RV ).
Since dφ(x) is a negative multiple of ν(x) it shows that for all t > 0,
(x,−tν(x)) ∈ SS(RV ).

Conversely, if φ is any function such that dφ(x) is not a negative multiple
of ν(x), then we can �nd a fundamental system of neighborhoods U of x
such that U ∩ V and U ∩ V ∩ {φ < 0} are all contractible. In particular, for
such U 's,

Hj(U,RV ) ' Hj(U ∩ {φ < 0};RV ),
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and we still have an isomorphism at the level of stalks. It follows that RV
propagates at any such x in the direction of any such p.

We have not treated yet the particular case of points (x, 0) with x ∈
∂V . But these points belongs to the micro-support since they belong to the
support.

Lemma 4. Assume we have a short exact sequence

0→ F1 → F2 → F3 → 0.

Then, for every i, j, k such that {i, j, k} = {1, 2, 3},

SS(Fi) ⊂ SS(Fj) ∪ SS(Fk),
SS(Fi) ∆SS(Fj) ⊂ SS(Fk),

where ∆ is the symmetric di�erence.

Proof. We have long exact sequences in cohomology, one for U and one for
U ∩ {φ < 0}, and a morphism of complex between the long exact sequences.
If two of the three sheaves propagate at (x, p), then two thirds of the arrows
that constitute the morphism of complex are isomorphisms. By the 5-Lemma
all the remaining arrows are isomorphisms. This shows the �rst relation. For
the same reason, if one of the three propagates at (x, p), then, either both
other two propagate or both other two do not propagate. This shows the
second relation.

Example. (Constant sheaf on open domains) Let V be an open domain
with smooth boundary in X, with exterior normal covector ν, and denote
RV the constant sheaf on V : RV (U) is the set of locally constant functions
on U that vanish near U ∩ ∂V . Then,

SS(RV ) = {(x, p) ∈ T ∗X |
(x ∈ V, p = 0) or (x ∈ ∂V, ∃t > 0, p = tν(x))}.

Indeed, the exact sequence

0→ RV → RX → RX\V → 0

and the above lemma give SS(RV ) ⊂ SS(RX\V ) ∪ 0X and SS(RX\V ) ⊂
SS(RV ) ∪ 0X . Hence, SS(RV ) ∩ 0X = SS(RX\V ) ∩ 0X .

Example. Let Z be a submanifold of X. Then, the micro-support of the
constant sheaf on Z is the conormal to Z. Locally, Z = ∂V for some open
set V , and we can deduce the microsupport from the above examples and
the exact sequence

0→ RV → RV̄ → R∂V → 0.
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1.3 Microsupport for objects of the derived category of sheaves

Lemma 5. If we denote ΓZF the sheaf given by ΓZF(U) = ker(F(U) →
F(U \ Z)), the condition

Hj(F)x ' lim
U3x

Hj(U ∩ {φ < 0};F)

is equivalent to

Hj(Γ{φ>0}F)x = 0.

Proof. The short exact sequence

0→ Γ{φ60}F → F → Γ{φ<0}F → 0

gives rise to a long exact sequence for the cohomology presheaves and their
stalk. The lemma follows immediately.

The condition Hj(Γ{φ>0}F)x = 0 can be written (RjΓ{φ>0}F)x = 0,
where RΓ{φ>0} is the right derived functor associated to Γ{φ>0}. We see
that this condition makes sense not only for a sheaf but for an object in the
derived category of sheaves.

De�nition 6 (Micro-support II). The micro-support (or singular support)

of an object in the derived category of sheaves F•, denoted SS(F•), is the

closure of all (x, p) ∈ T ∗X such that there exists a function φ de�ned in the

neighborhood of x, with φ(x) = 0 and dφ(x) = p and (RΓ{φ>0}F•)x 6= 0.

Remark 7.

1. Quasi-isomorphic complexes of sheaves have the same micro-support.

2. A distinguished triangle F•1 → F•2 → F•3
+1→ yields to the same relations

as in Lemma 4, with the same proof.

The following example is at the origin of the de�nition of the micro-
support.

Example. Assume X is an open subset of C, endowed with its sheaf of
holomorphic functions OX . Let P be a di�erential operator on OX . Then
the micro-support of the complex

0→ OX
P−→ OX → 0

is the characteristic variety of P, i.e., the zero-locus of its principal symbol.
One inclusion is a consequence of the Cauchy-Kowalewsky theorem. (See
Kashiwara-Schapira)
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1.4 Direct image of a sheaf, Lagrangian relations and micro-

support

Direct image of a sheaf

Let f : X → Y be a continuous map, for any sheaf F on X, one de�nes a
sheaf f∗F by

f∗F(U) = F(f−1(U)).

The functor f∗ is left exact, hence induces a derived functor Rf∗.

Remark 8.

1. For every closed subset Z, ΓZ(f∗F) = f∗(Γf−1(Z)F). The same holds
for derived functors:

RΓZ(Rf∗F•) = Rf∗(RΓf−1(Z)F•).

Indeed, since the functors ΓZ and f∗ send injectives to injectives, it
follows from Theorem 14.

2. If f is proper on the support of F , then (f∗F)y = limf−1(y)⊂U Γ(U ;F).
Thus for derived functors:

(Rf∗F•)y = lim−→
f−1(y)⊂U

RΓ(U ;F•).

To prove it we start from Γ(U ; f∗F) = Γ(f−1(U);F) which holds by
de�nition. Since f∗ preserves injectives, we can apply Theorem 14 and
get RΓ(U ;Rf∗F) = RΓ(f−1(U);F). Taking direct limits over U 3 y,
we get (Rf∗F)y on the left hand side, and lim−→f−1(y)⊂U RΓ(U ;F•) on

the right hand side, since the family of open sets f−1(U) is co�nal
among the neighborhoods of f−1(y).

Lagrangian relations

Let Λ be a Lagrangian submanifold in T ∗X ×T ∗Y . Then, we can de�ne the
image of a subset C ⊂ T ∗X by Λ as the reduction of the subset C × Λ ⊂
T ∗X × T ∗X × T ∗Y by the coisotropic submanifold W = ∆× T ∗Y , where ∆
is the diagonal in T ∗X × T ∗X, i.e. π((C × Λ) ∩W ), where π is the natural
projection onto the T ∗Y factor.

For instance, if φ is a symplectic di�eomorphism T ∗X → T ∗Y , its graph
de�nes a Lagrangian relation for which Λ(C) = φ(C).

6



We will use the following family of Lagrangian relations. For every f :
X → Y smooth, de�ne

Λf := {(x, ξ, y, p) ∈ T ∗X × T ∗Y | f(x) = y, ξ = p ◦ df(x)}.

Then, for every subset C ⊂ T ∗X, (y, p) ∈ Λf (C) i� there exists x ∈ f−1(y)
such that (x, p ◦ df(x)) ∈ C.

Micro-support of a direct image

Lemma 9. Assume f : X → Y is a smooth map which is proper on the

support of F•. Then,

SS(Rf∗F•) ⊂ Λf (SS(F•)).

Moreover, this is an equality if f is a closed embedding.

Proof. Assume that F propagates at (x, p◦df(x)) for every x in f−1(y). We
want to show that Rf∗F propagates at (y, p).

Let φ be such that φ(y) = 0 and dφ(y) = p. For all x ∈ f−1(y), then,
ψ := φ ◦ f satis�es ψ(x) = 0 and dψ(x) = p ◦ df(x). Our assumption implies
(RΓ{φ◦f>0}(F))x = 0. Since this is the case for every x ∈ f−1(y), we get:

lim
f−1(y)⊂U

RΓ{φ◦f>0}(U ;F)) = 0.

But, according to the remarks made above,

lim
f−1(y)⊂U

RΓ{φ◦f>0}(U ;F)) = (Rf∗(RΓ{φ◦f>0}(F)))y = (RΓφ>0(Rf∗F))y.

Thus, Rf∗F propagates at (y, p).
If f is a closed embedding f−1(y) is a point and both propagations are

clearly equivalent.

2 Some propagation theorems

2.1 Propagation for sheaves on the interval

Lemma 10. Let F• be a complex of sheaves on R. Assume that over some

interval I the microsupport of F• is included in the zero section:

SS(F•) ∩ T ∗I ⊂ 0I .

Then, for any a < b ∈ I, the following map is an isomorphism:

RΓ((−∞, b);F•)→ RΓ((−∞, a);F•).
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Proof. Let us consider the following two families of properties:

(Ak) : ∀s ∈ I, lim−→
ε→0

RΓk((−∞, s+ ε);F•) ∼−→ RΓk((−∞, s);F•).

(Bk) : ∀s ∈ I, RΓk((−∞, s);F•) ∼−→ lim←−
ε→0

RΓk((−∞, s− ε);F•).

Let us now assume that (Ak) and (Bk) hold for some k and show that we
have the isomorphism

(Ck) : RΓk((−∞, b);F•) ' RΓk((−∞, a);F•).

Assume the map RΓk((−∞, b);F•) → RΓk((−∞, a);F•) is not injective.
Then, there is u 6= 0 inRΓk((−∞, b);F•) which restricts to 0 inRΓk((−∞, a);F•).
Let

s0 = sup{s 6 b |u = 0 in RΓk((−∞, s);F•)}.

The injectivity of the map in (Ak) shows that if u vanishes inRΓk((−∞, s0);F•),
then it vanishes in RΓk((−∞, s0 + ε);F•) for some ε > 0, contradicting the
de�nition of s0. Hence, u does not vanish in RΓk((−∞, s0);F•). But this
contradicts (Bk) since u vanishes in lim←−ε→0

RΓk((−∞, s − ε);F•). Thus,
such a u can not exist and our map is injective.

The surjectivity is worked out in exactly the same way as injectivity.
Assume for a contradiction that there is a u in RΓk((−∞, a);F•) which is
not in the image of RΓk((−∞, b);F•), and set

s0 = inf{s 6 b |u is not in the image of RΓk((−∞, s);F•)}.

From (Ak), we deduce that u is not in the image of RΓk((−∞, s0);F•) and
from (Bk) that it is. Hence a contradiction.

Let us now prove (Ak) for all k. Let s ∈ I. By de�nition Γ[s,+∞)F(U)
is the kernel of the map F(U)→ F(U ∩ (−∞, s)). Hence we have an exact
sequence

0→ Γ[s,+∞)F((−∞, s+ ε))→ F((−∞, s+ ε))→ F((−∞, s)).

Now note that a section over (−∞, s + ε) that vanishes on (−∞, s) can be
identi�ed with a section over (s−ε, s+ε) that vanishes on (s−ε, s). It follows
that we can identify Γ[s,+∞)F((−∞, s+ε)) with Γ[s,+∞)F((s−ε, s+ε)) and
get an exact sequence

0→ Γ[s,+∞)F((s− ε, s+ ε))→ F((−∞, s+ ε))→ F((−∞, s)).
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If F was �abby, the last map of this sequence would be onto and we would
have a �complete� short exact sequence. But when we compute the cohomol-
ogy, we may replace F by a �abby resolution. We thus get a distinguished
triangle

RΓ[s,+∞)F((s− ε, s+ ε))→ RΓ((−∞, s+ ε);F)→ RΓ((−∞, s);F)
+1→ .

Since direct limit is an exact functor and since, by assumption, (RΓ[s,+∞)F)s =
0, we get the required isomorphism.

We prove property (Bk) by induction on k. First note that (B0) is satis�ed
by de�nition of sheaves. Assume (Bk−1) holds. Then, (Ck−1) holds, hence
the projective system RΓk−1((−∞, s− 1

n),F) satis�es the Mittag-Le�er con-
dition. It follows from Proposition 15 (see at the end of these notes) that
(Bk) holds.

2.2 The sheaf-theoretic Morse Lemma

Lemma 11. Let f : X → R proper on the support of F•. Assume that

∀x ∈ f−1([a, b]), df(x) /∈ SS(F•).

Then, the following natural map is an isomorphism:

RΓ(f−1((−∞, b));F•)→ RΓ(f−1((−∞, a));F•).

Remark 12. When F is the constant sheaf, we get the usual Morse Lemma.

Proof. This is equivalent to showing that we have an isomorphism

RΓ((−∞, b), Rf∗F)→ RΓ((−∞, a), Rf∗F).

But we know that
SS(Rf∗F) ⊂ Λ(f)(SS(F)),

and our assumption implies that Λ(f)(SS(F)) ∩ [a, b] ⊂ 0[a,b]. Hence, it
follows from the previous lemma.

2.3 Sheaves whose micro-support is contained in the zero

section

Lemma 13. If SS(F•) ⊂ 0X , then F• is quasi-isomorphic to a locally

constant sheaf.
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Proof. Since the problem is local, we can work in the neighborhood of a
point x0. Consider the fonction �square of the distance to x0�, for some
Riemannian metric. It has only one critical point in x0. Hence, from the
Morse Lemma, we deduce that for some R > 0 and for all ε ∈ (0, R),

RΓ(B(x0, R);F)→ RΓ(B(x0, ε);F)

is an isomorphism. Taking limit ε→ 0, we get RΓ(B(x0, R),F) ' RΓ(F)x0 .
Hence, RΓ(F) is locally constant.

Appendix: a short list of notations and properties

we used

• Γ(U ;F) := F(U).

• if V open, ΓV (U ;F) := F(U ∩ V ) = Γ(U ∩ V ;F).

• if V closed, ΓV (U,F) := ker(F(U)→ F(U \ V )).

• Cohomology of a sheaf: Hj(U ;F) := RjΓ(U ;F).

• H0(U ;F) = F(U).

• Constant sheaf with real coe�cient: RX(U) is the set of locally con-
stant functions on U

• Constant sheaf on V open: RV (U) is the set of locally constant func-
tions on U that vanish in a neighborhood of U ∩ ∂V .

• Constant sheaf on V closed: RV (U) is the set of locally constant func-
tions on V ∩ U .

• If V is open or closed, the stalk of the constant sheaf is given by

(RV )x =

{
R if x ∈ V
0 if x /∈ V

.

• The cohomology of the constant sheaf Hj(U ;RV ) coincides with the
usual (for example singular) cohomology Hj(U ∩ V ;R).

• f∗F(U) = F(f−1(U)). The functor f∗ is left exact in the category of
sheaves. It is exact in the category of presheaves. It sends injective
sheaves to injective sheaves.
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• The functor ΓV is left exact. It sends injective sheaves to injective
sheaves.

• The functor lim−→ is exact.

• The following result seems to be fundamental:

Theorem 14 (Grothendieck's spectral sequence). Assume we are in a

category with enough injectives and that we have two left exact functors

F and G, such that G transforms injectives into F -acyclic objects.

Then R(F ◦G) = RF ◦RG.

In particular, the theorem holds if G sends injectives to injectives.

• (The Mittag-Le�er condition) We consider a projective system of (com-
plexes of) abelian groups (Xn, ρn,p), i.e., abelian groups Xn, n ∈ N
and morphisms ρn,p : Xp → Xn for p > n such that ρn,n = Id and
ρn,p ◦ ρp,q = ρn,q. It satis�es the Mittag-Le�er condition if for any
n ∈ N, the sequence of ranges (ρn,p(Xp))p>n (subgroups of Xn) is sta-
tionary. We use the following proposition (Prop 1.12.4 in Kashiwara-
Schapira):

Proposition 15. Assume that a projective system of complex of Abelian

groups satis�es the M-L property. then,

1. Then, for all k, φk : Hk(lim←−Xn)→ lim←−H
k(Xn) is onto.

2. If for some k, the projective system Hk−1(Xn) satis�es M-L, then,

φk is bijective.
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