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1 Derived categories and functors
We saw with sheaf cohomology that a functor F can hide some “higher order”,
“derived” functors RiF containing information of a cohomological nature obtained
through resolutions. Indeed the global section functor sends a sheaf to a rather weak
information. For instance it sends the constant sheaf RX to H0(X;R) which only
counts the number of connected components of X. But if one considers an injective
resolution of RX and apply the same functor then one gets the full cohomology of
X with real coefficients. More generally, the cohomology of the complex obtained
by applying a functor F to any injective resolution is independent of the resolution
up to unique isomorphism.

This is already nice but not enough if we want to compose functors. Indeed a
sheaf and its resolutions don’t live in the same world so we cannot iterate the above
idea. A prototypical1 example of this situation is cohomology of a fiber bundle.
Say π : V → S2 is a circle bundle. It could be S2 × S1 or S3 for instance. Those
are distinguish by cohomology, hence by the sheaf RV . We want to reconstruct
this cohomology from a sheaf on the base S2. Since fibers are connected, the
push-forward sheaf π∗RV is RS2 . Hence this functor π∗ is too crude. Even applying
the derived functor of global sections to the resulting sheaf won’t help. We need to
apply it to a derived push-forward, hence compose derived functors.

So we need a general setup for this, hopefully understandable and flexible
enough. We need objects and we need resolutions of objects and, at least for the
purposes of composition, we need arbitrary complexes and not only resolutions.
So let’s recall some homological algebra explained e.g. in [GM03] or [Wei94].
Let A be an abelian category. We denote by Kom(A) the category of cochain
complexes of A. The homotopy category K(A) is the category having the same
objects as Kom(A) and whose morphisms are morphisms of Kom up to homotopy:
MorK(A)(X, Y ) = MorKom(A)(X, Y )/ ∼ where f ∼ g if there is some h such that

1and very much related to generating functions
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f − g = hd+ dk. The derived category D(A) of A is the localization of K(A) with
respect to quasi-isomorphisms (morphisms of K(A) which induce isomorphisms
on cohomology). It has the same objects as Kom(A) and K(A) but there are
more morphisms in a sense than in K(A). More precisely, there is a projection
functor QA : K(A) → D(A) which does nothing on objects and such that any
quasi-isomorphism f becomes an isomorphism QA(f) because it gained a formal
inverse.

Note that the above discussion, together with an explicit construction of local-
ization, unambiguously defines D(A). One can also characterize it up to unique
isomorphism by a universal property. We will also use the variant Db (or D+) of
bounded (or bounded below) complexes.

We now fix two abelian categories A and B. Any (additive) functor F from A
to B obviously defines a functor Kom(F ) from Kom(A) to Kom(B) by applying F
to each object of a complex. This functor descends to a functor K(F ) between the
homotopy categories K(A) and K(B) because it preserves homotopy equivalences.
However it doesn’t preserve quasi-isomorphisms so something smart has to be done
in order to get functors between derived categories. Also the derived category is
not abelian so the notion of exact functors has to be modified.

The following definition doesn’t really matter. Its only purpose is to make sense
of the next theorem.

Definition 1.1. Let F be a left-exact functor between abelian categories A and B.
A (right) derived functor of F is a pair (RF, εF ) where RF is an exact functor from
D+(A) to D+(B) and εF is a natural transformation from QB ◦K+(F ) to RF ◦QA

D+(A)

K+(A) D+(B)

K+(B)

RFQA

K+(F ) QB

εF

satisfying the following universal property: for any other such pair (G, εG), there
exists a unique natural transformation η : FR =⇒ G making the diagram

QB ◦K+(F )

RF ◦QA G ◦QA

εF εG

η◦QA
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commutative.

The universal property of derived functors guaranties that, if RF and RF ′ are
derived functors of f then there are unique natural transformations η : RF =⇒
RF ′ and η′ : RF ′ =⇒ RF such that η ◦ η′ and η′ ◦ η are the identity natural
transformation of RF and RF ′ respectively. This is a very strong uniqueness result
hence people always write the derived functor RF .

Of course an object A of A can always be seen as the complex · · · → 0 →
A → 0 → · · · concentrated in degree 0. Hence one can consider RF (A) for any
derived functor RF . But it is very important to understand that, in general, the
cohomology of the object RF (A) is not concentrated in degree zero hence there is
no object B in B such that RF (A) is isomorphic to · · · → 0→ B → 0→ · · · (see
the fiber bundle example above).

By contrast to the above definition, the following one is crucial for applications.

Definition 1.2. Let F be a left-exact functor from an abelian category A to
another one B. A class of objects R ⊂ A is adapted to F (or F -injective) if:

• F maps any acyclic complex of Kom+(R) to an acyclic complex

• R is stable by finite sums

• any object from A has a monomorphism to an object of R.

In particular, if A has enough injectives (for instance A could be a category of
modules or sheaves of modules) then the class of injective objects is adapted to all
left-exact functors. However it is crucial to consider broader classes which are still
adapted to some interesting functors. First it can be more convenient in concrete
computation and, most of all, it’s crucial in order to compose derived functors.

Proposition 1.3. If R is a class of objects associated to some left-exact functor
then any object A• in D+(A) is isomorphic to some complex of objects of R.

Note that the conclusion of the proposition means A• ' QR(R•) for some R•
in Kom+(R) and the isomorphism is of course in D+(A) so that it only means that
complexes are quasi-isomorphic in Kom+.

Example 1.4. A sheaf is flabby is all restriction maps are surjective. The class of
flabby sheaves is adapted to the functor of global sections.

The next theorem is the result of this section. It both guaranties existence of
derived functors and explains how to handle them.
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Theorem 1.5. If a left exact functor F from A to B has a class R of adapted
objects then it has a derived functor. Moreover, for any derived functor RF and
for any object A• in D+(A), RF (A•) is isomorphic to F (R•) for any object R• in
Kom+(R) which is isomorphic to A• in D+(A).

Note that, in the above theorem, all isomorphisms are isomorphisms in D+(A)
or D+(B) and F (R) is a very slightly sloppy notation for QB(K+(F )(R)).

The reason why the second part of the above theorem cannot be used as a
definition of derived functors is that they wouldn’t be functors. The image of an
object under a functor has to be an object, not an isomorphism class of objects.

The construction of derived functors involves choices but the theorem claims
those choices can be made functorially to get a derived functor and not only a
collection of objects RF (A) for A in A. It also claims that if ones chooses an
adapted object R• then F (R•) (seen as a concrete computable beast) is isomorphic
to RF (A) for any (abstract) choice of functor RF .

Also note that, to any derived functor RF and any object A, one can associate
the homology of the complex RF (A). This homology is still an object of the derived
category but with trivial differential. Its j graded part is denote by RjF (A). It is
an object in A. It depends on the choice of RF only up to unique isomorphism.
An object A in A is called F -acyclic if Rjf(A) = 0 as soon as j > 0.

We can now reach our goal of composing derived functors.

Theorem 1.6 (Grothendieck’s composition theorem). Let A, B and C be abelian
categories such that both A and B have enough injectives. Let F and G be left-exact
functors from A to B and B to C respectively. If F sends injective objects to
G-acyclic objects then, for any choices of derived functors RF , RG and R(G ◦ F ),
there is a natural isomorphism:

R(G ◦ F ) ' RG ◦RF.

The hypothesis of the composition theorem cannot be dropped.

Exercise 1.7. Let A be the category of Z/p-vector spaces, B = C the category
of abelian groups, F the embedding and G = Hom(Z/p, ·). Prove that RF = F ,
R(G ◦ F ) = G ◦ F but RG ◦ F 6= G ◦ F .

2 Derived category of sheaves
In this section we fix a nice ring k and denote by Mod the category of k-modules.
For any manifold2 X, we denote by Sh(X) the category of sheaves of k-modules
on X and set Db(X) := Db(Sh(X)).

2A nice topological space would be good enough until we discuss micro-support.
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The most important left exact functor from Sh(X) to Mod is the global sections
functor Γ(X, ·) which sends F to Γ(X,F ) = F (X). By definition, the cohomology
of an object F • in Db(X) is its image by the derived functor of Γ(X, ·). So it
is an object in Db(Mod). The j-th cohomology module of F • is the k-module
Rj(Γ(X, ·))(F •). It is usually denoted by RjΓ(X,F •). In case F • comes from
a single sheaf F (in degree zero) then RjΓ(X,F •) = Hj(X; F ). Of course
the derived functor and the cohomology modules are defined only up to unique
isomorphism but tradition requires that we ignore this issue3.

Definition 2.1. The support of a complex of sheaves F • is the closure of the set
of x in X such that H(F •

x ) 6= 0.

Note that isomorphic objects in Db(X) have the same support and that this
definition is compatible with the classical definition of support of sheaves.

3 Pull-back and push-forward
Recall that any continuous map f : X → Y induces a pull-back functor f−1 : Sh(Y )→
Sh(X) which is the sheafification of U 7→ lim−→V

F (V ) for V open in Y and contain-
ing V . This is a complicated definition but the result has a nice stalk formula:
(f−1F )y = Ff(y). In particular f−1 is an exact functor (recall exactness for sheaves
is measured at the stalk level). This operation behaves well under composition of
maps: (f ◦ g)−1 = g−1 ◦ f−1.

The example of inclusion maps is important. Let ιBA denote the inclusion of A
in B. Then, by definition, Fx = (ιXx )−1F . For general subsets Z ⊂ X one uses the
notation F|Z = (ιXZ )−1F . Suppose x is a point in Z. Then one has the comforting
equality (F|Z)x = Fx which follows from ιXx = ιXZ ◦ ιZx .

There is also a push-forward functor f∗ : Sh(X)→ Sh(Y ) whose definition is
straightforward: f∗F (U) = F (f−1(U)). The result doesn’t need to be sheafified.
Obviously, we have (f ◦ g)∗ = f∗ ◦ g∗. This functor is left-exact but not exact in
general. Indeed the stalk of f∗F is more complicated to understand than the pull-
back version. Let y be a point in Y . By definition, (f∗F )y = lim−→U3y F (f−1(U)).
In general we cannot say more. If we assume that f is proper on the support of F
then this can be rewritten as

(f∗F )y = lim−→
V⊃f−1(y)

F (V ).

The later limit is, again by definition, the module of global sections of the sheaf
F|f−1(y). So, under this properness assumption:

(f∗F )y = Γ(f−1(y),F|f−1(y)). (1)
3Of course we are doing much worse when considering Floer homology.
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See [KS94, Proposition 2.5.2] for a version involving f! and Γc.
We now turn to derived versions of those functors and their interaction. Because

(ιXZ )−1 is an exact functor, we can use the notation F •
|Z without danger of confusion.

Another conveniently compact notation is:

RΓ(Z,F •) := RΓ(Z,F •
|Z).

Recall that the right hand side is already a compactified notation forR(Γ(Z, ·))(F •
|Z).

The push-forward functor f∗ is left-exact hence it has a derived functor Rf∗. In
addition, f∗ preserves injective sheaves. Since injective sheaves are F -acyclic for
any left-exact functor F , we can apply the Grothendieck spectral sequence theorem
to the composition Γ(X, ·) = Γ(Y, ·) ◦ f∗ to get:

Theorem 3.1 (Cohomological Fubini for sheaves). For any map f : X → Y and
any F • in Db(X), there is an isomorphism RΓ(X,F •) ' RΓ(Y,Rf∗F •).

This is called Fubini because Rf∗F • can be thought as the cohomology of fibers
f−1(y), as explained by the next lemma.

Lemma 3.2. If f is proper on the support of F • then

(Rf∗F
•)y ' RΓ(f−1(y),F •).

Proof. Let F be a sheaf on X and y a point in Y . We denote by ιy and ιf−1(y) the
inclusion of y in Y and f−1(y) in X. In Equation (1) we learned that, if we restrict
to sheaves on whose support f is proper:

(ιy)
−1 ◦ f∗ = Γ(f−1(y), ·) ◦ ι−1f−1(y).

Because f∗ preserves injectives and ιf−1(y) is even exact, we can apply Grothendieck
composition theorem to get:

(ιy)
−1 ◦Rf∗ ' RΓ(f−1(y), ·) ◦ ι−1f−1(y).

So we proved the announced formula and even proved it is functorial on the
sub-category of complexes of sheaves on whose support f is proper.

If f is a locally trivial fibration over a manifold and F • = RY is the sheaf of
locally constant real-valued functions then (Rjf∗F •)y ' Hj(f−1(y);R) and we get
back the Leray-Serre spectral sequence. The discussion at the very beginning shows
that, even if F • is concentrated in degree zero, one cannot replace Rf∗(F •) by
f∗(F •).
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4 Micro-support
In this section we fix a nice ring k and a manifold X.

In order to introduce a refinement of the support, we need a new functor. Let
Z be a closed subset of X and F a sheaf on X. The sheaf ΓZ(F ) of sections of
F with support in Z is defined by:

U 7→ ker(F (U)→ F (U \ (U ∩ Z)).

This defines a functor ΓZ from Sh(X) to itself. One can check that it is left exact
hence it has a right derived functor from Db(X) to itself.

Lemma 4.1. For any closed subset Z in X, the functor ΓZ sends flabby sheaves
to flabby sheaves.

Proof. Let F be a flabby sheaf on X and U an open subset. We want to prove
that any section s in ΓZ(U) extends to a section in ΓZ(X). The zero element in
F (X \ Z) agrees with s on (X \ Z) ∩ U = U \ (U ∩ Z). Hence, since F is a sheaf
and not only a presheaf, there is a section s1 on (X \ Z) ∪ U which restricts to 0
on X \ Z and to s on U . Because F is flabby, s1 extends to a section s2 in F (X).
This section is in ΓZ(X) by construction.

Definition 4.2. Let F • be an object in Db(X), x a point inX andH a (cooriented)
contact element at x. The complex F • propagates through H if, for every relatively
compact domain D whose boundary is tangent to −H at x, RΓD(F •)x ' 0. The
micro-support NF • is the closure in CX of the set of H through which F • does
not propagate.

The meaning of the above definition will be clarified by the next proposition.
First we can clarify the notations in a remark.

Remark 4.3. The stalk RΓD(F •)x belongs to Db(Mod) and it vanishes4 if and only
its cohomology modules Hj(RΓD(F •)x) vanish5. Because direct limits commute
with cohomology,

Hj(RΓD(F •)x) = lim−→
U

(
Rj ΓD(F •)(U)

)
and this module can be denoted by Rj ΓD(F •)x without ambiguity.

Given a contact element H at some point x, it will sometimes be convenient to
consider a function ϕ : X → R such that H = ker dϕ(x). Such a function will be
called associated to H. In particular, one can use D = {ϕ ≥ 0} as a domain whose
boundary is tangent to −H at x.

4A less abusive way of writing would be to say it is isomorphic to zero.
5Here we really mean zero.
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Proposition 4.4. Let F be a sheaf on X seen as a complex concentrated in degree
zero. If ϕ is associated to H then F propagates through H if and only if restriction
maps induce isomorphisms for all j

lim−→
U3x

Hj(U ; F ) lim−→
U3x

Hj(U ∩ {ϕ < 0}; F ).∼

Proof. Let 0 → F → I 0 → · · · be an injective resolution of F so that I • is
isomorphic to F in Db(X). We set D = {ϕ ≥ 0} and D∗ = {ϕ < 0}. By definition
of ΓD, we have for every open set U and every j, an exact sequence

0→ ΓD I j(U)→ I j(U)→ I j(U ∩D∗).

This would work with any sheaf. But, since injective sheaves are flabby, we also
get that the last arrow is surjective. So we have a short exact sequence

0→ ΓD I j(U)→ I j(U)→ I j(U ∩D∗)→ 0.

Because ΓD sends flabby sheaves to flabby sheaves, the sequence 0 → ΓD F →
ΓD I 0 → · · · is a flabby resolution of ΓD F so it can be used to compute its
cohomology on U and the long exact sequence in cohomology associated to the
above short exact sequence is:

· · · → Hj(U ; ΓD I •)→ Hj(U ; I •)→ Hj(U ∩D∗,I •)→ Hj+1(U ; ΓD I •)→ · · ·

The main theorem on derived functors guarantees that RΓD(F ) ' ΓD(I •) so that
passing to the direct limit in the long exact sequence above and using the preceding
remark yields the proposition.
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