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The goals of this talk are

• to define a generalization denoted by RΓ(F) of de Rham cohomology;

• to explain the notation RΓ(F) (here F is a sheaf and RΓ is a derived
functor).

1 Presheaves and sheaves
1.1 Definitions and examples
Let X be a topological space.

Definition 1.1. A presheaf of k-modules F on X is defined by the following
data:

• a k-module F(U) for each open set U of X;

• a map rUV : F(U)→ F(V ) for each pair V ⊂ U of open subsets such that

– rWV ◦ rV U = rWU for all open subsets W ⊂ V ⊂ U ;
– rUU = Id for all open subsets U .

Therefore, a presheaf is a functor from the opposite category of open sets to
the category of k-modules. If F is a presheaf, F(U) is called the set of sections
of U and rV U the restriction from U to V .

Definition 1.2. A presheaf F is a sheaf if

• for any family (Ui)i∈I of open subsets of X

• for any family of elements si ∈ F(Ui) such that

rUi∩Uj ,Ui
(si) = rUi∩Uj ,Uj

(sj) for all i, j ∈ I

there exists a unique s ∈ F(U) where U = ∪i∈IUi such that rUi,U (s) = si for
all i ∈ I.

This means that we can extend a locally defined section.

Definition 1.3. A morphism of presheaves f : F → G is a natural trans-
formation between the functors F and G: for each open set U , there exists a
morphism f(U) : F(U)→ G(U) such that the following diagram is commutative
for V ⊂ U .

1



F(U)

G(U)

F(V )

G(V )

rFV U

f(U)

rGV U

f(V )

A morphism of sheaves is a morphism of the associated preshaves.

We denote by k−Presheaf(X) and k−Sheaf(X) the categories of preshaves
and sheaves of k-modules.

Example 1.4.

1. For any open set U , let C(U) be the set of continuous functions f : U → R.
For V ⊂ U , let rV U be the restriction of function in the ordinary sense.
Then C is a sheaf of R-modules.

2. The sheaf of holomorphic functions on C, the sheaf of k-forms on a man-
ifold...

3. Let F(U) be the set of constant functions f : U → k and rV U be the
restriction of function in the ordinary sense. Then F is a presheaf but not
a sheaf.

4. Let G(U) be the set of locally constant functions f : U → k and rV U be
the restriction of function in the ordinary sense. Then G is a sheaf.

5. Let A be a closed set in X, then kA is the sheaf where kA(U) is the set
of locally constant function A ∩ U → k. This sheaf is called the constant
sheaf over A.

6. Let Ω be an open set in X, then kΩ is the sheaf where kΩ(U) is the set
of locally constant function Ω ∩U → k with closed support. This sheaf is
called the constant sheaf over Ω.

1.2 Localization and sheafification
In this section we define the germ of a presheaf at x ∈ X.

1.2.1 Stalks

Let x ∈ X. The set of open neighborhoods of x ordered by inclusion is a directed
set. Let F be a presheaf on X. It induces a directed system of k-modules on
this directed set.

Definition 1.5. The stalk of F at x is defined by

Fx = lim
→
F(U)

By definition of the direct limit, for any open set U there exists a map
rU : F(U)→ Fx such that the following diagram is commutative.
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Fx

F(U) F(V )
rV U

rU rV

A morphism a preshaves f : F → G induces a morphism of directed systems
and therefore a map

fx : Fx → Gx.

For each x ∈ X, we obtain a functor from the category of presheaves to the
category of k-modules.

Example 1.6.

1. If C is the sheaf of continuous functions on X, then Cx is the set of germs
of continuous functions at x.

2. Assume X is locally connected. Let A be a closed subset and kA be the
constant sheaf over A. Then

• if x ∈ A, (kA)x = k and the map kA(U) → (kA)x is the evaluation
f 7→ f(x)
• if x /∈ A, (kA)x = {0}.

Similarly, if Ω is an open subset and kΩ the constant sheaf over Ω, then

• if x ∈ Ω, (kΩ)x = k

• if x /∈ Ω, (kΩ)x = {0}.

Some properties of a morphism of sheaves can be read at the stalk level.

Proposition 1.7. Let F and G be two sheaves on X.

• If f, g : F → G are two morphisms such that fx = gx for all x ∈ X then
f = g.

• If f : F → G is a morphism such that fx is an isomorphism for all x ∈ X
then f is an isomorphism.

1.2.2 Sheafification

In this section we associate a sheaf F̃ to a presheaf F .

Definition 1.8. Let F be a presheaf. The sheafification F̃ of F is the sheaf
characterized by the following property: there exists a morphism i : F → F̃
such that

• ix : Fx → F̃x is an isomorphism for all x ∈ X;

• for any morphism f : F → G where G is a sheaf there exists a unique
morphism f̃ : F̃ → G such that the following diagram is commutative.
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F F̃

G

f

i

f̃

The sheafification of F is constructed as follows. Let U be an open subset.
A section s of F̃(U) is an element of

∏
z∈U Fz satisfying the following condition:

for all x ∈ U there exist an open subset W ⊂ U and a section t ∈ F(W ) such
that pw(s) = rwW (t) ∈ Fw for all w ∈W .

Fw

∏
z∈U Fz F(W )

pw rwW

Here pw :
∏
z∈U Fz → Fw is the projection and rwW : F(W )→ Fw is defined in

the previous section. The restriction maps are given by projections.

Example 1.9. If F is the presheaf of constant functions then F̃ is the sheaf of
locally constant functions.

1.3 Operation on sheaves
Let f : X → Y be a continuous map.

Definition 1.10. Let F be a sheaf on X, then f∗F is the sheaf on Y given by

• f∗F(U) = F
(
f−1(U)

)
;

• rf∗F
V U = rFf−1(V )f−1(U) if V ⊂ V .

Definition 1.11. If G is a sheaf on Y , the sheaf f−1G on X is the sheafification
of the presheaf Pf−1G defined by Pf−1G(U) = limV⊃f(U) G(V ).

Example 1.12. If A ⊂ X is a closed subset and i : A → X is the inclusion
then i∗k = kA and i−1kA = k (here k is the constant sheaf on A).

Definition 1.13. If F is a sheaf on X then f!F is the sheaf on Y defined by

f!F(U) =
{
s ∈ F

(
f−1(U)

)
, f : supp(s)→ U is proper

}
.

Example 1.14. If Ω ⊂ X is an open subset and i : Ω → X is the inclusion
then i!k = kΩ.

2 Čech cohomology
In this section, we define the cohomology of sheaves geometrically. Let U =
(Ui)i ∈ I be an open cover of X and F be a sheaf. The 0-cochains are
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functions which assign to each open set Ui an element of F(Ui). More gen-
erally a q-cochain s ∈ Cq(U ,F) is a function which assign to any q + 1-
tuple (Ui0 , . . . , Uiq ) an element s(i0, . . . , iq) in F(Ui0 ∩ · · · ∩ Uiq ) such that
s(iσ(0), . . . , iσ(q)) = ε(σ)s(i0, . . . , iq) for any permutation σ.

We define a coboundary operator δ : Cq(U ,F)→ Cq+1(U ,F) by

(δs)(i0, . . . , iq+1) =
q+1∑
j=0

(−1)js(i0, . . . , îj , . . . , iq+1)|Ui0∩···∩Uiq+1
.

Here rV U (s) is denoted by s|V if s ∈ F(U) and V ⊂ U . Note that

s(i0, . . . , îj , . . . , iq+1)|Ui0∩···∩Uiq+1

is in F(Ui0 ∩ · · · ∩ Uiq+1).
Example 2.1. If q = 1, we obtain (δs)(0, 1) = s(1)|U0∩U1 − s(0)|U0∩U1 .

U1 U0

Proposition 2.2. δ ◦ δ = 0
The cohomology H∗(U ,F) of the complex (C(U ,F), δ) is called the Čech

cohomology of the cover U with values in F .
If U ′ is a refinement of U , there exists a map

ρ : Hp(U ,F)→ Hp(U ′,F).
The map ρ is constructed as follows : pick a map ϕ : I ′ → I such that Uϕ(i) ⊂ Ui
for all i ∈ I ′ and let

ρ̃(s)(i0, . . . , iq) = s(ϕ(i0), . . . , ϕ(iq))|Ui0∩···∩Uiq
.

The map ρ̃ is a chain map and induces a map ρ in cohomology.
We define the p-th Čech cohomology group Ȟp(X,F) (or RΓp(X,F)) of F

as the direct limit of the Hp(U ,F). Computing the direct limit is more or less
impossible but there exist special covers whose Čech cohomology computes the
Čech cohomology Ȟ(X,F).
Definition 2.3. A cover is acyclic if Ȟp(Ui0 ∩ · · · ∩ Uiq ,F) = {0} for all p > 0
and distinct indices i0, . . . , iq.
Theorem 2.4 (Leray). If the cover U is acyclic for F then

Ȟ(F) = H∗(U ,F)
The Čech cohomology generalizes de Rham cohomology.

Proposition 2.5. Let RM be the constant sheaf on a manifold M . Then the
Čech cohomology of M with values in RM is isomorphic to the de Rham coho-
mology of M .
Remark 2.6. To compute Čech cohomology for the constant sheaf, one can
use good covers (a good cover is a cover such that Ui0 ∩· · ·∩Uiq is contractible).
Good covers are acyclic for the constant sheaf.
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3 Injective resolutions and cohomology of sheaves
The goal of this section is to present the cohomology of sheaves in a more
algebraic and general setting.

3.1 The category of sheaves
Proposition 3.1. The categories k−Presheaf(X) and k−Sheaf(X) are abelian.

Proposition 3.2. The sequence F → G → H is exact if and only if the se-
quences Fx → Gx → Hx are exact for all x ∈ X.

Definition 3.3. ΓX is the functor from the category k − Presheaf(X) to the
category of k-modules given by ΓX(F) = F(X).

Proposition 3.4. The functor ΓX is left exact.

3.2 Injective objects and resolutions
Let C be a category.

Definition 3.5. A map f ∈ Mor(B,C) is a monomorphism if for any g1, g2 ∈
Mor(A,B), f ◦ g1 = f ◦ g2 implies g1 = g2.

Definition 3.6. An object I of C is injective if for any map h ∈ Mor(A, I) and
any monomorphism f ∈ Mor(A,B), there exists g ∈ Mor(B,C) such that the
following diagram is commutative.

A B

I

h

f

g

Definition 3.7. A category has enough injectives if any object has a monomor-
phism into an injective object.

Theorem 3.8. The category k − Sheaf(X) has enough injectives.

Proposition 3.9. If C has enough injectives and B is an object in C, there
exists an exact sequence

0→ B → J0 → J1 → . . .

where the Jk are injectives. This exact sequence is called an injective resolution
of B.

Definition 3.10. Let F be a sheaf and let

0→ F → J0 → J1 → . . .

be an injective resolution of F . Then the cohomology of the sheaf F , RΓ(X,F),
is the cohomology of the complex

0→ J0(X)→ J1(X)→ . . . .
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Remark 3.11. RΓ0(X,F) = F(X)

More generally we have the following definition.

Definition 3.12. Let C be a category with enough injectives and let F be a
left exact functor. If A is an object in C, then RF j(A) is the j-th cohomology
group of the complex

0→ F (J0)→ F (J1)→ . . .

where
0→ A→ J0 → J1 → . . .

is an injective resolution of A.

Remark 3.13. For C = k − Sheaf(X) and F = ΓX we obtain the cohomology
of sheaves.

3.3 Acyclic resolutions and examples
Injective elements are not so easy to find. To compute cohomology, we replace
injective resolutions with acyclic resolutions.

3.3.1 Acyclic sheaves

Definition 3.14. Let C be a category with enough injectives and let F be a
left exact functor. An object A ∈ C is F -acyclic if RF j(A) = {0} for all j > 0.

Theorem 3.15. Let C be a category with enough injectives and let F be a left
exact functor. Let

0→ A→ L0 → L1 → . . .

be a resolution such that Lj is F -acyclic for all j. Then RF (A) is quasi-
isomorphic to the complex

0→ F (L0)→ F (L1)→ . . . .

In particular, RF j(A) is the j-th cohomology group of this chain complex.

Example 3.16. The following sheaves are ΓX -acyclic

1. flabby sheaves : F(X)→ F(U) is onto for any U (a section defined on U
can be extended to X) ;

2. soft sheaves : F(X) → F(K) = limU⊃K F(U) is onto for any closed set
K (a section defined in a neighborhood of K can be extended X).

Example 3.17. The sheaf of continuous functions on a manifold is soft but not
flabby as a section that diverges near the boundary of an open set cannot be
extended to the whole manifold.
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3.3.2 De Rham cohomology

Let RM be the constant sheaf on a manifold M . Let Ωk be the sheaf of k-forms
on M . It is a soft sheaf and the complex

0→ RM → Ω0 → Ω1 → . . .

is an acyclic resolution as it is exact at the stalk level by the Poincaré Lemma.
Therefore, RΓ(RM ) is the cohomology of the complex

0→ Ω0(M)→ Ω1(M)→ . . . .

Thus RΓ(RX) is isomorphic to the de Rham cohomology of M .

3.3.3 Singular cohomology

Let Cq be the sheaf of singular cochains on X. It is a flabby sheaf and the
complex

0→ kX → C0 → C1 → . . .

is an acyclic resolution. Therefore, RΓ(kX) is the cohomology of the complex

0→ C0(X)→ C1(X)→ . . .

and thus is isomorphic to the singular cohomology.
As a corollary, we obtain that de Rham cohomology and singular cohomology

are isomorphic.

3.3.4 Čech cohomology

Let U be a cover of X. Let Cp(U,F) be the p-cochains of U associated to the
cover U ∩ U . The complex

0→ F → C0 → C1 → . . .

is a resolution of F . If the cover is acyclic, the resolution is acyclic. Therefore
RΓ(F) is the cohomology of the complex

0→ C0(U ,F)→ C1(U ,F)→ . . .

and our two definitions of sheaf cohomology coincide.

3.4 Derived categories and derived functors
Let C be an abelian category. We can define its derived category by "formally in-
verting" quasi-isomorphisms in the category of complexes K(C) of C. In general,
a functor F : C → D between abelian categories does not induce a morphism
between the associated derived categories. Yet, if F is left exact, it induces a
functor

D(F ) : Db(C)→ Db(D)

called the derived functor. This functor is constructed in the following way:

1. select a suitable subclass of objects C;
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2. if F acts nicely on this subclass, it induces a derived functor on the derived
category of this subclass;

3. if the chosen subclass is large enough, the associated derived category is
equivalent to the derived category of C and the derived functor is com-
pletely determined.

If C has enough injectives, the suitable subclass is the class of injective
objects. The cohomology of sheaves of F corresponds to the derived functor of
ΓX applied to the complex

0→ F → 0.

This complex is quasi-isomorphic to an injective resolution of F .
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